
Imagem

Diogo Manuel da Silva Gonçalves

RobChair 2.0:
Simultaneous Localization and Mapping

and Hardware/Software Frameworks

Thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Electrical Computer Engineering
September, 2013

University of Coimbra

Faculty of sciences and technology

Departament of Electrical and Computer Engineering

RobChair 2.0: Simultaneous Localization and Mapping
and Hardware/Software Frameworks

Diogo Manuel da Silva Gonçalves

Coimbra, 2013

RobChair 2.0: Simultaneous Localization and Mapping
and Hardware/Software Frameworks

Advisor: Prof. Dr. Urbano José Carreira Nunes

Co-advisor: Dr. Ana Cristina Barata Pires Lopes

Jury:

Prof. Dr. Manuel Marques Crisóstomo

Prof. Dr. Rui Alexandre de Matos Araújo

Prof. Dr. Urbano José Carreira Nunes

Dr. Ana Cristina Barata Pires Lopes

Diogo Manuel da Silva Gonçalves

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical
Computer Engineering

Department of Electrical and Computer Engineering

Faculty of Sciences and Technology, University of Coimbra

September, 2013

“One never notices what has been done; one can only see what remains to be done.”

-Marie Curie.

Acknowledgements

This dissertation could not have been completed without the generosity and assistance of a large
number of people to whom I would like to express my gratitude. First of all I am grateful to my
advisors, Professor Urbano Nunes and Dr. Ana Lopes, or the possibility they gave me to work on a
subject I like and for the support that they made available in a number of ways. I appreciate very
much their suggestions and I am grateful for all the time they spent helping and making sure that I
was fulfilling my objectives.

I am also very grateful to all my colleagues that helped me in some way to achieve this important
milestone, in special to Luis Garrote, that always provided me with the best advices for keeping me in
the right track and be motivated.

I thank ISR for providing the excellent conditions and resources that allowed me to accomplish
my dissertation. This work has been supported by projet Grant "AMS-HMI12: Assisted Mobility
Supported by shared control and advanced Human Machine Interfaces” (FCT Project RECI/EEI-
AUT/0181/2012), co-funded by Fundação para a Ciência e Tecnologia and FEDER through "Programa
Operacional Factores de Competitividade do QREN com referência COMPETE: FCOMP-01-0124-
FEDER-027501".

I am very grateful to all my friends, and to my family for their continuous support, specially to
my parents, who made a great effort to provide me with everything necessary so I could achieve my
masters degree. And finally, last but not least, I would like to express my greatest gratitude to my
girlfriend, Telma, who has been close to me from the very beginning. Her support and patience has
been always present and stronger in the most difficult moments.

i

Resumo

A robótica tem sido alvo de constantes avanços nas últimas décadas, e está cada vez mais presente no
nosso quotidiano. Esta ciência foca-se na percepção e manipulação do mundo físico através de disposi-
tivos controlados por computador, dividindo-se em vários tipos de especialização, onde se destacam as
aplicações orientadas à optimização de processos ou rotinas, ou simplesmente como uma solução para
um determinado problema. Sistemas como plataformas móveis para exploração ou assistência, braços
robóticos em linhas de montagem, veículos autónomos ou mesmo robôs educacionais, são exemplos de
aplicações atuais bem sucedidas. Estes sistemas robóticos têm vários aspectos em comum: apercebem-
se do ambiente circundante através de sensores e têm a capacidade de interagir com o mesmo. Assim, é
essencial dotar o robô de certas capacidades, tais como a capacidade de se localizar, mapear e navegar.
Para tal existem diversas técnicas disponíveis que são alvo de interesse por parte da comunidade cien-
tífica, das quais se pode destacar o SLAM (Simultaneous Localization and Mapping), que confere ao
robô a capacidade de se localizar e em simultâneo mapear o ambiente em que se insere. Uma das áreas
que faz uso desta técnica é a robótica orientada à assistência do ser humano, e visa melhorar de forma
substancial a independência e qualidade de vida de pessoas incapacitadas, interagindo com as mesmas
e fornecendo-lhes a assistência necessária em tarefas específicas. Dispositivos tais como, cadeiras de
rodas autónomas, robôs de acompanhamento ou braços manipuladores de assistência são exemplos de
aplicações na área da robótica de assistência. Nesta dissertação é reestruturada uma plataforma móvel
de assistência ao ser humano, baseada na Robotic Wheelchair (RobChair) do ISR-UC, na qual foram
testadas e implementadas diversas técnicas que visam fornecer as funcionalidades e comportamento
pretendidos nesta fase. Esta plataforma foi criada com o intuito de ser simples e versátil, no sentido de
ser de fácil compreensão para utilizadores e investigadores futuros e de forma a ser uma plataforma de
testes fiável para diversos algoritmos e técnicas desenvolvidas neste trabalho e em trabalhos futuros.
Para tornar a nova RobChair num robô móvel e autónomo, fez-se uso do ROS (Robot Operating Sys-
tem) como plataforma de desenvolvimento e teste de diversos algoritmos. Várias técnicas de SLAM são
estudadas e avaliadas para esta plataforma, através de métodos desenvolvidos para o efeito. Também é
estudado o tema mais específico de “Loop Closure”, melhorando assim o SLAM através de um método
que faz uso de uma câmara para extração de características visuais.

Palavras-chave: Robótica, Robótica de assistência, Robô, SLAM, Mapeamento, Localização, Cadeira
de Rodas, Robotic Wheelchair, RobChair, ISR-UC, ROS, Loop Closure.

iii

Abstract

Robotics has gone through constant progress in the last decades, and is increasingly present in our
quotidian. This science focus on the perception and manipulation of our physical environment through
computer controlled devices and it is divided in several specialization types, such as applications that
aim to improve processes or routines, or simply as a solution to a certain problem. Systems like mobile
platforms for exploration or assistance purposes, robotic arms in assembly lines, autonomous vehicles,
or even educational robots, are examples of current well succeeded applications of robotic systems. All
these have some features in common: they can perceive their surrounding environment through sensors
and are able to interact with it. Therefore, it is essential to provide certain skills to a robot, such as the
ability of self-localization, environment mapping, and navigation. To achieve that, there are several
available techniques that are the target of interest by the scientific community, from which SLAM
(Simultaneous Localization and Mapping) can be highlighted. SLAM allows the robot to self-locate
himself and simultaneously to acquire a map of the perceived environment in which it is inserted. One
of the fields of robotics that use this technique is the human assistive robotics, and aims to substantially
improve independence and life quality of impaired people, by interacting and providing the required
assistance for specific tasks. Devices such as autonomous wheelchairs, companion robots, or assistive
manipulators are examples of successful applications in the field of assistive robotics. In this disser-
tation, a human assistive mobile platform is restructured, based on a Robotic Wheelchair (RobChair)
from ISR-UC, in which several techniques (such as SLAM) are tested and employed, in order to provide
it with the required features and behavior. This platform is built to be simple and versatile, in a way
that it is easy to use and understand by future users and researchers, and also to be a reliable test
platform for several algorithms and techniques. To provide the RobChair with the required capabilities
for this work, the ROS (Robot Operating System) frameworks is used as a development and test plat-
form for several methods and algorithms that integrate with the RobChair. Several SLAM techniques
are studied and evaluated for this platform. Finally, the more specific topic of “Loop Closure” is ana-
lyzed and it is implemented a method to improve SLAM, using a camera and extracting visual features.

Key words: Robotics, Assistive robotics, Robot, SLAM, Mapping, Localization, Navigation, Wheelchair,
Robotic Wheelchair, RobChair, ISR-UC, ROS, Loop Closure, Visual Features.

v

Contents

Acknowledgements i

Resumo ii

Abstract iv

List of Figures ix

List of Tables xi

Nomenclature xiii

1 Introduction 1
1.1 Motivation and context . 1
1.2 Goals . 2
1.3 Implementations and key contributions . 2

2 State of the art 5
2.1 Mobile robotics . 5

2.1.1 Robotic wheelchairs . 5
2.2 Robot middleware frameworks . 6
2.3 Simultaneous Localization and Mapping . 6

2.3.1 EKF SLAM . 11
2.3.2 FastSLAM . 12
2.3.3 GraphSLAM . 13
2.3.4 6D SLAM . 14

2.4 Loop closure . 15
2.4.1 Particle filter based loop closure . 15
2.4.2 Loop closure with visual features . 17

2.4.2.1 FAB-MAP . 17

3 RobChair platform 19
3.1 Previous architecture . 19
3.2 RobChair 2.0 . 20
3.3 PID controller . 23

3.3.1 PI tuning . 23
3.3.2 PI validation . 25

3.4 Software architecture . 25
3.4.1 The RobChair framework . 26

vii

CONTENTS CONTENTS

4 ROS integration 29
4.1 Simulation . 29

4.1.1 Virtual workspaces . 29
4.2 Teleoperation nodes . 30
4.3 The RobChair ROS driver node . 31
4.4 Validation . 32

4.4.1 Odometry error study . 33
4.4.1.1 Method from Rekleitis . 33

5 SLAM benchmarking 37
5.1 Evaluated SLAM methods . 37

5.1.1 Gmapping . 37
5.1.2 Hector . 37
5.1.3 Karto . 38
5.1.4 RGBD-SLAM . 38

5.2 Evaluation metrics . 38
5.2.1 Evaluating SLAM maps . 39

5.3 Test results . 42
5.4 SLAM with Gmapping . 43

6 Two stage loop closure detection 45
6.1 RobChair Gmapping . 45
6.2 Loop closure detection . 46
6.3 Implementation . 47
6.4 Experimental results . 48

7 Conclusion and future work 51
7.1 Conclusion . 51
7.2 Future work . 51

Bibliography 53

A Tree of Words 61

B PID controller 63

C The RobChair framework tasks 67

D Technical overview of ROS 71

viii

List of Figures

1.1 Key contributions . 2

2.1 Common modules of a mobile robot, evidencing SLAM and Navigation 8
2.2 Most common mapping techniques and their representations 9
2.3 Examples of a topological map (left) and a discrete metric map (right) 10
2.4 Generic SLAM algorithm . 11
2.5 Geometric SLAM interpretation as shown in [Maddern et al., 2012] 12
2.6 Example of robot poses, landmarks and connection links performed in GraphSLAM

[Thrun and Montemerlo, 2005] . 14
2.7 Acquisition of the information matrix in GraphSLAM [Thrun and Montemerlo, 2005] . 14
2.8 Processing steps of an RGBD SLAM approach from [Engelhard et al., 2011] 15
2.9 Example with successful loop closing (blue) and without (red) at ISR ground floor . . 16
2.10 Evolution of a particle set and the topological map of the particle s⇤ at three different

time steps, from [Stachniss et al., 2005] . 16
2.11 Correspondences found between features in very different views of a poster using MSER

regions and SIFT descriptors, from [Newman and Ho, 2005] 17
2.12 Example of loop closure detection using openFABMAP algorithm in an outdoor envi-

ronment. 18

3.1 Mechanical structure, system coordinates and relevant data of the RobChair 19
3.2 Previous RobChair system setup overview . 20
3.3 The restructured RobChair 2.0, front and back . 21
3.4 RobChair 2.0 system overview . 22
3.5 Power connections of the RobChair 2.0 devices . 23
3.6 Raspberry Pi installed in the RobChair . 23
3.7 Motor response speed model . 24
3.8 PID validation results . 26
3.9 Types of device connections in the RobChair . 26
3.10 RobChair Framework prototype . 27

4.1 Small test field 3D model in Gazebo simulator to the left and a 3D model of ISR ground
floor in Gazebo simulator to the right . 30

4.2 Keyboard (left) and controller (right) teleoperation ROS nodes 30
4.3 RobChair Driver Node for interoperability with ROS 32
4.4 Straight corridor mapped with uncalibrated odometry 32
4.5 Laser readings of the four walls providing five landmarks, shown in blue and red. Initial

position in green and yellow after rotation. 34
4.6 Odometry rotational errors . 35
4.7 Odometry translational errors . 36

ix

LIST OF FIGURES LIST OF FIGURES

4.8 RobChair position according to ground truth data (left) and uncalibrated odometry
data (right) . 36

4.9 Test in ISR corridor after odometry correction . 36

5.1 Proposed map evaluation method . 40
5.2 Detected corners in the Ground Truth edges image (left) and in the SLAM map (right) 40
5.3 Results of the ICP algorithm, before, after and RMSE evolution 41
5.4 Matching points to the left and matching corners to the righ, represented in red 42
5.5 Chart with the point to point matching results for Gmapping and Karto 43
5.6 Charts with the corner matching and smoothness results for Gmapping and Karto SLAM

methods . 43
5.7 Plant of the ISR ground floor, with the corridor indicated in green. 44
5.8 Testing Gmapping at the ISR corridor. 44

6.1 New parameter setting method for some routines of Gmapping. 47
6.2 Interaction between nodes for dynamic adjustment of Gmapping. 47
6.3 Example of successful corridor mapping with loop closure detection, in a single run. . . 49
6.4 Example of successful loop closure detection and map improvement, in a single run. . . 50

A.1 Image appearance-based modeling process from [Zhiwei et al., 2012] 62
A.2 Loop closure detection process from [Zhiwei et al., 2012] 62

B.1 PID control scheme . 63
B.2 Simulated PID controller applied to first order model of RobChair motor 65

C.1 RobChair Framework main task . 67
C.2 RobChair Framework communication management task 68
C.3 RobChair Framework client communication task . 69

D.1 ROS node working concept . 73

x

List of Tables

2.1 Recent wheelchair platforms. 7
2.2 Common Robot Frameworks of today . 8

3.1 RobChair 2.0 communications API . 28

5.1 Average results from benchmarking tests . 44

6.1 The parameters that change in RobChair Gmapping for the three scenarios. 48

xi

Nomenclature

API Application Programming Interface

ATE Absolute Trajectory Error

BCI Brain-Computer Interface

BoW Bag of Words

CAN Controller Area Network

CARMEN Carnegie Mellon Robot Navigation

CML Concurrent mapping and localization

EKF Extended Kalman Filter

FAB-MAP Fast Apearance-Based Mapping

GNU GNU’s not Unix

GPIO General Purpose Input/Output

HDMI High Definition Media Interface

HMI Human-Machine Interaction

HOG-Man Hierarchical Optimization for Pose Graphs on Manifolds

I2C Inter-Integrated Circuit

ICP Iterative Closest Points

ISR Institute of Systems and Robotics

LIDAR Light Detection and Ranging

MOOS Mission Oriented Operating Suite

MRDS Microsoft Robotics Developer Studio

OROCOS Open Robot Control Software

PID Proportional-Integral-Derivative

POSIX Portable Operating System Interface

RANSAC RANdom SAmple Consensus

RGB-D Red, Green, Blue and Depth

xiii

Nomenclature Nomenclature

RMSE Root-Mean-Square Error

RobChair Robotic Wheelchair (Referring to the ISR Robotic Wheelchair)

ROS Robot Operating System

RPE Relative Pose Error

RVIZ Ruby Visualization Tool

SIFT Scale-invariant feature transform

SLAM Simultaneous Localization and Mapping

SPI Serial Peripheral Interface

SURF Speeded Up Robust Features

TCP Transmission Control Protocol

ToW Tree of Words

YARP Yet Another Robot Platform

xiv

Nomenclature Nomenclature

xv

Chapter 1

Introduction

This chapter presents the introduction of this dissertation. Some insights concerning the motivation
and context of the developed work will be presented, as well as the main goals and key contributions.

1.1 Motivation and context

Improving mobility of motor impaired people can be achieved through the use of assistive technologies,
such as human-centered robots. Human-centered robots, and assistive robotics in particular, may con-
tribute to help motor-impaired people to reach a better level of mobility, towards an improvement of
their life standards. Furthermore, increasing the mobility levels of people with motor disabilities can
also ultimately contribute to improve their social inclusion.

Robotic wheelchairs are one of the most common assistive robots used, so far, for mobility pur-
poses. The RobChair project is being developed at ISR [Pires and Nunes, 2002, Lopes et al., 2011,
Lopes et al., 2012, Lopes et al., 2013a] since the mid-90’s, where the RobChair platform has been re-
structured several times in the past. The latest version was based in a low level distributed architecture
and an abstraction layer that once again was becoming obsolete in terms of technological implemen-
tation. In order to obtain a reliable and up to date platform, an hardware and software restructuring
was required. Hopefully, that will result in a new setup based on current technologies that allow for
research and development of new assistive methodologies.

The localization problem can be described as the use of sensory information for robot self-localization
in its environment, and it is one of the most fundamental problems to be solved in order to provide
a mobile robot with autonomous capabilities. If a mobile robot does not know where it is, it will be
difficult to decide what to do next. Most of deliberative tasks in mobile robotics are based in the
assumption that the robot is able to answer to three fundamental questions, in particular: “Where am
I?”, “Where am I going?”, and ”How should I get there?”. The first two questions are directly related
with the localization problem.

Another important task is the capability of modeling the surrounding environment, by generating
a map. By solving the localization problem alone, it is assumed that the robot was given a map
in advance. This assumption is legitimate in a few real-world applications, as maps are often avail-
able a priori or can be constructed by hand. Being able to learn a map from scratch can greatly
reduce the efforts involved in installing a mobile robot, and enable robots to adapt to changes without
human supervision. In fact, mapping is one of the core competencies of truly autonomous robots
[Thrun et al., 2005].

A SLAM technique aims to provide both localization and mapping that are required for the navi-
gation method.

1

1.2. GOALS CHAPTER 1. INTRODUCTION

Acquisition

Decision

Data processing

RobChair 2.0
Hardware

 Gmapping for RobChair
 FabMap
 Dynamic Adjustment
 Method

 RobChair ROS Driver
 Communications API
 Odometry Calibration

 Hardware Assembly
 Communications API
 RobChair Framework
 PI controller

H.M.I.

 Teleoperation

Figure 1.1: Key contributions

1.2 Goals

This work aims to upgrade the ISR Robotic WheelChair (RobChair) at the hardware, software and
algorithmic levels.

To provide a background for autonomous navigation, a reliable SLAM technique needs to be im-
plemented. In this sense, several techniques must be researched and compared in order to make sure
the most appropriate solution is applied. To assure the implementation of a robust SLAM technique,
further methods might be required, such as loop closure detection, which can be described as the
task of deciding whether or not a robot has returned to a previously visited area. Such capability is
crucial for enhancing the robustness and long life support of the SLAM algorithms and also to enable
additional capabilities to mobile robots.

