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Abstract

The boundary element method (BEM) is used to fully simulate the propagation of waves between two fluid-filled boreholes. The sources
are placed in one of the boreholes while the receivers are placed in the other. This model is frequently used in cross-hole seismic prospecting
techniques to assess the characteristics of the elastic medium between the two boreholes. This work studies the dependence of the wave
propagation patterns on the distance between the source and the receiver, their location and orientation relative to the axis of a circular
borehole and type of elastic formation (fast and slow formations). In addition, this BEM model is used to compute the influence of the
deformed boreholes whose cross-section is not circular. Both the spectra responses and the time-domain responses are computed to elucidate
the main physical features of the problem solved. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A number of geophysical and seismic prospecting tech-
niques involve measuring the pressure inside a fluid-filled
borehole, generated by a source on the surface or in another
borehole [1-5].The cross-hole seismic reflection method, in
particular, has undergone significant development in terms
of acquisition, processing, and imaging capability. Findlay
et al. [6] were among the first to publish stacked, depth-
migrated sections from cross-hole surveys with multiple
source and receiver positions. Stacked sections formed by
reflection point mapping of real cross-hole data sets have
also been produced by Goulty et al. [7], Becquey et al. [8],
Lazaratos et al. [9] and Khalil et al. [10]. It has been recog-
nized, however, that wavefield separation for cross-hole
data is problematical [11,12].

Different numerical methods have been developed for
approaching the solution of the wave propagation across
fluid-filled boreholes more realistically, looking for a better
understanding of the data recorded at the receivers.

Direct modeling methods have been used to solve the
differential equations governing the acoustic wave motion
in the borehole fluid and in the solid formation simulta-
neously. For example, Lee and Balch [13] used the
frequency axial wavenumber integration technique. By
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considering a low-frequency approximation, they only
retained the relevant tube-wave terms and obtained a far-
field asymptotic representation for the space—time domain
displacement in a fast formation. Lee et al. [14] generalized
the technique of Lee and Balch [13], incorporating the
secondary radiation from totally reflected tube waves at
the bottom of a borehole. Lee [15] investigated non-axisym-
metric solutions for the acoustic wave motion in fast forma-
tions, while Winbow [16] modeled the influence of different
source types and the presence of a borehole casing.

The effects of borehole irregularities on the Stoneley
wave propagation have been addressed by Stephen et al.
[17], using a finite difference scheme. Bouchon and Schmitt
[18] used a boundary integral equation approach, combining
the discrete wavenumber formulation, and concluded that
when the change in the borehole diameter was smooth the
Stoneley wave propagation was not affected, but a signifi-
cant amount of reflection was computed in the case of a
sharp variation in the diameter. Randall [19] studied mono-
pole and dipole acoustic logs using a staggered grid in a 2-D
cylindrical coordinate. He also studied the multipole acous-
tic log in a non-axisymmetric borehole using the staggered
grid finite difference method. In this case the model is
assumed to be invariant in the axial z direction, which
allows the spatial Fourier transform (2.5-D finite difference
method). Leslie and Randall [20] extended their 2.5-D finite
difference method to model acoustic wave propagation in a
borehole penetrating a general anisotropic formation. A true
3-D finite difference method was applied to the acoustic
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logging of boreholes by Yoon and McMechan [21], using a
second order scheme and assuming an isotropic formation.
Later, Cheng et al. [22] used massive parallel computing to
develop a 3-D finite difference time domain method for
borehole wave propagation in an anisotropic formation,
using a fourth order discretization in space. Most applica-
tions of the finite difference method, however, are still
reserved for the 2-D geometries, because of the computa-
tional costs involved.

Finite difference methods have also been implemented by
Track and Daube [23], who addressed the cross-borehole
wave propagation problem, and by Cheng et al. [24],
who concentrated on the coupling of the acoustic wave
motion in the borehole fluid to conical P and S waves in a
slow formation.

To allow practical field applications, hybrid modeling
techniques have been proposed, based on the prior knowl-
edge of the behavior of the dynamic system being analyzed.
White and Sengbush [25] applied a hybrid modeling
technique by recognizing that, at low frequencies, the tube
wave dominates the acoustic wave motion in the borehole
fluid. They subsequently introduced the motion of moving
sources to model the acoustic tube-wave radiation into the
formation, using Heelan’s [26] far field expressions for the
acoustic radiation caused by a transient pressure applied on
a circular cylinder of finite extent.

Ben-Menahem and Kostek [27] employed a fixed system
of equivalent seismic sources to simulate the influence of
the borehole on the acoustic wave motion, by matching its
far-field radiation characteristics with the far-field radiation
characteristics of a fluid-filled borehole in a fast formation,
as obtained by Lee and Balch [13]. Kurkjian and co-workers
[28,29] extended this approach by replacing the wave field
radiated by the source borehole with a moving system of
effective seismic sources, to account for the conical S-wave
radiation into slow formations. Furthermore, they employed
a frequency lateral wavenumber integration code to deter-
mine the seismic wave-field quantities in the formation.
Gibson [30] also employed a moving system of effective
seismic sources and calculated the wave-field quantities in
slow and fast formation using ray asymptotics.

Hoop et al. [31] describe a hybrid method by which the
transfer of transient tube-wave signals in cross-borehole
experiments are calculated, assuming that the travel times
of the elastic waves in the formation over distances of the
order of a borehole diameter may be neglected. This means
that the wavelengths involved are considerably longer than a
borehole diameter, for both cased and uncased boreholes.
Analysis is performed in the complex-frequency domain
and uses the knowledge that, in the low-frequency domain,
the axisymmetric wave motion in the borehole fluid is domi-
nated by tube waves. Then the acoustic pressure on the axis
of the receiving borehole is evaluated with the aid of the
fluid/solid acoustic reciprocity theorem.

