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Abstract – This paper presents the three-dimensional scattering field obtained when multiple cylindrical circular cavities of infinite length buried in a
homogeneous elastic medium, are subjected to dilatational point loads placed at some point in the medium. The solution is formulated using boundary
elements for a wide range of frequencies and spatially harmonic line loads, which are then used to obtain time series by means of (fast) inverse
Fourier transforms into space-time. The method and the expressions presented are implemented and validated by applying them to a cylindrical circular
cavity buried in an infinite homogeneous elastic medium subjected to a dilatational point load, for which the solution is calculated in closed form. The
boundary elements method is then used to evaluate the wave-field elicited by a dilatational point load source in the presence of a different number of
cylindrical oval cavities. Simulation analyses using this idealized model are then applied to the study of wave propagation patterns in the vicinityof
these inclusions. The amplitude of the wavefield in the frequency vs axial-wavenumber domain is presented, allowing the recognition, identification,
and physical interpretation of the variation of the wavefield. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

The propagation of waves between a source and a receiver placed at depth below the ground surface, in the
vicinity of elastic inclusions and topographical deformations, has occupied many researchers for years. Some
of the first analytical studies on wave diffraction and scattering looked at wave motion and reverberations in
alluvial basins of regular shape (Trifunac, 1971; Wong and Trifunac, 1974), and the wave scattering induced
by cavities (Lee, 1977, 1988; Datta and Shah, 1982; Lee and Karl, 1992). More recently, semi-analytical
methods have been used to study wave diffraction caused by geological irregularities of arbitrary shape within
globally homogeneous media (Sanchez-Sesma, 1983; Moeen-Vaziri and Trifunac, 1988; Lee and Wu, 1994).
By contrast, the application of purely numerical methods (i.e. finite elements or differences combined with
boundaries) have mostly been employed in situations where the response is required only within localised
irregular domains, such as soil-structure interaction problems (Waas, 1972; Lysmer et al., 1974; Kausel,
1974). Discrete methods have also occasionally been used to model large alluvial basins, but only in plane-
strain (Ohtsuki and Harumi, 1983). Finally, hybrid methods involving a combination of finite elements to
model the interior domain containing the inhomogeneities and semi-analytical representations for the exterior
domain have been used (Shah et al., 1982). These methods have mostly been employed in cases where a two-
dimensional (2D) solution is wanted. If the full scattering wave field generated by sources placed in the presence
of three-dimensional (3D) propagation media is evaluated, then the numerical calculations are very costly in
terms of computer effort.

If the medium is 2D and the dynamic source 3D (such as a point load), often termed a two-and-a-half-
dimensional problem (2-1/2-D), the solution becomes much simpler. Solutions for such problems involve a two

∗ Correspondence and reprints: tadeu@dec.uc.pt



368 J. Antonio, A. Tadeu

spatial Fourier transform in the direction in which the geometry does not vary. A sequence of 2D problems
with different spatial wavenumbers,kz, must first be solved, and then the inverse Fourier transform is used to
synthesize the 3D field.

The 2-1/2-D wave equation for inclusions such as the circular cylinder can be separated, and so their solution
can be known in closed form. The solution is harder to determine for inclusions with irregular cross-sections. In
these cases, the Boundary Element Method (BEM) may be the best tool, especially if the solution has to satisfy
the far field conditions required if the inclusions are buried in an unbounded or half-space elastic medium.
Stamos and Beskos (1996) used the BEM to describe the 3D dynamic response of long lined tunnels with a
uniform cross-section, buried in a half-space, to plane harmonic waves propagated in an arbitrary direction,
treating it as a two-dimensional problem. Pedersen et al. (1994) studied the three-dimensional seismic response
of two-dimensional topographies to plane waves by means of the indirect boundary element method (IBEM),
making use of the Green’s functions for a harmonic point force moving along the axis of the topography in a
full space.

