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Abstract

This paper studies wave propagation in the vicinity of a cylindrical solid formation submerged in an acoustic medium
generated by point blast loads placed outside the inclusion. The full 3D solution is obtained first in the frequency domain
as a discrete summation of responses for 2D problems defined by a spatial Fourier transform. Each 2D solution is computed
using the Boundary Element Method, which makes use of two-and-a-half-dimensional Green’s functions. This model is
implemented to obtain Fourier spectra responses which make it possible to identify the behavior of both the axisymmetric and
non-axisymmetric guided wave modes, when the cross-section of the elastic inclusion changes from circular to smooth oval.

When the cylindrical elastic inclusion is submerged in a fluid, thus allowing a dilatational wave velocity greater than the
shear wave velocity of the elastic medium (slow formation), our computations show a progressively slower flexural wave and
the increased importance of a second flexural mode as the ovality of the inclusion becomes more pronounced. The waves
associated with the screw mode become less important as the ovality ratio of the inclusion increases.

When the formation is fast (the shear wave velocity of the cylindrical solid inclusion is faster than the pressure wave
velocity of the fluid), the responses again indicate a progressively slower flexural wave, as the inclusion becomes more oval.
The results computed at the receivers placed on the axis appear to be weakly affected by the ovality ratio of the inclusion.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The propagation of acoustic waves in the vicinity of elastic inclusions or formations has been studied for a number
of years. Different approaches have been developed to try to reproduce the phenomena involved.

Most of the work related to this field relies on research by geophysicists and seismologists into the development of
seismic prospecting techniques (acoustic logging, vertical profiling and cross-hole surveying) to predict subterranean
characteristics, and by ocean and aeronautical researchers to study the interaction of the fluid with shell-shaped and
solid structures.

Biot [1] did the first theoretical work on the dispersion equation for guided waves, and their phase and group
velocities, along a borehole. Since then, a large number of researchers have addressed the problem of wave prop-
agation along fluid-filled boreholes subjected to plane waves and point sources, placed on and away from the axis
of the borehole.
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Recently, several researchers have investigated the propagation of waves along fluid-filled boreholes from sources
aligned with the borehole axis, in a context of acoustic logging. Schoenberg [2] developed explicit formulas, valid
for low frequencies, for the incidence of compressional or shear plane waves on the fluid borehole. Lovell and
Hornby [3] later provided expressions valid for all frequencies and incidence angles.

Numerical methods have been proposed for studying how the formation characteristics of the material, the type
of fluid in the borehole and the source influence wave amplitude and attenuation [4–6]. Different data processing
schemes have been suggested by Tezuka et al. [7] and Herman et al. [8]. The estimation of the mechanical properties
of the formation has been addressed by Cheng et al. [9]. This work was later extended to study the effect of the state
of fracturing and the presence of damaged zones around the borehole [10]. The impact of transversely isotropic
formations was also investigated [11,12]. Finite element methods have been proposed to compute borehole normal
modes and waveforms in the anisotropic formation [13,14]. Later, Dong and Toksöz [15] computed the radiation
patterns of downhole seismic sources inside a fluid-filled borehole driven in a transversely isotropic formation.
Randall [16] calculated dispersion curves for the modes of non-circular fluid-filled boreholes in homogeneous
elastic formations, using a boundary integral formulation. Results for the propagation modes of several borehole
shapes in both fast and slow formations were given.

Kurkjian et al. [17] proposed a numerical technique for solving downhole seismic data in cross-well configu-
rations that took into account the generation of tube waves in the borehole source, adopting a procedure for the
transmission from the source well and finally computing the receivers responses by applying the White’s quasi-static
approximation. Recently, Peng et al. [18] used both the borehole coupling theory and the global matrix formulation
for calculating synthetic seismograms in a layered medium, avoiding discretization along the borehole.

The finite difference method was applied by Randall [19] to study monopole and dipole acoustic logs. Later,
Cheng et al. [20] used a true 3D finite difference method, using a parallel computing scheme, to compute the time
domain wave propagation response for a borehole in an anisotropic formation.

