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Resumo

Os sistemas de detecção de eventos não usuais em tempo-real têm como maior desafio a

volatibilidade da definição de normalidade de um evento e a necessidade de avaliar o mesmo

de forma rápida. Numa altura em que a video-vigilância é cada vez mais utilizada como

forma de aumentar a segurança, a capacidade de detecção de situações anómalas de forma

eficiente e adaptativa é uma grande vantagem. Os sistemas comerciais existentes requerem

um processo de treino inicial exaustivo, ou então necessitam da definição inicial do que são

eventos usuais, não se adaptando a posśıveis alterações de comportamento do meio em ob-

servação. Nesta dissertação é apresentado um sistema que se baseia em codificação esparsa

dinâmica para reconstruir sinais a partir de um dicionário aprendido apenas de eventos con-

siderados normais. Assumindo que eventos usuais são mais fáceis de reconstruir a partir

de um dicionário de eventos usuais, este algoritmo permite a reconstrução dos eventos e

classificação dos mesmos usando codificação esparsa, bem como a actualização online do di-

cionário para incorporar os novos eventos observados. Este processo permite uma adaptação

constante às mudancas comportamentais do meio. A obtenção dos sinais caracterizadores

de cada evento é feita através de descritores espaço-temporais calculados em regiões de in-

teresse (ROIs) centradas em pontos de interesse da imagem. O trabalho desenvolvido inclui

o uso de diferentes descritores espaço-temporais como é o caso dos Histogramas de Gradi-

entes Orientados/Histogramas de fluxo óptico (HOG/HOF), Gradientes Espaço-Temporais

Orientados Direcionalmente (HOG-NSP) e Descritores de Covariâncias Espaço-Temporais

(COV3D). Os resultados obtidos mostram que com o método implementado é posśıvel obter

um detector de eventos não usuais capaz de avaliar correctamente a normalidade de um

evento em diferentes condições. Foi também conclúıdo que o descritor HOG/HOF é o que

apresenta melhores resultados, apesar de o descritor HOG-NSP ser o mais indicado para

soluções em tempo-real.

Palavras-chave: Classificação de Eventos, Representação Esparsa, Codificação Esparsa,

Gradiente, Fluxo Óptico, Matriz de Covariâncias.
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Abstract

Real-time unusual event detection systems has been a difficult challenge due to the volatility

of the definition for normal activity and the need to classify them in a short period of time.

At a time when video surveillance has increasingly been used to enhance the security, the

capacity to detect anomalous situations in an efficient and adaptive way is a big advantage.

The existing unusual event detectors either need an exhaustive initial training or require an

initial definition of what an usual event may look like, which fails to adapt to behavioural

changes. This thesis presents a system based on dynamic sparse coding which reconstructs

signals from dictionary learned only from event considered usual. Based on an intuition that

usual events are more likely to be reconstructible from an event dictionary, this algorithm

performs the reconstruction and classification of events using sparse coding as well as an

online dictionary update to incorporate newly observed events. To acquire the features of an

event spatio-temporal descriptors are computed in different regions of interest (ROI) centered

in interest points of the image. For this purpose, three different spatio-temporal descrip-

tors were used: Histogram of Oriented Gradients/Histogram of Optical Flow (HOG/HOF),

Directional Space-Time Oriented Gradients (HOG-NSP) and Spation-Temporal Covariance

Descriptors (COV3D). The experimental results show that that with the methodology im-

plemented in this dissertation it is possible to achieve an unusual event detector capable of

evaluate the normality of an event in different environments. Also, it has been concluded

that the HOG/HOF descriptor yields the best results. Despite this, the HOG-NSP descriptor

has proved to be more appropriate for real-time solutions.

Keywords: Event Classification, Sparse Representation, Sparse Coding, Gradients, Op-

tical Flow, Covariance Matrix.
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Chapter 1

Introduction

Computers play a fundamental role in our lives. They perform repetitive and mathematically

complex tasks more efficiently and more accurately than humans. With growing number of

surveillance cameras there is an increased need for automated surveillance systems. Thus

one goal of computer vision and machine learning researchers has been to grant computers

with the ability to analyse and interpret behaviour in real-time videos. Of the many possible

tasks, detecting unusual events from video sequences is of considerable practical importance,

leading to a significantly improvement in the efficiency of video analysis, saving human

attention for only the most salient contents. Such a capability would have many applications

such as houses and stores surveillance, highway and subway monitoring, psychology, etc.

However, most of these systems are incapable to change their knowledge of what an usual

may look like and take too much time to determine the normality of an event. The main goal

of this thesis is to study and evaluate a solution that can easily adapt to behavioural changes

like the speed increase of people in a subway or the formation of queues in the highway at

peak times, classifying the normality of events efficiently. Furthermore, response time is also

considered as an important factor. While in some cases the response time is not a critical

factor, there are cases where the consequences of a delayed response can be catastrophic,

like when a person fall into the subway line or in traffic accidents. Thus, in this work

will be presented a system with different algorithms that when combined will contribute to

minimize the above-mentioned problems, generating an efficient and unsupervised unusual

event detector with no prior models of what could be an usual event, that runs faster than

the others and in a cheap equipment.

1



CHAPTER 1. INTRODUCTION 2

1.1 Previous and Related Works

Recently, there has been growing interest in developing systems that evaluate behavior in

order to classify their normality.

Initial approaches like [4, 5], tried to classify events in different classes like ”walk” or

”run”, considering as unusual the ones that doesn’t belong to any class. These approaches

fail when object detection, tracking or recognition do not work well, especially in crowded

scenes.

Some systems [6, 7], model primitive events, such as ”move”, ”stop” or ”turn right”,

and use these primitives to model complicated activities. These primitives are learned from

labeled training examples. However, when switching the scene, all primitives must be re-

learned. Furthermore, in crowded scenes with occlusions it is complicated to obtain these

primitives.

Different approaches [8, 9], directly uses motion feature vectors instead of tracks to a

describe video clip. These approaches treat a video clip as an integral entity and classify the

whole clip as normal or abnormal. This type of systems are often used to simple datasets

where there is only one kind of event in a video clip and can’t be used in a real time event

detector.

Boiman et. al [10] proposes a database indexing algorithm where the new observed data is

composed using spatio-temporal patches extracted from previous visual examples. Regions

composed by large amounts of data from the data the database are considered normal.

Although this algorithm shows good performance, it faces scalability issues as memory and

time problems.

In order to reduce memory and scalability issues, Piotr Dollár et al. [11] proposed a sparse

representation of behaviour through the characterization of cuboids, each one centered in

a Spatio-Temporal Interest Point (STIP). These interest points are normally associated

to areas with spatially distinguishing features. Different interest point detectors have been

implemented in order to find these regions of interest. [12] demonstrated that Harris detector

was the one who had a better performance. An extension of Harris detector to the 3D has

been proposed by [13]. The basic idea is to find regions containing a reversing in the direction

of the gradient (spatio-temporal corners). This approach have shown to be very effective

at detecting spatio-temporal corners. Despite this, spatio-temporal corners are insufficient

to descriminate some behaviors, like a spinning wheel for example. Later, Willems et al.

[14] introduced the Dense and Scale-Invariant Spatio-Temporal Interest Point (DSI-STIP).
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However this detector detect too many interest points and require the full video analysis

to obtain them. A simple spatio-temporal interest point detector was proposed by [11],

who resort to 2D Gaussian filters and 1D Gabor filters to produce a detector tuned to fire

to periodic motions and also spatio-temporal corners. Other approaches like [15, 16, 17]

also shown good performance using sparse representation for action recognition. Sparse

representations provide a compact video representation and tolerance to background clutter,

occlusions and scale changes.

To describe a spatio-temporal region of interest, different descriptors have been proposed

over the last years. For example [18] proposed Scale-Invariant Feature Transform (SIFT)

descriptor, [19] proposed Speeded Up Robust Features (SURF), [20] introduced HOG de-

scriptor. [21] proposed Principal Components Analysis - Scale-Invariant Feature Transform

(PCA-SIFT), [22] proposed a Spatio-Temporal Descriptor based on 3D Gradients, the 3D

Histogram of Oriented Gradients (HOG3D) descriptor and [23] introduced the Histogram of

Oriented Gradients/Histogram of Optical Flow (HOG/HOF) descriptor. [24] tested some of

the most widely used and concluded that the HOG/HOF descriptor introduced by Laptev

et al. [23] showed the best results.

