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Abstract

Graphene, a recently discovered material, is demonstrating its power to revolutionize
and drive the future of many industrial fields, as a consequence of the unusual and fas-
cinating properties that it exhibits. The dynamics of electrons propagating in Graphene
Superlattices (GSLs) is the subject addressed, with particular focus on recently proposed
numerical solution based on the Finite-difference time-domain (FDTD) method. This
numerical method has been playing an increasingly important role to solve electromag-
netic problems. However, the nature of these techniques imposes very long and tedious
simulation times. As a result, the demand for efficient and fast solutions is a require-
ment to attain simulations with pertinent problem dimensions and reasonable execution
times. This thesis proposes a parallel computational approach based on the Open Com-
puting Language (OpenCL) standard, to simulate the time evolution of the electron wave
propagating in GSLs, allowing the exploration of heterogeneous computing platforms
composed by Central Processing Unit (CPU), Graphics Processing Unit (GPU) and other
modern processors. The implemented solution shows significant speed-ups, compared
with the traditional tools used to perform this sort of simulations (Matlab and Mathemat-
ica), and also provides accurate results to study the behaviour of electron waves is these
structures. A speed-up of 180x is observed, when comparing with the Mathematica ver-
sion, and 100x for the Matlab version. Thus, the execution time is reduced from 36 hours
(Mathematica) and 20 hours (Matlab) to a matter of minutes.

Keywords

Open Computing Language (OpenCL), CPU, GPU, Parallel Computing, Graphene
Superlattice (GSL) , Finite-difference time-domain (FDTD)





Resumo

O grafeno, um material recentemente descoberto, tem vindo a demonstrar propriedades
capazes de revolucionar o futuro de muitas áreas da indústria. A dinâmica dos electrões
que se propagam em super-redes de grafeno, é o assunto abordado. Em particular, através
de um recente estudo, que propõe um método numérico baseado nas diferenças-finitas
no domı́nio do tempo, para caracterizar a evolução temporal dos electrões neste material.
Este método tem vindo a desempenhar um papel cada vez mais importante na computação
de modelos electromagnéticos. No entanto, a natureza deste processamento impõe tem-
pos de simulação longos. Esta tese propõe uma abordagem paralela, baseada no standard
OpenCL, para simular a evolução temporal da onda do electrão a propagar-se em super-
redes de grafeno, permitindo a exploração de recursos em plataformas de computação
heterogéneas compostas por Unidades de Processamento central CPUs, Unidades de Pro-
cessamento Gráfico GPUs e outros tipos de processadores modernos. A solução imple-
mentada demonstra um ganho em tempo de simulação muito significativo, comparado
com as versões homólogas obtidas em Mathematica e Matlab. Observou-se uma mel-
horia de 180x para o caso da versão em Mathematica e de 100x para a versão Matlab.
Verifica-se assim uma redução na versão paralela mais eficiente, executando em arqui-
tectura heterogénea, de 36 horas (Mathematica) e 20 horas (Matlab) para 12 minutos do
tempo de simulação.

Palavras Chave

OpenCL, Unidade de Processsamento Central (CPU), Unidade de Processamento
Gráfico (GPU), Computação Paralela, Super-rede de grafeno (GSL), Diferenças-finitas
no domı́nio do tempo (FDTD)
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1. Introduction

A continuous technological evolution has proven, throughout history, to be a powerful
tool, advancing many scientific and social fields, and consequently improving quality of
life. On the basis for this evolution is the realization and manipulation of new materials.
Graphene, a carbon based material, is a 2-dimensional crystal that has been around for
centuries, since the invention of the pencil [1]. In fact, graphite is composed by stacks
of graphene layers and every time a pencil is pressed against a sheet of paper, one can
actually be producing graphene layers. Even though graphene was theorized a long time
ago, it was isolated for the first time in 2004 by K. S. Novoselov and A. K. Geim [2].
The main reasons behind this is that no one actually thought that graphene could exist
in free state and no experimental tools to search one-atom-thick materials existed before.
Since its inception, there has been extensive research in order to characterize this mate-
rial. Among the graphene properties already known are the high conductivity of heat and
charge carriers, transparency, strength and flexibility, which makes it one of the strongest
and most flexible materials known [1]. These properties are very exciting and have the
potential to revolutionize science and many industrial fields.

The characterization and study of all these properties has proven to be a challenge due
to the complexity of mathematical models and difficulty to match such complexity to the
existing computational resources.

To overcome these challenges, that cut across many scientific areas, there has been an
effort to develop computer architectures and software models capable of addressing these
problems and provide the right amount of resources, new techniques and concepts.

High-Performance Computing (HPC) platforms play an important role at this level.
They allow scientific and engineering applications to enable the execution of computa-
tionally intensive tasks. Their evolution has been mainly due to the advancement of com-
puter architectures, namely the Central Processing Unit (CPU) and, lately, the Graphics
Processing Unit (GPU). Among others, these represent two architectures widely dissem-
inated and they have been extensively used under the context of this work.

1.1 Objectives

If we consider the graphene time line, it is possible to understand that all major ef-
forts are directed to understanding and characterizing the properties that this material
exhibits. Thus, taking also into account the innovations in the computational field, this
thesis is focused in the exploration of the computational resources necessary to develop
better models and new and faster algorithms to properly characterize the electron wave
propagation in graphene-based nanomaterials.

The main goals of this thesis are:

2



1.2 Main contributions

• Supported by a solid theoretical background, perform the study of time evolution
of electron waves in graphene;

• Identification of the target parallel computing architectures to achieve significant
performance improvements and a suitable programming framework for designing
the program and also provide code portability;

• Selection of appropriate data structures for optimal exploitation of the memory hi-
erarchy;

• Development of a parallel strategy and kernels for accelerating numerical methods
based on the Finite-difference time-domain (FDTD);

• Design scalable parallel solutions for running on heterogeneous architectures com-
prised by CPUs and GPUs or the combination of both.

1.2 Main contributions

Commonly, the study of electron wave propagation is performed using Wolfram Math-
ematica software due to a high-level programming language and a hybrid symbolic-
numeric methodology. Applying such software to this particular research field becomes
impractical when considering the pertinent spatial dimensions and simulation times for
graphene lattices. This results in simulations that can take weeks to complete on a
conventional CPU. Thus, in order to better understand the algorithm [3], a Matlab ap-
proach was first adopted. A throughput performance upgrade was achieved, however
the computation time still was unfeasible, resulting in simulations which took hours to
perform. Therefore, the parallelization was a possible next natural step. After consid-
ering several platforms, GPUs were selected together with the use of Open Computing
Language (OpenCL) framework, to simultaneously achieve throughput performance and
code portability. The wave propagation simulation is an iterative process, which imposes
limitations in the parallelization procedure. This is due to the nature of the execution of
the FDTD algorithm that exhibits, particularly in this study, space and time dependen-
cies. With the parallel solution devised, performance improvements reach up to 180x,
reducing, thus, hours of simulations to a matter of minutes.

The contributions of this thesis to the scientific community resulted in a paper pub-
lished in conference proceedings:

• David Fernandes, Manuel Rodrigues, Gabriel Falcão and Mário Silveirinha; ”Time
dynamics of electron waves in graphene superlattices”, Proc Theory, Modelling and

3



1. Introduction

Computational Methods for Semiconductors - European Session, Granada, Spain,
Vol. 1, pp. 1 - 1, January, 2015.

Also, we have submitted an article for review:

• David Fernandes, Manuel Rodrigues, Gabriel Falcão and Mário Silveirinha, ”Time
Evolution of Electron Waves in Graphene Superlattices”, In Physical Review B,
April 2015.

Furthermore, it is under final preparation for submission the following article:

• Manuel Rodrigues, David Fernandes, Mário G. Silveirinha, and Gabriel Falcão.
Electron wave propagation in graphene superlattices: Parallel Computational Mod-
els for Heterogeneous Architectures. International Journal of High Performance
Computing Applications, Sage, May 2015.

In addition, the work developed provides a basis to study other properties, namely the
conductivity of graphene, and is now being applied to such purpose. These studies also
are computationally heavy and represents an extension on the work already developed.

