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Abstract

Currently, the issues concerning security have greater impact in society. During the last

decades, face recognition is an area of computer vision that has received a lot of attention.

Face recognition is a natural ability of the human being, however, developing algorithms

able to recognize faces is a complex process. These algorithms can be used on systems with

various applications, more precisely in video surveillance in open areas – areas in which

the video surveillance cameras are placed far away from the scene. In these cases, the

quality of the image received is not always the best possible, normally compromising the

efficiency of a face recognition system. This dissertation addresses the problem of image

Super-Resolution (SR) and image quality enhancement, normally named face hallucination,

providing superior data to the process of video face recognition on open-spaces. Regarding

face recognition, this dissertation focus on the concept of video based “dictionary learning”

methods using sparse coding. In an attempt to validate this concept a Region Covariance

Matrices (RCM’s) based approach is explored. These matrices are known to describe an

image with more information than just by analysing the information provided by the gray

level. The information contained on a RCM goes through simple operations on the image,

like image derivatives, but also through Gabor filters. The Gabor filters have been very

useful on the field of facial recognition presenting a high success rate.

Keywords: Face Hallucination; Face Recognition; Sparse Coding; RCM; Gabor
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Resumo

Nos dias de hoje as questões relacionadas com a segurança têm cada vez mais impacto na

sociedade. Durante as últimas décadas o reconhecimento facial é uma área da visão por

computador que tem vindo a merecer grandes atenções. O reconhecimento facial é uma ha-

bilidade natural do ser humano, contudo, desenvolver algoritmos capazes de reconhecer faces

é um processo complexo. Estes algoritmos podem ser utilizados em sistemas com vários tipos

de aplicações, mais especificamente em aplicações de v́ıdeo vigilância em espaços abertos,

isto é, em espaços em que a câmara de vigilância está situada longe da zona de acção, como

por exemplo a monitorização de locais públicos ou privados. Geralmente, nestes casos, a

qualidade da imagem adquirida nem sempre é a melhor, podendo comprometer a eficácia

de um sistema de reconhecimento facial. Nesta dissertação é estudado um método para

melhorar a qualidade e a resolução de uma imagem de modo a que nos sistemas de reconhec-

imento, as caracteŕısticas extráıdas da imagem contenham mais detalhe quando comparadas

com as imagens adquiridas directamente da câmara de v́ıdeo vigilância. O método é con-

hecido como face hallucination. No que diz respeito ao sistema de reconhecimento facial,

nesta dissertação é abordado o conceito de “dicionários aprendidos” em sequências de v́ıdeo

utilizando codificação esparsa. De modo a validar este conceito, é explorado uma abordagem

baseada em matrizes de regiões de covariância (RCM). Estas matrizes são utilizadas como

descritores de uma imagem, contendo muito mais informação do que apenas utilizando a

informação proveniente dos ńıveis de cinzento (gray level) de uma imagem. A informação

utilizada numa matriz de regiões de covariância (RCM) passa por operações simples sobre

a imagem, como derivadas, mas também pela utilização de filtros de Gabor. Os filtros de

Gabor têm vindo a ser bastantes usados na área de reconhecimento facial apresentando uma

elevada taxa de sucesso.

Palavras-Chave: Face Hallucination; Reconhecimento Facial; Codificação Esparsa;

RCM; Gabor.
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Chapter 1

Introduction

Biometric identification is a technique of automatically identifying or verifying an individual

by physical characteristic. Biometric measures are divided in two categories: behavioral and

physical. Behavioral biometrics is related with the person’s behavior like typing rhythm, gait,

and voice. Physical biometrics uses the eye, iris recognition, fingerprints, hand geometry,

palm print, face recognition, DNA, and others. Nowadays, questions related to security are

gaining more and more importance in the society. Face recognition brings several advantages

over other biometric methods. It can be done passively without any explicit action by the

user, such as fingerprint or hand geometry detection (the user needs to place his hand on

a hand-rest). This is very beneficial for surveillance purposes because the face images can

be acquired from a distance by a camera. Face recognition has always been a cause for

concern in the scientific communities because of its non invasive nature and it is people’s

primary characteristic of person identification. Traditional algorithms of face recognition

recognize face from static images but it can bring several issues like illumination, pose and

expression variation over time. To avoid this problems related to variations over time, it

is used video sequence in order to take advantage of the motion and temporal information.

The advantages over static-images algorithm are: the huge affluence of data allows the

system to choose the frame with the best possible image and ignores the worst frames.

Video-based sequence provides temporal continuity, so classification information from several

frames can be combined to increase the success rate of a recognition system. Furthermore,

video allows the tracking of face images such that variations in facial expressions and pose

can be compensated for. Face recognition methods are constantly being developed in order

to increase effectiveness of security systems. Those techniques can be used to validation of

control access for PCs, for private areas in buildings, for ATM transactions and many other,

1



CHAPTER 1. INTRODUCTION 2

but it can also be implemented in open areas like places where the camera is situated far

from the scene such as car parking, hallways of buildings, public and private surveillance,

criminal identification and many others. Generally, in video surveillance systems are used

low resolution cameras. Thus, the resolution of face image is low, but the details of facial

features which can be found in a potential high resolution face image may be crucial for

recognition. This potential high resolution face image can be obtained by face hallucination.

Face hallucination is super-resolution of a face image, in other words, a method to clarify

the details of face from a low resolution image. The main focus of this dissertation is face

recognition from video surveillance with low resolution face images based on sparse coding.

1.1 Related Work

Face recognition has been a research problem in crescent development during the past several

years. Traditional face recognition methods use faces from static images [2, 3, 4]. These

methods are classified by face recognition from intensity images, which are divided in two

main categories: feature-based and holistic [5, 6, 7]. Feature-based techniques consist to

identify and extract distinctive facial features like the eyes, mouth, nose, etc., and then

compute the geometric relationships between those facial features. Thus, the input image is

reduced to a vector of geometric features. One of the earliest work was developed by Kanade

[5] and a simple process to extract a vector of 16 facial parameters is created by using: ratios

of distances, areas and angles. The measurement used to achieve the recognition is the

Euclidean distance. Other methods were later developed by following Kanade’s approach.

These feature-based methods are relatively robust to position variations in the input image

[8], but a drawback of these methods are the difficulty of automatic feature detection. The

other category of face recognition from intensity images is related to the holistic techniques.

Theses techniques seek to identify faces using global representations (entire image). The

image is represented as a 2D array of intensity values and the recognition is performed by

comparing the input face image and a database with faces. This approach is computationally

very expensive and it is limited due to sensitivity of face orientation, size, illumination

variation, background clutter, and noise [9]. To economically represent face images, Sirovich

and Kirby [10] were the first to use Principal Component Analysis (PCA) [11, 12]. Given

a face image, it can be efficiently represented along the eigenpictures coordinate space.

This face can be approximately reconstructed by using a small set of eigenpictures and the

corresponding projections along each eigenpicture. PCA based methods appears to be robust
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to illumination variations but its performance degrades with scale changes. When a single

image of each person is available PCA appears to work well, but when multiples image by

person are available PCA retains undesired variations due to lighting and facial expressions

[13]. Moses et al. [14] said that these variations are almost always larger than image

variations due to a change in face identity. Belhumeur et al. [13] proposed a Fisher’s Linear

Discriminant Analysis (Fisherfaces) [15], which maximizes the ratio of the between-class

scatter and the within-class scatter. Many others algorithms were developed by following

PCA and Fisherfaces approaches, as related in [16].

A video-based face recognition system consists of three steps: face detection, face tracking

and face recognition. Video-based face recognition appears to be at a disadvantage relative

to static-image recognition due to low quality images, cluttered background, the presence of

more than one face, and a huge amount of data. However, the enormous abundance of data

and the temporal continuity provided by a video are major advantages of using video-based

face recognition. Furthermore, video allows the tracking of face images with variations in

facial expressions and poses, resulting in improved recognition [17]. Given a video sequence,

the first step is to detect a face and then it is used a tracking method to store all face images

together. Zhou et al. [18] proposed an algorithm to exploit the temporal information in

manner that tracking and recognition of faces become sequential tasks. Zhou’s tracking-

then-recognition method resolves uncertainties in tracking and recognition simultaneously

in a unified probabilistic framework. Another track-then-recognition method is proposed

by Lee et al. [19] where an individual is represented by a complex nonlinear appearance

manifold. The complex nonlinear appearance manifold of each registered person is divided

into a set of submanifolds. Each submanifold consists of nearby poses ant it is obtained by

PCA of frames from video sequences.

In a video sequence, aspects such as variations in illumination and pose are very important

in face recognition validation. Arandjelović and Cipolla [20] proposed a face recognition

method based in video sequences where illumination and pose present variations during

the sequence. The proposed method consists of using a weak photometric model of image

formation with offline machine learning. It is shown that the combined effects of face pose

and illumination can be effectively learned using Probabilistic PCA (PPCA) from a small,

unlabelled set of video sequences of faces in randomly varying lighting conditions. Given

a new sequence, the learned model is used to decompose the face appearance manifold

into albedo and pose-illumination manifolds, producing the classification decision by robust

likelihood estimation.
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Face recognition based in video sequence also has statistical methods. Turaga et al.

