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Abstract

An objective function based on geostatistical variance reduction, constrained to the reproduction of the probability distribution functions

of selected physical and chemical sediment variables, is applied to the selection of the best set of compliance monitoring stations in the Sado

river estuary in Portugal. These stations were to be selected from a large set of sampling stations from a prior field campaign. Simulated

annealing was chosen to solve the optimisation function model. Both the combinatorial problem structure and the resulting candidate

sediment monitoring networks are discussed, and the optimal dimension and spatial distribution are proposed. An optimal network of sixty

stations was obtained from an original 153-station sampling campaign.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

A well designed, ongoing monitoring program is

fundamental for the evaluation of environmental manage-

ment of natural systems (Kay and Alder, 2000). The design

of an effective monitoring program depends on the

management objectives, resources (funding and staff) and

available technology. Monitoring programmes should be

designed to contribute to a synthesis of information or to

evaluate impacts, or analyse the complex cross-linkages

between environmental quality aspects, impacts and socio-

economic driving forces (RIVM, 1994).

The technical design of monitoring networks is related to

the determination of: (i) monitoring sites; (ii) monitoring

frequencies; (iii) variables to be sampled; (iv) duration of

sampling (the last two variables are not discussed here
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because they are case-specific). Most of the research results

in this area have been obtained in the context of statistical

procedures (Sanders et al., 1983; Moss, 1986; IAHS, 1986;

Cochran, 1977). These rely in the principle that there are

several sources of uncertainty, due to measuring errors,

inherent heterogeneities of the involved variables, and in the

cases where modelling is involved, also simplifications and

errors in both the modelling and numerical/analysis solution

phase. McBratney et al., 1981), as well as many other

authors after them, indicated that uncertainties are the result

of lack, in quality and quantity, of information concerning

the systems under study, or as a result of spatial and

temporal variations of parameters.

In many monitoring programs a first sampling stage with

a large number of locations is undertaken, either because

there is no prior information or it is considered necessary to

collect more data. This stage is usually planned to give

statistical information about the variables under study and to

calculate their spatial covariance. A second stage is needed

to transform the original set of sampling stations, with high

cardinality, into a lower cardinality set of monitoring

stations. Probably the methods used most to reduce

cardinality are those based on the maximisation of spatial

accuracy, or in other words, on the minimisation of the

variance of the estimation error, also known as variance
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Fig. 1. Study area location (in dark grey).
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reduction methods. This is usually carried out in the context

of geostatistical theory (Matheron, 1963, 1965) and most

frequently by interpolation with an unknown mean, i.e. by

ordinary kriging. Other promising methods have been

proposed for optimising the monitoring network design, in

particular those based on information theory, as in articles

such as those by Amorocho and Espildora (1973), Caselton

and Husain (1980), Caselton and Zidek (1984), Harman-

cioglu and Yevjevich (1987), Husain (1989), and Harman-

cioglu and Alspaslan (1992). Despite the elegance of these

methods, they are limited by the need to assume a

probability distribution for the variables, which may be

unknown or difficult to determine. Moreover the method is

particularly well adapted to variables with equal probability

distributions (usually normal or lognormal). When soft and

other sources of information are available then the Bayesian

Maximum Entropy geostatistical method, first developed by

George Christakos (Christakos, 1990; Christakos, 1992),

have proven to outperform ordinary kriging (D’Or et al.,

2001), and also have the advantage over the latter that they

do not require the specification of particular probability

distributions.

Kriging variance has been extensively used for monitor-

ing network design. Examples can be found in the work of

Bras and Rodrı́guez-Iturbe (1976), Rouhani (1985), Loai-

ciga (1989), Rouhani and Hall (1988), Pardo-Igúzquiza

(1998), van Groenigen et al. (1999), van Groenigen and

Stein (1998), and Nunes et al. (2004a, b).

Two categories for monitoring optimisation with

variance reduction have been proposed: (i) the local

approach (e.g. Amorocho and Espildora, 1973); and (ii)

the global approach (e.g. Ahmed et al., 1988). In the first the

influence of each additional point is analysed separately.