In this work, the BEM is used to evaluate the wave-field elicited by a dilatational point load (blast load) in
the presence of irregular cylindrical inclusions buried in an unbounded elastic medium. The solution at each
frequency is given in terms of waves with varying wavenumber,kz (wherez is the direction in which the
geometry does not vary). This is then Fourier transformed into the spatial domain. To find the wavenumber
transform in discrete form, it is assumed that an infinite number of virtual point sources are equally spaced
along thez axis, far enough apart to prevent spatial contamination (Bouchon and Aki, 1977). The analyses
utilize complex frequencies, moving down the frequency axis, in the complex plane. Any singularities on or
close to the axis are thus eliminated and the neighboring fictitious sources can only exert a very slight influence
(Phinney, 1965).

The BEM method is first formulated and validated by applying it to a cylindrical circular cavity buried in an
infinite homogenous elastic medium subjected to a dilatational point load for which the solution is calculated in
closed form. This model is further used for simulation analyses to investigate wave propagation in the vicinity
of such inclusions, in the presence of nearby, varying-sized, cylindrical oval cavities. Results are obtained
in the frequency and time domains, in particular for different apparent wave velocities along thez axis, to
quantitatively study the 3D effects of the scattering. Many simulations were performed to study how different
parameters, such as the size of the inclusions, affect the three-dimensional scattering wave patterns.

2. Problem formulation

An infinitely long cylindrical irregular cavity is buried within a spatially uniform elastic medium (figure 1)
and subjected to a harmonic dilatational point source at position(x0,0,0), oscillating with a frequencyω. The
incident field can be expressed by means of the now classical dilatational potentialφ

φinc = Aei ω
α

(
αt−

√
(x−x0)

2+y2+z2
)

√
(x − x0)2 + y2 + z2

, (1)

where the subscript inc denotes the incident field,A is the wave amplitude,α is the compressional wave velocity
of the medium, andi = √−1.

Defining the effective wavenumbers

kα =
√

ω2

α2
− k2

z , Im kα < 0 (2)
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Figure 1. Geometry of the problem.

by means of the axial wavenumberkz, and Fourier-transforming equation (1) in thez direction, we get

φ̂inc(ω, x, y, kz) = −iA

2
H

(2)
0

(
kα

√
(x − x0)2 + y2

)
(3)

in which theH(2)
n (· · ·) are second Hankel functions of ordern.

When we take an infinite number of virtual point sources, spaced at equal intervals along thez direction at
a sufficient distance,L, from each other to avoid spatial contamination (Bouchon and Aki, 1977), the incident
field may be written as

φinc(ω, x, y, z) = 2π

L

∞∑
m=−∞

φ̂inc(ω, x, y, kz)e
−ikzmz (4)

with kzm = 2π
L
m. This equation converges and can be approximated by a finite sum of terms.

3. Boundary element formulation

The 3D field generated by a cylindrical cavity subjected to spatially sinusoidal harmonic line loads (defined
by equation (3)) is found by means of the Boundary Element Method (BEM).

Since the basic equations used are known (Manolis and Beskos, 1988 and Banerjee, 1994), a detailed
explanation here is unnecessary. The boundary integral equations, in the absence of distributed loads and in
the presence of virtual point loads,δ(x − x0), leads to the following equation,

cij uj (x0,ω) =
∫
C

ti(x, ν,ω)Gij (x, x0,ω)ds−
∫
C

Hij (x, ν, x0,ω)uj (x,ω)ds, (5)

where i, j = 1,2 represents the normal and tangential directions in relation to the cavity surface;i, j = 3
indicates thez direction,Gij (x, x0,ω), Hij (x, ν, x0,ω) are the displacements and tractions in the directionj

at x, on boundaryC, caused by a unit point force applied at the source,x0, in direction i; vector ν is the
unit outward normal at the boundary, andcij is a constant that equalsδij /2 for a smooth boundary, where
Kronecker’s delta is represented byδij .
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Two-and-a-half Green’s functions are used to determine the expressions for the tensions. The strains are
calculated from partial derivatives of the fundamental two-and-a-half dimension solution, and Hooke’s law is
subsequently applied to find the stresses. Appendix A gives details of the displacement and stress functions
applicable to the present problem, in the form of Cartesian co-ordinates. Equilibrium relations are used to
transform the stress fields into the normal, tangential and local (z) co-ordinate systems at each element. Since
the boundary conditions for a cavity impose null tractions, a simplified form of equation (5) is obtained:

cij uj (x0,ω) = −
∫
C

Hij (x, ν, x0,ω)uj (x,ω)ds. (6)

