

Hugo Filipe Costa Fernandes

Probabilistic Computing on FPGA with NIOS II Soft-Processor

Tese de Mestrado em Engenharia Electrotécnica e de Computadores

09/2015

Probabilistic Computing on FPGA with
NIOS II Soft-Processor

Hugo Filipe Costa Fernandes

Department of Electrical and Computer Engineering
University of Coimbra

This dissertation is submitted for the degree of
Master of Science

October 2015

Começo por agradecer ao meu orientador, Professor Jorge Lobo, pela disponibilidade
constante ao longo do ano, pelo acompanhamento e pelas sugestões de trabalho. Quero

também agradecer ao Rui Duarte, pelos conselhos que se provaram ser de grande valor para
o meu trabalho. Sem esquecer também os meus colegas de laboratório José e Alves e Awis
Aslam que ajudaram com opiniões e esclarecimento de dúvidas. Agradeço também a todos
os meus amigos e família pelo apoio, em especial aos meus pais e à Catarina pela companhia

e amor que sempre me acompanhou neste percurso universitário.

Abstract

This work explores ways of implementing the computations required for Bayesian inference
in hardware. Probabilistic computations, such as Bayesian inference, easily over load
standard Von Neumman architecture computers, leading to slow computations. To solve
this, the European BAMBI FET project takes a bottom-up approach by proposing a theory
and hardware implementation of probabilistic computation. Within this project a Bayesian
algebra and the use of Rational Functions with Non-Negative Coefficients (RFNCs) was
developed as a possible solution for Bayesian inference. The focus of this work is to map this
onto computing devices using reconfigurable logic (FPGAs). We explore the implementation
space available with current FPGA technology by taking advantage of the inherent parallelism
and flexibility associated with these devices. Using the Nios-II soft-processor as test bed,
we investigate the trade-offs of different configurations based on a Generic Bayesian Gate
and the use of modified arithmetic operators which support Bayesian Algebra. Thorough
tests were done concerning clock cycle, resource usage, maximum frequency and power
consumption. Our results show that there are viable and interesting solutions that can be
mapped to future devices dedicated to Bayesian inference.

Resumo

O trabalho aqui apresentado explora formas de implementar computação Bayesiana
em hardware. Computações probabilísticas, tais como inferência Bayesiana, facilmente
sobrecarregam computadores baseados em arquitetura Von Newmman, resultando na redução
do seu desempenho. Para resolver este problema, o projeto europeu BAMBI FET tem
uma abordagem estratificada propondo uma implementação teoria e física de computação
probabilística. Inserido neste projeto, álgebra Bayesiana e o uso de funções racionais
de coeficiente não negativo (RFNCs) foi desenvolvido como uma possível solução para
inferência Bayesiana. O foco deste trabalho passa por mapear esta inferência para dispositivos
de computação usando logica reconfigurável (FPGA). O espaço de implementação disponível
com tecnologia reconfigurável atual é explorado tirando vantagem da sua flexibilidade e
paralelismo associado. Usando o processador Nios II como plataforma de testes, investigámos
as consequências de diferentes configurações baseadas num Operador Genérico Bayesiano
e o uso de operadores aritméticos normais modificados para álgebra Bayesiana. Os nossos
resultados mostram que existem soluções viáveis e interessantes que podem ser usadas em
dispositivos futuros, dedicados a inferência Bayesiana.

Table of contents

List of figures ix

List of tables xi

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1
1.3 Related Work . 2
1.4 Main Contributions . 2
1.5 Dissertation Outline . 2

2 Bayesian Algebra and Bayesian Gates 5
2.1 Bayesian Inference . 5
2.2 Bayesian Algebra . 7
2.3 Generic Bayesian Gate . 8
2.4 GUT Trees . 9

3 Implementation Background 13
3.1 Field-Programmable Gate Arrays . 13

3.1.1 Introduction . 13
3.1.2 Development Boards and Device Architecture 13
3.1.3 Logic Elements and Logic Array Blocks 14
3.1.4 Embedded Memory . 16
3.1.5 Embedded Multipliers . 16

3.2 Nios II System . 19
3.2.1 Introduction . 19
3.2.2 Processor Variants . 20
3.2.3 Memory Types . 20
3.2.4 Custom Instructions . 21

viii Table of contents

3.3 Software Development Tools . 21

4 Design Space Exploration 25
4.1 Exploring Implementation Space . 25

4.1.1 GUT Emulated in Software . 25
4.1.2 Custom Instructions . 26

4.2 Single Gates . 27
4.2.1 GUT using Floating Point . 27
4.2.2 GUT using Fixed Point . 29
4.2.3 Floating Point Add, Multiply and Divide with Special Cases 32

4.3 Assemblies of Gates . 34
4.3.1 Static GUT Tree . 34
4.3.2 Dynamically Generated GUT Tree 37
4.3.3 Bayesian Algebra Trees . 37

5 Results 41
5.1 Clock Cycle Performance . 41

5.1.1 Soft-GUT . 41
5.1.2 Custom Instructions . 42

5.2 GUT and Bayesian Algebra Resource Usage 43
5.3 Maximum Frequency . 45
5.4 Power Consumption . 47
5.5 Overall Analysis . 47

6 Conclusions and Future Work 51
6.1 Conclusions . 51
6.2 Future Work . 52

References 53

Appendix A Tutorials 55
A.1 Creating a Nios System in Quartus II/Qsys 56
A.2 Running a Programs on NIOS II using Eclipse IDE. 60
A.3 Adding SDRAM Memory to the System. 61

Appendix B Schematics and Code 63
B.1 GUT Software Function . 63
B.2 GUT in VHDL using Fixed Point Representation 64

List of figures

2.1 Generic Probabilistic Gate Symbol. 8
2.2 Example of combination of two GUTs to produce a multiplication of two

values (the same function is presented as Equation 2.12). 9
2.3 Static GUT Tree where all the inputs are present at the top and there is only

a single output . 11
2.4 Dynamically Generated GUT Tree where the use of constants (marked by

rectangles) and inputs at any layer avoids the use of extra gates. 12

3.1 FPGA components (source: [1]). 14
3.2 Development boards used in our work (from [2]). 14
3.3 Area comparison of the two used versions of Cyclone IV FPGA. 15
3.4 Block diagram of a Cyclone IV LE (From [3]) 15
3.5 Cyclone IV Device LAB Structure (From [3]). 16
3.6 The two modes of the LE (From [3]). 17
3.7 18 x 18 bit Embedded Multiplier Block (From [3, Chapter 4]). 18
3.8 Example of a Nios II Processor System (from [4]) 19
3.9 Nios II Custom Instruction Layout (from Altera) 21
3.10 Interface Signals for a Multi-Cycle Custom Instruction (from [5]) 22

4.1 Diagram of the CI design. 26
4.2 Burst transfer example (Source: [6]). 27
4.3 Example of time multiplexed arithmetic operations using Floating Point

Megafunction blocks that are reused for resource optimization. 28
4.4 Overview of the Finite State Machine of the controller as generated by the

State Machine Viewer in Quartus II. 28
4.5 Floating Point GUT execution clock cycles for different inputs. 29
4.6 Block Diagram/Schematic of the Floating Point GUT in Quartus II. 30
4.7 Overview of the Floating Point GUT implemented as a Custom Instruction. 31

x List of figures

4.8 Block schematic diagram of the Bayesian Algebra Addition operator with
special cases implemented by the controller. 32

4.9 Block Schematic Diagram of Bayesian Algebra functions implemented as a
Custom Instruction. Only one operation is allowed at any given time. The
ncs_n signal selects the desired function. 33

4.10 Dynamically Generated GUT Tree, where the inputs in the first layer are
loaded sequentially by the DMA Controller. 35

4.11 Block schematic diagram of the DMA controller and GUT Tree assembly
viewed from Quartus II. 36

4.12 Example of an Dynamically Generated GUT Tree generated using the parser
tool (From [7]). 38

4.13 Block Schematic Diagram of a Bayesian Algebra Tree using different opera-
tions in order to execute a pre-selected function. 39

5.1 Comparison of the Software based GUT using different processor architec-
tures. The graphic uses logaritmic scale on the Y-Axis. 42

5.2 Performance comparison of 3 implementations of the GUT and Static GUT
Tree. On the left side using a Nios Economic core and, on the right side,
using a Standard core with memory cache enabled. 43

5.3 Maximum number of GUTs on different development boards. 45
5.4 Maximum number of Bayesian Algebra Operators using Floating Point

representation on different development boards. Because Addition and
Multiplication can be made with logic elements only, Emebeded Multipliers
(DSPs) were reserved for Division. The graphic does not take into account
combinations with different types of gates due to this being highly depended
of the final application. 46

5.5 Total Thermal Power Dissipation compared in 4 GUT implementations. . . 48
5.6 Core Dynamic Thermal Power Dissipation compared in 4 GUT implementa-

tions. 48
5.7 Outputs generated by Fixed Point GUT (16-Bit) as a Custom Instruction.

The values were extracted from the Nios II Console in Eclipse. The result
from the input (T,T,z) deviated from the one expected. 49

A.1 Nios system in Qsys . 57

List of tables

2.1 Relation of the distributions on a binary random variable given in both
probability values p ∈ [0,1] and odd ratios r ∈ [0,∞[. 7

2.2 Boolean algebra and the equivalent for Bayesian algebra. 8
2.3 GUT truth table in odd ratios, and its NAND gate equivalent (assuming (X,Y)

as inputs and Z as a True(∞) constant). The order of the values is irrelevant,
so the inputs represent all the different combinations possible. Lower-case
letters represent real finite positive numbers. 10

3.1 Main features of the three Nios II Processor Cores. 20

5.1 Resource consumption of the main components on a Cyclone IV FPGA
Architecture. 44

5.2 Resource consumption of some components on a Stratix IV FPGA Architecture. 44
5.3 Resource consumption of some components on a Stratix V FPGA Architecture. 44
5.4 Maximum Frequency of Bayesian Gates on Cyclone IV Architecture (De-

signs not constrained). 46
5.5 Power consumption of four Floating Point GUT implementations. The values

present in this table are in milliwatts (mW). 47

Chapter 1

Introduction

1.1 Motivation

Probabilistic computations easily overload standard Von Neumman architecture computers,
leading to slow computations. Reconfigurable logic devices (FPGAs) have been used in
some probabilistic applications [8–10] providing significant performance gains compared
to standard Von Neumman architectures. However, despite these performance gains, these
solutions were purposely designed for the specific application and, so far, no general solution
has been proposed. The BAMBI FET project takes a bottom-up approach into this problem
in order to find a solution.

