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Abstract

The performance of the Boundary Element Method (BEM) depends on the size of the elements and the interpolation function used.
However, improvements in accuracy and efficiency obtained with both expansion and grid refinement increases demand on the computa-
tional effort. This paper evaluates the performance of constant, linear and quadratic elements in the analysis of the three-dimensional
scattering caused by a cylindrical cavity buried in an infinite homogeneous elastic medium subjected to a point load. A circular cylindrical
cavity for which analytical solutions are known is used in the simulation analysis. First, the dominant BEM errors are identified in the
frequency domain and related to the natural vibration modes of the inclusion. Comparisons of BEM errors are then made for different types of
boundary elements, maintaining similar computational costs. Finally, the accuracy of the BEM solution is evaluated when the nodal points
are moved inside linear and quadratic discontinuous elements.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The solution of how waves propagate between a source
and a receiver placed below the ground has occupied
researchers for years. Some of the first analytical studies
on wave diffraction and scattering were concerned with
the problem of wave motion and reverberations in alluvial
basins of regular shape [1,2], and with wave scattering
induced by cavities [3–6]. More recently, semi-analytical
methods have been used to analyse wave diffraction caused
by geological irregularities of arbitrary shape within
globally homogeneous media [7–9]. By contrast, the appli-
cation of purely numerical methods (i.e. finite elements or
differences combined with boundaries) has been restricted,
for the most part, to situations where the response is
required only within localised irregular domains, such as
soil–structure interaction problems [10–12]. Discrete
methods have also occasionally been used to model large
alluvial basins, but only in plane-strain [13]. Finally, hybrid
methods involving a combination of finite elements, to
model the interior domain containing the inhomogeneities,
and semi-analytical representations for the exterior domain
have been used [14].

The application of these numerical methods has mostly
been restricted to situations where the solution is required
within two-dimensional (2D) domains. The evaluation of
the full scattering wave field generated by sources placed
in the presence of three-dimensional (3D) propagation
media requires the use of computationally demanding
numerical schemes.

The solution becomes much simpler if the medium is 2D,
even if the dynamic source remains 3D, a point load, for
example. Such a situation is frequently referred to as a two-
and-a-half-dimensional problem (2-1/2-D), for which
solutions can be obtained by means of a two spatial Fourier
transform in the direction in which the geometry does not
vary. This requires solving a sequence of 2D problems with
different spatial wavenumberskz: Then, using the inverse
Fourier transform, the 3D field can be synthesized.

This solution is known in closed form for inclusions with
simple geometry, such as a circular cylinder, for which the
wave equation is separable. However, if the inclusion has an
irregular cross-section it is more difficult to obtain the
solution. In this case, the Boundary Element Method
(BEM) is possibly the best tool for analyzing wave propa-
gation in unbounded media, because it automatically
satisfies the far-field radiation conditions and allows a
compact description of the medium in terms of boundary
elements placed at the material’s discontinuities [15–18].
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The BEM solution at each frequency is expressed in
terms of waves with varying wavenumberkz; (with z
being the direction in which the geometry does not vary),
which is subsequently Fourier transformed into the spatial
domain. The wavenumber transform in discrete form is
obtained by considering an infinite number of virtual point
sources equally spaced along thez-axis and at a sufficient
distance from each other to avoid spatial contamination
[19]. In addition, the analyses are performed using complex
frequencies, shifting the frequency axis down, in the
complex plane, in order to remove the singularities on (or
near) the axis, and to minimize the influence of the
neighboring fictitious sources [20].

The accuracy of the BEM solution depends on the
number of the boundary elements used to discretize the
material discontinuities and on the nodes inside each
element [21,22]. The BEM solution improves as the order
of the element increases and its size decreases. However, the

improvement in accuracy and efficiency that can be
obtained by using higher order elements is offset by the
increased computational cost in CPU time. Thus, while
the response improves with the number of nodes per
element, this is not necessarily useful, because of the
increased computational expense that these more accurate
models entail.