1.3 Implementations and key contributions

The following main implementations and contributions are described in this dissertation (see Fig. 1.1):

RobChair 2.0 Hardware (Chapter 3):

• Hardware assembly: The RobChair hardware restructuring was performed, where several
obsolete devices were replaced by a new architecture based on a state of art motor controller
and a less complex embedded computer system.

• Communications API: A new Application Programming Interface (API) was defined and
implemented establish communication between low and high level devices.

• RobChair “Operating System”: A UNIX software developed in C++ for the new micro-
computer, which is able to manage the connections between RobChair devices. It also
allows the communication with other external devices, such as a joystick, tablet, etc.

2

CHAPTER 1. INTRODUCTION 1.3. IMPLEMENTATIONS AND KEY CONTRIBUTIONS

• PI controller design: PI controller design and implementation for RobChair motion con-
troller was carried out.

Acquisition (Chapter 4):

• RobChair ROS Driver: A node developed in ROS (Robot Operating System) for the high
level computer to exchange information among the RobChair devices.

• Odometry calibration: Rekleiteis’s method[Rekleitis, 2003] was used to estimate and com-
pensate the odometry errors of the RobChair 2.0.

Data processing (Chapter 6):

• Gmapping for RobChair: A ROS SLAM method (Gmapping) was adapted and implemented
for RobChair 2.0 and it was changed to receive real time data from a dynamic adjustment
method.

• FabMap: A method called openFABMAP (Open version of the Fast Appearance-based
Mapping) was applied and explored for loop closure detection.

• Dynamic adjustment method: A ROS node was implemented to provide Gmapping with
information related to loop closure detection. This information is provided by the open-
FABMAP algorithm.

Human-Machine-Interfaces (Chapter 4):

• Teleoperation: Two methods were deployed and implemented in ROS to directly steer the
RobChair 2.0 with a keyboard or a game controller.

In Chapter 5, SLAM techniques in ROS are evaluated and a benchmarking method is proposed.

3

Chapter 2

State of the art

Robotics is defined as the branch of technology that deals with the design, construction, operation
and application of robots [Oxford, 2013], or simply, the study of robots [NASA, 2011]. According to
the Robot Institute of America, in 1979, Robot was described as a “reprogrammable multifunctional
manipulator designed to move material, parts, tools, or specialized devices through various programmed
motions for the performance of a variety of tasks” [R.I.A., 1979]. Although this committee-written
definitions are still true, the field of robotics became wider and more diversified, due to enormous
efforts and advancements in past decades from the robotic researcher community.

This work is in the field of assistive mobile robotics, with the main purpose of improving life quality
of impaired people. This chapter describes the fundamentals required to understand the work presented
in the remaining chapters of this thesis.

2.1 Mobile robotics

Mobile robotics is a branch of robotics related to movable robot systems, and it is one of the fastest
growing fields in engineering [Meckstroth, 2009].

Types of mobile robots can be distinguished from its locomotion mechanisms that enables it to
move through its workspace, making use of sensors and actuators. Because of all the existent envi-
ronments and ways of locomotion, mobile robots have a large variety of possible ways to move, and
so the selection of a robot’s approach to locomotion is an important aspect of mobile robot design.
Some are inspired in biological types of motion, others include human inventions, such as the wheel
[Siegwart and Nourbakhsh, 2004].

Because of this diversity, mobile robots are constantly evolving and some can be very complex,
creating a virtual unlimited number of robot configurations. Mobile robots can also be categorized
according to its working purpose: search and rescue, surveillance, exploration, transportation, human
assistance, and others.

From this wide range of mobile robots, this work focus on the field of assistive robotics, more
specifically on a robotic wheelchair platform.

2.1.1 Robotic wheelchairs

Several intelligent wheelchair platforms were developed in recent years with the ultimate goal of improv-
ing mobility capabilities of disabled people, and also as development platforms for new technologies.
Technically they consist in assistive navigation architectures based on semi-autonomous control sys-
tems for intelligent wheelchair platforms, such as the RobChair, developed at the Institute for Systems
and Robotics at University of Coimbra [Pires and Nunes, 2002, Lopes et al., 2011, Lopes et al., 2012,
Lopes et al., 2013a]. Most of the intelligent wheelchairs described in the literature incorporate a semi-

5

2.2. ROBOT MIDDLEWARE FRAMEWORKS CHAPTER 2. STATE OF THE ART

autonomous controller that belongs to one of three main groups of control approaches:

Direct user control: This one leaves control mostly to the user, and automatic navigation is only
triggered when a given situation is detected (e.g. imminent collision).

Destination based: In this approach, the system works like an autonomous robot, for which the user
simply provides a destination, and the robot is in charge of getting there.

Shared control: This subset, also referred as assisted semi-autonomous navigation, relies on a basic
set of primitives (e.g. avoid obstacles, pass doorway, following wall) that can be used to assist
the user in difficult maneuvers. The responsibility for selecting the most appropriate operating
mode can be performed by the user (manual adaptation) or by the robotic wheelchair (automatic
adaptation).

A list of some recent Robotic Wheelchairs are presented in Table 2.1, with a description of the main
technologies applied, the implemented shared-control type and the human-machine interaction.

The RobChair, using a Brain-Computer Interface (BCI), has been an ISR research platform, where
several projects related to navigation, obstacle detection and the BCI integration where successfully
achieved in recent years, with the goal of improving life quality of impaired people [Lopes et al., 2012,
Lopes et al., 2011, Lopes et al., 2013a, Pires and Nunes, 2002, Lopes et al., 2013b].

2.2 Robot middleware frameworks

Robot middleware frameworks, (often denominated as robot software frameworks), are essentially
toolkits that provide a level of abstraction between a robot platform and the software algorithms,
allowing the development of robot applications in a robust and modular way, while giving the freedom
to implement, create/test software, and keep abstraction from the real platform.

There are several frameworks available today to the community, with different functionalities and
tools. Some of them are listed in Table 2.2. Choosing the most appropriate one, can take into account
the purpose of the robot application, as well as the personal preference and experience.

2.3 Simultaneous Localization and Mapping

For the last two decades, the robotics community has experienced a tremendous effort to find robust
and general solutions for the Simultaneous Localization and Mapping (also know as SLAM) problem.

Many approaches to this problem have been made in the past by many [Montemerlo et al., 2002,
Nieto et al., 2007, Grisetti et al., 2006, Maddern et al., 2012, Endres et al., 2012, Surmann et al., 2004,
Thrun and Montemerlo, 2005], with generally good results for their specific robots, environments and
requirements. Because it has been the focus of many researchers, several methods for performing
SLAM are already published and known to the research community. Approaches to the SLAM solu-
tion depend on the type of sensors the robot is equipped with, type of the environmental constrains,
task requirements and other restrictions.

Performing SLAM with a robot has not an obvious solution, because in order to localize the robot,
a map is previously needed, and the localization of the robot is required to map the environment.
This is often referred as the “Chicken-Egg problem” and it is also known as the problem of “concurrent

6

CHAPTER 2. STATE OF THE ART 2.3. SIMULTANEOUS LOCALIZATION AND MAPPING

Table 2.1: Recent wheelchair platforms.

Institution Main Robotic Technologies Shared-Control Type and user intention HMI

University of technology

of Sydney

[Patel et al., 2012]

Montecarlo localization

Topological mapping.

Hierarchical Hidden Markov Model

framework that predicts both the short

term (local) and long term (navigational)

goals of the user.

Joystick.

VAHM (LASC,

University Paul

Verlaine-Metz)

[Grasse et al., 2010]

Particle filtering approach to

implement the recognition of the

most frequent paths according to

an offline-constructed topological

map.

Provides assistance to the user during

navigation by proposing the direction to

be taken when a path has been recognized.

Joystick.

SHARIOTO (Katholieke

Universiteit Leuven)

[Vanhooydonck et al., 2010]

Dynamic window approach for

obstacle avoidance.

Shared-control with user intention

prediction based on a Bayesian network.

Joystick.

INRIA

[Rios-Martinez et al., 2011,

Escobedo et al., 2012]

Motion planner based on the

RiskRRT; Map of the environment

is built using a LIDAR mounted

on the top of the wheelchair;

Important goals in the map are set

by hand.

A Bayesian network is used to estimate

the user intent. Generation of human

friendly paths based on the application of

a social filter, which includes constraints

inspired by social conventions.

Face tracking

and voice

recognition.

LURCH Politecnico di

Milano

[Bonarini et al., 2012]

Localization based on odometry.

Odometry correction is performed

based in the detection of passive

markers placed in the environment

using vision. Trajectory planning

based on the fast planner SPIKE

(Spike plans In Known

Environments).

Control module based on a fuzzy behavior

management system, where a set of

reactive behaviors, which will be carried

out by the robot, are implemented as a set

of fuzzy rules. Two set of rules were

established: one implementing trajectory

following, and the another one

implementing obstacle avoidance.

Joystick,

touch-screen,

electro

miographic

interface, and

Brain Computer

Interface (BCI).

University of Michigan

[Park et al., 2012]

A static occupancy grid map

obtained via SLAM. Global

topological map. Position and

velocity estimation of new

obstacles in the environment based

on a Kalman filter.

Model Predictive Equilibrium Point

Control (MPEPC) framework, which

allows the navigation of a wheelchair in

dynamic, uncertain, structured scenarios

with multiple pedestrians.

Joystick.

RobChair Institute for

Systems and Robotics,

University of Coimbra

[Lopes et al., 2011,

Lopes et al., 2012,

Lopes et al., 2013b]

A priori metric map; Markov

localization based on laser scan

matching; Global planner based on

the A*algorithm and local

planning for obstacle avoidance.

Two-layer collaborative controller that

depends on the user’s ability steering the

wheelchair with the BCI (the user selects

among a set of discrete steering

commands); Intent matching algorithm

that matches user intents with machine

steering proposals.

Synchronous

BCI; scanning

interface with

single/multiple

switch.

University of Zaragoza

[Iturrate et al., 2009]

A binary occupancy grid map is

used to model the static obstacles

and free space. A set of extended

Kalman filters was chosen to track

moving objects around the robot.

The final motion of the vehicle was

computed using the nearness

diagram (ND) technique.

Control of real wheelchair and simulated

wheelchair in virtual environment

(selection of local surrounding points).

Synchronous

BCI.

7

2.3. SIMULTANEOUS LOCALIZATION AND MAPPING CHAPTER 2. STATE OF THE ART

Table 2.2: Common Robot Frameworks of today
Framework Description

CARMEN

The Carnegie Mellon Robot Navigation Toolkit, CARMEN, is an open-source collection of software
for mobile robot control. CARMEN is modular software designed to provide basic navigation
primitives including: base and sensor control, logging, obstacle avoidance, localization, path planning,
and mapping [CARMEN-Team, 2000].

MRDS

Microsoft Robotics Developer Studio, provides a wide range of support to develop robot applications.
The latest RDS 4 includes a programming model that helps make it easy to develop asynchronous,
state-driven applications. RDS 4 provides a common programming framework that can be applied to
support a wide variety of robots, enabling code and skill transfer [Microsoft, 2012].

MOOS
MOOS, originally from "Mission Oriented Operating Suite", is a C++ cross platform middle ware for
robotics research. It is helpful to think about it as a set of layers [MOOS-Team, 2013].

Orca

Orca grew out of Orocos EU funded project at KTH, and it is now an open-source framework for
developing component-based robotic systems. It provides the means for defining and developing the
building-blocks which can be pieced together to form arbitrarily complex robotic systems, from single
vehicles to distributed sensor networks [Orca-Team, 2009].

OROCOS
OROCOS, the Open Robot Control Software, is a project that aim to develop a general-purpose, free
software, and modular framework for robot and machine control [OROCOS-Team, 2007].

Player
Player provides a network interface to a variety of robot and sensor hardware. Player’s client/server
model allows robot control programs to be written in any programming language and to run on any
computer with a network connection to the robot. [Player-Team, 2010].

ROS

ROS, the Robot Operating System, is an open-source, meta-operating system for robots maintained
by [WillowGarage-Team, 2013]. It provides the services expected from an operating system, including
hardware abstraction, low-level device control, implementation of commonly-used functionality,
message-passing between processes, and package management. It also provides tools and libraries for
obtaining, building, writing, and running code across multiple computers
[Quigley et al., 2009, ROS-Team, 2013].

YARP
YARP, for Yet Another Robot Platform presents a set of libraries, protocols, and tools to keep
modules and devices cleanly decoupled. [YARP-Team, 2013].

mapping and localization”, or CML [Thrun et al., 2005]. Figure 2.1 shows where SLAM is inserted,
(data processing module) between the fundamental modules of a mobile robot project. SLAM is
integrated in the data processing module, where upon receiving the sensorial information from the
data acquisition module, allows the implementation of decision methods in the decision module, such
as navigation, making use of the current computed location and mapping to do so.

Data
Aquisition

Decision

Data
processing

Robot
Hardware

H.M.I.

SLAM

Navigation

Figure 2.1: Common modules of a mobile robot, evidencing SLAM and Navigation

8

CHAPTER 2. STATE OF THE ART 2.3. SIMULTANEOUS LOCALIZATION AND MAPPING

Mapping

Metric Topologic

Continuous Discrete

Grids
Line

Extraction

Using Using

Using

Nodes Arcs

Figure 2.2: Most common mapping techniques and their representations

Therefore, to better understand the SLAM problem, it is necessary to split it into two distinct
parts; localization and mapping:

Localization: Mobile robot localization is the problem of determining the pose of a robot in its sur-
rounding environment, using the provided sensory information, and it is often called “pose estima-
tion”. It can also be seen as a problem of establishing correspondence between the map coordinate
system and the robot’s local coordinate system [Thrun et al., 2005]. In [Thrun et al., 2001], lo-
calization methods are classified in two major groups: position tracking, and global localization.
Position tracking assumes that the initial robot pose is known and the robot only has to com-
pensate small odometry errors occurring during robot navigation. Typically, position tracking
methods are not able to recover when they lose track of the robot’s pose. In global localization,
the robot is placed somewhere in its environment and the initial pose of the robot is unknown.
Global localization is more complex to solve than position tracking [Thrun et al., 2005].

Mapping: There are two major types of maps that can be generated and maintained by mobile robots:
metric and topological maps [Thrun, 1998]. There are also other solutions, but these two are the
most popular ones, as seen in Fig. 2.2.

Metric maps are the most simple and easy to understand by humans, as they represent the
environment directly from sensorial information [Dudek and Jenkin, 2000]. These maps can be
continuous or discrete. The continuous map is an interpolation of the real world from discrete
measures. One example is line extraction, where best-fit lines are extracted from the provided
sensorial data [Siegwart and Nourbakhsh, 2004]. Discrete maps, for example occupancy grid
maps, are represented by a matrix of cells, where each cell has attached to it a occupancy
value indicating the type of environment in that precise place, for example, a cell can represent
empty space, an obstacle, unknown space, or just a value of the probability of that area being
occupied. However, the most common mapping techniques just have a binary occupancy value,
indicating occupied or free states for the cell. An occupancy grid map can divide the space into
finitely many and small grid cells, making it possible to have a detailed map, but with a critical
computational cost, so a trade-off between number of cells and cell size for each map must be
performed [Thrun et al., 2005]. In Fig. 2.3 there is an example of a 2D metric map to the right,

9

2.3. SIMULTANEOUS LOCALIZATION AND MAPPING CHAPTER 2. STATE OF THE ART

C

A

B

D

E G

F

H

I

Figure 2.3: Examples of a topological map (left) and a discrete metric map (right)

also called occupancy grid map.

The other type, topological maps, describe the connectivity of different places, making use of
graphs to represent the environments. Topological maps represent environments as a list of sig-
nificant places or nodes, that are connected via arcs. Arcs are usually annotated with information
on how to navigate from one place to another. The nodes in a topological map represent places,
landmarks or other distinct situations. These maps are much more easy to store and use by a
computer than metric maps, improving performance greatly in large environments, but difficult
to keep consistent [Thrun, 1998]. In Fig. 2.3, on the left, there’s an example of a small topological
map of a corridor (B, E, G, H) and some rooms (A, C, D, F, I).

Solutions to perform SLAM rely heavily in probabilistic assumptions. Both the estimation of maps
and robot localization are performed by gathering information from sensorial data, making use of
probabilistic methods that have the capability of noise modeling and representing the uncertainty
associated with sensorial data and estimation processes.

Most of the probabilistic models used in SLAM techniques rely on the Bayes rule, which determines
the conditional probability of quantity x based on measurement data y:

p(x|y)=
p(y|x)p(x)

p(y)
(2.1)

If x is a quantity that needs to be inferred from y, the probability p(x) will be referred to as prior
probability distribution, and y is called the data (e.g., a sensor measurement). The distribution p(x)

summarizes the knowledge regarding X prior to incorporating the data y (X here denotes a random
variable and x denotes a specific value that X might assume). The probability p(x|y) is called the
posterior probability distribution over X.

Given that a mobile platform takes measurements over time, an extension of the Bayes rule, called
the Bayes Filter is used. The Bayes filter algorithm has two essential steps: the control update (or
prediction), and the measurement update. This is well detailed in Chapter I of [Thrun et al., 2005].
Most recursive state estimators are implementations of the Bayes filter, such as the Gaussian filter,
Kalman Filter, Extended Kalman Filter, Histogram Filter, Particle Filter and others.

Generally, a SLAM method is composed by the same main modules, that together solve the SLAM
problem, as shown in Fig. 2.4. The acquisition module prepares the sensor data for processing.
The data processing module is where the main submodules of a SLAM algorithm are located. Three

10

CHAPTER 2. STATE OF THE ART 2.3. SIMULTANEOUS LOCALIZATION AND MAPPING

 Robot Platform Update Aquisition Processing

Data
Aquisition

Process
Local Scan

(Local map)

Compute
Position

Increment

Relates to
Global Map

Robot Pose
Estimation

Building and
Maintenance
of Global Map

Sensor Data

Odometry
RGB

RGB-D
Laser
Data

Inertial
Others

Estimated
Pose

Estimated
Global Map

Estimated Pose
(t-1)

Estimated Global
Map (t-1)

Odometry
Inertial and

Others

RGB
RGB-D
Laser

Others Valid
Features

Pose
Increment

(displacement)

Pose Map

Figure 2.4: Generic SLAM algorithm

submodules can be observed in the processing module of Fig. 2.4. “Compute the position increment”
submodule calculates the pose increment from the last known pose, using data such as odometry, to
compute the displacement of the robot. The “Process Local Scan” submodule evaluates sensor data
(such as laser range data) to perceive the robot surroundings at that instant, in the form of a local
map. The third module uses the perceived local map and matches it with the global map, searching
for a matching with a previous located space or, if not found, just prepares the local map to be further
added to the global one. The update module is where the global pose of the robot is updated given
the displacement provided by the processing module, and the global map is updated based on the local
map.