It has been proposed that the brain is a probabilist inference machine [11], this can
be extended to living organisms in general. A recent study [12] suggests that at a sub-
cellular level, biochemical cascades of cell signalling can perform the necessary probabilistic
computations. This can be a starting point to pursue possible hardware implementations to
support the computations required by Bayesian inference.

Since FPGAs provide a flexible platform to implement custom hardware, these will
be used to experiment with different designs of basic computing blocks for probabilistic
computing.

1.2 Objectives

This thesis focusses mainly on exploring the implementation space of Bayesian computing
on reconfigurable logic devices. Using the Nios processor as a test-bed, we will test the
feasibility of some Bayesian computation solutions by making a detailed analysis of the
clock cycle performance, resource usage, maximum frequency and energy consumption. The

Chapter 1. Introduction Introduction

key objective is to provide insight on the best solutions to perform the required computations
taking into account the problem characteristics and available resources.

1.3 Related Work

In previous works, FPGAs have already been used for Bayesian inference. In [8] a full-system
prototype of a scalable Bayesian network learning algorithm is presented. A computing
method based on dynamic Bayesian learning network is proposed in [13]. In [14], a proba-
bilistic neural network (PNN) is proposed and developed to decode motor cortical ensemble
recordings in rats. In [10] a binary LNS-based naïve Bayes inference engine for spam control.
In [9] a Bayesian pixel-based segmentation algorithm is proposed. However, these were not
generic solutions. In the BAMBI project, we follow a bottom-up approach towards a future
probabilistic computer. A Bayesian algebra was developed and, in this work, we rely on a
standard numeric coding to perform the computations. A preliminary work [7] addressed this
approach and an implementation of a generic gate was presented but not thoroughly tested.
Within BAMBI other solutions are being pursued that rely on coding values with stochastic
bit streams [15, 16].

1.4 Main Contributions

Based on the Bayesian algebra, developed within the BAMBI project to address Bayesian
inference problems, the main contribution of this work are:

1. Several implementations that support the required computations. These span the
available solutions within reconfigurable logic.

2. Quantitative test results concerning power, clock cycle, frequency, and resource usage
performance.

3. Analysis of the trade-offs and insights for the more suitable solutions.

1.5 Dissertation Outline

Following the Introduction, Chapter 2 introduces the basic concepts of the Bayesian algebra
and the Generic Bayesian Gate that were the starting point for the hardware implementation.
The next chapter provides basic background on reconfigurable logic and the test platform
being used. Chapter 4 describes and explains the implemented designs in hardware In Chapter

Chapter 1. Introduction 3

5 presents quantitative performance test results and a qualitative analysis. In the final chapter,
we present the conclusions and provide some insight for future work.

Chapter 2

Bayesian Algebra and Bayesian Gates

In this chapter we will present some background on Bayesian inference and how it can
be formulated using odd ratios to compute the solution more efficiently. This will set the
basic operations that need to be supported by the hardware implementation. The focus on
this dissertation is to explore the implementation space trade-offs available with current
technology.

2.1 Bayesian Inference

Living organisms have the ability to reason with uncertain and incomplete information.
This probabilistic behaviour is an interesting aspect that could be explored. To replicate it,
Bayesian approaches have been proposed as solutions [17].

The novel work by Droulez in [12] proposes that, at a sub-cellular level, biochemical
cascades of cell signalling can perform probabilist computations. Also, Bayesian inference
on subjective models is similar to the computation of Rational Functions with Non-negative
Coefficients (RFNCs). Based on this, we will give a brief insight into this process.

The structure of the general subjective model considered is:

P(S∧F ∧K) = P(S∧F)︸ ︷︷ ︸
prior

×P(K|S∧F)︸ ︷︷ ︸
likelihood

(2.1)

where unknown variables are divided into a set of searched S and a set of free F variables,
with the set of observations being represented by K. Knowing a given set of observations k
(in lower-case), the posterior distribution function over the relevant variable S is then given
by:

P(S|k) = ∑F P(S∧F)×P(k|S∧F)

∑S ∑F P(S∧F)×P(k|S∧F)
(2.2)

Chapter 2. Bayesian Models Bayesian Algebra and Bayesian Gates

where the denominator on the right side is a normalization constant and ∑P(S|k) = 1. If the
state spaces of (S) and (F) are very large, this could prove very hard to compute.

A possible solution for this is to determine the posterior distribution using odd ratios.

It is shown that the posterior distribution of the inference can be completely specified by a
vector of values as odd ratios (y) and the variables used are coefficients of prior distributions
(a) and input vectors (x):

∀s ∈ {0, ...,ns −1},∀ f ∈ {0, ...,nF −1} : as, f =
P([S = s][F = f])
P([S = 0][F = 0])

(2.3)

∀s ∈ {0, ...,ns −1},∀ f ∈ {0, ...,nF −1} : xs, f =
P(k|[S = s][F = f])
P(k|[S = 0][F = 0])

(2.4)

∀s ∈ {0, ...,ns −1} : ys =
P([S = s]|k)
P([S = 0]|k)

=
∑ f as, f × xs, f

∑ f a0, f × x0, f
, yi ∈ [0,∞[; (2.5)

where the state [S = 0] is used as a reference or default state, as, f and a0, f are prior distri-
butions and, xs, f and x0, f are input vectors. These are simplified sets of equations, a more
detailed explanation is presented in [12, Section 4.2].

Essentially, if these odd ratios are real finite positive numbers, the solution can be obtained
with simple algebra in the form of three mathematical operations: addition, multiplication
and division.

Consider a simple example from the classical “sprinkler” Bayesian network. We have
three binary variables R, S, G corresponding to the predicates “it has been Raining”, “the
Sprinkler was turned on” and “the Grass is wet”. The joint distribution may be decomposed
as P(R,S,G) = P(R)×P(S|R)×P(G|R,S). We are interested in the probability that it rained
knowing that the grass is either wet or dry: P(R|G = g). We know G, are searching for R and
S is a free variable. In odd ratios, this becomes:

yr =
P([R = True]|g)
P([R = False]|g)

=
∑s(ar,s × xr,s)

∑s(a0,s × x0,s)
=

((a1,0 × x1,0)+(a1,1 × x1,1))

(1+a0,1 ×a0,1)
(2.6)

where 0 and 1 are used as a compact notation for False and True, yr is the odds of "it has
been raining" knowing that the grass is wet (G=True), ai,i are prior distributions and xi,i are
input vectors.

In the next section, we present the implemented algebra in more detail.

Chapter 2. Bayesian Models 7

2.2 Bayesian Algebra

As shown above, when dealing with odd ratios as finite positive numbers, usual algebra can
be applied to compute the solution. This could also be seen as an extension of Boolean
algebra, as proposed in [18], named Bayesian algebra.

However, to be seen as an extension of Boolean algebra, special cases must be added to
the regular algebra in order to take into account the unusual odds (0 and ∞) corresponding to
the logical values True(1) and False(0).

The next set of equations show how probabilities p and odd ratios r relate to each other
using a binary random variable B as an example:

p = P([B = 1]), p ∈ [0,1]

1− p = P([B = 0])

r =
P([B = 1])
P([B = 0])

, r ∈ [0,∞[

p =
r

1+ r

r =
p

1− p

where p is the probability of a variable B being 1. This relation between the two representa-
tions can also be seen in Table 2.1, which gives a few examples.

p r Symbol Comment
1 ∞ T True

0.999 999
0.875 7
0.75 3
0.5 1 U Uniform
0 0 F False

Table 2.1 Relation of the distributions on a binary random variable given in both probability
values p ∈ [0,1] and odd ratios r ∈ [0,∞[.

To exemplify the relation between Boolean algebra and its proposed extension Bayesian
algebra, we have Table 2.2 with the equivalent unusual odds represented as False(0) and
True(∞).

Next, we will introduce a probabilistic gate that can implement all these operations in a
single component.

Chapter 2. Bayesian Models Bayesian Algebra and Bayesian Gates

Boolean Algebra BayesianAlgebra

OR
F +F = F 0+0 = 0

AdditionT +T = T ∞+∞ = ∞

T +F = T ∞+0 = ∞

AND
F ×F = F 0×0 = 0

MultiplicationT ×T = T ∞×∞ = ∞

T ×F = F ∞×0 = 0

NOT
not F = T 0−1 = ∞

Inverse
not T = F ∞−1 = 0

Table 2.2 Boolean algebra and the equivalent for Bayesian algebra.

2.3 Generic Bayesian Gate

In Boolean algebra, a NAND gate is seen as an universal block that can be used to create any
logic circuit. For Bayesian algebra, the equivalent is the Generic Bayesian Gate, also known
as GUT1. It is proposed as an extension of the Boolean algebra in [18] and [19]. The symbol
is shown in Figure 2.1. The output, in odd ratios, is a function of three input variables, the
input order being irrelevant within each gate thanks to the commutative property:

g(x,y,z) =
x+ y+ z

1+ x× y× z
(2.7)

G
X

Y
Z

Output

Fig. 2.1 Generic Probabilistic Gate Symbol.

The truth table for this probabilistic gate, shown in Table 2.3, demonstrates that the output
can be divided into two types: Boolean and Non-Boolean. The Non-Boolean cases can be
derived from the main function (Eq. 2.7) by computing its limits.

1The name comes from the use of the three symbols (G U T) which in addition to names of inputs and
outputs can specify a basic application (False can be generated from G(T,T,T)).

Chapter 2. Bayesian Models 9

Some of these and other limits are shown here, representing a variety of arithmetic
functions:

g(x,y,F) = x+ y (2.8)

g(x,y,T) =
1

x× y
(2.9)

g(x,U,F) =
1
x

(2.10)

g(x,F,F) = x (2.11)

They can also be combined to produce other functions:

g(U,T,g(x,y,T)) = x× y (2.12)

the same function can also be represented with symbols, as shown in Figure 2.2.

G
1

 A x B

G
A

B

Fig. 2.2 Example of combination of two GUTs to produce a multiplication of two values (the
same function is presented as Equation 2.12).

The logic of combining multiple GUTs to produce a desired output will be explained in
the next section.

2.4 GUT Trees

Just like logic circuits that use NAND gates, GUTs can be used in a similar way as ternary
trees that cascade into a single output. Theoretically, there is no limit for the scalability of this
design. In this work, we considered two types of GUT Trees: (1) Static and (2) Dynamically
Generated. In Figure 2.3 we can see an example of a Static GUT Tree where all the inputs
of each gate derive from other gates with the exception of the top layer. This means that
the set and arrangement of inputs defines the calculation being made, or in other words, its
"software" configurable.