[21] present methods that use subspace-based models and tools from Riemanian geometry

of the Grassmann manifold. Techniques like intrinsic and extrinsic statistics are used to

enable maximum-likelihood classification. Hu et al. [22] proposed an algorithm for images

set classification and introduced a novel between-set distance called Sparse Approximate

Nearest Point (SANP) distance. The dissimilarity is measured as the distance between

SANP of two image sets and it uses a scalable accelerated proximal gradient method for

optimization.

Chen et al. [23] introduced the concept of video-dictionaries for face recognition. A gener-

ative approach based on dictionary learning methods is proposed to minimize the challenges

of face recognition from unconstrained videos. The principal advantage is the robustness to

some variations such as illumination and pose due to video sequence partition algorithm and

to sequence-level dictionaries learning method.

Increase quality in an image, also known as Super-Resolution (SR), may be important in

many scenarios where objects of interest are not clear to users perspective due to far distance

or blurriness. One particular interest of SR techniques is to compute high-resolution images

from low-resolution ones. This technique was introduced by Baker and Kanade [24, 25] as

face hallucination. This technique consists of learn a prior on the spatial distribution of the

image gradient for frontal face images. This technology has many applications in areas like

image enhancement, image compression and object recognition.

Liu et al. [26] approach consists to combine a global parametric model with a local

nonparametric model. The global model assumes a Gaussian distribution learned by PCA.

The local model uses a patch-based nonparametric Markov network to learn the statistical

relationship between the global image and local features. Face alignment is an important

issue for successful face hallucination, so a robust low-resolution face alignment algorithm is

designed to increase the success rate of face hallucination technique.

Yang et al. [27] presented a new approach to conduct single-image SR base on sparse

representation signal. This approach seeks a sparse representation for each patch of the

low resolution input, and then use the coefficients of this representation to generate the

high-resolution output.

In [28], Jia proposed a novel face hallucination algorithm that uses information from

previous low-resolution face images extracted from the same video sequence to produce

high-resolution face image. This method does not use a statistical relationship between

global and local features, so it has a computational time lower than Liu’s solution. This
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method has not such good results as Liu’s method, but it provides a reasonable increase of

face image quality.

1.2 Thesis Description

Face recognition systems are used to verify the identity of an individual by matching a

face against a database of known faces. For applications like video surveillance security is

necessary to avoid the temporal redundancy while capturing variations due to changes in

pose and illumination. Thus, it is followed an approach introduced by Chen et al. [23] based

on video-dictionaries. These applications can be used to validation of control access like

access control for PCs, ATM transaction and many others, but it can also be used in open

areas such as public and private surveillance, criminal identification and so on. In these last

cases, generally, the acquired image is of low quality due to far distance between the camera

and the scene, so it is important to enhance image quality in order to achieve better results

on face recognition systems.

This dissertation is organized as follows: Chapter 1 introduces the topic and the related

work. Chapter 2 describes a method to increase image resolution from previous low reso-

lution input face images and how to build an image using sparse representation. Chapter

3 relates a face recognition solution based on video sequences to increase the robustness to

some variations like pose or illumination. An input video sequence is divided into different

partitions to remove the temporal redundancy due to changes in pose and illumination. Each

partition is used to learn a partition specific dictionary via sparse coding. The partition-

specific dictionaries (sub-dictionaries) are combined in order to create a sequence-specific

dictionary which are used to perform identification and verification processes. Chapter 4

shows the experimental results and all the comparisons obtained from all process developed

in past chapters. And at last, chapter 5 concludes this work.



Chapter 2

Face Hallucination

In video surveillance systems sometimes it is important to recognize a face from video stream.

Due to far distance between the cameras and the scene it is hard to achieve good recognition

rates. So, it is important to develop a method that can be able to increase face image

resolution, called face hallucination. Face hallucination is Super-Resolution (SR) of face

images, which is the process of combining multiple low resolution images to form a higher

resolution image.

Face hallucination was introduced by Baker and Kanade [24] and later Liu et al. [26]

proposed a new approach to hallucinate low resolution face images. A successful face hallu-

cination algorithm should meet the following three constraints:

1. Sanity constraint. The result face image must be very close to the input face image

when smoothed and down-sampled.

2. Global constraint. The result face image must have some common features of a

human face (eyes, mouth, nose, etc.).

3. Local constraint. The result face image must have specific characteristics of this face

image with photorealistic local features.

Sanity constraint can easily be met, it can be simply formulated as a linear constraint on

the result. A global parametric model and a local nonparametric model are more difficult to

formulate. The global constraint assumes a Gaussian distribution learned by PCA and the

local constraint uses a patch-based nonparametric Markov network to learn the statistical

relationship between the global face image and the local features. This approach follows

Freeman et al. [1] to build a nonparametric patch-based Markov network. A dictionary

with several high resolution images is created by dividing all images into a huge number

6
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of high and low resolution patches. These image patches could be from many types of

images such as nature landscapes, animals, people, streets, etc. These patches are used to

generate a Markov network to probabilistically model the relationships between high and low

resolution patches, and between neighboring high resolution patches. This relationship is

shown in figure 2.1 where the circles represent network nodes and the lines indicate statistical

dependencies between nodes. The probability of any given high resolution choice for each

y3

y2

y4

y1

x3

x2

x4

x1

Φ(xi, yi)

Ψ(xi, xj)

Low-resolution patches

High-resolution patches

Figure 2.1: Markov network model for the SR problem. Image extracted from [1]

node is proportional to the product of all sets of compatibility matrices ψ relating the possible

states of each pair of neighboring hidden nodes, and vectors φ relating each observation to

the underlying hidden states:

P (x|y) = 1
Z

∏
(ij)

ψij(xi, xj)
∏
i

φ(xi, yi), (2.1)

where Z is a normalization constant. The first product is over all neighboring pairs of nodes,

i and j. The observed low and the estimated high resolution patches at node i are yi and

xi, respectively.

A dictionary of high resolution patches (figure 2.2) is created by using several high reso-

lution images. It is used to search the relationship between low and high resolution patches.

Patch-by-patch searching is very time consuming, so it is undesirable in video surveillance

applications. Jia et al. [28] describe a method to avoid this time consuming step. Jia uses an

online dictionary approach instead of offline trained dictionaries. Online dictionary consists

of combining similar face features from several low resolutions tracked faces to enhance the

target face. This algorithm does not require a prior training database, since tracked faces
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Figure 2.2: Example of a dictionary with high resolution patches

are used to generate an eigenfaces database.

Based on image statistics, an image patch can be well-represented as a sparse linear

combination of elements from an appropriately chosen over-complete dictionary. Inspired on

this, Jia considers eigenfaces as the global image patches. The eigenfaces are over-complete

because one query face can only match a small number of eigenfaces with similar shape. Since

during PCA training eigenfaces are generated based on differences between every training

face and the mean faces, sparse representation is used for the difference face instead of the

original face.

Freeman et al. [1] used a tree-based Approximate Nearest Neighbors (ANN) search.

ANN1 searching is a well-known database indexing and searching method which quickly and

accurately retrieves nearest neighbors from a database. To avoid high computational times,

Jia proposed a new manner to employ ANN search. Patches with high and low resolution

are stored into one stack (figure 2.10) and it is used as the input query to search against

the trained database. In this way, it is only needed to do one-time searching and get the

k nearest neighbors for all the query patches. This approach can greatly reduce the time

required to perform a search.
1http://en.wikipedia.org/wiki/Nearest_neighbor_search

http://en.wikipedia.org/wiki/Nearest_neighbor_search
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2.1 Algorithm Description

The proposed algorithm by Jia et al. [28] can be divided into three different parts. The first

part is learning an online database using PCA training on tracked face images. The second

part is the step of sparse representation which is used to reconstruct a difference face based

on eigenfaces database. The last part is the searching step, which combines information from

the tracked low resolution face images to form higher resolution face image. The proposed

algorithm is divided in seven steps and are described below:

1. At first, face must be detected and tracked from a video sequence. All tracked faces

must be grouped together to apply face hallucination, like figure 2.3.

Figure 2.3: Example of an input low resolution sequence

2. Given a grouped face image sequence (figure 2.3), the first step is to generate a mean

face µ and create an eigenface database B by PCA training, following Turk et al. [29].

3. The size of face image extracted from video sequence is usually small. To increase an

image resolution is necessary to enlarge image size. A low resolution image IL is a

blurred and downslampled version of the high resolution image IH (equation (2.2)).

Based on [30] C is the blurring matrix and H is the decimation matrix. Bicubic inter-

polation (upgrade factor U) is used to approximately represent the inverse decimation

matrix HT in order to generate the interpolated high resolution image ĪH (equation

(2.3)).

IL = C ·H · IH . (2.2)

ĪH ≈ CT ·HT · IL. (2.3)

Later the interpolated mean face µ̄ is subtracted from the approximated high resolution

image ĪH to generate the difference face Diffface (equation (2.4)). This difference face

shows the lost global face shape for the target face.