Total variance reduction after adding one point is easily

computed by considering the individual values at each

initial location or at the points in the vicinity of the point

being estimated. In the global approach average estimation

variances are used. Therefore, global approaches provide

only average answers to monitoring designs. It is useful to

analyse designs still on the drawing board or to perform

extensive redesigns aimed at maintaining the efficiency of a

monitoring network, which may require removal of poorly

located sites. The local approach, on the other hand, is better

suited to optimally expanding an existing network. The

optimality in this case only relates to the additional points,

which may not be acceptable if the original points are not

optimal (Markus et al., 1999).

Minimisation of the average kriging variance approach

was applied here to select the number and positions of

sediment monitoring stations in the Sado river estuary

located in the southwest coast oft Portugal (Fig. 1), such that

different physically and chemically homogeneous areas

identified in a prior sampling campaign were considered.

This monitoring network will be further integrated into an

environmental data management system for the Sado

Estuary as a decision support tool for local authorities.
The Sado Estuary in Portugal is an example where

environmental problems are not well managed owing to

the high natural values and diverse pressures for develop-

ment and where the right tools to help evaluating the

environmental quality status need to be developed. The

objective here was on the development of a monitoring

network that constitutes one the information sources of the

Sado Estuary management system (physic-chemical data of

sediment quality).

For practical and budgetary reasons the number of

monitoring stations should be reduced to a minimum. The

optimisation problem can be stated in a very simple way:

maximising the spatial accuracy, constrained to a maximum

number of stations, given the information collected in a

prior sampling program (153 sampling sites). Maximisation

of spatial accuracy is easily attained by minimising the

variance of estimation error, though incorporating the

patchiness of homogeneous areas is a more difficult

problem. One alternative would be to fix several locations

inside the different homogeneous areas, but then the choice

of stations would be arbitrary. Another way is to use

stratification, considering that a defined number of stations

must be placed inside homogeneous areas. Stratification is a

well-known statistical technique used for designing moni-

toring (or sampling) programs with denser networks in some

areas than in others. The difference in probability density

may be based, for example, on spatial autocovariances,

statistical risk of contamination, plume detection probabil-

ities or empirical judgement, among many others. Here we

propose a statistically based stratification: homogeneous

areas are monitored according to the frequency with which

they appear in the prior sampling program. The inclusion of

homogeneous areas was considered important by the

manager because sediment granulometry and physical and
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chemical characteristics have strong correlations with the

amount of xenobiotics the sediment can retain and because

these areas were planned to be geographic spatial units in an

environmental management system. Hence, four types of

sediments were established on the basis of three physical

and chemical variables and the manager demanded that the

proportion of stations in the four types of sediments in the

monitoring network be similar to that of the sampling

campaign (thus the constraint on the proportions).

Optimisation consists, then, of finding an optimal subset

with a combination of stations taken from a larger set. Even

for relatively small set cardinalities the number of

combinations is too high to allow them all to be

exhaustively evaluated in a reasonable amount of time.

One of the most well known algorithms for solving

combinatorial problems is simulated annealing, in particular

in sampling/monitoring network optimisation (e.g. Meyer et

al., 1994; Pardo-Igúzquiza, 1998; van Groenigen et al.,

1999; Brus et al., 2000; Brus et al., 2002; Nunes et al.,

2004a,b).