1.3 Dissertation outline

This thesis is organized in 6 chapters. The following chapter presents a brief overview
of multicore architectures, namely CPUs and GPUs. In chapter 3 a detailed description of
the theoretical model is presented. The parallelization process of the pipeline is addressed
in chapter 4. In chapter 5 the simulation results are discussed. Finally, the conclusions
and future work are addressed in chapter 6.

4
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2. Parallel Computing Architectures: Central Processing Unit and Graphics
Processing Unit

The evolution of computer architectures has made a long way and is currently dom-
inated by the massive use of two distinct platforms: the Central Processing Unit (CPU)
and the Graphics Processing Unit (GPU). Conceptually, they are designed to cover dif-
ferent purposes. The CPU was created to perform general-purpose tasks, while the GPU
was developed to manage graphics related functions such as image rendering. To bet-
ter understand these architectures it is interesting to browse history and perceive the key
milestones that led to the evolution of each architecture all the way up to today standards.
It is also important to refer that improvements on the software and compilers side allowed
the programmer to take advantage of all the newly available hardware resources, as we
see a great amount of effort being put on the improvement and development of new pro-
gramming paradigms to meet today’s requirements. In what concerns the GPU, in the last
decade, there has been a massive interest in applying it for general-purpose computing,
mainly because of the flexibility and processing power offered.

In this chapter, an overview of CPU and GPU architectures is presented, by analyzing
some of the most recent Nvidia, AMD and Intel architectures. Also, a detailed description
regarding the OpenCL framework is given.

2.1 Central Processing Unit (CPU)

With silicon and semiconductor technological advances, the number of transistors
doubling every two years in the die area according to Moore’s Law [4], and also mo-
tivated by the increase of complexity in software applications, the CPU architecture is
transforming and improving basically every year. Although, it is in constant evolution,
the conceptual hardware model remains almost the same. This architecture comprehends
a control unit and a datapath, where the first is responsible for managing the flow of in-
structions and the second performs operations. Today’s mainstream CPU architectures
offer a small number of complex cores highly optimized for single-thread execution by
applying techniques like instruction pipeline, out-of-order execution, branch prediction,
among others [5–7]. To minimize memory access time, hierarchical models of small but
fast caches are implemented, taking advantage of temporal and spatial locality principles
for code and data [8]. In recent years a paradigm shift in the hardware design has been
noticed, mostly because of power consumption and heat dissipation walls [9], and archi-
tectures continue increasing processing power by adding more cores within the chip and
enabling thread execution.

6



2.2 Graphics Processing Unit (GPU)

2.1.1 Intel’s Sandy Brigde Architecture

To better visualize the CPU architecture philosophy, this section presents an overview
on one of the many architectures released by Intel. The Sandy Bridge was the evolution
from the Nehalem architecture and the first Intel chip to integrate a graphics processing
unit. As depicted in figure 2.1, this computer architecture offers four cores with a hier-
archical memory cache system. Each core is associated with two independent levels of
cache (L1 and L2) enabling a faster execution of programs by reducing the memory la-
tency when fetching instructions and data. Furthermore, the last level of the cache system
(L3) is connected by a ring interconnector in order to share data between the cores and
the adjacent GPU. The four cores contain not only Arithmetic and Logic Units (ALUs)
but also a large set of resources to accelerate a program execution, such as branch pre-
dictors, registers renaming, buffers reordering, among others. Another feature introduced
in this architecture is the support of thread execution (Intel’s HyperThreading design). In
particular, this hardware supports the execution of two treads per core, making a total of
8 available threads. [10]

Core
L1

L2

L3 L3 L3 L3

GPU Ring Interconnector 

Core
L1
L2

Core
L1
L2

Core
L1
L2

Figure 2.1: Intel Sandy Bridge architecture abstraction.

2.2 Graphics Processing Unit (GPU)

Specialized hardware for graphics purposes have been used since the 1970s [11]. Be-
ing the core purpose of these architectures to execute the graphics pipeline, they evolved
from graphics-specific hardware to a massively parallel programmable processors [12].
The major motivation for this evolution was, and continues to be, the real-time graph-

7



2. Parallel Computing Architectures: Central Processing Unit and Graphics
Processing Unit

ics performance required to render complex 3D scenes mostly for videogames. This
demand for performance drastically shifted the architectural hardware design from the
CPU, because most of the available chip area is used by computational units benefiting
throughput performance instead of low latency [13]. As programmable shaders emerged
and after the introduction of new features (floating point arithmetic, special unit func-
tions, double-precision support), it was realized that one could use GPUs for general-
purpose processing [14]. The GeForce 8800, introduced by Nvidia in 2006, was the first
graphics card using a unified shader model, named Compute Unified Device Architecture
(CUDA) [15, 16]. In summary, these devices became more flexible and programmable,
and at the same time provide a tremendous amount of computational power, due to the
large number of included cores. Furthermore, another key attribute presented in this hard-
ware is the incorporation of large buses, resulting in substantials bandwidths, to feed the
computational units with enough data [17]. All these features make the GPU an optimal
solution for parallel computing.

2.2.1 GPU architecture

The high-level view of a GPU relies in three fundamental features:

• Clusters of cores;

• Memory system;

• Interconnection Network.

Modern GPUs are designed to pack groups of cores, thus providing a coarse-grain level
for data and task parallelism. These cores are characterized by being simple hardware
units to perform arithmetic and logic units.

Core Core Core ... Core

Interconnection Network 

Memory System

Figure 2.2: High-level view of a GPU.

The memory system presented in current GPUs is mostly based on Dynamic Random
Access Memory (DRAM). This technology is characterized by the use of a capacitor to

8
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store the bit value. This feature allows the incorporation of more memory capacity in the
chip area. A down side of this technology is the increase of latency due to the nature of
the capacitors. These memory systems are composed by:

• Banks that store the actual data and have a 2-dimensional structure;

• Controller which is responsible to schedule commands to read/write data from/to
banks;

• Bus that connects the banks to the controller.

Memory
Controller

Memory
Controller

... Memory
Controller

DRAM Bus

DRAM
Bank

DRAM
Bank

DRAM
Bank

...

Figure 2.3: DRAM memory system.
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Figure 2.4: DRAM memory bank.

Successive addresses in memory are located in consecutive columns in the same row,
thus sequential accesses to the same row in the bank have low latency. Also, current
controllers schedule accesses to the same row before scheduling accesses to a different
row. The element binding the clusters of cores and the memory system is usually a wide
bus (represented in figure 2.2 by the interconnection network). This bus is characterized
by large bandwidths in order to fetch enough data to the compute units. Additionally,
these architectures offer other resources to improve the execution of the graphics pipeline,
in particular, texture units. This is mainly a cache system, that captures 2D spatial locality,
helping to fetch memory more rapidly.

2.2.2 Nvidia’s Kepler architecture

A recent GPU architecture, the Kepler architecture, is shown in figure 2.5. It features
five Graphics Processing Clusters (GPC) comprising, each one, three streaming multi-
processors. The GigaThread Engine is responsible to schedule and distribute groups of
threads, called thread blocks, to the streaming multiprocessors to dynamically balance
the workload across the device. The Kepler streaming multiprocessor (SMX) comprises
192 single-precision CUDA cores, 64 double-precision units, 32 special function units, 32
load/store units and a 64-Kbyte shared memory/L1 cache. Apart from this, it also offers
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some special units to improve graphics rendering performance (PolyMorph Engine 2.0).
The streaming multiprocessor employs a Single Instruction Multiple Thread (SIMT) ar-
chitecture, that executes concurrent threads in groups of 32 parallel threads, called warps,
and they are managed and scheduled by four warp schedulers. The L1 cache provides
low latency, high-bandwidth access to data shared by threads within the same threaded
block. [18]
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Figure 2.5: Kepler GPU computing architecture.