Chapter 2. Bayesian Models Bayesian Algebra and Bayesian Gates

X Y Z Output (Odd Ratio) Type of Operation

F F F F (0)

Boolean
NAND

F F T T (∞)

F T T T (∞)

T T T F (0)

F F z z

Non-Boolean

F T z T (∞)

T T z F (0)

F y z y+ z

T y z 1
y×z

x y z x+y+z
1+x×y×x

Table 2.3 GUT truth table in odd ratios, and its NAND gate equivalent (assuming (X,Y)
as inputs and Z as a True(∞) constant). The order of the values is irrelevant, so the inputs
represent all the different combinations possible. Lower-case letters represent real finite
positive numbers.

The next equations show how the number of GUTs (N) and the number of inputs (M)
scales with the amount of layers (L) in a Static GUT tree:

N =
L−1

∑
i=0

3i (2.13)

M = 3L (2.14)

The Dynamically Generated GUT Tree lacks the flexibility of Static GUT Trees but uses
less gates. In Dynamically Generated GUT Trees inputs and constants can enter the Tree in
any layer and thus avoiding the use of extra gates. An example of Dynamically Generated
GUT Tree can be seen in Figure 2.4, with its corresponding function bellow (variables
represented with lower case letters):

Output =
1

(a+b)× (1
c +d)

= G(T,G(F,a,b),G(F,G(T,U,c),d)) (2.15)

In Chapter 4 we present some of the implementation challenges of these designs that
include the scaling of resources along with the respective data transfer delays.

Chapter 2. Bayesian Models 11

GGG

G

GG
G

GGG

G

G

G

Inputs

Output

Fig. 2.3 Static GUT Tree where all the inputs are present at the top and there is only a single
output

Chapter 2. Bayesian Models Bayesian Algebra and Bayesian Gates

G
G

F
G

F

T

G

T U

Inputs

Output

a b c d

Fig. 2.4 Dynamically Generated GUT Tree where the use of constants (marked by rectangles)
and inputs at any layer avoids the use of extra gates.

Chapter 3

Implementation Background

In this chapter, we present an hierarchical overview of the hardware, software and tools
used. The hardware is based on the Altera Cyclone IV FPGA and is provided by Terasic
as development boards. The Nios II processor, is a processor that can be integrated inside
the FPGA and will be used as a test-bed, feeding inputs into different Bayesian accelerator
designs. The tools are all provided with Quartus II Design Suite and accomplish different
tasks like development, debugging and programming of the final designs.

3.1 Field-Programmable Gate Arrays

3.1.1 Introduction

Field-Programmable Gate Arrays (FPGAs) are devices that provide flexible implementations
of digital circuits. Their flexibility comes from an array of Logic Elements (LEs) and other
specialised blocks such as embedded memories and multipliers that can interconnect using
routing resources. This makes FPGAs the element of choice for rapid prototyping and
implementation of complete systems. Figure 3.1 shows the component layout on a FPGA
device.

3.1.2 Development Boards and Device Architecture

Development boards provide power and communication support for the main chip, as well as
peripherals that expand the its capabilities. In this work, the demonstration and evaluation
of the design will primarily focus on Cyclone IV Architecture using both DE0-Nano and
DE2-115 development boards from Terasic (Figures 3.2a and 3.2b). However, resource
consumption in DE4 (Stratix IV) and DE5-Net (Stratix V) boards will also be presented.

Chapter 3. Implementation Background Implementation Background

Fig. 3.1 FPGA components (source: [1]).

To give a visual idea of the logic area available in both Cyclone IV development boards, a
comparison is shown in Figure 3.3.

(a) DE0-Nano (b) DE2-115

Fig. 3.2 Development boards used in our work (from [2]).

3.1.3 Logic Elements and Logic Array Blocks

Logic Elements are the smallest units of logic in the Cyclone IV architecture [3, Chapter 2].
Its main components are a Look-Up Table (LUT) and a Register. Each LE has a Normal
Mode (Figure 3.6a) and an Arithmetic Mode (Figure 3.6b). The first is suitable for general
logic applications and combinational functions. The second is used to implement adders,
counters, accumulators and comparators. The circuit of an LE is depicted in Figure 3.4. A
Logic Array Block (LAB) controls groups of LEs and provides chain connections between
LEs. A LAB structure is shown in Figure 3.5.

Chapter 3. Implementation Background 15

(a) EP4CE22 (b) EP4CE115

Fig. 3.3 Area comparison of the two used versions of Cyclone IV FPGA.

Fig. 3.4 Block diagram of a Cyclone IV LE (From [3])

Chapter 3. Implementation Background Implementation Background

Fig. 3.5 Cyclone IV Device LAB Structure (From [3]).

3.1.4 Embedded Memory

To address data storage needs, the FPGA device provides specialized memory blocks arranged
in columns next to the LEs. These blocks can provide different functions, such as, RAM,
shift registers, ROM, FIFO buffers, etc... [3, Chapter 3]. When creating embedded systems
with external SDRAM memory, a good implementation of these internal memory blocks is
to use them as cache memory because they boost the system performance considerably.

3.1.5 Embedded Multipliers

Embedded multipliers1 are dedicated blocks used for Digital Signal Processing (DSP) [3,
Chapter 4]. In Cyclone IV FPGA architectures, each embedded multiplier block is composed
of two 9 x 9 Multipliers, with one multiplier stage, I/O registers and interfaces. They can
operate independently or jointly as an 18 x 18 multiplier. For multiplications larger than 18 x
18, embedded blocks can be cascaded together at the cost of increased latency. The structure
of an 18 x 18 bit Multiplier block is shown in Figure 3.7. Although the use of these blocks
is optional, when it comes to multiplications, they are more area and power efficient than
regular LE blocks. In the Stratix V architecture for example, this embedded multiplier is
called an DSP block.

1Also known as DSP blocks.

Chapter 3. Implementation Background 17

(a) Normal Mode.

(b) Arithmetic Mode.

Fig. 3.6 The two modes of the LE (From [3]).

Chapter 3. Implementation Background Implementation Background

Fig. 3.7 18 x 18 bit Embedded Multiplier Block (From [3, Chapter 4]).

Chapter 3. Implementation Background 19

3.2 Nios II System

3.2.1 Introduction

The Nios II [20] is a soft processor that can be instantiated on Altera FPGA devices. It
is a general-purpose RISC processor with 32-bit instruction words and datapath, it also
includes integer only ALU and 32 general purpose registers. The Nios II processor and its
associated components are easily instantiated by using Qsys system integration tool and
Quartus II software. A set of peripherals are included and can be added to the system
from the Intellectual Property (IP) Catalog in the Qsys tool. These include: timers, serial
communication interfaces, general-purpose I/O, SDRAM controllers, etc. Custom peripherals
can be created using hardware description languages such as VHDL or Verilog. An example
processor is shown in Figure 3.8.

Fig. 3.8 Example of a Nios II Processor System (from [4])

Chapter 3. Implementation Background Implementation Background

3.2.2 Processor Variants

The Nios II has three core processor variants: Economy (Nios II/e), Standard (Nios II/s)2 and
Fast (Nios II/f). The cores provide different capabilities which the designer can choose from.
For instance, the Economy core provides a low footprint solution for simpler applications that
do not require processing power. In contrast, the Fast core is designed for high performance
and is able to run a full-featured operating system. Their main characteristics are depicted in
Table 3.1.

Feature Nios II/e Nios II/s Nios II/f
Objective Minimal core size Small core size Fast execution speed

LE < 700 < 1400 < 2400
ALMs < 350 < 700 < 1200

DMIPS/MHz 0.15 0.74 1.16
fmax 200 MHz 165 MHz 185 MHz

Cache - 512 bytes to 64KB 512 bytes to 64KB
Pipelined Memory - Yes Yes
Instruction Cache - Yes Yes
Branch Prediction - Yes Yes

Hardware Multiply - Yes Yes
Hardware Divide - Yes Yes

Barrel Shifter - - Yes
Data Cache - - Yes

Branch Prediction - - Yes
Table 3.1 Main features of the three Nios II Processor Cores.

3.2.3 Memory Types

When creating a Nios II embedded system, memory must be added to store the program and
data. From the memory types available [21, Chapter 7], the most commonly used with Nios
are on-chip memory (using embedded memory blocks) and external SDRAM. The on-chip
memory provides an high performance but relatively low capacity storage solution. The
SDRAM however, provides high capacity at the cost of latency. The use of these two memory
types can be combined in several ways to increase performance. In this work, SDRAM
memory is used as the main storage for the Nios II program. Using a Direct Memory Access
(DMA) interface, other components can access the memory as well.

2Only available in Quartus II v14.0 release and earlier.

Chapter 3. Implementation Background 21

3.2.4 Custom Instructions

The Nios II Custom Instructions (CIs) [5] are customizable logic blocks next to the Arithmetic
Logic Unit (ALU) in the processor’s datapath (Figure 3.9). It allows the Nios processor core
to meet the needs of a particular application by converting time critical software algorithms
into custom hardware logic blocks. CIs provide an easy way to experiment with hardware-
software trade-offs at any point in the design process.

In our work, CIs were used to implement Bayesian gates and test different approaches.
One of the problems with this implementation is that Nios II Custom Instructions can only
have up to two 32 Bit inputs. To solve this issue, Direct Memory Access (DMA) was given to
the CI in order to expand its capabilities(more on this topic will be presented in Chapter 4).

Figure 3.10 shows an example that illustrates the interface signals needed to run a CI. In
this example of a variable clock cycle instruction, the beginning of the operation is controlled
by the processor with the start signal and the end by the CI with the done signal along with
the result.

Fig. 3.9 Nios II Custom Instruction Layout (from Altera)

3.3 Software Development Tools

The tools used in this work are provided by Altera within Quartus II development environment
[22]. The following list shows a brief description of them:

Chapter 3. Implementation Background Implementation Background

Fig. 3.10 Interface Signals for a Multi-Cycle Custom Instruction (from [5])

Quartus II

Altera Quartus II is a programmable logic device design software produced by Altera. It
manages the elements of a project and enables analysis, synthesis and programming of
Hardware Description Language designs into FPGA devices.

Qsys

Qsys is an integration tool that simplifies the task of defining and integrating customized
IP components as subsystems of a higher-level entity. One of its main features is handling
the internal data bus and control signals of an embedded system like the Nios II and its
peripherals.

Eclipse

Nios II Build Tools for Eclipse is a set of plug-ins based on the Eclipse framework. It
provides a consistent development platform for Nios II embedded processor systems. In this
case this tool is used to create and upload C/C++ programs to the SDRAM.

SignalTap

SignalTap II is logic analyser editor that allows the designer to debug a design in real-time.
SignalTap II allows the capture of specific nodes of within an FPGA to a waveform file where
it can be later reviewed.

Chapter 3. Implementation Background 23

Modelsim

Modelsim is a simulation environment for Hardware Description Languages such as VHDL
and Verilog. The simulation can be performed using the graphical user interface, or automati-
cally using scripts.