The article is divided in five sections. This Introduction is

followed by a second section where the theoretical

geostatistical and optimisation framework is presented. In

this section the geostatistical parameter most frequently

used to measure accuracy, the kriging estimation error

variance, is explained and compared with another geosta-

tistical measure of accuracy, the fictitious point estimation

error variance. Also the simulated annealing heuristic used

to solve the optimisation problem is introduced. In the third

section a case-study is presented and data transformations

are explained, while, in the fourth section, optimisation

results are discussed. Finally, in the last section, the most

important conclusions are drawn.
2. Theory

2.1. Estimation of probability distribution functions

Indicator coding implies transforming a continuous or

discrete variable, Z(x), into a discrete (0,1) one, the indicator

I(x). Considering a threshold value zc on Z, I(x) is equal to 1

if Z(x)%zc, and 0 otherwise. Therefore the variable at each

location is transformed into a distribution function, i.e. the

probability of exceeding the threshold is calculated within a

region. With a sufficiently large number of thresholds the

prior (and post) probability distribution of Z is calculated at

each location. Indicator transform is also at the core of

nonparametric methods, which have some clear advantages

over parametric methods: (i) the parametric hypothesis may

not hold; (ii) there are no statistical tests to adequately

investigate the validity of a multivariate distribution

hypothesis (Alli et al., 1990); (iii) parametric methods are

difficult for many practitioners to comprehend and apply

due to their mathematical complexity (Sullivan, 1984).

Several geostatistical methods can be used to estimate
probability distributions, namely Multigaussian kriging

(MK), disjunctive kriging (DK), lognormal kriging (LK),

probability kriging (PK) and indicator kriging (IK). Both

MK and DK are based on normality assumptions and LK on

log-normality assumption. If these assumptions are not

verified, e.g. in highly skewed distributions, variogram

fitting tends to be very problematic and the estimation poor

quality. IK is therefore a good alternative. It is actually one

of the most frequently used nonparametric methods and will

also be used here.

The theory and implementation of nonparametric

estimators of spatial distributions is similar to that of

nonparametric estimators of the local mean (Journel, 1987).

Consider the indicator

iðx; zcÞ Z
1; ifzðxÞ%zc

0; otherwise

(
(1)

with zc representing some threshold values on Z.

The purpose of this indicator transformation is to

estimate the posterior cumulative probability functions.

These functions are linear combinations of the indicator

function and represent the proportion of values less than the

threshold,

f�ðzcÞ Z
Xu

aZ1

laiðx; zcÞ (2)

where la represents weights, with the constraint
P

u
aZ1

laZ1 for unbiasedness and a the number of stations.

Equation (2) can be solved by simple kriging using i(x,zc)

and the indicator variogram:

giðh; zcÞ Z
1

2Nh

XNh

iZ1

iðx Ch; zcÞK iðx; zcÞ
� �2

(3)

where Nh is the number of pairs for lag h.

If one is interested in the proportions associated with

each interval, [zcK1, zc], then:

Pr zcK1!zðxaÞ%zc

� �
Z fðzcÞKfðzcK1Þ Z JðzcÞ (4)

and for the estimated proportions

f�ðzcÞKf�ðzcK1Þ Z J�ðzcÞ
2.2. Estimation error and estimation error variance

In this article the estimation error is sought at xa locations

because the monitoring stations to be included in the new

design are taken from the initial locations. At the heart of

geostatistical cross-validation lies the estimation error

obtained by removing one of the xa stations, estimating it

by kriging with the remaining stations (those in the vicinity)

and repeating this for all stations (Deutsch and Journel,

1992).Considering that the kriging mean estimation error is

zero by construction, and there are u stations, the estimation

error variance is:
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s2 Z
1

u

Xu

aZ1

iðxa; zcÞK i�ðxa; zcÞ
� �2

(6)

where i*(xa,zc) is the estimated IK value. Each station’s

value is obtained by removing it from the set and estimating

it by IK using the remaining stations.

The estimation error variance might also be calculated by

the combination of the individual estimation error var-

iances, weighted by the relative frequency of the indicators.

However this approach may prove prone to errors if the

number of cutoffs is low, and still requires testing.
2.3. Model for the optimisation function

The testing of new candidate network designs is carried

out by first choosing the number u of stations to be included

in the subset S’. Using the optimisation procedure the

optimal combination of stations will be selected from the

original set of stations S (with cardinality U).

The station locations that produce the lowest estimation

error variance result in a spatial distribution with the highest

accuracy (the ultimate objective). Therefore to optimise the

spatial distribution of stations the estimation error variance

has to be minimised. The resulting objective function model

is Minimise

s2 Z
1

u

Xu

aZ1

iðxa; zcÞK i�ðxa; zcÞ
� �2

;u2S’; S’3S (7)

Subject to

JS’ðzcÞzJSðzcÞ

The constraint makes it necessary for a candidate

solution set, S’, to have the same proportion of stations

with values in the intervals]zcK1, zc] as the original set, S.

