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Scattering of seismic waves generated by an irregular seabed
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Abstract

The changes in the seismic response due to the presence of an irregular elastic seabed, and/or the presence of a water-

filled inclusion located under the elastic seabed surface, in the presence of a dilatational spatially harmonic line source,

is assessed. The seabed surface deformations and the water-filled inclusions are bi-dimensional.

The solution is obtained using the Boundary Elements Method for a wide range of frequencies and spatially har-

monic line sources, which are then used to compute the time series by means of fast inverse Fourier transforms.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The amplification and de-amplification of seismic

signals caused by heterogeneities near the surface has

been studied for many years. Some of the earlier studies

report the use of analytical solutions to look at the

scattering and diffraction produced by alluvial basins of

regular shape [1] and the wave scattering caused by

cavities [2]. Semi-analytical methods have been used to

examine the diffraction of waves by geological inclusions

with arbitrary cross-sections placed in a homogeneous

medium [3–5]. Numerical methods, such as finite ele-

ments and differences, have been used to determine the

response within localized, irregular domains, such as the

study of soil structure interaction [6,7]. Discrete methods

have also occasionally been used to model large alluvial

basins, but only in plane-strain [8]. The BEM has re-

cently been applied by Stamos and Beskos [9], to a

problem where long, lined tunnels, with a uniform cross-

section, were buried in a half-space. These authors de-

scribed the three-dimensional (3D) dynamic response to

plane harmonic waves, propagating in several directions,
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by treating it as a series of two-dimensional (2D)

problems.

The existence of topographic irregularities can also

influence the seismic response. Pedersen et al. [10] used

the IBEM to analyze the 3D seismic response of 2D

topographic features to plane waves, employing Green’s

functions for a harmonic point force moving along the

axis of the topography in a full space. They give results

in the frequency and time domains for topographical

deformations with simple geometry, such as a semi-cir-

cular canyon or a semi-circular ridge, subjected to inci-

dent plane waves.

More recently Santos et al. [11] have studied the 3D

scattering field obtained when 2D smooth topographical

deformations are subjected to a dilatational point load

located inside the elastic half-space, using the Boundary

Elements Method. These authors applied the same

method to study the influence of a cavity, located near

the half-space surface, on the seismic amplifications [12].

Semblat et al. [13] compared the BEM results for the

analysis of seismic wave amplification with experimental

findings. They concluded that the thickness of the sur-

face layer, its mechanical properties, its general shape,

and the seismic wave type involved have a considerable

influence on amplification and the frequency at which it

occurs. Dineva and Manolis [14] used the Boundary

Integral Equation Method to evaluate the scattering of
ed.
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Fig. 1. Geometry of the problem.
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seismic waves by cracks in multi-layered geological re-

gions.

In the context of oceans, authors have formulated

different models for studying the solid–fluid interactions

induced at the seabed. Dawson and Fawcett [15]

studied the scattering of underwater sound by irregu-

larities of an oceanic waveguide surface, using the

Boundary Integral Equation Method. In his numerical

examples, the fluid filling the waveguide is assumed to

have constant density and sound speed. However, the

solution involves a Green’s function appropriate for a

waveguide with a flat surface, which allows the sound

speed to vary with depth. Godinho et al. [16] used the

BEM to evaluate the 3D acoustic scattering from an

irregular fluid waveguide. In papers [15,16], referred to

above, the floor of the waveguide was considered to be

rigid, while the fluid surface was assumed to be free.

Ingenito [17] developed theoretical expressions for the

acoustic field scattered by a rigid sphere submerged in a

fluid layer overlying a horizontally stratified elastic

medium. Makris [18] developed a spectral formulation

for handling the scattering generated by a 3D object in

layered media, and applied it to submerged spheres.

This formulation is valid when the source and receiver

are far enough away from the object for multiple

scattering between the object and the waveguide

boundaries to be disregarded.

In this work the BEM is used to model the 3D seismic

response of an elastic seabed. The surface of the seabed

is first modeled as flat and the results are then compared

with those for a seabed which has smooth 2D defor-

mations. The alteration of the seismic response due to

the introduction of a circular cylindrical water-filled

inclusion below the seabed surface is also analyzed.