Different methods have been proposed as a solution to evaluate the normality of events

based on their sparse representation. For example, [11] creates cuboid prototypes from the

training data and evaluate events based on the Euclidean distance between the cuboids that

characterizes an event and the cuboid prototypes. Other approaches, like [23] resort to the

k-means algorithm to build a spatio-temporal bag-of-features. Zhao et al. [25] proposed a

different approach, that evaluate events based on a sparse coding formulation. Recently,

sparse coding [26] has become popular in computer vision and has shown promising results

when applied to natural images, video and speech [27, 28, 29, 30]. As regards to event

detection, [31] uses sparse coding to reconstruct dynamic textures described by local binary

patterns from three orthogonal planes. However, this method is applied in a dense form,

increasing time complexity. The methodology presented in this work follows the line of

reasoning of the one proposed by Zhao et al. [25]. In addition, spatio-temporal descriptors

presented in [3] and [32] were implemented.

1.2 Thesis Description

The main idea behind this dissertation is to detect events and classify them as usual or

unusual based on the reconstruction vectors obtained from the sparse coding formulation.
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Each event is represented by a group of spatio-temporal volumes (cuboids), each one

centered in an interest point. To obtain these points, a response function is calculated

in every frame. The response function is calculated by the application of a Gaussian filter

applied along the spatial dimensions and a quadrature pair of Gabor filters applied along the

temporal axes. At each interest point (local maxima of the response function above) a cuboid

is extracted and described as a vector computed with one of the following spatio-temporal

descriptors: HOG/HOF, HOG-NSP and COV3D.

In the initial portion of the video these descriptors are used to learn the dictionary using

sparse coding, assuming that an unusual event is unlikely to occur in the small initial portion

of the video. In the rest of the time, the descriptors obtained are reconstructed from the

dictionary using sparse coding.

Given a dictionary of bases corresponding to usual events, an usual event should be

reconstructible from a small number of such bases. On the other hand, an unusual event is

either not reconstructible with a small error, or even if it was it will be necessary a large

number of bases of the dictionary. Finally, the dictionary is updated with the newly observed

event using an algorithm based on stochastic approximations. Figure 1.1 illustrates, step by

step, how the algorithms are ordered.
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HOG/HOF

HOG-NSP

COV3D

Sparse Coding: 

learn dictionary

Sparse Coding: 

evaluate event and 

update dictionary

Interest Points 
Detector

Cuboid Desciption

Event 
Representation 

Frame buffer STIPs

Cuboid 

Representation

Sliding Window

Figure 1.1: Scheme of the system developed.

1.2.1 Work Environment

This work was developed in C++, on UNIX operating system (Ubuntu) with OpenCV 2.3.1

installed. All speed tests were carried with a 2.3 GHz Intel Core i5 with 4GB RAM. A linear

algebra library called Armadillo1 was used.

1.3 Overview

The organisation of this dissertation was done with the objective of introduce the procedures

in the same order as the unusual event detector applies them, thus giving the reader an

easier perception of the application structure. Chapter 1 introduces the topic, presenting
1http://arma.sourceforge.net/
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the research already developed in this area as well as its importance and main applications.

Chapter 2 explains the procedures to locate different events in a video sequence. In Chapter

3 are presented three different techniques to describe the events in order to differentiate

each one of them. Chapter 4 presents the model used to learn what is considered an usual

event as well as the method used to classify events as usual or unusual. In each one of these

are presented not only the exploited techniques but also the theoretical background used

to reach them. In Chapter 5 are presented the experimental results of the work developed.

Lastly, Chapter 6 gives important conclusions as well as the direction of future work.



Chapter 2

Event Detection

The representation of events in videos can be separated in two different main approaches:

dense and sparse. Generally, dense methods are conceptually simple to implement. Some

dense approaches treat a video clip as an integral entity and classify the whole clip as normal

or abnormal which is not practical when dealing with stream videos. Other approaches use

a segmentation step to locate events. However, for complex scenes with occlusions and

multiple events, it is difficult to achieve an efficient segmentation. On the other hand, sparse

approaches search for regions with spatially distinguishing features that can be used to

describe an event in a succinct way, which reduces the amount of memory needed to store the

event and making it more robust against occlusions. Thus, in this work, an event is described

in a sparse fashion, represented by a group of cuboids. A cuboid is a spatio-temporal volume

that contains the data of regions with spatially distinguishing features. More concretely,

each cuboid is centered in STIP. To obtain these STIPs, different interest point detectors

have been proposed. For example, Laptev et al. [13] proposed a space-time interest point

detector that have been widely used for action recognition [17, 23]. This detector is an

extension of the Harris corner detector to the 3D case, that searches for spatio-temporal

corners. However, the interest points detected are usually quite sparse. Another interest

point detector, the DSI-STIP detector has been introduced by [14]. Although, the interest

points detected by DSI-STIP are quite dense and require the entire video to be obtained. In

this work, the STIPs are extracted from a response function calculated by the application of

an 2D Gaussian smoothing kernel along the spatial dimensions and a quadrature pair of 1D

Gabor filters applied temporally, as introduced by Dollár et al. [11]. For that, it is assumed

a stationary camera. This chapter is organized as follows: Section 2.1 presents the response

function used to obtain the STIPs, while Section 2.2 gives an theoretical explanation of

7
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Gabor filters, used to calculate the response function and, finally, Section 2.3 describe the

cuboid extraction and how they are grouped to represent an event.

2.1 Response Function

As mentioned before, a representation based on interest points have several advantages,

like the amount of memory used and the robustness against occlusions. Moreover, the

interest point representation eliminates the need of segmentation and tracking required by

many other related approaches and is still robust with respect to different subjects, lighting

conditions and scale variations [11].

Spatio-temporal interest point are extracted from a response function, calculated by the

application of different linear filters. Each STIP is obtained from a local maxima of the

response function. Therefore, areas with spatially distinguishing features should induce the

higher responses.

The response function R has the form:

R =
τ\2∑

t=−τ\2
(It ∗ g ∗ hev)2 + (It ∗ g ∗ hod)2 (2.1)

where g(x, y;σ) is the 2D Gaussian smoothing kernel applied along the spatial dimensions,

and hev and hod represents a quadrature pair of 1D Gabor filters applied along time dimension

and defined as:

hev = − cos(2πtw)e−t2/τ2 (2.2)

and

hod = − sin(2πtw)e−t2/τ2 (2.3)

where w = 4/τ . σ and τ represents the spatial and temporal scale of the detector,

respectively.

Figure 2.1 shows an example of a response function calculated for a frame extracted in

an outdoor environment, where the highest peaks corresponds to a car hitting another car.
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Figure 2.1: Response function for a frame extracted in an outdoor environment.

The STIPs obtained by calculating the local maxima of the chart shown in Figure 2.1

are plotted in the correspondent frame, as shown by Figure 2.2.

Figure 2.2: STIPS extracted from the response function of Figure 2.1.

The detector is tuned to induce higher responses whenever variations in local image

intensities contain periodic frequency motions components. Despite this, the detector also

responds strongly to a range of other motions, like spatio-temporal corners [11].
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2.2 Gabor Filters

A Gabor filter is a linear filter whose impulse response is defined by a harmonic function

multiplied by a Gaussian function. Gabor Filters became popular because their frequency

and orientation representations are similar to the characteristics of certain cells in the visual

cortex of mammals and have been used in many applications, such as texture segmentation,

fractal dimension management, document analysis, edge detection, retina identification, im-

age coding and image representation. In addition, these filters have some interesting math-

ematical properties. Due to the multiplication-convolution property (convolution theorem),

the Fourier transform of a Gabor filter’s impulse response is the convolution of the Fourier

transform of the harmonic function and the Fourier transform of the Gaussian function [33].

For the purpose of this work, a quadrature pair of 1D Gabor filters are used. These

filters can be used as excellent band-pass filters for one-dimensional signals. A quadrature

pair is a set of two linear operators with the same amplitude response but phase responses

shifted by 90◦. Thus, complex Gabor filter has two out of phase filters continently allocated

in the real and complex part of a complex function, as follows:

g(x) = ge(x) + i go(x) (2.4)

where ge is the even part defined as:

ge(t) = 1√
2πτ

e−
t2

2τ2 cos(2πω0t) (2.5)

and go is the odd part defined as:

go(t) = 1√
2πτ

e−
t2

2τ2 sin(2πω0u) (2.6)

Figure 2.3 shows an example of one-dimensional Gabor filter.
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Figure 2.3: One-dimensional Gabor filter. At the left the Gabor cosine (even) and at the
right the Gabor sin (odd).

As can be observed in Figure 2.3 sine and cosine Gabor operators are not quadrature

pairs because cosine phase Gabors have some DC response, whereas sine Gabors do not.

However, the sine and cosine Gabor pair is commonly referred to as a quadrature pair. The

overall output of the two out of phase Gabor filters is calculated by adding the squared

output of each filter.

2.3 Cuboids

At this point, a definition of event is necessary. Considering a spatio-temporal sliding window

with size SWx × SWy × SWt that scans along the spatial and temporal axes, each group of

cuboids residing in the same sliding window define an event, like in [25].