The condition is not equality because for practical

computation floating-point variable equality is machine-

dependent and varies with the precision. Instead, JS’(zc)

may be bounded and the constraint becomes:

JSðzcÞð1 KdÞ%JS’ðzcÞ%JSðzcÞð1 CdÞ (8)

with d the semi-amplitude of a]0,1] interval.

This condition is necessary to correct the bias introduced

by variogram models fitting errors in fitting the variogram

models (when adjusting the theoretical models to the

experimental variogram). A practical example showing

the bias is presented in this article.

The constraint was implemented in the algorithm by

choosing, for the calculation of the objective function, only

the solutions that fulfil the criterion. This is achieved by

allowing random replacements of one element of the set S

with one of S’ and choosing only the sets S’ for which the

criterion is fulfilled. After kriging the order relations are

corrected by post-processing with the GSLIB POSTIK

routine (Deutsch and Journel, 1992). Gruijter et al. (1997)

proposed an alternative method (Compositional Kriging) for
guaranteeing the correct order relations and the constant

sum of the proportions (i.e. 1). Though very promising, this

method was not used here.

2.4. Solving the problem of the optimisation function model

The example studied here may be classified as a difficult

combinatorial optimisation problem, for which an exhaus-

tive search of all possible combinations is not possible in a

reasonable amount of time. Solutions to these problems may

however be sought in heuristic algorithms that iteratively

look for better solutions by trial and error. One of such

algorithms is the well-known simulated annealing (SA). It is

one of the threshold algorithms included in the class of local

search algorithms. The other two, as defined by Aarts and

Korst (1990), are: iterative improvement, where only OF-

reducing neighbours are accepted, and threshold accepting,

where some deterministic non-increasing threshold

sequence is used, allowing neighbour solutions with larger

OF to be accepted, but in a limited way because the

threshold value is fixed and always decreasing, with a very

rigid control on the size of the OF difference, DOF.

Simulated annealing uses a more flexible control of the

values of the threshold, allowing transitions from a local

minimum at nonzero temperatures.

SA was first introduced by Kirkpatrick et al. (1983) as

an algorithm for solving well known combinatorial

optimisation problems, reducing the risk of the search

falling into local minima (or metastable solutions), that is

common to iterative improvement methods. These authors

proposed the use of the Metropolis procedure (Metropolis

et al., 1953) from statistical mechanics. This procedure

generalizes iterative improvement by incorporating con-

trolled uphill steps (to worse solutions). The procedure

states the following: consider that the change in the

objective function is DOF; if DOF % 0, then the change

in the system is accepted and the new configuration is

used as the starting point in the next step; if DOF O 0

then the probability that the change is accepted is

determined by P(DOF) Z exp(-DOF/t) where t is a

control parameter called temperature; a random number

uniformly distributed in the interval (0,1) is taken and

compared with the former probability; if this number is

lower than P(DOF) then the change is accepted. The SA

algorithm runs in the following way: (i) the system is

melted at a high temperature (initial temperature, t1); ii)

the temperature is decreased gradually until the system

freezes (because no better solutions are found and the

probability of uphill steps is near zero); iii) at each

iteration the Metropolis procedure is applied; iv) if any of

the stopping criteria is satisfied the algorithm is stopped

and the best solution found is presented.

The generic SA algorithm for a minimisation, consider-

ing a neighbourhood structure N, a solution space c, a

constant temperature decrease rate a and an objective

function OF, has the following pseudo-code.
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In order to speed-up the process several improvements

have been proposed, specifically by limiting the number

of iterations at each temperature, i.e. defining the number

max_iterations. It has been proposed that the dimension

of the Markov chain should be a function of the

dimension of the problem (Kirkpatrick et al., 1983):

temperature is maintained until 100 U solutions (iter-

ations), or 10 U successful solutions have been tested,

whichever comes first. U stands for the number of

variables (stations) in a problem. These authors also

proposed that the annealing should be stopped (stopping

criterion) if after three consecutive temperatures the

number of acceptances is not achieved. It can also be

considered that if the average value of the OF does not

change after a pre-established number of temperature

decreases (RSTOP), then the annealing should be stopped.