Kurkjian et al. [32] proposed a numerical technique for
modeling downhole seismic data in crosswell configura-

tions, dividing the problem into three distinct parts: genera-
tion of the source well representation, where the tube waves
in the source well are taken into account; transmission from
source well, using a preexisting code; computation of the
hydrophone measurements by applying White’s quasistatic
approximation. They discretized the boreholes into small
elements (10 points per tube wave wave-length). Later,
Peng et al. [33] made use of both the borehole coupling
theory and the global matrix formulation for computing
synthetic seismograms in a layered medium. The global
matrix formulation is used to calculate the stress field at
the borehole location. Borehole coupling theory is then
employed to obtain the pressure in the borehole fluid. No
discretization along the borehole is required in this model,
and the method gives results for open, cased and partially
filled boreholes.

Tang and Cheng [34] addressed the computational speed
problem by studying the Stoneley wave interactions caused
by formation changes. They used a simple 1-D approach,
assuming that the Stoneley wave propagates along the bore-
hole with no geometric spreading, because it is a guided
wave. Tezuka et al. [35] formulated a method for modeling
the low-frequency Stoneley wave propagation, that arises in
an irregular borehole as a result of the variation in the spatial
diameter of the borehole along it axis, and formation prop-
erty changes. The essential features of the low frequency
Stoneley waves are retained with a single 1-D model. A
mass-balance boundary condition and a propagator matrix
are used to express Stoneley wave interactions with the
borehole irregularities.

A large number of techniques have been based on approx-
imations to exact solutions. The Boundary Element Method
(BEM) is probably the best tool for analyzing wave propa-
gation in the vicinity of borehole geometry, because it auto-
matically satisfies the far field conditions. Bouchon [36]
used the method in an infinite open borehole in layered
isotropic media. Dong et al. [37] broadened the scope of
Bouchon’s work by incorporating transversely isotropic
layers and by including the effect of casing and cement in
the formation. Their work used an indirect BEM to model
source radiation from open and cased boreholes in layered
transversely isotropic media.

The effect of the irregular boreholes on the response has
also been studied by Randall [38] and Tadeu et al. [39].
These effects result from the mechanical action of the drill
string in vertically deviated wells, rock failure adjacent to a
drilled borehole, plastic deformation and washing out of the
borehole in soft or poorly consolidated rocks, as reported by
Bell et al. [40] and by Zheng et al. [41].

The present work employs the BEM to simulate a full
crosshole seismic prospecting technique, using two fluid-
filled boreholes. Both boreholes are modeled with boundary
elements and the computed responses fully represent the
phenomena involved, without using any simplification.
The source is placed in one of the boreholes, while the
receivers are placed in the second borehole. The distance
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between boreholes, the presence of off-center sources and
receivers, and the type of formation are analyzed.

The cylindrical geometry of this problem (Fig. 1) enables
the solution at each frequency to be expressed as an integra-
tion of responses for a continuous variation of wavenumber,
k,, (with z being the borehole axis). The discrete form of this
integration is achieved by considering an infinite number of
virtual point sources equally spaced along the z direction.
The proper definition of distances between these sources
and the use of complex frequencies avoids spatial contam-
ination and minimizes the influence of neighboring fictitious
sources. A BEM formulation using compact expressions of
Green’s functions for the elastic and fluid media is used to
solve this problem.

First, the formulation of the BEM model in the frequency
domain is briefly described. Then, the characteristics of the
dispersion of waves in a fluid-filled circular borehole are
addressed. The main part of this work is devoted to numer-
ical simulations. First, the effect on the response of the
position of the receivers and sources, the distance between
boreholes, and the type of elastic formation are analyzed.
Then, the effect of the presence of irregular boreholes is
examined. All the computations are achieved for a wide
range of frequencies and wavenumbers, which are then
used to obtain time series by means of (fast) inverse Fourier
transforms into space—time.

2. Problem formulation

Consider an elastic medium that allows a shear wave
velocity of B and a compressional wave velocity of «
with density p. Two boreholes are driven along the z direc-
tion and filled with fluid to permit a compressional wave
velocity o with density p. A dilatational point source is
placed in one of the boreholes at position (xg, Yo, zp), 0scil-
lating with a frequency w. The incident field can be
expressed by the dilatational potential ¢
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in which A is the wave amplitude and i = +/—1.
This problem can be solved as a summation of two-

dimensional problems, for varying effective wavenumbers
[42],
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where k, is the axial wavenumber after Fourier transforma-
tion of the problem in the z direction. The incident field in
this frequency wavenumber domain is given by

Binel(0,%,, k) = (—IAIDHP (hypr| & — 0 + (& = ¥0)?)
3)

0
(X0.0,0)

[{]

Fig. 1. Geometry of the problem.

in which the Hflz)(...) are second Hankel functions of
order n.

The BEM gives the solution by discretizing only the
boundary of the boreholes. The BEM equations that are
applied to this problem are well known [43—45]. The system
of equations required for the solution is arranged so as to
impose the continuity of the normal displacements and
normal stresses and null shear stresses along the boundary
of the fluid-filled boreholes. This system of equations
requires the evaluation of the following integrals along the
appropriately discretized boundary of the borehole

HOH = J HY (ooxsn) 46 (i = 1,2,3) )
C

H;{)kl = _[c H;{)(xk’xh n;) dC,
1

6" = | e a=1235=1
(@]

G = J G, ) dC;
. .

in which H}js)(xk,x,, n;) and Gl(.j)(xk,xl) are, respectively, the
Green’s tensor for traction and displacement components in
the elastic medium, at point x; in direction j caused by a
concentrated load acting at the source point x; in direction i;
H}{ )(xk,x,, n;) are the components of the Green’s tensor for
pressure in the fluid medium, at point x; caused by a pressure
load acting at the source point x;; G}{)(xk, Xx;) are the compo-
nents of the Green’s tensor for displacement in the fluid
medium, at point x; in the normal direction, caused by a
pressure load acting at the source point xy; n; is the unit
outward normal for the /th boundary segment C; the
subscripts 7,j = 1,2,3 denote the normal, tangential and z
directions, respectively. These equations are conveniently
transformed from the x, y, z Cartesian coordinate system
by means of standard vector transformation operators.
The required two-and-a-half dimensional fundamental solu-
tion (Green’s functions) and stress functions in Cartesian
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Table 1
Mechanical properties of the two formations

Fast formation Slow formation

a = 4208 m/s @ = 2630 m/s
B = 2656 m/s B= 1416 m/s
p = 2140 kg/m’* p = 2250 kg/m’*
ay = 1500 m/s ay = 1500 m/s

p; = 1000 kg/m’ p; = 1000 kg/m’

co-ordinates, for the elastic and fluid media, are listed in
Appendix A.

