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Abstract

A 2.5D Boundary Element Method (BEM) formulation, applied in the frequency domain, is developed to comp
scattering of waves by rigid inclusions buried in a semi-infinite solid under a fluid layer, when this system is excite
spatially-sinusoidal harmonic load.

The BEM algorithm includes Green’s functions for a horizontal fluid layer over a semi-infinite solid, which avoid
discretrization of the horizontal surfaces, and thus only the rigid inclusion needs to be discretized by boundary elem
model uses complex frequencies with a small imaginary part to avoid aliasing phenomena. Time domain responses ar
by applying an inverse Fourier Transform to the frequency results. The source is modeled as a Ricker pulse. The si
are performed for three different properties of the solid medium: a fast formation, a slow formation and a sediment for
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Over the years, different techniques based on wave propagation have been developed to map buried cavities in
submerged objects in fluids. They have been supported by a wide variety of analytical and numerical models, implem
tackle this problem. Some models have also been created to interpret experimental results.

Several studies have been performed using analytical solutions to study the wave scattering caused by cavities (L
Datta and Shah, 1982; Lee, 1988; Lee and Karl, 1992). Recently, Davis et al. (2001) derived analytical solutions to in
the transverse response of underground cylindrical cavities to incident SV waves. The solutions are derived for unline
embedded in an elastic half space using Fourier–Bessel series and a convex approximation of the half-space free sur
solutions were extended to formulate approximate solutions for assessing hoop stresses within cavity liners impinge
frequency waves whose wavelengths are much longer than the cavity diameter. They improved the solution propose
and Karl (1992) by eliminating unwanted reflections on the half-space free surface through a convex approximation.

Guzina and Fataa (2003) used a boundary integral equation method to investigate the problem of mapping three-di
underground cavities from surface seismic measurements. The inverse analysis of elastic waves scattered by a three-d
void is formulated as a task of minimizing the discrepancy between experimental observations and theoretical predi
an assumed void geometry.

* Corresponding author. Tel.: +351 239797196; fax: +351 239797190.
E-mail address:julieta@dec.uc.pt (J. António).
0997-7538/$ – see front matter 2005 Elsevier SAS. All rights reserved.
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A boundary integral equation method was formulated by Dawson and Fawcett (1990) to compute the sound scat
derwater by compact deformations of an oceanic waveguide surface. The waveguide surfaces are taken to be flat e
compact area of deformation where the acoustic scattering takes place. The interaction between the acoustic field and
portions of the waveguide are accounted for in the Green’s functions so the integrations required to implement the m
restricted to the compact scattering areas.

The same method has been used by Fawcett and Dawson (1990) to compute the three-dimensional pressure
waveguide with scattering ridges by solving a sequence of two-dimensional problems. Later, Fawcett (1996a, 1996b) c
the two-dimensional acoustic field scattered by objects embedded between two fluid half-spaces. The method com
form of the interior cylinder solution with the exterior half-space Green’s functions.

Some studies have used methods based on a transition matrix. Kristensson and Ström (1978) presented a three-d
formulation using the transition matrix approach to determine the scattering from an inhomogeneity buried in a liq
space. Boström and Kristensson (1980) subsequently used the same formulation to compute the elastic wave scat
cavity buried in a solid half space.

Hackman and Sammelmann (1986) and Sammelmann and Hackman (1987) also used the transition matrix method
the acoustic scattering inside inhomogeneous and homogeneous waveguides in the presence of scatterers. The mo
the host medium to be horizontally stratified and the layer containing the target to be homogeneous.

Lim et al. (1993) used a model based on a full-wave transition matrix implementation of the Helmoltz equation ap
a layered structure to study the scattering of acoustic waves by objects buried in underwater sediments. An object
within a thick, planar, homogeneous layer of sediment under deep water. The shear rigidity and the porosity of the sed
ignored. Lim (1998), also used a transition-matrix solution for the spectral scattering response of a bounded elastic
penetrates an arbitrary number of layers of a plane-stratified fluid.