These parameters control the time spent at each

temperature and the total running time. Along with

these dynamic criteria, a static one may be used to halt

the process when a minimum temperature, tmin, is

reached. The former will guarantee that the annealing

will stop if none of the dynamic criteria is fulfilled, even

before the total number of iterations is attained. In our

algorithm both the dynamic and static criteria were

implemented.

The initial temperature, t1, is calculated by running a

fast (rapid temperature decrease) schedule and picking up

the temperature for which more than 95% of the

iterations are accepted. Temperature is usually decreased

at a constant rate, a, usually close to one (e.g. 0.90 or

higher). Aarts and Korst (1990) showed that SA can find

optimal solutions if equilibrium is attained at each

temperature (constant OF mean and variance) and

proposed a temperature schedule dependent on OF

variance that guarantees that. Despite this very attractive

characteristic such a schedule tends to converge too

slowly. Other t schedules for optimality were also

proposed by Geman and Geman (1984), Hajek (1988),

and Siarry (1997). These however may not converge in

an acceptable amount of time for many problems (Cohn

and Fielding, 1999). The wealth of practical experience

with the faster t schedule used here indicates that the
solutions found should be good local optimal ones. In

practical terms: the local optimal solutions are a

compromise between relatively good solutions in an

amount of time significantly smaller than that necessary

to guarantee the best quality solutions provided (in

theory) by slower schedules.

A specific computer code in FORTRAN that incorpor-

ates both the estimation error variance and the SA algorithm

was developed by the authors to optimise localisation

problems and adapted to this specific problem.
3. Case study

3.1. Study area and source data

The Sado Estuary is the second largest estuary in

Portugal with an area of approximately 24,000 hectares. It

is located on the west coast of Portugal, 45 km south of

Lisbon (Fig. 1). Most of the estuary is classified as a nature

reserve. The Sado Estuary basin is subject to intensive land-

use practices and plays an important role in the local and

national economy. Most of the activities in the estuary (e.g.

industry, shipping, intensive farming, tourism and urban

development) have negative effects on the physical and

chemical quality and biotic communities of water and

sediment (Caeiro et al., 2003b).

During the year 2000/2001 sediment was sampled in 153

locations (stations) in an extensive estuarine sediment

campaign (Caeiro et al., 2003b). Each sample was analysed

for the fine fraction (FF), organic matter (OM) and redox

potential (Eh). The data contributed to defining areas of

similar physical and chemical characteristics (Caeiro et al.,

2003a) and to designing a future sediment monitoring

network.
3.2. Data processing

The definition of spatially homogenous physical and

chemical areas was assumed as a necessary first

methodological step. These areas resulted from data

collected in a sampling campaign, after some statistical

transformations (Fig. 2) (Caeiro et al., 2003a): (i)

principal component analysis (PCA) using data on

ln(FF), ln(OM), and Eh; (ii) variogram analysis on the

first PCA component; (iii) computation of intervariable

Euclidean distance (as opposed to geographic distance);

(iv) computation of a dissimilarity matrix (Oliver and

Webster, 1989), Eq. (9); (v) Euclidean distance compu-

tation on the dissimilarity matrix (cluster analysis); (vi)

selection of four clusters and physical and chemical

interpretation. A new variable, Z, was obtained by

interpreting the cluster analysis of dij* projections. Z is

a discrete variable representing stations that share

common physical and chemical characteristics and



Table 2

Indicator frequencies, f(zc) and J(zc)

Indicators

i1 i2 i3 i4

f 0.1176 0.4967 0.7320 1

j 0.1176 0.3791 0.2353 0.2680

Fig. 2. Flowchart for the definition of the homogeneous sediment areas

(adapted from Caeiro et al., 2003a).
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similar spatial autocovariance.

d�
ij Z dij !

c

c0 Cc
! 1:5!

vij

�� ��
L

K0:5!
vij

�� ��
L

� �3
" #

Cdij !
c0

c0 Cc
for 0!vij %L d�

ij

Z dij when vij OL (9)

where: dij is the Euclidean data-space dissimilarity of

ln(OM), ln(FF) and Eh between sample sites; c is the

variogram sill; c0 is the nugget variance; L is the range;

and vij are the Euclidean geographic distances between

locations i and j.