2.3.1 EKF SLAM

EKF SLAM algorithm is based on the Extended Kalman Filter, or EKF, an algorithm similar to
the Kalman Filter, where the linear predictions are replaced by their non-linear generalizations. This
means that with the Extended Kalman Filter it is possible to solve non-linear problems by linearizing
the non-linear function around the current estimate. This process is detailed in [Mughal, 2004].

This method approaches the SLAM problem using a geometric interpretation of the observation
and motion model, shown in Fig. 2.5. A series of metric measurements Z

i

are taken from locations X
i

to features m
i

, typically in the form of range, bearing or a combination. The location of the features
m

i

with respect to the previously visited discrete locations X
i

can then be determined in continuous
geometric space. [Maddern et al., 2012]. The EKF is used to estimate the robot position through data
from odometry and the observation of spacial references. A covariance matrix of landmark localizations
and a pose vector are used to represent the computed robot location by the algorithm.

The EKF SLAM algorithm applies the EKF to online SLAM, using maximum likelihood data asso-
ciation. In doing so, EKF SLAM is subject to a number of approximations and limiting assumptions:
Feature-based maps: Maps, in the EKF, are composed of point landmarks. For computational

reasons, the number of point landmarks is usually small (e.g., smaller than 1000). Further, the
EKF approach performs better with distinctive landmarks. For this reason, EKF SLAM requires

11

2.3. SIMULTANEOUS LOCALIZATION AND MAPPING CHAPTER 2. STATE OF THE ART

Figure 2.5: Geometric SLAM interpretation as shown in [Maddern et al., 2012]

significant engineering of feature detectors, sometimes using artificial beacons or landmarks as
features.

Gaussian noise: EKF SLAM makes a Gaussian noise assumption for the robot motion and the
perception. The amount of uncertainty must be relatively small, since otherwise the linearization
in EKFs tends to introduce intolerable errors.

Positive measurements: The EKF SLAM algorithm, can only process positive sightings of land-
marks. It cannot process negative information that arises from the absence of landmarks in a
sensor measurements. This is a direct consequence of the Gaussian belief representation.

EKF SLAM has been applied with considerable success in a number of robotic mapping problems. The
EKF-SLAM solution has some limitations, such as computational complexity, data association and
non-linearities. Namely, the correction stage computational complexity grows quadratically with the
number of landmarks, which is usually a problem in practical applications. Data association problem is
very difficult when references are re-observed by very distinct observation points [Thrun et al., 2005].

2.3.2 FastSLAM

A popular SLAM algorithm that also makes use of the geometric solution to the SLAM problem,
shown in Fig. 2.5 is FastSLAM, proposed in [Montemerlo et al., 2002], which uses a Rao-Blackwellized
particle filter and various schemes for particle resampling. By storing many different location and
map hypotheses as individual particles and assigning weights to those particles based on how well they
match observations, particle filter SLAM avoids both the linearization and computational complexity
issues of EKF SLAM.

In a particle filter, a given particle s is associated with an occupancy grid map m[s] and a topological
map G[s], both of which are updated while the robot is performing the exploration task. In the
topological map G[s], the vertices (or nodes, depending on interpretation) represent positions visited
by the robot. The edges represent the trajectory corresponding to the particle s. To construct the
topological map, an initial node is considered as the starting pose of the robot. Let x[s]

t

be the pose
of particle s at the current time step t. A new node is added at x[s]

t

to the topological map G[s], if the
distance between x[s]

t

and the all other nodes in G[s] exceeds a threshold (dist
m

[s](x
[s]
t

, n)), or if none
of the other nodes in G[s] is visible from x[s]

t

(not_visible
m[s](x

[s]
t

, n)). This is described by:

12

CHAPTER 2. STATE OF THE ART 2.3. SIMULTANEOUS LOCALIZATION AND MAPPING

8n 2 nodes(G[s]
) : [dist

m

[s](x
[s]
t

, n) > c _ not_visible
m[s](x

[s]
t

, n)] (2.2)

Whenever a new node is created, an edge is also added from this node to the most recently visited
node [Stachniss et al., 2005]. To each particle is assigned a weight w that is related to the importance or
reliability of that particle. All weights are normalized to sum to unity. The particles are then resampled
with replacement, where the probability of selection is proportional to the weight w. Remaining
particles are then updated. This process allows the particle filter to store multiple hypotheses and
switch between them as required, but it can suffer from “particle deprivation” if there are no particles
near the correct hypothesis [van der Merwe et al., 2001, Maddern et al., 2012].

According to [Computer, 1999], the key idea of the Rao-Blackwellized particle filter for SLAM is to
estimate the joint posterior p(x1:t,m|z1:t, u1:t−1) about the map m and the trajectory x1:t = x1, ..., xt

of the robot. This estimation is performed given the observations z1:t = z1, ..., zt and the odometry
measurements u1:t−1 = u1, ..., ut−1 obtained by the mobile robot. The Rao-Blackwellized particle filter
for SLAM makes use of the following factorization:

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t)·p(x1:t|z1:t, u1:t−1) (2.3)

this factorization allows to first estimate only the trajectory of the robot and then to compute the
map given that trajectory. Since the map strongly depends on the pose estimate of t the robot, this
approach offers an efficient computation [Grisetti et al., 2006].

This method has known advantages and disadvantages such as:
Advantages:

• Scales favorably to a large number of landmarks;

• Capable of multi-hypothesis data association (robustness);

• It has no linearization of non-linear motion models;

• Works well with diversified environments and landmarks.

Disadvantages:

• Computational heavy if particle number to high;

• Has an over optimistic robot pose estimate;

• Makes it harder to close the loop.

2.3.3 GraphSLAM

GraphSLAM is an algorithm that uses sparse information matrices produced by generating a graph
of observation interdependencies, that is, two observations are related if they contain data about the
same observed landmark.

Figure 2.6 helps illustrate the GraphSLAM algorithm. Shown there is the graph that GraphSLAM
extracts from four poses labeled x1, ..., x4, and two map features m1,m2. Arcs in this graph come in

13

2.3. SIMULTANEOUS LOCALIZATION AND MAPPING CHAPTER 2. STATE OF THE ART

 X0
 X1

X4

X3
 m1

 m2

X2

Figure 2.6: Example of robot poses, landmarks and connection links performed in GraphSLAM
[Thrun and Montemerlo, 2005]

m1

x1

m1

m1

x1

x1a)
m1

x1

x2

x2
x1

m1

m1

x2

x1b)

m1

x1 x2 x3 x4

m2

m3
m4

x1

x2

m1

m1x1 x2 x4

x4

x3

x3

m4

m4

m3

m3

m2

m2c)

Figure 2.7: Acquisition of the information matrix in GraphSLAM [Thrun and Montemerlo, 2005]

two types: motion arcs and measurement arcs. Motion arcs link any two consecutive robot poses, and
measurement arcs link poses to features that were measured there. Each edge in the graph corresponds
to a nonlinear constraint. These constraints represent the negative log likelihood of the measurement
and the motion models, hence are best thought of as “information constraints”. Adding such a constraint
to the graph is trivial for GraphSLAM; it involves no significant computation. The sum of all constraints
results in a nonlinear “least squares problem”. To compute a map posterior, GraphSLAM linearizes
the set of constraints. The result of linearization is a sparse information matrix, seen in Fig. 2.7,
and an information vector. The sparseness of this matrix enables GraphSLAM to apply the variable
elimination algorithm, thereby transforming the graph into a much smaller one only defined over robot
poses. The path posterior map is then calculated using standard inference techniques. GraphSLAM
also computes a map and certain marginal posteriors over the map; the full map posterior is of course
quadratic in the size of the map and hence is usually not recovered [Thrun and Montemerlo, 2005].

Figure 2.7 shows three steps of how the information matrix is acquired (a), b) and c)). For each
step, the left diagram shows the dependence graph, and to the right is the information matrix.
2.3.4 6D SLAM

6D SLAM, or six degree of freedom SLAM, is a technique that maps the environment and locates a robot
in the 3D space. Maps are 3D models, acquired directly from 3D laser sensors, stereo cameras, RGB-D
sensors, such as the Kinect, or even by using 2D images to infer a 3D space. The pose information
is given in x, y and z coordinates, as well as roll, pitch and yaw rotations, (x, y, z, �,�,↵), and the
method keeps track of these using visual odometry, that basically, at each image sample computes the
robot dislocation.

A fast variant of the Iterative Closest Points (ICP) algorithm registers the 3D scans in a com-
mon coordinate system, also called the point cloud system. From here, as shown in previous SLAM
methods, features, or landmarks, are extracted from the 3D scans and used to estimate the neces-
sary information. 6D SLAM requires much more computer resources than the previously mentioned
algorithms [Surmann et al., 2004].

14

CHAPTER 2. STATE OF THE ART 2.4. LOOP CLOSURE

Input: stream
of RGB-D
images

Feature
extraction and

matching
(SURF)

Pose
estimation
(RANSAC)

Pose
refinement

(ICP)

Pose graph
optimization
(HOGMAN)

Output: 3D
model (RGB
Point Cloud)

Figure 2.8: Processing steps of an RGBD SLAM approach from [Engelhard et al., 2011]

Another method, similar to the generic 6D SLAM, called RGB-D SLAM [Endres et al., 2012],
has become popular in recent years, because it makes use of RGB image sensors with depth sensing
capabilities, such as the Kinect sensor. In Fig. 2.8 is represented an approach using and RGB-D sensor.
First, SURF features are extracted from the incoming color images. Then, these features are matched
against features from the previous images. By evaluating the depth images at the locations of these
feature points, a set of point-wise 3D correspondences between any two frames are obtained. Based
on these correspondences, the relative transformation between the frames is estimated using RANSAC
(“RANdom SAmple Consensus”, is an iterative method to estimate parameters of a mathematical model
from a set of observed data that contains outliers). The third step is to improve this initial estimate
using the ICP algorithm. As the pair-wise pose estimates between frames are not necessarily globally
consistent, the resulting pose graph in the fourth step is optimized using a pose graph solver. The
output of the algorithm is a globally consistent 3D model of the perceived environment, represented
as a point cloud [Engelhard et al., 2011].

2.4 Loop closure

Loop closure can be described as the task of deciding whether or not a robot has returned to a
previously visited area. During the SLAM mapping process, the robot may come to a place that it has
been before, and to solve the loop closing problem the robot must be able to recognize the previously
visited places. Such knowledge is crucial for enhancing the robustness of both topological and metric
SLAM algorithms, to increase the precision of the actual pose estimate, recognize previously mapped
locations, or even for recovering from a kidnapping (when a robot is moved by something it does not
control)[Filliat, 2009, Cummins and Newman, 2007]. According to [Newman and Ho, 2005], the hard
part about loop closing is not asserting the presence of a loop but detecting when loop closure is even
a possibility.

Correct loop closure detection can help the robot to reduce the uncertainty associated with the
system states and amend the accumulated errors during the mapping process, while incorrect claim of
loop closure can be catastrophic as it will either introduce redundancy or force an incorrect update to
the map, which can finally lead to mapping errors, as seen in Fig. 2.9, the red path before performing
loop closure, while the blue path has the loop closed and the map correctly joined. Loop closure
detection is then a subject of increasing attention in SLAM research [Liu and Zhang, 2012].

Some relevant methods for performing loop closure are described in the next subsections.
2.4.1 Particle filter based loop closure

In the FastSLAM method, [Stachniss et al., 2005] loop closing means actively re-entering a known
terrain for the robot and following a previously traversed path, ability that is given by the Particle
Filter itself, as described before, because every particle is associated to an occupancy grid map and a
topological map, both of which are continuously updated.

15

2.4. LOOP CLOSURE CHAPTER 2. STATE OF THE ART

Start
position

Perceived
final positions

After loop
closure

Without
loop closure

Figure 2.9: Example with successful loop closing (blue) and without (red) at ISR ground floor

In Fig. 2.10 it is shown in the two left images, that the robot traveled through unknown terrain, so
that the uncertainty increased. In the right image, the robot re-entered known terrain so that samples
representing unlikely trajectories vanished.

To determine whether or not a loop can be closed, for each sample s the set I(s) of positions of
interest is computed which contains all nodes that are close to the current pose x[s]

t

of particle s based
on the grid map m[s], but are far away given the topological map G[s] of s. I(s) is calculated by the
formula:

I(s) = {x[s]
t

2 nodes(G[s]
) | dist

m

[s](x
[s]
t1 , x

[s]
t2) < c1 ^ distG[s](x

[s]
t1 , x

[s]
t2) < c2} (2.4)

Here, dist
m

[s](x
[s]
t1 , x

[s]
t2) is the length of the shortest path from x1 to x2 given the representation

m. The distance between two nodes in G[s] is given by the length of the shortest path between both
nodes, whereas the length of a path is computed by the sum over the lengths of the traversed edges.
Depending on the number of nodes in I(s), this distance information can be efficiently computed using
either the A∗ algorithm or Dijkstra’s algorithm (both are pathfinding algorithms). The terms c1 and
c2 are constants that must satisfy the constraint c1 < c2.

If one or more solutions for I(s) are found, it means that there are existent shortcuts from the
current pose x[s]

t

represented by the corresponding particle to the positions in I(s). These shortcuts

Figure 2.10: Evolution of a particle set and the topological map of the particle s⇤ at three different
time steps, from [Stachniss et al., 2005]

16

CHAPTER 2. STATE OF THE ART 2.4. LOOP CLOSURE

Figure 2.11: Correspondences found between features in very different views of a poster using MSER
regions and SIFT descriptors, from [Newman and Ho, 2005]

represent edges that would close a loop in the topological map G[s]. Then, particle samples with
unlikely trajectories (without solutions for I(s)) are deleted in the resampling process, as seen in the
right part of Fig. 2.10.

Although its efficiency is proven in [Stachniss et al., 2005], this can be time consuming in certain
circumstances, such as big loops, because of the processing time required for a high number of particles.

2.4.2 Loop closure with visual features

Due to the popularity of visual sensors (such as monocular and others like depth and stereo sensors),
researchers have introduced appearance-based methods to SLAM. Appearance-based SLAM maintains
a topological representation of the environment where locations are described by images taken by the
robot camera in a continuous manner [Liu and Zhang, 2012].

In [Newman and Ho, 2005] it is illustrated how visual features, extracted with computer vision
algorithms such as MSERs (Maximally Stable Extremal Regions) and SIFT (Scale-invariant feature
transform) descriptors, used in conjunction with laser scanning, can be used to a great advantage in
the Loop Closing problem, therefore contributing to a long term robust SLAM. Also, to detect the
possibility of having a loop closure, it is necessary to decide when and where to look. Searching only in
the neighborhood of the vehicle is not robust in the face of gross vehicle error. The method proposes
that to aid the Loop Closing task, the features must be salient, wide-baseline-stable and descriptive,
as the ones in Fig. 2.11.

A method that makes use of visual features for closing the loop with Graphical SLAM, was achieved
by [Folkesson and Christensen, 2007] and they find sets of features from both ends of the loop that
can give the constraint around the loop. Then, they use the information in the graph to estimate the
energy gain from closing the loop. If there is a gain, then they can make the match and close the loop
by correcting the map and robot pose. This can be achieved with a stereo vision setup or simply a
RGBD sensor, as the Kinect.

2.4.2.1 FAB-MAP

A method developed by [Cummins and Newman, 2007] called FAB-MAP is an approach to appearance-
based place recognition. FAB-MAP compares images of locations that have been visited and determines
the probability of re-visiting a location, as well as providing a measure of the probability of being at a
new location. This information is used to detect loop closure occurrences, as the ones depicted in Fig.
2.12, where the images from the places indicated with circles are actually from the same location in

17

2.4. LOOP CLOSURE CHAPTER 2. STATE OF THE ART

Figure 2.12: Example of loop closure detection using openFABMAP algorithm in an outdoor environ-
ment.

the world, meaning that a loop closure situation was detected.
This method adopts the Bag of Words technique, detailed in Appendix A, to represent images and

match the appearance between the current visual scene and a past location, using it to compute not
only the similarity of two given observations, but also the probability that they are originated from
the same location. The probabilistic approach that is developed allows to explicitly account for the
perceptual aliasing in the environment, where identical but indistinctive observations receive a low
probability of being from the same place.

An open and modifiable source code that implements the FAB-MAP algorithm, based on the
published work of [Cummins and Newman, 2007] was made by [Glover et al., 2012a] and it is available
in [Glover et al., 2012b].

Both FAB-MAP and consequently openFABMAP require training data (e.g. a collection of images
from a similar but not identical environment) to construct a visual vocabulary for the visual bag
of words model, along with a Chow-Liu tree representation of feature likelihood. Chow-Liu trees
method is proposed by [Chow and Liu, 1968] and it consists on approximating the joint distribution
of a set of discrete random variables using a product of second-order distributions (the first-order tree
dependence). Basically this method maps dependence relations between data in a tree.

18

Chapter 3

RobChair platform

In this chapter, the RobChair platform is presented on a technical level, along with the changes made
in the restructuring process that are part of the new version, the RobChair 2.0. Changes were made
both to the hardware architecture level and abstraction layer software.

In the restructuring process, many components of the RobChair such as the steel frame, motors,
encoders and a few others remained on the new platform, therefore a review of the previous architecture
is carried out.

3.1 Previous architecture

The RobChair is composed by two motorized wheels with two casters in the front. There is also a fifth
rear wheel connected to the back of the wheelchair with a damper used for stability. Figure 3.1 shows
the RobChair mechanical structure and the associated system coordinates. Figure 3.2 presents a block
diagram of the previous hardware control architecture.

The wheelchair is powered by two 12 V batteries feeding two permanent magnet DC motors with
24 V input voltage. These motors are coupled to two gearboxes with factor 1:10 (one complete wheel
revolution corresponds to 10 complete motor revolutions). With the aid of these gearboxes, each wheel
may have a nominal torque of 29,3 Nm. There were two power drivers to guarantee the independent
and direct control of the motors. Two encoders have been coupled to the motor axis, providing the
velocity feedback of each motor. One Hokuyo URG-04LX laser range finder with the capability to scan
240 degrees, is also integrated on the platform.