Ingenito (1987) proposed an expression for the acoustic field scattered by a rigid sphere in an isovelocity fluid layer o
a horizontally stratified medium. This is expressed in terms of normal modes and plane-wave scattering functions, and
is valid when multiple scattering can be disregarded. This model fully accounts for waveguide propagation effects,
multiple reflections of the scattered field between waveguide boundaries, because it is based on the waveguide Gree

Makris (1998) described a spectral formulation for 3D object scattering in layered fluid media, valid for receivers and
placed far enough from the object so that the multiple scattering between the object and the waveguide can be ignore
scattered field can be written as a linear function of the object’s plane-wave scattering function.

Godinho et al. (2001) and Branco et al. (2002) used a boundary element formulation in the frequency domain to s
pressure field generated by point sources placed inside a fluid channel with a rigid deformation on its floor. This mo
Green’s functions, based on the superposition of virtual sources, to simulate the boundary conditions of the free su
rigid flat floor and the lateral walls confining the channel.

In the work described here a BEM formulation in the frequency domain is used to simulate the scattered field produ
system composed of a rigid inclusion buried in a solid half-space under a fluid channel, when excited by a spatially-s
harmonic load.

In this problem the geometry is considered constant in thez direction (2D), and so the 3D problem can be written a
summation of 2D problems for varying wavenumbers along this direction.

This model uses Green’s functions to simulate a horizontal fluid layer with a free top surface resting over a solid ha
These analytical solutions for the steady state response of such a formation subjected to a spatially sinusoidal harmon
avoid the discretization of the horizontal fluid free surface and the solid fluid interface. In this technique, solid displa
potentials and pressure potentials are used to evaluate the Green’s functions for a harmonic (steady-state) line lo
sinusoidally varying amplitude in the third dimension, in an unbounded medium.

All these displacement potentials are written as a superposition of plane waves, assuming the existence of an infini
of sources equally spaced along thex direction.

Time domain responses when a rigid circular inclusion is buried in the solid half-space are calculated in the fluid
for the case where a spatially sinusoidal harmonic line load placed in the fluid medium excites the system.

2. Green’s functions in a fluid layer over a semi-infinite solid medium

Take a fluid layer with thicknessh, over a semi-infinite solid medium excited by a spatially sinusoidal harmonic pre
load along thez direction, with frequencyω, acting at the point(x0, y0) in the fluid or in the solid medium (see Fig. 1).

The Green’s functions for a fluid layer, with thicknessh, over a semi-infinite solid medium can be expressed as the sum
source terms equal to those in the full-space and the surface terms needed to satisfy the boundary conditions at the f
of the fluid layer (surfacea – null pressures) and at the fluid–solid interface (surfaceb – continuity of normal displacemen
and stresses, and null tangential stresses).
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Fig. 1. Scheme of the problem.

The source terms, equal to those in the full-space, are defined asσ full
fluid when the source is placed in the fluid media (press

due to the incident field in the fluid media) andGfull
ij

(i = x, y, z; j = x, y, z) when the source is acting in the solid mediu
(displacements generated by the incident field in the solid medium). The Green’s functions for a full space can be
Tadeu and Kausel (2000).

The surface terms are defined using solid displacement potentials and fluid pressure potentials, expressed as a su
of plane waves with different wavenumbers,kn, along thex direction. This process adopts the technique used first by L
(1904) for the two-dimensional case, and then by Bouchon (1979) and Kim and Papageorgiou (1993) to calculate t
space dimension field by means of a discrete wave number representation. The problem is formulated assuming the
of an infinite number of virtual loads distributed along thex direction, at equal intervalsLx , permitting the definition of
kn = (2π/Lx)n. The distanceLx needs to be large enough to prevent the virtual loads contaminating the response.

In this specific problem, the free surface and the solid–fluid interface generate surface terms, which can be expre
form similar to that of the source term.

2.1. Load in the solid formation acting in the direction of thex-axis

The surface terms generated at the boundaries, when the load acts in thex direction, can be expressed through the follow
potentials,

Solid medium(y > 0)

φx
0 = Ea

n=+N∑
n=−N

(
kn

νn
Eb0Ax

n

)
Ed,

ψx
x0 = 0,

ψx
y0 = Eakz

n=+N∑
n=−N

(
Ec0

γn
Bx

n

)
Ed,

ψx
z0 = −Ea

n=+N∑
n=−N

(Ec0Cx
n)Ed .