Diffface = ĪH − µ̄. (2.4)

4. The result of (2.4) is used to estimate the sparse coefficients α (figure 2.4), in order to
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combine eigenfaces from the database to obtain the difference face image reconstruc-

tion. Thus, a new difference face is created (2.5).

NewDiffface = α ·B. (2.5)

Figure 2.4: Sparse coefficients representation of reconstructed face

5. To increase detail in interpolated high resolution image, ĪH , it is added the new differ-

ence face to the interpolated image. Basically the global enhanced image (IH,GlobalEnhanced)

is the interpolated target image with better details at high-frequency components.

IH,GlobalEnhanced = ĪH + α ·B = ĪH +NewDiffface . (2.6)

6. The global enhanced image (2.6) is a bit noisy and has some artifacts. In order to reduce

that unwanted components it is applied a bilateral filter. Bilateral filter, implemented

by Tomasi and Manduchi [31], is a noniterative, local and simple method that smooths

image while preserving edges by using a nonlinear combination of nearby image values.

Figure 2.5 shows an example of bilateral filter application.

Figure 2.5: Bilateral Filter example. Left image is before and right is after filtering

7. After the bilateral filtering, the globally enhanced face IH,GlobalEnhanced is further en-

hanced by a method based on ANN search. The returned image is the final hallucinated

face. This ANN search method is different from patch-by-patch searching. All patches
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are stored into one stack (entire image is considered as the stored patches/stack). This

stack is used as a query to search from the training database.

To better understanding, figure 2.6 describes visually all of those steps explained before.

Face	
  Sequence

PCA	
  Training

Difference	
  Face

Interpolated	
  Target
FaceTarget	
  Face

Mean	
  Face

New	
  Difference
Face	
  Computed	
  by	
  

Sparse	
  RepresentaAon

Global	
  Enhancement	
  
Image Hallucinated	
  Face

Bicubic

InterpolaAon

Bilateral

Filtering+

Figure 2.6: Algorithm Overview

2.2 Sparse Representation

Given a video sequence of cropped face images, the first step is to enlarge all images using

a bicubic interpolation. After that, PCA training is applied to generate a mean face µ̄

and an eigenface database B. This database is used to estimate the sparse coefficients α

(example in figure 2.4). Research on image statistics suggests that image patches can be

well-represented as a sparse linear combination of elements from an appropriately chosen

over-complete dictionary. Based on sparse signal representation, Yang et al. [27] presented a

method to seek a sparse representation for each patch of the low resolution input, and then

use the coefficients of this representation to generate the high resolution output. Instead

of this patch based sparse representation, Jia’s approach seek a sparse representation for

a full image, using the difference image (equation (2.4)) as a query to compute the sparse

representation coefficients (α) from the PCA database (B). To estimate this coefficients it

is necessary to solve a `1-regularized least square problem [32] as follows:

min λ
∥∥∥α∥∥∥

1
+ 1

2

∥∥∥∥B · α−Diffface∥∥∥∥2
, (2.7)
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where the parameter λ is a constant and balances sparsity of the solution. This is a linear

regression regularized with `1-norm on the coefficients, also known as LASSO in statistical

literature [33]. Sparse coefficients α is a vector with the same size as the number of images

used to create an eigenface database. To build an image using sparse representation (equation

(2.5)) it is necessary to apply a linear combination of vector α and the eigenface database

B. Concretely, each new difference image ~NewDiffImage ∈ Rk is succinctly represented using

basis vectors ~B1, ~B2, · · · , ~Bn ∈ Rk and a sparse vector of coefficients ~α ∈ Rn expressed by

2.8
~NewDiffImage ≈

∑
j

~Bjαj. (2.8)

To explain this combination, figure 2.7 shows how it works.

L1-­‐regularized	
  Least	
  Square

(1)	
  𝜶	
  =	
  -­‐4.0810

(2)	
  𝜶	
  =	
  0.8295

(3)	
  𝜶	
  =	
  0.9397

	
  (4)	
  𝜶	
  =	
  -­‐0.0887

(5)	
  𝜶	
  =	
  -­‐0.4911

-4.0810 * 0.8295 * 0.9397 * -0.0887 * -0.4911 *

Images	
  from	
  database
(eigenfaces)

Query	
  image

(1) (2) (3) (4) (5)

+ + + +

Reconstructed	
  image
(Linear	
  combinaHon	
  of	
  sparse	
  coefficients)

𝜶	
  vector

Figure 2.7: Example of linear combination of sparse coefficients α

2.3 Approximate Nearest Neighbor Search

The patch-by-patch searching is very time-consuming. Each patch from the interpolated

image is searched from the whole training database. Thus, if the training data is large

and the size of interpolated image is large, this iterative searching process will take a very

long time. To avoid this time-consuming process, Jia proposed a new approach to employ

Approximate Nearest Neighbors (ANN) search. ANN searching is a well-known database

indexing and searching method, which quickly and accurately retrieves nearest neighbor

from a database. This searching step is very important to face hallucination process. Many

algorithms, [24, 26, 1], use dictionaries with high resolution image patches. These dictionaries
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are trained offline and it uses all kind of high resolution images like nature landscape, streets,

flowers, animals or even people. These images are divided into many thousands of high

and low frequency patches in order to learn a dictionary. Each low frequency patch must

have a correspondence between its high frequency patch and itself. Figure 2.8 shows the

correspondence between the low and high frequency patches.

Low
Frequency

High
Frequency

Figure 2.8: Correspondence between low and high frequency patches

Patch-by-patch (or local search) searching from a dictionary with a lot of patches is very

time consuming. Moreover, local search alone is not sufficient to estimate plausible looking

high-resolution detail. Searching a patch from the low resolution patches dictionary results

in a many similar low resolution patches. Their corresponding high resolution patches looks

fairly different from each other. Figure 2.9 shows why local search does not work.

Local patch information alone is not sufficient for SR. Therefore, an approach to exploit

neighborhood relationships is explored. A Markov network is used to probabilistically model

the relationships between high and low frequency patches, and between neighboring high

frequency patches, as figure 2.1 shows.

Jia developed a new algorithm to employ ANN to accurately retrieve high frequency

information. It consists in creating an online dictionary with low and high frequency com-

ponents from the image sequence (figure 2.3). Instead of using image patches, a query stack

containing the entire image is created. This stack is used to perform a search against the

trained dictionary. Figure 2.10 shows the resulting stack used as an input to perform a
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Input patch

Closest image
patches fromdatabase

Corresponding
high-resolution

patches fromdatabase

Figure 2.9: Input patch and corresponding low and high resolution patches.Image extracted
from [1]

search. The green part is the low frequency information and the red part is the high fre-

quency information. The left side relates to the search method using dictionaries with image

patches, and the right side shows the Jia’s method.

...

All	
  patches	
  as	
  image

Each	
  patch

Figure 2.10: Each patch to a stack

The low and high frequency information used to build this new stack are the low and

high frequency of the image. Figure 2.11 shows an example of the corresponding low and

high frequency images used to build the stack.

There are two major advantages of using the method proposed by Jia, which are: The

method does not use offline trained dictionaries with image patches which can be from all

kind of images. Another advantage is that the dictionary based on Jia’s approach has a

considerably less elements than others approaches which increases the speed to perform a

search. However, there is one important trade-off to keep in mind. As the search is done

using the full image patches (stack), the returned nearest neighbors for the whole stack are

not necessarily accurate.

The new stack is build with the low frequency information of the input interpolated face



CHAPTER 2. FACE HALLUCINATION 15

Low
Frequency

High
Frequency

Figure 2.11: Correspondence between low and high frequency images

which is used to search from a database of low frequency images. According to ANN’s theory,

the time to find one exact nearest neighbor of a query is similar to the time for finding a

number k of nearest neighbors of a query. After searching for the k nearest neighbors (k

closest low frequency images of an input) takes place a matching process in order to get the

correspondence between the low and high frequency k nearest neighbors. The resulting k

high frequency images are subjected to a median filter, in order to improve the accuracy and

filter out noise and artifacts. Figure 2.12 shows this process of combining all images using a

median filter.

…	
  

Median	
  	
  
Filter	
  

k high frequency images 

Figure 2.12: Median filter process

The image resulting of the median filter is added to the globally enhanced face (Ih,GlobalEnhanced)

in order to improve the image detail. The method presented by Jia uses the information

retrieved from a stack of tracked faces to enhance image quality. This process is done online.
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On the other hand, methods like [1, 26] uses an offline training process. In these methods the

image enhancement is done using a single frame image to estimate missing high resolution

detail that is not present in the original image.

Figures 2.13 and 2.14 shows the overall process of ANN based on Jia’s approach.

