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Abstract

The BEM is used to calculate the variation in the pressure field generated by a dilatational point load inside a channel filled with a
homogeneous fluid, in the presence of an irregular floor. The Green’s functions are defined in the frequency domain and obtained by
superposing virtual acoustic sources combined so as to generate the boundary conditions of the free or rigid surfaces of the channel. The
responses in the time domain are obtained by means of Fourier transforms, making use of complex frequencies. The main features and
spectral representation of the signals scattered by irregular floors are then described and used to elucidate the most important aspect of wave
acoustics, which can provide the basis for the development of non-destructive testing and imaging methods. © 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

It is important to conduct surveys of the earth’s crust
before proceeding with the construction of large buildings,
motorways, dams and ports. Although some geological
features, such as the terrain profile and the depth of the
rock matrix, are routinely determined it is still not possible
to detect with accuracy the presence, depth, size and mass of
buried structures (cavities, foundations, tunnels or elastic
inclusions).

Seismic methods are probably the most important for
studying geological discontinuities [1-5]. These methods
involve the generation of seismic waves (the incident
field), using dynamic sources, and the measurement of
spatial and temporal variations in the resulting field by
means of receivers or geophones. The field scattering arises
from the interaction of the incident field and inclusions, but
it is strongly influenced by the arrangement of the different
strata of the earth’s crust. The intervals, amplitudes and
phase distortions of the waves recorded on the receivers
can be used to draw inferences on the geological structure
of the medium.

This study analyses the alteration in the pressure field
generated by a point pressure source inside a hydraulic
waveguide in the presence of an irregular floor. This
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problem requires the solution of the Helmholtz equation.
Many methods for solving this equation are discussed in
the acoustics literature. They range from the analytical
methods presented by Pao and Mow [6] for studying wave
diffraction near cylindrical inclusions, to purely numerical
methods, such as finite difference [7] and finite elements
techniques [8], combined with transmitting boundaries.
The latter have mostly been restricted to situations where
the response is required only in localized irregular domains,
such as for soil structure interaction problems [9].
Boundary integral equation methods form another class
of techniques used to analyse acoustic scattering from
surfaces or compact inclusions submerged inside a fluid
medium. A half space medium [10] is usually assumed,
with the pressure field satisfying a free or rigid boundary
condition along the surface. Dawson [11] formulated a
boundary integral equation method to compute the scatter-
ing of underwater sound from the compact deformations of
an oceanic waveguide’s surface. In his numerical examples,
the fluid filling the waveguide is assumed to have constant
density and sound speed. The solution involves a Green’s
function appropriate to the waveguide in the absence of the
boundary deformation, allowing the sound speed to vary
with depth (not illustrated in the examples). This Green’s
function is obtained either by taking the Fourier transform
of the standard 3D model expansion [12] with respect to a
transverse coordinate, or by assuming a vertical eigenfunc-
tion expansion for the Green’s function and evaluating the
coefficients in a manner analogous to the 3D model [12].

0955-7997/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.

PII: S0955-7997(01)00042-X



444 L. Godinho et al. / Engineering Analysis with Boundary Elements 25 (2001) 443—453

The same method was used [13,14] to obtain the 2D acous-
tic scattered field generated by objects embedded between
two half spaces with different densities.

Possibly the best way to analyse wave propagation
problems in unbounded media is the boundary element
method (BEM), because it automatically satisfies the far
field radiation conditions and allows a compact description
of the medium in terms of boundary elements at the material
discontinuities alone. Although the BEM leads to a fully
populated system of equations, as opposed to the sparse
system given by the finite difference and finite element
techniques, the technique is made efficient because it
reduces computational effort. As is well known, the BEM
is based on the use of appropriate fundamental solutions, or
Green’s functions, relating the field variables in a homo-
geneous medium to point sources placed somewhere within
it. The fundamental solution most often used is that of an
infinite homogeneous space, because it is known in
closed-form and has a relatively simple structure. However,
BEMs based on the Green’s functions for a half-space have
been used to solve problems involving wave diffraction by
surface irregularities of arbitrary shape (e.g. Refs. [15-17]),
as well as for cavities and buried structures (e.g. Ref. [18]).

This paper applies the BEM to the problem of the scatter-
ing of pressure waves generated by a point load inside a
fluid waveguide with an irregular floor and whose geometry
does not change in one direction (z). Such a situation is
frequently referred to as a two-and-a-half-dimensional
problem (or 2-1/2-D for short), for which solutions can be
obtained by means of a spatial Fourier transform in the
direction in which the geometry does not vary. This requires
solving a sequence of 2D problems with different spatial
wave numbers k, [19]. Then, using the inverse Fourier trans-
form, the 3D field can be synthesized.