2.2.3 Advanced Micro Devices (AMD) Graphic Core Next (GCN) ar-
chitecture

The GCN architecture is the current proposal from AMD to the GPU segment. This
hardware features a command processor that is responsible for receiving commands and
mapping them onto the two main pipelines (compute shaders and graphics shaders), clus-
ters of Compute Units (CUs), a cache system and schedulers (ACE) that manage the work
and resources allocation. The AMD Radeon R9 280X, one of the GPUs used in this work,
is composed of 32 CUs. Within a compute unit there are four Single Instruction Multi-
ple Data (SIMD) engine units, and each of these units comprises 16 ALUs. Thus each
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SIMD unit executes a single operation across 16 work-items. The hardware also sched-
ules groups of threads to execute concurrently, that are called wavefronts. The number of
threads that compose a wavefront is 64. In this architecture, a wavefront takes 4 cycles to
execute, thereby a quarter of a wavefront is executed on each cycle. All threads executing
on the same Compute Unit (CU) can share data through the Local Data Share unit. More-
over, each SIMD unit executes an independent wavefront and possesses 64KB of vector
General-Purpose Registers. [19]

GCN 
Compute Unit

GCN 
Compute Unit

GCN 
Compute Unit

GCN 
Compute Unit

L2 Cache

.. .

...

Scheduler

SIMD Engine SIMD Engine SIMD Engine SIMD Engine

Vector Register Vector Register Vector Register

ALU
0 ...ALU

1
ALU
15

Global Data share

Command Processor

Cluster

.. .
Cluster

Memory
Controller

Memory
Controller...

ACE ACE

Local Data Share

L1 Cache

Scalar
Engine

Scalar
Registers

Branch&Message Unit Texture Filter Units Texture Fetch L/S units

Vector Register

Figure 2.6: CGN computing architecture.
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2.3 GPU Programming

The increasing interest on GPU architectures for performing general-purpose comput-
ing is helping the advancement of these devices from an hardware and software perspec-
tives, as a consequence of a great deal of effort being made to widespread the concept of
GPU computing. From these efforts emerged several programming frameworks, namely
OpenCL and CUDA. In essence, GPUs are SIMD engines at the hardware level, however
the programming is performed using threads, not SIMD instructions, which is designated
by SIMT. Each thread executes the same code, but operates over a different data element,
and the hardware groups threads executing the same instruction. As previously described,
CPU and GPU hardware architectures have distinct characteristics, thereby it is important
to consider some aspects in order to more efficiently utilize the hardware [20, 21]. This
section discloses important considerations when programming these architectures.

2.3.1 Coalesced Memory accesses

In contrast to the CPU, GPU devices are memory latency tolerant, meaning that as
long as the application executing is compute intensive, it can be computing data while
other is being fetched from memory. Thus, one of the most important considerations,
when developing GPU applications, concerns the management of memory operations.
For an efficient use of the available hardware the program must perform coalesced mem-
ory accesses. To better understand how memory operations are performed in the GPU
let’s assume a group of threads executing in parallel and some scenarios when read/write
operations from/to memory are performed.

 Thread
 Global Index     0        1      2        3      4       5        6         7        8        9     ...  

Memory 
Address     0        4        8        12      16      18      22      26      28      32      ...

Figure 2.7: One thread accessing one element of memory.

Whenever a thread executes a read or write operation it always accesses a large portion
of memory, as depicted in figure 2.7 by the dashed rectangle, even when one element
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of memory is being accessed. In this case, there is a waste of resources because we
are not taking full advantage of the resources available. The ideal case is depicted in
figure 2.8. Here, a group of threads executing in parallel are accessing successive elements
in memory, which constitutes a coalesced memory access. There is just the need of a
single memory access to fetch all the necessary data.

 Thread
 Global Index     0        1      2        3      4       5        6         7        8        9     ...  

Memory 
Address     0        4        8        12      16      18      22      26      28      32      ...

Figure 2.8: Coalesced memory access.

Another example is described by the access of memory locations with a stride. Fig-
ure 2.9 shows this feature. Even though the stride is constant, and the same amount of
data is being accessed, this operation will take longer to conclude. This is because one
memory access will not suffice to deliver all the data, considering the example shown in
figure 2.8.

Memory 
Address     0        4        8        12      16      18      22      26      28      32      ...

 Thread
 Global Index     0        1      2        3      4       5        6         7        8        9     ...  

Figure 2.9: Strided memory access.

Therefore, memory operations represent a crucial element that needs to be considered
to improve the throughput performance of programs being executed in GPUs.
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2.3.2 Memory Bank conflicts

Bank conflicts occur when two or more work-items are fetching data from the same
memory bank at the same instant. This results in a serialized operation, damaging perfor-
mance. Although this is generically true, there is a special case that takes place when all
the work-items in the work group are accessing the same memory bank. In this scenario
the data is fetched to all work-items at the same operation (also called broadcast). [22]

 Thread
 Global Index     0        1      2        3      4       5        6         7        8        9     ...  

Memory 
Address     0        4        8        12      16      18      22      26      28      32      ...

Figure 2.10: Bank conflict. Two threads requesting the same data element.

2.3.3 Branch divergence

Another issue to consider is related with conditional control flow instructions. To
illustrate this idea let’s assume that the hardware can execute 8 threads in parallel, and all
of them are executing the same operations over a data set. When a conditional instruction
appears there is a possibility of some threads execute path 1 and the remaining path 2. In
this scenario the hardware schedules the execution in parallel of all threads that execute
the same path. This leads to a waste of hardware resources, as illustrated in the figure 2.11.
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Branch

Path 1
Path 2

t

Figure 2.11: Branch divergence scenario where some threads execute path A and the
remaining path B.

2.4 OpenCL

OpenCL is a project started by Apple and currently managed by the non-profit tech-
nology consortium Khronos group [23]. It defines an open standard that allows the pro-
gramming of a heterogeneous collection of modern processors (CPUs, GPUs, FPGAs,
etc). In his essence, OpenCL is a framework for parallel programming and it includes
libraries, an Application Programming Interface (API) and a runtime system. It is also
vendor agnostic and the hardware support is increasing every year [24].

OpenCL was the framework chosen to develop the proposed work of this thesis. As
previously mentioned it allows parallel programming and most importantly gives the pro-
grammer the power of designing portable parallel programs that can run in a wide range
of processors [25–27].

To better understanding how the standard works, a detailed review is disclosed. The
OpenCL specification is organized in four hierarchical models [28]: platform, execution,
memory and programming.

2.4.1 Platform Model

The platform model is a representation of an abstract hardware architecture that pro-
grammers target when building their OpenCL applications. The platform model is com-
prised of a Host connected to one or more OpenCL devices. An OpenCL device is a
collection of Compute Units, which in turn are divided in Processing elements. Process-
ing elements execute functions called kernels and can be compiled before or during the
program execution. An OpenCL application runs on the host and submits commands to
execute computation on the processing elements within a device. The processing elements
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execute a stream of instructions as SIMD units or as SPMD units.

......
...

.........
...

...
......

...
.........

...
...

Host

OpenCL Device
Compute 

Unit

Processing 
Element

Figure 2.12: OpenCL platform model.

2.4.2 Execution Model

The execution model is divided in a host program and kernels. The host program is
responsible for managing the execution of an OpenCL program. It does that by query-
ing the platform where it is running and, accordingly to the query result, allocates the
available resources needed for the kernels execution, specifically the OpenCL devices to
be used, the kernels to be executed and the memory objects that kernels need. Kernels
execute over an index space called NDRange, that is N-dimensional (N = 1,2,3) and can
be seen as the amount of work to perform. An instance of a kernel is called work-item and
executes in the processing elements within the compute unit. Work-items are grouped in
work-groups, thus providing a more coarse-grained index space. Each work-item has a
identifier in the global index space and in the local index space. When targeting a specific
architecture, the work-group size should be an integer multiple of the unit of execution
(warp-size for Nvidia or wavefront-size for AMD) since this represents the minimum level
of execution granularity supported, otherwise the best performance will not be attained.
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   __kernel(_global float *array)
   {
          //Private scope variables
          __private int row;
          __private int tmp;
          //Get work-item global ID
          row = get_global_id(0);
          //Task
          tmp = array[row]*3.0f;
          //Store in global memory
          array[row] = tmp;
   }

...
...
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.  .    .
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Figure 2.13: Partitioning work-items into work groups.