The required integrations in Eq. (4) are performed analy-
tically for the loaded element [46,47], and using a Gaussian
quadrature scheme when the element to be integrated is not
the loaded element.

The BEM algorithm was implemented and validated by
applying it to a cylindrical circular borehole filled with an
inviscid fluid, for which the solution is known in closed
form [48].

The results (displacements and pressures) in the time
domain are obtained by simulating a Ricker wavelet
pulse. This wavelet form is chosen because it decays
rapidly, in both time and frequency, reducing the computa-
tional effort and allowing easier interpretation of the
computed signatures.

As stated before, the computations are performed using
complex frequencies of the form w, = w — in (with
7 = 0.7Aw). In the time domain, the effect of the complex
part of the frequencies is taken into account by applying an
exponential window e” to re-scale the response [49].

3. Dispersion of waves in a fluid-filled circular borehole

Non-dispersive body waves, the dilatational (P) and shear
(S) waves, as well as various types of guided waves, propa-
gate along the interface between the fluid and solid. When
the source is positioned on the axis of the cylinder, only the
axisymmetric modes are excited. Additional modes with
azimuthal variation are excited when the source is placed
away from the axis. However, these later modes do not
contribute to the pressure on the axis. Certain modes reveal
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the existence of cut-off frequencies, that is, they only exist if
the source excitation frequency exceeds these frequencies.

The ratio between the shear wave velocity in the solid
medium and the dilatational wave velocity in the fluid define
two distinct modes of wave propagation. If the formation is
slow (i.e. Blay < 1.0), proper normal modes do not exist,
because any waves propagating in the fluid will radiate and
lose their energy as shear waves in the solid. Leaky modes
still exist, however, but they attenuate rapidly as they propa-
gate. If the formation is fast (i.e. B/ay > 1.0), the energy
remains trapped in the fluid and normal modes exist in
addition to the leaky modes. The amplitude of the normal
modes in the elastic formation decays exponentially with
the distance to the cylinder.

The work presented in this article simulates the cross-hole
technique, for which two boreholes, with radii of 0.60 m, are
used and the effect of non-circular boreholes is addressed.
However, the results obtained for a single circular borehole,
with source and receivers placed within the fluid, are used as
a reference. Two different formations, similar to the ones
studied by Ellefsen [50], are used with the mechanical prop-
erties listed in the Table 1.

Figs. 2-3 display the phase and group velocities for the
first normal modes in the fast and slow formation. The
various modes are labeled by a pair of numbers. The first
number reflects the azimuth order, while the second indi-
cates the radial order that supplies the variation of the mode
with radial distance.

The first axisymmetric mode is the tube wave or Stoneley
wave [(0,0)]. It exists for all frequencies and its phase and
group velocity values are below the dilatational velocity of
the fluid. It exhibits slight dispersion, which is greater in the
slow formation than in the fast formation.

The first mode with azimuth variation is the flexural wave
[(1,0)], which exists at all frequencies and is highly disper-
sive. However, the flexural wave is more dispersive in the
fast formation than in the slow formation.

The second mode with azimuthal variation of cos 26 or
sin 20, is the screw wave [(2,0)]. This screw wave has a cut-
off frequency of approximately 1.0 kHz in the fast formation
and 0.7 kHz in the slow formation. Higher radial modes
exist in a fast formation.

The second axisymmetric mode is the pseudo-Rayleigh
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Fig. 2. Fast formation: phase and group velocities of the lowest normal modes.
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Fig. 3. Slow formation: phase and group velocities of the lowest normal modes.

wave [(0,1)], which has a cut-off frequency of 1.35 kHz in
the present case. The mode reaches its highest phase velo-
city at this frequency, the shear wave velocity of the solid,
and approaches the dilatational fluid velocity asymptotically
as the frequency of the wave increases. On the other hand,
the group velocity value is less than the shear wave velocity
of the solid at a cut-off frequency. As the frequency
increases, its velocity decreases rapidly to reach the mini-
mum associated with Airy waves, and thereafter approaches
the fluid velocity from below.

Higher flexural modes also exist, such as the [(1,1)] and
[(2,1)] modes shown in Fig. 2. Higher order normal modes
[(n,m)] for m,n > 2, which vary as cos nf or sin nx, also
exist, but they do not have a specific name.

4. Synthetic Waveforms

Synthetic waveforms have been computed to simulate the
wave propagation between two fluid-filled cylindrical bore-
holes, driven parallel to the z axis. The source is placed in
the first borehole and the receivers are placed in the second
borehole, on five planes, equally spaced (6 m) along the z
direction. The source is placed either on the axis of the
borehole (source 1) or close to the wall of the borehole
(source 2).

The BEM computations are performed using a number of
boundary elements to discretize each borehole, which
changes with the excitation frequency of the harmonic
load. The ratio of the wavelength of the incident waves to
the length of the boundary elements is kept at a minimum of
8.0. However, a minimum of 30 boundary elements is used
to model each inclusion.

Source 1

d=32m
d=10.0m

Fig. 4. Geometry of two cylindrical circular fluid-filled boreholes.