The solution at each frequency is expressed in terms of
waves with varying wave number k, (with z being the direc-
tion in which the geometry does not vary), which is sub-
sequently Fourier transformed into the spatial domain. The
wave number transform in discrete form is obtained by
considering an infinite number of virtual point sources
equally spaced along the z-axis and at a sufficient distance
from each other to avoid spatial contamination [20]. In addi-
tion, the analyses are performed using complex frequencies,
shifting down the frequency axis, in the complex plane and
minimizing the influence of the neighbouring fictitious
sources [21].

This attenuation greatly helps to reduce the number of
spatial virtual sources needed to build the Green’s function.
Indeed, given the slight shift of the frequency axis down-
wards, that is, by considering complex frequencies, the
spatial virtual sources that occur at times later than T
make a very small contribution to the response.

When k, = 0, the problem is similar to the one solved by
Dawson and Fawcett [11], although in our problem, the
Green’s functions are obtained by superposing virtual
acoustic sources placed in such a way as to generate the

free or rigid surfaces of the fluid channel, and no restriction
of the waveguide surface deformation is required when the
deformation is inward. In addition, the solution is evaluated
in the time domain by Fourier transforms, as well as being
calculated in the frequency domain.

The BEM formulation is then described and the required
Green’s function presented, followed by a discussion of the
numerical evaluation of the time signals. Numerical exam-
ples are given to illustrate the distribution of a pressure field
generated by a dilatational point load inside a fluid channel
in the presence of an irregular floor.

Obstacles of various sizes are analysed. Spectral repre-
sentation of the signals is used to assess their features, which
can be used as the basis for developing non-destructive
testing and imaging methods.

2. Problem statement

Consider a cylindrical irregular inclusion of infinite
extent, submerged in a spatially uniform fluid medium
(Fig. 1), subjected to a harmonic point pressure load at
position (xo, 0, 0), oscillating with a frequency w.

Aei(w/a)(at* (x—x0)> +y*+7%)

Pinc = (1)
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in which the subscript inc denotes the incident field, A is the
wave amplitude, « is the pressure wave velocity of the
medium, and i = v/—1.

Defining the effective wave numbers
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by means of the axial wave number k,, and Fourier-trans-
forming Eq. (1) in the z-direction, one obtains
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Fig. 1. Geometry of the problem.
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in which the H,(lz)(---) are second Hankel functions of order
n. By applying an Inverse Fourier Transform the former 3D
pressure field can be obtained.

o)

Pc(@,%,,2) = J Puc(@.x, y, ke dk, @)

This continuous integral can be discretized by assuming
the existence of an infinite number of sources placed along
the z direction at equal intervals, L. Thus, the incident field
can be written as

( ’ )
i w,X,y,3
pmc y [

Z Pinc(@,x,y, ke )
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with k, = (2@/L)ym. This equation converges and can be
approximated by a finite sum of terms. The distance L
needs to be large enough to avoid spatial contamination.
In addition, the analyses use complex frequencies that further
reduce the influence of the neighbouring fictitious sources.

Using this technique, the incident field generated by a
point pressure load can be obtained as a discrete summation
of 2D line loads with different values of k.. In the same way,
the scattered field originated by a point pressure load can be
evaluated by solving a sequence of 2D problems. The same
technique can be further extended to other load conditions,
such as combined point loads.

The problem to be solved considers a spatially
uniform inviscid fluid medium bounded by two flat
surfaces, having a confined irregular deformation in its
floor (inclusion). The pressure field defined by Eq. (3)
needs to be reformulated to satisfy the boundary condi-
tions at the surface and floor. The normal velocity must
be null at the flat floor of the channel and at the rigid surface,
under ice formations, in cold regions. On the other hand, the
pressure reaches null values when the surface is open. This
function can be achieved by superposing the pressure field
generated by virtual sources with positive or negative
polarity, and located so that the desired boundary conditions
are ensured [22]. In the case of a free surface, the pressure
field (Green’s function G(x, xy, w)) is given by the following
expression:

—i

_: (NS
G(x, x, w) = T[HO(kar)] + Tl{ Z (= D)"[Ho(kyry)
n=0

— Hy(kar2) — Ho(kars) — HO(kar4)]} (6)

while when the surface is rigid it takes the form

G(x, xp, w) =

. _: (NS
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in which
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h is the thickness of the channel.