2.4.3 Memory Model

OpenCL provides a memory model with data flow between regions of memory well
defined. In detail, work-items in a kernel have access to four distinct memory regions:

• Global Memory. This memory region is accessible for read/write operations to
all work-items in all work-groups. Depending on the capabilities of the device the
global memory may be cached.

• Constant Memory. Only allows read operations and is available to all work-items.
It is a region of the global memory but has dedicated hardware in order to lower the
average access latency in respect to the Global Memory.

• Local Memory. A memory region that is shared by all work-items of the same
work-group, and is accessible for read/write operations. Depending on the purpose,
users may have to synchronize accesses to this memory in order to keep consistency
of the data. This is done by barriers.

• Private Memory. Consists in a region of memory private to a work-item and is not
visible to any other work-item.
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Figure 2.14: OpenCL memory model.

Depending on the application’s nature, the exploration of this memory model can result in
a performance increase, specially when using local memory. In this case, some require-
ments must be met by the data access pattern, such as data share between a work-group.
Memory consistency must be also considered in order to preserve data integrity. OpenCL
provides functions (barriers) to deal with these situations.

2.4.4 Programming Model

The OpenCL standard supports data and task parallel programming models and every
device that supports OpenCL implements at least one of these models, although it is more
common to see both of them implemented [28].

2.4.4.A Data Parallel Programming Model

A data parallel programming model can be seen as a sequence of instructions applied
to a large collection of data. In a strictly data parallel model, there is a direct correspon-
dence between the work-item and the data element over which a kernel can be executed
in parallel. OpenCL implements a relaxed version of this model where a strict one-to-
one mapping is not required and provides a hierarchical model where the programmer
specifies the total number of work-items to execute in parallel and how they are divided
among work-groups. Alternatively, the programmer only specifies the total number of
work-items and all the rest is managed by the OpenCL framework.
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2.4.4.B Task Parallel Programming Model

This case is specified by the model in which the parallelism is expressed by enqueuing
multiple tasks to execute in parallel in the device. It can also be viewed as several work-
groups executing independently and in parallel different kernels.

2.5 Load balancing techniques under the OpenCL con-
text

When considering a set of tasks that exhibit different behaviors it is also important to
match these tasks to the appropriate device. As an example, let’s consider a task that mani-
fests branch divergence, in contrast with a task that mainly executes arithmetic operations.
In this scenario, it is reasonable to assume that the first is better well suited to perform
on a CPU device and the latter on a GPU device. Thus, depending on the performance
metric (time, power, accuracy, among others) the development and implementation of pro-
gramming techniques to suit the intended behavior is an important consideration [29,30].
OpenCL shows interesting features in this regard. First, because it is an open standard, the
majority of modern processors support OpenCL, allowing the utilization of the different
devices available in the computing platform. Second, it queries the platform at runtime
enabling the resource allocation based on the nature of the available devices, without prior
knowledge of platform capacities.

2.6 Summary

The evolution of hardware and software architectures made possible a wider range
of computer resources available to the user. Thus, an overview on the CPU and GPU
architectures was presented, highlighting the main differences between them. Accord-
ingly, CPU is suited to sequential general-purpose applications, while GPUs provide a
highly parallel architecture to efficiently perform data-parallel computations. To attain a
parallel and portable solution, the OpenCL framework was chosen and a comprehensive
description of the OpenCL specification was addressed.
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3. Graphene and the electron wave dynamics

Finite-difference time-domain FDTD techniques are vastly applied to computationally
model a wide range of scientific problems, especially in electromagnetism [31, 32]. This
method is mainly characterized by the use of finite differences as approximations to both
spatial and temporal derivatives. Also, because it is a numerical method, accuracy consid-
erations must be accounted for. The FDTD method can solve complicated problems, but
in general they are computationally expensive. This work analyses a recent proposal that
relies in a FDTD numerical method to solve the propagation problem of electron waves in
graphene lattices [3]. Accordingly, a brief characterization of the material in the study, a
theoretical background and the description of the algorithm being accelerated are shown.
Additionally, this chapter clarifies some issues which needed to be addressed in order to
perform the simulations.

3.1 Graphene

Graphene is a two-dimensional carbon based nanomaterial, one atom thick, material
where the carbon atoms are arranged in a honeycomb structure (figure 3.1). The studies
conducted in the past 10 years unveiled great potential for this material, due to the unusual
and interesting properties that graphene exhibits. Furthermore, the electronic properties
have received an increased attention, thanks to the relativistic spectrum that character-
izes graphene. As recently suggested, a suitable tailoring of the graphene structure may
provide some control over the transport properties of electrons, for instance, applying an
external periodic electrostatic potential on the surface of graphene. These heterostructures
are known as graphene superlattices (GSLs) and may be realized through the application
of different techniques, such as the use of a crystalline substrate, periodically patterned
gates or deposition of adatoms on graphene’s surface [33, 34]. Thus, a theoretical review
of the effective medium and microscopic model for graphene superlattices and the FDTD
solution is disclosed in the next section.
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Figure 3.1: Graphene structure.

3.2 Microscopic and effective Hamiltonians of a GSL

The starting point of the following analysis is the massless Dirac equation, that de-
scribes the propagation of charge carriers in graphene:

(Ĥψ)(r) = ih̄
∂

∂ t
ψ (3.1)

The wave function represented by Ψ is a pseudospinor with two components Ψ= {Ψ1,Ψ2}T .
The reduced Plank’s constant is h̄ and the microscopic Hamiltonian, that takes into ac-
count all the granular details of the graphene material, is given by:

(Ĥψ)(r) =−ih̄vF(σ ·∇)ψ +V (r)ψ (3.2)

From the above equation, the Fermy velocity is vF = 106m/s, σ = (σx,σy) are the Pauli
matrices and V (r) is an external electrostatic potential. Here we consider that this poten-
tial has one dimensional spatial variation:

V (x) =Vav +Voscsin
(

2π

a

)
(3.3)

where Vav in an average potential, Vosc is the maximum amplitude of the oscillating part of
the potential and a is the period of the potential (figure 3.2). As recently suggested [35],
electron waves in periodic systems can be described using an effective medium approach.
Thus, the GSL can be regarded as a continuous medium characterized some effective
parameters, namely an anisotropy ratio (χ) and an effective potential (Ve f f ) (figure 3.2).
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V osc

V av

x

V (x)

χ Veff

V (x)

a

Figure 3.2: Representation of a graphene superlattice characterized by a sinusoidal-like
periodic potential. Microscopic (top) and Effective medium (bottom) approaches.

The correspondent effective Hamiltonian can be given by:

(Ĥe f ψ)(r) = (−ih̄vFσ(χ) ·∇+Vav) ·ψ(r) (3.4)

The previous formalism combined with the developed FDTD algorithm results in a sys-
tem of equations, regarded as update equations, that characterize the time evolution of
electrons propagating in GSLs.

3.3 The FDTD numerical solution

In the conception of the FDTD algorithm, there are some important considerations
that are mainly related with the discretization of the problem in hands. In this particular
case, there is the need to discretize the time and space domain. Thus, it is assumed that
the pseudospinor is sampled at consecutive time intervals and a rectangular grid, in the
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Cartesian space, is applied to sample the position of the pseudospinor. This enables the
use of a finite difference model to calculate the partial derivatives that are presented in
equations 3.1, 3.2 and 3.4. The notation adopted, for a generic function, may be written
as:

F(x,y, t) = F(p∆x,q∆y,n∆t)≡ F(p,q,n) (3.5)

Figure 3.3: Geometry of the grid for the FDTD method.

The proposed solution results in a pair of equations, each one for the correspondent
pseudospinor. They enable the study of the time evolution of the electron wave by apply-
ing them in a loop fashion. The microscopic approach update equations are:
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For the effective medium model approach update equations are:
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3.4 Requirements for a functional simulation

The simulations conducted in this work address the time dynamics of an initial state
and also the propagation of stationary electron waves. Accordingly, there are some differ-
ences. For the first case one applies all the formalism previously described. The propaga-
tion of stationary electron waves corresponds to a slightly different formalism that results
from the addition of a term, in the equation 3.1, which represents a fictitious external
source that injects carriers into the system. The final update equations for both models
are quite similar to the previous described and can be viewed in the appendix A.1.