Global&Enhanced&
Image

k1NN&Search
(k&is&the&number&of&

Nearest&
Neighbors)

Neighbor&#1

Neighbor&#2

Neighbor&#3

…

Neighbor&#k

Correspondence&
between&low&and&
high&frequencies

High&Freq&#1

High&Freq&#2

High&Freq&#3

…

High&Freq&#k

Median&Filter Best&High&
Frequency&image

Add

Figure 2.13: Full image ANN Search Process
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Figure 2.14: ANN Search more detailed process



Chapter 3

Face Recognition

The facial recognition system is a computer vision application for automatically identifying or

verifying an individual from a digital image or a video frame. Face recognition is a research

field in constant development. Traditional algorithms of face recognition uses faces from

still images as an input query [2, 3, 4]. When the goal is to implement a face recognition

system running in video surveillance, other approach is used instead of still images. In

this case, it is used multiple video sequences of the same subject in order to exploit extra

information available in video sequences like variations in resolution, illumination, pose and

facial expressions. All of these contributions tend to increase the performance of a video-

based face recognition system.

There are many face recognition systems based on video sequence [18, 19, 20, 21, 22].

This work follows an approach based on sparse coding. Sparse coding works modelling

data vectors as sparse linear combinations of basis elements. It is becoming widely used in

machine learning, neuroscience, signal processing and statistics.

In a video-based face recognition performance can be significantly improved by using the

temporal and extra information present in a video instead of using frame-based approaches.

To face the challenges of face recognition from unconstrained videos, it is used a generative

approach based on dictionary learning methods. In this work it is closely followed the Chen’s

et al. [23] approach, which is reported as being more effective than others video-based face

recognition algorithms. Chen’s algorithm can be divided in three main steps. In the first

step, it is described a method to split a video sequence into K different partitions. This step

increases the performance of the process because each partition has a different condition such

as illumination, pose or facial expressions. The second step concerns the dictionary learning

based on video sequences. Each partition is used to learn a partition-specific dictionary (sub-

17
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dictionary) via sparse coding, which is a robust process to represent the initial partition by

the best linear combination of a number B̃a basis of a learned dictionary. Given a number of

K partitions, a sequence-specific dictionary is created by combining all K sub-dictionaries

from a video sequence. The training step is very important because it stores multiples

sequences per person. Each sequence has K different conditions imposed by the sequence

partition step. The last step is a process of identification and verification where an input

video sequence is projected onto the span of atoms of every sequence-specific dictionary in

order to compute and combine the residuals to perform recognition or validation.

Figure 3.1 shows an overview of this approach.
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Figure 3.1: Face recognition process overview
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3.1 Sequence Partition

Given a video sequence of cropped face images, the goal is to divide the video sequence into

K different partitions. Let S = {f1, f2, · · · , fn} be the set of all n cropped faces from a video

sequence. The partitions are initialized deterministically. To divide S into K partitions it

is necessary to choose the initial K representative images as far apart as possible. The

corresponding images to each partition are determined by using a partition criterion. This

criterion is based on minimizing the euclidean distance between all images from S and the

initial representatives images. Since the first K partitions are already created, the partition

algorithm keeps updating them over N iterations, in order to achieve the best combination

possible for the partitions. The final combination is chosen based on the maximization of

M(S) which is given by 3.1

M(S) , div(S)
err(S) , (3.1)

where err(S) and div(S) are the square error measure and the diversity measure of summary

S(s1, s2, · · · , sK), respectively. These two measures are represented by equations 3.2 and 3.3,

respectively [34],

err(S) , tr
[ K∑
i=1

∑
s∈Si

(s− si)(s− si)T
]
, (3.2)

and

div(S) , tr
[ K∑
i=1

(s− s̄)(s− s̄)T
]
, (3.3)

where s̄ = 1
K

∑K
i=1 si and tr(A) denotes the trace of matrix A. The diversity measure

represents the scatter of representatives to their mean. The square error measure represents

the total summation of partition-specific scatters, over all K partitions. The maximization

of score M(S) is achieved through maximizing the diversity while minimizing the square

error.

This video sequence partition approach is summarized at the algorithm 1.
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Algorithm 1 Video Sequence Partition
Initialization of sets:

S = {f1, f2, · · · , fn}; I = {1, 2, · · · , n}; T = φ.

Procedure:

1. Find (i∗, j∗) = arg maxi,j∈I,i6=j ‖fi − fj‖.

2. Update of sets: (a) t1 ← i∗, t2 ← j∗; (b) T ← T
⋃
{t1, t2}; (c) I ← I{i∗, j∗}.

3. Find k∗ = arg maxk∈I

∏|T |
l=1 ‖ft1 − fk‖2.

4. Update of sets: (a) t|T |+1 ← k∗; (b) T ← T
⋃
{t|T |+1}; (c) I ← I{k∗}.

5. Repeat steps 3 and 4 until |T | = K (K is the number of partitions).

6. Given {ft1 , · · · , ftK
} (initial images for each partition), use a criterion to partition S into K partitions,

for example the euclidean distance between two images. S(ft1 , · · · , ftK
) is the initial partition, denoted

by S(ft1 , · · · , ftK
) =

⋃K
i=1 Si, which are followed by N iterations of updating described in step 7 and

8.

7. Randomly select si from Si, i = 1, 2, · · · ,K, as representative. Find the corresponding nearest images

partitions which are denoted by S(s1, s2, · · · , sK), and calculate the score M
(
S(s1, s2, · · · , sK)

)
for

each iteration.

8. Repeat step 7 and keep updating for {s∗1, s∗2, · · · , s∗K} which gives the highest score M , until the

number of repeating iterations for step 7 reaches N . In other words,

{s∗1, s∗2, · · · , s∗K} = arg max
si∈Si,i=1,2,··· ,K, in N iterations

M
(
S(s1, s2, · · · , sK)

)
Output:

K partitions, S(s∗1, s∗2, · · · , s∗K).

To illustrate the results of the proposed algorithm of video sequence partition, figure

3.2 shows the output from the algorithm with K = 3 partitions. Results are presented for

three video sequences with different subjects and illumination conditions. The red lines are

dividing each video sequence.
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Figure 3.2: Video sequence partition results from 3 video sequences

3.2 Dictionary Learning

A dictionary is learned for each partition of a video sequence to remove the temporal re-

dundancy while capturing variations due to changes in pose and illumination. A dictionary

is learned via sparse coding with a least square problem with quadratic constraint. Sparse

coding consists in modelling data vectors as a best linear combination of basis elements.

Sparse coding is becoming widely used in image processing and it is very useful to learn

dictionaries adapted to small patches, which training data that may include several millions

of these patches. It is used for many applications like compression, regularization in in-

verse problems, feature extraction, and more. In this case, it is used to reduce the size of

a dictionary in order to decrease the computational time in the step of searching against a

dictionary.

There will be K sub-dictionaries built to represent a video sequence. The number of face

images in a partition will vary, due to changes in pose and/or lighting in a video sequence. In

cases where partitions have a small number of face images, an augment is done by introducing

synthesized face images. This is done by creating a new image by shifting it horizontally,

vertically and diagonally. Assume that each partition contains Ng face images. Let Gi
j,k be

the augmented gallery matrix of images from partition k of the jth video sequence of subject

i,

Gi
j,k =

[
gij,k,1,gij,k,2, · · · ,gij,k,Ng

]
∈ RL×Ng , (3.4)

where each column is the vectorized form of an image of size L. Given the augmented
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matrix Gi
j,k, a dictionary Di

j,k ∈ RL×B̃a is learned such that the columns of Gi
j,k are best

represented by linear combinations of B̃a basis of Di
j,k. In other words, the dictionary Di

j,k

can be represented by a specific number B̃a of basis against a gallery with Ng vectorized

images where Ng ≥ B̃a. To learn the dictionary Di
j,k it is used a sparse coding method to

minimizing the following representation error

(
D̂i
j,k, Γ̂i

j,k

)
= argmin

Di
j,k,Γ

i
j,k

∥∥∥∥Gi
j,k −Di

j,kΓi
j,k

∥∥∥∥2

F
+ λ

Ng∑
i=1

∥∥∥∥Γi
j,k

∥∥∥∥
1

subject to
∥∥∥∥Di

j,kl

∥∥∥∥
2
≤ 1 for 1 ≤ l ≤ B̃a,

(3.5)

where Γi
j,k is the coefficient matrix. λ is the regularization parameter. ‖ · ‖F denotes the

Frobenius norm. To compute equation (3.5) it is used the Lagrange dual method presented

in [32] to learn the dictionary Di
j,k.

All of these dictionaries learned for each partition of a specific-sequence are grouped

together in order to create a new dictionary. For each subject i and its jth sequence it is

created a dictionary containing K concatenated sub-dictionaries learned by sparse coding.

This sequence-specific dictionary is represented by:

Di
j =

[
Di
j,1,Di

j,2, · · · ,Di
j,K

]
. (3.6)

Figure 3.3 shows an example of a learned dictionary via sparse coding (Lagrange dual

method) with raw images. It was used four different video sequences which are separated by

the green line.