When the formation is fast, the computations are
performed in the frequency range from 12.5 to 1600 Hz,
with a frequency increment of 12.5Hz. T = 1/12.5 =
80 ms is the time thus allowed for the analysis, with the
spatial ~distance between virtual sources set to
L=2Ta, =673 m. The pressure time responses are
computed modeling a spherical dilatational Ricker pulse
source with a characteristic frequency 500 Hz. Meanwhile,
when the elastic formation is slow, the responses are calcu-
lated in the frequency range from 9.5 to 1216 Hz, with a
frequency increment of 9.5Hz (7 =1052ms and
L =2Ta, = 554 m). The source time dependence is again
a Ricker wavelet, but it now has a characteristic frequency
of 450 Hz.

In the first set of examples computed, the two boreholes
are assumed to have circular cross-sections. Two distances
between the two boreholes are selected, and these are 3.2
and 10.0 m (see Fig. 4). The results obtained are compared
with those found when only one borehole is used for both
the receivers and the source. The second set of examples
simulates the presence of a non-circular cross-section bore-
hole, an oval with an ovality ratio of € = 1.44/0.92 = 1.56,
which has the same perimeter as the neighboring circular
borehole (1.27r m), as in Fig. 5.

4.1. Circular boreholes in a fast formation

Figs. 6-9 show the response obtained when circular
cross-section boreholes are driven in a fast formation, as
in Fig. 4. Both the time and their Fourier Spectra responses
are displayed, to give a better visual separation of the differ-
ent wave types.

Fig. 6 displays the signal produced by the source 1, placed
on the axis, acquired at receiver 2, located close to the bore-
hole wall. In a fast formation, the P wave begins as a dilata-
tional wave in the borehole fluid; it is critically refracted
into the formation as a P wave and is then refracted back
into the fluid as a dilatational wave. The so-called S wave
begins as a dilatational wave in the borehole fluid; it is
critically refracted into the formation as an S wave, and is
refracted into the fluid as a dilatational wave. After the P
wave arrival, the response is marked by a dense ring called
the leaky or PL mode. The scaling of the plots shown in
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Fig. 5. Geometry of two cylindrical fluid-filled boreholes. (a) The source placed inside an oval while the receivers are placed in a circular borehole. (b) The

source placed inside a circle while the receivers are placed in an oval borehole.

Fig. 6 does not allow easy observation of the P and S body
waves.

When only one borehole, hosts both the source and the
receiver, and the source is placed on its axis, axisymmetric
normal modes alone are excited. The resulting guided
waves, pseudo-Rayleigh and Stoneley waves, arrive after
the S wave. The first pseudo-Rayleigh mode makes a very
small contribution, given the frequency of the pulse excited
(500 Hz), which is much lower than the cut-off frequency of
these waves (1.35 kHz). The result is a domination of the
time responses by the Stoneley waves, which are only
slightly dispersive, as the time plots in Fig. 6a illustrate.
The features of the responses at the other receivers are simi-
lar (not shown).

When the source and receivers are placed in separate
boreholes (cross-hole model), the behavior of the response
changes markedly. Non-axisymmetric modes are excited,
since the axis of the borehole, where the load is placed, is
no longer axisymmetric. When the distance between bore-
holes is relatively small, d = 3.2 m, the Stoneley waves still
dominate the response, but now both the Flexural and the
Screw waves are excited. Given the cut-off frequency of the
Screw waves (1.0 kHz), their contribution to the time
response is small. However, the guided waves are less
important, compared with the previous example (see Fig.
6a and b), and the S wave starts to be clearly visible. Other
body waves exist, caused by the multiple reverberations
between the two boreholes. As we move the boreholes
further apart, the guided waves continue to lose importance,
as the spectra responses in Fig. 6¢c show. However, the
Stoneley waves are still clearly visible at the low excitation
frequencies. The time responses agree with this behavior by
eliminating the late arrivals and by enhancing the presence
of the P and S waves, which are now seen easily. The P

mode converted waves, resulting from the incidence of S
waves (originated on refraction into the formation of the
dilatational waves within the fluid filled borehole) on the
boreholes, are particularly clear. These pulses are identified
in the plots with the labels SP. The Stoneley waves are not
clearly observable given the frequency of the pulse excited
(500 Hz). At low frequencies a Stoneley pulse should
appear. To illustrate this behavior Fig. 6¢ also includes the
responses obtained when the source excites a pulse with a
frequency of 200 Hz. As expected, a Stoneley pulse is now
well visible.

Figs. 7-9 show the response generated by source 2,
located close to the borehole wall. Fig. 7a displays the
response at receiver 1, placed on the axis of one circular
borehole. A source placed away from the axis excites both
axisymmetric and non-axisymmetric modes, but the latter
make a null contribution to the pressure on the axis of the
borehole. Thus, only the body waves, the Stoneley waves
[(0,0)], and the pseudo-Rayleigh waves [(0,1)] are given in
Fig. 7a. The response there is similar to what would be
created by a first source on the axis, except that the impor-
tance of the Stoneley wave is greater than for centered
sources. The arrival times of the different pulses agree
with the velocities of the P and S body waves, as well as
with the phase defined above and the group velocity curves
of the Stoneley and the pseudo-Rayleigh waves. The scaling
of the plot shown in Fig. 7a does not allow easy observation
of the P and S body pulses. In addition, the time plots do not
reveal the existence of the pseudo-Rayleigh pulses, given
the low characteristic frequency of the excited Ricker pulse
(500 Hz), which is much lower than the cut-off frequency
for these waves (1.35 kHz).