The characteristics of Zi, where iZ1,.,4, are shown in

Table 1 and reflect four separate physically and chemically

homogeneous areas found in the sampling campaign. It was

subsequently intended to estimate the probability distri-

bution function of Z considering four cut-offs: 1, 2, 3, and 4.

The indicator transform is given by (1) with cut-off zc Z
1,.4. For ease of identification, indicators have a subscript

equal to the cut-off value.

The value of f(zc) and the proportion of stations with

values in the interval]zc-1, zc], j(zc), are shown in. As Z can
Table 1

Physical and chemical sediment parameters of each homogeneous area

Parameter Cut-offs

z1 z2 z3 z4

% OM 8.6G2.4 4.2G1.4 1.9G0.7 0.9G0.3

% FF 60.4G27 21.7G11.8 9.1G7.8 1.5G1.3

Eh K278.9G

68.6

K178.8G

72.6

K137.4G

50.9

74.4G49
only take integer values, the proportions correspond to the

stations for which z(xa)Z zc (Table 2).

The maximum number of stations to be included in the

sediment monitoring network had necessarily to be less than

100 for budgetary reasons, but if possible a much lower

value was to be looked for (u). Moreover the new design

had to reflect the physical and chemical variability of the

sediment as detected in the prior sampling campaign and

presented in the previous section. Accordingly, the

proportion of monitoring stations in each of the identified

homogeneous areas needed to be similar to that in the

sampling campaign. This amounted to making the candidate

solutions have JS’(zc)zJS(zc).

Three different conditioning options for the objective

function are presented: (i) no conditioning on the proportions

is imposed; (ii) conditioning is imposed with dZ0.5; and (iii)

conditioning is imposed with dZ0.3. In the first option the

entire solution space is a feasible space, while in the others a

solution is only feasible if it respects the condition. More

stringent conditions were also tested (d!0.3) but resulted in

too long processing times and no solutions were obtained. It

will be seen below that such conditioning may not be

necessary. Hence, d!0.3 corresponds to the lowest

conditioning that produced results, d!0.5 having been

chosen because it corresponds to an interval with a range of

100% in respect of the proportions.

For each OF conditioning option several network

dimensions were tested, according to the following scheme:

(i) imposition of the maximum number of monitoring

stations (u) to be included in the new design; (ii) detection

of the optimal allocation solution with SA; and (iii) an

increase in u and a return to (i).

Eight different monitoring network dimensions (cardin-

ality of S’: u) were tested, {30,40,50,60,70,80,90,100}. SA

solutions were considered optimal when more than 70% of

20 consecutive runs with the same objective function

conditions (u, d) and SA parameters had the lowest and

equal s2 value. Runs were made on Intel 2000 MHz PC’s.
4. Optimisation results and discussion

4.1. Feasible space

The number of combinations of U sampling stations with

u possible monitoring stations is given by the well-known

formula WZU! / ((UKu)! u!). Now, if one wants to

calculate the combinations conditioned to the reproduction



Fig. 3. Effect of conditioning and cardinality of S’: (a) Dimension of the solution space (W) and time until optimal solution (T); (b) Number of iterations. In

W(), nc and cond represent without and with conditioning, respectively.
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of the proportions, the expression becomes

W Z
Yk

iZ1

Ui!