The boundary and boundary values must be discretized before this integral can be evaluated for an arbitrary
cross-section. Therefore, in a situation whereN boundary elements are used and nodal displacements within
each element are taken to be constant and to have the same value at the respective nodal point, equation (6)
becomes,

cij u
k
j = −

N∑
n=1

Hkn
ij un

j . (7)

In equation (7), the element number at the point where the virtual load is applied is represented byk, the
boundary values in elementn are represented byun

j , andHkn
ij signifies the element integrals

Hkn
ij =

∫
Cn

Hij (xn, νn, xk,ω)ds, (8)

whereνn is the unit outward normal fornth boundary segmentCn.

If each node on the boundary is subjected to a virtual load we obtain a system of linear equations that relates
nodal forces and nodal displacements. These equations can be solved for the nodal displacements.

When an incident wave strikes the cavity, equation (6) is changed as follows,

cij uj (x0,ω) = −
∫
C

Hij (x, ν, x0,ω)uj (x,ω)ds+ uinc
j (x0,ω). (9)

To determine the incident field in this equation, we take partial derivatives of equation (3) and calculate the
displacements alongx, y andz and then apply equilibrium relations, which gives the normal and tangential
displacements along the boundary.

If the displacements and tractions are allowed to vary linearly within the boundary elements, the required
integrals of equation (8) change to

Hkn
ij =

∫
Cn

φHij (xn, νn, xk,ω)ds, (10)

whereφ represents the linear interpolation functions.

The displacement and stress variations within a boundary element are defined in terms of the nodal values.
The traction discontinuity at the corner between two boundary elements is handled by means of discontinuous
boundary elements. Thus, the nodes that would meet at the corner are moved inside (Brebbia et al., 1984).

After mathematical manipulation of the integral equations, combined and subjected to the continuity
conditions at the interface between the two media, and discretized appropriately, a system of equations is
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obtained that can be solved for the nodal displacements. The required integrations in equation (10) are
performed using Gaussian quadrature when the element to be integrated is not the loaded element. For the
loaded element, the existing singular integrands are carried out in closed form (Tadeu et al., 1999-a, 1999-b).

4. Displacements in space-time

A numerical fast Fourier transform inkz gives the displacements in the spatial-temporal domain, taking a
source whose temporal variation is given by a Ricker wavelet, as defined below. The Ricker wavelet has the
advantage of decaying rapidly, in both time and frequency, which both reduces computational effort, and allows
the computed time series and synthetic waveforms to be interpreted more easily.

The Ricker wavelet function is given by

u(τ) = A(1− 2τ 2)e−τ2
, (11)

whereA is the amplitude,T = (t − ts)/to andt denotes time;ts is the time when the maximum occurs, while
πto is the characteristic (dominant) period of the wavelet. Its Fourier transform is

U(ω) = A
[
2
√

π toe
−iωts

]
#2e−#2

(12)

in which# = ωto/2.

The Fourier transformations are achieved by discrete summations over wavenumbers and frequencies, which
is mathematically the same as adding periodic sources at spatial intervalsL = 2π/$kz (in the z-axis), and
temporal intervalsT = 2π/$ω, with $kz, and$ω being the wavenumber and frequency steps, respectively
(Bouchon and Aki, 1977). The spatial separationL must be large enough so that contamination of the response
by the periodic sources does not occur. Thus, the contribution to the response by the fictitious sources must
occur at times later thanT . It is also very useful for this if the frequency axis is shifted slightly downward,
by considering complex frequencies with a small imaginary part of the formωc = ω − iη (with η = 0.7$ω).
The periodic sources are thus practically eliminated. In the time domain, this shift is later taken into account by
applying an exponential window eηt to the response (Kausel and Roesset, 1992).

5. Validation of the BEM algorithm

The BEM algorithm was implemented and validated by applying it to a cylindrical circular cavity, placed
in a homogeneous elastic medium, subjected to a dilatational point load applied at point O, as infigure 2, for
which the solution is known in closed form and described in Eringen (1961) and Pao and Mow (1973).