3.3 Identification

The identification is a voting process. Let Q denote the total number of query video se-

quences. Given the mth query video sequence Q(m), where m = 1, 2, · · · , Q, Q(m) can be

write as Q(m) = ∪Kk=1Q
(m)
k . Partitions Q(m)

k are denoted by Q(m)
k =

[
qmk,1 qmk,2 · · · qmk,nk

]
,

where qmk,l is the vectorized form of the lth of the total nk cropped face regions belonging

to the kth partition. Each subject i has a number j of video sequences, and P is the total

number of video sequences in the gallery. Thus, the sequence-specific dictionary can be ex-

pressed by D(p) for p = 1, 2, · · · , P and each D(p) corresponds to Di
j for some subject i and

its j video sequence. Image q(m)
k,l votes for sequence p̂ with the minimum residual as shown
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Figure 3.3: Dictionary learned via sparse coding example with raw images

in 3.7

p̂ = argmin
p

∥∥∥∥q(m)
k,l −D(p)D†(p)q

(m)
k,l

∥∥∥∥
2
, (3.7)

where D†(p) =
(
DT

(p)D(p)

)−1
DT

(p) is the pseudoinverse of D(p) and D(p)D†(p)q
(m)
k,l is the projec-

tion of q(m)
k,l onto the span of atoms in D(p).

The result of 3.7, p̂, returns all the votes of each partition from each sequence, so it is

necessary to make a sequence-level decision in order to obtain the sequence containing the

maximum number of votes, so p∗ is obtained by

p∗ = argmax
p

( K∑
k=1

wkCp,k

)
, (3.8)

where Cp,k is the total number of votes from partition k for sequence p and wk is the weight

associated with partition Q(m)
k . To find out the correspondence between the subject and the

highest voted sequence, p∗, it is created a correspondence function m(·) to assign the query

video sequence Q(m) to subject i∗ = m(p∗).

Figure 3.4 shows an example of resulting votes for each sequence from the dictionary and

the highest value is the one which is closer to the input video sequence.
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Figure 3.4: Identification vote system example

Given a video sequence and after compute the equation (3.7) and (3.8) the result is

the number of votes for a sequence specific dictionary that are closest to the input video

sequence. In this case, figure 3.4 tells that sequence number 15, from all sequence-specific

dictionary, is the closest to the input video sequence, which has almost 40 votes and probably

the input video sequence is from the same subject of the sequence 15 of the dictionary.

3.4 Verification

The goal of verification is to correctly determine whether a query video sequence and any

gallery video sequence belong to the same subject. Receiver Operating Characteristic (ROC)

curve describes the relations between False Acceptance Rates (FARs) and True Acceptance

Rates (TARs) and it can be used to evaluate the performance of verification algorithm. The

ROC curve can be computed creating a similarity matrix, the similarity matrix R(m,p) is the

residual error between a query Q(m) and a dictionary D(p) and it is expressed by

Rm,p = min
k∈{1,2,··· ,K}

R(m,p)
k , (3.9)

where

R(m,p)
k , min

l∈{1,2,··· ,nk}

∥∥∥∥q(m)
k,l −D(p)D†(p)q

(m)
k,l

∥∥∥∥
2
. (3.10)
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The minimum residual is computed against all l ∈ {1, 2, · · · , nk} and all k ∈ {1, 2, · · · , K}

as the similarity between the query video sequence Q(m) and dictionary D(p). Figure 3.5

shows the similarity between the input video sequence and all dictionaries D(p) with p =

{1, 2, · · · , P}.
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Figure 3.5: Verification example

Using the same video sequence like in figure 3.4, the result of the verification is shown in

figure 3.5. Here the objective is to determine the minimum residual error between an input

video sequence and a dictionary. In this case, the minimum value is for sequence-specific

dictionary number 15.

To summarize this chapter of face recognition based on video sequences, algorithm 2

shows all steps to complete a validation. Identification and verification processes are com-

bined in order to get the final decision about the success of the face recognition system.

3.5 Validation

The validation of the face recognition system is done by combining the information from the

identification and verification processes (as related in previous sections). This information

is combined through the score function (3.11)

V = Identification
Verification , (3.11)
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Algorithm 2 Proposed Dictionary-based Face Recognition from Video (DFRV)
Training process:

1. Extract all cropped face regions from a set Si
j , where j is the video sequence from subject i.

2. Divide Si
j into K partitions by using video sequence partition algorithm (algorithm 1)

3. Learn the partition specific dictionary Di
j,k ,∀ k = 1, 2, · · · ,K via sparse coding. Create the sequence

specific dictionary Di
j by concatenating all the partition specific dictionaries.

Testing process:

1. Partition the mth query video sequence Q(m) = ∪K
k=1Q(m)

k , where Q(m)
k =

[
qm

k,l qm
k,2 · · · qm

k,nk

]
2. Identification step. Use 3.7 to determine the vote from q(m)

k,l , ∀k, l. Then, use 3.8 and the correspon-
dence function between the subject and sequence m(·) to make the final decision.

3. Verification. Find the similarity R(m,p) between Q(m) and D(p) by equations 3.9 and 3.10.

where the identification is the total number of votes for a sequence-specific dictionary that

is closest to the input video sequence, and the verification is the residual error between an

input video sequence and each sequence-specific dictionary.

To ensure that the subject of the input video sequence corresponds to a sequence of

the dictionary it is necessary that the maximum value of votes from identification and the

maximum value of the score V (equation (3.11)) belong to the set of sequences from the

same subject in the dictionary. If this requirement is met, the face recognition based on

video sequences will be validated. Figure 3.6 shows an example of the result of the validation

score V for same sequences used as input in figures 3.4 (identification) and 3.5 (verification)
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Figure 3.6: Validation score V example

In this case, the subject of the sequence used as an input belongs to the dictionary because
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the highest number of votes (from the identification process at figure 3.4) and the maximum

value of validation score (figure 3.6) belong to the same sequence-specific dictionary number

(number 15). Thus, the validation is successful.

3.6 Image Descriptors

An image descriptor is a description of the visual features of the contents in images and it

describes the characteristics of an image such as color, shape and others.

In this work, two different descriptors were used to learn the dictionary and to the iden-

tification process. The first descriptor is basically the appearance encoded on the gray-level

of the face image (raw image). The second descriptor used is based on Region Covariance

Matrix (RCM). A new way, proposed by Pang et al. [35], to use RCM is used to further

enhance the discriminating ability of RCMs. This new approach is based on Gabor filters.

3.6.1 Raw Image

A raw image contains minimal data from the digital camera and it was used for many years

in computer vision, e.g., [36], [37] and [38]. The raw image pixel information can be color,

gray-level, gradient and filter responses. In this case, it is used the gray level image as a

descriptor to learn dictionaries via sparse coding. These types of descriptors are not robust

in the presence of illumination variation and it is not desired.

3.6.2 Region Covariance Matrices

Region Covariance Matrix (RCM), proposed by Tuzel et al. [39] is a covariance matrix of

several image statistics computed inside a region of interest. I is an one dimensional intensity

image (gray level) of size W ×H. Mapping function φ extracts d dimensional feature vector

zi from pixel (x, y) of I, i.e.,

φ(I, x, y) = zi ∈ Rd, (3.12)

where i = y ×W + x is the index of (x, y). A region R is defined by all pixels (x, y), i.e.,

(x, y) ∈ R and the number of elements of R is n. That region can be represented by a d× d

covariance matrix of the feature points zi inside R

CR = 1
n− 1

n∑
i=1

(zi − uR)(zi − uR)T , (3.13)
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where uR is the mean of the points and is expressed by

uR = 1
n

n∑
i=1

zi. (3.14)

In [39] they proposed a descriptor for object recognition where the mapping function φ is

defined by pixel location (x, y), all components of RGB color and the norm of the first and

second order derivatives of the intensities (gray level) with respect to x and y. This function

is represented by

φ(I, x, y) = zi =
[
x y R(x, y) G(x, y) B(x, y) |Ix| |Iy| |Ixx| |Iyy|

]T
, (3.15)

where

Ix = ∂I(x, y)
∂x

Iy = ∂I(x, y)
∂y

Ixx = ∂2I(x, y)
∂x2 Iyy = ∂2I(x, y)

∂y2 . (3.16)

Mapping function 3.15 is used for object detection, but for human detection, Tuzel et al.

[40] defined a new mapping function

φ(I, x, y) = zi =
[
x y I(x, y) |Ix| |Iy| |Ixx| |Iyy| θ(x, y)

]T
, (3.17)

where θ(x, y) is the orientation component computed by

θ(x, y) = arctan
(
|Iy|
|Ix|

)
. (3.18)

RCM is a symmetric matrix (3.13) where the diagonal elements represent the variance of each

feature and the nondiagonal elements represent their respective correlations. Compared to

others descriptors the covariance matrix CR has only (d2 + d)/2 different elements, because

it is symmetric. Thus, it is only used the bottom or upper triangular matrix from the

covariance matrix as an image descriptor.

3.6.2.1 Gabor-based Region Covariance Matrices

Gabor-based Region Covariance Matrix (GRCM) was proposed by Pang et al. [35] and

it introduces a new type of mapping function to a region. It is used 2-D Gabor kernels

because it exhibit strong characteristics of spatial locality, scale, and orientation selectivity.