(1)

Fluid medium(y < 0)

φb
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Ef 0

ν
f
n

Dx
n

]
Ed (surfaceb),

φa
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Eg0

ν
f
n

Ex
n

]
Ed (surfacea),

(2)

where i= √−1, Ea = 1/(2ρω2Lx), Ed = e−ikn(x−x0), Eb0 = e−iνny , Ec0 = e−iγny , Ef 0 = e−iνf
n |y|, Eg0 = e−iνf

n |y+h|,
νn =

√
k2
p − k2

z − k2
n with Im(νn) � 0,γn =

√
k2
s − k2

z − k2
n with Im(γn) � 0, kz is the wavenumber inz, kp = ω/α, ks = ω/β,
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α = √
(λ + 2µ)/ρ andβ = √

µ/ρ are the velocities for P (pressure) waves and S (shear) waves, respectively,λ andµ are the

Lamé constants,ρ is the mass density in the solid medium;ν
f
n =

√
k2
pf

− k2
z − k2

n with Im(ν
f
n ) � 0, kpf = ω/αf , αf =√

λf /ρf is the acoustic (dilatational) wave velocity of the fluid medium,λf is the fluid Lamé constant andρf is the mass
density of the fluid.

Ax
n, Bx

n , Cx
n , Dx

n andEx
n , are as yet unknown coefficients to be determined from the appropriate boundary conditions

the field produced simultaneously by the source and surface terms should produceσ s
yx = 0, σ s

yz = 0, σ s
yy = σ

f
fluid andus

y = u
f
y

at y = 0 andσ
f
fluid = 0 aty = −h.

Imposing the five stated boundary conditions for each value ofn leads to a system of five equations in the five unkno
constants. This procedure is quite straightforward, but the details are rather complex, and for this reason are not prese
The final system of equations is of the form

[ax
ij , i = 1,5; j = 1,5][cx

i , i = 1,5] = [bx
i , i = 1,5] (3)

which is fully described in Appendix I.
Once the unknown coefficients have been calculated, the displacements and pressures associated with the su

can be obtained using the equations relating the potentials to displacements and pressures. The Green’s functions
formation are then obtained from the sum of the source terms and the surface terms originated at the solid–fluid inter
procedure produces the following expressions for the displacements in the solid formation:

G
f s
xx = Gfull

xx + Ea

n=+N∑
n=−N

[
Ax

n

−ik2
n

νn
Eb0 +

(
−iγnCx

n − ik2
z

γn
Bx

n

)
Ec0

]
Ed,

G
f s
xy = Gfull

xy + Ea

n=+N∑
n=−N

(−iknAx
nEb0 + iknCx

nEc0)Ed,

G
f s
xz = Gfull

xz + Ea

n=+N∑
n=−N

(−ikzkn

νn
Ax

nEb0 + ikzkn

γn
Bx

nEc0

)
Ed,

(4)

Gfull
ij

(i, j = x, y, z) are the displacements for the full space.
The final expression for the pressure field in the fluid medium is then given by the sum of the surface terms for p

originated in the fluid layer boundaries

σx
fluid = − i

Lx

[
n=+N∑
n=−N

(
knEf 0

ν
f
n

Dx
n

)
+

n=+N∑
n=−N

(knEb
f 0

ν
f
n

Ex
n

)]
Ed (wheny < 0). (5)

The expressions for forces applied along they andz directions can be derived in the same way.
Note that if kz = 0 is used, the system of equations derived above is reduced to four unknowns, leading to th

dimensional Green’s function for plane strain line-loads. This procedure is repeated, ifkz = 0, for all the load cases describe
next.

2.2. Load in the solid formation acting in the direction of they-axis

The surface terms generated at the two interfaces can be expressed through the following potentials,
Solid medium(y > 0)

φ
y
0 = Ea

n=+N∑
n=−N

(Eb0A
y
n)Ed,

ψ
y
x0 = Eakz

n=+N∑
n=−N

(−Ec0

γn
C

y
n

)
Ed,

ψ
y
y0 = 0,

ψ
y
z0 = Ea

n=+N∑ (
kn

γn
Ec0B

y
n

)
Ed.