If we move from the one circular borehole situation to
the model with two boreholes, the spectra plots reveal the
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Fig. 6. Responses at receiver 2 when source 1 is excited (fast formation). (a) Circular borehole. (b) Two circular boreholes (d = 3.2m). (c) Two circular
boreholes (d = 10.0m): (1) Characteristic frequency of source 500 Hz; (2) Characteristic frequency of source 200 Hz.

existence of more modes (see Figs. 7b and c). Two addi-
tional modes are clearly visible when the distance between
boreholes is relatively small, namely the first order Flexural
[(1,0)] and the first order Screw modes [(2,0)] (see Fig. 7b).
This behavior was expected since the axis of the borehole

hosting the source is not an axisymmetric axis, and receiver
1 is no longer on the neutral axis of this dynamic system,
which would inhibit the presence of the Flexural wave. The
amplitudes of these modes, however, are not pronounced in
comparison with the earlier modes: the Stoneley and the
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Fig. 7. Responses at receiver 1 when source 2 is excited (fast formation). (a) Circular borehole. (b) Two circular boreholes (d = 3.2m). (c) Two circular

boreholes (d = 10.0m).

pseudo-Rayleigh modes. The time plots confirm this beha-
vior by placing additional pulse trains after the arrival of the
Stoneley wave. Notice that the Screw waves make a weak
contribution to the response, because of its cut-off frequency
(1.0 kHz). The S body waves are now clearly visible, owing
to the decrease in amplitude of the guided waves. As the
second borehole is placed further away from the first, the
guided modes decrease in amplitude and their contribution
to the response is almost reduced to that of the Stoneley
waves (see the spectra plot in Fig. 7c). The time responses
agree with this behavior by enhancing the presence of the P,
SP and S body pulses.

Fig. 8 illustrates the response close to the wall of the
borehole, at receiver 2, which is placed in the same azimuth
direction as the source. The responses at this receiver
include contributions from the Flexural and Screw waves,
as well as from the body, Stoneley and pseudo-Rayleigh
waves.

As we have mentioned, the non-axisymmetric guided
waves for one circular borehole are mainly caused by the
first order Flexural waves [(1,0)] since the Screw waves
[(2,0)] have a cut-off frequency of approximately 1 kHz. If
we take the spectral representation of the response (see
Fig. 8a), we can separate the different wave types visually.
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Fig. 8. Responses at receiver 2 when source 2 is excited (fast formation). (a) Circular boreholes. (b) Two circular boreholes (d = 3.2m). (c¢) Two circular

boreholes (d = 10.0m).

This indicates that the group velocity of bending waves is
higher than that of Screw waves, which in turn is higher than
that for pseudo-Rayleigh waves. The amplitude of the
Stoneley pulse in the time domain response is slightly
bigger than its amplitude on the axis (receiver 1), as
would be expected.

As we move from one borehole to two boreholes, we
notice that the guided waves lose their importance (see
Figs. 8a—c). Furthermore, it can be observed that the Stone-
ley waves become less important in relation to the other
guided modes, when the distance between boreholes is set
to d = 3.20m. When the distance between boreholes further

increases (d = 10.0 m), the responses show the same beha-
vior as that found at receiver 1, that is, the response is
mainly produced by the body waves. In the time plots,
this is shown by the progressive disappearance of late arri-
vals, after the S arrival.

The signatures at receiver 4 are not affected by Flexural
waves when there is only one borehole. This is because the
bending mode has zero amplitude at the neutral axis, which
is the vertical plane through the axis that is perpendicular to
the line connecting the center and the source. Hence, after
the passage of the Stoneley wave, the signatures on the
neutral axis experience a substantial drop in amplitude
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Fig. 9. Responses at receiver 4 when source 2 is excited (fast formation). (a) Circular borehole. (b) Two circular boreholes (d = 3.2m). (c) Two circular

boreholes (d = 10.0 m).

(Fig. 9a). This drop is not, however, observed for receivers 2
(Fig. 8a), and 3 (not shown) located away from the neutral
axis. Indeed, receiver 2, which is farthest from the neutral axis,
exhibit the largest increases in pressure, which are clearly due
to the flexural mode. At receiver 4, when there is only one
borehole, the only surviving guided waves are those coming
from the Screw mode (see the frequency spectra plot in Fig.
9a). As for receiver 2, the guided waves lose importance when
the two-borehole model is used. When the distance between
boreholes is d = 3.20 m, the Stoneley wave is still visible.
When this distance is increased to d = 10.0 m, the response
is almost solely due to the contribution of the body waves.

4.2. Circular boreholes in a slow formation

Fig. 10 shows the responses generated by source 2 at
receiver 2, when the boreholes are inside a slow formation.
As expected, the responses obtained at the receivers away
from the axis include contributions from the non-axisym-
metric modes. Given the nature of a slow formation, only
the first order normal modes exist, as pointed out before.
The weak contrast among the group velocities of the differ-
ent modes and the central frequency used to generate the
time series, does not allow the contributions of the various
wave types to be isolated. It is nevertheless possible to
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boreholes (d = 10.0 m).

detect the presence of the Stoneley wave when only one bore-
hole is used to allocate both the source and receivers (see Fig.
10a). Once more, as we move from one circular borehole to
two circular boreholes, the guided waves decrease in impor-
tance. When the distance between boreholes reaches
d = 10.0 m, the body waves begin to dominate the response.
Again, the P mode converted waves resulting from the inci-
dence of S waves (produced by the refraction of the dilata-
tional waves within the fluid filled borehole into the
formation) on the boreholes are well visible and labeled SP.