Gabor filters have been showing great success in face representation [41]. Gabor filters

can exploit salient visual properties such as spatial localization, orientation selectivity, and
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Figure 3.7: Gabor kernel family

spatial frequency characteristics [42, 43]. The 2-D Gabor kernel is defined by a sinusoidal

wave multiplied by a Gaussian function. The filter has two components: real and imaginary.

The two components can be formed into a complex number or used individually, in this case

it is used one individually and it is represented by

g(x, y;λ, θ, ψ, σ, γ) = exp
(
− x

′ 2 + γ2y
′ 2

2σ2

)
cos

(
2πx

′

λ
+ ψ

)
, (3.19)

where
x

′ = x cos θ + y sin θ

y
′ = −y sin θ + y cos θ.

(3.20)

In these equations, λ is the wavelength of the sinusoidal factor, θ represents the orientation

of the normal to the parallel stripes of a Gabor function, ψ is the phase offset, σ is the

sigma of the Gaussian envelope and finally γ is the spatial aspect ratio and it specifies the

ellipticity of the support of the Gabor function. The Gabor features can be obtained by

convolving the Gabor kernels with an image I as follow:

G(u,v)(x, y) = I(x, y) ∗ g(x, y;λ, θ, ψ, σ, γ). (3.21)

A Gabor filter family is created by taking Nθ orientations and Nλ different wavelengths.

So for each pixel (x, y) the dimensionality of the Gabor features is Nθ × Nλ = NTotal. In

figure 3.7(a) it is shown an example of a family of Gabor filter with Nθ = 6 orientations and

Nλ = 4 wavelengths.

In equation 3.21, (u, v) are the index of the orientation and wavelength, respectively. In

order to create a Gabor filter family, u ∈ [0, 1, · · · , Nθ − 1] and v ∈ [1, · · · , Nλ]. In figure
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3.7(b) are shown the results of the convolution between an image with all the Gabor family

and they are used to build a RCM.

The mapping function based on Gabor filter is represented by:

zi =
[
x y G(0,1)(x, y) G(0,2)(x, y) · · · G(Nθ−1,Nλ)(x, y)

]
. (3.22)

This new mapping function can be substituted in (3.13) to obtain the GRCM in region

R, i.e. CR. As the covariance matrix CR can be represented by their bottom or upper

triangular matrix, the size of GRCM is drastically reduced, for example: given an image I

(320 × 240), a region R with size of I and a mapping function like (3.22), the number of

elements of I is 76800 pixels. Computing a GRCM with six different orientations (Nθ = 6)

and four different wavelength (Nλ = 4), the mapping function (zi) has size of d = 24 plus

the pixel location (x, y), so d = 26. The size of CR is d× d = 26× 26. In fact, there are only

(d2 + d)/2 = (262 + 26)/2 = 351 different values due to symmetry of CR. This shows that

RCM is independent of the image size.

The intensity component of the image I(, x, y) can also be added to the mapping function

(3.22) resulting this new mapping function:

zi =
[
x y I(x, y) G(0,1)(x, y) G(0,2)(x, y) · · · G(Nθ−1,Nλ)(x, y)

]
. (3.23)

To increase robustness for possible occlusions and illumination variations, a single face image

is represented by five different regions. Figure 3.8 shows the five RCMs (C1, C2, C3, C4 and

C5) used to combine all regions into a vector.

Image

Regions

C1 C2 C4 C5C3

Figure 3.8: Five different regions of a single face image

In this case, a face image can be represented by five RCMs extracted from five different

regions (figure 3.8). The C1 region is a global representation of the face because it is applied

to the entire face. All the others regions (C2,C3,C4 and C5) are part-based representations

of the face. The GRCM descriptor is defined by concatenating all results from the covariance

matrix of each region into a column vector. This global and part-based combination increases

the robustness to occlusions and illumination changes.



Chapter 4

Experimental Results

This work is divided in two parts. In the first part it was developed an algorithm in MATLAB

to increase image resolution (face hallucination) of a face image. Secondly, it was created an

algorithm of face recognition in C++, on UNIX operating system (Ubuntu).

To develop the face recognition algorithm it was used the OpenCV1 library with a linear

algebra library called Armadillo2 and for the sparse coding dictionary learning it was used the

mlpack machine learning library [44]. The video sequences used in this work were obtained

using a PC webcam.

4.1 Face Detection

One of the main applications of face recognition is surveillance for security purpose, which

involves real-time recognition of faces from an image sequence acquired by a video camera.

A video-based face recognition system can be divided in three steps: face detection, face

tracking and face recognition. The first step of any face processing system is detecting the

locations in images where faces are present. However, face detection from a video-based

sequence is a challenging task because of: low quality images, cluttered backgrounds, the

presence of more than one face in the frame, and a large amount of data to process. In these

cases, a robust face detection system must be used to perform the face detection followed by

a tracking system. These systems are not the focus of this dissertation. For our purposes, it

is used a face detection system available in OpenCV library, which allows a reduced range

of head pose variation, but reveals to be suitable for our purposes. Face detection system
1http://opencv.org/
2http://arma.sourceforge.net/

32
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consists of a previously trained classifier based on Haar-like3 features. The classifier is trained

with several hundred images of a particular object, in this case frontal face, called positive

examples, and negative examples are arbitrary images of the same size as positive examples.

This classifier is properly provided by OpenCV and it can be applied to a region of interest

in an input image. It returns true when the input image corresponds to the classifier object

(frontal face images). The object is searched in the whole image by moving a search window

across the image and check every location using the classifier. The function available in

OpenCV library has some particular parameters like the cascade input file, the input image

for detection which corresponds to the actual frame, the scale factor which specifies how

much the image size is reduced at each image scale, the minimum neighboring number of

each rectangle should have to retain it, and the minimum possible object size. Object smaller

than the minimum possible object size are ignored. The parameters used for the OpenCV

face detection function are:

• Input cascade file → haarcascade frontalface alt.xml,

• Scale factor → 1.2,

• Minimum neighboring number → 4,

• Minimum possible object size → 45× 45.

The frontal face classifier provides good results to our purposes. The range of the frontal

face orientation is not very wide but it allows sufficient head pose variation for the purpose

of face recognition. This range is illustrated in figure 4.1. Some examples of sequences used

Figure 4.1: Maximum head pose variation

in our work are illustrated in figures 4.2 and 4.3.
3http://docs.opencv.org/2.4.3/modules/objdetect/doc/cascade_classification.html

http://docs.opencv.org/2.4.3/modules/objdetect/doc/cascade_classification.html
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Figure 4.2: Sequence with similar pose over time

(a) Sequence 1

(b) Sequence 2

(c) Sequence 3

Figure 4.3: Sequences with different conditions over time
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4.2 Face Hallucination

As mentioned before in chapter 2, face hallucination is Super-Resolution (SR) of face images.

This process consists in combining multiple low resolution images to form a higher resolution

image. The input low resolution images are like the video sequence illustrated in figure 4.2

where the face orientation is very similar over time. The minimum size of an acquired face

image is 45×45 and one of the stages of the hallucination process includes an increase of the

image size. In this stage it is used a bicubic interpolation to generate the interpolated high

resolution image ĪH . Figure 4.4 shows some examples of this interpolation (different values

of upgrade factor U were used). This stage is applied to an input video sequence (like figure
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Figure 4.4: Interpolated face image with different upgrade factors

4.2) in order to generate a database of low and high frequency interpolated images. These

images are created by applying low and high pass filters. Figure 4.5 shows the low and high

frequency interpolated images of a single image from the sequence.

After generating a database with low and high frequency interpolated images, a database

of eigenfaces is created by PCA training. Eigenfaces database is an over-complete dictionary

because one query difference face can only match a small number of eigenfaces with similar

shape. Thus, an image can be well-represented as a sparse linear combination of elements

from an over-complete dictionary. The regularization parameter λ is related to the number

of basis used to reconstruct an image. The bigger value of λ, the lower is the number of
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Figure 4.5: Example of an image and its low and high frequency representation

basis, and vice-versa. This number of basis variation is illustrated in figure 4.6.
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Figure 4.6: Sparse coefficients α with different values of λ

In this case, the final reconstructed image uses a sparse representation with few basis, it is

used λ = 0.5. This value provides a sparse representation with a few number of basis, which

includes one higher weight and a few others with low weights. To solve the `1-regularized

least square (equation (2.7)) it is used the MATLAB function developed at [45].

The resulting image from the sparse linear combination is added to the interpolated
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Figure 4.7: Reconstructed image from an eigenface database

high resolution image in order to increase the image detail (IH,GlobalEnhanced). After that,

IH,GlobalEnhanced is filtered by bilateral filtering to remove noise and artifacts. The parameters

of bilateral filtering are the half-size of the Gaussian filter window (W ) and the standard

deviations ([σ1, σ2]), the spatial-domain standard deviation (σ1) and the intensity-domain

standard deviation (σ2). The values used for these parameters are W = 5 and σ1 = 3, σ2 =

0.1. These values were obtained after performing some tests and these values were the best

combination to reduce noise and artifacts.