The number of sources used (NS) is determined so that all
the signals needed to define the signal within the time
interval fixed by the frequency increment are taken into
account.

3. Boundary element formulation

The BEM is used to obtain the 3D field generated by the
scattering from a cylindrical inclusion with an irregular
shape. In the case of an acoustic medium, the 2-1/2-D
problem can be solved as a discrete summation of 2D
BEM solutions for different k, wave numbers. Then, using
the inverse Fourier transform, the 3D field can be synthe-
sized. The wave number transform in discrete form is
obtained, as explained above, by considering an infinite
number of virtual point sources equally spaced along the
z-axis and at a sufficient distance from each other to avoid
spatial contamination [20].

Since the literature on the BEM is comprehensive, we do
not give full details of the formulation required for the type
of scattering problem presented here (see for example Ref.
[23]). Next, we present a brief description of the BEM solu-
tion required to solve each 2D problem.

For frequency domain analysis, the acoustic pressure (p)
at any point of the spatial domain can be calculated making
use of a single scalar equation, known as the Helmoltz
equation

Vp(, o) + kepl, @) =0 ®)
where k, = 4/(w?/a?) — k?. Considering a homogeneous
fluid medium of infinite extent, containing an inclusion of
volume V, bounded by a surface S, the boundary integral

equations can be constructed by applying the reciprocity
theorem, leading to

CP(&O, kZ’ (U) = J’S Q(L Vns w)G(E’ X0» kZ’ (U) ds

—J H, vy ks opss ks ) ds— (9)
S



446 L. Godinho et al. / Engineering Analysis with Boundary Elements 25 (2001) 443—453

In this equation G and H are, respectively, the fundamen-
tal solutions for the pressure (p) and pressure velocity (g), at
x due to a virtual point load at x,. The factor c is a constant
defined by the shape of the boundary, receiving the value
172 if xy € S and is smooth.

The boundary conditions prescribe null normal pressure
velocities along the boundary S. Thus, Eq. (9) is simplified
to

P, ke, @) = — LHo_c, vy X ks Pk @) ds (10)

Assuming the existence of an incident pressure wavefield
striking the boundary, defined by Eq. (6) or Eq. (7), the
following equation is derived

Pl ke ) = = [ Hs 1y, e 00k 0)

+ P (x, k., @) (11)

The solution of this integral for an arbitrary boundary
surface (S) requires the discretization of the boundary into
N straight boundary elements, for which boundary values
p* are ascribed. For constant value pressure boundary

elements, Eq. (11) takes the form

N

cp* = => H'' + plic (12)
=1

with H" = [, H(x;,n;, 5. k,, ) ds, where k is the loaded
element, p' is the pressure in element / and H" is the pressure
velocity component at x; due to a pressure load at x; and n; is
the outward normal for the /th boundary segment C;. The
required pressure velocity function (H) is obtained by differ-
entiating Eqs. (6) and (7) in relation to the unit outward
normal.

The application of virtual loads along all boundary nodal
points [Eq. (12), k = 1, N] allows the definition of a linear
system of equations that can be solved for the N nodal
pressures.

If the pressure is allowed to vary linearly within the
boundary elements, using linear interpolation functions,
then the number of nodes to be considered inside each
element equals two. Twice the number of equations defined
above are required, and the resulting integration then takes
the form

HY = J SH(x;, 1y, Xi, k., ) ds (13)
G

where ¢ represents the required interpolation functions.
Fig. 2 illustrates the interpolation functions and the position
of the nodal points. Integrations in Eq. (13) are performed
by means of Gauss—Legendre quadrature, using four inte-
gration points.

The scattered pressure field in the fluid is then defined as a

nodes E_’z +0.57735

Fig. 2. Discontinuous linear boundary elements. Interpolating functions and
nodal points position.

function of the nodal pressure values, as follows:
ON

Phea = > p'H" (14)
=1

where p¥., is the scattered pressure field at receiver k, N the
total number of boundary elements, and p' is the nodal
pressure value at element /.

4. Pressure in time-space

The pressures in the time domain can be obtained by fast
Fourier transform in w, taking the source whose temporal
variation is given by a Ricker pulse. This pulse is chosen for
its rapid decay, in both the time and frequency domains,
allowing a reduction in the computational effort and easier
interpretation of the results obtained in the time domain.