In the context of the presence of shell and elastic inclusions submerged in a fluid medium, the literature shows
that, since Pochammer [21], who derived the dispersion equation for waves propagating in circular rods, a number
of researchers have contributed to this area of research. The interaction of solid rods with fluid media, in particular,
has been focused on. Longitudinal waves in homogeneous anisotropic cylindrical circular bars immersed in a fluid
medium have been computed numerically by Dayal [22], using cylindrical equations to find the dispersion curves
and the attenuation caused by the energy leaked into the fluid. Results are presented for rods made from five different
materials. Van den Abeele and Leroy [23] computed bounded beam reflection and transmission at layered media.
They extended the method of Claeys and Leroy [24] to a more general approximation, using both positive and
negative decaying heterogeneous waves. Furuyama and Inoue [25] computed the propagation of weakly nonlinear
waves radiated by a rigid circular cylinder oscillating harmonically in a direction perpendicular to its axis, submerged
in a perfect gas.

Stanton [26] obtained approximate analytical expressions to compute the scattering of sound by rough, elongated
elastic objects. Ramakrishna and Stepanishen [27] presented a numerical formulation for defining the acoustic
harmonic pressure fields, both scattered and total, that arise when rigid infinitely long cylinders, with cross-sections
which are symmetric about an axis, are illuminated by 2D incident pressure waves. This formulation is based on the
determination of monopole and dipole source distributions within the surface via a least-mean-square error scheme,
by matching the normal velocity field from the internal sources at the surface of the rigid cylinder with the normal
surface velocity produced by the incident wave field.

Stanton et al. [28] subsequently used the distorted wave ‘Born approximation’ to predict weak scattering by
spheres and finite-length cylinders, as produced by zooplankton. Their technique is restricted to weakly scattering
materials, in that the density and sound velocity of the inclusion material must be very similar to that of the
surrounding medium. Before this work, the zooplankton had been modeled mathematically, almost exclusively as
spheres, as summarized in Holliday and Pieper [29].

The resonance scattering theory, referenced as the resonance formalism of the nuclear reaction theory, has been
used to solve acoustic and elastic wave scattering problems. In this technique, the partial wave contained in the
total scattering amplitude is decomposed into two parts: one is known as the background, which is smooth and
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regular, and the other is the set of modal resonances of the scatterer. Joo et al. [30] used this technique to deduce
expressions to obtain the inherent background coefficients of multilayered cylindrical circular structures subjected
to plane waves.

In a context of lithotripsy developments, Dahake and Gracewski [31,32] analyzed the wave field in acoustic and
elastic media using regular and irregular geometries generated by a 2D radially diverging pressure pulse source,
using time domain finite differences techniques. The responses are first computed for solid cylinders with rectangular
or circular cross-sections, subjected to a line source placed in a surrounding fluid. They then studied the internal
stress wave field generated within submerged solids of various shapes, subjected to a radially diverging source
placed in the surrounding fluid.

Niklasson and Subhendu [33] computed the scattering by a circular cylinder in a transversely isotropic elastic
medium. The problem is solved using separation of variables in cylindrical coordinates. Sinclair and cowork-
ers [34] presented a normal mode expansion solution to compute the waves scattered by a transversely isotropic
cylinder embedded in a solid elastic medium, when subjected to a plane wave incident at an arbitrary angle. The
geometry of their model approaches that of a composite material featuring a reinforced fiber encased in an elastic
matrix.

Most work has focused on the plane harmonic scattering of cylindrical circular inclusions, using different nu-
merical approaches. In our work the full wave propagation in the vicinity of an elastic formation submerged in an
unbounded fluid medium, generated by a point pressure source placed inside the fluid, is studied. Both frequency
and time solutions are provided to study the effects of cross-section geometry variation, on the wave scattering.
The circular cross-section responses are used as a reference for the results obtained when the geometry changes to
accommodate ovals with different ovality ratios, while keeping the perimeter of the former circular inclusion. This
work tries to improve understanding of how guided waves, generated by loads in the vicinity of solid structures
submerged in a fluid medium, propagate. It aims to help define future construction procedures which will prevent
the propagation of these waves along solid structures. The first phase of this research is presented here; it considers
a long solid inclusion (a rod) submerged in a water medium. The results of this work are also applicable to the
development of non-destructive techniques.