The overall RobChair communication system was constituted by communication modules based
on TCP/IP communication protocol, and other communication modules based on fieldbuses, namely
Controller Area Network (CAN) and Universal Serial Bus (USB), as depicted in Fig. 3.2. CAN
was used for data transfer of small critical messages between devices, while USB is mainly used for
devices that send or receive large amounts of data. A custom communication protocol, based on the

High 94,5 cm

Width 66 cm

Depth 120 cm

Wheel radius (r) 17 cm

Wheel to center (b) 30 cm

Maximum motor speed 1000 RPM

Gear Box reduction factor 1:10

Encoder pulses per revolution 500

Figure 3.1: Mechanical structure, system coordinates and relevant data of the RobChair

19

3.2. ROBCHAIR 2.0 CHAPTER 3. ROBCHAIR PLATFORM

CAN bus

Dual Port CAN
Interface Module

PCM3680

Ethernet

Right WheelLeft Wheel

Advanced
Motion

Controls
A508T

Encoder Encoder

μc:PIC18 μc:PIC18 μc:PIC18 μc:PIC18

24V DC Motor24V DC Motor

Joystick

μc:PIC18
μc:PIC18

Trigger Node

Embedded PC
PCM9577

HMI: BCI System

Laser

USB

Hokuyo URG-04LX

g.EEG cap

g.USBamp

Figure 3.2: Previous RobChair system setup overview

Time-Triggered CAN (TT-CAN) protocol paradigm, was designed and implemented [Nunes et al.,
2003, Silva et al., 2005]. All events were synchronized by a message sent from a trigger node based
on a Microchip PIC18F258 micro-controller that synchronized all other micro-controller units. An
Embedded-PC was responsible for giving some degree of intelligence to the robot. This computer was
connected to distributed devices through CAN.

3.2 RobChair 2.0

The previous architecture of the RobChair had the advantage of being modular, with the CAN bus
allowing new devices to be connected to the system, as seen in Fig. 3.2. However, this architecture
became complex, due to several micro-controllers accessing the CAN bus, which contributed to a higher
failure rate of the system, also making the learning curve of a new researcher quite high. Also, in order
to add a new low level device to the RobChair, a new micro-controller board needed to be made
and the trigger node reprogrammed, making it a more difficult and complex task that it should be.
Additionally, the embedded computer was becoming obsolete, being too bulky and slow for todays
standards, along with the old software system that resides in it.

So, with the objective of providing the RobChair with a simpler architecture, making it easier and
fast to add new low level devices, while giving it more up to date and flexible components, (because the
RobChair is mainly a research platform), the restructuring of the old RobChair took place to create
the RobChair 2.0.

The new configuration is composed by the following hardware, numbered in Fig. 3.3:

• Two batteries of 12V each, (numbers 9 and 10);

• Two permanent magnet 24V DC motors, coupled to gearboxes with 10:1 reduction (ten turns of
motor shaft for one wheel turn), (numbers 1 and 2);

20

CHAPTER 3. ROBCHAIR PLATFORM 3.2. ROBCHAIR 2.0

Figure 3.3: The restructured RobChair 2.0, front and back

• Two encoders, 500 pulses by turn, (coupled to motors, number 1 and 2);

• RoboteQ HDC2450 dual channel motor controller, (number 3);

• One 24V DC to 12V DC converter, (number 14);

• One 24V DC to 5V DC converter, (number 12);

• A micro-computer, the Raspberry Pi, Model B (ARM architecture), (number 13)

• One Ethernet/Wireless Cisco Router, (number 4);

• One Hokuyo URG-04LX laser range finder with four meters of range, mounted horizontally,
(number 5);

• One Xsens Inertial sensor, (positioned in the middle point of the wheel axis).

From the previous list is clear that some components like the motors remained the same as before.
Figure 3.4 shows the RobChair 2.0 system setup, where the software is now centralized in one low level
micro-computer system.

The HDC2450 motor controller from RoboteQ is a commercially available controller that has a
dual channel setup, for two independent motors, capable of providing 150A for each motor, at 50V
maximum. It has also four types of operation modes: open loop, closed loop position control with a
PID controller, closed loop speed control with a PID controller, and closed loop torque control with a
PID controller. This controller is fully configurable and allows access to a large array of parameters,
such as battery voltages, current being consumed by the motors, temperatures, encoder feedback and
more, using the API defined by the manufacturer in [RoboteQ, 2012].

The controller has analog and digital inputs that allows devices to be connected directly, (e.g. a
joystick), and used to drive the motors without additional electronics. The controller also receives and
sends data through RS232, USB and CAN Bus. In this particular setup the USB connection was used
to directly connect to the micro-computer. The encoders are directly powered by the 5V outputs of
the HDC2450 controller and connected to the specific encoder channel ports.

21

3.2. ROBCHAIR 2.0 CHAPTER 3. ROBCHAIR PLATFORM

RoboteQ
HDC2450
Controller

High Level
Computer

Vc , Wc

Right
Wheel

Encoder
Left Wheel
Encoder

Encoder (Left)

Encoder (E,D)
Speed (E,D)

Volts (E,D)
Amps

RobChair
(Low Level)

TCP/|P Communication -
Wireless / LAN

HDC2450 API - USB

Raspberry Pi

MicroPC

Left Motor Right Motor

Encoder (Right)

Hokuyo

XSENS

Figure 3.4: RobChair 2.0 system overview

Because of the DC to DC converters, the RobChair 2.0 includes three ready to use voltage outputs,
24V, 12V and 5V. The 24V are used to directly feed the HDC2450 controller. An additional 12V
output is used to power on the controller. This 12V output also powers the Cisco router and has
connections ready for other devices, such as a Kinect RGB-D sensor, later used (12V connections
located at number 7, in Fig. 3.3). The 5V output powers the laser range finder and the micro-
computer, with more available connections for other sensors (5V connections located at number 6, in
Fig. 3.3). All this connections are easily expandable, being a matter of coupling the right connector
to the power lines. Figure 3.5 shows the power connections between devices.

The micro-computer, a Raspberry Pi, is a credit card sized, and inexpensive ARM-based single-
board-computer, running Linux, depicted in Fig. 3.6. Although the Raspberry Pi has less computa-
tional power than current PCs, it is still better than the previous RobChair embedded PC, being fast
enough for a wide field of applications. The Raspberry Pi Model B is being used in the RobChair, and
it has 512MB of RAM, 10/100 MBit Ethernet connection, two USB ports, a HDMI output, a composite
video output, one 3.5mm audio jack output, a SD card connector and several I/O connectors, called
the GPIOs, including SPI, I2C and RS232 connections, with reconfigurable pins for integrating other
communication protocols if needed.

New devices can connect directly to the Raspberry Pi, or to a high level PC, a laptop for example
if needed. Custom software developed for the RobChair is implemented in the Raspberry Pi, and it
manages the connections and the operability of the system. Since this software is being written in
standard C++, if in the future a more powerful micro-computer is needed, it could be changed just by
replacing it and compiling the code.

Finally, RobChair 2.0 is equipped with three main switches. A main power switch, that cuts power
from the batteries (number 15 in Fig. 3.3), a switch for the micro-computer, the Raspberry Pi (number
11 in Fig. 3.3), and a switch for the motor controller (number 8 in Fig. 3.3).

22

CHAPTER 3. ROBCHAIR PLATFORM 3.3. PID CONTROLLER

Router

12V 12V

DC-DC
To 12V

DC-DC
To 5V

24V

Motor 1Motor 2

Encoder 2 Encoder 1

PWM PWM

Power Control

12V

ON/OFF

5V

RoboteQ
HDC2450

MicroPc

USB
Serial

_

_

+

+

Fuse
2A

ON/OFF

Ethernet

5V5V

ON/OFF

Fuse
3A

GND

Main power lines

Data connections

Motor power lines

Legend:

Figure 3.5: Power connections of the RobChair 2.0 devices

Figure 3.6: Raspberry Pi installed in the RobChair

3.3 PID controller

The PID controller, acronym for “Proportional, Integral and Derivative” controller, was first published
in 1922 by Nicolas Minorsky [Minorsky, 1922], and since then it became one of the most used type of
controller to a wide range of control applications. The fundamentals of the PID controller, including
the steps necessary for this work, are described in Appendix B.

3.3.1 PI tuning

In order to have a working PI controller to our application, in this case to control the RobChair motors
with the RoboteQ controller, the proper proportional and integral gains must be obtained. First a
model of the system (G(s)) was obtained. The model of the system can be obtained through several
techniques, being the most common:

23

3.3. PID CONTROLLER CHAPTER 3. ROBCHAIR PLATFORM

1. Using a DC motor model that considers the internal parameters of the motor like the inertia of
the rotor, the viscous friction constant, torque, electric resistance and inductance, and with these
parameters simulate the motor response and obtain its transfer function;

2. Lifting the RobChair, in a way that the wheels turn freely and then retrieving the motors response
to an applied command, denominated as a step response;

3. Moving the RobChair in the floor, retrieving the motors response to an applied step.

The first two methods allow a more realistic modelation of the motors response, and the friction forces
must be inserted as an external disturbance. But in the case of the RobChair motors, the internal
parameters are not fully known, so this method is not an option.

Because the third method already has the friction forces included in the motor response, and it
also takes into account the internal behavior of the RoboteQ controller, it was the one used to obtain
the speed model.

The input command is applied by the controller and the output is the speed values of the wheels
in RPM. To experimentally obtain the transfer function of the motor response, a step corresponding
to 10% of the max speed was applied to the motor controller, in open loop mode, with the RobChair
in the floor. The acquisition rate was 100Hz. The raw data of the speed value evolution through time
from the readings of the right and left encoders are shown in Fig. 3.7.

0 2 4 6 8 10 12 14
0

50

100

150

200

Left and right motor response at 10% maximum speed

S
p

e
e

d
 (

R
P

M
)

Time (Seconds)

0 2 4 6 8 10 12 14
0

50

100

150

200

S
p

e
e

d
 (

R
P

M
)

Time (Seconds)

Left Encoder
Motor 1st order Model
Stationary response
Rise Time

Right Encoder
Motor 1st order Model
Stationary response
Rise Time

Figure 3.7: Motor response speed model

Processing the encoder data using MATLAB to obtain the rise time and the stationary response,
as illustrated in Fig. 3.7, and knowing the input command, with (B.2) and (B.3), the following values
were obtained:

⌧
S

= 0.2681

G
DC

= 1.4519

24

CHAPTER 3. ROBCHAIR PLATFORM 3.4. SOFTWARE ARCHITECTURE

Assuming that both the left and right motors have similar responses, these values are valid for
both. This way, all the variables for the first order model in (B.1) are known. The first order transfer
function was then simulated in Simulink and tested for the same step, with the result shown in Fig.
3.7, the black curve, showing that the model follows accurately the real motor response for the same
input command.

The next step is to determine the PI gains, with the process detailed in Appendix B for a generic
full PID controller, where the PID transfer function (G

s

(s)) is calculated, to obtain the second order
system function (B.15) and the PID gain equations (B.17), (B.18) and (B.19).

In this case the derivative gain is set to zero (K
D

= 0), making this a PI controller, with no
derivative gain. Accordingly to the required system response, the values ⇣ and !

n

must be chosen.
Since the RobChair is a system for assisting people, it should not make sudden movements. For a
smooth acceleration, a under-damped system should be designed, and to do that ⇣ must be below 1,
in this case the value 0.9 was chosen.

For the natural frequency, a value of 2 rads/sec was set. Considering these values and equations
(B.17) and (B.18), the final gains were obtained:

K
P

= 1.7907 (3.1)

K
I

= 2.7549 (3.2)

3.3.2 PI validation

Using the first order model of the motor and the obtained PI gains in Simulink (Fig. B.2), the system
response time can be observed in Fig. 3.8as a black line, for an input reference of 50 RPM and then
100 RPM, where it is possible to observe a rise time of about half a second. Note that 50 RPM on the
motor shaft will correspond to a slow speed of 5 RPM on the wheels, and 0, 5 secs of rise time for this
speed represents a very “soft” response, as desired.

To validate the obtained PID gain values, a test was performed on the RobChair 2.0 platform. The
values were set to the RoboteQ motor controller and the control scheme changed from open loop mode
to close loop speed control mode. Next a speed of 50 RPM and then 100 RPM was set, similarly to the
simulation. The results are shown in Fig. 3.8, where it is possible to verify that the motor response
corresponds to the simulated one, with a rise time of about half a second.

3.4 Software architecture

To provide the RobChair with an abstraction layer, a software for its internal micro-computer, the
Raspberry PI, was built. The main goal was to provide the high level devices, a way to access the
RobChair internal parameters and low level sensor readings. It also gives the high level devices the
capability of setting the internal parameters of the RobChair controller and its devices. In Fig. 3.9
it is shown how devices interact in the new RobChair, and which corresponding protocols are being
used. Devices depicted in green establish the RobChair network, using the standard sockets protocol
to exchange information between them, using either a ethernet cable or a wireless connection. A

25

3.4. SOFTWARE ARCHITECTURE CHAPTER 3. ROBCHAIR PLATFORM

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Left Motor with PID controller response time

S
p
e
e
d
 (

R
P

M
)

Time (Seconds)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Right Motor with PID controller response time

S
p
e
e
d
 (

R
P

M
)

Time (Seconds)

Simulated motor response

Input command

Real motor response

Simulated motor response

Input command

Real motor response

Figure 3.8: PID validation results

 Low Level Devices

 High Level Devices

Micro Computer

Inertial Sensor
RoboteQ

Controller

 Computer

Encoders

Motors

Serial

Ethernet

Ethernet

Embedded Router

 Portable device
Wireless

Wireless

Kinect Sensor

Laser Range
Finder

Serial ROS

Devices using the
Comunications API

Devices connected
with serial port

Other connections

Legend:

(Others)

(Others)

Figure 3.9: Types of device connections in the RobChair

communications API (Application Programming Interface) is build into the abstraction layer of the
RobChair.

This abstraction layer should be simple and robust, while being trouble free, to keep the RobChair
from having unexpected behavior. This software is called the “RobChair Framework”.

3.4.1 The RobChair framework

To understand the requirements of this abstraction layer and device management, a requirement anal-
ysis was performed, as follows:

• Modular software system;

26

CHAPTER 3. ROBCHAIR PLATFORM 3.4. SOFTWARE ARCHITECTURE

Device
verification

Configuration

Error

System
Ready

Data
Aquisition

Odometry
calculation

Configure
communication

protocol

Device
conection

New client
detected

Start
client

Receive
commands

Error

Error

Send data

Error

Stop, Kill or
Error Signal

Generate
data log

Figure 3.10: RobChair Framework prototype

• Written in standard C++, using standard system libraries and protocols;

• Capable of connecting to several devices using Ethernet/Wireless;

• Using threads to manage new connections and the communication framework;

• Mutual exclusion access to devices, in this case the RoboteQ HDC2450 controller and the Xsens
inertial sensor;

• Targeted to run on a GNU/Linux distribution;

• Using POSIX semaphores and threads.

A prototype of the framework, developed according to the presented requirements, is shown in Fig.
3.10. This project is similar to a previous work carried out on another ISR robot platform, the IS-
Robot. Therefore, the following framework proposal is based on the ISRobot 2.0 Framework, developed
together with Luís Garrote [Garrote, 2013].

The RobChair 2.0 Framework integrates two active main modules, or tasks. The Main Task and
the Communication Management Task (see Fig. C.1 and C.2 from Appendix C). The third task shown
in Fig. C.3, for Client Communication, is only activated when a new device is connected and actively
communicating. The Main Task is responsible for initializing the RoboteQ HDC2450 controller class,
that makes use of the internal API of the controller. This allows the framework to exchange information
with the controller. Then the Communication Management Task starts on a separate thread, and after
that, it starts logging internal parameters from the Controller. A routine that continuously acquires
and computes odometry and other sensorial data, with a controlled frequency of 20Hz (every 50ms),
is then started. Here the direct kinematics of the RobChair, a differential robot, are also computed.
If the Main Task stops running, all other tasks are closed and the activity log is written to the disk
before terminating.

The Communication Management simultaneously creates a socket connection and starts a 10Hz
routine where it checks for new devices requesting a connection. Upon a new detected connection, a

27

3.4. SOFTWARE ARCHITECTURE CHAPTER 3. ROBCHAIR PLATFORM

Table 3.1: RobChair 2.0 communications API
Description Command

Ask to send data measurements continuously !MEAS
Ask to send pose measurements continuously !POSE

Stop sending data measurements ~MEAS
Stop sending pose measurements ~POSE

Close all connections CLOSE
Close all connections and exit the system EXIT

Reset pose RESET
Send velocities to robot VEL=V;W

Correct pose info CPOSE=X;Y;Teta
Send raw speed values to motor controller M=M1;M2

thread for answering the client requests is created, and the Communication Management task continues
searching for new clients to connect. If the socket connection stops, for example due to a network failure,
the task terminates. The Client Communication Task grants the access of the system resources to the
client, and communicates with it using a defined API, shown in Table 3.1, while the connection is
active. Although the motors can be independently controlled using the command: M=M1;M2, this
is not the intuitive way the RobChair is intended to be controlled, but instead using the linear v and
angular w velocity commands: VEL=V;W. So, the software also implements a conversion between
these commands and the motor commands to the controller, using:

w
right

=

v + b ⇤ w
r

w
left

=

v � b ⇤ w
r

(3.3)

where b is half the distance between the two wheels, r the wheel radius and w
right

, w
left

are the
individual speeds of the wheels in rad/s. The speed is then converted to RPM. Also, the software
sends odometry data, extracted from the encoder readings and sent in linear and angular speed values.
First, the linear displacement for each wheel is given by:

4
wheel

=

E

C
2⇡r (3.4)

where E is the encoder pulses increment, C the total encoder pulses by wheel revolution. Then the
linear displacement of the RobChair is given:

4
linear

=

(4
Leftwheel

+4
Rightwheel

)

2

4
angular

=

(4
Rightwheel

�4
Leftwheel

)

d
(3.5)

If a client asks the robot pose directly at instant k, (x
k

, y
k

, ✓
k

), the software also computes the
kinematics of the RobChair [Garrote, 2013, Lopes et al., 2007], considering the differential robot model
as follows:

2

664

x
k

y
k

✓
k

3

775 =

2

664

x
k�1

y
k�1

✓
k�1

3

775+

2

664

cos(✓
k

)

sin(✓
K

)

0

3

7754
k

+

2

664

0

0

1

3

7754✓
k

(3.6)

where 4
k

and 4✓
k

are the linear and angular displacements.