The response is calculated over a fine vertical grid plane, placed perpendicular to the axis.Figure 3 gives
the horizontal scattered displacement field computed when a harmonic pressure load of 2450 Hz is excited.
This figure gives both the response obtained with the closed form solution (figure 3a), and the difference in the
response obtained using the BEM, the error, when the inclusion is modelled with 17 and 52 boundary elements,
figures 3b and 3c, respectively.

In the present example, the ratio between the wavelength of the shear waves to length of boundary elements
varies between 3 (17 boundary elements) and 9.0 (52 boundary elements). The BEM accuracy improves as
shorter boundary elements are used to model the response, as anticipated.
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Figure 2. Circular cylindrical inclusion in an unbounded elastic medium.

Figure 3. Horizontal scattered displacement field for cylindrical circular inclusion in unbounded medium: (a) Analytical solution; (b) BEM error
(λ/L) = 3; (c) BEM error(λ/L) = 9.

6. Numerical applications

Simulation analyses were performed when two cylindrical, oval buried cavities, placed inside an elastic
unbounded medium are both illuminated by an incident blast load defined by the dilatationalφ expressed as
in equation (1). Four differently-sized inclusions are considered, defined by their perimeter (2πR m). In this
equationR is a parameter that takes the values ofR = 0.0 m,2.5 m,5.0 m and 10.0 m. One of the cavities
is kept constant (R = 10.0 m) while the other, placed in its vicinity, changes in size.Figure 4 displays the
geometry of the cross-section of the inclusions considered here. At timet = 0, a point source at a point O
creates a spherical dilatational pulse propagating away from O. The field generated is computed at 41 receivers,
spaced at equal intervals (2.0 m) along thex direction.

The dilatational wave velocity (α = 4208 m/s), the shear wave velocity (β = 2656 m/s) and density
(ρ = 2140Kg/m3) of the host elastic medium are kept constant in all the analyses. The computations are
performed in the frequency range(15,960 Hz), with a frequency increment of 15.0 Hz, which determines the
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total time duration(T = 66.6 ms) for the analysis in the time domain. The spatial distance between virtual point
sources has been set to 561.0 m= 2αT . The source time dependence is a Ricker wavelet with a characteristic
frequency of 320 Hz.

The oval cavities are modelled with boundary elements, the number of which changes with the frequency of
excitation of the harmonic load. A ratio between the wavelength of the incident waves to length of the boundary
elements is kept at a minimum of 8.0. In any case the minimum number of the boundary elements used to model
each cavity is less than 30.

Figure 5displays the three dimensional vertical(y) time displacements (0–30 ms) computed for all receivers
when only the first cavity is present (R = 10.0 m). In addition, the amplitude in the frequency vs. axial-
wavenumber domain of these responses are presented for the two receivers placed closest to, and farthest from
the cavity, respectively. Each plot is normalized with respect to its own maximum. The time records exhibit
non-dispersive body waves and guided waves. The first set of pulses recorded at the receivers corresponds to
the incident field, second arrivals are caused by the initial P waves reflected from the cavity, while third arrivals
are S mode converted waves resulting from the P wave incidence on the cavity. These pulses are identified in
this figure with the labels I, P1 and S1, respectively.

Figure 4. Geometries of the numerical application problems.

Figure 5. Three Dimensional vertical response when only one cavity is present (R = 10.0 m): (a) time response; (b) Fourier spectra response at receiver
#9; (c) Fourier spectra response at receiver #41.
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The guided waves propagating along the surface of the cavity decay very rapidly with the increasing distance
to its surface. The Fourier spectra of the responses allow a visual separation of the different wave types. Waves
travelling with different velocities(c) appear in these plots at different positions, creating wrinkles accordingly
to ω/c. As an example, atf = 960.0 Hz, the waves travelling with a P and S wave velocities, appears at
kz = ω/c = 1.43 rad/m andkz = 2.27 rad/m, respectively. Analysis of these plots allow us to verify that the
guided waves are important in the vicinity of the cavity and at lower frequencies.