The boundary element method (BEM) is the technique used to solve the present problem, because it is probably
one of the most suitable techniques for modeling wave scattering when the far field radiation conditions need to be
satisfied. The BEM has already been applied by Sarkissian [35] to compute the radiation of scattering from multiple
cylinders submerged in a fluid medium, assuming the existence of prescribed normal velocity distributions on the
cylinders surfaces. Numerical results are presented for various two-or-three-cylinder configurations, where a plane
harmonic wave is incident from various angles. Bouchon [36] also used the BEM to solve the case of an infinite open
borehole in layered isotropic media. Later, Dong et al. [37] included the effect of casing and cement in a layered,
transversely isotropic formation, using an indirect BEM formulation.

The geometry of our problem can be referred as a two-and-a-half-dimensional geometry, because the
medium is assumed to be 2D, and the source excited is 3D. As the geometry of the problem does not vary
along thez-direction (with z being the longitudinal axis of the solid formation), the solution can be obtained
by solving a sequence of 2D problems for a varying wavenumber along thez-direction,kz. This procedure is
possible after a prior spatial Fourier transformation along thez-direction. The required summation of 2D solu-
tions is rendered discrete by assuming the existence of an infinite number of virtual sources spaced at equal
intervals along thez-axis, at a certain minimum distance from each other in order to avoid spatial contam-
ination. The effects of the neighboring fictitious sources are minimized by using complex frequencies for the
analyses.

This model is implemented and used to understand wave propagation variation when the cross-section of the
elastic inclusion changes. The circular cross-section responses are used as a reference for the results obtained when
the geometry changes to accommodate oval cross-sections with different ovality ratios, but retaining the perimeter
of the former circular inclusion.

This model is used to identify the behavior of both the axisymmetric and non-axisymmetric normal modes.
The variables used in this study are: type of formation, defined by the relation between the shear velocity of the
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solid medium and the dilatational wave velocity of the fluid; the position of the receivers, and the shape of the
cross-section.

Next, the 3D problem is described and the BEM is formulated in the frequency domain. Then, the numerical
validation of the results is presented, using a circular cylindrical solid formation model, for which analytical
expressions exist. The responses in the time domain are subsequently obtained. The method is then implemented to
study the wave propagation around elastic inclusions with different cross-sections. Finally, conclusions are drawn.

2. Problem formulation

Consider a cylindrical irregular solid formation of infinite extent, submerged in a spatially uniform fluid medium
(Fig. 1), subjected to a harmonic dilatational pressure source at position O, oscillating with a frequencyω,

pinc = Aei(ω/α)(αt−
√

x2+y2+z2)√
x2 + y2 + z2

(1)

in which the subscript ‘inc’ denotes the incident field,A the wave amplitude,α the compressional wave velocity of
the medium and i= √−1.

Fourier-transforming equation (1) in thez-direction, and defining the effective wavenumberskα =
√
(ω2/α2) − k2

z ,

one obtains

p̂inc(ω, x, y, kz) = − iA

2
H

(2)
0

(
kα

√
x2 + y2

)
(2)

in which theH(2)
n ( . . . ) are second Hankel functions of ordern.

This procedure allows the solution to be obtained as a summation of 2D solutions. Considering an infinite number
of virtual pressure sources at equal spaces,L, along thez-direction, the solution can be computed as a discrete
summation of solutions for varying wavenumberskzm = (2π/L)m. In these calculations,L must be sufficiently
large to avoid spatial contamination [38].

The 3D field generated when an elastic formation, submerged in an infinite fluid medium, is illuminated by a
spatially sinusoidal harmonic line load, defined by Eq. (2), is computed here by utilizing the BEM. The numer-
ical formulation of this method, applied to wave propagation, has been widely studied [39–41]. It is known that
the computation of the scattered wave field in the frequency domain requires the evaluation of the following integrals,

Fig. 1. Geometry of the problem.
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at each element of the discretized inclusion boundary:

H
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∫
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In these equations,H(s)
ij (xk, xl, nl)andG(s)

ij (xk, xl)are, respectively, the Green’s tensor for traction and displacement
components in the elastic medium, at the pointxl in directionj caused by a concentrated load acting at the source
point xk in directioni; H(f )

f1 (xk, xl, nl) are the components of the Green’s tensor for pressure in the fluid medium,

at the pointxl , caused by a pressure load acting at the source pointxk; G
(f )
f1 (xk, xl) are the components of the

Green’s tensor for displacement in the fluid medium, at the pointxl , in the normal direction, caused by a pressure
load acting at the source pointxk; nl is the unit outward normal for thelth boundary segmentCl ; the subscripts
i, j = 1,2,3 denote the normal, tangential andz-directions, respectively. Tadeu and Kausel [42] presents the
two-and-a-half-dimensional fundamental solutions (Green’s functions) in the Cartesian coordinates required for the
elastic and fluid media. Expressions for the tensions may be obtained from the Green’s functions by taking partial
derivatives to deduce the strains and then applying Hooke’s law to obtain the stresses.

The integral equations (3) are then manipulated in order to verify the boundary conditions between the two media,
i.e. the continuity of normal displacements and stresses, and null tangential stresses at the interface between the solid
and the fluid. Solving the resulting system makes it possible to obtain nodal solid displacements and fluid pressures.

The integrations in Eq. (3) are computed in closed form when the element to be integrated is the loaded element,
and by means of Gaussian quadrature when the element to be integrated is not the loaded element.

3. Validation of the BEM algorithm

The BEM algorithm used in this work was implemented and validated by applying it to a cylindrical circular
solid inclusion (α = 2630 m/s, β = 1416 m/s andρ = 2250 kg/m3) submerged in an inviscid fluid medium
(αf = 1500 m/s andρf = 1000 kg/m3), subjected to a dilatational harmonic line load applied at point O, with
kz = 1.0 rad/m, placed as shown in Fig. 2, for which the solution is known in closed form (described in Appendix A).

The response is calculated at a receiver placed inside the elastic formation. Computations are performed in the
frequency range 25.0–1600.0 Hz. Fig. 2 displays the normalized scattered field along thez-direction, calculated
when the inclusion is modeled with 150 boundary elements. The normalization procedure used the maximum
amplitude of the response, within the frequency range computed, for reference purposes. In this figure, the solid
line represents the analytical solution, and the marks illustrate the BEM solution. Analysis of the results confirms
a good agreement between the two solutions.

4. Results in the time domain

Responses (displacements and pressures) in the spatial–temporal domain are obtained using a fast inverse Fourier
transform in the frequency and wavenumber domain. The source used to calculate the temporal solution is modeled
as a Ricker wavelet

u(τ) = A(1 − 2τ2)e−τ2
(4)

whereA is the amplitude,τ = (t − ts)/t0 andt denotes time,ts the time when the maximum occurs, whileπ t0 the
characteristic (dominant) period of the wavelet. Its Fourier transform is

U(ω) = A[2
√
πt0 e−iωts]Ω2 e−Ω2

(5)

in whichΩ = 1
2ωt0.
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Fig. 2. Validation of the BEM.

This wavelet form has been chosen because it decays rapidly, both in time and frequency, reducing computational
effort and allowing easier interpretation of the computed time series and synthetic waveforms.

As stated before, the Fourier transformations are obtained by discrete summations over wavenumbers and fre-
quencies. Mathematically, this is achieved by adding periodic sources at spatial intervalsL = 2π/�kz (in thez-axis),
and temporal intervalsT = 2π/�ω, with ∆kz, and∆ω being the wavenumber and frequency steps, respectively
[38]. The spatial separation,L, must be large enough to guarantee that the response of the fictitious sources occurs
at times later thanT, and therefore avoids contamination. Complex frequencies, with a small imaginary part of the
form,ωc = ω − iη (with η = 0.7�ω), can also be used to improve the accuracy of the response by introducing a
significant attenuation, or virtual elimination, of the periodic sources. In the time domain, this shift is later taken
into account by applying an exponential window eηt to the response [43].

5. Numerical applications

The 3D boundary element program was implemented and applied to the numerical analysis of a cylindrical solid
inclusion submerged inside a fluid medium when illuminated by a point pressure load. Different cross-sections,
with a constant perimeter(1.2πm), were simulated. In this work, only a circle with radius ofR = 0.6 m and a thin
oval, with an ovality ratio ofε = 1.68/0.62 = 2.7 are used to illustrate the main findings. The wave field generated
is computed at receivers located as shown in Fig. 3, on five planes, equally spaced (6.0 m) along thez-direction.