First, the formulation of the problem for an elastic

seabed subjected to a dilatational point source is pre-

sented. The method for achieving the results in the time

domain is explained. The results given by numerical

applications are then presented, and the influences of

the seabed surface deformations, and the presence of

water-filled inclusions, in the seismic response, are

analyzed. Finally, some concluding remarks are pre-

sented.
2. The problem

A fluid-filled inclusion is driven along the z direction
in an elastic seabed, allowing a shear wave velocity of b
and a compressional wave velocity of a , with density q
(see Fig. 1). The fluid medium has density qf and

permits a compressional wave velocity af . A dilata-

tional point source is placed in the elastic medium at

position ðx0; y0; z0Þ , oscillating with a frequency x. The

incident field can be expressed by the dilatational po-

tential /:
/inc ¼
Aei

x
a at�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�x0Þ2þðy�y0Þ2þðz�z0Þ2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy � y0Þ2 þ ðz� z0Þ2

q ð1Þ

in which A is the wave amplitude; t denotes time and

i ¼
ffiffiffiffiffiffiffi
�1

p
.

This problem can be solved as a summation of two-

dimensional problems, for varying effective wavenum-

bers [19],

ka ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

a2
� k2z

r
; Imka < 0 ð2Þ

where kz is the axial wavenumber after Fourier trans-

formation of the problem in the z direction. The incident
field in this frequency wavenumber domain is given by

/̂inc x; x; y; kzð Þ ¼ �iA
2

H 2ð Þ
0 ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y � y0ð Þ2

q� �

ð3Þ

in which the H ð2Þ
n ð� � �Þ are second Hankel functions of

order n.
3. BEM solution

The BEM is used to find the solution of a cylindrical

fluid-filled inclusion in an elastic unbounded medium,

subjected to a wave field generated by a point blast

source, by discretizing only its boundary. The BEM

equations that are applied to this problem are well

known (see [20,21]). The system of equations required

for the solution is arranged so as to impose the conti-

nuity of the normal displacements and normal stresses

and null shear stresses along the boundary of the fluid-

filled inclusion. This system of equations requires the

evaluation of the following integrals along the appro-

priately discretized boundary of the inclusion
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H ðsÞkl
ij ¼

Z
Cl

H ðsÞ
ij ðxk ; xl; nlÞdCl ði; j ¼ 1; 2; 3Þ
H ðf Þkl
f 1 ¼

Z
Cl

H ðf Þ
f 1 ðxk ; xl; nlÞdCl
GðsÞkl
ij ¼

Z
Cl

GðsÞ
ij ðxk ; xlÞdCl ði ¼ 1; 2; 3; j ¼ 1Þ
Gðf Þkl
f 1 ¼

Z
Cl

Gðf Þ
f1 ðxk ; xlÞdCl ð4Þ

in which H ðsÞ
ij ðxk ; xl; nlÞ and GðsÞ

ij ðxk ; xlÞ are, respectively,

the Green’s tensor for traction and displacement com-

ponents in the elastic medium, at point xl in direction j,
caused by a concentrated load acting at the source point

xk in direction i; H ðf Þ
f 1 ðxk ; xl; nlÞ are the components of the

Green’s tensor for pressure in the fluid medium, at point

xl caused by a pressure load acting at the source point xk ;
Gðf Þ

f 1 ðxk ; xlÞ are the components of the Green’s tensor for

displacement in the fluid medium, at point xl in the

normal direction, caused by a pressure load acting at the

source point xk ; nl is the unit outward normal for the lth
boundary segment Cl ; the subscripts i; j ¼ 1; 2; 3 denote

the normal, tangential and z directions, respectively.

These equations are conveniently transformed from the

x; y; z Cartesian coordinate system by means of standard

vector transformation operators. The required two-

and-a-half-dimensional fundamental solution (Green’s
Ldist

Ldist + a

(xc; yc)

10.0º

yc = (Ldist + a) / cos 10º
xc = - (Ldist + a)

R

Fig. 2. Boundary elements distribut
functions) and stress functions in Cartesian co-ordi-

nates, for the elastic and fluid media, can be found in

[22].

The required integrations in Eq. (4) are performed

analytically for the loaded element [23,24], and using a

Gaussian quadrature scheme when the element to be

integrated is not the loaded element. The BEM algo-

rithm was implemented and validated by applying it to a

cylindrical circular borehole filled with an inviscid fluid,

for which the solution is known in closed form (see [25]).