The full three dimensional results, displayed infigure 5, required high computational effort given the large
number of 2D solutions that needed to be integrated. Next, simulations are performed, following waves with
different apparent wave velocities along thez axis, to tackle this problem while seeking the main features of
the 3D effects of the scattering. This apparent wave velocity(c) results from waves arriving at thez axis with
a path inclination given by arccos( ν

c
), whereν is the true wave velocity (seefigure 6). Thus, in the equations

presented above,kz is taken to beω/c. In the examples selected, four apparent velocities(c) are chosen, namely
c = ∞ m/s, c = 7000 m/s, c = 4208 m/s andc = 2656 m/s. c = ∞ m/s corresponding to waves arriving at
the receivers with a 90◦ inclination in relation to thez axis, which can be understood as a pure two-dimensional
problem where the source is linear. As the path inclination ranges from 90◦ to 0◦, there is a lower bound value
for c, which corresponds to the slowest wave velocities. As the frequency tends to the infinite the velocity
of these waves approaches the Rayleigh wave velocity (Bamberger et al., 1991). Below this value, there are
inhomogeneous waves which decay very fast with decreasing values ofc.

Figure 7 again displays the vertical(y), the x and z total displacement time responses recorded at the
receivers when only one cavity is present (R = 10.0 m), for different apparent wave velocities.Figure 7a
shows the response whenc = ∞ m/s. In this figure, the incident pulse, the P reflected pulse from the cavity,
the S converted pulse are labelled I, P1 and S1, respectively. The arrival times obtained for the different pulses
are consistent with predictions by ray acoustics. A geometric acoustic ray analysis shows that these signals
result from the propagation of a reflected and diffracted wavefront on the surface of the inclusion. A ray is
associated with each wavefront, and thus there are two principal rays backscattered from such an inclusion.
Figure 8 illustrates the propagation path of these waves between the source and the receiver.

As the apparent velocity decreases, both the arrival times of the different pulses and their amplitude decrease
(seefigures 7ato 7d), indicating that the scattering energy is mainly concentrated in the verticalz plane
containing the dynamic source. A pulse in these plots, with a travel timeτ , corresponds to waves that travel
from the source to the reflector and back to the receiver, along the same ray path inclination in relation to
the z axis. The travel distance(L) in this domain is smaller because it corresponds to the projection of the
initial vertical path(d) to the inclined path, leading to a distanceL = d sin[arccos( ν

c
)]. In this way, a fall in

the apparent velocity causes a better separation of the P, S and guided waves (seefigure 7b). Thus, when the
apparent velocity equals the velocity of the P waves (seefigure 7c), the waves travelling with this velocity
arrive at the various receivers att = 0.0, and only the waves travelling with lower velocity, the S and guided

Figure 6. Apparent wave velocity.
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Figure 7. Synthetic seismograms when only one cavity is present (R = 10.0 m): (a)c = ∞ m/s; (b)c = 7000 m/s; (c)c = 4208 m/s; (d)c = 2656 m/s.
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Figure 8. Propagation path of incident and reflected waves travelling between source O and the receivers 1 and 41.

waves, survive in these time plots. Furthermore, when the apparent velocity is assumed to bec = 2656 m/s,
only the guided waves survive. Our results confirm that the guided waves are only important in the vicinity of
the inclusion (seefigure 7d). As expected, the vertical displacement of the guided waves is larger than itsx

displacement.

Figure 9 depicts the total vertical displacements when a second cavity, assuming three different sizes
(R = 10.0 m,5.0 m and 2.5 m), is added. In these plots,c changes from∞ to 2656 m/s. Whenc = ∞ m/s,
the first wave arrivals observed infigure 9acorrespond to the incident waves followed by wave trains that are
directly reflected by each of the cavities. These are succeeded by pulses of progressively lower amplitude, which
are the result of reverberations between the cavities. The time-of-flight of each of these pulses corresponds to
the travel path of a pulse from the source to the inclusion and back to the receivers. Hence, the ray theory
can be used to ascertain the accuracy of the numerical prediction, at least as far as arrival times of pulses are
concerned. Additional labels, P2 and S2, are added in these figures to identify the direct reflected pulses coming
from the second cavity. When the parameterR decreases, the pulses reflected directly from each cavity are
better defined, because of the longer travel time differences between the pulses P1, S1, P2 and S2. However, the
amplitude of these pulses (P2 and S2) decreases progressively as the size of the second cavity decreases (i.e. as
R decreases). Similar behavior is exhibited by the pulses generated by reverberations between the cavities. As
the apparent velocity decreases, both the amplitude of the different pulses and their arrival times decrease, as
in the previous case (seefigures 9b–9d). Furthermore, the scattered field produced by the second cavity loses
its importance as the apparent velocity decreases. When the velocity reachesc = 2656 m/s, the scattered field
produced by the second cavities is very weak, and the field generated indicates the existence of guided waves,
mainly produced by the first cavity.