ðUi KuiÞ!ui!
(10)

where i is the indicator number, Ui the number of

sampling stations with the indicator i, and ui the number of

monitoring stations with the indicator i imposed by

conditioning. The number of combinations in each case is

represented in Fig. 3a, on a logarithmic scale, for different u

values. Conditioning reduces the dimension of the feasible

space by more than two orders of magnitude when u z 77

(from 7.3!1044 to 3.6!1042). The lowest W value is still

higher than 1025, indicating that any attempt to solve even the

lowest dimension combinatorial problem exhaustively

would take (in the same machine) more than 106 times the

age of the universe! Despite this practical difficulty it is

interesting to see how the optimisation problem structure

(intrinsic to each specific problem) affects the time necessary

to find an optimal solution (total running time), T, and the

number of iterations. The time is dependent on the number of

iterations and on the time necessary to compute the objective

function. The number of iterations is however strongly

dependent on the structure of the problem and not necessarily
Table 3

Results for different u and d values: estimation error variance (s2), number of iter

u No conditioning dZ0.5

S2 Iter. T(s) s2 It

30 0.12889 46760 6114 0.62667 35

40 0.12000 48484 6946 0.62500 38

50 0.11840 50209 7778 0.55000 40

60 0.13639 44582 7142 0.54000 37

70 0.18694 43560 7366 0.41429 38

80 0.24938 37568 6669 0.41817 31

90 0.33099 37441 7012 0.41421 36

100 0.50910 21887 5361 0.41613 38
on the dimension of the feasible space, otherwise this

parameter would have followed W more closely. In reality it

is observed that the problem structure changes for each u

value (Fig. 3b). However, when no conditioning is imposed

the number of iterations decreases to uZ100 (Fig. 3b and

Table 3), stabilising after that. This may indicate that a higher

proportion of indicators one and two, which have always had

higher estimation errors (yet unpublished results), contrib-

utes to a more structured problem, possibly with fewer local

minima. Such behaviour is not clear when conditioning is

imposed due to a predetermined proportion of these

indicators in all tested u values. As a consequence, T varies

around a constant mean in the case of no conditioning (as u

increases the number of iterations decreases and the OF

computing time increases) (Fig. 3b). When conditioning is

imposed T increases to uZ90, with a tendency to stabilise

after that (and is, therefore, dependent essentially on the OF

computing time).

It is also interesting to see that strong conditioning

(dZ0.3) results in the lowest T, while weaker condition-

ing (dZ0.5) results in the highest T. Once again the

problem structure plays a fundamental part. This may

not, however, be extrapolated to other problems because

it is problem-dependent.
ations (Iter.) and time necessary to reach an optimal solution (T) in seconds

dZ0.3

er. T(s) s2 Iter. T(s)

135 5306 1.00000 33260 4165

729 5076 0.81938 34596 5046

088 6325 0.68000 39215 4930

523 6894 0.58750 35718 4515

201 8071 0.58551 32078 6171

705 7284 0.57000 32668 5400

087 9456 0.56000 30972 5612

523 7803 0.55700 41776 5626



Fig. 4. Relative error when estimating JS’(xa,zc): (a) no conditioning; (b) dZ0.5; (c) dZ0.3.

Fig. 5. Estimation error variance without conditioning and with

conditioning (dZ0.3; dZ0.5).
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4.2. Optimal conditioning

Conditioning of the objective function has an interesting

effect on the errors in the estimated indicator proportions.

When no condition is imposed, the error in the estimated

proportions ((JS(zc)KJS’*(zc)) is higher than 0.3 for low u

values and decreases with an increase in u (Fig. 4a).

Conditioning the proportions causes a reduction in the error

of about 50% for dZ0.5 and about 25% for dZ0.3 (Fig. 4b

and c) when compared with no conditioning. Moreover, (JS

(zc)KJS’*(zc)) is one third of the result of the imposed

interval (JS(zc)KJS’(zc)), for both dZ0.5 and 0.3. This

may indicate that imposing lower d values would lead to

similar results. If this is true then imposing d!0.3 would

also lead to very narrow intervals and eventually to a very

limited number of neighbouring feasible solutions. Such

behaviour is in line with the aforementioned practical

difficulty—extremely long processing times. Furthermore,

with dZ0.3, the JS’*(zc) estimation error is lower than

10%, which is considered an acceptable error.