3.4.1 Initial state

Different from the stationary electron waves, where the initial state is null, the study of
the dynamics of electronic states dependes on the initial state. Thus, for the time evolution
problem it is assumed an initial electronic state of the form:

Ψ(p,q,0) =

(
1
h̄vF (kx+iky)

E0−Vav

)
e−

(p∆x−Xc)2+(q∆y−Yc)2

2R2 +ikyq∆y+ikx p∆x

√
2πR

(3.10)
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where Xc, Yc correspond to the center position and R the width of the Gaussian wave-
packet. The space between nodes is ∆x and ∆y and the position of the node is determined
by (p,q). The energy of the wave packet is E0 and k = (kx,ky) is the wave vector associ-
ated with the electronic state.

3.4.2 Perfect Matched Layer (PML)

In this section, we describe the perfect matched layer, whose role is to mimic the
propagation in an unbounded structure. This layer is responsible for the absorption of
the electron wave when it reaches the end of the graphene superlattice, without causing
reflections that can interfere with the propagation leading to wrong results. Basically this
layer is a complex-valued potential that increases exponentially. There is no state of art
for PMLs in graphene supperlattices, so the tuning of this layer was obtained empirically.

Graphene Superlattice

PML

PML

P
M

L
P

M
L

Figure 3.4: Perfect matched layer.

3.5 Summary

In this chapter a brief characterization of graphene, to contextualize this study, was
presented. Then, a theoretical background, highlighting the key aspects to implement a
functional algorithm, to study the electron wave propagation in graphene supperlattices
was conducted.

In the next chapter a parallelization strategy is devised in order to accelerate the ex-
ecution time of the simulation. From the description given, it is clear that the update
equations play the key role in the simulations being, thus, the focus of attention when
conceiving a parallel solution. In fact, depending on the number of iterations, they are
responsible for the high execution times (representing more than 95% of the execution
time).
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4. Electron wave propagation on the Graphics Processing Unit

The objective of this work is to accelerate the execution of the effective medium and
microscopic approaches in order to study the propagation of electron waves in graphene
superlattices. As reviewed in the previous chapter, the update equations, derived from the
application of the Finite-difference time-domain (FDTD) numerical solution, are the main
focus when performance improvements are the main goal. Nevertheless, a discussion on
how to parallelize all the tasks is presented. Thus, this chapter begins with an understand-
ing on what are the necessary tasks to perform a functional simulation. Task flow and
data dependencies are also identified. By gathering all this information a parallel strat-
egy is devised and a discussion on how OpenCL can enable a solution in heterogeneous
platforms is shown.

4.1 Problem analysis

The first step towards a functional implementation is the analysis and definition of the
tasks to perform. The previous discussion provides a basis on how an algorithm can be
implemented. It is important to clarify that, the two earlier depicted approaches (Micro-
scopic and Effective) will be addressed. From an algorithmic perspective it is noticed that
both share a similar execution model, i.e. given an initial state and applying iteratively
the update equations, results in the propagation of the electron wave. By detailing both
approaches it becomes clear that there are different aspects that need to be considered for
each model. Thus, the next section discloses the features that characterize each model.

4.1.1 Microscopic Model: task flow and dependencies

In order to study the electron wave dynamics, an initial state must be defined. A poten-
tial applied to the graphene lattice has to be tailored and then, resorting in the respective
update equations, executing in a loop fashion, the time evolution of the pseudospinor can
be recorded. Hence, the following tasks are defined:

• Potential. As depicted in the previous chapter the potential applied to the graphene
lattice may control the electron wave propagation. It is regarded as an input to the
update equations and therefore requires a prior computation. For the studies con-
ducted in this work, the potential considered, in this approach, is a one-dimensional
sinusoid. Another aspect to consider is that, when computing the node, if it is
located in the Perfect Matched Layer (PML) zone, an imaginary part must be ac-
counted for.

• Initial state. The pseudospinor initial state is assumed to be a localized Gaussian
wave-packet and is computed also for every node in the grid.
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4.1 Problem analysis

• Update equations. The update equations enable the time evolution of the electron
wave (3.6, 3.7). They are applied to every node on the mesh and are executed in a
loop fashion. The data resulting from the previous tasks, namely the initial state of
the pseudospinor and the potential applied to the graphene lattice are the resources
that this task uses to compute the node’s current value.

4.1.2 Effective Medium Model: task flow and dependencies

In the case of the Effective Medium Model, an anisotropy ratio, an effective potential
and an initial state must be previously determined, and then, by applying the correspond-
ing update equations (3.8, 3.9), the wave propagation can be simulated. Consequently,
the subsequent tasks are established:

• Anisotropy ratio. The anisotropy ratio considered in this study varies in the longi-
tudinal dimension of the lattice, thus, only one line is required to be computed.

• Potential. The lattice is characterized by an individual potential associated with
each node. Therefore, all the nodes in the mesh need to be computed. This potential
is dependent on the anisotropy ratio, thus, a dependency between these tasks is
identified.

• Initial state. The initial state is the only data feature similar in both approaches,
thus it is obtained as described in the microscopic model.

• Update equations. As depicted in the section above, the update equations (3.8,
3.9) that allow the study of the electron wave propagation dynamics are employed
similarly as previous described.
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Anisotropy
ratio

PotentialInitial state 

Update Equations

Figure 4.1: The Effective Medium
Model tasks and dependencies.

PotentialInitial state 

Update Equations

Figure 4.2: The Microscopic Model
tasks and dependencies.

4.1.3 Update Equations

The Update equations consist of a pair of numerical functions that are used to de-
termine the value of each node in a given time instant. Thus, they are applied to every
node that defines the graphene lattice. Another characteristic is the time and space depen-
dencies that they exhibit. Hence, in order to be executed properly, there are access data
patterns and execution procedures that require some particular considerations.

4.1.3.A Time Dependencies

The computation of a time step is always based in the previous one. Consequently,
when computing a new time step there is the need to first compute the pseudospinor Ψ2

and thereafter the pseudospinor Ψ1. Let us examine a simplified version of the update
equations (3.6, 3.7), where it is just demonstrated the wave function time dependencies:

Ψ
n+1
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In equation (4.2) a new time step (n+1) is obtained from the previous (n). Only then, the
pseudospinor Ψ1 can be computed.

32



4.1 Problem analysis

... ...

Ψ 2

Time step n−1 Time step n Time step n+1

Ψ 1

Ψ 2

Ψ 1

Ψ 2

Ψ 1

Figure 4.3: Time dependencies illustrated when computing a new time step.

4.1.3.B Space Dependencies

Once again, the starting point will be a simplified version of the update equations (3.6,
3.7):
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Hence, to compute the node (p,q), for the pseudospinor Ψ1, the neighbors must be ac-
cessed. The same behavior is verified for the pseudospinor Ψ2.
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Figure 4.4: ψ1 space dependencies.

Figure 4.5: ψ1 space dependencies.
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4.2 Parallel approach

With all tasks and dependencies identified we can discuss a parallelization strategy.
Based on the previous analysis, the tasks will be grouped using the following criteria:

• Setup stage. This stage is regarded as the configuration simulation step. Here, the
Potential and Initial State tasks are executed and, when referring to the effective
medium model, the anisotropy ratio as well.

• Update stage. In this phase, the update equations are executed.

Because the setup stage is only performed at the beginning of the execution and remains
constant throughout the simulation, it is straightforward that the main concern, for perfor-
mance improvements, is focused in execution of the Update phase. In fact, when profiling
a simulation the first stage represents less than 1% of total execution time, and this value
decreases even more when the number of time iterations grows.