A cuboid is extracted for each STIP resulting from the response function described in

Section 2.1. As a cuboid is centred in the STIP location (x, y, t), the system need to work

with a frame buffer.

Considering t as the frame acquired from the stream at a certain instant and s the size

of the cuboid, the response function will be computed for the t − s/2 frame. In practice, a

cuboid is a local video sequence representing actions like a knee bending or a hand moving

for example.

An event, Xi, is then represented as:

Xi = {X1
i , . . . , X

nj
i } (2.7)

where Xj is a cuboid and nj is the number of cuboids of the event Xi.
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Figure 2.4 shows fifty different cuboids. For simplicity each cuboid is represented in the

figure only by one plane (with t fixed).

Figure 2.4: Planes of different cuboids (with t fixed).

Figure 2.5 shows one example of a sliding window containing different cuboids.

Figure 2.5: Example of a spatio-temporal sliding window (red) with a group of cuboids
inside (small gray cubes).



Chapter 3

Event Descriptors

Local descriptors have been increasingly used as a representation method for action recogni-

tion. As mentioned in section 2, dense representations methods are conceptually simple to

implement. However, for complex scenes with occlusions and multiple events, such methods

require a complementary and robust segmentation step, which may be difficult to achieve,

specially in a real time system. In this respect, local descriptors-based methods have been

shown to be robust to occlusions, cropping and geometric distortions [24]. Moreover, they

have shown good results when applied to event detection and action recognition [24, 25, 22].

With the purpose of verify the robustness of the sparse coding applied to event detection,

three different spatio-temporal descriptors were implemented to describe the cuboids.

The first one, HOG/HOF descriptor proposed by [23], has proven to be efficient in several

reviews, like [24] and [34]. HOG/HOF represents a cuboid based on HOG and Histogram of

Optical Flow (HOF) computed in subcuboids and concatenated as a descriptor vector.

The other two descriptors, HOG-NSP and COV3D are recent approaches proposed by

[3] and [32]. HOG-NSP uses HOG through nine different planes extracted from a video or a

spatio-temporal volume to reach the final descriptor. COV3D is based in Region Covariance

Matrixs (RCMs). Although this descriptor compute the RCM using the entire video, the

method proposed by [32] was adapted to represent cuboids without the entire clip.

This chapter is divided in five sections: Section 3.1 and Section 3.2 introduce the concepts

of HOG and HOF respectively, while Section 3.3, 3.4 and 3.5 describe the three implemented

descriptors (HOG/HOF, HOG-NSP and COV3D respectively).

13
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3.1 Histograms of Oriented Gradients

Local object appearance can often be characterized rather well by the distribution of local

intensity gradients. Gradient is a vector that points in the direction of the greatest increase

of the scalar values in the neighbourhood. Considering an image I, the gradient vector at a

point (x,y) is given by:

∇I(x, y) =
[
∂I(x, y, t)

∂x
,
∂I(x, y, t)

∂y

]
(3.1)

The gradient magnitude can be found from:

|∇f | =

√√√√(∂f
∂x

)2

+
(
∂f

∂y

)2

(3.2)

The gradient direction can be calculated by the formula:

θ = arctan
(
∂f

∂y

/
∂f

∂x

)
(3.3)

In order to compute HOG, the image (or Region of Interest (ROI)) is divided into small

cells of size sCh and a histogram of gradient orientations with N bins is obtained for each

cell. These cells can be rectangular or circular. For better invariance to illumination it is

useful to contrast-normalize the local responses before using them. This process is done

by accumulating local histogram ”energy” over a larger regions (blocks) with size sBh to

normalize all of the cells in the block. The combined histogram entries are used as the

feature vector describing the image (or ROI). Since HOG descriptor operates on localized

cells, the method upholds invariance to geometric and photometric transformations [20]. It is

also possible to compute HOG in spatio-temporal windows, dividing each cuboid into small

cuboids of size sCubh and computing a histogram of gradient orientations for each one. This

process is illustrated in figure 3.1.
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Figure 3.1: HOG construction. Figure from [1].

3.2 Histograms of Optical Flow

Optical flow is used to calculate the motion between two frames taken at times t and t+ δt.

Assuming that a point does not vary instantly its appearance and does not move very far

between two consecutive images and considering I(x, y, t) the luminance level of pixel (x, y)

at time t, the brightness constancy equation can be expressed as:

I(x, y, t) = I(x+ δx, y + δy, t+ δt) (3.4)

where δ represent small variations. Considering I(x, y, t) = I, the Taylor expansion of

I(x+ δx, y + δy, t+ δt) results in:

I(x+ δx, y + δy, t+ δt) ≈ I + δI

δx
δx+ δI

δy
δy + δI

δt
δt (3.5)

From Equation 3.4 it follows that δI
δx
δx + δI

δy
δy + δI

δt
δt = 0. After dividing by δt and

considering vγ = γ
δt

and Iγ = δI
δγ

, γ = x, y, t, results in:

δI

δx
vx + δI

δy
vy + δI

δt
= 0⇒

[
Ix Iy

] vx
vy

 = −It (3.6)

Assuming that if a point moves, its neighbours exhibit the same behaviour, it follows:

 ∑ I2
x

∑
IxIy∑

IxIy
∑
I2
y


vx
vy

 = −

IxIt
IyIt

 (3.7)
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The solution of this system is the velocity vector [vxvy].

Analogous to HOG, the magnitude and phase of each pixel can be calculated, respectively,

from:

|F | =
√
v2
x + v2

y (3.8)

and

θF = arctan
(
vy
vx

)
. (3.9)

To compute HOF, the image (or ROI) is divided into small cells of size sCh and a

histogram of optical flow with N bins is obtained for each cell. The combined histogram

entries are used, after normalization, as the feature vector describing the image (or ROI),

like in HOG. Figure 3.2 demonstrates how HOF is obtained.

Figure 3.2: HOF construction. After determine the flow vectors (1st), the image is divided
in cells (2nd) and an histogram of optical flow is computed for each cell (3rd). Figure from
[2].

In order to compute HOF for cuboids, the same procedure as HOG is applied (Figure

3.1).

3.3 HOG/HOF

Laptev et al. [23] proposed a local feature descriptor that compute histogram descriptors

of space-time volumes (cuboids) centred in an space-time interest point. Each cuboid is

subdivided into a grid with nx × ny × nt spatio-temporal blocks and HOG and HOF are

computed for each one. Normalized histograms are concatenated in a descriptor vector and

used to characterize motion and appearance of a space-time volume.
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3.4 HOG-NSP

The HOG-NSP descriptor proposed by [3] represents each 3D video patch (cuboid) by his-

tograms of oriented gradients over different spatio-temporal symmetry planes, reaching the

final descriptor by the Bag of Features (BoF) framework. This descriptor is an extension

of the Local Binary Pattern on Three Orthogonal Planes (LBP-TOP) descriptor, proposed

by Zhao et al. [35]. The LBP-TOP was the first attempt to create a descriptor with no

direct extension from 2D to 3D, unlike HOG/HOF [23] or HOG3D [22]. The ideia behind

LBP-TOP is to encode a video patch by computing local binary patterns over three orthog-

onal planes XY, XT and YT planes. According to [3], these three orthogonal planes are not

able to optimally capture the dynamical proprieties of a 3D patch.

The nine planes of HOG-NSP descriptor can be obtained by rotating XY , XT and Y T

planes by 45◦, 90◦ and 135◦. For example, by rotating the XY plane around the X axis

by 45◦, 90◦ and 135◦, three orthogonal planes to the Y T plane are attained and named as

P(X,45), P(X,90) and P(X,135). The same process is repeated for XT and Y T rotations, resulting

in twelve planes. Figure 3.3 illustrates this process.

Figure 3.3: HOG-NSP planes. Figure from [3].

As shown in Figure 3.3, some planes are repeated twice (P(X,0) = P(Y,90), P(Y,0) = P(T,90)

and P(T,0) = P(X,90)). The repeated planes are discarded, resulting in nine distinct planes.

In this work the HOG descriptors of these nine planes are concatenated to form the final

descriptor of the cuboid, instead of BoF solution followed by [3].

3.5 COV3D

Region covariance descriptors were first introduced by [36] for object detection and classifi-

cation. The representation of a spatio-temporal window with a RCM has several advantages

such as the low-dimensional representation, the independence of the window size and the
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reduced impact of noisy samples. Covariance matrices are a natural way of fusing multiple

features which might be correlated. The diagonal entries of the covariance matrix represent

the variance of each feature and the non-diagonal entries represent the correlations.

Harandi et al. [32] proposed a spatio-temporal covariance descriptor applied densely

along the entire video. In this work, that idea is explored in a sparse representation, where

each cuboid is represented by a covariance matrix. For that, intensity gradients and optical

flow are combined, since previous studies have shown the benefit of combining these two

types of features [11, 34].