When the high or low values of a variable are clustered in

small areas scattered about the study area, their relative

frequencies are low or the data is too random, then

variogram fitting becomes difficult and prone to error. The

result is not only the fitting of theoretical variograms that

only roughly approximate the real variability but also large

estimation errors. This does not hinder the geostatistical

method, but justifies the need to consider the conditioning of

the proportions. An example of such a need is seen with

indicators one and two, for which the estimation errors are
higher: this leads the optimisation algorithm to select,

preferentially, the two remaining indicators with lower

estimation errors. As a result, in all the cases studied, the

latter have higher proportions than in the original data set, as

a way of compensating for the bias introduced with the first

two indicators. However, conditioning significantly reduces

the bias. Another even more important effect of estimation

errors is reflected in Fig. 5: if no conditioning is used,



Fig. 6. Monitoring networks for different u values: (a) no conditioning (nc); (b) dZ0.5; (c) dZ0.3.
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increasing the number of stations will result in higher

estimation error variances. This is opposite to what is

expected because when increasing the number of points

available for estimation the accuracy of the estimated

value should decrease. This inversion may be explained

by the consideration that, with a very low u, only

stations with a low estimation error are included in the

optimal solution; as u increases, higher estimation error

stations are included. Clearly, if no conditioning is

imposed the monitoring network is dominated by the last

two indicators (Fig. 6a).

When conditioning is used the expected increase in

accuracy is observed (Fig. 5). Moreover, the stronger the

conditioning the higher the s2 because more high-error

stations are imposed at lower u values.

Fig. 6b and c show the resulting monitoring networks

with different u values. The proportions of the first two

indicators are higher in these cases and, with dZ0.3, a

better reproduction of the probabilities is obtained, which

is considered as an important decision-making criterion

for monitoring the homogeneous areas.
4.3. Optimal monitoring network

A monitoring network dimension is considered

optimal if each new station added to a u value has

little effect on the spatial accuracy of the monitoring, s2,

i.e. if the marginal gains are small. The gains are shown

in Fig. 5. Gains in accuracy are high up to the 60th

station, becoming much less important after that. Adding

one new station produces an average increase in spatial

accuracy of 1.24% up to the 60th station; after that the

gains in accuracy reduce to an average of only 0.034%.

Sixty is therefore considered as the optimal u value.

Fig. 7 shows the convergence results for this network,

with the following simulated annealing parameters:

temperature decrease coefficient, aZ0.9, initial tempera-

ture, t1 Z2.2, max_iterations Z2000, 10UZ600, RSTOP

Z3, tmin Z0.001.

The resulting network is shown in Fig. 6. Had no

conditioning or dZ0.5 been chosen, the optimal number of

stations would be similar, though the spatial distribution of

stations quite different (cf. Figs. 5 and 6).



Fig. 7. Convergence results for the 60 station monitoring network with

dZ0.3.
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5. Conclusions

The following conclusions can be drawn: (i) Objective

function conditioning is necessary to guarantee reproduc-

tion of the probability density functions of indicator

variables; (ii) the higher the conditioning the closer the

posterior (estimated) pdf is to the prior (data) pdf; (iii)

conditioning with d!0.3 leads to extremely long running

times and has been shown to be unnecessary; (iv) if no

conditioning is used the estimation error variance increases

with the rise in the number of monitoring stations as a result

of the bias introduced by variogram fitting errors; (v) the

time necessary for SA to reach a solution is, in this

particular case-study, more dependent on the structure of the

problem than on its dimension; (vi) the optimisation

problem studied here can not be solved exhaustively on

account of the enormous number of possible combinations

that would have to be tested; (vi) the solution attained may

not be optimal globally but, locally, it should be optimal—a

solution very close to the global minimum to be attained in

an acceptable amount of time; (vii) a sediment monitoring

network with sixty stations was obtained. In its construction

this network has a proportion of stations inside each

homogeneous sediment area similar to the proportions in

the prior sampling program with 153 sampling stations.
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