The Ricker function is given by the expression

w(n) =A(l — 279" (15)
in which A is the amplitude, 7= (¢ — ¢,)/t, and t represents

the time, with #, being the time when the maximum occurs,
while 771, is the characteristic (dominant) wavelet period. Its

8m

15m

Fig. 3. Cylindrical inclusion in an unbounded medium.



L. Godinho et al. / Engineering Analysis with Boundary Elements 25 (2001) 443-453

Amplitude
S
o
I
—

384 512

a)

Amplitude

447

0.15

SN

0 A

-0.05

010 v

0.15 -
0 384 512

b)

Fig. 4. Fourier spectra: (a) real part; (b) imaginary part.

Fourier transform is

U(w) = A2 /e " 10% Y (16)
where 2 = wty/2.

As stated before, the Fourier transformations are achieved
by discrete summations over wave numbers and frequen-
cies, which is mathematically equivalent to adding periodic
sources at spatial intervals L = 27/Ak, (in the z-axis), and
temporal intervals 7 = 27/Aw, with Ak, and Aw being the
wave number and frequency steps, respectively. The spatial
separation L must be large enough to prevent contamination
of the response by the periodic sources. In other words, the
contribution to the response by the fictitious sources must be
guaranteed to occur at times later than 7. Shifting the
frequency axis slightly downward greatly helps achieve-
ment of this goal, that is, by considering complex frequen-
cies with a small imaginary part of the form w. = w — in
(with = 0.7Aw). This technique results in a significant

attenuation or virtual elimination of the periodic sources.
In the time domain, this shift is later taken into account
by applying an exponential window e”" to the response [24].

5. Validation of the BEM algorithm

The BEM algorithm was implemented and validated
by applying it to a fixed cylindrical circular cavity, sub-
merged in an unbounded homogeneous fluid medium (a =
1500 m/s and p = 1000 Kg/m3), subjected to a harmonic
point pressure load applied at point O, as in Fig. 3, for
which the solution is known in closed form. Notice that
Egs. (6) and (7) were specialized to solve the present
BEM problem by setting the NS parameter to zero.

The response is calculated for a single receiver placed at
x = 7.0 m and y = 8.0 m, for frequencies ranging from 4 to
512 Hz, taking a constant value for k, = 0.5 rad/m. Twenty-
five discontinuous linear boundary elements were used to

Sm 40 m
Receivers

\

L g

Surface to be discretized S

. Source 2 -
Source 1 ‘
A‘s" 450
25m
——

Fig. 5. Geometry of the channel and location of sources and receivers.
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model the inclusion. Fig. 4 displays the real and imaginary
parts of the response for the numerical and analytical solutions,
revealing a very good accuracy for the BEM approach. The
comparison shows an excellent agreement for low frequen-
cies, and only slight differences at high frequencies. This
behaviour was expected, because the accuracy of the BEM
solution depends on the ratio between the wavelength of the
incident waves and the length of the boundary elements; in
our example, this ratio decreases from 298 (4 Hz) to 3
(512 Hz) in the range of frequencies considered.

6. Numerical examples

All the cases presented refer to a channel, 20.0 m deep,
with a confined irregular deformation located in its floor, as
illustrated in Fig. 5. At the time ¢ = 0, the channel is struck
from the rigid surface by a pressure source, placed directly
above the deformation (source 2), or at a distance of 25.0 m
horizontally, on the flat floor (source 1). Each source creates a
spherical pressure pulse that propagates away from its origin.
The pressure wave propagation velocity of 1500 m/s, and a

80

50

Time (ms)

a)

c)

host fluid density of p = 1000 kg/m3 are constant for all the
analyses. Computations are performed for variously sized
confined deformations, defined with circular arcs of constant
radius (r = 0.0, 3.0, 6.0 and 9.0 m). The pressure field
generated by each source is determined along a line of
receivers placed 0.2 m from the surface, and located on
the same x—y plane as the source.

The calculations are performed in the 8-512 Hz
frequency range with 8 Hz increments. The source line
dependence is a Ricker wavelet with a characteristic
frequency of 150 Hz. The frequency increment permits the
dynamic analysis of the event for 0.125 s, a value that is
insufficient for the total development of the response. To
permit analysis of the signal in time, a complex part was
introduced into each excitation frequency to ensure damp-
ing in the response at the end of the time window considered
(1/Af = 0.125 s), as described previously. The distance
between virtual sources, L, has been set to 2a(1/Af) =
375.0 m.