Let V be the sequence of local images that belongs to a video C, s the cuboid size and

d the feature vector of each pixel. The s3 × d dimensional feature video extracted from V ,

represented as F is given by:

F (x, y, t) = Φ(V, x, y, t) (3.10)

where x, y and t are the coordinates of each pixel on the cuboid and Φ the feature

mapping, given by:

Φ(V, x, y, t) =
[
x y t g o

]T
(3.11)

with

g =
[
|Ix| |Iy| |Ixx| |Iyy|

√
I2
x + I2

y arctan |Iy ||Ix|
]

(3.12)

o =
[
u v ∂u

∂t
∂v
∂t

(
∂u
∂t

+ ∂v
∂t

) (
∂u
∂t
− ∂v

∂t

)]
(3.13)

Equation 3.12 represent the gradient based features. The first four elements correspond

to the first and second order intensity gradients at pixel location (x, y) and the last two to

the gradient magnitude and orientation.

On the other hand, 3.13 represent optical flow based features, in order: the horizontal

and vertical components of the flow vector, the first order derivatives of the flow components

with respect to t and the spatial divergence and vorcity of the flow field.

Considering ziSi=1 as the d-dimensional feature vector inside C and S the cuboid volume,

the region defined by C can be represented with the d× d covariance matrix of the feature

vectors:

Cov3DC = 1
S

S∑
i=1

(zi − µ)(zi − µ)T (3.14)

where µ is the mean of the points. In order to accelerate the process, the concept of

integral videos is introduced. An integral video is nothing more than a stack of integral
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images. For a video V , its integral video IV is defined as:

IV (x′, y′, t′) =
∑
x≤x′

∑
y≤y′

∑
t≤t′

V (x, y, t) (3.15)

Therefore, the covariance matrix defined in 3.14 can be defined as:

Cov3DC(i, j) = 1
S − 1

(
S∑
k=1

zk(i)zk(j)−
1
S

S∑
k=1

zk(i)
S∑
k=1

zk(j)
)

(3.16)

To find the covariance in a given spatio-temporal window, the sum of each feature dimen-

sion, z(i)di=1, defined as P , and the sum of the multiplication of any two feature dimensions,

z(i)z(j)i,j=1...d, defined as Q, should be calculated. This is achieved using integral videos:

P (x′, y′, t′, i) =
∑
x≤x′

∑
y≤y′

∑
t≤t′

F (x, y, t)(i) (3.17)

and

Q(x′, y′, t′, i, j) =
∑
x≤x′

∑
y≤y′

∑
t≤t′

F (x, y, t)(i).F (x, y, t)(j) (3.18)

The d-dimensional feature vector px,y,t and the d × d dimensional matrix Qx,y,t can be

obtained from:

px,y,t =
[
P (x, y, t, 1), . . . P (x, y, t, d)

]T
(3.19)

and

Qx,y,t =


Q(x, y, t, 1, 1) . . . Q(x, y, t, 1, d)

... . . . ...

Q(x, y, t, d, 1) . . . Q(x, y, t, d, d)


T

(3.20)

Considering the coordinates inside the cuboid as {(x, y, t)|0 ≤ x ≤ x′, 0 ≤ y ≤ y′, 0 ≤

t ≤ t′} with x′, y′, t′ = s, the covariance of the spatio-temporal window is:

Cov3DC(0,0,0;x′,y′,t′) = 1
S − 1

(
Qx,y,t −

1
S
px,y,tp

T
x,y,t

)
(3.21)

Considering a STIP k centred at (xk, yk, tk), the origin of the cuboid Ck related to the

video coordinate system is:

Ck(0, 0, 0) = V (xk −
s

2 , yk −
s

2 , tk −
s

2) (3.22)

Figure 3.4 shows how coordinates are related in a cuboid.
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Figure 3.4: Cuboid coordinate system

The resultant covariance matrices are symmetric positive definite matrices of size d× d,

which can be formulated as a connected Riemannian manifold. A manifold is a topological

space which is locally similar to an Euclidean space. A point Y on the manifold can be

mapped to a vector in the tangent space Tx (plane tangent to the surface of the manifold at

point X) using the logarithm map operator, as follows:

logX Y = X
1
2 log(X− 1

2Y X−
1
2 )X 1

2 (3.23)

In this work, all covariance matrices will be projected to the tangent space at the identity

point, since it was observed to be enough to obtain good results. Thus, equation 3.23 can

be simplified as:

logI Y = log(Y ) (3.24)

Given the eigenvalue decomposition of a symmetric matrix, M = U log(D)UT , the

matrix logarithm can be obtained from:

log(M) = U log(Dm)UT (3.25)

where log(Dm) is a diagonal matrix with each diagonal element equal to the logarithm

of the corresponding element in D.
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The resultant matrix M is also symmetric positive definite. The final COV3D descriptor

corresponds to the upper triangle of M , resized as a vector, like in [44]. Other approaches

resort to more complex mappings that try to preserve the relations between points of the

manifold, like [32, 37]. Alternatively, [38] proposed a sparse decomposition of positive definite

matrices, thus enabling the use of a sparse coding formulation directly in the manifold.



Chapter 4

Event Evaluation

The evaluation of the normality of an event is based on a sparse coding formulation.

Sparse coding has recently attracted notable attention in computer vision. Its advantage

is to represent succinctly large amounts of data, decreasing the memory used when compared

to dense representations and describing complex data in a way that is easier to interpret.

The aim of sparse coding is to find a set of basis vectors from an initial learned dictionary

such that an input vector can be represented as a linear combination of these basis vectors,

in the same way as human neurons are activated to encode sensory information [39].

Assuming that an unusual event is unlikely to occur in the small initial portion of the

video, a dictionary is learned from the events occurred in that period. Thereafter, the

descriptors obtained are reconstructed from the dictionary and an objective function is com-

puted. Small values of the objective function indicate the presence of an usual event while

high values mean that an unusual event is involved. After that process, the dictionary is

updated in order to include the newly observed event. This step provides the possibility

of using a small amount of data to learn the initial dictionary, since the system have the

ability to change the knowledge of what is an unusual event. The alternative is to ”show”

all the possible usual events while the initial dictionary is constructed, which requires a huge

amount of training data.

This chapter is organized as follows: Section 4.1 introduces the sparse coding formulation

and explains how each term influences the objective function; Section 4.2 demonstrates the

dictionary learning step as well as the reconstruction of an event from the dictionary bases;

Section 4.3 covers the online dictionary update algorithm; Section 4.4 shows how events are

classified with respect to their normality based on their reconstruction from the dictionary.

22
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4.1 Sparse Coding Formulation

As explained in chapter 2, an event is represented by descriptor vectors extracted from a

group of cuboids residing in the same sliding window. From that, an event Xi composed by

nj cuboids, can be defined as Xi = {X1
i , . . . , X

nj
i }.

Given an initial dictionary D (details about learning D in section 4.2), the objective

function J that measures the normality X is defined as:

J(X,αi, D) = 1
2

nj∑
j

||Xj
i −Dα

j
i ||22 + λ1

nj∑
j

||αj||1 + 1
2λ2

nj∑
j

||αj||22 (4.1)

where αi = {α1, . . . , αnj} represent the reconstruction weight vectors for the event Xi.

The first term in equation 4.1 is the reconstruction error. Since the dictionary was

learned from usual event data, this term should be small for usual events. On the other

hand, unusual events usually imply high reconstruction errors. Although, it is possible that

unusual events show small reconstruction errors. Assuming a dense reconstruction weight

vector it is possible to achieve a weight values combination that induce a small reconstruction

error. The next term prevents this situation.

The second term is the sparsity regularization. Since the dictionary is learned in order to

maximize the sparsity of weight vectors for usual events, this term enforces the sparsity of

α. Thus, usual events cause a sparse reconstruction weight vector. In cases where unusual

events have a small reconstruction error, it will result in a dense reconstruction weight vector

and, consequently, a higher objective function.

The third term is the smoothness regularization. The quadratic penalty encourages the

grouping effect (similar motions at neighbouring patches are more likely to be involved in a

usual event) and removes the limitation on the number of selected variables verified when

λ2 = 0 [40].

Figure 4.1 presents the reconstruction weight vectors for two events constituted by four

cuboids. The first is usual and the second is unusual. The last column represents the sum

of the weights computed for each cuboid. It can be observed that the reconstruction vectors

for an usual event are sparse, while the ones for unusual events are dense.
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Figure 4.1: Reconstruction weight vectors comparison for an usual event (first row) and
an unusual event (second row).