The equations developed for the fluid-filled inclusion

(Eq. (4)), can be used to calculate the solution for a

seabed interface subjected to a seismic wave field be-

cause the boundary conditions are of the same type. The

use of complex frequencies together with the geometrical

damping of the response with distance makes the full

discretization of the infinite surface unnecessary.

Boundary elements are only required to the extent that

they make a significant contribution to the response. If

solutions are required in the time domain, the contri-

bution to the response behind the numerical time win-

dow, defined by the frequency step (Dx) of the analysis,

T ¼ 2p=Dx, need not be taken into account. Hence, the

boundary elements are distributed along the surface up

to a distance (Ldist) from the receivers, given by

Ldist ¼ aT . This gives a discretized surface with length

2Ldist þ 2a, where 2a is the length of the segment occu-

pied by the receivers (Fig. 2). Many simulations were

performed to study how varying the size of boundary

elements affects the accuracy of the response. The
Line of receivers

a a

ion along the seabed surface.
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performance was found to be better when smaller ele-

ments were placed in the vicinity of the receivers. The

scheme used in this work to define the size of the

boundary elements is illustrated in Fig. 2. The authors of

this paper suggest that boundary elements of varying

size should be placed along the surface, with the shorter

elements being used nearer to the center of the surface

boundary discretization, thereby reducing computa-

tional cost.

The BEM algorithm was implemented and validated

by applying it to a flat solid–fluid interface (with no

inclusions), subjected to a dilatational line load, for

which the solution is known in closed form [26] (not

illustrated).
4. Results in the time domain

The displacements and pressures in the spatial–

temporal domain are given by a numerical fast Fourier

transform in kz, taking a source whose temporal vari-

ation is given by a Ricker wavelet, as defined below.

The Ricker wavelet has the advantage of decaying

rapidly, in both frequency and time, which both re-

duces computational effort and allows the computed

synthetic waveforms and time series to be interpreted

more easily.

The Ricker wavelet function is given by

uðsÞ ¼ Að1� 2s2Þe�s2 ð5Þ

where A is the amplitude, s ¼ ðt � tsÞ=t0 and t denotes
time; ts is the time when the maximum occurs, while pt0
is the characteristic (dominant) period of the wavelet. Its

Fourier transform is

UðxÞ ¼ A 2
ffiffiffi
p

p
t0e�ixts

	 

X2e�X2 ð6Þ

in which X ¼ xt0=2.
The Fourier transformations are achieved by dis-

crete summations over wavenumbers and frequencies,

which is mathematically the same as adding (virtual)

periodic sources at spatial intervals L ¼ 2p=Dkz (in the

z-axis), and at temporal intervals T ¼ 2p=Dx, with Dkz,
and Dx being the wavenumber and frequency steps,

respectively [19]. The spatial separation L must be large

enough for the response not to be contaminated by the

periodic sources. Thus, the contribution to the response

by the fictitious sources must occur at times later than

T . A useful mechanism for achieving this is to shift the

frequency axis slightly downward, by considering

complex frequencies with a small imaginary part of the

form xc ¼ x � ig (with g ¼ 0:7Dx). The periodic

sources are thus practically eliminated. In the time

domain, this shift is later taken into account by

applying an exponential window egt to the response (see

[27]).
5. Numerical applications

The BEM model is used first to compute the seismic

response along a homogeneous elastic seabed when its

interface is either flat or has smooth deformations.

These seabed interface deformations are illustrated and

labelled in Fig. 3 as ‘‘Interface Type 1’’ and ‘‘Interface

Type 2’’. The first type of deformation is analogous to

a smooth ridge, while the second type is analogous to a

smooth canyon. The seismic results obtained are com-

pared with the case where the fluid is air, in an attempt

to simulate free elastic irregularities. The BEM model

is then further extended to accommodate the pres-

ence of a buried cylindrical circular water-filled inclu-

sion, below the seabed interface. The axis of this

inclusion is placed at x ¼ 0:0 m and y ¼ 90:0 m (Fig. 3).

At time t ¼ 0:0 s, a line source, defined by the dilata-

tional potential /, expressed as shown in Eq. (3), acts

at the coordinates (x ¼ 1500:0 m, y ¼ 10:0 m), creating

a cylindrical dilatational pulse propagating away

from it.