The present work assesses the benefit of using constant,
linear and quadratic elements to calculate the displacement
field around a circular cylindrical cavity buried inside an elas-
tic medium, for which the solution is known in closed form.

This paper first formulates the problem and briefly
presents the equations required to solve the BEM problem,
while its analytical solution is addressed in Appendix A.
Then, the BEM errors occurring in the 3D scattering
analysis of a cylindrical circular cavity are identified in
the frequency domain and correlated to those related to
the natural vibration modes. In these analyses, different
numbers of constant, linear and quadratic elements are
used, according to different ratios of the incident wave
wavelength to the length of the boundary elements. Results
computed with a similar number of nodal points are
compared, thus keeping the computational cost essentially
constant. Thereafter, the performance of discontinuous
linear and quadratic elements is analyzed when the positions
of the nodal points inside the boundary elements are moved
around in the vicinity of those used in the Gauss–Legendre
numerical integration.

2. Problem formulation

Consider a cylindrical irregular cavity of infinite extent,
buried in a spatially uniform elastic medium (Fig. 1),
subjected to a harmonic dilatational point source at position
�x0;0;0�; oscillating with a frequencyv: The incident field
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can be expressed by means of the now classical dilatational
potentialf .

finc � Aei va �at2
��������������
�x2x0�21y21z2
p

��������������������������x 2 x0�2 1 y2 1 z2
p �1�

in which the subscriptinc denotes the incident field,A is the
wave amplitude,a is the compressional wave velocity of
the medium, andi � ����

21
p

:

Defining the effective wavenumbers

ka �
�����������
v2

a2 2 k2
z

s
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by means of the axial wavenumberkz; and Fourier-trans-
forming Eq. (1) in thez direction, one obtains

f̂ inc�v; x; y; kz� � 2iA
2

H�2�0 �ka
������������������
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q
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in which theH�2�n �…� are second Hankel functions of ordern.
If one considers an infinite number of virtual point

sources equally spaced along thez direction at a sufficient
distance,L, from each other to avoid spatial contamination
[19], the incident field may be written as

pinc�v; x; y; z� � 2p
L

X∞
m�2 ∞

p̂inc�v; x; y; kz� e2ikzmz �4�

with kzm� �2p=L�m: This equation converges and can be
approximated by a finite sum of terms.

3. Boundary element formulation

The BEM is used to obtain the 3D field generated by a
cylindrical cavity subjected to spatially sinusoidal harmonic
line loads defined by Eq. (3). The fundamental equations
underlying the application of boundary elements to wave
propagation are well known [23]. It is therefore enough to
state here that the application of the method in the frequency
domain requires for the type of scattering problem presented

herein the evaluation of the integral

Hkl
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Z
Cl

fHil �xk; xs; ns� dCl �i; l � 1; 2;3� �5�

in which Hil �xk; xs;ns� are the traction components at the
point xk in direction i caused by a concentrated load acting
at the source pointxs in direction l. Also, ns is the unit
outward normal for thelth boundary segmentCl and f
are the interpolation functions.

Expressions for the tensions may be obtained from the 2-
1/2-D fundamental solution Gil ; by taking partial derivatives
to deduce the strains and then applying Hooke’s law to
obtain the stresses. The displacement functions that apply
to the present case can be written as follows:
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After mathematical manipulation of the integral
equations, combined and subjected to the continuity con-
ditions at the interface between the two media, and discre-
tized appropriately, a system of equations is obtained that
can be solved for the nodal displacements. The required
integrations in Eq. (5) are performed using Gaussian quad-
rature when the element to be integrated is not the loaded
element. For the loaded element, the existing singular inte-
grands are carried out in closed form [18].

The system of equations obtained is fully populated and
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in general not symmetric. As a consequence, the global
computational cost of the BEM mainly represents the time
required to solve the system of equations. In this paper,
different types of boundary elements are used. The perfor-
mance of the different solutions is evaluated by comparing
the results obtained for similar computational cost; that is,
involving equation systems of the same size (i.e. using a
similar number of nodal points).