4.2 Optimization

The objective function of Equation 4.1 measures the normality of an event Xi for any dic-

tionary D and any weights αi. Since usual events corresponds to lower J values, one needs

to find the optimal dictionary D∗ and the optimal reconstruction weight vectors α∗i which

minimize the objective function for the event Xi. Therefore, and taking into account Equa-

tion 4.1, the optimal reconstruction weight vectors α∗i and dictionary D∗ are learned from

the following optimization problem:

(α∗i , D∗) = argmin
αi,D

J(Xi, αi, D) (4.2)

It can be observed that the optimization problem is not jointly convex with respect to

D and α. However, this problem can be solved alternating between these two variables,

minimizing one while holding the other until converge to a local optimum.

With the dictionary D fixed, the reconstruction weight vectors α for the event Xi are

obtained from:

min
α1
i ,...,α

nj
i

1
2

nj∑
j

||Xj
i −Dα

j
i ||22 + λ1

nj∑
j

||αj||1 + 1
2λ2

nj∑
j

||αj||22 (4.3)

where λ1 and λ2 are regularization parameters.

To solve this optimization problem, the LARS algorithm introduced in [46] and imple-

mented by [45] is used.
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Holding α, the dictionary D can be obtained from:

min
D

1
2m

m∑
i=1

nj∑
j=1
||Xj

i −Dα
j
i ||22 (4.4)

s.t.D ∈ Rm×k,

∀j = 1, . . . , k, dTj dj ≤ 1
(4.5)

where m is the number of events and k the size of each descriptor. The constraint in 4.5

is introduced to prevent terms in D from being arbitrarily large which will result in small

values of the weights α.

To solve this optimization problem, the Lagrange Dual algorithm documented in [26] and

implemented by [45] is used.

4.3 Online Dictionary Update

Over time, the typical behaviour recorded in the environment under analysis can change.

For example, in a metro station, at peaks time, it is normal that people to move faster than

the rest of the time. The most common approach is to learn the initial dictionary with

all possible usual events, including these behaviour changes. Although, an efficient video-

vigilance system has to learn to adapt to these changes event if they do not belong to the

initial observed data, incorporating them in the dictionary and considering these new events

as usual.

As shown by Equation 4.4, the optimal dictionary after t events is the solution of the

following optimization problem:

min
D∈C

1
2t

t∑
i=1

nj∑
j=1
||Xj

i −Dα
j
i ||22 (4.6)

with C = {D ∈ Rm×k : dTj dj ≤ 1,∀j = 1, . . . , k}.

To solve this problem, all t events are needed and the optimization problem have to be

solved from scratch, causing memory and time overconsumption. Therefore, the projected

first order stochastic gradient descent update proposed by [41] is used. This update only

needs the event Xt and the previous dictionary Dt−1 and is obtained from:

Dt = ΠC

[
Dt−1 −

η

t
∇Dl(Xt, Dt−1)

]
(4.7)
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where η is the learning rate, ΠC the projection onto C. l(Xt, Dt−1) is given by:

l(Xt, Dt−1) = 1
2

nj∑
j=1
||Xj

t −Dt−1α
j
t ||22 (4.8)

Following the stages in [41], the dictionary update algorithm is summarized in Algorithm

1. To exemplify, it is considered a random variable X ∈ Rm. The inner loop appraise one

event Xt at a time, as in stochastic gradient descent. The weight vectors α are computed

from Xt over the dictionary Dt−1, obtained at the previous iteration. The new dictionary

Dt is obtained by minimizing over C the function:

f̂t(D) , 1
t

nj∑
j=1

1
2 ||Xi −Dαi||22 + λ||αi||1 (4.9)

where the vectors αi are computed during the previous steps of the algorithm. The

quadratic function f̂t aggregates the past information (vectors αi). As demonstrated by

[41], f̂t(Dt) and ft(Dt) converges almost surely to the same limit and thus f̂t(Dt) acts as

a surrogate for ft(Dt). For that, the uniqueness of the sparse coding solution should be

ensured. This condition can be forced using an elastic net penalization [41], replacing ||α||1
by ||α||1 + k2

2 ||α||
2
2. Since f̂t is close to f̂t−1, Dt can be obtained efficiently using Dt−1 as a

warm restart.

The update of the dictionary is done using block-coordinate descent with warm restarts,

making it parameter-free, without any learning rate tuning. Algorithm 2 sequentially up-

dates each column of D. Equation 4.12 gives the solution of the dictionary update with

respect to the j-th column, dj, keeping the other ones fixed under the constraint dTj dj ≤ 1.

[41] also demonstrate that the convergence to a global optimum is guaranteed and that since

Dt−1 is used as a warm restart for computing D, a single iteration of the algorithm has

empirically been found to be enough.

An alternative to this dictionary update algorithm is to use a Newton method on the

dual of Equation 4.11. Although, this requires inverting a k × k matrix at each iteration,

which is unattainable for an online algorithm.

4.4 Unusual Event Detection

As previously mentioned, given a newly observed event X and the current dictionary D,

the correspondent optimal reconstruction weight vectors α are calculated. X is classified as
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Algorithm 1 Online Dictionary Learning
Require: Initial dictionary D0 ∈ Rm×k, λ ∈ R, T (number of iterations), X ∈ Rm ∼ p(x)

(random variable and an algorithm to draw samples of p).
A0 ← 0
B0 ← 0
for t=1 to T do

Draw X from p(x)
Sparse coding: compute αt for event Xt

αt = argmin
α∈Rk

1
2 ||Xt −Dt−1αt||22 + λ1||α||1 (4.10)

At ← At−1 + αtα
T
t

Bt ← Bt−1 + xtα
T
t

Calculate Dt using Algorithm 2, with Dt−1 as warm restart, so that:

Dt = argmin
D∈C

1
t

t∑
i=1

1
2 ||Xi −Dαi||22 + λ1||αi||1

= argmin
D∈C

1
t

(1
2 Tr(DTDAt)− Tr(DTBt)

) (4.11)

end for

Algorithm 2 Dictionary Update
Require: Input Dictionary D = [d1, . . . dk] ∈ Rm×k

A = [a1, . . . ak] ∈ Rk×k = ∑t
i=1 αiα

T
i

B = [b1, . . . bk] ∈ Rm×k = ∑t
i=1 xiα

T
i

repeat
for j=1 to k do

Update the j-th column to optimize for

uj ←
1
Ajj

(bj −Daj) + dj

dj ←
1

max(||uj||2, 1)uj
(4.12)

end for
until converge
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unusual if the following criterion is verified:

J(X,α,D) > ε (4.13)

where ε is a user defined threshold that controls the sensivity of the algorithm to unusual

events and J is the objective function defined in Equation 4.1.

Algorithm 3 present the main steps of the unusual event detection algorithm:

Algorithm 3 Unusual Event Detection Using Sparse Coding
Input: Video data, threshold ε

Learn initial dictionary using first N frames in video
repeat

Use sliding window to obtain event Xt

Compute optimal reconstruction weight vectors αt for event Xt, solving Equation 4.3
with D = Dt−1
if J(X,α,D) > ε then

Fire alarm for event Xt. Event considered as unusual
end if

until reach the end of the video

The STIP calculation explained in Chapter 2 and the event description presented in

Chapter 3 were omitted from Algorithm 3 for simplicity.



Chapter 5

Experimental Results

This chapter presents the results of the algorithms developed along the project.

The unusual event detector system has been tested with three different type of videos. In

the first place, the KTH Human Action dataset was used. This dataset contains six types of

human actions (walking, jogging, running, boxing, hand waving and hand clapping). Each

video sequence have only one single event played by only one person at a time. Thereafter,

the system was tested with three videos created as part of the present work, referred as

LabBrisa Videos. Finally, the system was tested for real world videos extracted from the

YouTube. These videos typically consist in crowded scenes with multiple events, extracted

from real video-surveillance cameras. All videos have a frame size of 240× 180 pixels. The

entire processing is done using grayscale images.

This chapter is divided in four main sections. Firstly, Section 5.1 contains a brief descrip-

tion of the video datasets used along this dissertation. Secondly, Section 5.2 presentes the

parameters used in the event detection. Afterwards, in Section 5.3 are shown some examples

of the descriptors obtained for different cuboids. The figures shown in these two sections are

extracted from the videos mentioned above without any particular order. In Section 5.4 are

presented and compared the results of the unusual event detector for the three datasets and

also the comparison between the different spatio-temporal descriptors used in this work.

5.1 Video Datasets

This section introduces the datasets used to test the unusual event detector. For each

video is presented a Figure with examples of usual and unusual events (except for KTH

Human Actions where the definition of usual event depends on the sequence used to learn

the dictionary). Events with a green box are considered as usual while events with a red

29
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box are designed as unusual.

5.1.1 KTH Human Actions Dataset

The KTH human actions dataset is constituted by six types of human actions (walking,

jogging, running, handwaving, handclapping and boxing) distributed along 2391 sequences.