4.3. Non-circular boreholes in a fast formation

The next application illustrates how the solution changes
when one of the boreholes suffers a wall deformation and
becomes non-circular. Two different models are used to
define the main wave propagation differences. In the first
case, the source is placed inside a fluid-filled borehole with
an oval cross-section, and the receivers are located in a
second borehole with a circular cross-section. In the second
case, the circular borehole is used to host the source while
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Fig. 11. Responses when source 2 is excited (fast formation) inside an oval fluid-filled borehole. (a) Receiver 1. (b) Receiver 2.

the oval borehole contains the receivers (see Fig. 5). The
distance between borehole axes is constant (d = 3.20 m).
The responses obtained for one fluid-filled borehole with
an oval cross-section, hosting both the source and receivers,
are used as a reference. Fig. 11 displays the responses
obtained when the source 2, placed close to the borehole
wall, is excited. The spectra response obtained at receiver 1,
placed on the axis, exhibits a slower Stoneley wave at lower
frequencies than was found for the single circular borehole
(see Figs. 11a and 7a). The time plots confirm this phenom-
enon by attributing a slightly delayed arrival to the Stoneley
pulses. This effect agrees with the tendency found by Randall
[19] when calculating the dispersion curves for modes of non-
circular fluid-filled boreholes for low frequencies, and later
confirmed by the authors Tadeu et al. [39] in the calculation
of time series for oval fluid-filled boreholes. In addition, as we
move from the circular to the oval, our results indicate that
the amplitude of the Stoneley pulses increases. Furthermore,
it is observed that the pseudo-Rayleigh cut-off frequency
decreases as the ovality ratio increases. A second order
pseudo-Rayleigh [(0,2)] can even be observed. The time
responses reflect the presence of these waves, exhibiting a
ring of pulses after the S wave arrives, which decreases
rapidly, given the low frequency of the pulse excited.

Fig. 11b illustrates the response at receiver 2, close to the
wall of the borehole, placed in the same azimuth direction as
the source. Flexural and Screw waves are now present, in
addition to the body, Stoneley and pseudo-Rayleigh waves.
As we shift our attention from the circular inclusion to the
oval, we notice that the flexural waves reach lower veloci-
ties at lower frequencies, approaching the velocity (found
previously, for the circular inclusion) for later frequencies,
as the ovality ratio increases. In the time plots, this can be
seen in the progressive appearance of late arrivals, after the
Stoneley wave. The Screw wave behaves in a similar way,
but, in addition, it rapidly loses importance.

When the simulation uses two boreholes, non-axisym-
metric normal modes are excited as expected, and they
follow the behavior described above. However, the
responses become more complex since there are several
normal modes excited by both the circular and the oval
boreholes, with distinct phase and group velocities. This
leads to spectral responses that are more difficult to analyze,
given the increased number of mode behaviors. To allow
easier interpretation, the spectra plots are now presented as
gray scale plots, which consequently lose the third dimen-
sion aspect, but which permit the different mode patterns to
be distinguished visually.
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Fig. 12. Responses at receiver 1 when source 2 is excited (fast formation). (a) The borehole hosting the source is oval while the borehole allocating the receiver
is circular. (b) The borehole hosting the source is circular while the borehole allocating the receiver is oval.

Fig. 12 displays the computed results when source 2 is
allocated to one borehole and a second borehole hosts the
receiver 1. As before, the guided waves amplitude suffers a
pronounced decay when compared with the response for one
borehole, hosting both the source and receiver. Conse-
quently, the S wave arrivals are observable in the time
plots. The spectral response, calculated when the oval bore-
hole hosts the source, registers the presence of both the
Flexural and the Screw waves excited by the oval borehole,
in addition to the Stoneley and pseudo-Rayleigh waves
excited by the circular borehole (Fig. 12a). When the source
is placed in the circular borehole, the results reveal similar
behavior. However, the Flexural and the Screw waves origi-
nate within the circular inclusion, while the Stoneley and
pseudo-Rayleigh waves are the ones excited by the oval
borehole (Fig. 12b). The time results reflect this behavior
by enhancing the amplitude of the Stoneley wave when the
receiver is inside the oval inclusion (Fig. 12b), and by
placing pulses later in time when the source is in the oval

inclusion (Fig. 12a), which was expected, given the beha-
vior described for an oval borehole.

Fig. 13 shows the computed responses when one borehole
hosts source 2, with the second borehole hosting receiver 2,
placed close to the borehole wall. The results reveal the
presence of non-axysimmetric normal modes, excited by
both the oval and the circular boreholes, because receiver
2 is placed away from the axes of the two boreholes. Thus,
two sets of Screw and Flexural wave modes are given in the
spectral plots when the source is placed either within the
circular or within the oval borehole. The time plots display
similar behavior as the time progresses. Both time results
register a weaker Stoneley wave.

When these results are compared with those generated by
the two circular boreholes, our results reveal that the ampli-
tude of the guided waves has now decreased. This phenom-
enon can be explained by the fact that in the case of the
circular boreholes, both the source and receiver hosting
boreholes produce non-axisymmetric waves that have the
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Fig. 13. Responses at receiver 2 when source 2 is excited (fast formation). (a) The borehole hosting the source is oval while the borehole allocating the receiver
is circular. (b) The borehole hosting the source is circular while the borehole allocating the receiver is oval.

same group and phase velocities, which enhances the ampli-
tude of the guided modes (see Figs. 8 and 13). This super-
position of waves, originating in normal modes with the
same azimuth and radial order, does not occur for the
same group and phase velocities when the boreholes have
different geometries.

5. Conclusions

The BEM was developed and implemented to evaluate
the 3D wave field generated by a dilatational point load
illuminating a physical system constituted by either one or
two fluid-filled boreholes placed inside an elastic formation.
This model was built so that it simulated the cross-hole
seismic testing technique where the source is placed within
one borehole and the receivers are placed in a neighboring
borehole. Different models were analyzed, assuming both

circular and non-circular (oval) cross-sections for the bore-
holes. These analyses were used to assess the influence of
the source and receiver positions and the distance between
boreholes on the propagation of body waves, and on both
axisymmetric and non-axisymmetric wave modes, in the
presence of different borehole cross-sections. Both the
time responses and their Fourier Spectral representations
were included to give better identification of the various
wave components.

Analyses reveal that, as we move from a single circular
borehole to a system where the source and the receivers are
located in different circular boreholes, marked changes
occur in the responses, due mainly to a highly enhanced
contribution by non-axisymmetric normal modes. This
enhancement is particularly visible for receivers that were
previously located on the axis of the one borehole system,
which constitutes the axisymmetric axis of the dynamic
system. For the case of two boreholes, the source is no
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longer on the axisymmetric axis of the system, and thus the
nonaxisymmetric modes, such as the Flexural and the Screw
modes excited in the first borehole, become increasingly
important. Additionally, it may be observed that, as the
two boreholes are separated by greater distances, both the
frequency spectra and the time responses reveal an
increased importance of the body waves (P, SP and S),
and a gradual loss of the contribution of the guided modes
to the response. The Stoneley wave, however, is still clearly
visible, as expected.