The dilatational wave velocity (a ¼ 2630 m/s), the

shear wave velocity (b ¼ 1416 m/s) and density

(q ¼ 2250 kg/m3) of the elastic medium remain constant

in all the analyses. The fluids above the seabed and in-

side the inclusion are assumed to be water (a ¼ 1500 m/s

and q ¼ 1000 kg/m3), while the fluid above the topo-

graphical surface is air (a ¼ 340 m/s and q ¼ 1:22 kg/

m3). Computations are performed in the frequency

range (0.25–8.00 Hz), with a frequency increment of 0.25

Hz, which determines the total duration (T ¼ 4:0 s) of

the analysis in the time domain. The source time-

dependence is a Ricker wavelet with a characteristic

frequency of 2.5 Hz.

The field generated is computed at three lines of 81

receivers, spaced at equal distances (5.0 m) apart. Two

lines of receivers are placed horizontally 1.0 m below

and above the seabed surface (lines 1 and 2), while the

third is placed vertically in the elastic seabed medium, at

x ¼ �200:0 m (line 3).

The surface of the seabed and the fluid-filled inclu-

sions are modeled with a number of boundary elements

that changes with the excitation frequency of the har-

monic load. The ratio between the wavelength of the

incident waves and the length of the boundary elements

is kept to a minimum of 12. Given the small distance

between the horizontal line of receivers and the seabed

surface (1.0 m), the length of boundary elements mod-

eling the seabed surface in the vicinity of the line of

receivers is at least 0.3 times less than the referenced

distance (1.0 m). In any case the number of the

boundary elements used to model the surface and the

fluid-filled inclusion, is never less than 258 and 32,

respectively.

Simulations are performed for different apparent

wave velocities along the z-axis to quantitatively study
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the 3D effects of the response. The apparent wave

velocity (c) results from waves arriving at the z-axis with
a path inclination given by arccosðv=cÞ, where v is the

true wave velocity (see Fig. 4).

In Eqs. (2) and (3), presented above, kz is taken to be

x=c. In the examples selected, two apparent velocities

(c) are chosen, namely, c ¼ 1 m/s and c ¼ 2630 m/s.

Waves arriving at the receivers with a 90� inclination in

relation to the z-axis are represented by c ¼ 1 m/s,

which can be understood as a pure two-dimensional

problem where the source is linear. As the path incli-

nation ranges from 90� to 0�, there is a lower bound

value for c that corresponds to the slowest wave veloc-

ities (guided waves). Below this value, there are inho-

mogeneous waves, which decay very quickly with

decreasing values of c.

5.1. 2D seabed surface deformations free of any buried

inclusion

Fig. 5a and b, respectively, display the amplitude of

the total horizontal and the vertical displacement time

responses recorded at receivers placed along line 1 for

the three seabed surfaces analyzed. These time plots

have solid lines indicating the limits of the seabed

deformations, to allow an easier interpretation of the

results. As expected, the first set of pulses recorded at the

receivers corresponds to the incident P wave field and

the P and S waves reflected from the surface (labeled PP

and PS). Given the small distance between the receiver

and surface, only one pulse is visible. The second

arrivals are guided waves (G) that travel along the solid–

fluid interface. The different pulses are identified in this
200.0

Li
ne

 re
c.

 3

40
0.

0

90
.0

2.0

5.0

25.0

Fluid

Y

50.0

151.0Fluid

Solid

 Receivers 

Fig. 3. Geometry of the model used
figure with the labels P, PP, PS and G. The predictions

given by ray acoustics are consistent with the arrival

times obtained for the different pulses.

Fig. 5 shows that the amplitudes of the displacements

generated by guided waves are higher than those gen-

erated by the body waves. As expected, the amplitudes

of the vertical displacements in the time domain, gen-

erated by the guided waves, are higher than the ampli-

tudes of the horizontal displacements, given the elliptical

particle motion associated with these waves (see [28]).

Comparing the responses when the flat seabed sur-

face suffers a smooth deformation it can be observed

that the major differences are in the horizontal dis-

placements for the pulses generated by the guided waves.

The amplification and de-amplification of the response is

quite distinct, for the type 1 and type 2 interfaces,

respectively. This amplification/de-amplification would

be greater if the deformation of the seabed surface was

less smooth or if the excitation frequency was higher.

The vertical displacements in the time domain for the

three seabeds analyzed are similar (Fig. 5b). However,

the interface deformations give rise to additional pulses

with smaller amplitudes, resulting from the reflection of

the guided waves, noticeable particularly at the receivers

localized on the source side. These additional pulses

would be more visible if the receivers were placed further

from the interface deformations.