Each video sequence has only one single event played by only one person at a time, without

any occlusion. Figure 5.1 shows some examples of the human actions covered by this dataset.

Figure 5.1: KTH human actions examples. Each row represents one different action,
ordered as: walking; jogging; running; handwaving; handclapping; boxing.

5.1.2 LabBrisa Videos

As a part of this dissertation, three videos were made in order to test the unusual event

detector.

The first video, referred as LabBrisa Video 1, have different persons walking in a small

area, originating many occlusions. The initial dictionary was learned from the first two

minutes from the ten minutes video and then the detector is tested along the full video

length. This initial dictionary was used for all LabBrisa videos. Ideally, the detector should

not fire any unusual event alarm, since the video is only constituted by people walking in
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the same way as verified during the initial dictionary construction. Figure 5.2 shows the

examples of usual events verified in LabBrisa Video 1.

Figure 5.2: Video with people walking, referred as LabBrisa Video 1.

The second video, referred as LabBrisa Video 2, has a fight scene captured in the same

environment. Figure 5.3 shows the type of events found in this video sequence.

Figure 5.3: Video with a fight scene, referred as LabBrisa Video 2.

Lastly, the third video, referred as LabBrisa Video 3, has a person dropping a box and

returning back to pick up the box. As demonstrated in Figure 5.4 the unusual events include

the box falling to the ground and the movements of stop, go down and get up made by the

person.
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Figure 5.4: Video with a person leaving a box behind and turning around to catch it,
referred as LabBrisa Video 3.

5.1.3 YouTube Videos

This dataset is constituted by a number of videos downloaded from YouTube. These videos

contain different categories of targets (human, vehicles, etc.) and covers a wide variety of

activities and environmental conditions (indoor and outdoor). For each video, the initial

dictionary is learned in the initial portion of the video. This portion are, in general, 1/5

of the video. Thereafter, the unusual event detector search for unusual events in the entire

video.

The first video, referred as YoutubeVideo 1, was captured with a video-surveillance camera

in an outdoor environment. The events considered as unusual are the car crash and people

gathered in the middle of the road. Figure 5.5 shows examples of some usual and unusual

events of YoutubeVideo 1.

Figure 5.5: Video with a car accident downloaded from Youtube, referred as YoutubeVideo
1.

The second video, referred as YoutubeVideo 2, was captured by a video-surveillance cam-

era inside a convenience store. Figure 5.6 shows examples of usual and unusual events. The
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most obvious unusual event found in this video is a person falling from the roof. Although

this video has an interesting detail. As can be observed in the last image of the second row

of Figure 5.6, the system mark a person walking to the end of the store as unusual event.

This is due to the fact that the initial dictionary only contain a person walking in front of

the camera and leaving the store by the door (Figure 5.6, last image of the first row).

Figure 5.6: Video with a person falling from the roof in a store downloaded from Youtube,
referred as YoutubeVideo 2.

The third video, referred as YoutubeVideo 3, captured in a tyre company. The initial

dictionary was learned only when a person is walking to the company’s office. The unusual

events include a person transporting tyres in a wheeled structure and, after that, using that

wheeled structure to skate. Figure 5.7 shows examples of the events of this video. In the

fourth image of the second row it is possible to observe that a truck on the road was marked

as an unusual event. This event is indeed unusual, since in the initial portion of the video

only regular cars have been seen.

Figure 5.7: Video with a person skating and falling, downloaded from Youtube, referred as
YoutubeVideo 3.

Lastly, the fourth video was captured in a judo class and is referred as YoutubeVideo 4.

The usual events in this video include people fighting and falling in the floor. This video
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is important to test the robustness of the detector because has crowded scenes with many

occlusions. The unusual events are caused by an abnormal luminosity in the room caused

by a meteor. Figure 5.5 shows examples of some usual and unusual events of YoutubeVideo

4.

Figure 5.8: Video with an unusual luminosity caused by a meteor, in Russia, downloaded
from Youtube and referred as YoutubeVideo 4.

5.2 Event Detection

Recalling Chapter 2, each STIP is extracted from a local maxima of a response function

calculated with a combination of a 2D Gaussian smoothing kernel with a spatial scale σ

applied spatially and a quadrature pair of 1D Gabor filters with temporal scale τ applied

temporally.

Figure 5.9 presents the response function for different σ and τ scales.
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σ = 3 ; τ = 3 σ = 3 ; τ = 5 σ = 3 ; τ = 7

σ = 5 ; τ = 5 σ = 5 ; τ = 7 σ = 7 ; τ = 5

Figure 5.9: Response functions for different values of σ and τ .

The best results are achieved with τ = 5. Since small variations of σ does not induce a

relevant difference in the response function, the chosen value for the spatial scale was σ = 3.

Despite this, bigger values of σ reduce the level of detail of the image, compromising the

results. The spatio-temporal interest points are then extracted from the local-maxima of the

resulting response function.

For each STIP, a cuboid is extracted. According to [11], cuboids have a side length of

approximately six times the temporal scale at which they were detected. Since τ = 5, the

side length of the cuboids is s = 33 pixels (the extra pixels are to ensure that a cuboid

contain all the volume of data that contributed to the response function at that interest

point).

Figure 5.10 shows the resultant STIPs for two different environments and the correspon-

dent cuboids. Like in Figure 2.4, each resultant cuboid is represented only by one xy plane

(with t fixed).
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Figure 5.10: Resultant STIPs for two different environments.

An example of the different slices of a cuboid (xy planes with t fixed) is shown in Figure

5.11.

Figure 5.11: Slices of a cuboid (xy planes with t fixed).

As explained in Section 2.3, the cuboids are grouped by a sliding window that scans
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along the spatial and temporal axes. The size of this sliding window is 40× 40× 40 voxels.

This spatio-temporal window slides without overlap in both spatial and temporal axes. For

each sliding window, the centroid C(xc, yc, tc) of the cuboids residing there is calculated and

considered as the center of the event. If two event centers are not spaced more than a half

of the side length of a sliding window, they are considered as the same event.

5.3 Event Descriptors

In this section are shown the parameters used to calculate each descriptors, as well as some

examples of the results of each descriptor applied to different cuboids. The comparative

results between each one are presented in Section 5.4.

5.3.1 HOG/HOF

The binary file with the implementation of HOG/HOF descriptor was downloaded from

Laptev’s website1. This binary file contain also the interest point detector proposed in [13].

Despite this, this tool is only used to compute HOG/HOFF descriptor. All interest points

are calculated with the response function described in Section 2.1.

Each cuboid is partitioned into a grid with 3×3×3 spatio-temporal blocks. For all blocks,

a 4 bins HOG descriptor and a 5 bins HOF descriptor are computed and concatenated into

a 72 element HOG descriptor and a 90 element HOF descriptor. The number of bins is not

a user defined parameter of the tool.

Figure 5.12 shows the HOG/HOF descritors of two different cuboids. As in previous

figures, a cuboid is represented only by one xy plane.
1http://www.di.ens.fr/ laptev/download.html



CHAPTER 5. EXPERIMENTAL RESULTS 38

Figure 5.12: HOG/HOF computed for two different cuboids.

The final descriptor vector also include the (x, y, t) normalized coordinates, thus forming

a 165 element final descriptor.

5.3.2 HOG-NSP

As explained in Section 3.4 each cuboid is partitioned in nine different planes and the HOG

descriptor is computed for each plane. For that, the OpenCV HOG descriptor was used.

The choice of the parameters used to calculate HOG has taken into account the size of the

cuboid, the size of the final descriptor and the restrictions of the OpenCV HOG descriptor.

The window size W is adjusted to the size of each plane. Since OpenCV HOG descriptor

does not accept the size W = 33× 33, the window size used is the closest to the cuboid size:

W = 32× 32. After multiple tests the remaining parameters used to compute HOG were:

scell = 8× 8 (5.1)

sblock = 32× 32 (5.2)

Nbins = 5 (5.3)
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Figure 5.13 shows the nine symmetry planes obtained for two different cuboids. As in

previous figures, a cuboid is represented only by one xy plane.

P(X,0º) P(X,45º) P(X,135º)

P(Y,0º) P(Y,45º) P(Y,135º)

P(T,0º) P(T,45º) P(T,135º)

P(X,0º) P(X,45º) P(X,135º)

P(Y,0º) P(Y,45º) P(Y,135º)

P(T,0º) P(T,45º) P(T,135º)

Figure 5.13: The nine symmetry planes for two different cuboids.

The correspondent HOG descriptors are shown in Figure 5.14.
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P(X,0º) P(X,45º) P(X,135º)

P(Y,0º) P(Y,45º) P(Y,135º)

P(T,0º) P(T,45º) P(T,135º)

P(X,0º) P(X,45º) P(X,135º)

P(Y,0º) P(Y,45º) P(Y,135º)

P(T,0º) P(T,45º) P(T,135º)

Figure 5.14: Histograms of Oriented Gradients for each plane of Figure 5.13.