The irregular part of the channel floor is modelled with a
number of boundary elements that varies as a function of
frequency, thereby maintaining a relation between the

Freq (Hz)

b)

Fraq (Hz)

d)

Fig. 6. Total response along the line of receivers when R = 0 m : (a) time response for source 1; (b) Fourier amplitude spectra for source 1; (c) time response

for source 2; (d) Fourier amplitude spectra for source 2.
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incident wavelength and the length of the discretized
element equal to a minimum of 6. In no case is the number
of nodal points less than 24. The surface and the flat part of
the channel floor are not discretized, since the Green’s func-
tion takes the boundary conditions at these interfaces into
account.

Fig. 6a and c displays, for each source, the response
recorded at the line of receivers, in the time domain, inside
a channel with a perfectly flat floor (R = 0.0 m). The first
wave arrivals observed in these figures correspond to wave
trains that are directly incident. These are followed by
pulses of progressively lower amplitude, which are the
result of reflections between the surface and the floor of
the channel. Each time a pulse hits the surface it changes
its phase (180°), while it conserves the phase when it
impinges on the rigid floor. As these pulses reflect back
and forth between the boundaries of the channel, they
scatter and lose energy to the surrounding medium, and
dissipate. One may also observe that the amplitude of the
first arrivals clearly decreases when the distance between
the receivers and the emission source increases. This is
because the incident field takes more time to reach distant

receivers, allowing the wavefront of its field to increase, and
thus the energy to be dissipated.

Fig. 6b and d displays the Fourier amplitude spectra (0—
512 Hz) of these responses. It may be noted that this plot
exhibits pronounced peaks, which occur at well-defined
frequencies. The periodicity of these peaks is caused by
interference among reflections. This way, the distance in
frequency between successive peaks is equal to Af =
a/As, in which As is the different path among successive
reflections (As = 2h). In the current example Af = 37.5 Hz,
as expected. The position of the peaks is related to the type
of boundary. Since the base of the channel does not admit
normal propagating velocities other than 0, the first peak
occurs for fy = a/4h = 18.75 Hz.

Fig. 7 gives the response when sources 1 and 2 are excited
in the presence of an irregular floor characterized by R =
3.0 m. When source 1 is excited, the time responses show
that the first receivers continue to exhibit a response with a
reasonable amplitude (Fig. 7a). However, additional pulses
coming from the reflections occurring at the new boundary
(the irregular floor) are observed. The signals recorded by
the receivers furthest away suffer from the so-called

c)

d)

Fig. 7. Total response along the line of receivers when R = 3 m : (a) time response for source 1; (b) Fourier amplitude spectra for source 1; (c) time response

for source 2; (d) Fourier amplitude spectra for source 2.
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‘shadow effect’, caused by the obstacle. As a result, the
amplitudes of the second order pulses show a slight decrease
in relation to the signals given in Fig. 6. The signals gener-
ated when the excited source is at position 2 are symmetrical
in relation to this position, as was expected (Fig. 7¢c). The
receivers placed in the vicinity of the floor deformation
show smaller amplitudes than do the receivers that are
further away. This phenomenon is explained in the light
of the reflective power of the convex shape of the obstacle,
which enables energy to be reflected to the sides, away from
the central zone, where the source is located.

Fig. 7b and d shows the Fourier amplitude spectra of the
responses. Once again, these graphs at low frequencies
show a sequence of peaks in well-defined positions, as a
function of the height of the liquid surface. Additional
peaks, resulting from the presence of the obstacle, can
also be observed as the frequency increases owing to the
interference between reflections. The Fourier spectra
responses recorded above the deformation, when source 2
is excited, allow the depth of the obstacle to be evaluated
(18.24 m). These peaks are not very pronounced because the
shape of the obstacle allows the energy to spread to the

sides. At higher frequencies, one can clearly see the
presence of these peaks, which tend to be Af=~41.1 Hz
apart (Af = a/As = 1500/(2 X 18.24)). A geometric acous-
tic ray analysis shows that these signals result from the
propagation of a pulse that travels between the upper part
of the deformation and the free surface. The travel times
coincide with the arrival of the signals in the time domain
(t =122 ms, t = 36.5 ms, and t = 60.8 ms), illustrated in
Fig. 7c.

The presence of the deformation is not noticeable at low
frequencies. All receivers exhibit a Fourier spectrum with a
peak positioned at f; = a/4h = 18.75 Hz due to reflections
from the flat floor. This can be explained by the fact that, at
low frequencies, the wavelength of the incident field is very
large compared with the size of the deformation, so the
waves do not detect the presence of the irregular floor.