4.2.1 Data structures

A suitable data structure can result in significant performance improvements. There-
fore, a proper selection of data types is an important step when idealizing an implementa-
tion. We can begin the discussion by assessing the accuracy of the data structures, namely,
single and double floating-point precision. Currently in GPUs, double floating-point pre-
cision offers less performance, when compared with single floating-point precision. To
clarify the difference in performance, lets take the example of the Nvidia GTX Titan
processing power. In terms of single-precision it offers 4500 Giga FLoating-point Opera-
tions Per Second (GFLOPS) while the double precision processing power is merely 1500
GFLOPS. Thus, a design decision, based on this feature, needs to be accounted for, when
performance based applications are developed. This decision should be done regarding
the nature of the problem. For the study being conducted and due to the adoption of arbi-
trary constants, it is possible to employ single-precision floating point to represent all the
pertinent values.
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4. Electron wave propagation on the Graphics Processing Unit

Ψ 1Ψ 2

Figure 4.6: Graphene lattice discretized and the two matrices representing the node values
of the pseudospinor.

As depicted before, the wave function Ψ is regarded as a pseudospinor with two com-
ponents (figure 4.6). Furthermore, the wave function node value represents a complex
number. Thus, for each pseudospinor component (Ψ1 and Ψ2) there is the need to store
two values, corresponding to the real and imaginary part of the complex number. In high
level software platforms, such as Mathematica and Matlab, complex number operations
are supported, although in OpenCL this is not the case. The proposed solution, is to use
vector type variables. Moreover, a float4 vector data type is chosen. Thereby, the first two
entries of the float4 data type store the real and imaginary parts of the first pseudospinor
component and the other two entries are reserved for the second psudospinor component.
This same strategy is used to save the potential associated with each pseudospinor com-
ponent. Another issue, concerning data structures, especially in GPUs, is the access data
pattern when performing reading/writing operations from/to memory. Thus, coalesced
memory accesses must be conducted, because the hardware enables efficient data transfer
operations in the presence of aligned data addresses. Each work-item performs five mem-
ory operations, where one of them is a write operation and the remaining are readings. All
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4.2 Parallel approach

write operations are coalesced, because the work item index writes in the same memory
index. The read operations are also coalesced since each work item accesses adjacent
nodes.

4.2.2 Setup stage

Even though this stage does not represent a performance bottleneck, it was also sub-
ject of parallelization, furthermore, task and data parallelism was extracted from the cor-
respondent assignments. From the data point of view, each index of the corresponding
NDRange is executed independently. Regarding the Effective Medium model, task par-
allelism cannot be executed straightforwardly due to the dependencies on the anisotropy
ratio to compute the potential of the mesh. In the case of the Microscopic Model, both
data and task parallelism can be achieved.

t

Anisotropy Ratio

Initial State

PotentialThread 1

Thread 2

Thread 3

Beginning of
Setup stage

End of
Setup stage

Figure 4.7: Setup stage time profile for the Effective Medium Model.

t

Initial State

PotentialThread 1

Thread 2

Beginning of
Setup stage

End of
Setup stage

Figure 4.8: Setup stage time profile for the Microscopic Model.
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4. Electron wave propagation on the Graphics Processing Unit

4.2.3 Update stage parallel strategy

As already discussed, the Update stage consists in the implementation of two equa-
tions, each corresponding to one of the pseudospinors. The first obvious strategy was
the development of a kernel that implements these two equations and applies them to
each node. However, this strategy needs to ensure that when computing the node all the
resources needed are available, namely the neighboring values of the respective pseu-
dospinor. This approach leads to an increment of operations, mostly comprised of diver-
gent instructions that will obviously affect the overall performance. To better understand
this scenario let’s consider the computation of a node that corresponds to the pseudospinor
Ψ1. All the adjacent nodes needed to update this value are computed in the same time
step, therefore, there is the need of barriers and conditional instructions to assure that the
values being accessed are already up to date.

Nodes associated withΨ 2

Nodes associated withΨ 1

Ψ 2 nodes being computed

Δ y

Δ x

q

q+1

p p+1

Figure 4.9: Two nodes associated with the pseudospinor ψ2 being computed in parallel.

To tackle this problem, the Update stage comprises two kernels, each one associated
with a different pseudospinor. Therefore, at each time step, first we compute all the nodes
associated with Ψ2 and only then every node associated with Ψ1. This strategy ensures
that all neighboring nodes are available when the respective node is being computed.
By doing this, no extra instructions will be needed to synchronize the computation of
nodes. This synchronization is attained when interleaving the execution of the kernels, as
demonstrated in figure 4.10.
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1
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Figure 4.10: Execution of the update stage time profile.

4.3 Exploring the OpenCL memory model

From the two devised kernels, we implemented three versions of them in order to
explore the memory model provided by OpenCL and at the same time measure the impact
in throughput performance obtained. These crafted versions are based on the use of:
global memory; textures; and local memory. As depicted in chapter 2, global memory
features the slowest access times. On the other hand, textures (also known as images
in OpenCL language) use caches to improve memory speed operations, thus providing
average faster access times. Accordingly, the use of local data shared between work
groups can sustain even faster memory operations. When devising the kernels based on
local data to share among the work-items within a work-group, it has been noticed that
divergent instructions (branch conditions) needed to be introduced in order to load the
total volume of nodes needed by the work-items within the work group. Thus, as shown
in figure 4.11, if we consider the local memory as a matrix, it needs the addition of a
column and a row to store the node values required to compute all the nodes in the last
column and row in the work-group.

Work-group
size

Local memory 
size

Figure 4.11: Local memory design to service all the work-items within the work-group.

Another aspect that can result in loss of performance, is the occurrence of bank con-
flicts. Adjacent nodes can access, at the same time, the value of two neighboring nodes.
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4. Electron wave propagation on the Graphics Processing Unit

Thus, these accesses are serialized by the hardware resulting once again in performance
penalties. Although this is an acknowledge issue, the resolution of bank conflicts do not
have a trivial solution. It needs a comprehensive assessment on how the index space
of memory can be managed in order to keep memory consistency. Thus, there were no
further developments regarding this aspect.

Another concern, in terms of performance improvements is due to the data transfers
between host and device. This performance factor is controlled by the user, depending on
how much data is required to conduct the study.

4.4 Exploring multiple GPU based platforms

One of the advantages of OpenCL is that, at runtime, a query of the platform can be
performed, and accordingly to the resources available there is the possibility to adapt the
program to the platforms available.

Because these simulations require the execution of the two previously described meth-
ods, Microscopic and Effective Medium, it is straightforward to say that a system com-
prised with two GPUs allows a faster overall performance, because we can distribute the
work by both devices. Thus, this possibility was explored, and when the resources are
available, the program distributes each model to a GPU. Otherwise, each model is exe-
cuted in a serialized fashion.

Host 
thread #1

...
Update kernel arguments and 
submit work

Ψ
1
 kernel execution

Ψ
2
 kernel execution

Iteration n Iteration n+1

Device #2

Host 
thread # 2

Update kernel arguments and 
submit work

Ψ
1
 kernel execution

Ψ
2
 kernel execution

...

Iteration n Iteration n+1... ...

t

Device #1

Figure 4.12: Execution of the update stage time profile, when exploring a muti-GPU
system.
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4.5 Summary

When idealizing a parallel approach there are important issues that need to be ad-
dressed. Among them, task and data dependencies are crucial to achieve the proposed
goals. This chapter started with a task description of the simulation being accelerated.
Then, a parallel strategy was detailed, highlighting the most relevant aspects to consider,
such as data structures, task and data parallelization opportunities. With the parallel ap-
proach devised, it is important to assess if the performance met the expectations. Thus, in
the next chapter, a performance evaluation and the simulations results is presented.
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5. Simulation and Results Analysis

sGiven the solution devised in the previous chapters, this section of the thesis inspects
the simulation results and assesses the performance of the strategy utilized. This chapter
begins with a description of the hardware platforms used under the context of this work.
Then, it displays a set of simulations performed in order to validate the obtained results.
Finally, a performance evaluation of the proposed solution is investigated.

5.1 Hardware platforms setup

This section discloses the computer platforms used to execute all the relevant simula-
tions of this work.