The influence of the ratio between the shear velocity of the solid medium and the dilatational wave velocity of
the fluid on the wave propagation is another parameter analyzed. This work examines two different formations (see
Table 1), identical to the ones used by Ellefsen [13] in his studies on the determination of the phase and group
velocities of a fluid-filled circular borehole.

The calculations were performed in the frequency range from 25 to 1600 Hz with a frequency increment of
25 Hz. The total time taken for the analysis is given byT = 1

25 = 40 ms. Therefore, the spatial period chosen for
the calculations cannot be less thanL = 2T α, which givesL = 2T α = 336 m andL = 2T α = 212 m in the
presence of a fast formation and a slow formation, respectively. The imaginary part of the angular frequency is set
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Fig. 3. Cross-sections of the solid formation.

to η = 0.7�ω, attenuating the wraparound by a factor of e0.7�ωT = 81 (i.e. 38 dB). The source is a Ricker wavelet
pulse with a characteristic frequency of 500 Hz. The results were computed forx, y andzcomponent displacements.
Given the symmetry of the problem, thex displacements register null value at receivers placed on they axis(x = 0).
The main features of the computed wave field are illustrated using thezdisplacements in the solid formation, which
would be similar to the results obtained along the other component displacements. Each time plot is normalized
with respect to the maximum time response obtained at receiver 1 for a distance in thez-direction of 6 m, when the
inclusion is circular.

The cross-sections were modeled with boundary elements, the number of which varied with the excitation
frequency of the harmonic load. The ratio between the wavelength of the incident field and the length of the
boundary element used was 12. The minimum number of boundary elements considered for any of the analyses
was never less than 40.

The various waves propagating in the inclusion and its vicinity include non-dispersive (body waves), namely the
dilatational (Ps) and shear (Ss) waves in the solid medium, and pressure (Pf ) waves in the fluid medium. In addition,
there are guided waves propagating along the surface of the solid inclusion, which correspond to axisymmetric
modes and modes with azimuth variation. Some of these modes are excited only if the source excitation frequency
exceeds a certain value. This value is termed the cutoff frequency.

The dispersion characteristics of the normal modes can be obtained by solving an eigenvalue problem in the
absence of an incident field. The associated eigenvalueskz, lead in turn to the phase and group velocities of the
normal modes. While an infinite (but countable) number of modes exist, only those with a low modal order contribute
significantly to the response.

To better illustrate the behavior of the guided waves, the Fourier spectra for waves traveling with velocities of
between 700.0 and 1600.0 m/s are displayed. Notice that these plots do not correspond to the required integration,

Table 1
Mechanical properties of the two formations

Fast formation Slow formation

α (m/s) 4208 2630
β (m/s) 2656 1416
ρ (kg/m3) 2140 2250
αf (m/s) 1500 1500
ρf (kg/m3) 1000 1000
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Fig. 4. Frequency spectra and time responses at receiver 1, when the formation is slow: (a) circular inclusion; (b) thin oval inclusion.

where the increment of∆kz was set to be 2π /L. Each plot is again normalized with respect to the maximum response
obtained at receiver 1, when the inclusion is circular. The Fourier spectra plots use a gray scale where lighter and
darker shades are ascribed to higher and lower amplitude values, respectively.

5.1. Slow formation

Figs. 4–6 give the responses computed when the solid formation is driven in a slow formation. Fig. 4 displays
the responses at receiver 1 placed on the axis.