(6)
n=−N
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Fluid medium(y < 0)

φb
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Ef 0

ν
f
n

D
y
n

]
Ed (surfaceb),

φa
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Eg0

ν
f
n

E
y
n

]
Ed (surfacea).

(7)

The imposition of the five stated boundary conditions for each value ofn leads to a system of five equations in the five unkno
constants,

[ay
ij

, i = 1,5; j = 1,5][cy
i
, i = 1,5] = [by

i
, i = 1,5] (8)

which is fully described in Appendix II.
Once the amplitude of each potential has been calculated, the Green’s functions for the displacements in the solid

are then given by the sum of the source terms and the surface terms originated at the solid–fluid interface,

G
f s
yx = Gfull

yx + Ea

n=+N∑
n=−N

(−ikn sgn(y)A
y
nEb0 + ikn sgn(y)B

y
nEc0

)
Ed,

G
f s
yy = Gfull

yy + Ea

n=+N∑
n=−N

[
−iνnA

y
nEb0 +

(−ik2
n

γn
B

y
n + −ik2

z

γn
C

y
n

)
Ec0

]
Ed,

G
f s
yz = Gfull

yz + Ea

n=+N∑
n=−N

(−ikz sgn(y)A
y
nEb0 + ikz sgn(y)C

y
nEc0

)
Ed.

(9)

The final expression for the pressure field in the fluid medium is then given by the sum of the surface terms originat
fluid interfacesa andb

σ
y
fluid = − i

Lx

[
n=+N∑
n=−N

(
Ef 0

ν
f
n

D
y
n

)
+

n=+N∑
n=−N

(Eb
f 0

ν
f
n

E
y
n

)]
Ed (wheny < 0). (10)

2.3. Load in the solid formation acting in the direction of thez-axis

The surface terms generated at the two interfaces can be expressed using the following potentials, which have be
using the technique described above,

Solid medium(y > 0)

φz
0 = Eakz

n=+N∑
n=−N

(
Eb0

νn
Az

n

)
Ed,

ψz
x0 = Ea

n=+N∑
n=−N

(Ec0Bz
n)Ed,

ψz
y0 = Ea

n=+N∑
n=−N

(−kn

γn
Ec0Cz

n

)
Ed,

ψz
z0 = 0.

(11)

Fluid medium(y < 0)

φb
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Ef 0

ν
f
n

Dz
n

]
Ed (surfaceb),

φa
fluid = − i

Lx

n=+N∑ [( −α2
f

ω2λf

)
Eg0

ν
f

Ez
n

]
Ed (surfacea).

(12)
n=−N n
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The imposition of the five stated boundary conditions for each value ofn leads to a system of five equations in the fi
unknown constants,

[az
ij

, i = 1,5; j = 1,5][cz
i
, i = 1,5] = [bz

i
, i = 1,5] (13)

which is fully described in Appendix III.
Once the unknown amplitude of each potential has been calculated, the Green’s functions for the solid formation

by the sum of the source terms and the surface terms originated at the fluid–solid interface, leading to the following exp

G
f s
zx = Gfull

zx + Ea

n=+N∑
n=−N

(−ikzkn

νn
Az

nEb0 + ikzkn

γn
Cz

nEc0

)
Ed,

G
f s
zy = Gfull

zy + Ea

n=+N∑
n=−N

(−ikz sgn(y)Az
nEb0 + ikz sgn(y)Bz

nEc0
)
Ed,

G
f s
zz = Gfull

zz + Ea

n=+N∑
n=−N

[−ik2
z

νn
Az

nEb0 +
(−ik2

n

γn
Cz

n − iγnBz
n

)
Ec0

]
Ed.

(14)

The final expression for the pressure field in the fluid media is given by the sum of the surface terms originated in flu
interfaces,

σz
fluid = − i

Lx

[
n=+N∑
n=−N

(
Ef 0

ν
f
n

Dz
n

)
+

n=+N∑
n=−N

(Eb
f 0

ν
f
n

Ez
n

)]
Ed (wheny < 0). (15)

2.4. Pressure load acting in the fluid layer

The surface terms produced at the horizontal interfaces can be expressed using the following potentials,
Solid medium(y > 0)

φ
f
0 = Ea

n=+N∑
n=−N

(Eb0A
f
n )Ed,

ψ
f
x0 = Eakz

n=+N∑
n=−N

(−Ec0

γn
C

f
n

)
Ed,

ψ
f
y0 = 0,

ψ
f
z0 = Ea

n=+N∑
n=−N

(
kn

γn
Ec0B

f
n

)
Ed.