The HOG descriptor of each plane is a 80 element vector. Concatenating the nine different

descriptors in one vector results in a final descriptor vector with 720 elements.

5.3.3 COV3D

Recalling Section 3.5, a RCM is obtained from each cuboid, where each voxel is represented

by a feature vector, defined in Equation 3.11.

The gradient features g (Equation 3.12) were calculated with the Sobel operator from

OpenCV, with a kernel size of k = 3. On the other hand, the flow features f (Equation

3.13) were determined with the dense Farneback’s Optical Flow operator from OpenCV.

Figure shows the RCM resulting from two different cuboids.
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Figure 5.15: The RCM matrix of two different cuboids.

As mentioned in Section 3.5 the final descriptor vector is extracted from the upper triangle

of the covariance matrix, reshaped as a vector. Since the covariance matrix has a 15 × 15

size, the final COV3D descriptor is a 120 element vector.

5.4 Event Evaluation

This work follow the same annotation used in [25] and [42], where a frame range is defined

for each unusual event. Once the algorithm detects at least one frame in the annotated

range, the detection is counted as correct. On the other hand, false alarm is also measured

in the same way: at least one frame is fired outside the annotated range, then it is counted

as false alarm.
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5.4.1 Sparse Coding Formulation

In order to evaluate the normality of an event, it was assumed the existence of an initial

dictionary learned from what are considered as usual events. The dictionary is a matrix

Dsd×b, where sd is the size of the descriptor and b is the number of bases of the dictionary.

Different number of bases has been tested. Figure 5.16 shows the accumulated reconstruction

weight vectors for two different videos after 1000 frames with only usual events.
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Figure 5.16: Reconstruction weight vectors for different number of bases b. The first row
is verified for video where the dictionary is learned from multiple events, while the second
row is observed for a dictionary learned from a video with one single event.

For b = 150 the dictionary learned for the second video was created with 54 bases

initialized randomly. This is due to the small number of different descriptors vectors when

compared to the number of required bases. This affect the results, since the random bases can

be used to reconstruct unusual events, classifying them as usual. However, using a dictionary

with few bases also affect the results. For example, in videos with multiple events, a small

number of bases can be insufficient to represent multiple events in discriminatory manner.

This situation is verified for LabBrisa Video 1 with a learned dictionary of 50 bases. Table

5.1 compares the number of False Alarm (FA) and the mean of the objective function J

(Equation 4.1) for the b = 50 and b = 100 cases.
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FA J̄

b = 50 11 1.32

b = 100 2 1.11

Table 5.1: Comparison between the results obtained with different number of bases of the
dictionary for LabBrisa 1 using HOG/HOF descriptor.

An increase of J̄ was observed when b = 50 as well as an increased number of false alarms.

Based on this results the value adopted was b = 100.

The influence of λ1 and λ2 values (Section 4.1) are shown in Figure 5.17. High values

of λ1 increase the sparsity of the reconstruction weight vector. However,excessively high

values induce a limitation on the number of the selected bases, leading to a reconstruction

with only one base (Figure 5.17, λ1 = 0.3 case). The presence of λ2 remove this limitation.

Furthermore, the penalization introduced by λ2 ensure the uniqueness of the sparse coding

solution which is required for the online dictionary update algorithm (Section 4.3). Despite

this, a high λ2 value decrease the sparsity of the reconstruction weight vector.
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Figure 5.17: Reconstruction weight vectors for the cuboid with different λ1 and λ2 values.

The values used for λ1 and λ2 were:

λ1 = 0.09 (5.4)
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λ2 = 1× 10−15 (5.5)

As regards the unusual event detector, the threshold ε defined in Section 4.4 was obtained

from:

ε = 1.9JD (5.6)

where JD is obtained from Equation 4.1 using the initial dictionary as D and the data

used to learn the dictionary as X.

5.4.2 Online Dictionary Update

As explained in Section 4.3, the dictionary is updated in an online fashion as the algorithm

observes more data. In this section are compared the results of the unusual event detection

keeping the dictionary fixed along the entire video sequence with the ones with the dictionary

update. Tables 5.2, 5.3 and 5.4 show the results using videos LabBrisa 1, YouTube 1 and

YouTube 4 respectively. The LabBrisa 1 video only has usual events while YoutubeVideo 1

and YoutubeVideo 4 has usual and unusual events (details about these videos are provided in

Sections 5.4.4 and 5.4.5). The tables with the results have three categories: Correct Unusual

Event Detection (CD), False Alarm (FA) and Missed Unusual Event Detection (MISS) and J̄

(mean J along the entire sequence, obtained from Equation 4.1). To maintain the coherence

between the results, the HOG/HOF descriptor was used in all experiments.

CD FA MISS J̄

Fixed D 0 3 0 1.38

Updated D 0 2 0 1.11

Table 5.2: Comparison between a fixed D and an updated D for LabBrisa 1 using
HOG/HOF descriptor.

CD FA MISS J̄

Fixed D 48 0 0 1.69

Updated D 48 0 0 1.62

Table 5.3: Comparison between a fixed dictionary and an updated dictionary for Youtube-
Video 1 using HOG/HOF descriptor.
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CD FA MISS J̄

Fixed D 8 3 0 1.35

Updated D 10 1 0 1.19

Table 5.4: Comparison between a fixed dictionary and an updated dictionary for Youtube-
Video 4 using HOG/HOF descriptor.

It can be observed that the fixed dictionary method produce more false alarms than the

one with the updated dictionary. This is due to the inability for adapting to the changing

contents of the video.

According to [41], the algorithm efficiency can be improved by initializing At and Bt as:

A0 = t0I (5.7)

B0 = t0D (5.8)

where t0 constant. After several tests, the value choosed was t0 = 10. Although this

initialization produce slightly better results, it is not critical for the overall performance of

the dictionary update.

5.4.3 Unusual Event Detector with KTH Human Actions Dataset

The KTH Human Actions Dataset can be used to evaluate the unusual event detector under

favourable conditions, without occlusions. Although, some human actions are physiognomi-

cally similar to others, like jogging vs running or handwaving vs handclapping. To evaluate

the unusual event detector, the initial dictionary was learned from sequences of one type of

human action at a time and the unusual event detector was tested with sequences of the 6

types of actions in the dataset. This process was repeated for the three descriptors presented

in Chapter 3.

The results are shown in Tables 5.5, 5.6 and 5.7. Each row represent the human action

used to learn the initial dictionary, while each column represent the human action used to

test the unusual event detector. Since the video sequences in this dataset contains only one

event, the results are presented in a error rate r as follows:

r = F

T
(5.9)
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where F is the number of incorrect evaluations and T is the number of sliding windows

tested along the video sequence. It was considered as an incorrect evaluation the false alarms

and the missed unusual event detections. The highest values are in bold text.

Walking Jogging Running Handwaving Handclapping Boxing

Walking 0 0.09 0 0 0 0

Jogging 0.06 0.12 0.13 0 0 0

Running 0 0.1 0.06 0 0 0

Handwaving 0 0 0 0.16 0.19 0

Handclapping 0 0 0 0.27 0.15 0

Boxing 0 0 0 0 0 0

Table 5.5: Results of the unusual event detector using HOG/HOF descriptor for KTH
Human Action dataset

Walking Jogging Running Handwaving Handclapping Boxing

Walking 0.05 0.14 0 0.03 0 0.11

Jogging 0.14 0.3 0.18 0.21 0.15 0.18

Running 0.14 0.25 0.29 0.23 0.08 0.14

Handwaving 0 0 0 0.17 0.38 0.39

Handclapping 0 0 0 0.29 0.15 0.39

Boxing 0 0 0 0.17 0 0.14

Table 5.6: Results of the unusual event detector using HOG-NSP descriptor for KTH
Human Action dataset
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Walking Jogging Running Handwaving Handclapping Boxing

Walking 0.03 0.53 0.41 0 0 0

Jogging 0.28 0.06 0.51 0 0 0

Running 0.21 0.64 0.06 0 0 0

Handwaving 0 0 0 0 0.16 0.19

Handclapping 0 0 0.05 0.26 0 0.29

Boxing 0 0.09 0.11 0.27 0.11 0

Table 5.7: Results of the unusual event detector using COV3D descriptor for KTH Human
Action dataset

Observing Tables 5.5, 5.6 and 5.7 it is possible to conclude that the HOG/HOF descriptor

yields the best results. It can also be noticed that the relation jogging vs running was the one

that caused the worst results. More specifically, COV3D descriptor shown many difficulties

to distinguish between walking, jogging and running.

Lastly, different human actions were combined for the dictionary learning step. The idea

is to know if the detector detracts the ability to correctly evaluate the normality of events.