Platform 1 Platform 2
CPU Intel(R) Core(TM) i7-4790k 4GHz Intel(R) Core(TM) i7 950 3.07GHz
RAM 32GB 6GB
GPU 1 Nvidia GeForce GTX Titan AMD Radeon R9 280X
RAM 6GB 3GB
GPU 2 Nvidia Tesla k40 Nvidia Geforce GTX 680
RAM 12GB 2GB
OS Ubuntu 14.04.1 LTS Linux Debian 3.2.0-4-amd64
Language C + OpenCL 1.1 C + OpenCL 1.2

Table 5.1: Platforms considered in the experimental evaluation

It can be noticed that the two platforms are composed by different devices, especially
platform 2, where this system is composed by different devices from different vendors.
The execution of the simulations is these platforms can only be achieved with Open Com-
puting Language (OpenCL), which demonstrates the power of this standard.

5.2 Simulation results

To ensure that the developed work provides accurate results, it was proposed a set
of scenarios for simulation. These simulations were designed to study and validate the
devised solution. The next table displays the dimensions of the lattice. At this point is
important to stress that these parameters correspond to the better setup. Because we are
working with numerical methods, that constitute an approximation to the solution, there
are some considerations that need to be accounted for. Thus, in this particular case, the
use of a refined grid is the goal.
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Simbol Vaule
Number of Time iterations Nx 4096
Number of Time iterations Ny 2048
Space between nodes x direction ∆x 0.025
Space between nodes y direction ∆y 0.025
Time interval ∆t 0.0062

Table 5.2: Constant parameters used in the simulations.

5.2.1 Propagation of stationary electron waves

This section begins with the analysis of the propagation of electron waves in a Graphene
Superlattice (GSL) characterized by a potential that may allow the propagation of Gaus-
sian electron waves without diffraction. Here, we analyze the results of both approaches
(microscopic and effective medium).
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Figure 5.1: Density plot |Ψ|2 obtained for the effective medium (left) and microscopic
(right) theories.

Evaluating the displayed results in figure 5.1, it is noticed that the propagation of the
Gaussian electron wave along the GSL, occurs without diffraction. Also, a further in-
spection of figure 5.2, that compares the longitudinal profiles of the wave function for
both models, reveals an agreement of the two approaches. Since this simulation is charac-
terized by a constant injection of electrons into the system, we aim, in these simulations,
to reach a steady state.
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Figure 5.2: In the left, the surface integral of the probability density function |Ψ|2. In the
right, longitudinal profiles of the pseudospinor using the effective medium (blue curve)
and microscopic (red curve) approaches.

The next figure shows the negative refraction of electron waves at the interface of two
pristine graphene regions. This is obtained by tunning the average potential in the pristine
graphene region.
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Figure 5.3: Left: Geometry of the graphene superlattice. Right: Density plot of |Ψ|2 cal-
culated for a Gaussian electron wave with energy E0 that propagates in graphene pristine
(χ0 = 1.0) and impinges on a region with Vav = 2E0.

As can be seen in the above figure 5.3, a proper selection of the average potential
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enables the electron wave to propagate in the reversal direction, when compared with the
conventional behavior of a refraction phenomenon. Another of the simulation scenar-
ios tested comprehends a more complex structure, characterized by a GSL embedded in
pristine graphene. Also a circular obstacle was included in the middle of the GSL. This
barrier is conceived as an average potential greater than the one assigned to the GSL.
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Figure 5.4: Left: Density plot of |Ψ|2 calculated for a Gaussian electron wave, when
the steady state was achieved, for the effective medium model. Center: Geometry of the
structure. Right: Density plot of |Ψ|2 calculated for a Gaussian electron wave, when the
steady state was achieved, for the microscopic model.

Figure 5.4 demonstrates the similarity of the results given by the microscopic and
effective medium models. An interesting feature shown in this example is the behavior of
the electron wave when it reaches the circular obstacle. In can be noticed that the beam is
diffracted and it is split in two directions.

5.2.2 Time evolution of an initial state

As described in this work, the simulations performed not only encompass the study
of stationary waves, as they also cover the study of time dynamics of an initial electronic
state propagating throughout the GSL. The fundamental difference in these scenarios is
that there is no electron source constantly injecting electrons into the system. Thus, this
type of time evolution problems never reach a steady-state. Also, keeping in mind that the
graphene structure is surrounded by a Perfect Matched Layer (PML), the initial state will
be absorbed and the surface integral of the probability density function will get to zero.
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Figure 5.5: Left: Density plot of |Ψ|2 that represents the inital state which propagates
in pristine graphene (χ0 = 1.0). Right: Longitudinal profile of |Ψ|2. Effective medium
model is represented as the blue line and the microscopic as the red dashed line.
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Figure 5.6: Left: Density plot of |Ψ|2 obtained after 4000 time iterations. Right: Lon-
gitudinal profile of |Ψ|2. Effective medium model is represented as the blue line and the
microscopic as the red dashed line.

The figures above show the result for the simulation of an initial state propagating in a
pristine graphene structure (pure graphene). This structure is isotropic thus the electrons
have no defined direction, and that is why it is observed a widening of the beamwidth.
Also, once again it is shown that the two models are in good agreement.
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Figure 5.7: Left: Density plot of |Ψ|2 obtained after 4000 time iterations for the effective
medium model. Right: Density plot of |Ψ|2 obtained after 4000 time iterations for the
microscopic model.

Figure 5.7 displays a snapshot of the initial state propagating in a regime of extreme
anisotropy, therefore a linear path is taken by the electronic state and there is no spread of
the beamwidth.

5.3 Performance Evaluation

After validating the simulation results, it is now disclosed a comprehensive analysis
on the performance of the devised solution. For this purpose there were considered four
data sets and the simulation corresponds to a study of the time evolution of an initial state.

Nodes (x direction) Nodes (y direction) Total number of nodes
Data Set 1 512 512 262,144
Data Set 2 1024 1024 1,048,576
Data Set 3 2048 2048 4,194,304
Data Set 4 4096 2048 8,388,608

Table 5.3: Data sets considered showing the dimensions of the grid for each data set.

Simbol Vaule
Space between nodes x direction ∆x 0.025
Space between nodes y directon ∆y 0.025
Time interval ∆t 0.0062
Number of time iterations Nt 14000

Table 5.4: Constant parameters throughout the simulations.
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5. Simulation and Results Analysis

In order to obtain a more accurate execution time, the following procedure was applied
for each simulation:

• Execute the simulation in a loop fashion comprehending 10 iterations;

• Discard the best and worst execution times;

• The execution time of interest is the mean of the 8 remaining values.

5.3.1 OpenCL kernels evaluation

This section shows the results of an extensive study conducted to assess the impact
on throughput performance of memory and work-group selection, in the execution of the
kernels that comprise the update stage. Although, at first sight these two features may not
seem related, the truth is that they are intertwined. To validate this claim there are shown
some scenarios where it is investigated the performance for the use of global memory for
different work-groups design.
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Figure 5.8: Kernels execution time (effective medium model) obtained for various work-
group shapes. These results were acquired for data set 4, on platform 1.
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Figure 5.9: Kernels execution time (microscopic model) obtained for various work-group
shapes. These results were acquired for data set 4, on platform 1.

The displayed results reveal that a row major selection for the work-group has a posi-
tive influence in global and local memory performance. This is explained by the scheme
implemented by the Graphics Processing Unit (GPU)s to fetch data from memory. Also,
as reviewed in subsection 2.2.1 consecutive address in memory are in the same column of
the memory banks. Because memory in consecutive rows has a large stride, more oper-
ations will be needed to obtain the same amount of data, thus reducing the performance.
Quite interestingly, the image version exhibits the opposite behavior. This is due to the
fact that images rely on texture units that are designed to capture 2D spatial locality.
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Figure 5.10: Work-group size influence in an AMD device (R9 280x).
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Figure 5.11: Work-group size influence in a Nvidia device (Tesla k40).