(16)

Fluid medium(y < 0)

φb
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Ef 0

ν
f
n

D
f
n

]
Ed (surfaceb),

φa
fluid = − i

Lx

n=+N∑
n=−N

[( −α2
f

ω2λf

)
Eg0

ν
f
n

E
f
n

]
Ed (surfacea).

(17)

After the five stated boundary conditions, for each value ofn, have been imposed, a system of five equations in the
unknown constants is built up,

[af
ij

, i = 1,5; j = 1,5][cf
i

, i = 1,5] = [bf
i

, i = 1,5] (18)

details of which are given in Appendix IV.
After the system of equations has been solved, the Green’s functions for the solid formation are given by the surfa

originated at the fluid–solid interface, generating the following expressions,
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G
f s
f x

= Ea

n=+N∑
n=−N

(−ikn sgn(y)A
f
n Eb0 + ikn sgn(y)B

f
n Ec0

)
Ed,

G
f s
fy

= Ea

n=+N∑
n=−N

[
−iνnA

f
n Eb0 +

(−ik2
n

γn
B

f
n + −ik2

z

γn
C

f
n

)
Ec0

]
Ed,

G
f s
f z

= Ea

n=+N∑
n=−N

(−ikz sgn(y)A
f
n Eb0 + iCf

n kzEc0
)
Ed.

(19)

The final expression for the pressure field in the fluid medium is then given by the addition of the pressure source
the surface terms originated at the fluid layer interfaces,

σ
f
fluid = σ full

fluid − i

Lx

[
n=+N∑
n=−N

(
Ef 0

ν
f
n

D
f
n

)
+

n=+N∑
n=−N

(Eb
f 0

ν
f
n

E
f
n

)]
Ed (wheny < 0) (20)

σ full
fluid = −i/2H0(

√
(kpf )2 − (kz)2 ) is the expression for pressure in the full space fluid medium. In this expressionH0( ) is the

second Hankel function of order 0.

3. BEM formulation

Consider that the horizontal fluid layer with a free top surface, bounded by a semi-infinite solid elastic medium,
above, contains now a rigid inclusion. This system is subjected to the 3D wavefield generated by a spatially sinusoidal
line load located in the fluid medium.

The Boundary Element Method (BEM) is suitable for solving this problem. The use of Green’s functions for an unb
medium would require the discretization of all interfaces, which would lead to a very demanding computing effort.

The BEM formulation used here employs the Green’s functions derived above, for a horizontal fluid layer over
infinite solid medium. Thus, only the rigid boundary of the inclusion, requiring null displacement boundary conditions
to be discretized. In these conditions the integral equation to be applied to the rigid boundary in the presence of an
wave is∫

C

tj (x, ν,ω)G
f s
ij

(x,x0,ω)ds + G
f s(inc)
f i

(x0,ω) = 0 (21)

where,i, j = 1,2 are the normal and tangential directions in relation to the boundary surface;i, j = 3 indicates thez direction;

G
f s
ij

(x,x0,ω), are the Green’s function displacements in directionj at x, on boundaryC, originated by a unit sinusoidal lin
load acting at the source point,x0, in directioni; vectorν is the unit outward normal at the boundary,tj (x, ν,ω) are the tractions
to be determined in the boundary. The incident field in this equation is given analytically as the surface terms originated

horizontal surfacesGf s(inc)
f i

(x0,ω) (see Eq. (19)).
The boundary needs to be discretized before this integral can be evaluated for an arbitrary cross-section. The bo

discretized intoN straight boundary elements, with constant interpolation functions and one nodal point in the middle
element.