The test video clip, referred as KTH-All Actions contains different sequences of all human

actions presents in the dataset, in a total 6000 frames. Table 5.8 shows the results using a

dictionary learned from walking and handwaving sequences, while for Table 5.9 it was used

a dictionary learned from running and boxing sequences. The results are presented in three

different categories: CD, FA and MISS.

CD FA MISS

HOG/HOF 104 7 7

HOG-NSP 79 28 11

COV3D 73 19 26

Table 5.8: Results of the unusual event detector for KTH-All Actions video with a dictio-
nary learned from walking and handwaving sequences.
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CD FA MISS

HOG/HOF 106 11 1

HOG-NSP 79 19 20

COV3D 63 14 41

Table 5.9: Results of the unusual event detector for KTH-All Actions video with a dictio-
nary learned from running and boxing sequences.

The results presented in Tables 5.8 and 5.9 can be evaluated with a F1 score [43]. The

F1 score measures the test’s accuracy as follows:

F1 = 2TP
2TP + FP + FN

(5.10)

where TP are the true positives (correct unusual event detections), TN the true negatives

(false alarms) and FN the false negatives (missed unusual event detections). An F1 score

equal to 1 represent the best value while F1 = 0 is the worst value.

Taking into account the results of Tables 5.8 and 5.9, the F1 scores for KTH-All Actions

video are shown in Table 5.10.

HOG/HOF HOG-NSP COV3D

F1 0.94 0.80 0.73

Table 5.10: F1 score for KTH Human Actions Dataset with multi-event dictionaries.

From Tables 5.8, 5.9 and 5.10 it is clear that the HOG/HOF descriptor yields the best

results. As mentioned above, the HOG-NSP and specially the COV3D descriptors have

some difficulties to distinguish actions like running and jogging. This handicap is aggravated

when the dictionary has multiple events, leading to a reduction of the performance of these

descriptors.

5.4.4 Unusual Event Detector with LabBrisa Videos

The LabBrisa videos are important to evaluate the robustness of the detector when dealing

with multiple events and occlusions. Tables 5.12 and 5.13 present the results in three different



CHAPTER 5. EXPERIMENTAL RESULTS 49

categories: CD, FA and MISS. For LabBrisa 1 the results are only evaluated by the number

of FAs.

Table 5.11 exhibit the unusual event detection results for LabBrisa 1.

HOG/HOF HOG-NSP COV3D

FA 2 9 9

Table 5.11: Number of false alarms obtained for LabBrisa 1.

The results of the detector applied to LabBrisa Video 2 are shown in Table 5.12.

CD FA MISS

HOG/HOF 15 0 0

HOG-NSP 13 0 2

COV3D 14 0 1

Table 5.12: Results of the unusual event detector for LabBrisa 2.

Table 5.13 shows the results of the unusual event detector applied to LabBrisa 3.

CD FA MISS

HOG/HOF 17 1 1

HOG-NSP 15 1 3

COV3D 18 1 0

Table 5.13: Results of the unusual event detector for LabBrisa 3.

Taking into account the results of Tables 5.12 and 5.4, the F1 score defined in subsection

5.4.4 for LabBrisa Videos are shown in Table 5.14.

HOG/HOF HOG-NSP COV3D

F1 0.97 0.90 0.97

Table 5.14: F1 score for LabBrisa Videos.
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Observing Table 5.14 it can be verified that the F1 scores are quite similar for the three

descriptors. Despite some MISS for the HOG-NSP descriptor case (Tables 5.12 and 5.13),

the detector has properly gauged the normality of the majority of the events.

5.4.5 Unusual Event Detector with Youtube Videos

In this section, the unusual event detector is applied to a number of videos downloaded from

YouTube, after learn the initial dictionary from a small initial portion of the video. As in

Section 5.4.4 the results have three categories: CD, FA and MISS.

The results of the unusual event detector applied to YoutubeVideo 1 are shown in Table

5.15.

CD FA MISS

HOG/HOF 48 0 0

HOG-NSP 48 0 0

COV3D 48 0 0

Table 5.15: Results of the unusual event detector for YoutubeVideo 1.

Table 5.16 shows the results of the unusual event detector applied to YoutubeVideo 2.

CD FA MISS

HOG/HOF 25 2 0

HOG-NSP 25 1 1

COV3D 26 1 0

Table 5.16: Results of the unusual event detector for YoutubeVideo 2

The results of the unusual event detector applied to YoutubeVideo 3 are shown in Table

5.17.
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CD FA MISS

HOG/HOF 37 4 0

HOG-NSP 38 2 1

COV3D 39 2 0

Table 5.17: Results of the unusual event detector for YoutubeVideo 3.

Table 5.18 shows the results of the unusual event detector applied to YoutubeVideo 4.

CD FA MISS

HOG/HOF 10 1 0

HOG-NSP 9 2 0

COV3D 10 0 1

Table 5.18: Results of the unusual event detector for YoutubeVideo 4.

Taking into account the results of Tables 5.15, 5.16. 5.17 and 5.4, the F1 score defined

in subsection 5.4.4 for LabBrisa Videos are shown in Table 5.19.

HOG/HOF HOG-NSP COV3D

F1 0.97 0.97 0.98

Table 5.19: F1 score for LabBrisa Videos.

It can be observed that the F1 score is practically identical for the three descriptors. Fur-

thermore the acquired values show a quite good accuracy in the evaluation of the normality

of events in ”real-world” videos.

5.4.6 Time Complexity

In addiction to the capacity to correctly evaluate the normality of an event, the response

time of the system is another factor with particular relevance. In some situations one delayed

unusual event detection can be as severe as one missed detection. Therefore, this subsection
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compares the temporal performance of the unusual event detector for the three implemented

descriptors.

Table 5.20 compares the speed of the detector for each descriptor. The values presented

are an average calculated for all videos in one dataset.

KTH Dataset LabBrisa Videos YouTube Videos

HOG/HOF 15.8fps 7.6fps 9.7fps

HOG-NSP 33fps 19.4fps 30.5fps

COV3D 8.3fps 2.4fps 5.9fps

Table 5.20: Temporal performance of the unusual event detector.

The descriptor for which was verified the best temporal performance was HOG-NSP.

One of the main reasons for that is the need to calculate the optical flow in the HOG/HOF

and COV3D descriptors, which is significantly slower than the HOGs computation. It was

also noted that the COV3D descriptor was the one with the worst speed results.
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Conclusion

This dissertation presents a methodology that is capable of detect unusual events on video

sequences or video streams. Resorting to a sparse coding formulation, the proposed method-

ology reconstructs the observed events from a dictionary learned only from usual events

and evaluate their normality based on the correspondent reconstruction error. Each event

is represented in a sparse manner, by a group of spatio-temporal regions of interest, called

cuboids. This sparse representation of events leads to a memory saving and an increased pro-

cessing speed, when compared to dense representations. A cuboid is described by a vector,

obtained by a local features descriptor. In this work, three different descriptors have been

implemented: HOG/HOF, HOG-NSP and COV3D. It was observed that the local descrip-

tor performance is essential to obtain an efficient unusual event detector, since cuboids need

to be described in a discriminatory manner in order to be distinguished from each other.

Finally, the dictionary is updated with the newly observed event. This online update grant

the unusual event detector with the capacity to adapt his knowledge of what is an usual

event to behaviour changes of the environment.

Throughout the accomplishment this dissertation, important conclusions have been made.

Firstly, it was observed that the three descriptors used in this work are capable to describe

cuboids in a discriminatory manner, giving the system the capacity to efficiently classify un-

usual events. This also proves the robustness of the sparse coding formulation when used for

event classification. Secondly, it has been concluded that the HOG/HOF descriptor yields to

the best results, when compared to HOG-NSP and COV3D. Nevertheless, their processing

time gives rise to certain hindrances when applying for a real-time system. This problem is

also verified in COV3D descriptor. However, with some additional work, this system could

be implemented using distributed and parallel processing, which will lead to shorter execu-
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tion times. Furthermore, having better hardware can always decrease the execution time.

Moreover, it has been observed that the combination of intensity gradients and optical flow

features is an efficient approach when used as a local descriptor (HOG/HOF and COV3D).

Concerning to HOG-NSP, its main advantage is the speed processing which is considerably

greater than the ones showed by HOG/HOF and COV3D.

Concluding, this work presents an unusual event detector that can evaluate the normality

of events in different environments (indoor, outdoor) and containing different categories

(human, vehicles, etc.) with promising results.

In the future, similar experiments could be made with longer videos extracted from real

video-surveillance scenarios, like underground stations, airports, etc. Another important

point is to search for a descriptor with the discriminatory capacity of HOG/HOF descriptor

and the speed performance of HOG-NSP in order to make this unusual event detector a

solution that could be applied in real-time video-surveillance systems with superior results.
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