The displacement and stress variations within a boundary
element are defined as a function of the nodal values.
Discontinuous boundary elements are used to deal with
the traction discontinuity existing at the corner between
two boundary elements. This consists of moving to the
inside the nodes that would meet at the corner [24]. Fig. 2
presents the interpolation functions used to model the inclu-
sions used in the simulation analysis.

4. Analytical solution

The scattering field produced by a circular cylindrical
cavity, placed in a homogeneous elastic medium, subjected
to a point dilatational load can be defined in a circular
cylindrical coordinate system (r, u , z) and evaluated by
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Table 1
Relationsl=L used in the calculations

Interpolation function R1 R2 R3

Constant 6 12 18
Linear 3 6 9
Quadratic 2 4 6
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using the separation of variables method, as briefly
described in Appendix A [25,26].

5. Analytical versus boundary element solution

The benefit of using higher order elements is evaluated by
calculating the displacement field around a cylindrical
circular cavity buried in an infinite homogeneous space.
The cavity is struck byP waves elicited by a dilatational
point load applied at pointO, as in Fig. 3.

Simulation analyses have been performed for a broad
range of frequencies and inclusions. However, given the
impossibility of presenting all the results, a restricted
number of simulations will be used to illustrate the
main findings.

6. Position of the BEM errors in the frequency versus
wavenumber domain

Fig. 4 gives some of the scattering results obtained at one
receiver placed atx� 2:5 m and y� 4:0 m; hereinafter
designated receiver 1. The results are computed for 1000
frequencies, in the range 4.0–4000 Hz. The response was
calculated both analytically and by using the BEM,
discretizing the boundary with constant, linear and quadratic
discontinuous elements, as shown in Fig. 2. The positions of
the nodal points are the same as those used in Gauss–
Legendre numerical integration (Fig. 2). Displacements in
x, y and z directions were computed for a wide range of
wavenumberskz; which were then be used to obtain the
3D solution by means of (fast) inverse Fourier transform
into space. To illustrate the results, only the horizontal
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displacements forkz � 1:0 rad=�m=s� will be given. Fig. 4a
gives the exact values for the horizontal displacement. Fig.
4b–d, illustrate the error occurring with the BEM solution
when constant, linear and quadratic elements are used. To
enhance the difference in the responses the error is displayed
on a logarithmic scale. Three different relations (R1, R2, R3)
between the wavelength (l ) of the shear waves and the
length of the boundary elements (L) were considered, as
listed in Table 1. In all cases, the number of the nodal points
is at least 24. The positions of the lower natural modes,
given by solving Eq. (A6), are also displayed.

Analysis of the results shows that the BEM accuracy is
much poorer at frequencies in the vicinity of the natural
modes, for which big peaks of error occur. The constant
elements are conspicuously bad in these localized frequency
domains. Outside these domains, all the responses improve

as the number of the nodal points increases. This was
predictable since an element with a greater number of
nodes can approximate the response better, because it can
model variations in displacement and/or traction much more
realistically. It can further be observed that, as the number
of boundary elements increases, the position of the error
peaks moves towards the values of the frequencies
satisfying Eq. (A6). This behavior can be explained by the
fact that the increased number of elements allows the BEM
model to approach the definition of the circular cylinder
better, with respect to its dynamic behavior.