PowerPlay

PowerPlay is power analyser tool that gives the designer the ability to estimate power
consumption from an early design concept through design implementation. As the designer
provides more details, the power estimation accuracy improves.

Chapter 4

Design Space Exploration

In this chapter we present custom instruction hardware implementations for GUTs with both
Floating and Fixed Point representations, as well as, independent Bayesian operators. Trees
of both Floating Point GUT and Bayesian operators were also made to test the scalability. An
emulation in software that mimics the operation of a hardware based GUT was initially done
to allow us to compare the performance across different processor architectures, including an
i7 laptop processor.

4.1 Exploring Implementation Space

4.1.1 GUT Emulated in Software

To test the implementation of a hardware accelerator, we must first check the efficiency
of a software based solution. Using C code, a small function was created to emulate the
behaviour of a Generic Bayesian Gate, we can call it Soft-GUT from now on. This function
was planned to compare the changes in latency of the Soft-GUT across different CPU
architectures. The implementation of the function follows the GUT truth table 2.3. The
pseudo-code in Algorithm 1 shows the logic.

Although it might seem simple, a few challenges arise from working with representations
of infinity in floating point arithmetic. For instance, in C language, to create the floating
point constant that represents True(∞) we had to use the following code:

const float True = 1./0; // Infinite/True number

Because of that, the function must pre-process the inputs to be able to distinguish between
False(0) and True(∞) from other finite positive floating point numbers. The code implemented
is presented in detail in Appendix B.

Chapter 4. Design Space Exploration Design Space Exploration

Algorithm 1 Soft GUT Emulation
1: function SOFT_GUT(x,y,z)
2: if x = FALSE and y = FALSE and z = FALSE then
3: return FALSE
4: else if x = FALSE and y = FALSE and z = TRUE then
5: return TRUE
6:
7: (...)
8:
9: else if x = FALSE and y = Number and z = Number then

10: return y+ z
11: else if x = TRUE and y = Number and z = Number then
12: return 1

y×z
13: else
14: return x+y+z

1+x×y×z

4.1.2 Custom Instructions

To implement different types of Bayesian Gates using Nios II Custom Instructions as hard-
ware accelerators, we had to create a controller that made the interface between the Nios II
and the hardware acceleration block (Fig. 4.1). Another function that this controller had to
execute was Direct Memory Access (DMA), this enabled the use of more that two inputs,
which was a previous limitation of the CI interface signals.

Controller
Hardware

Accelerator
Nios II Processor

SDRAM

1

2

3

4

Fig. 4.1 Diagram of the CI design.

Chapter 4. Design Space Exploration 27

The DMA module of the controller has an Avalon Memory-Mapped Master [23] and
uses Burst Transfers [6]. These can execute multiple data transfers as a unit, rather than
treating every word independently. This type of transfer is best used when there is a need to
read/write large blocks of data and there are some delays in the interface, which is the case
of SDRAM. Templates can be found at Altera Website [23]. Figure 4.2 shows an example of
a burst transfer interface.

Fig. 4.2 Burst transfer example (Source: [6]).

4.2 Single Gates

4.2.1 GUT using Floating Point

From results obtained in a previous work [7], it was obvious that a major problem with this
gate implementation was resource consumption. This was mainly due to the number of IP
cores used for operations with floating point numbers.

This new design aimed at solving the resource problem using a dedicated controller
instead. This would do two tasks: (1) the controller would give a combinational output
whenever possible and (2) for the rest of the cases it would multiplex the arithmetic operations
in time to save resources. Doing so, the amount of IP components dropped to just three, one
for each type of arithmetic operation. Shown in Figure 4.3 is an example of time multiplexing
for the GUT main function (Equation 2.7).

The Finite State Machine of the controller is shown in Figure 4.4 with the arithmetic
cases in the middle. In the case of combinational1 output the state sequence would be:
IDLE−> START−> DONE−> IDLE, thus avoiding any other clock delays.

1Although it is possible to be completely combinational, it needed a couple clock cycles due to the use of a
FSM, input/output registers and CI interface.

Chapter 4. Design Space Exploration Design Space Exploration

Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Start

ADD

MULT

DIVIDE
Done

"A + B + C" / "ABC + 1"

AxB

A+B "A+B" + C

"AxB" x C

"AxBxC" + 1

Fig. 4.3 Example of time multiplexed arithmetic operations using Floating Point Megafunc-
tion blocks that are reused for resource optimization.

Fig. 4.4 Overview of the Finite State Machine of the controller as generated by the State
Machine Viewer in Quartus II.

Chapter 4. Design Space Exploration 29

Depending on the state sequence, the number of clocks cycles may vary significantly. As
shown in Figure 4.5, only the last set of inputs that represent y+ z, 1

y×z and (x+y+z)/(1+x×y×z),
require more than one clock cycle.

1 1 1 1 1 1 1

9

14

32

0

5

10

15

20

25

30

35

(F,F,F) (F,F,T) (F,T,T) (T,T,T) (F,F,z) (F,T,z) (T,T,z) (F,y,z) (T,y,z) (x,y,z)

C
lo

ck
 C

yc
le

s

GUT Inputs

GUT clocks cycles for different inputs

Fig. 4.5 Floating Point GUT execution clock cycles for different inputs.

The overall schematic of the GUT with the respective components is represented in
Figure 4.6, showing the controller and its three floating point arithmetic blocks (Addition,
Multiplication and Division).

As shown earlier, the GUT design needed DMA access to overcome the limitations of
CI interface. Figure 4.7 gives an overview of the design in which the major components are
represented.

4.2.2 GUT using Fixed Point

An alternative GUT design was also implemented using probability values instead of odd
ratios. Because these two representations are equivalent, we implemented both in order to
compare their performance in FPGAs.

Fixed Point representation has a fractional part and an integer part. To represent probabil-
ity values, we can use just the fractional part of the Fixed Point representation. This allows
us to maximize the resolution between the limits of probability values (0 and 1).

Similar to Integer representation, each bit in Fixed Point has a fixed value:

...23 +22 +21 +20︸ ︷︷ ︸
Integer Part

+2−1 +2−2 +2−3...︸ ︷︷ ︸
Fractional Part︸ ︷︷ ︸

Fixed Point Representation

The equivalent solution for the Fixed-Point variant can be derived from the main GUT
function (Equation 2.7) by converting it into probability values. The final result is the

Chapter 4. Design Space Exploration Design Space Exploration

Fig. 4.6 Block Diagram/Schematic of the Floating Point GUT in Quartus II.

Chapter 4. Design Space Exploration 31

Nios II
Processor Core

DMA Controller

SDRAM

FP Add

FP Multiply

FP Divide

GUT Controller

Fig. 4.7 Overview of the Floating Point GUT implemented as a Custom Instruction.

following function:

g′(p,q,r) =
p+q+ r−2(pq+qr+ pr)+3pqr

1− pq−qr− pr+3pqr
(4.1)

this function was directly implemented using a Fixed-Point package for VHDL, which can
be downloaded at [24]. The segment of code that implements this Equation is shown bellow
in VHDL language (A complete code can be seen in detail in Appendix B.2.):

p(−1 downto −Q_SIZE) <= t o _ u f i x e d (pp (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
q(−1 downto −Q_SIZE) <= t o _ u f i x e d (qq (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
r (−1 downto −Q_SIZE) <= t o _ u f i x e d (r r (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
f r a c <= t o _ s l v (r e s u l t (−1 downto −Q_SIZE)) when r e s u l t < 1 e l s e (

o t h e r s => ’ 1 ’) ;
−− c a l c u l a t i o n s
pq <= r e s i z e (p * q , pq) ;
q r <= r e s i z e (q * r , q r) ;
p r <= r e s i z e (p * r , p r) ;
pqr3 <= r e s i z e (i n t e g e r (3) * pq * r , pqr3) ;
sum_p_q_r <= r e s i z e (p + q + r , sum_p_q_r) ;
pq_qr_ rp_2 <= r e s i z e (i n t e g e r (2) * (pq + qr + pr) , pq_qr_ rp_2) ;
d i v i d e n d <= r e s i z e (sum_p_q_r + pqr3 − pq_qr_ rp_2 , d i v i d e n d) ;
d i v i s o r <= r e s i z e (pqr3 + i n t e g e r (1) − pq − qr − pr , d i v i s o r) ;
r e s u l t <= r e s i z e (d i v i d e n d / d i v i s o r , r e s u l t) ;

Chapter 4. Design Space Exploration Design Space Exploration

Just like in integer operations, when we multiply two numbers, the number of resolution
bits increases by a factor of two. This created a problem when implementing the function
where the resolution of the number kept increasing. Moreover, synthesis limitations in Quar-
tus prevented us from using more than 64 Bit resolution. To overcome this, the calculations
where rounded to a fixed number of Bits after each operation (function resize()) and, as con-
sequence, the output lost some precision. Because we wanted maximum resolution ranging
from one to zero in decimal, the inputs were only the fraction part of the representation.

The resolution chosen was 16 Bits, this allowed the use of the default CI interface
instead of DMA because it has a total of 64 Bits for inputs. An input of 0xFFFF was
considered True(1). Also, because there were no registers in this implementation we selected
a Combinational type of CI (Figure 3.9) , which is the simplest.

4.2.3 Floating Point Add, Multiply and Divide with Special Cases

Another possible implementation of Bayesian Algebra, using Floating Point representation,
could be the use of Addition, Multiplication and Division operators from common algebra
as an alternative Arithmetic Logic Unit (ALU). Using Floating Point IP Cores from Altera
connected with controller blocks for exception handling, we were able to create simple
components that implemented Bayesian Algebra. In Figure 4.8 we have an example of
Bayesian Algebra addition, or BA_ADD for short notation.

Fig. 4.8 Block schematic diagram of the Bayesian Algebra Addition operator with special
cases implemented by the controller.

Joining gates for addition, multiplication, and division into a custom instruction creates
an the alternative ALU dedicated to Bayesian Algebra. This design can be seen in Figure 4.9.

The Controller selects the Bayesian operation and waits a given number of clock cycles,
which depends on the type of operation. When the operation is complete, the controller

Chapter 4. Design Space Exploration 33

Fi
g.

4.
9

B
lo

ck
Sc

he
m

at
ic

D
ia

gr
am

of
B

ay
es

ia
n

A
lg

eb
ra

fu
nc

tio
ns

im
pl

em
en

te
d

as
a

C
us

to
m

In
st

ru
ct

io
n.

O
nl

y
on

e
op

er
at

io
n

is
al

lo
w

ed
at

an
y

gi
ve

n
tim

e.
T

he
nc

s_
n

si
gn

al
se

le
ct

s
th

e
de

si
re

d
fu

nc
tio

n.