Next, to evaluate the scattering produced by the second cavity better, the earlier vertical scattering results
are presented in the space-frequency(x, f ) domains. Only the scenarios including the largest (R = 10.0 m)
and the smallest second cavity (R = 2.5 m), and its absence, were selected as examples.Figure 10displays
these results in a grey-scale format. The amplitude of the scattered field generated when the second cavity is
absent is given as a reference, and only the amplitude of the scattered field difference generated when a second
cavity is introduced in the medium is shown infigure 10. Four apparent velocities are displayed:c = ∞ m/s,
c = 7000 m/s,c = 4208 m/s andc = 2656 m/s.

Our results indicate that when one cavity is present the larger reflections appear in the vicinity of the axis
of the inclusion, allowing its position to be detected. As the apparent velocity decreases the amplitude of the
scattered field diminishes, mainly for higher frequencies. When two cavities are present, the amplitude of the
scattered field is slightly modified. However, its difference, as displayed infigure 10, permits the detection of
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Figure 9. Synthetic seismograms when two cavities are present: (a)c = ∞ m/s; (b)c = 7000 m/s; (c)c = 4208 m/s; (d)c = 2656 m/s.
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Figure 10. Spectral amplitude of the vertical displacements: (a)c = ∞ m/s; (b)c = 7000 m/s; (c)c = 4208 m/s; (d)c = 2656 m/s.

higher reflections in the vicinity of the second cavity axis, even when the size of second cavity decreases. In
these plots, the presence of the second cavity is more visible at lower frequencies. As the apparent velocity
decreases the amplitude of the scattered field difference diminishes.

Another interesting aspect of this problem is the creation of shadow zones behind the cavities (Tadeu et
al., 1996).Figure 11 illustrates this phenomenon. It shows the amplitude of the total vertical displacements
in the surrounding medium, produced by a harmonically vibrating source at position O, when one and two
cavities ofR = 10.0 m are present. The total responses are shown as three dimensional plots for two values of
the excitation frequency, namely, 200 Hz and 600 Hz, which correspond to incident wavelengths of 21.0 m and
7.0 m, respectively. The results for 200 Hz show a slight shadow behind the cavities. As the frequency increases
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Figure 11. Steady state response. Absolute value of the total vertical displacement fields. (a) excitation frequencyf = 200 Hz: (a1) presence of one oval
cavity R = 10.0 m; (a2) presence of two oval cavitiesR = 10.0 m. (b) Excitation frequencyf = 600 Hz: (b1) presence of one oval cavityR = 10.0 m;

(b2) presence of two oval cavitiesR = 10.0 m.
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to 600 Hz this shadow becomes more visible. This behaviour was naturally expected, since it is well known that
waves whose wavelength is large in comparison to the obstacles they encounter suffer very little scattering. The
intense degree of interaction between the cavities, caused by the previously mentioned reverberations, is also
clearly visible whenc = ∞ m/s, and at a higher frequency of excitation. As already concluded, the presence of
the second cavity loses its importance as the apparent velocity decreases. This phenomenon is more pronounced
when the excitation frequency increases.

7. Conclusions

The boundary element formulation, developed and used to evaluate the 3D scattered field generated by
a dilatational point load illuminating cylindrical oval cavities in an unbounded homogeneous elastic medium,
was found to be efficient. It could therefore be used in the context of research on seismic tomography problems.

This program was used to compute the wave fields in the vicinity of obstacles (inclusions) embedded in
homogeneous elastic media when they are illuminated by dilatational point sources. The simulations performed
included the evaluation of the scattered field in the presence of different sized cylindrical oval inclusions.

The frequency and synthetic seismograms were built following waves with different apparent wave velocities
along thez axis. The time responses appear to be very complicated, but were consistent with the predictions
given by ray acoustics, and were used by the authors to elucidate the most important aspects, with an eye to the
development of non-destructive testing and imaging methods.