28

Chapter 4

ROS integration

ROS is an open-source, meta-operating system that that stands out comparatively with others pre-
sented in Table 2.2, because it has been greatly adopted by the community (research groups, commercial
companies, governmental organizations), and consequently, tools and algorithms for ROS are added
frequently. Also, comparatively to others, ROS is well documented and there are many ready tutorials
to help the user. In sum, ROS was found suitable to integrate the RobChair 2.0 due to several factors,
namely: the available documentation, broad adoption, the developer community and ROS experience
gathered in the past. A technical overview of ROS is provided in the appendix D.

4.1 Simulation

Testing existent and developed nodes on the RobChair itself can be dangerous due to several reasons,
such as damaging the robot, collisions, or even injure people. It can be time consuming as well, because
of preparing the robot, the workspace, reseting positions, etc. Additionally, control over the workspace
can be very limited, for example in ISR ground floor, to test a SLAM algorithm without people or
objects in day time is almost impossible.

Due to this real world restrictions comes the necessity of using a simulator. One that provides a way
to simulate the robot, sensor readings, robot behavior and even control the workspace, grating that
the tested algorithms will perform similar to the real world. Bearing this in mind, from the available
simulators integrated in ROS, being the most common ones Stage and Gazebo, the Gazebo simulator
was chosen, because of its capability of simulating a 3D world and having a realistic physics engine,
that simulates real world physical interactions. Stage, on the other hand, only provides simulation
in a 2D world and provides limited physical interaction. Gazebo was originally designed to aid in
the development process of algorithms for robotic platforms. By realistically simulating robots and
environments, the code for a physical robot can be executed on an artificial version. It is capable of
simulating a population of robots, sensors and objects, in a 3D world. It generates both realistic sensor
feedback and physically plausible interactions between objects (it includes an accurate simulation of
rigid-body physics). A set of plugins create a seamless interface between Gazebo and ROS, allowing
developers to easily switch between hardware and simulation. Gazebo is under active development at
the Open Source Robotics Foundation [Robotics-Community, 2013].

4.1.1 Virtual workspaces

To perform tests in defined and controlled environments and also in places that resemble the real
scenarios that the robot has to go through, two 3D models were created for gazebo using the Google
SketchUp 3D modeling software [Google, 2013]. First, a small model, seen to the left of Fig. 4.1 shows
an enclosed small area with several characteristics, such as corridors, open and closed areas, and small

29

4.2. TELEOPERATION NODES CHAPTER 4. ROS INTEGRATION

Figure 4.1: Small test field 3D model in Gazebo simulator to the left and a 3D model of ISR ground
floor in Gazebo simulator to the right

Set Keys
 Pressed

Terminal

Select Valid
Keys

Select
 Action

Update Speed
Parameters

Publish Speed
Values to Topic

Convert Pose
Info From

Quarternion

New
Values

Wait for
Odometry

Read keys

Drive Keys
Pressed

Pose
Information

No

Yes Set Keys
 Pressed

Select Valid
Keys

Select
 Action

Update Speed
Parameters

Publish Speed
Values to Topic

Drive Keys
Pressed

Driver
Signal from
controller

Pressed
Keys

Figure 4.2: Keyboard (left) and controller (right) teleoperation ROS nodes

obstacles, with the goal of testing several methods. Second, a 3D representation of ISR ground floor
was created, as seen to the right of Fig 4.1, because that is the RobChair workspace, where algorithms
need to perform, and with this virtual version it is possible to test it before using the real platform,
with the advantage of having a controlled environment, as opposed to the real rooms and corridors.
This ISR model was created based on real measurements.

4.2 Teleoperation nodes

To remotely control the simulated robot, and the real RobChair, two nodes in ROS for teleoperation,
were written. The first one allows to control the robot with a keyboard and the second one with a
game control pad, both by sending speed commands. These commands are published to the com-
mand_velocity topic, the standard message topic for controlling robot velocities in ROS. Users can set
both the desired linear and angular speed for the robot, and then drive it, using the arrow keys, at the
set speeds.

The keyboard teleoperation node (keyboard_teleop), depicted on the left part of Fig. 4.2, reads the
keyboard information directly from the terminal. It has also the ability to receive odometry feedback
from the robot, so the user can directly see the updated pose on of the robot on the screen while it
is moving. The game control pad node fulfills the same purpose as the previous keyboard node, but
without the odometry feedback information. Although, internally it needs to load a driver for the

30

CHAPTER 4. ROS INTEGRATION 4.3. THE ROBCHAIR ROS DRIVER NODE

controller keys to be properly detected by the system. This node, called gamepad_teleop is depicted
in the right part of Fig. 4.2.

4.3 The RobChair ROS driver node

To integrate the ROS platform with the RobChair, a “driver” or bridge between the RobChair frame-
work and the ROS framework needed to be developed. In the previous Chapter, the RobChair frame-
work implemented in the micro-computer is able to communicate to the outside using a socket protocol
(using TCP/IP), either by ethernet or wireless connection (Fig. 3.9). The commands are exchanged
by a previously defined communication API (Tab. 3.1). Giving these requirements, a node for ROS
that communicates with the RobChair (called wheelchair_talker), acting as a client for the RobChair
Framework, needs to implement the bridge between the socket protocol and the ROS message topics
using the predefined API, as seen in Fig. 4.3.

To perform this, the socket connection is carried out making use of the POSIX system socket
functions (sys/socket.h), that allows information to be transmitted over the TCP layer using the IP
address of the server, in this case the IP address of the RobChair micro-computer. After a successful
connection, the node instructs the RobChair that wants to keep receiving data measurements from
the devices connected to the micro-computer. Once data is received, if it is from the inertial sensor, it
generates a ROS message with the information, and publishes it. If the data is from the odometry, it
computes the displacements between this reading at t

k

and the previous at t
k�1, in pose values, x, y

and the angle ✓ (also known as direct kinematics):

�t = t
k

� t
k�1 (4.1)

�x = (V
x

⇤ cos ✓) ⇤�t (4.2)

�y = (V
x

⇤ sin ✓) ⇤�t (4.3)

�✓ = V
✓

⇤ 4t (4.4)

The variables 4x, 4y and 4✓ are used to calculate the robot new position, by updating the
transformation matrix between the start point (called odom link in ROS) to the base of the RobChair
(called base_link). It also computes the transformation matrix from the base of the RobChair and the
position of the laser range finder (called laser link), using known measurements from the RobChair
structure. It publishes these transformations to the tf ROS message topic, that keeps track of multiple
coordinate frames over time, by maintaining the relationship between coordinate frames in a tree
structure buffered in time. At the same time that this information is being published, the node
watches the command velocity message topic in ROS for new commands, and reroutes them to the
RobChair using the “VEL” defined command in the micro-computer API. The concurrent waiting for
new velocity commands, is performed by making use of a ROS callback. A callback in ROS is a
subroutine that is executed asynchronously when triggered by some event, in this case a new message

31

4.4. VALIDATION CHAPTER 4. ROS INTEGRATION

RobChair ROS

Create and
connect
socket

Connected

Wait velocity
command

Wait for
Robchair data

Verify
connection Connected

Publish
Xsens Data

Compute
Odometry

Publish
Odometry

Send Velocity
to Robchair

TCP/IP Driver
Node

No

Yes

No

Yes

Figure 4.3: RobChair Driver Node for interoperability with ROS

Figure 4.4: Straight corridor mapped with uncalibrated odometry

in the command_velocity topic.
This works while the socket connection is valid and the node is still running. Data from the laser or

camera in the RobChair do not go through this node, that is because they connect directly to the high
level computer, and ROS provides ready to use drivers for these sensors, which publish the relative
data topics to the ROS system.

4.4 Validation

With the wheelchair_talker and teleoperation nodes, it is now possible to make use of ROS tools to
visualize and store data from the real platform. Early tests confirmed that the nodes are working as
intended. Making use of the RVIZ, a tool to visualize several topics being published, it is possible to
see the the evolution of the RobChair pose, based on odometry readings. By plotting the laser readings
according to the pose evolution provided by the odometry, it is possible to conclude that the odometry
readings do not represent the true RobChair motion, as shown in Fig. 4.4, that corresponds to the
RobChair motion in a straight corridor. This means that the odometry information is not properly
calibrated, and before continuing to implement higher level methods, such as SLAM, some techniques
can be applied to mitigate this problem.

32

CHAPTER 4. ROS INTEGRATION 4.4. VALIDATION

4.4.1 Odometry error study

Odometry is the most widely used method for determining the pose of a mobile robot. In most practical
applications odometry provides easily accessible real-time positioning information in-between periodic
absolute position measurements. The frequency at which the (usually costly and/or time-consuming)
absolute measurements must be performed depends to a large degree on the accuracy of the odometry
system.

Odometry errors can be non-systematic or systematic. Non-Systematic odometry errors are the
ones caused by interaction of the robot with unpredictable features of the environment. For example,
irregularities of the floor surface, such as bumps, cracks, or debris, will cause a wheel to rotate more
than predicted. Systematic errors are vehicle-specific and don’t usually change during a run. Thus,
odometry can be improved significantly by measuring the individual contribution of the most dominant
error sources, and then counter-acting their effect in software [Borenstein and Feng, 1996]. Determining
the systematic odometry errors of a mobile robot is essential to accurately compute the robot pose,
which is determined based on encoder data. With the error information it is possible to improve
reliability by reducing the error that builds up between the real robot position and the estimated
position using the encoder data. It can be very important during the process of map building because
having an accurate robot pose estimation, it can reduce the mapping errors and the difficulty of
detecting loop closure, representing a significant performance improvement.

Some odometry calibration techniques were already studied in [Rekleitis, 2003, Borenstein, 1994,
Larsen et al., 1998, Borenstein and Feng, 1996], but the most standard one is still the often called
“method of the square” by [Borenstein and Feng, 1996]. Briefly, in this method, a differential drive
robot is instructed to go on a pre-programmed square path of 4x4 meters, that consists on straight
paths and 90 degree turns. The cumulative error is then extracted by observing a reference wall and
measuring the final robot pose.

Another method, from [Rekleitis, 2003], performs a different approach to the problem, relying on
laser measurements and a few landmarks to estimate the rotational and translational odometry error.
Also, less space is needed to perform this study.

4.4.1.1 Method from Rekleitis

In this method, odometry errors are modeled by performing a series of controlled tests with the robot,
by separating rotational movement errors from translational ones. In both cases, the robot is placed
in a ’C’ shaped enclosure, consisting of four walls, as seen in Fig. 4.5, that shows in green the laser
readings with the RobChair in the start pose, (0, 0, 0). The intersections of the four walls provide three
geometric landmarks (highlighted by circles in Fig. 4.5), and then the orientation of the four walls in
world coordinates should vary by the same amount of the robot’s rotation, as depicted in the example
shown in Fig. 4.5. The detection of the required landmarks was performed using MATLAB.

Lines are approached using (4.5), where the required parameters are extracted by computing the
points provided by the laser data.

y = mx+ b (4.5)

The three corner landmarks correspond to the occurrence of intersections between the detected lines

33

4.4. VALIDATION CHAPTER 4. ROS INTEGRATION

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

Position in X (meters)

Po
si

tio
n

in
 Y

 (m
et

er
s)

Laser readings, before (green) and after (yellow) rotation

Figure 4.5: Laser readings of the four walls providing five landmarks, shown in blue and red. Initial
position in green and yellow after rotation.

that provide three estimates (indicated by the red and blue circles). And the two top walls provide two
more estimates (indicated by the red and blue lines). These five landmarks are used for both rotation
and translation analysis, because these landmarks are always in the laser field of view. To estimate
the errors, the five landmarks are first detected for the initial pose of the robot (the ones in red), and
then after the robot motion, the five landmarks are detected again (the ones in blue), as it is possible
to see in Fig. 4.5, in this case, for rotational movements.

To compute the rotational error, a similar procedure is repeated using different motion parameters,
namely speed and rotation angle. The rotational error was determined using six rotational angles
(-50º, -30º, -10º, 10º, 30º and 50º), at three different speeds (0.1m/s, 0.2m/s and 0.4m/s). Although,
these predefined angle values are difficult to obtain with the real robot. So, errors will be compared
with the ground truth laser readings. For example, a desired rotation of -50º is actually translated
in a “reported rotation” of -55.2344 degrees, given by the odometry, and of -53.0241 degrees of “real
rotation” given by the laser readings. This situation happens because there was a delay between the
RobChair stop command, and the time it actually stopped.

Results are shown in Fig. 4.6, with the rotation angles in the X-axis adjusted to the average laser
reported values, and the odometry errors in the Y-axis. The ’o’, ’x’ and ’+’ stand for the three different
test speeds. The dashed lines are the average errors for each speed. It is clear that for larger rotation
angles there are larger errors.

By calculating a constant correction factor and then multiplying it by the received rotation mea-
surement (angular value of the received displacement) from the RobChair, it is possible to mitigate
the cumulative errors of the odometry readings in real time.

To obtain the constant K, first, an average of the measured errors for each rotation angle, and
for each speed was performed. From these values, it is possible to calculate the correction factor, as
follows:

K
rot

=

����
Reported rotation

Real rotation

���� (4.6)

34

CHAPTER 4. ROS INTEGRATION 4.4. VALIDATION

−50 −40 −30 −20 −10 0 10 20 30 40 50

−3

−2

−1

0

1

2

Error in rotation from Odometry values

Rotation angle (in degrees)

M
e
a
su

re
d
 e

rr
o
r

(i
n
 d

e
g
re

e
s)

Speed of 0.1 m/s

Speed of 0.2 m/s

Speed of 0.4 m/s

Figure 4.6: Odometry rotational errors

Because the factor can not be changed in real time on the RobChair driver node for each speed
and rotation displacement, an average of all K was used:

K
rot_avg

= 1.0269 (4.7)

The correction is made on the ROS driver node, before computing the odometry transformations,
as follows:

V
✓_new

= V
✓

⇤K
rot_avg

(4.8)

Where V
✓

is the received angular displacement from the RobChair and the V
✓_new

is the new
displacement value to be added to the odometry transformation matrix in ROS. For the translational
error, the same setup was used. The robot moved about one meter at the same three different speeds
as before. Each test was repeated ten times. Like before, the errors are given by relating the “reported
rotation” from the RobChair to the “real rotation” obtained based on the laser data.

In Fig. 4.7, the distance errors are shown for the three different speeds, with the dashed line
representing the average. It is clear that at a larger speed, a larger error is obtained. This happens
because of a significant wheel slippage that occurs when breaking at a higher speed. Because of this,
the 0.4m/s speed values were discarded.

Now, a constant K
trans_avg

is also calculated, the same way as before, and applied to the linear
displacement received from the RobChair, as follows:

V
lin_new

= V
lin

⇤K
trans_avg

(4.9)

By observing both translational errors in X and Y it is possible to see an emerging pattern, that
should be corrected by the applied constants. The reported positions are shown in Fig. 4.8, with the
uncalibrated data in the right, and the laser measured positions in the left (also called ground truth).

35

4.4. VALIDATION CHAPTER 4. ROS INTEGRATION

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

Y axis robot odometry error in 1 meter translation

Speed (m/s)

E
rr

o
r

(m
e
te

rs
)

After 1 meter at 0.1 m/s

After 1 meter at 0.2 m/s

After 1 meter at 0.4 m/s

Figure 4.7: Odometry translational errors

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Laser measured position

Distance (meters)

L
a

te
ra

l d
is

ta
n

ce
 (

m
e

te
rs

)

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
Odometry measured position

Distance (meters)

L
a

te
ra

l d
is

ta
n

ce
 (

m
e

te
rs

)

Figure 4.8: RobChair position according to ground truth data (left) and uncalibrated odometry data
(right)

Analyzing both, it easy to observe why the mapped corridor of Fig. 4.4 was bent to the left. On the left
image of Fig.4.8, it is possible to observe the RobChair true position going to the right (positive values
in the Y axis indicate real displacement to the right and vice versa). When going on a corridor, the
user, or a navigation method, will pull the RobChair back to the center (left), making the RobChair
odometry register a false bend to the left, generating the observed error in Fig. 4.4.

Figure 4.9 shows the mapping of an ISR corridor after the odometry calibration. As it can be
observed, the bend effect was eliminated.

Figure 4.9: Test in ISR corridor after odometry correction

36

Chapter 5

SLAM benchmarking

In this Chapter several SLAM methods available in ROS are described and evaluated, in order to find
the most appropriate one to implement in the RobChair.

5.1 Evaluated SLAM methods

The ROS repositories contain several contributions from different researchers, with many implemen-
tations of SLAM algorithms already available to the community. But only a few are widely used and
regularly supported. Methods like Gmapping, Hector SLAM, Karto and RGBD-SLAM (names of the
stacks in ROS) are under constant updates and are supported in the latest ROS versions. Since they
are very different, these four methods were chosen.

5.1.1 Gmapping

GMapping implements the FastSLAM method (previously described in Chapter 2), with a highly
efficient version of the Rao-Blackwellized particle filer to learn grid maps from laser range data, and it
is an open project at the OpenSLAM community [Grisetti et al., 2013] coded in C++, that has been
wrapped into a ROS package.

This implementation was proposed in [Grisetti et al., 2007], presenting an approach to compute an
accurate proposal distribution that takes into account not only the robot motion but also the most
recent observation. This drastically decreases the uncertainty about the robot’s pose in the prediction
step of the filter. Furthermore, in the same work an approach is applied to selectively carry out
re-sampling operations which significantly reduces the problem of particle depletion.

Gmapping has a great ROS support and documentation in comparison to the rest of the algorithms
tested in ROS. Its functional requirements are the odometry information of the robot platform and a
horizontally mounted laser range finder. This version is optimized for long-range laser scanners like
SICK LMS or PLS scanner. Short range lasers like Hokuyo laser scanner may not be perfectly suitable
for working with the standard parameter settings [Grisetti et al., 2005, Gerkey, 2013].