Chapter 4. Design Space Exploration Design Space Exploration

asserts the ncs_done flag along with the result. The signal responsible for the selection of the
operation is the ncs_n, which is an optional signal from the CI interface and its basically an
index.

Just like a common processor (Figure 3.9 shows the Nios II ALU), these operations
cannot run simultaneously, which can be a limitation. As an example, we can calculate the
same output as the Dynamically Generated GUT Tree, seen previously in chapter 2, using
the algebraic form instead of the GUT expression:

1
(a+b)× (1

c +d)
= G(T,G(F,a,b),G(F,G(T,U,c),d)) (4.2)

this renders two additions, one multiplication and two divisions with Bayesian operators.

4.3 Assemblies of Gates

4.3.1 Static GUT Tree

In Chapter 2 we presented the concept of a Static GUT Tree, where the top layer receives all
the inputs and the output is given by the last GUT in the tree.

To apply this into a CI, we took advantage of the DMA Controller to load the values into
the gate tree. Due to data bus limitations, these inputs do not arrive instantaneously, so the
solution was loading each GUT as soon as there was at least three inputs available. This
enabled the GUTs to start operating as soon as data was available. In Figure 4.10 we have a
simple example that illustrates this concept. From the DMA Controller, data is provided in
dataX, dataY and dataZ input signals. The controller then gives the ID of the appropriate
gate using gut_select and a start command using gut_start signal. When a GUT has finished
the ncs_done goes high, and the GUT that receives the results waits for all the previous GUTs
to finish. Both DMA controller and GUT Tree assembly component can be seen in Figure
4.11.

Another option with GUT Trees would be running in pipeline mode. This design would
be difficult to implement as a Custom Instruction because multiple operations could be in
transit at the same time. However, assuming that input values can arrive instantaneously, or
at least in a few clock cycles, a new calculation could start as soon as the first layer finishes.
The latency would depend on the number of layers in the Tree, and the throughput on the
number of clock cycles of the worst case input.

Chapter 4. Design Space Exploration 35

Fi
g.

4.
10

D
yn

am
ic

al
ly

G
en

er
at

ed
G

U
T

Tr
ee

,w
he

re
th

e
in

pu
ts

in
th

e
fir

st
la

ye
ra

re
lo

ad
ed

se
qu

en
tia

lly
by

th
e

D
M

A
C

on
tr

ol
le

r.

Chapter 4. Design Space Exploration Design Space Exploration

Fig.4.11
B

lock
schem

atic
diagram

ofthe
D

M
A

controllerand
G

U
T

Tree
assem

bly
view

ed
from

Q
uartus

II.

Chapter 4. Design Space Exploration 37

4.3.2 Dynamically Generated GUT Tree

For the case of Dynamically Generated Trees, the implementation can be efficiently achieved
using a parsing and generating tool [7]. This tool converts a string that represents the desired
implementation, for instance ’GGTXYGTXYGUTGUTGUTGUTGUTGUTGUGTXYGTXY’,
into a VHDL code that can be compiled in Quartus. Figure 4.12 shows the RTL of a GUT
Tree implemented using this tool.

4.3.3 Bayesian Algebra Trees

Bayesian Algebra Trees are similar to Dynamically Generated GUT Trees, but instead of
using generic gates, they use the specific Bayesian operator directly. This tree implements
add, multiply or divide functions as required by the problem. In the case of FPGAs, these
use less resources than GUT Trees due to the fact that they do not implement anything more
than the essential. Figure 4.13 depicts an example of this tree of operators.

Chapter 4. Design Space Exploration Design Space Exploration

Fig.4.12
E

xam
ple

ofan
D

ynam
ically

G
enerated

G
U

T
Tree

generated
using

the
parsertool(From

[7]).

Chapter 4. Design Space Exploration 39

Fi
g.

4.
13

B
lo

ck
Sc

he
m

at
ic

D
ia

gr
am

of
a

B
ay

es
ia

n
A

lg
eb

ra
Tr

ee
us

in
g

di
ff

er
en

to
pe

ra
tio

ns
in

or
de

rt
o

ex
ec

ut
e

a
pr

e-
se

le
ct

ed
fu

nc
tio

n.

Chapter 5

Results

In this chapter we present some results relative to the implementation of the designs described
previously. These results are based on timing, area and power efficiency, as well as, maximum
frequency. In addition, we present an overall analysis of the implemented system and some
conclusions.

5.1 Clock Cycle Performance

5.1.1 Soft-GUT

To have an idea of what kind of performance can be achieved using a software based solution,
we ran the Soft-GUT in different processor architectures. The code used to count the elapsed
time can be seen bellow:✞
char buf [40];
clock_t exec_t1 , exec_t2;
// get system time before starting the process
exec_t1 = times(NULL);
for (i=0; i<samples; i++){

Soft_GUT(x,y,z);
}
// get system time after finishing the process
exec_t2 = times(NULL);
gcvt (((double)exec_t2 -(double)exec_t1) / (alt_ticks_per_second ()),

10, buf);
alt_putstr(buf); //print the result✡✝ ✆

In this case, we compared the time it took to run a given amount of samples using different
Nios II cores and also an Intel Core i7-3630QM Processor(with a similar code). Because

Chapter 5. Results Results

these architectures run at considerable different clock frequencies, these were compared
using the number of clock cycles needed to complete a single operation.

Some functions were also added to the cores to observe their impact in performance,
these include:

1. A Floating Point Custom Instruction provided by Altera.

2. Dedicated Multipliers/Dividers for integer numbers

The Nios II Economic core, being the most simple, has no option for dedicated Multipliers/-
Dividers.

The clock cycle performance is shown in Figure 5.1, where it is visible the performance
gap between a Nios II Economic core and the Intel i7 CPU. Probably due to multiple levels
of cache and other hardware based optimizations present in high-end processors.

4
7

4
7

4
6

4
4

7
7

7
2 7
3 9

2 1
1

3

1
3

2

1
2

3
5

1
2

9
5

1
2

7
5

1
2

5
5 2

5
3

0

2
5

8
0

2
6

3
5

3
9

9
0 6
2

5
0 9
6

0
5

1
3

7
5

1
3

6
5

1
3

5
0

1
3

0
5

3
7

1
5

3
7

6
0

3
7

8
0 6
5

8
0 1
0

3
3

5

1
8

3
7

5

1
3

7
5

1
3

6
0

1
3

4
5

1
3

1
0

3
9

0
5

3
9

4
5

3
9

6
0 7
1

0
5 1
0

8
2

0

1
9

5
4

0

4
5

1
0

4
4

1
5

4
2

9
0

4
1

5
5 8

8
5

0

8
7

0
5

8
5

7
0 1
3

4
1

0

2
4

5
8

5

3
8

5
8

0

4
6

6
0

4
5

5
5

4
4

1
5

4
2

4
0

1
0

9
1

5

1
0

7
8

0

1
0

6
1

5

1
9

6
3

0 4
0

0
5

5

7
4

2
9

0

1

10

100

1000

10000

100000

(F,F,F) (F,F,T) (F,T,T) (T,T,T) (F,F,z) (F,T,z) (T,T,z) (F,y,z) (T,y,z) (x,y,z)

C
lo

ck
 C

yc
le

s

Intel i7 3630QM

NIOS II Standard Core (with 1Kbit Instruction Cache, Hardware Multipliers/Dividers and FP Custom Inst.)

NIOS II Standard Core with Multipliers/Dividers

NIOS II Standard Core (1Kbit Instruction Cache)

NIOS II Economic Core with FP Custom Inst.

NIOS II Economic Core

Fig. 5.1 Comparison of the Software based GUT using different processor architectures. The
graphic uses logaritmic scale on the Y-Axis.

5.1.2 Custom Instructions

For the Floating Point GUT itself, we already know the clock cycle performance (Figure
4.5), it is a consequence of the logic design implemented. But there are other factors that

Chapter 5. Results 43

contribute to the global number of clock cycles. In order to compare these influences, tests
were made using three different GUT designs with both Economic and Standard cores. The
results are presented in Figure 5.2 where the Standard core shows better results mainly due
to the use of Instruction Cache. We can also see the number of clock cycles required for
Static GUT Trees using 2 and 3 layers. All these results have Best and Worst cases which
depend on the type of inputs. A combinational output like G(F,F,F) being the Best case and
an arithmetic case like G(x,y,z) being the Worst case.

338
361

435

30
52

110

372

433

536

63

116

207

0

100

200

300

400

500

600

Single GUT GUT Tree(2 Layers) GUT Tree(3 Layers) Single GUT GUT Tree(2 Layers) GUT Tree(3 Layers)

NIOS II Economic NIOS II Standard (with 1KB Intruction Cache)

C
lo

ck
 C

yc
le

s

Global Clock Cycle Performance Using Different Custom Instruction Designs

Best Case: G(F,F,F)
Worst Case: G(x,y,z)

Fig. 5.2 Performance comparison of 3 implementations of the GUT and Static GUT Tree.
On the left side using a Nios Economic core and, on the right side, using a Standard core
with memory cache enabled.

5.2 GUT and Bayesian Algebra Resource Usage

The resources available in each development board depend on the FPGA chip being used.
Here, we present the resource usage of different components for some commonly available
development boards. Table 5.1 presents the resource usage on a Cyclone IV, Table 5.2 on a
Stratix IV and Table 5.3 on a Stratix V.

To have an idea of how many of these elements can be fitted in each development board,
we applied these values to the limits of each FPGA chip. The result are visible in Figure
5.3 where we can see that the DE4 with Stratix IV allows up to 128 Floating Point GUTs
and 113 Fixed Point GUTs. On the DE5 development board with Stratix V chip, we see
that the number of GUTs decreases compared with the DE4, this is due to differences in the
architecture and how hardware multipliers are used.

Chapter 5. Results Results

Total
Combinational

Functions

Dedicated
Logic

Registers

Memory
Bits

Embedded
Multiplier
18x18-Bit

Floating Point GUT 2479 1407 4608 8
Fixed Point GUT (16 Bit) 1634 64 0 5
BA_ADD 835 320 233 0
BA_MULT 852 493 0 0
BA_DIV 239 227 4642 8
DMA Controller 253 177 2048 0

Table 5.1 Resource consumption of the main components on a Cyclone IV FPGA Architec-
ture.

Total
Combinational

Functions

Dedicated
Logic

Registers

Memory
Bits

Embedded
Multiplier
18x18-Bit

Floating Point GUT 1684 1488 4700 8
Fixed Point GUT (16 Bit) 1542 237 0 9
BA_ADD 557 359 0 0
BA_MULT 609 478 0 0
BA_DIV 167 282 4608 8

Table 5.2 Resource consumption of some components on a Stratix IV FPGA Architecture.