Fig. 8 illustrates the responses obtained when the defor-
mation reaches R = 6.0 m and R = 9.0 m, and the source is
placed at position 2. These signals have features similar to
those observed in the previous case. Again, at very low
frequencies the presence of the irregular floor is not notice-
able. However, as the size of the deformation increases, its

c)

d)

Fig. 8. Total responses when source 2 is excited: (a) time response for a deformation R = 6 m; (b) Fourier amplitude spectra for a deformation R = 6 m;
(c) time response for a deformation R = 9 m; (d) Fourier amplitude spectra for a deformation R = 9 m.
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a)

b)

Fig. 9. Time response for a deformation R = 3 m. when source 1 is excited: (a) Z = 0 m; (b) Z = 50 m.

presence can be detected sooner in the frequency domain
(see Figs. 7d, 8b and d). At higher frequencies, the receivers
placed above the floor deformation exhibit a frequency
spectrum with peaks that tend to be located 45.5 and
50.9 Hz apart, revealing the height of the water above the
deformations (16.5 and 14.7 m), when the irregular floor is
characterized by R = 6.0m and R = 9.0 m, respectively.
The time records exhibit a sequence of pulses that may
appear complicated, but the arrival times of the various
pulses at the receivers can be understood in terms of the
ray theory of geometric acoustics. It is also observed that
bigger deformations allow more energy to be reflected. This
is shown by the amplitude of the second order reflection
pulses.

Responses were also obtained for the receivers for x—y
planes z = 10.0 m and z = 50.0 m (as in Fig. 9) for a defor-
mation with R = 3.0 m. Again, time responses can be inter-
preted as a series of pulses, corresponding to reflections
from the surface and bottom of the waveguide and from
the obstacle. It is clear that the arrival of the first pulses at
receivers placed at z = 50.0 m occurs much later and with
smaller amplitudes than for receivers placed at z = 10.0 m.
As the distance in z increases, receivers behind the obstacle
seem less influenced by its presence.

When source 1 is excited, the ‘shadow zone’ increases in
importance in the presence of bigger floor deformations.
The creation of the shadow zones also depends on the exci-
tation frequency. Higher frequencies are more affected by
the existence of inclusions than lower frequencies. The
phenomenon of shadow zone creation was approached by
evaluating responses over a fine grid, defined as illustrated
in Fig. 10. Responses were calculated for frequencies of 25,
125 and 250 Hz. Fig. 11 shows the response over two verti-
cal grids of receivers placed at z = 0.0 m and z = 50.0 m,
respectively. As expected, the results obtained for the lower
frequency do not show any significant influence from the
presence of the deformation. As the frequency increases, a
shadow zone clearly shows up behind the obstacle, becoming

more evident for the higher frequency (250 Hz). By com-
paring the response over the two grids, it is possible to
conclude that this shadow effect is much less significant
for z=150.0 m, as the amplitude of the response behind
the obstacle becomes comparatively higher. This can be
explained if we appreciate that the travel path followed by
acoustic rays in order to hit receivers in this grid is less
disturbed by the presence of the deformation than it is for
those placed at z = 0.0 m, thus allowing comparatively
more energy to reach the zone behind the obstacle.

7. Conclusions

A discrete integration over wave numbers and frequen-
cies has been used to compute the 3D scattered pressure
from a compact deformation located on the floor of a fluid
channel. The required integrations are restricted to the
surface of the deformation, as a result of using the appro-
priate Green’s functions, built by superposing virtual acous-
tic sources. The time responses were obtained by Fourier
transformation using complex excitation frequencies. No
restriction of the surface deformation is required when the
deformation is inward.

20m

Fig. 10. Geometry of the problem (R = 9 m).



452 L. Godinho et al. / Engineering Analysis with Boundary Elements 25 (2001) 443—453

c)

Fig. 11. Steady state responses. Z =0m v Z = 50 m : (a) 25 Hz; (b) 125 Hz; (c) 250 Hz.

The main features of the way the pressure field generated
by a pressure load changes inside a fluid channel, in the
presence of an irregular floor, are described. The pressure
field inside a channel generated by dynamic excitation
sources is markedly changed in the presence of obstacles
placed on its base. These alterations permit the definition of
shadow zones, which have little energy, in the zones of the
channel opposite to where the excitation sources are located.

This effect becomes less evident as the distance in z
increases.

The examples described above made it possible to
confirm the reflective power of the convex part of these
obstacles. In addition, it was observed that the response
spectrum for the excitation frequencies and size of the
obstacles considered clearly showed the height of the
surface of the liquid in the channel.
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