A source placed off the axis excites both axisymmetric and non-axisymmetric modes, but only the former
contribute to the pressure on the axis when the inclusion is circular. In the case of the circular inclusion therefore,
only the body waves and the waves from the axisymmetric mode are observed. The time plots reveal the existence of
the dilatationalPs waves and the pulses associated with the axisymmetric mode. As we move from the circular to the
thin ovalε = 2.7, these waves exhibit a faster velocity and a lower amplitude, as the spectra plots illustrate. The time
plots confirm this phenomenon by eliminating the later arrivals and diminishing the amplitude of the corresponding
pulses. Furthermore, as the ovality ratio increases, our results indicate the existence of a second mode, with velocities
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Fig. 5. Frequency spectra and time responses at receiver 2, when the formation is slow: (a) circular inclusion; (b) thin oval inclusion.

similar to the screw mode. This mode makes a very small contribution to the time responses, given the frequency
of the pulse excited (500 Hz), which is much lower than the cutoff frequency of these waves (≈0.8 kHz).

Fig. 5 illustrates the response close to the wall of the borehole, at receiver 2, placed in the same azimuth direction
as the source. The responses at this receiver include contributions from the flexural and screw waves, in addition to
the waves corresponding to the axisymmetric modes.

Analysis of the responses shows that their spectral representation allows the different wave types to be distin-
guished visually. It indicates that the group velocity of screw waves is lower than that for those associated with
the axisymmetric mode, which in turn is lower than for the flexural waves. Notice that the group velocity can be
obtained by the relationship dω/dkz. The waves associated with the axisymmetric mode are weaker than those found
at receiver 1, placed on the axis. As we proceed from the circular inclusion to the thin oval, we notice that the
flexural waves become slower. The time plots show this in the progressive delay of the flexural arrivals. Our results
further indicate that a second flexural mode starts to be important as the cross-section becomes more oval, exhibiting
lower cutoff frequencies and lower group velocities. The time plots of the thin oval demonstrate this behavior by
introducing later time arrivals with higher amplitudes. Meanwhile, the screw waves lose importance as we move
from the circular to the thin oval, because they appear later in the frequency domain.
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Fig. 6. Frequency spectra and time responses at receiver 4, when the formation is slow: (a) circular inclusion; (b) thin oval inclusion.

As we move to receiver 3, located along a plane at 45◦ (not displayed), the spectra plots do not reveal the existence
of the screw mode when the cross-section is circular. The time plots confirm this behavior by erasing the later pulses
registered at receiver 2. When the cross-section changes from the circular to thin oval, this mode becomes important,
although its amplitude is lower than at receiver 2. The contribution of the flexural mode is lower than it was for
receiver 2, because the receiver is nearer to the neutral axis.

The signatures at receiver 4 are not affected by flexural waves (see Fig. 6), because the flexural mode has zero
amplitude on the neutral axis. This axis is the horizontal plane through the axis that is perpendicular to the line
connecting the center with the source. Hence, after the passage of thePs waves, the signatures on the neutral axis
experience a substantial drop in amplitude, before the arrival of the screw waves. Notice that this drop is not observed
at receiver 2, located away from the neutral axis (see Fig. 5). The screw waves manifest behavior similar to that
described for receiver 2. When the oval is thin, the relative importance of the waves associated with the axisymmetric
mode increases.

The responses obtained for the receivers located within the fluid media behave in a similar fashion (not shown).
The time plots show the existence of the pressure (Pf ) body waves in the fluid media, in addition to the pulses
associated with the surface modes (not shown).
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Fig. 7. Frequency spectra and time responses at receiver 1, when the formation is fast: (a) circular inclusion; (b) thin oval inclusion.

5.2. Fast formation

Figs. 7 and 8 display the responses obtained at receivers 1 and 2 when the borehole is driven in fast formation.
When the shear wave velocity is faster than the dilatational fluid velocity, only the lowest order radial modes exist,
since no critical dilatational refraction can occur.

At receiver 1 (see Fig. 7), placed on the borehole axis, the axisymmetric mode alone is excited for all cross-sections
studied. Thus, the time plots only show the presence of two pulses, the dilatational body (Ps) wave and the pulse
associated with the axisymmetric mode. The spectra analysis also indicates that responses are not highly dispersive.
The responses for all borehole sections are similar.

The responses computed at the receiver 2 (see Fig. 8) show the contribution of the flexural and axisymmetric
modes. The presence of the screw mode is not detected in these plots because of the frequency excited (500 Hz),
which is much lower than the cutoff frequency of these waves. As in the slow formation, the group velocities
of the flexural waves become slower when the cross-section changes from the circular, to the thin oval, as the
time plots confirm. However, as the frequency increases, the flexural wave velocity approaches the velocity of the
compressional fluid wave velocity, in all cross-sections.
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Fig. 8. Frequency spectra and time responses at receiver 2, when the formation is fast: (a) circular inclusion; (b) thin oval inclusion.