5.1.2 Hector

Hector is for an Heterogeneous Cooperating Team of Robots, and it is a flexible and scalable SLAM
algorithm for different search and rescue scenarios, mainly used in USAR (Urban Search And Rescue)
robots. This Method can be used without odometry information from the mobile platform and it
is commonly used in platforms that exhibit roll-pitch-yaw motion, such as quadcopters. It leverages
from the high update rate of modern LIDAR systems like the Hokuyo UTM-30LX. Hector SLAM fuses
sensor information using an Extended Kalman Filter [Kohlbrecher et al., 2012].

37

5.2. EVALUATION METRICS CHAPTER 5. SLAM BENCHMARKING

The created map is represented by a 2D grid, holding the probability of cell occupancy. It accesses
map data on non-integer coordinates using bilinear filtering, which is an approximate method, even
though it is fast. It also caches recently accessed grid points. This method does not provide explicit
loop closing ability, and it is available in ROS since 2010.

5.1.3 Karto

The Karto SDK is currently an advanced development project within the AI Center at SRI Inter-
national, and both a commercial and a free LGPL (GNU Lesser General Public License) version are
available. But, these newer versions are not embedded in ROS anymore, only a older version is available
in ROS [KARTO-Team, 2013].

Karto implements the GraphSLAM algorithm, which relates two observations if they hold informa-
tion about the same observed landmark, by making use of sparse information matrices, as described
in Chapter 2. Karto is known for being fast and lightweight, making use of odometry and laser range
finder data. This mapping library also contains all important building blocks for 2D navigation: a
scan matcher, pose graph, loop detection, and occupancy grid construction. Unfortunately, being a
commercial software, the source code of the latest versions is not provided and little to no information
is given about its internal configuration.

5.1.4 RGBD-SLAM

This method is included in ROS as a package that can be used to register the point clouds from RGB-D
sensors such as the kinect or stereo cameras to perform 3D mapping of environments, and it is also an
open project at the OpenSLAM community [Endres et al., 2013].

It implements the 6D SLAM algorithm approached in Chapter 2, and it allows to quickly acquire
colored 3D models of objects and indoor scenes with a hand-held Kinect-style camera. It provides
a SLAM front-end based on visual features such as SURF or SIFT (user can choose) to match pairs
of acquired images, and uses RANSAC to robustly estimate the 3D transformation between them.
The resulting camera pose graph is then optimized with the SLAM back-end HOG-Man to reduce the
accumulated pose errors (Fig. 2.8) [Engelhard et al., 2011].

Tests show that this method requires a huge computational power and works best with CUDA
GPU acceleration technology. If parameters set accordingly, it can perform on real-time on an average
computer but with less accurate results.

5.2 Evaluation metrics

Even with dozens of different techniques to tackle the SLAM problem have been presented, there is no
gold standard for comparing the results of different SLAM algorithms. In the community of feature-
based estimation techniques, researchers often measure and compare the estimated distance between
a landmark location and the true robot location (ground truth), analyzing the error between both.
As illustrated in [Kummerle et al., 2009], comparing results based on an absolute reference frame can
have shortcomings. In the area of grid-based estimation techniques, people often use visual inspection
to compare maps or overlays with blueprints of buildings. This type of evaluation becomes more and

38

CHAPTER 5. SLAM BENCHMARKING 5.2. EVALUATION METRICS

more difficult as new SLAM approaches show increasing capabilities and thus large scale environments
are needed for evaluation [Kummerle et al., 2009].

Two methods are used in [Sturm et al., 2012], to evaluate RGB-D SLAM: the Relative Pose Error
(RPE) and the Absolute Trajectory Error (ATE). RPE measures the local accuracy of the trajectory
over a fixed time interval �, corresponding to the drift of the trajectory. The ATE, is where trajectories
are aligned and compared with the absolute distances between the estimated and the ground truth
trajectory.

In [Balaguer et al., 2007] SLAM algorithms (including Gmapping) are evaluated visually, by ob-
serving the map results of simulation and real world test, performed at the same time, with the same
control input.

With all these various attempts to properly evaluate a SLAM method, a standard method does
not exist, mainly because of the diverse nature of the output data of all these methods. That is, some
SLAM approaches create a 3D map, while others a 2D one, and even in the 2D map representation,
there are several possibilities. The same diversity applies for trajectory/pose data. So, the best way
to evaluate a SLAM algorithm always depends on the nature of the algorithms and data available,
and often custom solutions are made, like the one implemented in MATLAB for this work, which is
described in the next section.

5.2.1 Evaluating SLAM maps

With the goal of testing some of the described SLAM methods in order to find the most suitable one
for the RobChair, a method for comparing them was required. Giving that a simple way of obtaining a
ground truth data with the RobChair was not easily accessible, the method was tested on a simulated
environment, described before in section 4.2 of Chapter 4. Although good pose estimation is important
in SLAM, its evaluation was not specifically performed, because of the lack of ground truth data and
also because a good pose estimation helps to reduce the error in the generated map of the environment.
Giving that ground truth data is easy to obtain in simulation, because of the environment models, the
implemented method depicted in Fig. 5.1 performs a comparison of the final map given by the SLAM
method with the 2D version of the simulated environment model.

The method for comparing map images was created with MATLAB, and it has with two ways of
performing the comparison. One way is by doing point to point matching of the two maps, and the
other is by detect corners on the map, using the corner feature extractor in MATLAB, from the Image
Processing Toolbox, and then match the existent corners of both ground truth and the map originated
from the SLAM algorithm. This method can be divided in three main steps: image preparation, image
overlapping and image matching.

Image preparation: The images are loaded in black and white, converted in a 2D matrix, followed
by the creation of another image with extracted corners. In the case of the ground truth image,
only the edges of the obstacles are important, because in the SLAM map only the contours of
the obstacles are mapped. To accurately match the two images, an edge extraction method was
performed first. The method, is available in the MATLAB Image Processing Toolbox. After
this step, the 2D matrices containing the edges of the obstacles, and the images of the detected
corners are available (as shown in Fig. 5.2).

39

5.2. EVALUATION METRICS CHAPTER 5. SLAM BENCHMARKING

Matching

Overlapping

Preparation
Load Groud
Truth image

Load SLAM
image

Detect
edges

Convert to
[X,Y] matrix

Detect
corners

Convert to
[X,Y] matrix

Detect
corners

ICP Algorithm &
Transform images

Point to point
image matching

Displays results

ICP Algorithm &
Transform images

Corner
matching

Displays results

Figure 5.1: Proposed map evaluation method

200 300 400 500 600 700 800 900 1000 1100 1200
300

400

500

600

700

800

900

1000

1100

Detected corners in SLAM map image

Map points

Corners

Figure 5.2: Detected corners in the Ground Truth edges image (left) and in the SLAM map (right)

40

CHAPTER 5. SLAM BENCHMARKING 5.2. EVALUATION METRICS

0 200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

1000

Ground Truth (blue) and SLAM Result (green) images

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

Ground Truth (blue) and SLAM Result (green) images after matching

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

Iterations

R
M

S
E

Total elapsed time: 1.6 s

kDtree matching

RMS error evolution during iterations of ICP algorithm

Figure 5.3: Results of the ICP algorithm, before, after and RMSE evolution

Image overlapping: An ICP (Iterative Closest Points) algorithm based on the implementation of
[Kjer and Wilm, 2010] for 3D point clouds, was adapted for 2D data and used to match the two
images, returning a translation and a rotation matrix that are then applied to the SLAM image.
Also it returns the Root Mean Square Error (RMSE) of the obtained fitting (Root Mean Square
Error (RMSE) is a frequently used measure of the differences between values predicted by a
model or an estimator and the values actually observed). It iterates until it reaches the limit of
iterations or the RMSE value stops decreasing, as seen in Fig. 5.3.

This method allows two types of point matching: kDtree and brute force. A kDtree (or “k-D
tree”), for k-dimensional tree, is a data structure used in computer science for organizing some
number of points in a space with k dimensions. It is a binary search tree with other constraints
imposed on it. K-d trees are very useful for range and nearest neighbor searches, used here.
Brute force method tries all possible combinations incrementally, and despite giving the most
accurate results, it is impractical, as it takes too long to operate. The SLAM images are then
transformed to overlap with the ground truth images (the edge images and the corner points
images), resulting in as seen on the top right at Fig. 5.3:

New Image = R
rotation

⇤Old Image+ T
translation

(5.1)

Image matching: Two distinct matchings are performed, for latter comparison. Point to point image
matching and corner matching. In the first, for each point of the SLAM image it verifies if a
corresponding point exists in the ground truth image, within a radius that is equal to the RMS
error from the image overlapping. The matching points are registered and saved. The result of
this process can be observed in the left image of Fig. 5.4, with the red points being the matched
ones. In MATLAB, a percentage of the matching is also computed and displayed.

In case of corner matching, for each detected corner in the ground truth image, a corresponding
corner is searched in the SLAM image, within a defined radius equal to the RMS error of the
ICP method, plus a small threshold. This indicates if the features (in this case corners) of the

41

5.3. TEST RESULTS CHAPTER 5. SLAM BENCHMARKING

Figure 5.4: Matching points to the left and matching corners to the righ, represented in red

map are present in the SLAM map. However, with a very “noisy” or imperfect SLAM map, the
number of false corners can be very high. So, the number of extra corners in the SLAM map
that do not correspond to the ground truth, can give a good estimate of how smooth the walls
and obstacles are represented in the map. In other words, this corner detection and matching
can give a good estimation of how smoothly the map is created by the SLAM method. In the
right image of Fig. 5.4, it is possible to observe that many detected corners in the SLAM map
do not match with any corner represented in the ground truth map. Those mismatches represent
imperfections in the SLAM map. If the number of mismatches (imperfections) is known, then
a percentage of “smoothness” of the SLAM map can be calculated. Here a smoothness of 100%
represents zero mismatches, meaning that all the mapped obstacles were perfectly represented in
the map. However, this value can only be interpreted together with the corner matching value,
because not all obstacles need to be mapped for them to be correct.

5.3 Test results

From the SLAM methods highlighted before (Gmapping, Hector SLAM, Karto and RGBD-SLAM),
only Gmapping and Karto are suitable to perform with the RobChair, because Hector SLAM relies
heavily on inertial sensors, ignoring encoder data, and works best with high frame rate and long range
lasers. RGBD-SLAM is not suitable as well, because it creates 3D maps, ignoring 2D laser data and
it is very computational demanding. So, both Gmapping and Karto were chosen to be evaluated by
the benchmarking process, in a simulated environment.

To ensure that the methods were perform every time under the exact same conditions, a single run
was performed on a defined area, and all the data was stored using the rosbag tool in ROS. This tool
is able to record and play back data exchanged in ROS topics, meaning that it is possible to record all
the activity in ROS for latter reproduction. In this case, the information provided from the simulator
Gazebo was recorded, upon which the SLAM method will perform.

The results shown in Fig. 5.5 and 5.6, were obtained by running the simulations five times for each
method, and then running the evaluation method for each resultant map. These results are organized
in three classes: the point to point image matching percentage (see Fig. 5.5), the corner matching
percentage (see left chart in Fig. 5.6), and the percentage of the map “smoothness” (see right chart
in Fig. 5.6). By analyzing the data, it is possible to conclude that Gmapping performed better in all
the tests. Also, in Table 5.1 the average results for both SLAM methods are presented. Karto had

42

CHAPTER 5. SLAM BENCHMARKING 5.4. SLAM WITH GMAPPING

�����

�����

����� ����	

�
���
�	��� ����� ����� ����� ���
	

�

��

��

��

��

��

��

��

	�

�

���

� � � � �
�

��

�

��
�

�
�������
�

����������������
�����

��
�����

�
���

Figure 5.5: Chart with the point to point matching results for Gmapping and Karto

�����
�����

�����
�����

	����

����

�
���
�����

�	�	�

����

�

��

��

��

��

��

��

��

	�

�

���

� � � � �

�

��

�

��
�

�
�������
�

����
������������
�����

��
�����

�
���

�����

�����

�����
�����

���	�

	����

��

�	��� �����
�
���

�

��

��

��

��

��

��

��

	�

�

���

� � � � �

��

�
��

��
��

����������

�����������
������

��
�����

�
���

Figure 5.6: Charts with the corner matching and smoothness results for Gmapping and Karto SLAM
methods

significant problems in keeping a smooth map, where in average, only 49,43% of the corners from the
original map were found, and only 35,72% of the detected corners in the Karto map match the original,
indicating that more false positives where detected in comparison to Gmapping.

5.4 SLAM with Gmapping

After concluding that Gmapping is a better choice for the RobChair, both from the results from Table
5.8 and by discarding other non practical methods, tests on the real platform were made at the ISR
ground floor using Gmapping, depicted in Fig. 5.7.

The resultant map in Fig. 5.8 is an example of a situation that occurred frequently in more tests.
Although details like the room entrance doors and 90º corners are well replied on the map, clearly
it is not representative of the real corridor. It is easy to see that the loop was not closed, because
in the map, the end point does not correspond to the start point of the RobChair, and that was not
true on the real run. These results show that the loop closure ability of Gmapping is having trouble
identifying loops on big environments, leading to greater map imperfections on the long run. Several
reasons are causing this, such as the non existence of a long range laser sensor and mainly the incorrect
parameterization of the Gmapping method. Because of that, changes to the default Gmapping need
to be performed, along with the introduction of new methods to mitigate the problem.

43

5.4. SLAM WITH GMAPPING CHAPTER 5. SLAM BENCHMARKING

Table 5.1: Average results from benchmarking tests
Point matching Corner matching Smoothness

Gmapping 93,32% 85,72% 68,16%
Karto 71,11% 49,43% 35,72%

Figure 5.7: Plant of the ISR ground floor, with the corridor indicated in green.

Figure 5.8: Testing Gmapping at the ISR corridor.

44

Chapter 6

Two stage loop closure detection

Following the results of the previous chapter, where loop closure detection failure lead to serious map-
ping problems, changes to the SLAM algorithm and the introduction of new methods were performed
to mitigate these problems. Here, loop closure detection is addressed, making use of modifications to
the standard Gmapping, and also by applying the FAB-MAP algorithm. A new ROS node is developed
to manage both methods. These are further described in this chapter.

6.1 RobChair Gmapping

The loop closure problem happened because the default settings of Gmapping were not ready for the
RobChair setup and environment particularities. Three internal modules/routines from Gmapping
might benefit from adjusting their internal parameters. These modules/routines are the “particle
resampling”, “scan matching” and the motion model prediction.

Particle resampling: This is a routine where lower ranked particles from the particle filter are
deleted. This process is constantly evaluating the quality of all particles, by attributing a prob-
ability value to each one of them, that represents the probability of the particle representing
the true position and motion of the robot. The particle with the highest probability value at
time k is the one that is used for the map displayed at time k + 1. When some particles drop
bellow a threshold value, opening room for new particles to be created from highly ranked ones.
Although this is a very important routine to keep the quality of the particles, in certain cases,
namely during the mapping of large corridors, good particles can be wrongly eliminated. The
particle resampling should occur after a loop closure situation is detected, if possible. Particle
resampling should be prevented during the first loop, by lowering the threshold value. Regarding
the particle filter, the default number of particles in the particle filter was low (30 particles). By
raising the number of particles, it is possible to keep track of a higher number of possible robot
locations and map variations, but with an associated increase of the computational cost.

Scan matching: The scan matching procedure observes the laser readings and matches the actual
scan with previous scans. If a correspondence is found with a high degree of certainty, given
by a standard deviation parameter, the pose of the robot is updated to the previous matched
location. This is important for correcting the robot pose when all the map is available, although
if incorrectly set, it can lead to large pose estimation errors, and consequently mapping errors.
Ideally, when exploring a new part of the environment, scan matching should be kept to a
minimum, by decreasing the standard deviation of the matching process and increasing the
number of iterations the method performs, while finding a matching sample, to ensure that scan
matching only occurs if the method has a big certainty of the matching. But once the environment
is mapped, it should be set with higher standard deviation and with a lower number of refinement

45

6.2. LOOP CLOSURE DETECTIONCHAPTER 6. TWO STAGE LOOP CLOSURE DETECTION

steps. This would provide leverage to the method in situations such as odometry errors, laser
occlusion and robot kidnapping after a loop is completed. Using a laser sensor with a low range
also makes the scan matching process more inaccurate.

For example, in the resultant map shown in Fig. 5.8, the lower corridor is smaller than the
upper corridor, because of incorrect pose updates given by the scan matching process, leading to
a large final displacement between initial and final positions. This happened because the lower
corridors do not have significant distinct features, causing the perception of the laser readings as
two straight lines. When moving along the corridor, the sensor readings remain unchanged, and
the scan matching process keeps updating the robot pose to the beginning of the corridor (the
initial part that was actually mapped), resulting in smaller corridors in the map.

Motion model: Gmapping has an embedded motion model of the robot that processes the odome-
try information and computes a gaussian noise model for the predicted movement. This noise
model is important for representing the odometry errors of a robot and take then into account
when estimating the robot pose. But, with higher standard deviation values for the model, the
uncertainty can rapidly increase, leading to more sparse particles in the particle filter. But in
the case of the RobChair, with a calibrated odometry, this standard deviation parameters should
be reduced to more accurately model the correct behavior of the RobChair. In sum, this will
increase the odometry readings confidence.

Giving all this internal routines of Gmapping, it is possible to conclude that the mapping procedure
can be divided in two parts, the one where the RobChair is uncovering new terrain, in the case of the
ISR corridor this corresponds to the first loop, and a second part, where the RobChair is maintaining
and adding detail to the obtained map, after loop closure detection. For each part, a set of adapted
configurations to the particle resampling, scan matching and odometry confidence can provide benefits
to the SLAM method both in mapping and pose estimation.

Therefore, there are two problems to be addressed in order to perform the right adjustments,
being them: reformulate Gmapping to accept internal parameter changes in run time, and having the
RobChair to automatically and reliably detect a loop closure. For Gmapping, a new version called the
RobChair Gmapping, was designed to accept changes to the internal routines parameters in run time,
using a ROS callback that listens to a ROS message topic, receiving new settings when required. Upon
start, the new version of Gmapping loads the initial configuration settings from a launch file, that are
adjusted for generating the map with the RobChair before achieving loop closure (see Fig. 6.1).