After noise reduction, IH,GlobalEnhanced is further enhanced by Jia’s method and returned as

the final hallucinated face. This method do not increase the image resolution but simply add

more high frequency information. This method is based on ANN search and it is computed by

using a MATLAB function knnsearch4. The input parameters of this function are the input

query image, which is the low frequency image of IH,GlobalEnhanced, the NSMethod which is

the nearest neighbor search method (kdtree) and the parameter related to the number of

nearest neighbors k. The number of nearest neighbor k is chosen based on the final result

of face hallucination. To choose this value it was created a video sequence (40 images) with

high resolution face images. Then, high resolution faces were filtered by a Gaussian filter

in order to decrease the image quality. After that, a bicubic interpolation is used to reduce

the size of high resolution face images to half-size. Thus, it is generated a sequence of low

resolution face images. Figure 4.8 shows these two generated sequences.
4www.mathworks.com/help/stats/knnsearch.html/

www.mathworks.com/help/stats/knnsearch.html/
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(a) High resolution face sequence (b) Low resolution face sequence

Figure 4.8: Sequences used to validate the process

Using the low resolution face image sequence, face hallucination is applied in order to

compare the final hallucinated face image with the original high resolution face image. Figure

4.9 shows the resulting hallucinated face with different values of nearest neighbor k.

To check the differences between the high resolution face image and the corresponding

hallucinated using different values of k nearest neighbors, figure 4.10 shows the error between

original high resolution face image and its hallucinated face.

Observing figure 4.10, the parameter of k nearest neighbors may be switched between 10

and 20 depending on the length of the input low resolution sequence. The face hallucination

presented by Jia uses the information retrieved from a stack of tracked faces to generate the

final high resolution face image. This process has a low computational time because of the

online training. The hallucinated faces of this method are illustrated in figure 4.11.

Jia’s method does not use a finding process to search the exact match for each low

resolution patch like other methods [1, 26]. These methods use an offline dictionary trained

with thousands of low and high resolution patches. The image enhancement is done by

searching the low resolution patch from the dictionary. This searching information is not

sufficient for SR, so a Markov network is used to model the relationships between high and
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Figure 4.9: Hallucinated face with different k nearest neighbors
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Figure 4.10: Error between original high resolution face image and its hallucinated face
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Figure 4.11: Set of final hallucinated faces
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Figure 4.12: Face SR using online code

low frequency patches, and between neighboring high frequency patches. This step is very

time consuming, which is a major difference comparing with the Jia’s method. Figure 4.12

shows the steps to achieve the final SR face image using this method, which is available

online5.

4.3 Face Recognition

In video-based face recognition, a key challenge is exploiting the extra information available

in video. In addiction, different video sequences of the same subject may contain variations

in resolution, illumination, pose, and facial expressions. A generative approach based on

dictionary learning methods is followed to minimize the challenges of recognition from videos.
5http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%

20for%20Super-Resolution.html

http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html
http://people.csail.mit.edu/billf/project%20pages/sresCode/Markov%20Random%20Fields%20for%20Super-Resolution.html
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(a) Partition 1 (b) Partition 2 (c) Partition 3

Figure 4.13: Sequence partition with K = 3

4.3.1 Video Sequence Partition

Given a video sequence of face images (like figure 4.3), the first step is to divide a video

sequence into different partitions in order to achieve a set of images with the same conditions.

Each partition encodes a particular pose and illumination condition. This partition step

removes the temporal redundancy while capturing variations due to changes in pose and

illumination.

Recalling the algorithm 1 presented in section 3.1. This algorithm divides a video se-

quence into K different partitions. Furthermore, this algorithm keeps updating the partitions

over N iterations. For each iteration it is calculated the corresponding score M(S) (equa-

tion 3.1). The maximization of M(S) is achieved through maximizing the diversity while

minimizing the square error. The final partitions are chosen with the highest score M(S).

Figures 4.13, 4.14 and 4.15 show the result of partition algorithm with different K values

over N = 100 iterations. Each partition should have a minimum number of image because

of dictionary learning step. To learn the dictionary it needs several images by partition to

compute successfully the Lagrange dual method via sparse coding and to avoid the random

initializations of basis elements of the dictionary.

It was created a video sequence with many different conditions, such as pose, illumination

and scale. The video sequence partition algorithm is used to split the sequence into K

partitions and the result is shown in figure 4.16.
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(a) Partition 1 (b) Partition 2 (c) Partition 3

(d) Partition 4

Figure 4.14: Sequence partition with K = 4

(a) Partition 1 (b) Partition 2 (c) Partition 3

(d) Partition 4 (e) Partition 5

Figure 4.15: Sequence partition with K = 5
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(a) Partition 1 (b) Partition 2 (c) Partition 3

(d) Partition 4 (e) Partition 5

Figure 4.16: Sequence partition with K = 5 with some variations

4.3.2 Dictionary Learning

Each partition contains images with specific pose and/or illumination conditions. A dictio-

nary is created for each partition in order to remove the temporal redundancy while capturing

variations due to changes in pose and illumination. Thus, there will be K sub-dictionaries

by video sequence. Before building any sub-dictionary, an augment of gallery images is done

for the partitions with very few images. This increase is done by introducing synthesized

face images, i.e., images are created by shifting a random image from the partition horizon-

tally,vertically and diagonally. Different from Chen et al. [23], a dictionary is learned via

sparse coding with a least square problem with a quadratic constraint.

An implementation of sparse coding with dictionary learning is available in the mlpack

machine learning library [44] and the input parameters are the regularization parameter λ

and the number of basis B̃a (the dimension of the learned feature space).

A sequence-level dictionary is created by grouping all the K sub-dictionaries by video

sequence. Figure 4.17 shows an example of a sequence-level dictionary learned via sparse

coding with B̃a = 7 basis and K = 3 partitions. Green lines separates different sequence-

level dictionaries and each row is the learned sub-dictionary via sparse coding. The α values

were obtained using λ = 0.01. In this case, it is used a small value of λ to reduce the

sensitivity of the optimization, i.e., the reconstructed images use more elements from the

original dictionary (each partition from a video sequence). This value is low because the

optimization is related to the number of images at the original dictionary and with a low

value of λ, more elements from the dictionary are used.
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Figure 4.17: Sequence-level dictionary learned with B̃a = 7 and K = 3

4.3.3 Image Descriptors

As described in section 3.6, two types of descriptors are used here. Firstly, raw images are

used as an image descriptor. Figure 4.17 shows an example of a sequence-level dictionary

learned with the gray level information of image. This kind of descriptor can not be used

with face hallucination and face recognition at the same time. Given a video sequence, the

size of any image is always the same. Thus, the dictionary based on that video sequence is

directly related to the image size. Face hallucination process increases image size, so this new

hallucinated face sequence images have bigger size than the sequence images used to learn

the dictionary. Considering this, the new hallucinated face sequence can not be compared

with the previous dictionary learned. To address this problem, a descriptor invariant to the

image size is used. The descriptor used is a matrix of covariance of several image statistics

computed inside a region of an image, Region Covariance Matrix (RCM).

4.3.3.1 RCM

The RCM is considered as a feature descriptor of the region. The RCM based on mapping

function (3.17) uses simple features like pixel coordinates (x and y), the first-order gradient,

the second-order gradient and the orientation. These features can be computed by using the

Sobel function available in the OpenCV library. This function has a set of two parameters
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Figure 4.18: Derivative features used to create mapping function (3.17)

Figure 4.19: RCM

(dx and dy) to generate the first or the second-order gradient. The first and second-order

gradient for x and y directions are computed by using a combination of these values:

• x order gradient (first-order) → dx = 1 and dy = 0

• y order gradient (first-order) → dx = 0 and dy = 1

• x order gradient (second-order) → dx = 2 and dy = 0

• y order gradient (second-order) → dx = 0 and dy = 2

The mapping function is computed for an image which is divided into five regions (figure

3.8). For each region it is calculated the covariance matrix in order to use only the upper

triangular matrix as a region descriptor (because covariance matrix is symmetric). The

final descriptor is generated by concatenating all region descriptors into a column vector.

Figure 4.18 shows all the features of this mapping function. The resulting covariance matrix

computed by using mapping function (3.17) is illustrated in figure 4.19.

4.3.3.2 GRCM

The RCM based on Gabor kernel is represented by the mapping function (3.23). This

function is based on several Gabor filters applied to the same image in other to generate a

Gabor’s filter family to that image. This can be done by varying one or two parameters of

Gabor function. This function has some input parameters such as: λ which represents the

wavelength of the sinusoidal factor, θ represents the orientation, ψ is the phase offset, γ is

the spatial aspect ratio and σ is the sigma of the Gaussian envelope which is calculated by
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Figure 4.20: Gabor filter’s family used in mapping function (3.23)

a given bandwidth bw (equation (4.1)):

σ = λ

π
×
√

log 2
2 ×

2bw + 1
2bw − 1

. (4.1)

The Gabor’s filter family are created by varying λ and θ.