In addition, it can be observed that for higher relations of
l=L (R2 andR3), the BEM errors obtained, using linear and
quadratic elements, have a global tendency to decrease as
the frequency increases. That is to say, a better degree of
accuracy is therefore expected for the higher frequencies
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because, to satisfy a specific relation ofl=L; more boundary
elements are required for those excitation frequencies than
for lower ones. The number of the elements itself seems to
be an important factor, in addition to the number of elements
required to satisfy a specific relation ofl=L:

7. Behavior of BEM solution in the vicinity of the natural
modes

In order to get a better picture of the behavior of the
influence of the natural modes on the BEM solution, the
scattering response was subsequently calculated over a
fine grid, placed around the cavity. In the following example
the inclusion is struck by a pulsating source vibrating at a
single frequency atkz � 1:0 rad=�m=s�; which is either 2058.6
or 2450 Hz. These two frequencies correspond to one of the
natural modes of the real system (Eq. (A6)) and a frequency

outside the vicinity of any eigen-frequency, respectively. The
inclusion is modeled with discontinuous elements, using
constant, linear and quadratic interpolation functions. The
nodal points are not at the end of these elements, but rather
shifted inside them, to allow nodal points in which only the
stresses relative to the element itself to be considered.

The number of elements was chosen to allow comparison
with results evaluated at similar computational cost (i.e. the
same number of nodal points). In these calculations three
different ratios between the wavelength of the shear waves
and the length of the boundary elements were considered, as
listed in Table 1.

Figs. 5–7 illustrate the analytical response and the
modulus of the error occurring with the BEM solution for
a frequency of 2058.6 Hz, when different relationsl=L are
used (R1,R2, andR3). As can be seen, the agreement between
the BEM and the analytical solution is not good when
constant elements are used to model the inclusion (Figs.
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5b, 6b and 7b). Notice that the BEM error is significant, with
values similar to those given by the analytical solution. It
can further be observed that the BEM solution does not
improve as refinements are made to the boundary elements
(i.e. changing the number of elements). Indeed, when the
inclusion is modeled using 87 constant elements the error
increases (see Fig. 7b). Notice that as the number of
boundary elements increases, the BEM model defines the
behavior of the circular inclusion better, approaching, in
this case, one of its natural modes� f � 2058:6 Hz�: As the
constant boundary elements perform poorly in the vicinity of
the natural modes, they cause the error to increase, because it
approaches the behavior of one of the natural modes. If the
number of the boundary elements is further increased (not
shown here), at greater computational cost, the error starts
decreasing. For a low number of nodal points (30) the quad-
ratic elements seem to perform poorly in the vicinity of the
inclusion (see Fig. 5d). As the number of elements increases,

the quadratic elements improve rapidly, and when the
response is calculated with 87 nodal points its performance
is similar to that of the linear elements (see Fig. 7c and d).

Fig. 8 displays the analytical response and the BEM error
when the vibrating source is excited with a frequency of
2450 Hz, and the number of the boundary elements used
to model the inclusion satisfies the values ofl=L listed in
Table 1, columnR3. Again, each plot results from computa-
tions performed with a similar number of nodal points,
which is assumed to require similar computational cost.
There are several interesting features to be noted in these
results, which are strikingly different from the previous ones
(i.e. those evaluated for a frequency of 2058.6 Hz). The
constant elements now perform much better. However, the
use of linear interpolating functions is still advantageous
(see Fig. 8c).

The examples described depict the behavior of the BEM
when a source with a specific frequency and wavenumber is
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Fig. 9. Horizontal displacements at receiver 1 in the frequency versus wavenumber domain: (a) analytical solution; (b) modulus of the BEM error (R1)—
constant elements; (c) modulus of the BEM error (R1)—discontinuous linear elements; and (d) modulus of the BEM error (R1)—discontinuous quadratic
elements.



excited. Indeed, as presented earlier, the 3D solution in
frequency requires the calculation of a broad range of wave-
numbers (see Eq. (4)), while the time solution additionally
requires the response for a set of frequencies. To illustrate
the performance of the BEM in the resolution of this
problem, simulation analyses are next performed to
calculate the full 3D response at receiver 1. Computations
are performed in the frequency range (40–4000 Hz), with a
frequency increment of 40 Hz. The spatial period con-
sidered in the analysis isL � 2Ta � 210m: The cavity is
modeled with a number of boundary elements that changes
with the frequency excitation of the harmonic load satisfy-
ing the ratiosR1 andR3 (see Table 1). The minimum number
of nodal points is kept at a minimum of 24. Fig. 9a displays
the amplitude of the analytical horizontal displacement in
the frequency versus wavenumber domain at receiver 1.
Notice, that values ofkz in excess tov=a correspond to
inhomogeneous, evanescent waves which decay rapidly in