To verify the accuracy of the results provided by this model, a BEM model which uses Green’s functions for unb
medium was built. Three different boundaries need to be discretized: the top of the fluid layer where the required b
conditions are null pressures; the solid–fluid interface where continuity of normal tractions and normal displacements,
tangential stresses, need to be established; and the boundary of the rigid inclusion for which null displacements are
Thus, the following boundary integral equations are required:

(a) along the bottom surface of the fluid layer

cp(x, ν,ω) =
∫
C

p(x,ω)Gfull
f 1 (x,x0,ω)ds −

∫
C

H full
f 1 (x, ν,x0,ω)u1(x, ν,ω)ds + pinc(x,ω), (22)

where Gfull
f 1 (x,x0,ω) and H full

f 1 (x, ν,x0,ω) are the Green’s functions for displacements and for pressures respec
u1(x, ν,ω) andp(x,ω) are normal displacements and pressures on the boundary,c is a constant depending on the boun
ary geometry.pinc(x,ω) = σ full is the incident pressure field.
fluid
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(b) Along the top surface of the fluid layer

cp(x, ν,ω) = −
∫
C

H full
f 1 (x, ν,x0,ω)u1(x, ν,ω)ds + pinc(x,ω). (23)

(c) Along the solid horizontal interface

cij ui(x0,ω) =
∫
C

tj (x, ν,ω)Gfull
ij (x,x0,ω)ds −

∫
C

H full
ij (x, ν,x0,ω)uj (x,ω)ds, (24)

whereGfull
ij

(x,x0,ω) andH full
ij

(x, ν,x0,ω) are Green’s functions for displacements and tractions in an unbounded me
respectively.

(d) Along the boundary of the rigid inclusion∫
C

tj (x, ν,ω)Gfull
ij (x,x0,ω)ds = 0. (25)

The unlimited discretization of the top and bottom fluid layer surfaces in this BEM model is accomplished by using c
frequencies with a small imaginary part of the formωc = ω − iη (with η = 7.5(2π/T )), which introduces a damping effect.

4. Verification of the solution

The two models were compared computing the results for a water layer (ρf = 1000 kg/m3, αf = 1500 m/s), 10.0 m thick,

over a slow formation (ρ = 2250 kg/m3, α = 2630 m/s, β = 1416 m/s) solid medium in which a circular rigid inclusio
with radius 3.0 m is buried, centered atx = 0.0 m andy = 8.0 m. The calculations are performed in the frequency dom
[2.0,320.0 Hz] with a frequency increment of 2.0 Hz. The response is computed for a single value ofkz (kz = 0.4 rad/m). The
BEM model using Green’s functions for an unbounded medium required the use of 560 boundary elements distribut
the boundaries. The limitation of the discretized horizontal boundaries (220 m) was achieved using complex frequenc
large amount of damping. Only 50 boundary elements were used to model the inclusion when the BEM model incorpo
proposed Green’s functions.

To illustrate the agreement between the two solutions, only the pressures are displayed at receiver R1 placed atx = 2.0 m
andy = −2.0 m (in the fluid), and displacements along they direction at R2 placed atx = 2.0 m andy = 3.0 m (in the solid),
when the source is acting in the fluid at (x = 0.0 m andy = −1.0 m) or when the source is acting in the solid medium along
y direction.

Fig. 2(a) presents the real and imaginary parts of the scattered pressure field recorded at a receiver R1 while Fig. 2
the scattered displacements in they direction recorded at a receiver R2 when the source is placed in the fluid.

Fig. 3(a) shows the real and imaginary parts of the scattered pressure field recorded at a receiver R1 and Fig. 3(b
the scattered displacements in they direction recorded at a receiver R2 when the source is placed in the solid medium.

(a) (b)

Fig. 2. Load in the fluid medium: (a) pressures at receiver R1; (b) displacements along they direction at receiver R2.
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Fig. 3. Load in the solid medium acting along they direction: (a) pressures at receiver R1; (b) displacements along they direction at receiver R2

Table 1
Properties of the solid formations

Compressional wave velocity (m/s) Shear wave velocity (m/s) Density (kg/m3)

Fast formation α = 4208 β = 2656 ρ = 2140
Slow formation α = 2630 β = 1416 ρ = 2250
Sediment α = 1643 β = 526 ρ = 1590

The solid lines represent the results calculated using the BEM model, which includes the Green’s functions presen
paper, while the marked points represent the BEM solution using Green’s functions for an unbounded medium. The t
marks correspond to the real part of the response, while the round marks represent the imaginary part. The results
excellent agreement between the two solutions.