Used images have a small size, which may limit the use of some parameters of the Gabor

function, which is available online6 for C++. On these images, the edges (facial contours,

eyes, mouth, nose, etc.) have a small size due to image size. After Gabor filter application,

these edges are highlighted. Based on this, and after some tests, the input parameters used

to compute Gabor function are: ψ = 0, γ = 0.87 and bw = 1. The other two parameters, λ

and θ have a set of different values in order to achieve several wavelengths and orientations.

The values used for these parameters are: the set of λ values are {2, 4, 6, 8} and the set of

θ are {0, π/6, π/3, π/2, 2π/3, 5π/6}. Figure 4.20 shows the resulting Gabor’s filter family

using this set of parameters.

The set of images illustrated in figure 4.20 are used to build the mapping function (3.23).

This mapping function is used to compute the covariance matrix based on Gabor features.

Figure 4.21 shows this covariance matrix.
6http://www.eml.ele.cst.nihon-u.ac.jp/˜momma/wiki/wiki.cgi/OpenCV/Gabor%20Filter.html
6Figures 4.19 and 4.21 are not with the true scale, because they have a small size and to illustrate the

resulting RCMs are shown a scaled version.

http://www.eml.ele.cst.nihon-u.ac.jp/~momma/wiki/wiki.cgi/OpenCV/Gabor%20Filter.html
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Figure 4.21: RCM generated by mapping function (3.23)

In this work it is used the RCM mapping function (function (3.8)) considering all five

regions (figure 3.8), the GRCM only with the global representation of the face (C1 region),

GRCM-1, and finally, the GRCM based on the five regions, GRCM-5. Table 4.1 shows the

image descriptor size of each of them.

Table 4.1: Image descriptor size comparison

RCM GRCM-1 GRCM-5

Descriptor Size (elements) 180 378 1890

4.3.4 Validation

The validation process consists of combining information from the identification voting pro-

cess and the residual information from the verification. This combination results in a vali-

dation score V . If the highest value of votes (from identification) and the maximum value

of validation score belong to the set of sequences of the same subject, the validation will be

successful. For example, a dictionary is created by using 3 video sequences of 5 subjects.

Lets assume that some subject X belongs to the dictionary. Using another video sequence

from the X as an input of face recognition system, the validation is done by combining the

identification and the verification process. Figures 4.22(a) and 4.22(b) show the results of

these processes, respectively.

In figure 4.22 the red circle represents the values used to perform the validation. In

this case, the number of maximum votes is for sequence-specific dictionary number 25, the

minimum residual error is for number 25. Thus, the validation will have the maximum value

at the sequence-specific dictionary number 25 as figure 4.22(c) shows. So, the validation of

subject X is successful.

4.3.5 Discussion

The face recognition algorithm was tested in different conditions. At the first, it was tested

the influence of the number of partitions used to create the dictionary. To perform this test
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Figure 4.22: Face recognition validation

it was used a total number of 30 sequences of 10 different persons. For validation it was

used 30 sequences from the same individuals of the dictionary but with different conditions.

Table 4.3 shows the results of each descriptor used for different values of K partitions. These

values were calculated based on the confusion matrix (table 4.2 is an example of a confusion

matrix for GRCM-5 descriptor and K = 3), and the final result is the average of the elements

of the diagonal of confusion matrix.

Using a large number of partitions, the performance of the recognition system would

increase. Table 4.3 shows that the number of partitions have influence on the success of the

recognition. Each partition is related to a specific condition presented in a video sequence

such as illumination, pose and others. The robustness of the dictionary tends to increase

on the number of conditions in each sequence. The following results are obtained by using

K = 3 and K = 4.

After using different values of K for the video sequence partition, it was tested the

influence of the illumination variation. In this case, the dictionary is created by a set of

2 sequences of 9 persons without illumination variation. It was used a set of 3 sequences
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Table 4.2: Confusion matrix (%)

Dictionary
Sequence 1 2 3 4 5 6 7 8 9 10

1 100 0 0 0 0 0 0 0 0 0
2 0 99.95 0 0 0 0 0 0 0 0.05
3 0 0 92.88 0 0 0 0 2.48 4.62 0
4 7.03 0 0.52 71.83 1.01 13.38 0 6.22 0 0
5 0.92 4.15 9.63 0 67.74 15.67 0 0.99 0.90 0
6 0.30 0 0.35 0 2.61 90.28 0 1.52 4.94 9
7 0 0 0 0 0 0.07 99.93 0 0 0
8 0 0 0 0 0 0 0 100 0 0
9 0 1.28 1.36 2.99 5.66 18.43 0 5.90 64.38 0
10 0 0 0 0 0 0 0 0 0 100

Table 4.3: Recognition accuracy (%) for different values of partitions (K)

K = 1 K = 2 K = 3 K = 4
RCM 83.59 86.51 88.34 91.28

GRCM-1 77.22 84.72 85.90 87.88
GRCM-5 84.80 89.15 88.77 89.36

by individual with illumination variation as the input for recognition. Table 4.4 shows the

results of this test.

Table 4.4: Recognition accuracy (%) using a dictionary without illumination changes

K = 3 K = 4
RCM 24.70 24.51

GRCM-1 19.57 20.86

On the next step it is created a dictionary with a set of 3 sequences (by individual) with

changes in illumination in order to see the results of including this variation. It is used the

same sequences of the previous test as the input of recognition system. Table 4.5 shows the

results of this test.

Table 4.5: Recognition accuracy (%) using a dictionary with illumination changes

K = 3 K = 4

RCM 92.62 93.28

GRCM-1 88.44 88.95

Tables 4.4 and 4.5 show that using sequences with variations like illumination or pose to

create a dictionary, the performance of recognition system would increase.

It was also tested the face hallucination algorithm with the face recognition system. A

dictionary is learned with some sequences of hallucinated faces. To evaluate this test it is
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used a sequence of hallucinated faces. Figure 4.23 shows the result for a sequence before

applying the face hallucination.
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Figure 4.23: Sequence before the face hallucination

Figure 4.24 shows the result of the same sequence as used in figure 4.23 but now after

the face hallucination.
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Figure 4.24: Sequence after the face hallucination

Using the sequence with hallucinated faces, the number of votes of identification tend to

increase for the sequence of the dictionary corresponding with the same person. The same

goes to verification, the value of the residual error tend to decrease for the sequence of the

dictionary corresponding with the same person. Thus, the value of the validation score is

the highest one, which validates the recognition.



Chapter 5

Conclusion and Future Work

The main focus of this dissertation is face recognition from video surveillance with low

resolution images. Sometimes it is important to recognize a face from a video stream, but

not always the image resolution is fair enough to achieve good recognition rates. A method of

face hallucination is used to increase image resolution. This method yields good results when

the tracked faces are very similar to each other. If the tracked face are not well aligned there

will be serious “ghost effects” in the resulting images. In this face hallucination algorithm it

is used a stack of faces with very similar poses, shapes and illumination conditions. The final

hallucinated face is enhanced based on the information retrieved from the stack of tracked

faces from the same person.

Concerning to dictionary-based face recognition from video, the temporal redundancy

existing while capturing variations due to changes in pose and illumination is removed. This

temporal information is removed by using an algorithm to divide a video sequence into

different partitions. The partitions are used to learn a dictionary based on sparse coding.

Two kind of descriptors were implemented in this work. These descriptors are based on

Region Covariance Matrix (RCM). Firstly, it was used the initial approach of RCM’s which

is based on the image derivatives. Secondly, it was used a RCM based on Gabor filters,

Gabor-based Region Covariance Matrix (GRCM). These descriptors yield good results to

the face recognition system.

Throughout the implementation of this work, important conclusions and observations

have been made. Firstly, it was observed that the face hallucination algorithm is capable to

increase image resolution based on a previous stack of low resolution images. Regarding to

the dictionary-based face recognition, this method has the capability to efficiently recognize

a person given a video sequence. The descriptors used in this method present good results.

51
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However, it was realized that the artificial illumination introduces an undesired variation to

video processing. As the descriptors used are based on the image derivatives, these undesired

variations have a negative contribute to the effectiveness of the system. Considering this,

the results of the recognition were significantly positive.

Concluding, this works presents methods able to enhance image quality based on a se-

quence of low resolution face images and also able to recognize individuals based on video

sequences.

5.1 Future Work

Some issues are still left open to future work. Concerning the context of this dissertation, a

face detection and tracking system able to detect and track faces in video where the object

of interest is far away from the camera would increase the performance of face hallucination

and subsequent recognition. Considering this improvement of face detection and tracking

system, a real-time system concerning to face hallucination and then recognition can be

implemented. Thus, this system can be used in a real video surveillance applications, such

as public and private surveillance, criminal identification, etc. Regarding face recognition

system, a dictionary with an online update based on sparse coding would increase the effec-

tiveness of recognition. This online dictionary update could be done by updating a sequence

of an individual based on the validation result. For example, if the validation is successful,

an update for the sequences corresponding to the same individual will be done in order to

increase the robustness to variations in facial appearance, such as beard, hairstyle, etc., and

in illumination and/or pose variations.
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