Fig. 5c displays the amplitude of the pressure re-

sponses in the time domain, recorded at receivers placed

along line 2 for the three seabed surfaces analyzed.

Again, the amplitudes of the pressure responses in the

time domain, originated by the guided waves are higher

than those originated by the body waves, and the
Line rec. 1

Line rec. 2
1500.0

151.0
Flat Interface

55.0

(0.0; -25.0)

Interface Type 1

(0.0; 25.0)

55.0
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in the numerical applications.
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amplification/de-amplification of the pressure waves in-

duced by the seabed interface deformations are visible.

However, the type 1 interface now causes a fall in

pressure amplitude, while the type 2 interface gives rise

to pressure amplitude amplification. Thus, the amplifi-

cation of the response occurs in the concave part of the

solid–fluid interface, while the de-amplification occurs in

the convex part of that interface, in relation to the solid

medium. In these time plots, only the major amplifica-

tions/de-amplifications of the response, occurring at the

receivers placed on the central concave/convex part of

the seabed surface deformations are visible. If the scale

of the plots were changed, minor amplifications/de-

amplifications of the response occurring at the receivers

placed on the lateral zone of the seabed surface defor-

mations would also be visible.

Fig. 6 shows the Fourier spectra amplitude of the

horizontal displacements, recorded along line1 of the

receivers, for the geometries of the seabeds analyzed.

These plots include lines indicating the limits of the

seabed deformations and their inflection points (locating

the change of curvature from convex to concave), to

allow an easier interpretation of the results. The analyses

of these results reveal a significant interference, caused

by the seabed’s surface deformations, that increases with

frequency and is recorded mainly at the receivers located

near these deformations. For the type 1 interface the

amplification is located in the concave part, while for the

type 2 interface signal de-amplification is clearly per-

ceived in the central (convex) part of deformation. The

amplification occurs in this case (type 2 interface) at the

extremity of the seabed deformation, again in the con-

cave parts of the interfaces. As expected, the amplifica-

tion is higher at the edge nearer to the source. Also as

expected, these Fourier spectra results agree with the

time responses (Fig. 5a).

Fig. 7 shows the pressure time responses in line 2 of

receivers when the water is replaced by air, for the three

solid–fluid interfaces analyzed, in an attempt to com-

pare the results for an irregular seabed with those

provided by topographic deformations. These pressure

values are much smaller than those obtained for the

water (Fig. 5c). This was anticipated, given the higher

solid–fluid interaction for the water case, allowing the
(x)

y

z

d

c

L

v
α

Fig. 4. Apparent wave velocity.
elastic medium to transfer more energy to the water

along its solid–fluid interface. As before, the irregular-

ities in the elastic surface lead to the formation of

additional pulses generated by both guided and body

waves. This phenomenon is not as visible when the

fluid is water (Fig. 5c). One possible reason may be

the huge pressure values in the water generated by the

guided waves, which mask any slight change in the time

response. For both the fluids analyzed, the defor-

mations in the solid–fluid interface lead to a major

de-amplification (type 1 interface) and a major ampli-

fication (type 2 interface) of the time pressure responses

recorded at the receivers in the vicinity of the central

part of these deformations; that is, the de-amplifica-

tions and amplifications in the convex and concave part

of the interface deformation, respectively. In these time

plots (Fig. 7), besides the major amplifications/de-

amplifications of the response, the minor amplifica-

tions/de-amplifications of the response occurring at the

receivers placed on the lateral side of the aforemen-

tioned surface deformations are also visible.

Fig. 8 displays the horizontal displacement in the

time domain recorded at the vertical line of receivers

(line 3), for the three seabed surfaces modeled. This

figure shows that the separation of the different waves P,

PP and the PS waves occurs as the depth of receivers

increases. As expected, the guided waves’ responses ex-

hibit an exponential attenuation of the amplitude as the

depth increases, and a phase change at a certain distance

from the solid–fluid interface.

Fig. 9 displays the amplitude of the horizontal time

displacements for the three solid–fluid interfaces ana-

lyzed, when the water is replaced by air. These results

show that the time responses exhibit similar features to

those found above. It can be seen that there is a slight

delay in the arrival time of the guided pulses when the

fluid is water.