It should be noted that in the vicinity of the eigenfrequencies of the system, the BEM solution may not be so a
A sufficiently fine boundary discretization and the use of damping reduces the probability of observing that behaviour.

5. Numerical applications

The model described above was used to compute the pressure field in a fluid layer over a semi-infinite solid fo
where a rigid circular inclusion is buried. The numerical applications are performed assuming a water layer (ρf = 1000 kg/m3,
αf = 1500 m/s), 20.0 m thick, over different elastic solid formations with properties (listed at Table 1) corresponding to
formation (β < αf ), a slow formation (β > αf ) or a sediment formation.

The rigid inclusion is centered atx = 0.0 m andy = 5.0 m (see Fig. 4) with a radius of 2.0 m. The boundary of the inclus
is discretized using a number of constant boundary elements defined according to the excitation frequency of the
source. The ratio between the wavelength of the incident waves and the length of the boundary elements is kept to a
of 6. However, the number of boundary elements used to model the inclusion was never less than 30.

The system is perturbed by a pressure line load (kz = 0.0 rad/m) placed in the water medium atx = −20.0 m and
y = −1.0 m. The pressure variations in the fluid are registered at a grid of 61 by 40 receivers placed along thex andy direction
respectively. The receivers are separated by 0.5 m in either direction and are placed fromx = −15.0 m andy = −0.25 m to
x = 15.0 m andy = −19.75 m (see Fig. 4).

All the computations are carried out in the frequency domain using complex frequencies of the formωc = ω − iη (with
η = 0.7ω) to prevent aliasing phenomena. The frequency range used is [10 Hz, 1280 Hz] with a frequency incre
10 Hz. This increment defines the total time duration of 100 ms. An inverse Fourier transform is then applied to the fr
results in order to obtain time domain responses. The source is modeled as a Ricker pulse with a characteristic fre
350 Hz.

The time pressure amplitude registered along the lower line of receivers is presented in order to identify the differ
of waves. A sequence of snapshots that displays the pressure wave field along the grid of receivers at different tim
displayed. The pressure amplitude is plotted in a gray scale ranging from black to white, as the amplitude increases.
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Fig. 4. Geometry of the model.

Fig. 5 presents the time results when the solid elastic medium has the properties of the fast formation. Att = 0.0 s the source
emits a pulse that propagates away, giving rise to a spread of energy. As time elapses the incident pulse hits the
interface and the water free surface leading to a complex wavefield. However, it is possible to identify waves reflect
from the free surface, waves propagating along the fluid–solid interface with the velocity of the S waves in the solid (26/s),
and waves transmitted to the solid medium that are then reflected back by the rigid cavity.

Fig. 5(a) gives the time pressures registered along the lower line of receivers, while Figs. 5(b)–(e) show snapshots
over the grid of receivers at different times. In Fig. 5(a) different types of pulses are distinguishable. The first pulse (FP
a weak amplitude, corresponds to waves which, once they reach the fluid–solid interface, propagate along it with the
of the P waves in the solid (4208 m/s). On a different plot scale this pulse would be visible in the snapshot att = 7.5 ms,
at x = 5.0 m. A pulse with higher amplitude follows, labelled FSF. This pulse corresponds to waves which, after hitt
fluid-solid interface, propagate with the velocity of the S waves in the solid (2656 m/s). The direct incident pulse (I) appea
later, since it propagates at lower velocity (velocity of the fluid, 1500 m/s). This pulse is visible in the snapshots fort = 7.5 ms,
t = 12.5 ms andt = 20 ms (Figs. 5(b)–(d)). Reflections from the cavity are also present. One of the most evident corresp
waves that are transmitted to the solid medium and are reflected by the rigid boundary of the inclusion. It propagates in
medium with the velocity of the S waves (FSSF). This pulse is also visible in the snapshot fort = 12.5 ms. As time elapses, th
wave front hits the free water surface, where is reflected back. These waves reach the fluid–solid interface where they
reflected back, and this process continues. These reflections are identified in Fig. 5(a) by FF and FFFF. Figs. 5(d) and
the FF pulse being reflected at the top and bottom interfaces.

Fig. 6 presents the pressure field obtained for the case of a slow formation. Fig. 6(a) shows the time results obtain
lower line of receivers (aty = 0.25 m), while Figs. 6(b)–(e) display the pressure responses registered at the grid of rece
specific times.