Total
Combinational

Functions

Dedicated
Logic

Registers

Memory
Bits

DSP
Blocks

Floating Point GUT 1684 1627 4700 5
Fixed Point GUT (16 Bit) 1579 64 0 5
BA_ADD 572 359 0 0
BA_MULT 614 478 0 0
BA_DIV 174 422 4608 5

Table 5.3 Resource consumption of some components on a Stratix V FPGA Architecture.

Chapter 5. Results 45

8

33

128

51

13

53

113

51

0

20

40

60

80

100

120

140

DE0-Nano - Cyclone IV
EP4CE22F17C6

DE2-115 - Cyclone IV
EP4CE115F29C7

DE4 - Stratix IV
EP4SGX530KH40C2

DE5 - Stratix V 5SGXEA7N2F45C2

M
ax

 U
n

it
s

Maximum Number of GUTs per Board

Floating Point GUT

Fixed Point GUT(16bit)

Fig. 5.3 Maximum number of GUTs on different development boards.

Relative to individual Bayesian Algebra operators, the maximum number of each type
per board is presented in Figure 5.4. Basically, this gives an idea of the limits but the
resource usage of a combination of these three elements will depend on the Bayesian function
being solved. The use of the BA_DIV component is limited by the number of Embedded
Multipliers. Also note that the Floating Point GUT follows the same values has BA_DIV,
which means that the use of hardware multipliers in division is the main limiting factor.

5.3 Maximum Frequency

In this section the maximum frequency is presented relative to the current implementation of
the components, however, these were not completely constrained with Time Quest Timing
Analyser Tool present in Quartus II. This means that if those signals paths were constrained
the fitter would reallocate components to fit the needs of a specific frequency. Taking this
into account, these tests are still valid because they were made in a uniform pattern. The
values presented in Table 5.4 might be substantially improved by constraining the signals
paths.

On another note, there were some technical difficulties regarding the final design of the
Fixed Point GUT. The compilation with the Timing Analyser Tool did not return any valid
results on maximum frequency. However, early tests showed that it could run at about 5
MHz. In section 5.5 we will present details on why we had this low performance.

Chapter 5. Results Results

26

137

953

1087

26

134

872

1013

8 33

128

51

0

200

400

600

800

1000

1200

DE0-Nano DE2-115 DE4 - Stratix IV DE5 - Stratix V

M
ax

 U
n

it
s

Maximum Number of Bayesian Algebra Operators per Board

Only BA_ADD

Only BA_MULT

Only BA_DIV

Fig. 5.4 Maximum number of Bayesian Algebra Operators using Floating Point representation
on different development boards. Because Addition and Multiplication can be made with
logic elements only, Emebeded Multipliers (DSPs) were reserved for Division. The graphic
does not take into account combinations with different types of gates due to this being highly
depended of the final application.

Slow 1200mV 85C Model Slow 1200mV 85C Model
Floating Point GUT 64.99 MHz 73.2 MHz
Fixed Point GUT (16 Bit) 5 MHz* 5 MHz*
BA_ADD 175.05 MHz 196.73 MHz
BA_MULT 187.23 MHz 211.33 MHz
BA_DIV 125.02 MHz 140.86 MHz

Table 5.4 Maximum Frequency of Bayesian Gates on Cyclone IV Architecture (Designs not
constrained).

Chapter 5. Results 47

5.4 Power Consumption

For power consumption, tests were made on the Floating Point GUT in various configurations
using Modelsim and PowerPlay Tool from Quartus. To achieve this, components had to be
compiled in Quartus to incorporate signal delays and transition times. Then, the generated
simulation files were added to Modelsim and tested with a testbench. The simulation
generated a Value Change Dump (.vcd) file, which is basically a waveform file, that was read
by the power analyser.

Power consumptions did not include DMA or the Nios II processor and all ran at 50 MHz
clock frequency. The tests made were based on a single GUT either as a Custom Instruction
or Pipelined. To verify the scalability of the power consumption we ran the tests again, but
with a tree of thirteen GUTs also implemented as custom instruction or pipelined. Idle times
were added to simulate the behaviour of a custom instruction. In the case of pipeline, the
GUT ran continuously. The same was done for the GUT Tree. A better observation of the
power consumption can be seen in Figures 5.5 and 5.6.

Total Thermal
Power Dissipation

Core Dynamic Thermal
Power Dissipation

Core Static Thermal
Power Dissipation

I/O Thermal
Power Dissipation

Single
GUT

Custom
Instruction

Best Case 125.60 11.75 77.89 35.96
Worst Case 127.01 12.03 77.88 37.10

Pipelined Best Case 125.96 11.42 77.89 36.64
Worst Case 142.35 13.58 77.84 50.92

13 GUT
Tree

Custom
Instruction

Best Case 262.36 112.36 101.57 48.43
Worst Case 256.65 116.19 101.38 50.08

Pipelined Best Case 256.20 110.56 101.55 44.08
Worst Case 288.76 135.73 101.27 51.76

Table 5.5 Power consumption of four Floating Point GUT implementations. The values
present in this table are in milliwatts (mW).

5.5 Overall Analysis

Beginning with the Soft-GUT, the results showed that high-end CPUs use considerably less
clock cycles than the Nios II to execute the same function. In addition, an i7 CPU can run at
more than 3 GHz clock frequency which is considerably better than the Nios II is capable
of. Nevertheless, the purpose of Nios in this work was serving as test-bench and the final
application may be an embedded system without processor.

Another alternative design tested here was the GUT with Fixed Point representation.
Although it is combinational, the output of this design approach was not the best. As seen in
Figure 5.7, it lacks resolution and deviates from the desired output in some cases. Also, being
heavily combinational gave it very low maximum frequency. Attempts to solve this issue

Chapter 5. Results Results

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

Custom Instruction Pipelined Custom Instruction Pipelined

Single GUT 13 GUT Tree

P
o

w
e

r
[m

W
]

Total Thermal Power Dissipation

Best Case Worst Case

Fig. 5.5 Total Thermal Power Dissipation compared in 4 GUT implementations.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

Custom Instruction Pipelined Custom Instruction Pipelined

Single GUT 13 GUT Tree

P
o

w
er

 [
m

W
]

Core Dynamic Thermal Power Dissipation

Best Case Worst Case

Fig. 5.6 Core Dynamic Thermal Power Dissipation compared in 4 GUT implementations.

Chapter 5. Results 49

with registers, did not improve the results. The Fixed Point GUT was not further pursued
due to the problems mentioned above, representing probabilities values with odd ratios in
Floating Point representation proved to be a better approach. In the end, the Fixed Point
GUT was not considered as a viable design approach.

Fixed Point GUT as Nios II Custom Instruction

Freq:

Input p q r Output Ideal X Y Z Output

(F,F,F) 0 0 0 0 0 0x0000 0x0000 0x0000 0x0000

(F,F,T) 0 0 1 1 1 0x0000 0x0000 0xFFFF 0xFFFF

(F,T,T) 0 1 1 1 1 0x0000 0xFFFF 0xFFFF 0xFFFF

(T,T,T) 1 1 1 0 0 0xFFFF 0xFFFF 0xFFFF 0x0000

(F,F,z) 0 0 0.0273 0.0273 0.0273 0x0000 0x0000 0x0700 0x0700

(F,T,z) 0 1 0.0273 1 1 0x0000 0xFFFF 0x0700 0xFFFF

(T,T,z) 1 1 0.0273 0.0011 0 0xFFFF 0xFFFF 0x0700 0x0049

(F,y,z) 0 0.3125 0.0273 0.3255 0.32555 0x0000 0x5000 0x0700 0x5356

(T,y,z) 1 0.3125 0.0273 0.9874 0.9874 0xFFFF 0x5000 0x0700 0xFCC5

(x,y,z) 0.4375 0.3125 0.0273 0.5552 0.5552 0x7000 0x5000 0x0700 0x8E1F

Decimal

Processor: NIOS II Standard

Hexadecimal

50 Mhz

Fig. 5.7 Outputs generated by Fixed Point GUT (16-Bit) as a Custom Instruction. The values
were extracted from the Nios II Console in Eclipse. The result from the input (T,T,z) deviated
from the one expected.

In this work we can observe that for an embedded system, the dedicated hardware
accelerator can reduce up to two orders of magnitude the number of clock cycles, while
maintaining very low power consumption. Even a tree of thirteen GUTs will stay under 300
mW of power consumption. Also, in the Single GUT implementation with DMA access
results show clock cycle efficiencies between 30 and 63 clocks per instruction, which is
better than the i7 CPU.

For an embedded system where resources are very limited, the best option would be
the alternative ALU, with Add, Multiply and Divide operators as custom instructions. This
would give the embedded system Bayesian algebra compatibility without DMA or external
interfaces. The drawback would depend on the interface overhead of the Custom Instruction.

If the solution to a Bayesian Inference problem requires an extensive number of operations,
trees become the best option. A big tree can perform multiple operations at the same time due
to the inherent parallelism of the design. If resources are more limited and the application is
always the same, a Dynamically Generated Tree will save some resources.

Chapter 5. Results Results

If the inference problem changes frequently, Static GUT Trees are the best option because
the inputs will define the behaviour of the tree. This however, will consume more resources
because the design will consist of a full ternary tree.

In general, the best solution depends on the final application and resources available.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this work, we explored the implementation space of Bayesian computing on reconfigurable
logic. The implemented solutions and performance tests provided some insights on the
trade-offs, and allowed us to draw some conclusions.

Using the NIOS-II soft processor as a base, custom instruction hardware implementa-
tions were made for GUTs with both Floating and Fixed Point representations, as well as,
independent Bayesian operators. Trees of both Floating Point GUT and Bayesian operators
were also made to test the scalability.

We concluded that the Fixed Point GUT is feasible but the preliminary tests show no
significant advantages over Floating Point. Moreover, it has limited precision and dynamic
range.

For an embedded processor with limited resource options, a Floating Point ALU modified
for Bayesian algebra can provide support for the probabilistic computations required while
maintaining minimal resource footprint.

A Single GUT, functioning as dedicated hardware accelerator for an embedded processor,
can reduce up to two orders of magnitude the number of clock cycles required for the same
Bayesian computation in software.

If the inference problem changes frequently, a Static GUT Tree provides flexibility and a
generic solution for Bayesian computation. While a Dynamically Generated GUT or a tree
of Bayesian algebra operators can reduce the number of resources but loses the flexibility.