Comparing the responses for the two fluids analyzed,

it can be seen that the phase change occurs at a greater

depth when the fluid is air, rather than water. For a

homogeneous elastic half-space, the depth where the

phase change occurs would be given by 1=ð2pÞ of

the wavelength [28], that is 83.6 m. For the flat seabed,

the velocity of the guided waves decreases (see Figs. 8

and 9), leading to a decrease in the wavelength and an

(expected) decrease in the depth where the phase change

happens. The results for the seabed, given in (Fig. 8),

show that the depth where this phase change happens is

51.0 m. When the fluid is air (Fig. 9), the depth obtained

for the phase change is 81.0 m, greater than when water

is the fluid (seabed), and slightly less than for the half-

space case (83.6 m).

The amplitude of the vertical time displacements

originated by the guided waves and recorded at receivers

placed near the solid–fluid interface, is bigger when the

fluid is water (not illustrated).



Fig. 5. Responses in the time domain (c ¼ 1m/s) recorded at receivers placed along: (a) line 1––horizontal displacements; (b) line 1––

vertical displacements; (c) line 2––pressure.

Fig. 6. Fourier spectra (c ¼ 1 m/s) recorded at receivers placed along line 1––horizontal displacements.
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5.2. Water-filled inclusions below the 2D seabed surface

deformations

This section presents the results obtained when a

cylindrical circular water-filled inclusion is buried below
the seabed surface. The seismic response is again recorded

at the same three lines of receivers and the medium is

excited by the same source, placed in the same position.

The horizontal and vertical seismic time displace-

ments, recorded at receiver line 1, when a cylindrical



Fig. 7. Responses in the time domain for pressure (c ¼ 1 m/s) recorded at receivers placed along line 2 when the water is replaced by

air.

Fig. 8. Responses in the time domain (c ¼ 1 m/s) recorded at receivers placed along line 3––horizontal displacements.
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circular fluid-filled inclusion with a radius of 50.0 m is

placed under the three seabed surfaces considered, are

represented in Fig. 10a and b. The axis of this inclusion

is parallel to the seabed surface at x ¼ 0:0 m and

y ¼ 90:0 m , as illustrated in Fig. 3.

Analysis of the results for the horizontal time dis-

placements (Fig. 10a), reveals that there is an important

additional time pulse originated by the guided waves

traveling around the water-filled inclusion. The ampli-

fication and de-amplification of the seismic response is

visible. As expected, the larger amplifications are located

at the receivers placed on the source side, and the de-

amplification, or shadow, was recorded on the other

side. When the seabed has a type 1 surface deformation,

the major amplification of the horizontal displacements

is now registered at the receivers placed above the

inclusion (near the interface deformation). If the seabed

has a type 2 surface deformation, the major de-amplifi-

cation occurs at the central receivers, while major

amplification occurs at the receivers placed in the source

flank side.

The insertion of a fluid-filled inclusion also leads to

the appearance of additional pulses and the amplifica-

tion of the vertical time displacements (Fig. 10b).

However, this amplification is now registered at the

receivers located above the inclusion. This could be ex-

plained by the multiple reflections occurring between the
inclusion and the seabed surface, which are polarized

vertically. The vertical time displacements originated by

the type 1 seabed deformation, exhibit similar features.

However, for the type 2 seabed deformation, there is a

huge amplification response registered at the central

receivers. Again, this could be explained by the multiple

reflections between the inclusion and the seabed surface,

which is now closer to the inclusion owing to its surface

deformation, leading to a higher amplification of the

response.

Fig. 10c shows the pressure time response, recorded

at receiver line 2. Again, the amplitude of the time

pressure responses caused by the guided waves is higher

than those originated by the body waves. Comparing

Figs. 10c and 5c can be seen that the changes in the time

pressure responses due to the insertion of the fluid-filled

inclusion in the elastic seabed are greater than those

caused by either of the two surface-type deformations.

When the radius of the cylindrical circular water-fil-

led inclusion decreases from 50.0 to 25.0 m the response

pattern remain the same. However these patterns, that

is, the additional reflected pulses and the amplification/

de-amplification of the response, are less pronounced

(not illustrated).