space. The BEM errors, illustrated in Figs. 9b–d and 10b–d,
when the relationl=L assumes the valuesR1 and R3,
respectively, have features similar to those observed in the
previous cases. The position of the peak errors in these plots
agrees with the solutions given by Eq. (A6), when the
number of boundary elements increases. The quadratic
elements perform poorly when the number of elements is
defined by the ratioR1 (see Fig. 9d). Again, the linear
elements outperform constant and quadratic boundary
elements, especially at low spatial wavenumbers (see Figs.
9c and 10c).

8. Position of nodal points inside linear and quadratic
elements

In the above examples, the nodal points placed along the
discontinuous elements were chosen to coincide with those
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Fig. 10. Horizontal displacements at receiver 1 in the frequency versus wavenumber domain: (a) analytical solution; (b) modulus of the BEM error (R3)—
constant elements; (c) modulus of the BEM error (R3)—discontinuous linear elements; and (d) modulus of the BEM error (R3)—discontinuous quadratic
elements.



in a Gauss–Legendre numerical integration. Simulations
performed using different positions for the nodal points
suggest that this is a good choice. To demonstrate this
assertion, consider the wave propagation problem described
earlier. The scattered field is again computed for a
cylindrical circular cavity over a fine grid placed around

the inclusion. Fig. 11 displays the BEM error for the
horizontal displacement for a frequency of 2058.6 Hz, and
a relation of l=L set to R3 (see Table 1), for different
locations of nodal points around those given by the
Gauss–Legendre numerical integration, and when the
inclusion is modeled with linear and quadratic elements,
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Fig. 11. Horizontal displacements�kz � 1 rad=�m=s��: when the nodal points are placed at different positions inside of each element. Frequency of excitation—
2058.6 Hz: (a) modulus of the BEM error (R3)—discontinuous linear elements; (b) modulus of the BEM error (R3)—discontinuous quadratic elements.



respectively. In all the analyses, the interior nodal point of
the quadratic elements is placed at the center of the
boundary segment.

The accuracy obtained with the linear elements varies
conspicuously with the position of the nodal points. It can
be further observed that the solution improves as the nodal
points are moved to the positions used in the Gauss–
Legendre integration. The quadratic elements’ results do
not appear to be greatly affected when the nodal points
are moved around the vicinity of the Gauss–Legendre
numerical integration points. However, as the nodal points
move to the extremity of the boundary element, the BEM
solution clearly loses accuracy.

Simulation analysis performed when the source vibrates
at 2450 Hz (not illustrated here) demonstrates similar
behavior. The BEM error was subsequently tested for
different sized cylindrical circular cavities, for a broad
range of frequencies and spatial wavenumbers, which
demonstrated similar conduct.

9. Conclusions

This paper evaluates the benefits gained by using discon-
tinuous elements, (in which the nodal points are inside each
element), to model 3D elastic environments with constant,
linear and quadratic interpolation functions. Simulation
analyses were performed using circular cylindrical models,
namely, cavities. The number of boundary elements used
changed according to the different relations between the
wavelength (l ) of the incident waves and the length of
the boundary elements (L).

Comparison of the BEM results with those obtained by
analytical solution revealed the importance of using linear
elements instead of constant and quadratic elements to
calculate the displacement field. It has been illustrated that

the linear boundary elements outperform the constant and
quadratic elements, especially at frequencies in the vicinity
of natural modes.

It was also observed that the position of the nodal
points inside the linear elements significantly influences
the accuracy of the displacement solution at frequencies
in the vicinity of the natural modes of vibration.
Locating the nodal points to coincide with the Gauss–
Legendre numerical integration points was found to be a
good choice.