Another annotation that can be derived from these assessments is the selection of the
work-group size. As reported before, all the devices are characterized by a minimum
amount that must be scheduled in order to take advantage of the hardware. For example,
Nvidia devices are designed to have at least 32 threads running in parallel per compute
unit, although it is a best practice to feed the CUs with a number of threads larger than
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32. On the other hand, on AMD devices these number of threads is 64. For that reason
figures 5.10 and 5.11 show the effect of multiple work-group sizes in the execution time
of the conceived kernels.
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Figure 5.12: Kernels execution time (effective medium model), for each platform.

Another interesting analysis to conduct is the performance of OpenCL programs run-
ning on different devices. Because Nvidia has its on programming framework (CUDA),
OpenCL programs may not take full advantage of the available hardware. For AMD de-
vices this is not the case. They have adopted OpenCL as the programming framework,
so that the hardware and drivers are optimized for OpenCL solutions. Hence, platform 2
performs better than platform 1 for all the simulated data sets. From all the performance
metrics, the version that produces a better execution time is the texture version, although
if the selection of the work-group shape is meticulously tunned, all three versions provide
close execution times. Moreover, if we focus on the performance between the two mod-
els, it is seen that the microscopic model is the fastest approach. This is the result of less
arithmetic operations being performed per node, as can be proved by the update equations
for each model (3.6, 3.7, 3.8 and 3.9).

5.3.2 Overall performance

The differences between the Central Processing Unit (CPU) and GPU, as already
depicted, have a substantial impact in the throughput performance of compute intensive
tasks. Thereby, to prove these differences, figure 5.13 exposes the contrast between the
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two architectures. For this test was used the CPU and the GPU (AMD R9 280x) from
platform 2.
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Figure 5.13: Throughput performance comparison between the CPU and GPU.

To conclude the performance evaluation, it is compared the devised solution based on
the OpenCL standard with the equivalent Matlab and Mathematica versions.
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Figure 5.14: Overall performance compared between the three programing platforms.

OpenCL clearly demonstrates the ability to perform simulations at incredible speeds.
The speed-up is 180x in comparison with Mathematica simulations and 100x when com-
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pared with Matlab simulations. It is also important to elucidate that these results compre-
hend the total length of a simulation, namely the execution of the setup stage and update
stage. Also, regarding the update stage, there were considered store operations in disk
of the wave function at each 1000 time iterations. This leads to throughput performance
downgrade because there are memory transfers between the device and host. Further-
more, write operations to disk represent a major contribution in the degradation of the
throughput performance.
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Figure 5.15: Overall performance compared between the three programing platforms.

Nowadays, energy consumption awareness is an increasingly issue at global scale.
Therefore, the search for efficient solutions should be considered. This work also rep-
resents improvements in this field, as can be emphasized by figure 5.15. The solution
devised represents energy savings on the order of 67x compared with Mathematica and
38x comparing with matlab version.

5.4 Summary

In this chapter, a detailed review of the proposed solution was presented and discussed.
This analysis was conducted in terms of the simulation results obtained and performance
metrics. Consequently, a significant reduction in execution time was achieved in all the
considered scenarios. As for the simulation expected results, the implemented kernels
proved to be a useful tool to study the behavior of the electron wave propagation. Also,
an inspection on how the different versions of the kernels, resulting from the distinct
memory hierarchy utilization, was conducted in order to assess the performance impact on
the execution time of the kernels. From this assessment it is clear that the execution time
of a kernel is influenced by the work-group selection and type of memory spaces used. A
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5. Simulation and Results Analysis

multi-device implementation for accelerating the two models was also a target of analysis
when compared with single-device implementation providing major improvements in the
execution time, because it enables the execution of both models in parallel.
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6. Conclusions

This thesis purpose was to accelerate a recently proposed method to study the time
evolution of electron waves in graphene superlattices, by designing an optimized and
potable parallel solution. This was achieved by using the Open Computing Language
(OpenCL) framework.

The starting point was the realization of a Matlab version, while the theoretical back-
ground was assimilated. From this study two approaches were identified: Microscopic
and Effective Medium approach. The Matlab implemented version also provided a base
for performance evaluation. The parallelization strategy was devised based on the study
of the available data and task-parallelism opportunities. The newly proposed solution
helped developing the proposed method by enabling the simulation of extremely large
meshes and for a high number of iterations.

Exploring the inherent parallelism in algorithms has proven to be a powerful tool to
develop and accelerate the rate that science is produced. OpenCL gives the programmer
the right amount of resources to explore and design fully functional programs ready to
adapt and take advantages of the available processors/hardware. It is seen that combining
the right tools and programming techniques the expected result is surpassed.

6.1 Future Work

The developed solution proves to be a useful and powerful tool to simulated elec-
tron wave propagation problems on graphene superlattices. Although outstanding per-
formance improvements have already been observed, there are other aspects that can be
further explored:

• Test the developed kernels in other devices such as the Field-Programmable Gate
Array (FPGA), and lower power processors, and study the impact on the energy-
consumption performance compared with mainstream CPUs and GPUs;

• Another base for improvements comprehends the simulation analysis procedure.
When dealing with compute-intensive simulations, typically these are performed
and data is stored in disk. Just then, the analysis of the data is carried out. Thus,
there is the possibility of integrating the Open Graphics Library (OpenGL) Application
Programming Interface (API), giving feedback in real-time to the user performing
the simulation, by showing all the metrics, figures and charts necessary for a com-
prehensive data inspection.
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A.1 Propagation of stationary electron waves

This section shows the update equations used in the simulations of the propagation of
stationary electron waves for both models. The only difference, from equations (3.6, 3.7,
3.8 and 3.9) is the addition of the term vF∆t j1,p,q in each equation.

A.1.1 Microscopic Model
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A.1.2 Effective medium Model
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The term j is the source of the form:

j = j0eikyye−iω0t (A.5)

64


	Titlepage
	Agradecimentos
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Objectives
	1.2 Main contributions
	1.3 Dissertation outline

	2 Parallel Computing Architectures: Central Processing Unit and Graphics Processing Unit
	2.1 Central Processing Unit (CPU)
	2.1.1 Intel's Sandy Brigde Architecture

	2.2 Graphics Processing Unit (GPU)
	2.2.1 GPU architecture
	2.2.2 Nvidia's Kepler architecture
	2.2.3 AMD GCN architecture

	2.3 GPU Programming
	2.3.1 Coalesced Memory accesses
	2.3.2 Memory Bank conflicts
	2.3.3 Branch divergence

	2.4 OpenCL
	2.4.1 Platform Model
	2.4.2 Execution Model
	2.4.3 Memory Model
	2.4.4 Programming Model
	2.4.4.A Data Parallel Programming Model
	2.4.4.B Task Parallel Programming Model


	2.5 Load balancing techniques under the OpenCL context
	2.6 Summary

	3 Graphene and the electron wave dynamics
	3.1 Graphene
	3.2 Microscopic and effective Hamiltonians of a GSL
	3.3 The FDTD numerical solution
	3.4 Requirements for a functional simulation
	3.4.1 Initial state
	3.4.2 PML

	3.5 Summary

	4 Electron wave propagation on the Graphics Processing Unit
	4.1 Problem analysis
	4.1.1 Microscopic Model: task flow and dependencies
	4.1.2 Effective Medium Model: task flow and dependencies
	4.1.3 Update Equations
	4.1.3.A Time Dependencies
	4.1.3.B Space Dependencies


	4.2 Parallel approach
	4.2.1 Data structures
	4.2.2 Setup stage
	4.2.3 Update stage parallel strategy

	4.3 Exploring the OpenCL memory model
	4.4 Exploring multiple GPU based platforms
	4.5 Summary

	5 Simulation and Results Analysis
	5.1 Hardware platforms setup
	5.2 Simulation results
	5.2.1 Propagation of stationary electron waves
	5.2.2 Time evolution of an initial state

	5.3 Performance Evaluation
	5.3.1 OpenCL kernels evaluation
	5.3.2 Overall performance

	5.4 Summary

	6 Conclusions
	6.1 Future Work

	Bibliography
	A Appendix A
	A.1 Propagation of stationary electron waves
	A.1.1 Microscopic Model
	A.1.2 Effective medium Model