Fig. 11 displays the horizontal displacement in the

time domain recorded at the vertical line of receivers

(line 3), when a water-filled inclusion with a 50.0 m



Fig. 9. Responses in the time domain (c ¼ 1 m/s) recorded at receivers placed along line 3––horizontal displacements––when the

water is replaced by air.
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radius is placed under the three seabed surfaces mod-

eled. For the different body waves (P, PP and PS) the

features observed are similar to those observed before

(Fig. 8). However, the water-filled inclusion leads to

important changes in the guided waves response. The

attenuation of the response with the depth is now very
Fig. 10. Responses in the time domain (c ¼ 1 m/s) recorded at recei

1––vertical displacements; (c) line 2––water pressure, when a water-fill
low, and the additional scattered field originated by the

inclusion apparently disturbs the phase change of the

horizontal displacements with the depth. Again, the time

responses recorded at the vertical line of receivers are

similar for the three seabeds analyzed, leading to

the conclusion that the major changes in the seismic
vers placed along: (a) line 1––horizontal displacements; (b) line

ed inclusion of 50.0 m radius is driven below the seabed surface.



Fig. 11. Responses in the time domain (c ¼ 1 m/s) recorded at receivers placed along line 3––horizontal displacements––when a

water-filled inclusion of 50.0 m radius is driven below the seabed surface.
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response originated by the seabed surface deformations

are localized near the seabed surface.

Numerical simulations were performed for different

apparent wave velocities along the z-axis. The results

already given in this work correspond to a pure two-

dimensional problem (infinite apparent wave velocity).

The results illustrated in Fig. 12 were obtained for an

apparent wave velocity equal to the P wave velocity

(2630 m/s).

Fig. 12a illustrate the z-displacements in the time

domain, recorded at the horizontal line of receivers, for

a flat seabed surface, both when there is no inclusion,

and in the presence of a 25.0 m and 50.0 m radius water-

filled inclusion. Without an inclusion, the guided waves

are the only pulses that remain clearly visible in the time
Fig. 12. Responses in the time domain (c ¼ 2630 m/s) recorded at r

z-displacements.
responses. When there is a water-filled inclusion under

the seabed surface, the multi-interactions between pulses

reflected from the seabed interface and from the inclu-

sion can be seen; this activity increases when the radius

of the inclusion changes from 25.0 to 50.0 m.

The z-displacements recorded at the vertical line of

receivers (line 3) are plotted in Fig. 12b. When there is

no inclusion, the phase change and the attenuation of

the z-displacements that occur with the increase of the

depth, are well illustrated. The amplitude of the guided

waves on the surface is very high, as expected. Again, the

existence of the water-filled inclusion leads to important

changes in the pulses originated by the guided waves: an

amplification of the displacements and a less pro-

nounced attenuation with increasing depth.
eceivers placed along: (a) line 1––z-displacements, (b) line 3––
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6. Conclusions

The scattering of seismic waves generated by an

irregular elastic seabed was evaluated using the Bound-

ary Element Method. The seismic wave field was gen-

erated by a dilatational line source, which excites the

surrounding medium, creating cylindrical waves that

follow different apparent velocities along the z-axis. The
responses were analyzed both in time and frequency. As

expected, the guided waves dominate the responses re-

corded at receivers placed near the seabed surface.

The deformation of the seabed surface leads to an

amplification and de-amplification of the responses in

the concave and convex part of the above-mentioned

surface deformations, respectively. This was found for

both displacements and pressure responses. In addition

to these changes in the amplitude of the response, the

seabed surface deformations also give rise to additional

scattered pulses.

The importance of the solid–fluid interaction in the

seismic response along the solid–fluid interface was

analyzed by replacing water by air. The wave field pat-

tern was similar for both fluids, but there is a slight delay

in the seismic response when the fluid is water. The

depth at which the phase change of the horizontal dis-

placements occurs increases when the fluid is air instead

of water. The pressure values recorded at the receivers

placed in the water near the solid–fluid interface are

much higher than those obtained for the air.

The existence of a water-filled inclusion under the

seabed surface leads to important changes in the seismic

response, besides the additional pulses and the amplifi-

cation/de-amplification of the response. The inclusion

disturbs the phase change and the attenuation of the

guided waves’ horizontal displacements. These two fea-

tures may be related and could be caused by the in-

creased amount of seismic energy that is redirected by

the interaction of the inclusion with the seabed interface.

For the seismic waves that result from a dilatational

line source, and that have different apparent wave

velocities in relation to the z-axis, the features observed

were similar, particularly in terms of the attenuation and

phase change of the z-displacements of the guided waves

with the depth.
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