6.2 Loop closure detection

For the problem of the loop closure detection, the openFABMAP method ([Glover et al., 2012a]) de-
scribed in chapter 2, that makes use of the bag of words technique, was applied in ROS. This method
requires an a priori training to be performed in an different environment from where the robot is
usually found, but with similar types of features to be detected, in this case an indoor location. This
dataset was performed on a distinct corridor, located in the Department of Electrical Engineering of
University of Coimbra. The resultant dataset is then used to compute appearance matches during an
online procedure, and detect cases such as the one illustrated in Fig. 2.12 for an outdoor environment,

46

CHAPTER 6. TWO STAGE LOOP CLOSURE DETECTION 6.3. IMPLEMENTATION

 Gmapping

Particle
Ressampling

Scan Matching

Motion Model

Initial
configurations

file

Parameter
setting

function

Callback
function

ROS
message

Other Gmapping
modules

Figure 6.1: New parameter setting method for some routines of Gmapping.

RobChair
Gmapping

SLAM Control
Node

OpenFABMAP

User Input

Configuration
File

Trainning
Dataset

Initial
settings

Secondary
settings

Appearance
match data

Training
data

Signal to
change active
configuration

Figure 6.2: Interaction between nodes for dynamic adjustment of Gmapping.

where the images from the places indicated with circles are actually from the same location in the
world, meaning that a loop closure was detected.

The method publishes the appearance match data to a ROS message topic. This message carries
the actual image index, an older image index and the probability of matching between the two. The
method is configured to output match data only for high probability loop closure situations, in this case,
it only sends a message if the probability of matching is above 98%. This means that openFABMAP
has more than 98% confidence that the robot has already been in that place, indicating a possible loop
closure situation.

With this information given in real time, it is possible to inform the RobChair Gmapping of the
loop closure detection, in order for the loop closure to be performed by the internal particle filter of
Gmapping.

6.3 Implementation

Given the loop closure detection information from the openFABMAP algorithm, a SLAM control node
was developed to set the RobChair Gmapping with the new settings, as depicted in Fig. 6.2.

47

6.4. EXPERIMENTAL RESULTS CHAPTER 6. TWO STAGE LOOP CLOSURE DETECTION

Table 6.1: The parameters that change in RobChair Gmapping for the three scenarios.

Initial settings Secondary settings Default settings

Scan matching standard deviation (�) 0,01 0,1 0,05
Scan matching routine iterations 7 4 5

Linear noise standard deviation (srr) 0,01 0,075 0,1
Linear noise standard deviation (stt) 0,02 0,1 0,2

Number of particles 50 50 30
Resampling threshold probability 0,025 0,25 0,5

Linear global map and pose update interval (meters) 0,6 0,8 1
Angular global map and pose update interval (radians) 0,3 0,5 0,5

Temporal global map and pose update interval (seconds) 2,0 2,0 1,0

This control node receives data from two sources, one from the openFABMAP and another directly
from the user (as depicted in Fig. 6.2). The node has internally the necessary parameters for the
three RobChair Gmapping scenarios: standard Gmapping settings, initial RobChair Gmapping settings
(same as the ones present in the initial configuration file), and the after loop closure detection settings.
The user can change between these three settings at any time.

If a message of appearance matching data is received, it further evaluates if the RobChair is in a
loop closure situation, by analyzing the indexes of the matched images. If the indexes are numerically
too close to each other, this means that openFABMAP is detecting similarity between image frames
from the same location, meaning that it is still in the same place, either because the robot is moving
slowly or because the local area has no distinct features. If the method detects that the robot has
been already there, it sets the “after loop closure” settings, that will allow particle resampling to occur,
by setting the scan matching routine with a higher standard deviation and with a lower number of
refinement steps. Also, the motion model is set with higher standard deviation values.

With this changes, the RobChair Gmapping is now able to close the loop by matching the beginning
and end parts of the loop, correcting the map in the process, and performing particle resampling. Also,
this will allow for RobChair Gmapping to better maintaing and improve the map after the loop closure.

In Table 6.1 the parameters that change in RobChair Gmapping for the three scenarios are listed.

6.4 Experimental results

With the new SLAM method properly implemented, tests were performed directly on the RobChair, in
the ISR ground floor corridor. The image data required by the openFABMAP algorithm was obtained
by extracting the RGB image data from a Kinect sensor mounted on the RobChair. In Fig. 6.3 it is
possible to observe in the first two map versions that a pose estimation error is also present, because
once again the starting point of the loop does not match exactly with the ending point. Although, with
the new settings in the RobChair Gmapping, the observed error is significantly lower than results with
the standard Gmapping. The last map version of Fig. 6.3, shows the map after the openFABMAP
method detected that the RobChair was there before (a loop closure possibility), changing the settings
in RobChair Gmapping and giving it the right parameters for detecting and closing the loop. In the
loop closure process, the end parts of the map are joined and the robot pose updated. Some overlapping
can occur, because even the highest ranked particle in SLAM algorithm that was chosen to close the

48

CHAPTER 6. TWO STAGE LOOP CLOSURE DETECTION 6.4. EXPERIMENTAL RESULTS

Figure 6.3: Example of successful corridor mapping with loop closure detection, in a single run.

loop (as previously demonstrated in Fig. 2.10) may not represent the exact pose of the robot in world
coordinates.

A second example of an obtained result is shown in Fig. 6.4, where laser occlusion was performed
(the laser was obstructed for brief periods of time). In this result, after a loop closure possibility had
been detected, the SLAM method took more iterations to match the new readings with the old ones,
and in image 2) of Fig. 6.4, the same corridor starts to be mapped again on a different location. But
eventually, the scan match detected that new part on the previous map, and corrected the robot pose,
and consequently the map, in image 3). In image 4), the RobChair continued to perform a second loop
on the same corridor, showing that parts of the map that are missing or not detailed enough improve
on further passages of the RobChair. This is also a positive result towards the long term stability of
the method when the RobChair goes through the same environment for a long period of time.

In these results, also the problem of long featureless corridors described in the beginning was
addressed, because the RobChair Gmapping generates lower uncertainty on the motion model and the
scan matching process does not have enough confidence to correct its pose in the first loop, being able
to map the entire featureless part of the corridors.

However, this new implementation have disadvantages as well, such as the problem of robot kid-
napping1 before the loop closure is detected, while it is performing the initial mapping. Also, at the
present, the method does not detect when the RobChair enters another loop, meaning that and the
configurations do not change back to the initial ones automatically.

1Moving the robot to another place in the environment without giving it any indication of the performed dislocation
or new the pose

49

6.4. EXPERIMENTAL RESULTS CHAPTER 6. TWO STAGE LOOP CLOSURE DETECTION

Figure 6.4: Example of successful loop closure detection and map improvement, in a single run.

50

Chapter 7

Conclusion and future work

7.1 Conclusion

In this dissertation a study of the most relevant SLAM techniques were performed and presented
together with some loop closure detection methods that were integrated to achieve a better SLAM
solution.

The goal of upgrading the RobChair to a simpler and up to date platform was successfully achieved,
proving to be reliable during all the performed tests carried out during the execution of the work
reported in this dissertation. The new integrated software is capable of providing an easy and fast way
of connecting new devices and testing diversified algorithms, making it an ideal setup for researchers.
Also, ROS proved to be a very useful tool for developing new methods for the RobChair, as well as
testing them in a simulated environment. These tools allowed for the research and implementation of
a reliable SLAM technique.

With the future goal of researching navigation techniques for a semi-autonomous robotic wheelchair,
SLAM techniques that are able to generate maps and compute the pose of the robotic wheelchair were
implemented. For that purpose, several SLAM techniques were evaluated, and some of them were
benchmarked, in a new proposed method for evaluating 2D grid maps from SLAM algorithms. A final
SLAM technique was researched and implemented by combining the information of an adjusted SLAM
method and a visual appearance method, that together solved the loop closure problem, achieving the
goal of having a robust SLAM algorithm.

7.2 Future work

To continue the current work on the RobChair platform, the SLAM techniques must be tested in
oder scenarios. Further tests concerning long life support, environment changes and robot kidnapping
should be performed to the new SLAM method, to better test the implementation and improving the
necessary aspects of the solution accordingly.

The main task to be performed next is to provide the RobChair with semi-autonomous capabilities,
integrating a navigation system on the current RobChair solution. Problems such as local and global
planning and obstacle avoidance should be addressed. Also, new human machine interface systems,
such as the Brain Computer Interface, must be integrated in the platform.

51

Bibliography

[Angeli et al., 2008] Angeli, A., Filliat, D., Doncieux, S., and Meyer, J.-A. (2008). A fast and incre-
mental method for loop-closure detection using bags of visual words. IEEE Transactions on Robotics,
Special Issue in Visual SLAM.

[Araki, 2003] Araki, M. (2003). Control systems, robotics and automation - pid control. Kyoto Uni-
versity, Japan.

[Balaguer et al., 2007] Balaguer, B., Carpin, S., and Balakirsky, S. (2007). Towards quantitative com-
parisons of robot algorithms: Experiences with slam in simulation and real world systems. IROS
2007 Workshop.

[Bay et al., 2006] Bay, H., Tuytelaars, T., , and Gool, L. V. (2006). Surf: Speeded up robust features.
In 9th Europ. Conf. on Computer Vision.

[Bonarini et al., 2012] Bonarini, A., Ceriani, S., Fontana, G., and Matteucci, M. (2012). Introducing
lurch: a shared autonomy robotic wheelchair with multimodal interfaces. IROS 2012 Workshop on
Progress, challenges and future perspectives in navigation and manipulation assistance for robotic
wheelchairs.

[Borenstein, 1994] Borenstein, J. (1994). Internal correction of dead-reckoning errors with the smart
encoder trailer. International Conference on Intelligent Robots and Systems.

[Borenstein and Feng, 1996] Borenstein, J. and Feng, L. (1996). Measurement and correction of sys-
tematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation, 12(5).

[Callmer et al., 2008] Callmer, J., Granstrom, K., Nieto, J., and Ramos, F. (2008). Tree of words for
visual loop closure detection in urban slam.

[CARMEN-Team, 2000] CARMEN-Team. Carmen robot navigation toolkit [online]. (2000). Available
from: http://carmen.sourceforge.net/intro.html.

[Chow and Liu, 1968] Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distri-
butions with dependence trees. IEEE Transactions on Information Theory.

[Coleman, 2013] Coleman, D. T. Ros concepts [online]. (2013) [cited 2013-06-27]. Available from:
http://ros.org/wiki/ROS/Concepts.

[Computer, 1999] Computer, K. P. M. (1999). Bayesian map learning in dynamic environments. Neural
Info. Proc. Systems (NIPS).

[Cummins and Newman, 2007] Cummins, M. and Newman, P. (2007). Probabilistic appearance based
navigation and loop closing. Robotics and Automation, 2007 IEEE International Conference, pages
2042–2048.

53

BIBLIOGRAPHY BIBLIOGRAPHY

[Dudek and Jenkin, 2000] Dudek, G. and Jenkin, M. (2000). Computational principles of mobile
robotics. Second Edition, Cambridge University Press.

[Endres et al., 2013] Endres, F., Hess, J., Engelhard, N., Sturm, J., and Burgard, W. Rgbdslam - 6dof
slam for kinect-style cameras [online]. (2013). Available from: http://openslam.org/rgbdslam.
html.

[Endres et al., 2012] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., and Burgard, W.
(2012). An evaluation of the rgb-d slam system. Proc. of the IEEE Int. Conf. on Robotics and
Automation (ICRA).

[Engelhard et al., 2011] Engelhard, N., Endres, F., Hess, J., Sturm, J., and Burgard, W. (2011). Real-
time 3d visual slam with a hand-held rgb-d camera. Proc. of the RGB-D Workshop on 3D Perception
in Robotics at the European Robotics Forum.

[Escobedo et al., 2012] Escobedo, A., Rios-Martinez, J., Spalanzani, A., and Laugier, C. (2012).
Context-based face control of a robotic wheelchair. IROS 2012 Workshop on Progress, challenges
and future perspectives in navigation and manipulation assistance for robotic wheelchairs.

[Filliat, 2009] Filliat, D. (2009). Robotics and computer vision - loop closure detection. Available from:
http://cogrob.ensta-paristech.fr/loopclosure.html.

[Folkesson and Christensen, 2007] Folkesson, J. and Christensen, H. I. (2007). Closing the loop with
graphical slam. IEEE Transactions on Robotics, 23(4).

[Garrote, 2013] Garrote, L. C. A. S. (2013). ISRobot 2.0 - Controlo Por Computador.

[Gerkey, 2013] Gerkey, B. Gmapping - ros package summary [online]. (2013). Available from: http:
//www.ros.org/wiki/gmapping.

[Glover et al., 2012a] Glover, A., Maddern, W., Warren, M., tephanie Reid, Milford, M., and Wyeth,
G. (2012a). Openfabmap: An open source toolbox for appearance-based loop closure detection.
International Conference on Robotics and Automation, 14-18.

[Glover et al., 2012b] Glover, A., Maddern, W., Warren, M., tephanie Reid, Milford, M., and Wyeth,
G. Openfabmap documentation webpage [online]. (2012). Available from: http://docs.opencv.
org/trunk/modules/contrib/doc/openfabmap.html.

[Google, 2013] Google. Google sketchup 3d modeling software [online]. (2013) [cited 2013]. Available
from: http://www.sketchup.com.

[Grasse et al., 2010] Grasse, R., Morere, Y., and Pruski, A. (2010). Assisted navigation for persons
with reduced mobility: path recognition through particle filtering (condensation algorithm). Journal
of Intelligent and Robotic Systems, (60):19–57.

[Grisetti et al., 2005] Grisetti, G., Stachniss, C., and Burgard, W. (2005). Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective resampling. pages 2432–
2437.

54

BIBLIOGRAPHY BIBLIOGRAPHY

[Grisetti et al., 2006] Grisetti, G., Stachniss, C., and Burgard, W. (2006). Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 32:16–25.

[Grisetti et al., 2007] Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics, 23:34–46.

[Grisetti et al., 2013] Grisetti, G., Stachniss, C., and Burgard, W. Gmapping - openslam [online].
(2013). Available from: http://www.openslam.org/gmapping.html.

[Ho and Newman, 2006] Ho, K. and Newman, P. (2006). Combining visual and spatial appearance for
loop closure detection in slam. Robotics and Autonomous Systems - RaS, 54(9):740–749.

[Iturrate et al., 2009] Iturrate, I., Antelis, J., Kubler, A., and Minguez, J. (2009). A noninvasive brain-
actuated wheelchair based on a p300 neurophysiological protocol and automated navigation. IEEE
Transactions on Robotics.

[KARTO-Team, 2013] KARTO-Team. Karto - software for robots on the move [online]. (2013). Avail-
able from: http://www.kartorobotics.com.

[Kjer and Wilm, 2010] Kjer, M. and Wilm, J. Iterative closest point algorithm on three dimen-
sional point [online]. (2010). Available from: http://www.mathworks.com/matlabcentral/
fileexchange/27804-iterative-closest-point.

[Kohlbrecher et al., 2012] Kohlbrecher, S., Meyer, J., Petersen, K., and Graber, T. (2012). Hector slam
for robust mapping in usar environments. ROS RoboCup Rescue Summer School Graz 2012. Available
from: http://tedusar.eu/cms/sites/tedusar.eu.cms/files/Hector_SLAM_USAR_Kohlbrecher_
RRSS_Graz_2012.pdf.

[Kummerle et al., 2009] Kummerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss,
C., and Kleiner, A. (2009). On measuring the accuracy of slam algorithms. Autonomous Robots.

[Larsen et al., 1998] Larsen, T., Bak, M., Andersen, N., and Ravn, O. (1998). Location estimation
for autonomously guided vehicle using an augmented kalman filter to autocalibrate the odometry.
FUSION98 Spie Conference Las Vegas.

[Liu and Zhang, 2012] Liu, Y. and Zhang, H. (2012). Indexing visual features: Real-time loop closure
detection using a tree structure. IEEE International Conference on Robotics and Automation, (14-
18).

[Lopes et al., 2012] Lopes, A., Pires, G., and Nunes, U. (2012). Robchair: Experiments evaluating
brain-computer interface to steer a semi-autonomous wheelchair. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS12).

[Lopes et al., 2013a] Lopes, A., Pires, G., and Nunes, U. (2013a). Assisted navigation for a brain-
actuated intelligent wheelchair. Robotics and Autonomous Systems.

[Lopes et al., 2011] Lopes, A., Pires, G., Vaz, L., and Nunes, U. (2011). Wheelchair navigation assisted
by human-machine shared-control and a p300-based bci. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS11).

55

BIBLIOGRAPHY BIBLIOGRAPHY

[Lopes et al., 2007] Lopes, A. C., Moita, F., Nunes, U., and Solea, R. (2007). An outdoor guidepath
navigation system for amrs based on robust detection of magnetic markers. 12th IEEE Conference
on Emerging Technologies and Factory Automation.

[Lopes et al., 2013b] Lopes, A. C., Pires, G., and Nunes, U. (2013b). Assisted navigation for a brain-
actuated intelligent wheelchair. International Journal of Robotics and Autonomous Systems.

[Maddern et al., 2012] Maddern, W., Milford, M., and Wyeth, G. (2012). Cat-slam: Probabilistic lo-
calisation and mapping using a continuous appearance-based trajectory. I. J. Robotic Res, 31(4):429–
451.

[Meckstroth, 2009] Meckstroth, M. (2009). Mobile robotics: Moving robots forward. Technical report,
RTC Magazine. Available from: http://www.rtcmagazine.com/articles/view/101197.

[Microsoft, 2012] Microsoft. Microsoft robotics developer studio (rds) [online]. (2012). Available from:
http://www.microsoft.com/robotics/#Product.

[Minorsky, 1922] Minorsky, N. (1922). Directional stability of automatically steered bodies. Journal
of the American Society for Naval Engineers, 34(2):280–309.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). Fastslam:
A factored solution to the simultaneous localization and mapping problem. Proceedings of the 18th
National Conference on Artificial Intelligence (AAAI), pages 593–598.

[MOOS-Team, 2013] MOOS-Team. Mission oriented operating suite - robotics framework [online].
(2013). Available from: http://www.robots.ox.ac.uk/~mobile/MOOS/wiki/pmwiki.php/Main/
Introduction.

[Mughal, 2004] Mughal, A. M. (2004). Kalman filter and extended kalman filter. Technical report,
University of Arkansas.

[NASA, 2011] NASA. Nasa - what is robotics? [online]. (2011). Available from: http://www.nasa.
gov/audience/foreducators/robotics/home/what_is_robotics_k4.html.

[Newman and Ho, 2005] Newman, P. and Ho, K. (2005). Slam - loop closing with visually salient
features.

[Nieto et al., 2007] Nieto, J., Bailey, T., and Nebot, E. (2007). Recursive scan-matching slam. Robotica
and Autonomous Systems, 55:39–49.