When the two boreholes have different cross-sections the
responses become more complex, owing to the excitation of
normal modes by different phase and group velocities,
which nevertheless have the same azimuth and radial
order, originating within each borehole. Additionally, our
results indicate a decrease in the response amplitude when
the previously circular cross-section changes its shape to
oval.

Appendix A. The Green’s functions

A.l. Solid formation

Definitions

A, W Lamé constants
p mass density
=JA+2wlp

= Jup S wave velocity

P wave velocity

P
ko = +lky — k2, kg = |k} — k2
1
A - amplitude
4ipw
17
v = Rl i=1,2 direction cosines
(?xl‘ r

H,o = HP(k,r), H,g = HY (kgr) Hankel functions

B, = kgH, g — ko H,, B, functions

Green’s functions for displacements

1
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G, =A|K¥*Hy; — —B, + v’B
» [ o % 2] (A1)

G..=A[KHys —KBy| Gy =Gy = v3AB,
Gy =Gy
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Volumetric strain (super-index = direction of load)
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d 2
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Strain components (tensor definition, not engineering)
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(a) Strains for loads in the plane, [ = x,y

4
61\/01 = ‘YIA(_kEkBHIB + kzzBl + 732 - B3)

2
chx = 71A<(

2
G{)y = 71A<(

ei"z = y,k?AB 1

kkBHIB)8x1+ ~B, — y233>

kkBHIB) + 32 yng)

1 1
€y = A((7Bz - EkngHlB)(axl’Yy + 8y Yx) — 7x7y7133)

) 1
eiz = lsz((7B

. 1 1
= lsz((;Bl - Ek.%HOB)Syl - VyVZBz) (A4)

1
1 EkszHoB)le - %ﬁ’sz)

(b) Strain for axial loads, [ = z
2
é/ol = lsz<_k§H0B + kZZBO + 7B1 - Bz)
. 1 . 1
€, =ik Al —B, — ﬁBZ) €, = ik-A| —~B, — v,B,
r o r
6;2 = lkZA(_kgHOB + kZZBO) é\"y = _ikzyx7)=AB2
1
€ = %cA(_ Eksz-kBHl,B + kgBl)
1
€. = yyA(— ShekgHg + kZZBl) (A5)

(c) Stresses
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A.2. Fluid formation

Definitions
Ay Lamé constant
Py mass density
oy P wave velocity
kyy = wly
— 12 _ 12
kop = kpf k;
A : litud
= — amplitude
AT P
or X;
v,= — =-,i=1,2 direction cosines
ox; r

H,op = HP(kyyr)  Hankel functions

Green’s functions for displacements

Gp = —ArkorHiog v Gy = ~ArkopHior vy (A7)
Stresses

Hfl = Af/\fHoaf(_a)z/Olj%) (AS)
References

[1] Marzetta TL, Orton M, Krampe A, Johnston LK, Wuenschel PC. A
hydrophone vertical seismic profiling experiment. Geophysics
1988:53:1437—-44.

[2] Lee JM. In situ seismic anisotropy and its relationship to crack and
rock fabrics. PhD thesis, Pennsylvania State University, 1990.

[3] Albright JN, Johnson PA. Cross-borehole observation of mode
conversion from borehole Stoneley waves to channel waves at a
coal layer. Geophys Prosp 1990;38:607-20.

[4] Krohn CE. Crosswell continuity logging using guided seismic waves.
The Leading Edge 1992;11(7):39-45.

[5] Toksdz MN, Cheng CH, Cicerone RD. Fracture detection and char-
acterization from hydrophone vertical seismic profiling data. In:
Evans B, Wong T, editors. Fault mechanics and transport properties
of rocks, London: Academic Press, 1992. p. 389-414.

[6] Findlay MJ, Goulty NR, Kragh JE. The crosshole seismic reflection
method in open cast coal exploration. First Break 1991;9:09-14.

[7] Goulty NR, Thatcher JS, Findlay MJ, Kragh JE, Jackson PD. Experi-
mental investigation of crosshole seismic techniques for shallow coal
exploration. Q J Engng Geol 1990;23:217-28.

[8] Becquey M, Bernet-Rollande JO, Laurent J, Noual G. Imaging

reservoirs — A crosswell seismic experiment. First Break 1992;

10:337-44.

Lazaratos SK, Rector JW, Harris JM, Van Schaack M. High-

resolution crosswell imaging of a West Texas carbonate reservoir:

Part 4. Reflection imaging. 62nd. Annual International Meeting,

Society of Exploration Geophysicists expanded abstracts, 1992;

p. 49-53.

[10] Khalil AA, Stewart RR, Henley DC. Traveltime inversion and
reflection processing of crosswell seismic data. Geophysics
1993;58:1248-56.

[11] Hardage BA. Crosswell seismology and reverse VSP. Geophysical
Press, 1992.

[12] Rowbotham PS, Goulty NR. Wavefield separation by 3-D filtering in
crosshole seismic reflection processing. Geophysics 1994;59:1065—
71.

[9

—

[13] Lee MW, Balch AH. Theoretical seismic wave radiation from a fluid-
filled borehole. Geophysics 1982;47:1308—14.

[14] Lee MW, Balch AH, Parrot KR. Radiation from a downhole airgun
source. Geophysics 1984;49:27-36.

[15] Lee MW. Low-frequency radiation from point sources in a fluid-filled
borehole. Geophysics 1986;51:1801-7.

[16] Winbow GA. Seismic sources in open and cased boreholes. Geophy-
sics 1991;56:1040-50.