The faster pulse (FPF) is associated with waves which, after the incident pulse has reached the solid–fluid interfa
agate along it with the velocity of P waves (2630 m/s) in the solid. This pulse is visible in the snapshots att = 7.5 ms and
t = 12.5 ms (Figs. 6(b) and 6(c) respectively). A pulse that is transmitted to the solid with the velocity of the P waves an
agates with the velocity of the S waves after being reflected back by the rigid inclusion is identified by FPSF (see Fi
6(c)). A well-developed pulse follows, related to the direct incident waves travelling with the velocity of the fluid (1500/s).
Another high-amplitude pulse can be seen in Fig. 6(a). This pulse corresponds to guided waves (G) travelling along the
with velocities lower than the S wave velocity. As can be seen in Figs. 6(c)–(e), this pulse is only registered at receiv
the interface. As the wave propagation progresses additional reflections arise, such as waves propagating in the sol
velocity of the S waves that are scattered by the rigid inclusion (FSSF). Additional reflections are visible, correspo
waves propagating back and forth in the fluid medium between the free surface and the solid–fluid interface (FF, FFF
order reflections at the boundary of the rigid cavity are also present.

Next, we give some results when the solid medium under the fluid layer is sediment. Fig. 7 shows the pressure field r
at the line of receivers in the time domain, and snapshots of the pressure field registered at the grid of receivers for
times.

As before, the pressure field is made up of different types of waves. It is possible to observe the direct incident w
which, once they reach the solid fluid interface, propagate along it with the velocity of the P waves (1643 m/s) in the solid (FPF)
(see Fig. 7(a)). These two pulses are not easily distinguishable since the velocity in the fluid medium (1500 m/s) approaches th
velocity of the P waves in the solid. A well-developed pulse (FPPF), corresponding to the first reflections by the rigid in
of waves propagating in the solid medium with the velocity of the P waves, is also visible.
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Fig. 5. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a fast formation, registered: (a) at the lo
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Fig. 6. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a slow formation, registered: (a) at the lo
receivers; over the grid of receivers at: (b)t = 7.5 ms; (c)t = 12.5 ms; (d)t = 20 ms; (e)t = 30 ms.
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Fig. 7. Time pressure responses for a characteristic frequency of 350 Hz, when the solid is a sediment formation, registered: (a) a
line of receivers; over the grid of receivers at: (b)t = 7.5 ms; (c)t = 12.5 ms; (d)t = 20 ms; (e)t = 30 ms.
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A pulse with a slight amplitude appears att = 10 ms corresponding to guided waves (G) travelling along the solid–
interface with velocities lower than the S wave velocity. Some waves propagating in the fluid medium are reflected bet
top and bottom of the fluid layer. The first reflection in the top has a high amplitude and is labelled FF in the plots. Hig
reflections in the boundary of the rigid inclusion buried in the solid medium are also visible in Fig. 7(a).

6. Conclusions

The analytical functions presented in this paper can be used by themselves to compute the wave field generated by
sinusoidal harmonic load in a formation composed of a fluid layer over a semi-infinite solid.

In this paper, they were also found to be useful when incorporated in a BEM formulation to compute the wavefield p
by rigid inclusions buried in a semi-infinite solid under a fluid layer.

The verification of the solutions against those provided by a BEM model using Green’s functions for an unbounded
showed a very good agreement between the two solutions. However, the proposed model can overcome the computer
of the former model, given that it is only necessary to discretize the boundary of the inclusions.

A fluid layer over a semi-infinite solid formation, where a rigid circular inclusion is buried, is used to illustrate the ap
bility of the proposed BEM models.

In all the simulations it was possible to detect different pulses resulting from reflections in the horizontal boundaries
tions in the boundary of the inclusion and also guided waves travelling along the solid–fluid interface.

When the solid is a sediment the reflections have lower amplitude than in the other cases. This is due to the fact t
more energy is transmitted to the solid medium.

The interpretation of the results agrees with the findings obtained when the travel paths are calculated, following a
wave front. It can thus be confirmed that the wave scattering produced by buried rigid inclusions in a seabed formatio
identified by sources placed in the fluid medium.
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