Chapter 6. Conclusions and Future Work Conclusions and Future Work

6.2 Future Work

Having performed this batch of tests, a future work should address an integrated software-
hardware solution to run Bayesian inference problems. Since we used a soft-processor,
this is basically a software work to break down the inference problem to the size of the
implemented hardware block. This could done by having a compilation chain between the
ProBt framework [25] and the reconfigurable logic hardware. This would make the bridge
from the Bayesian problem concept to a final computing implementation.

Concerning the implemented solutions, data transfers might also be improved with tightly
coupled memory or shared memory dedicated for Bayesian computations. Reducing the
number of clock cycles required. Future work could apply this to a robotic system if the
problem can be mapped to a single GUT Tree that can fit on the device. This would be a true
embedded custom solution without the overhead of software processor and data transfers.

References

[1] Altera. Altera website: https://www.altera.com/, August 2015.

[2] Terasic. Terasic website: http://www.terasic.com.tw/en/, August 2015.

[3] Altera. Cyclone IV Device Handbook, April 2014.

[4] Altera. Nios II Classic Processor Reference Guide, April 2015.

[5] Altera. Nios II Custom Instruction User Guide, January 2011.

[6] Altera. Avalon Interface Specifications, March 2015.

[7] Miguel Garcia Almeida. Exploring different implementations of probabilistic computa-
tions on fpgas. Master’s thesis, University of Coimbra, 2014.

[8] Narges Bani Asadi, Teresa H. Meng, and Wing H. Wong. Reconfigurable computing
for learning bayesian networks. In Proceedings of the 16th International ACM/SIGDA
Symposium on Field Programmable Gate Arrays, FPGA ’08, pages 203–211, New
York, NY, USA, 2008. ACM.

[9] R. Bannister, D. Gregg, S. Wilson, and A. Nisbet. FPGA implementation of an image
segmentation algorithm using logarithmic arithmetic. In Circuits and Systems, 2005.
48th Midwest Symposium on, pages 810–813, 2005.

[10] M.N. Marsono, M.W. El-Kharashi, and F. Gebali. Binary LNS-based naive Bayes
inference engine for spam control: noise analysis and FPGA implementation. IET
Computers & Digital Techniques, 2(1):56–62, 2008.

[11] Pierre Bessiere Christian Laugier and Roland Siegwart. Probabilistic Reasoning and
Decision Making in Sensory-Motor Systems. Springer-Verlag, 2008.

[12] BAMBY. D2.1: Abstract probabilistic model of biochemical cascades. December 2014.

[13] Mingjie Lin and Yaling Ma. Base-calling in DNA pyrosequencing with reconfigurable
Bayesian network. In Reconfigurable Computing and FPGAs, 2009. ReConFig ’09.
International Conference on, pages 95–100, 2009.

[14] Fan Zhou, Jun Liu, Yi Yu, Xiang Tian, Hui Liu, Yaoyao Hao, Shaomin Zhang, Weidong
Chen, Jianhua Dai, and Xiaoxiang Zheng. Field-programmable gate array implementa-
tion of a probabilistic neural network for motor cortical decoding in rats. Journal of
Neuroscience Methods, 185(2):299 – 306, 2010.

Chapter 6. Conclusions and Future Work References

[15] R. Laurent M. O. Abdallah R. Lehy M. Faix, E. Mazer and J. Lobo. Cognitive
computation: from bayesian models to bayesian machines. In 14th IEEE Int. Conference
on Cognitive Informatics and Cognitive Computing (ICCI*CC15), Beijing, China, July
2015.

[16] J. F. Ferreira R. Duarte, J. Lobo and J. Dias. Synthesis of bayesian machines on fpgas
using stochastic arithmetic. In 2nd International Workshop on Neuromorphic and
Brain-Based Computing Systems (NeuComp 2015), associated with DATE2015, Design
Automation Test Europe 2015, March 2015., 2015.

[17] Joao Filipe Ferreira, Jorge Lobo, Pierre Bessiere, Miguel Castelo-Branco, and Jorge
Dias. A bayesian framework for active artificial perception. IEEE TRANSACTIONS
ON CYBERNETICS, 43(2):699–711, April 2013.

[18] Pierre Bessiere. Probabilistic algebra and generic bayesian gates. BAMBI internal
documentation, 2014.

[19] Pierre Bessiere and Jacques Droulez. Bayesian gates baysian algebra calculus tree.
BAMBI internal documentation, 2014.

[20] Altera. Nios II Classic Software Developer’s Handbook, May 2015.

[21] Altera. Embedded Design Handbook, July 2011.

[22] Altera. Quartus II Handbook Volume 1: Design and Synthesis, May 2015.

[23] Altera. Avalon memory-mapped master templates, August 2015.

[24] EDA Industry Working Groups. http://www.eda.org/fphdl/.

[25] Pierre Bessiere, Emmanuel Mazer, Kamel Mekhnacha, and Juan Manuel Ahuactzin.
Bayesian Programming. Chapman & Hall/CRC Press, December 2013.

Appendix A

Tutorials

This is a quick tutorial that will show how to create a basic Nios II system with a few basic
peripherals. It is expected that the reader has basic knowledge of the Quartus II software
environment. This tutorial was created for Quartus II v15 Web Edition which includes Nios
II EDS. The development board can either be a DE0-Nano or a DE2-115.

The following list includes some documentation available online:

• Nios II Classic Processor Reference Guide

• Nios II Classic Software Developer’s Handbook

• Nios II Hardware Development Tutorial

• Nios II Software Tutorial

• Nios II Performance Benchmarks

• Nios II Core Implementation Details

• Nios II Custom Instruction User Guide

• Nios II Instruction Set Reference

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii5v1.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2sw_nii5v2.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/tt/tt_nios2_hardware_tutorial.pdf
https://www.altera.com/en_US/pdfs/literature/tt/tt_my_first_nios_sw.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ds/ds_nios2_perf.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii51015.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/ug/ug_nios2_custom_instruction.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/nios2/n2cpu_nii51017.pdf

Appendix A. Tutorials Tutorials

A.1 Creating a Nios System in Quartus II/Qsys

1. Start the Quartus II software.

2. Select New Project Wizard on the splash screen, or in the File menu, click New
Project Wizard.

3. Once the Dialog box appears, click Next, set a working directory and name for your
project. The remaining settings can be left as default. Click Finish.

4. Now that the project is created you can open Qsys on the Tools menu.

5. In Qsys, go to the File menu and click Save As. Choose an appropriate name for your
Nios system and click Save.

6. Use the IP Catalog window on the upper left side to add the following components
(Double Click on the name to add component):

⇒ On-Chip Memory (Options: Memory size 32768 bytes; data width 32 bit)

⇒ Nios II Processor (Options: Nios II/e.)

⇒ JTAG UART (Options: Default.)

⇒ Interval Timer (Options: Default.)

⇒ System ID Peripheral (Options: Default.)

⇒ PIO (Options: Default.)

7. In the Connections column select the instruction_master signal, inside the Nios II
Processor, and connect it to debug_mem_slave and s1 in the On-Chip Memory.

8. In the same way, select the data_master signal in the processor and connect it to all
the peripherals, including On-Chip Memory).

9. Connect the clk signal from Clock Source to all the other components.

10. Also connect IRQ signals to the processor (the IRQ column is far to the right and may
be hidden).

11. Now go to System menu and select Assign Base Addresses and Create Global Reset
Network.

Appendix A. Tutorials 57

12. Now we need to export the PIO (Parallel I/O) interface external_connection out of the
Qsys component. Click Double-click to export on the export column inside System
Contents.

13. Go to the Nios Processor component and select Vectors tab. On Reset Vector Mem-
ory and Exception Vector Memory select On-ChipMemory.s1. Click Finish or
Close the component window.

14. If there are still error messages, go to System menu, and run Assign Base Addresses,
Assign Interrupt Numbers and Create Global Reset Network again. If the error
messages persist try to check the components related to the error message.

Note: Most of the time is just a forgotten parameter or a bad connection. The final
setup should look something like Figure A.1.

Fig. A.1 Nios system in Qsys

15. On top menu bar, select Generate > Generate HDL... and, on the Dialog box, click
Generate.

Appendix A. Tutorials Tutorials

16. The component has been created. Now open Quartus and add the new (<name_nios_system>.qip)
file to the project. Go to Project menu tab and select Add/Remove Files in Project....
The Dialog box appears. Add the file <name_nios_system>.qip located in <project
directory>/<name_nios_system>/synthesis and in the Settings Dialog box, click
Add and then OK at the bottom.

17. In Quartus, create a new Block Diagram/Schematic File and save it in the main
project directory.

18. Double click anywhere inside the Block Diagram design window. The component may
not be listed but we can add the .bsf component file by clicking on the button with
"three dots". Look for the (.bsf) block file, it should be in <project directory>/<qsys
component>. Click OK after adding the new component and place it inside the design
space.

19. Double click again anywhere in the space and add the following pins VCC, an INPUT
and an OUTPUT.

20. Change the name of the input pin to "CLOCK_50", and the name of the output pin to
"LED[7..0]".

21. Connect the VCC pin to reset_n, CLOCK_50 to clk_clk and LED[7..0] to pio_0_external.
Save the project.

22. Go to Assignments > Device and select the chip that matches the one in the devel-
opment board. If prompted to remove the pins assignments, select No. Click Ok to
accept the changes.

23. Now we need to import pin assignments to the project. This can be done using a (.qsf)
file, which can be found online, with all the pin connections of the development board.
If you have the file go to Assignments > Import Assignments....

24. Compile the Project.

25. To upload the project into the board you the USB-Blaster cable. If you do not have
the drivers installed, connect the board to your computer (if not already done), and
open Device Manager. Look for Other Devices and select USB-Blaster with right
mouse button, and then Update Drivers. Use a manual search, and include the Quartus
II folder.

Appendix A. Tutorials 59

26. In Quartus, go to Tools > Programmer. In the dialog box click Hardware Setup...
and then in Currently selected hardware > USB-Blaster. Close the dialog box.

27. Click on the Auto Detect button and Select the EP4CE22 or the EP4CE115 device.

28. Add/Change the file .sof located at <project directory>/output_files. Tick the Pro-
gram/Verify box, and click Start. The FPGA is now programmed with the Nios
system.

Appendix A. Tutorials Tutorials

A.2 Running a Programs on NIOS II using Eclipse IDE.

This a quick tutorial on how to write, compile and upload a Nios II program.

1. Open your compiled Nios II project in Quartus II, at the menu bar on top select Tools
> Nios II Software Build Tools for Eclipse. Note: If this is the first time you open
Eclipse, select a Workspace folder for your programs.

2. Go to File menu and select New > Nios II Application and BSP from Template.

3. On the new dialog box, select the SOPC file (.sopcinfo) located in the project folder
created in Quartus. Note: This file contains information and characteristics of the Nios
System required to compile the programs. Also, the path must not contain any spaces.