It should be noted that the results presented in this paper consider only smooth cross-sectional geometries. The
presence of a cross-section with irregularities such as the existence of sharp corners would introduce additional
wave phenomena complexity.

6. Conclusions

A boundary element formulation was implemented to evaluate the 3D wavefield generated by a pressure point
source striking an elastic inclusion (in a fast and slow formation) submerged in a fluid medium. This model was used
to assess the influence of the receiver position on the propagation of both the axisymmetric and non-axisymmetric
wave modes when different inclusion cross-sections were used, namely a circular and a thin oval. Time signatures
were computed using complex frequencies. Their Fourier spectral representations were presented, allowing a better
separation of the different wave modes.
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When the cylindrical elastic inclusion is submerged in a fluid, where the shear velocity of the solid medium is
lower than the dilatational wave velocity of the fluid (slow formation), the results indicate a progressively slower
flexural wave and the increased importance of a second flexural mode, which appears earlier in the frequency domain,
as the ovality of the inclusion increases. Meanwhile, the waves associated with the screw mode lose importance in
the time domain as the ovality ratio increases, because they arrive later in the frequency domain. The waves related
to the axisymmetric mode appear more relevant at the receiver placed on the axis. In addition, they become faster as
the ovality ratio grows. The results computed for receivers placed in the fluid media, close to the inclusion surface,
exhibit features similar to those located within the solid.

When the shear wave velocity of the cylindrical solid inclusion is faster than the pressure wave velocity of the
fluid (fast formation), the results again indicate a progressively slower flexural wave, as the ovality of the inclusion
increases. The responses obtained at the receivers placed on the axis were weakly affected by the ovality ratio of
the inclusion. Only the lower order modes were excited.

Appendix A. Analytical 3D wave propagation solution for a solid circular cylinder submerged
in a inviscid fluid medium

Consider a cylindrical solid inclusion (Fig. 9) immersed in a spatially uniform fluid medium of infinite ex-
tent. Decomposing the homogeneous wave equations for elastic media in the usual way, by means of the now
classical dilatational potentialφ and shear potentialsψ , χ , gives the three scalar wave equations in these po-
tentials, with associated wave propagation velocitiesα, β andβ, respectively. For a harmonic dilatational point
source at an off-center position O in the fluid or solid, oscillating with a frequencyω, the scalar wave equa-
tions lead to three Helmholtz equations, whose solution can be expressed in terms of the single
dilatational potential for the incident waves, together with the set of potentials for scattered waves in
both media.

A.1. Incident field

The incident dilatational potential is given by the expression

φinc = Ae
i(ω/αf )

(
αf t−

√
(x−x0)

2+y2+z2
)

√
(x − x0)2 + y2 + z2

(A.1)

Fig. 9. Geometry of the problem for the analytical solution.
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in which the subscript ‘inc’ denotes the incident field,A the wave amplitude,αf the acoustic (dilatational) wave
velocity of the medium containing the source, and i= √−1.

Defining the effective wave numbers

kα =
√
ω2

α2
− k2

z , Im kα < 0, kβ =
√
ω2

β2
− k2

z , Im kβ < 0,

kαf =
√
ω2

αf
2

− k2
z , Im kαf < 0 (A.2)

by means of the axial wavenumberkz, the frequency of excitationω, and the wave velocitiesα, β andαf , and
Fourier transforming equation (A.1) in thez-direction, one obtains

φinc(ω, x, y, kz) = −iA

2
H

(2)
0

(
kαf

√
(x − x0)2 + y2

)
(A.3)

in which theH(2)
n (. . . ) are second Hankel functions of ordern.