Appendix A

This appendix presents in condensed form the closed-
form solution to evaluate the 3D field generated by a
dilatational point source in the presence of a circular
cylindrical cavity of infinite length submerged in an
elastic medium.

Consider a spatially uniform elastic medium of infinite
extent, having a cylindrical cavity (Fig. 12). Decomposing
the homogeneous wave equations for elastic media by
means of the now classical dilatational potentialf and
shear potentialsc , x , one is led to the three scalar wave
equations in these potentials, with associated wave
propagation velocitiesa , b , and b , respectively. For a
harmonic dilatational point source at an off-center position
�x0;0; 0� that is oscillating with a frequencyv , the scalar
wave equations go over into three Helmholtz equations
whose solution can be expressed in terms of the single
dilatational potential for theincidentwaves, together with
a set of potentials forscattered waves in the elastic
medium.

The incident dilatational potential, after being
Fourier-transformed Eq. (A1) in thez direction, can be
expressed by

finc�v; x; y;kz� � 2iA
2

H �2�
0 �ka

������������������
�x 2 x0�2 1 y2

q
� �A1�

This equation can be written in terms of waves centered at
the origin,

finc�v; r ; u; kz� � 2
iA
2

X∞
n�0

�21�nenH�2�n �kar0�Jn�kar� cosnu

whenr , r0 (A2)

finc�v; r ; u;kz� � 2
iA
2

X∞
n�0

�21�nenH�2�n �kar�Jn�kar0� cosnu

whenr . r0 (A3)

in which theJ�2�n �…� are Bessel functions of ordern, u is the
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azimuth, and

en �
1
2

if n � 0

1 if n ± 0

8><>: �A4�

r �
���������
x2 1 y2

q
� radial distance to the receiver

r0 �
���
x2

0

q
� ux0u � radial distance to the source

cosu � x=r; sinu � y=r

In the frequency-axial-wavenumber domain, the scattered
field can be expressed in a form similar to that of the
incident field, namely

fs
sca�v; r ; u; kz� �

X∞
n�0

AnH�2�n �kar� cosnu �A5�

c s
sca�v; r ; u; kz� �

X∞
n�0

BnH�2�n �kbr� sin n u

xs
sca�v; r ; u; kz� �

X∞
n�0

CnH�2�n �kbr� cosn u

in which the subscriptscadenotes the scattered field,An, Bn,
and Cn, are as yet unknown coefficients to be determined
from appropriate boundary conditions, namelysrr � sru �
srz � 0; at r � a: The imposition of the three stated
boundary conditions for each summation indexn then
leads to a system of three equations in the three unknown
constants. Having obtained the constants, we may compute
the motions associated with the scattered field by means
of the well-known equations relating potentials and
displacements.

Natural modes—The frequency and spatial wavenumber
position of the natural modes are found to be important to
how the BEM performs. The position of these natural modes
can be evaluated, assuming that they are both incoming and
outgoing cylindrical waves propagating to and from the
center of the cylinder. Imposing the resulting boundary
conditions,ur � uu � uz � 0 at r � a; in the presence of
this standing field, the response is other than zero if the
following determinant is set to be zero. The solution of
the resulting equation gives the required position of the
natural modes.

d11 d12 d13

d21 d22 d23

d31 d32 d33

��������
�������� � 0 �A6�

where

d11 � n
a

Jn�a1a�2 a1Jn11�a1a�
� �

d12 � n
a

Jn�b1a�

d13 � 2ikz
n
a

Jn�b1a�2 b1Jn11�b1a�
� �

d21 � 2
n
a

Jn�a1a�

d22 � 2
n
a

Jn�b1a�1 b1Jn11�b1a�
� �

d23 � n
a

ikzJn�b1a�

d31 � 2ikzJn�a1a�

d32 � 0

d33 � b 2
1 Jn�b1a�:
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