[Nistér and Stewénius, 2006] Nistér, D. and Stewénius, H. (2006). Scalable recognition with a vocab-
ulary tree. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2:2161–2168.

[Orca-Team, 2009] Orca-Team. Orca: Components for robotics [online]. (2009). Available from:
http://orca-robotics.sourceforge.net/index.html.

[OROCOS-Team, 2007] OROCOS-Team. The orocos project - open robot control software
[online]. (2007). Available from: http://people.mech.kuleuven.be/~orocos/pub/stable/
documentation/rtt/current/doc-xml/orocos-overview.pdf.

56

BIBLIOGRAPHY BIBLIOGRAPHY

[Oxford, 2013] Oxford. Oxford dictionary - robotics defenition [online]. (2013). Available from: http:
//oxforddictionaries.com/definition/english/robotics.

[Park et al., 2012] Park, J., Johnson, C., and Kuipers, B. (2012). Robot navigation with model pre-
dictive equilibrium point control. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).

[Patel et al., 2012] Patel, M., Miro, J. V., and Dissanayake, G. (2012). Probabilistic activity models to
support activities of daily living for wheelchair users. IROS 2012 Workshop on Progress, challenges
and future perspectives in navigation and manipulation assistance for robotic wheelchairs.

[Pires and Nunes, 2002] Pires, G. and Nunes, U. (2002). A wheelchair steered through voice commands
and assisted by a reactive fuzzy-logic controller. Journal of Intelligent and Robotic Systems, 34:301–
314.

[Player-Team, 2010] Player-Team. The player project - free software tools for robot and sensor appli-
cations [online]. (2010). Available from: http://playerstage.sourceforge.net/.

[Quigley et al., 2009] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., and Ng, A. (2009). Ros: an open-source robot operating system. ICRA Workshop on
Open Source Software.

[Rekleitis, 2003] Rekleitis, I. M. (2003). A particle filter tutorial for mobile robot localization. Master’s
thesis, Centre for Inteligent Machines, McGill University, Canada.

[R.I.A., 1979] R.I.A. Robot institute of america - definition of a robot. [online]. (1979). Available
from: http://www.cs.cmu.edu/~chuck/robotpg/robofaq/1.html.

[Rios-Martinez et al., 2011] Rios-Martinez, J., Spalanzani, A., and Laugier, C. (2011). Understanding
human interaction for probabilistic autonomous navigation using risk-rrt approach. IEEE/RSJ
International Conference on Intelligent Robots and Systems.

[RoboteQ, 2012] RoboteQ (2012). RoboteQ advanced digital motor controllers. RoboteQ.

[Robotics-Community, 2013] Robotics-Community. Open source robotics foundation [online]. (2013)
[cited 2013]. Available from: http://osrfoundation.org.

[ROS-Team, 2013] ROS-Team. Ros - robot operating system [online]. (2013). Available from: http:
//www.ros.org/wiki/ROS/Introduction.

[Siegwart and Nourbakhsh, 2004] Siegwart, R. and Nourbakhsh, I. R. (2004). Introduction to Au-
tonomous Mobile Robots, volume 169. The MIT Press. Available from: http://www.amazon.de/
Introduction-Autonomous-Mobile-Intelligent-Robotics/dp/0262015358.

[Sivic and Zisserman, 2003] Sivic, J. and Zisserman, A. (2003). A text retrieval approach to object
matching in videos. Proceedings of the Int. Conf. on Computer Vision, 2:1470–1477.

[Stachniss et al., 2005] Stachniss, C., Hähnel, D., Burgard, W., and Grisetti, G. (2005). On actively
closing loops in grid-based fastslam. ADVANCED ROBOTICS.

57

BIBLIOGRAPHY BIBLIOGRAPHY

[Sturm et al., 2012] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A
benchmark for the evaluation of rgb-d slam systems. IROS12.

[Surmann et al., 2004] Surmann, H., Nuchter, A., Lingemann, K., and Hertzberg, J. (2004). 6d slam
— preliminary report on closing the loop in six dimensions.

[Thrun, 1998] Thrun, S. (1998). Learning maps for indoor mobile robot navigation. Artificial Intelli-
gence, 99:21–79.

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Robotics. MIT Press.

[Thrun et al., 2001] Thrun, S., Fox, D., Bugard, W., and Dellaert, F. (2001). Robust monte carlo
localization for mobile robots. Artificial Inteligence, 128:99–141.

[Thrun and Montemerlo, 2005] Thrun, S. and Montemerlo, M. (2005). The graph slam algorithm with
applications to large-scale mapping of urban structures. International Journal on Robotics Research,
25(5/6):403–430.

[van der Merwe et al., 2001] van der Merwe, R., de Freitas, N., Doucet, A., and Wan, E. (2001). The
unscented particle filter. Neural Info. Proc. Systems (NIPS).

[Vanhooydonck et al., 2010] Vanhooydonck, D., Demeester, E., Hantemann, A., Philips, J., Vanacker,
G., Brussel, H. V., and Nuttin, M. (2010). Adaptable navigational assistance for intelligent
wheelchairs by means of an implicit personalized user model. Robotics and Autonomous Systems,
58(8):963–977.

[WillowGarage-Team, 2013] WillowGarage-Team. Willow garage home page [online]. (2013). Available
from: https://www.willowgarage.com/pages/about-us.

[YARP-Team, 2013] YARP-Team. Yarp - yet another robot platform [online]. (2013). Available from:
http://wiki.icub.org/yarpdoc/what_is_yarp.html.

[Zhang, 2011] Zhang, H. (2011). Borf: Loop-closure detection with scale invariant visual features.
International Conference on Robotics and Automation, pages 9–13.

[Zhiwei et al., 2012] Zhiwei, L., Xiang, G., Yanyan, C., and Songhao, Z. (2012). A novel loop closure
detection method in monocular slam. Intel Serv Robotics (2013), 6.

58

Appendix

59

Appendix A

Tree of Words

A class of loop closure techniques explored by many researchers [Cummins and Newman, 2007, Zhiwei et al., 2012,
Nistér and Stewénius, 2006, Callmer et al., 2008, Zhang, 2011, Angeli et al., 2008, Ho and Newman, 2006,
Glover et al., 2012a] integrates a method called Bag of Words (BoW), or the similar, Tree of Words
(ToW).

Tree of Words was first proposed by Nistér and Stewenius [Nistér and Stewénius, 2006] as a way of
finding the closest match of an image in a large database. For loop closing detection, Tree of Words
was introduced as a hierarchical approach to Bag of Words [Sivic and Zisserman, 2003], which suggests
how an image can be represented by predefined features for fast database query. This predefined set
of features is found in a codebook that is generated by clustering a large amount of features, extracted
from a training dataset, to form a finite list (commonly thousands) of ‘general’ appearances often
encountered in the environment [Glover et al., 2012a].

The differences are that Bag of Words compares images by matching clusters of words from a
small vocabulary, i.e. set of predefined words. Tree of Words on the other hand uses a larger vo-
cabulary and no clustering. The latter showed promising results and had a significant computational
speed improvement, making it appropriate for loop closure detection in a dense urban environment
[Callmer et al., 2008].

More clearly, in order to classify an image using ToW, feature descriptors are first extracted from the
image using for example the feature extractor SURF [Bay et al., 2006], SIFT or other. Each descriptor
is then compared to a large number of predefined descriptor vectors, called words, using a hierarchical
tree search to find its nearest match. If descriptor ↵ is classified as word m, the image is said to contain
word m, no matter exactly how well ↵ and m matches. The image is thus compressed into a list of the
words it contains. This list can be readily stored and compared to a database of classified images.

There are also several implementations for indoor navigation using the Tree of Words and Bags of
Words methods to describe images in monocular vision based loop closure detection, for example, in
[Filliat, 2009] they developed a vision-based loop closure detection algorithm that relies on Bayesian
filtering for loop closure probability computation, with images encoded according to the incremental
bags of visual words scheme. The overall complexity of the designed solution scales linearly with the
number of places, making it possible to detect loop closures in real-time conditions. A similar work by
[Zhiwei et al., 2012] also uses a bag of visual words approach for building an appearance-based scene
model to deal with the loop closure detection problem of monocular SLAM for mobile robots, as seen
in Fig. A.1.

Each image can then be represented by a vector of weighted vectors and a Bayesian filter algorithm
is applied to update the detection probability and an inverse image retrieval method is employed to
eliminate the wrong loop closure results. Figure A.2 illustrates how their process works.

61

APPENDIX A. TREE OF WORDS

Figure A.1: Image appearance-based modeling process from [Zhiwei et al., 2012]

Figure A.2: Loop closure detection process from [Zhiwei et al., 2012]

62

Appendix B

PID controller

This controller, has three fundamental elements, the proportional part, referred as the P element, the
integral part, referred as the I element and the derivative part, referred as the D element.

As seen in Fig. B.1 the PID controller can be described as a transfer function that receives the
signal error E(s) and generates an output signal according to its internal parameters, the proportional
gain (K

P

), the integral gain (K
I

), and the derivative gain (K
D

).

-+
R(s) E(s) C(s)

G(s)
PID Transfer Function First-Order Model

U(s)

Gc(s)

Figure B.1: PID control scheme

The three elements of the PID controller produce outputs with the following nature [Araki, 2003]:

• P element: Proportional to the error at instant t, which is the “present” error.

• I element: Proportional to the integral of the error up to the instant t, which can be interpreted
as the accumulations of the “past” error.

• D element: Proportional to the derivate of the error at the instant t, which can be interpreted
as the prediction of the “future” error.

To obtain the first a model of a system (G(s)), the first order transfer function that models the motor
response is:

G
S

(s) =
G

DC

⌧s+1
(B.1)

with G
DC

being the DC gain:

G
DC

=

Stacionary Response

InputCommand
(B.2)

and ⌧
S

the rise time, equal to:

⌧
S

= 0.632(Rise T ime) (B.3)

To obtain the PID transfer function (G
s

(s)), the following PID controller equation applies:

63

APPENDIX B. PID CONTROLLER

u(t) = K
P

e(t) +K
I

ˆ
t

0
e(t)dt+K

D

de(t)

dt
(B.4)

Applying the Laplace Transform to equation (B.4), the transfer function is obtained:

G
c

(s) =
K

D

s2 +K
P

s+K
I

s
(B.5)

The closed loop transfer function of the system presented in Fig. B.1 is given by:

C(s) = G(s)E(s) (B.6)

E(s) = R(s)�B(s) (B.7)

E(s) = R(s)�H(s)C(s) (B.8)

C(s) = G(s)[R(s)�H(s)C(s)] (B.9)

C(s)

R(s)
=

G(s)

1 +G(s)H(s)
(B.10)

where R(s) is the reference input signal, C(s) is the output, G(s) is the system transfer function,
H(s) is the feedback element, B(s) is the feedback signal and E(s) is the error between the reference
input signal and the feedback signal. The controller tends to eliminate the E(s) signal over time.

Further, to obtain the required PID gains, the closed loop poles of the system must be obtained:

1 +G(s)H(s) = 0 (B.11)

with,

G(s) = G
c

(s)G
S

(s) (B.12)

1 +H(s)G
c

(s)G
S

(s) = 0 (B.13)

Replacing (B.5) and (B.1) in (B.13) with H(s) = 1 ,

1 +

K
D

s2 +K
P

s+K
I

s

G
DC

s⌧ + 1

= 0 (B.14)

And simplifying,

(G
DC

K
D

+ ⌧)s2 + (G
DC

K
P

+ 1)s+G
DC

K
I

= 0 (B.15)

Now it is possible to match (B.15) to a second order system:

s2 + 2⇣!
n

s+ !2
n

= 0 (B.16)

64

APPENDIX B. PID CONTROLLER

Figure B.2: Simulated PID controller applied to first order model of RobChair motor

where ⇣ (damping) determines the response shape and !
n

the natural frequency that represent the
speed of the response. By matching (B.15) and (B.16), the gains K

P

, K
I

and K
D

are determined:

K
P

=

2⇣!
n

� 1

G
DC

(B.17)

K
I

=

!2
n

G
DC

(B.18)

K
D

=

1� ⌧

G
DC

(B.19)

By adding the gain values and the first order function in the system block of the Simulink scheme
of Fig. B.2, it is possible to obtain the simulated system response.

65

Appendix C

The RobChair framework tasks

Here are presented the diagrams of the RobChair framework tasks, or routines, detailed in Chapter 3:

• The main task:

Initialization and
RoboteQ controller

configuration

Started
correctly

Start Comunications
Management Task

Started

Initialize Data
Structure

System
Running

Data
Aquisition

Odometry
Calculation

Error
Management

Save Data
Logs

No

Yes

Yes

Yes

No

No

Main Task

Figure C.1: RobChair Framework main task

• The communications management task:

67

APPENDIX C. THE ROBCHAIR FRAMEWORK TASKS

Create Connection
Socket

Started
correctly

Configure
Connection

Socket
Available

New Device
Detection

Create New
Connection

Error
Management

No

Yes

Yes

Yes

No

No

Wait 100ms

Communication
Management

Figure C.2: RobChair Framework communication management task

• The client communication task:

68

APPENDIX C. THE ROBCHAIR FRAMEWORK TASKS

Start Connection

Connected

Information
Received

Error
Management

No

Yes

Yes

No

Wait 100ms

Send
Measurement

Continuously
Send Data

Request Data
From Controller

Process
Requirement

Client
Communication

Figure C.3: RobChair Framework client communication task

69

Appendix D

Technical overview of ROS

A technical overview of ROS was provided in [Coleman, 2013], and the fundamental part is presented
in this appendix.

ROS has three levels of concepts: the Filesystem level, the Computation Graph level, and the
Community level. These levels and concepts are summarized below:

1. ROS Filesystem Level

The filesystem level concepts are ROS resources that can be encountered on disk, such as:

• Packages: Packages are the main unit for organizing software in ROS. A package may
contain ROS runtime processes (nodes), a ROS-dependent library, datasets, configuration
files, or anything else that is usefully organized together.

• Manifests: Manifests provide metadata about a package, including its license information
and dependencies, as well as language-specific information such as compiler flags.

• Stacks: Stacks are collections of packages that provide aggregate functionality, such as a
"navigation stack." Stacks are also how ROS software is released and have associated version
numbers.

• Stack Manifests: Stack manifests provide data about a stack, including its license infor-
mation and its dependencies on other stacks.

• Message types: Message descriptions, define the data structures for messages sent in ROS.

• Service types: Service descriptions, define the request and response data structures for
services in ROS.

2. ROS Computation Graph Level

The Computation Graph is a peer-to-peer network of ROS processes that are processing data
together. The basic Computation Graph concepts of ROS are: nodes, master, parameter server,
messages, services, topics, and bags, all of which provide data to the Graph in different ways.

• Nodes: Nodes are processes that perform computation. ROS is designed to be modular at
a fine-grained scale; a robot control system usually comprises many nodes. For example, one
node controls a laser range-finder, another one controls the wheel motors, other performs
localization, and so on.

• Master: The ROS Master provides name registration and lookup to the rest of the Com-
putation Graph. Without the Master, nodes would not be able to find each other, exchange
messages, or invoke services.

• Parameter Server: The Parameter Server allows data to be stored by key in a central
location. It is currently part of the Master.

71

APPENDIX D. TECHNICAL OVERVIEW OF ROS

• Messages: Nodes communicate with each other through messages. A message is simply a
data structure, comprising typed fields.

• Topics: Messages are routed via a transport system with publish / subscribe semantics. A
node sends out a message by publishing it to a given topic. The topic is a name that is used
to identify the content of the message. A node that is interested in a certain kind of data
will subscribe to the appropriate topic. There may be multiple concurrent publishers and
subscribers for a single topic, and a single node may publish and/or subscribe to multiple
topics. In general, publishers and subscribers are not aware of each others existence. The
idea is to decouple the production of information from its consumption. Logically, one can
think of a topic as a strongly typed message bus. Each bus has a name, and anyone can
connect to the bus to send or receive messages as long as they are the right type.

• Services: The publish / subscribe model is a very flexible communication paradigm, but
the many-to-many, one-way transport is not appropriate for request / reply interactions,
which are often required in a distributed system. Request / reply is done via services, which
are defined by a pair of message structures: one for the request and another one for the
reply. A providing node offers a service under a name and a client uses the service by
sending the request message and waiting the reply. ROS client libraries generally present
this interaction to the programmer as if it were a remote procedure call.

• Bags: Bags are a format for saving and playing back ROS message data. Bags are an
important mechanism for storing data, such as sensor data that can be difficult to collect
but is necessary for developing and testing algorithms.

The ROS Master acts as a name-service in the ROS Computation Graph. It stores topics and
service registration information for ROS nodes. Nodes communicate with the Master to report
their registration information. As these nodes communicate with the Master, they can receive
information about other registered nodes and make connections as appropriate. The Master
will also make callbacks to these nodes when this registration information changes, which allows
nodes to dynamically create connections as new nodes are running.

Nodes connect to other nodes directly; the Master only provides lookup information, much like
a DNS server. Nodes that subscribe to a topic will request connections from nodes that publish
that topic, and will establish that connection over an agreed protocol (As seen in Fig. D.1). The
most common protocol used in ROS is called TCPROS, which uses standard TCP/IP sockets.

3. ROS Community Level

The ROS Community Level concepts are ROS resources that enable separate communities to
exchange software and knowledge. These resources include:

• Distributions: ROS Distributions are collections of versioned stacks that can be installed.
Distributions play a similar role to Linux distributions: they make it easier to install a
collection of software, and they also maintain consistent versions across a set of software.

• Repositories: ROS relies on a federated network of code repositories, where different insti-
tutions can develop and release their own robot software components.

72

APPENDIX D. TECHNICAL OVERVIEW OF ROS

Node Node

Topic
Publication Subscription

Service invocation

Figure D.1: ROS node working concept

• The ROS Wiki: The ROS community Wiki is the main forum for documenting information
about ROS. Anyone can sign up for an account and contribute their own documentation,
provide corrections or updates, write tutorials, and more.

• Bug Ticket System: If someone find an issue with ROS or ROS-related software, or wish to
request a feature, it can use the issue-tracking system to file a ticket.

• Mailing Lists: The “ROS-users” mailing list is the primary communication channel about
new updates to ROS, as well as a forum to ask questions about ROS software.

• ROS Answers: A Q&A site for answering ROS-related questions.

73