Our results indicate that the scattered field produced by a second cavity, placed in the vicinity of a cavity
nearest to the blast load point, loses its importance as the apparent velocity decreases. Furthermore, the guided
waves are mainly produced by the cavity closer to the blast load.

An important finding of this research is that the scattered field difference caused by the introduction of a
second cavity makes it possible to identify higher reflections in the vicinity of the second cavity axis, even
when the second cavity is small.

Appendix A: The Green’s functions

Definitions
λ, µ Lamé constants

ρ Mass density

α = √
(λ + 2µ)/ρ P wave velocity

β = √
µ/ρ S wave velocity

kp = ω/α, ks = ω/β

kα =
√

k2
p − k2

z , kβ =
√

k2
s − k2

z

A = 1
4iρω2 Amplitude

γi = ∂r
∂xi

= xi

r
, i = 1,2 Direction cosines

Hnα = H(2)
n (kαr), Hnβ = H(2)

n (kβr) Hankel functions

Bn = kn
βHnβ − kn

αHnα Bn functions
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Green’s functions

Gxx = A

[
k2
s H0β − 1

r
B1 + γ 2

x B2

]
, (A1)

Gyy = A

[
k2
s H0β − 1

r
B1 + γ 2

y B2

]
, (A2)

Gzz = A
⌊
k2
s H0β − k2

zB0
⌋
, (A3)

Gxy = Gyx = γxγyAB2, (A4)

Gxz = Gzx = ikzγxAB1, (A5)

Gyz = Gzy = ikzγyAB1. (A6)

Volumetric strain (super-index= direction of load)

εl
Vol = Gxl,x + Gyl,y + Gzl,z

= A

[
∂

∂xl

(
k2
s H0β

) + B0,xlx + B0,yly + B0,zlz

]

= A
∂

∂xl

[
k2
s H0β + B0,xx + B0,yy + B0,zz

]

= A
∂

∂xl

[
k2
s H0β + ∇̂2B0

]
. (A7)

Note:H0β,l = −kβγlHlβ, H0β,z = −ikzH0β .

Strain components (tensor definition, not engineering)

εl
ij = 1

2
(Gil,j + Gjl,i)

= 1

2
A
(
δilk

2
s H0β,j + δjlk

2
s H0β,i + B0,ilj + B0,j li

)
= 1

2
k2
s A

(
δilH0β,j + δjlH0β,i

) + AB0,ij l . (A8)

(a) Strains for loads in the plane,l = x, y

εl
Vol = γlA

(
−k2

s kβH1β + k2
zB1 + 4

r
B2 − B3

)
, (A9)

εl
xx = γlA

((
2

r
B2 − k2

s kβH1β

)
δxl + 1

r
B2 − γ 2

x B3

)
, (A10)

εl
yy = γlA

((
2

r
B2 − k2

s kβH1β

)
δyl + 1

r
B2 − γ 2

y B3

)
, (A11)
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εl
zz = γlk

2
zAB1, (A12)

εl
xy = A

((
1

r
B2 − 1

2
k2
s kβH1β

)
(δxlγy + δylγx) − γxγyγlB3

)
, (A13)

εl
xz = ikzA

((
1

r
B1 − 1

2
k2
s H0β

)
δxl − γxγlB2

)
, (A14)

εl
yz = ikzA

((
1

r
B1 − 1

2
k2
s H0β

)
δyl − γyγlB2

)
. (A15)

(b) Strain for axial loads,l = z

εz
Vol = ikzA

(
−k2

s H0β + k2
zB0 + 2

r
B1 − B2

)
, (A16)

εz
xx = ikzA

(
1

r
B1 − γ 2

x B2

)
, (A17)

εz
yy = ikzA

(
1

r
B1 − γ 2

y B2

)
, (A18)

εz
zz = ikzA

(−k2
s H0β + k2

zB0
)
, (A19)

εz
xy = −ikzγxγyAB2, (A20)

εz
xz = γxA

(
−1

2
k2
s kβH1β + k2

zB1

)
, (A21)

εz
yz = γyA

(
−1

2
k2
s kβH1β + k2

zB1

)
. (A22)

Stresses

τ l
ij = λεl

Volδij + 2µεl
ij . (A23)
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