Eq. (A.3) expresses the incident field in terms of waves centered at the source point O, and not at the axis of the
borehole. Graf’s addition theorem is used to express the incident potential in terms of waves centered at the origin
[44], leading to the expressions (in cylindrical coordinates)

φinc(ω, r, θ, kz) = − iA

2

∞∑
n=0

(−1)nεnH
(2)
n (kαf r0)Jn(kαf r) cosnθ whenr < r0 (A.4)

φinc(ω, r, θ, kz) = − iA

2

∞∑
n=0

(−1)nεnH
(2)
n (kαf r)Jn(kαf r0)cosnθ whenr > r0 (A.5)

in which theJn(. . . ) are Bessel functions of ordern, θ is the azimuth, and

εn =
{

1
2 if n = 0,

1 if n 
= 0

where r =
√
x2 + y2 is the distance to the receiver andr0 the radial distance from the cylinder axis to the

source

cosθ = x

r
, sinθ = y

r

A.2. Scattered field in the fluid medium

The scattered field in the fluid medium can be expressed, in the frequency-axial-wavenumber domain, using a
form similar to that of the incident field, namely

φf
sca(ω, r, θ, kz) =

∞∑
n=0

AnH
(2)
n (kαf r) cosnθ (A.6)

in which the subscript ‘sca’ denotes the scattered field,An is an unknown coefficient to be determined from appro-

priate boundary conditions, the index ‘f’ identifies the fluid andkαf =
√
(ω2/α2

f ) − kz.
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A.3. Scattered field in the solid formation

The scattered (or refracted) field in the solid circular formation, when the source is placed in the fluid medium,
consists of standing waves, which can be expressed as

φs
sca(ω, r, θ, kz) =

∞∑
n=0

BnJn(kαr) cosnθ, ψs
sca(ω, r, θ, kz) =

∞∑
n=0

CnJn(kβr) sinnθ,

χs
sca(ω, r, θ, kz) =

∞∑
n=0

DnJn(kβr) cosnθ (A.7)

in which index ‘s’ identifies the solid region, and the coefficientsBn, Cn andDn are unknown coefficients to be
determined from the appropriate boundary conditions.

A.4. Displacement field

By imposing the continuity of displacements and stresses at the interface between the solid and the fluid mediums,
namelyus

r = uf
r , σ

s
rr = σ f

rr andσrθ = σrz = 0, one obtains the unknown coefficientsAn, Bn, Cn, Dn in Eqs. (A.6)
and (A.7). Since an inviscid fluid was assumed, the tangential displacements at the boundary of the solid (i.e.uθ , uz)
may be different from those in the fluid (i.e.uf

θ , u
f
z). The unknown constants can be found by solving the system

of the four stated boundary conditions for each summation index,n.
Having the constants, the scattered field can be calculated by means of the well-known equations relating potentials

and displacements. Thus, the displacements can be achieved by applying partial derivatives to the potentials presented
in Eqs. (A.6) and (A.7). After this procedure, the expressions for the scattered field in the solid and fluid are
obtained:

ur(ω, r, θ, kz) =
∞∑
n=0

fn(r) cosnθ, uθ (ω, r, θ, kz) =
∞∑
n=0

gn(r) sinnθ,

uz(ω, r, θ, kz) =
∞∑
n=0

hn(r) cosnθ (A.8)

in which the functionsfn, gn andhn are given as in the following sections.

A.4.1. Solid formation

fn(r) =
[n
r
Jn(kαr) − kαJn+1(kαr)

]
Bn + n

r
Jn(kβr)Cn − ikz

[n
r
Jn(kβr) − kβJn+1(kβr)

]
Dn,

gn(r) = −n

r
Jn(kαr)Bn −

[n
r
Jn(kβr) − kβJn+1(kβr)

]
Cn + ikz

n

r
Jn(kβr)Dn,

hn(r) = −ikzJn(kαr)Bn+ k2
βJn(kβr)Dn (A.9)

A.4.2. Fluid medium

fn(r) =
[n
r
H(2)
n (kαf r) − kαf H

(2)
n+1(kαf r)

]
An, gn(r) = −n

r
H(2)
n (kαf r)An,

hn(r) = −ikzH
(2)
n (kαf r)An (A.10)

The total field in thekz wavenumber domain, for the medium where the source is placed (fluid medium), is calculated
by adding the incident field obtained from Eqs. (A.4) or (A.5) by partial differentiation to the scattered field given
in Eq. (A.10).
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