4. Give the project a name and select a Project Template, for example the "Hello World
Small". Click Finish.

5. In the Project Explorer window, right mouse click on <project_name>_bsp and select
Nios > Generate BSP. Right mouse click again and select Build Project. Right click
on the <project_name> folder and also select Build Project.

6. Now the program is ready to be uploaded. Go to Run menu on top and select Run
Configurations.... Double click on Nios II Hardware, select the current project and
click on Target Connection tab. Click on Refresh Connections and tick all the boxes
bellow except Disable "Nios II Console" view.

7. Click Run. The output should be visible in the Nios II Console > "Hello from Nios
II".

Appendix A. Tutorials 61

A.3 Adding SDRAM Memory to the System.

Development boards have external memories which Nios can use to store data. To used this
memory a controller must be added and external pins configured. Also, SDRAM memory
requires compensated clocks due to the long path between FPGA chip and the memory chip.
This is solved using a PLL compensated clock.

1. Open your Nios II project in Quartus and then open Qsys. Select the .qsys file that has
the Nios System.

2. Either remove or deactivate the On-chip Memory component.

3. Go to IP Catalog and find SDRAM Controller under memory interfaces and con-
trollers. Leave all the settings as default an click finish.

4. With the component added, go to System menu and select Create Global Reset
Network and Assign Base Addresses.

5. Connect the Clock Input to the source and Avallon Slave signal (s1) to both data and
instruction masters from Nios II Processor. Note: This controller runs at the same
clock as the processor, only the memory needs a compensated clock.

6. Now Export the Wire Conduit. The SDRAM will be connected to these wires in
Quartus.

7. Select the processor and update the vectors in the vector tab.

8. Hit the Generate HDL... button in the lower right corner. Close Qsys after generating
the new files.

9. In the Quartus II window open the Block Diagram File with the Qsys component.
Remove the old component and add the new one from the project folder.

10. Now the new component has extra pins that will connect to the SDRAM. To find which
pins we need to add, open the Pin Planner in Assignments menu and scroll down to
find DRAM_* nodes. Note: If you look closely you will find a match between the
names of those nodes and the ones on the component.

11. Right click on the Nios component and select Generate Pins for Symbol Ports. Now
the names of the pins must be changed to match the ones in the Pin Planner.

Appendix A. Tutorials Tutorials

12. The clock for the memory can now be added, double click on the working space and
add an OUTPUT pin. Give the name DRAM_CLK.

13. Now we need to add the PLL that will generate the compensated clock. Open the IP
Catalog in Tools and find the ALTPLL component. Give it a new variation name. The
MegaWizzard will open, change the frequency to 50 MHz, in Inputs/Lock remove
areset and locked output.

14. Skip to Output Clocks tab and select Use this clock, make sure you add -3ns to the
phase shift. Click Finish and do not forget to add a symbol file for Quartus in the files
list.

Note: Check if Quartus has created the PLL with the same name as the processor, this
will give an error in the compilation report. Select the pll, go to Properties and change
the name to something else.

15. Connect the CLOCK_50 and DRAM_CLK pins to the PLL. Compile the Project.

Appendix B

Schematics and Code

B.1 GUT Software Function
✞
float gut_function(float Data [])
{
unsigned int *ptr1 ,*ptr2 ,*ptr3 , i = 0, j = 0;
unsigned int count_F = 0, count_T = 0, count_var = 0;
unsigned int data_valid [3] = {0,0,0};
float data_buffer [3] = {0,0,0};
unsigned int check_exponent [3];
// Pointers
ptr1 = &Data [0];
ptr2 = &Data [1];
ptr3 = &Data [2];
// Exponent Isolation
check_exponent [0] = *ptr1 & SEL_EXPONENT;
check_exponent [1] = *ptr2 & SEL_EXPONENT;
check_exponent [2] = *ptr3 & SEL_EXPONENT;
// Counts how many False , True and Variables in the input
for(i=0;i<3;i++){

// SEL_EXPONENT happens to be equal to Infinite in binary
float

if(check_exponent[i] == SEL_EXPONENT){
count_T ++;

}
else if(check_exponent[i] == F)

count_F ++;
else{

data_valid[i] = 1;
count_var ++;

Appendix B. Code and other Results Schematics and Code

}
}
//Puts the values in order
if (count_var > 0){

for (i=0;i<3;i++){
if (data_valid[i] != 0){

data_buffer[j] = abs(Data[i]);
j++;

}
}

}
// Truth Table
if (count_F == 3 && count_T == 0 && count_var == 0)

return F;
else if (count_F == 2 && count_T == 1 && count_var == 0)

return T;
else if (count_F == 1 && count_T == 2 && count_var == 0)

return T;
else if (count_F == 0 && count_T == 3 && count_var == 0)

return F;
else if (count_F == 2 && count_T == 0 && count_var == 1)

return data_buffer [0];
else if (count_F == 1 && count_T == 1 && count_var == 1)

return T;
else if (count_F == 0 && count_T == 2 && count_var == 1)

return F;
else if (count_F == 1 && count_T == 0 && count_var == 2)

return (data_buffer [0] + data_buffer [1]);
else if (count_F == 0 && count_T == 1 && count_var == 2)

return (1 / (data_buffer [0] * data_buffer [1]));
else if (count_F == 0 && count_T == 0 && count_var == 3)

return ((data_buffer [0] + data_buffer [1] + data_buffer [2]) /(1
+ (data_buffer [0] * data_buffer [1] * data_buffer [2])));

else{
printf("␣ERROR :(%d,%d,%d)\n␣",count_F , count_T , count_var);
return 0;

}
}✡✝ ✆
B.2 GUT in VHDL using Fixed Point Representation✞
−− Fixed P o i n t GUT

Appendix B. Code and other Results 65

−−
−− [p + q + r − 2(pq + qr + pr) + 3 pqr]
−− g ’ (p , q , r) = −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− [1 − pq − qr − pr + 3 pqr]

l i b r a r y i e e e ;
use i e e e . s t d _ l o g i c _ 1 1 6 4 . a l l ;
use i e e e . n u m e r i c _ s t d . a l l ;

l i b r a r y i e e e _ p r o p o s e d ;
use i e e e _ p r o p o s e d . f i x e d _ p k g . a l l ;
use i e e e _ p r o p o s e d . f i x e d _ f l o a t _ t y p e s . a l l ;

e n t i t y GUT_Fixed i s
g e n e r i c (
Q_SIZE : n a t u r a l := 1 6 ; −− f r a c t i o n
I_SIZE : n a t u r a l := 8) ; −−e x t r a i n t e g e r s f o r c a l c u l a t i o n s
p o r t (
pp , qq , r r : i n s t d _ l o g i c _ v e c t o r (Q_SIZE−1 downto 0) ;
f r a c : o u t s t d _ l o g i c _ v e c t o r (Q_SIZE−1 downto 0)) ;
end e n t i t y GUT_Fixed ;

a r c h i t e c t u r e s t r u c t u r e o f GUT_Fixed i s
s i g n a l p , q , r : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l pq , qr , p r : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l pqr3 : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l sum_p_q_r : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l pq_qr_ rp_2 : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l d i v i d e n d : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l d i v i s o r : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
s i g n a l r e s u l t : u f i x e d (I_SIZE−1 downto −Q_SIZE) := (o t h e r s => ’ 0 ’) ;
b e g i n

p(−1 downto −Q_SIZE) <= t o _ u f i x e d (pp (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
q(−1 downto −Q_SIZE) <= t o _ u f i x e d (qq (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
r (−1 downto −Q_SIZE) <= t o _ u f i x e d (r r (Q_SIZE−1 downto 0) , −1, −Q_SIZE) ;
f r a c <= t o _ s l v (r e s u l t (−1 downto −Q_SIZE)) when r e s u l t < 1 e l s e (

o t h e r s => ’ 1 ’) ;
−− c a l c u l a t i o n s
pq <= r e s i z e (p * q , pq) ;
q r <= r e s i z e (q * r , q r) ;
p r <= r e s i z e (p * r , p r) ;
pqr3 <= r e s i z e (i n t e g e r (3) * pq * r , pqr3) ;
sum_p_q_r <= r e s i z e (p + q + r , sum_p_q_r) ;
pq_qr_ rp_2 <= r e s i z e (i n t e g e r (2) * (pq + qr + pr) , pq_qr_ rp_2) ;

Appendix B. Code and other Results Schematics and Code

d i v i d e n d <= r e s i z e (sum_p_q_r + pqr3 − pq_qr_ rp_2 , d i v i d e n d) ;
d i v i s o r <= r e s i z e (pqr3 + i n t e g e r (1) − pq − qr − pr , d i v i s o r) ;
r e s u l t <= r e s i z e (d i v i d e n d / d i v i s o r , r e s u l t) ;

end s t r u c t u r e ;✡✝ ✆

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Related Work
	1.4 Main Contributions
	1.5 Dissertation Outline

	2 Bayesian Algebra and Bayesian Gates
	2.1 Bayesian Inference
	2.2 Bayesian Algebra
	2.3 Generic Bayesian Gate
	2.4 GUT Trees

	3 Implementation Background
	3.1 Field-Programmable Gate Arrays
	3.1.1 Introduction
	3.1.2 Development Boards and Device Architecture
	3.1.3 Logic Elements and Logic Array Blocks
	3.1.4 Embedded Memory
	3.1.5 Embedded Multipliers

	3.2 Nios II System
	3.2.1 Introduction
	3.2.2 Processor Variants
	3.2.3 Memory Types
	3.2.4 Custom Instructions

	3.3 Software Development Tools

	4 Design Space Exploration
	4.1 Exploring Implementation Space
	4.1.1 GUT Emulated in Software
	4.1.2 Custom Instructions

	4.2 Single Gates
	4.2.1 GUT using Floating Point
	4.2.2 GUT using Fixed Point
	4.2.3 Floating Point Add, Multiply and Divide with Special Cases

	4.3 Assemblies of Gates
	4.3.1 Static GUT Tree
	4.3.2 Dynamically Generated GUT Tree
	4.3.3 Bayesian Algebra Trees

	5 Results
	5.1 Clock Cycle Performance
	5.1.1 Soft-GUT
	5.1.2 Custom Instructions

	5.2 GUT and Bayesian Algebra Resource Usage
	5.3 Maximum Frequency
	5.4 Power Consumption
	5.5 Overall Analysis

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A Tutorials
	A.1 Creating a Nios System in Quartus II/Qsys
	A.2 Running a Programs on NIOS II using Eclipse IDE.
	A.3 Adding SDRAM Memory to the System.

	Appendix B Schematics and Code
	B.1 GUT Software Function
	B.2 GUT in VHDL using Fixed Point Representation