[17] Stephen RA, Cardo-Casas F, Cheng CH. Finite difference synthetic
acoustic logs. Geophysics 1985;50:1588—-609.

[18] Bouchon M, Schmitt DP. Full wave acoustic logging in an irregular
borehole. Geophysics 1989;54:758-65.

[19] Randall CT. Multipole acoustic waveforms in nonaxisymmetric bore-
holes and formations. J Acoust Soc Am 1991;90:1620-31.

[20] Leslie HD, Randall CT. Multipole sources in boreholes penetrating
anisotropic formations: Numerical and experimental results. J Acoust
Soc Am 1992;91:12-27.

[21] Yoon KH, McMechan GA. 3-D finite difference modelling of elastic
waves in borehole environments. Geophysics 1992;57:793—804.

[22] Cheng N, Cheng CH, Tokséz MN. Borehole wave propagation in
three dimensions. J Acoust Soc Am 1995;97:3483-93.

[23] Track A, Daube F. Borehole coupling in cross-well wave propagation.
EAEG expanded abstracts, paper B026, Paris, 1992.

[24] Cheng N, Zhu Z, Cheng CH, Toksoz MN. Experimental and finite
difference modeling of borehole Mach waves. EAEG expanded
abstracts, paper P070, Paris, 1992.

[25] White JE, Sengbush RL. Shear waves from explosive sources.
Geophysics 1963;28:1001-19.

[26] Heelan PA. Radiation from a cylindrical source of finite length.
Geophysics 1953;18:685-96.

[27] Ben-Menahem A, Kostek S. The equivalent force system of a mono-
pole source in a fluid-filled open borehole. Geophysics 1990;56:
1477-81.

[28] Kurkjian AL, Hon BP, White JE, De Hoop AT, Marzetta TL. A
moving point mechanism representation for low frequency monopole
borehole sensors. EAEG expanded abstracts, paper P074, Paris, 1992.

[29] Kurkjian AL, Schmidt H, White JE, Marzetta TL, Chouzenoux C.
Numerical modeling of cross-well seismic monopole sensor data.
62nd Annual International Meeting, Society of Exploration Geo-
physicists expanded abstracts, 1992; p. 141-4.

[30] Gibson RL. Modeling mach wave propagation between boreholes in
layered media. EAEG expanded abstracts, paper B027, Paris, 1992.

[31] De Hoop AT, de Hon BP, Kurkjian AL. Calculation of transient tube
wave signals in cross-borehole acoustics. J Acoust Soc Am 1994;
95:1773-89.

[32] Kurkjian AL, Coates RT, White JE, Schmidt H. Finite-difference and
frequency—wavenumber modeling of seismic monopole sources and
receivers in fluid-filled boreholes. Geophysics 1994;59:1053—-64.

[33] Peng C, Lee JM, Tokséz NM. Pressure in a fluid-filled borehole
caused by a seismic source in stratified media. Geophysics 1996;
61:43-55.

[34] Tang XM, Cheng CH. Borehole Stoneley wave propagation across
permeable structures. Geophys Prosp 1993;41:165-87.

[35] Tezuka K, Cheng CH, Tang XM. Modeling of low-frequency Stone-
ley-wave propagation in an irregular borehole. Geophysics 1997;62:
1047-58.

[36] Bouchon M. A numerical simulation of the acoustic and elastic wave-
fields radiated by a source in a fluid-filled borehole embedded in a
layered medium. Geophysics 1993;58:475-81.

[37] Dong W, Bouchon M, Toks6z MN. Borehole seismic-source radiation
in layered isotropic and anisotropic media: boundary element model-
ing. Geophysics 1995;60:735-47.

[38] Randall CT. Modes of noncircular fluid-filled boreholes in elastic
formation. J Acoust Soc Am 1991;89:1002—16.

[39] Tadeu A, Santos P. 3D Wave Propagation in Fluid-filled Irregular
Boreholes in Elastic Formations. J Soil Dynam Earthquake Engng
2002 in press.



[40]

[41]
[42]
[43]
[44]
[45]

[46]

A. Tadeu et al. / Engineering Analysis with Boundary Elements 26 (2002) 101-117 117

Bell JS, Gough DI. Northeast—southwest compressive stress in
Alberta — Evidence from oil wells. Earth Planet Sci Lett 1979;
45:475-82.

Zheng Z, Kemeny K, Cook NGW. Analysis of borehole breakouts. J
Geophys Res 1989;94:171-82.

Bouchon M, Aki K. Discrete wave-number representation of seismic
source wavefields. Bull Seismol Soc Am 1977;67:259-77.

Manolis GD, Beskos DE. Boundary element methods in elasto-
dynamics Unwin Hyman. London: Chapman and Hall, 1988.
Beskos DE. Boundary Element Methods in Dynamic Analysis: Part 1T
(1986-1996). Appl Mech Rev 1997;50(3):149-97.

Brebbia CA, Telles JCF, Wrobel LC. Boundary element technique.
Berlin: Springer-Verlag, 1984.

Tadeu AJB, Santos PFA, Kausel E. Closed-form integration of

singular terms for constant linear and quadratic boundary elements
— part I:SH wave propagation. EABE — Engineering Analysis with
Boundary Elements 1999;23(8):671-81.

[47] Tadeu AJB, Santos PFA, Kausel E. Closed-form Integration of Singu-

lar Terms for Constant Linear and Quadratic Boundary Elements —
Part II:SV-P Wave Propagation. EABE — Engineering Analysis
with Boundary Elements 1999;23(9):757-68.

[48] Pao YH, Mow CC. Diffraction of elastic waves and dynamic stress

concentrations. Rand Corporation, 1973.

[49] Kausel E. Frequency domain analysis of undamped systems. J Engng

Mech, ASCE 1992;118:121-34.

[50] Ellefsen K.J. Elastic wave propagation along a borehole in an aniso-

tropic medium. PhD, Department of Earth and Planetary Sciences,
MIT, 1992.



