
www.elsevier.com/locate/compstruc

Computers and Structures 84 (2006) 2174–2183
Deformable strut and tie model for the calculation
of the plastic rotation capacity

Sérgio M. Lopes a,*, Ricardo N.F. do Carmo b,1

a Departamento de Engenharia Civil, F.C.T.U.C., Polo II, Universidade de Coimbra, 3030-290 Coimbra, Portugal
b Departamento de Engenharia Civil, Instituto Superior de Engenharia de Coimbra, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

Received 23 August 2005; accepted 7 August 2006
Available online 2 November 2006
Abstract

When a plastic analysis, a non-linear analysis or a linear analysis followed by redistribution of bending moments is used to predict the
structural behaviour of beams, the critical sections should have the necessary plastic rotation capacity to allow the predicted behaviour at
failure. When some doubts may arise, then an explicit calculation of this capacity must be carried out. This paper presents a theoretical
model for the calculation of plastic rotation, considering the influence of the main factors. Some results are presented on the basis of the
model, and conclusions are drawn.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

This is an extended and revised version of reference [1].
Reinforced concrete beams follow a non-linear behav-

iour for high levels of loading and the distribution of bend-
ing moments in continuous beams may differ from the
elastic distribution. This non-linearity is due, firstly, to
the cracking of concrete and, later, for higher loads, to
the yielding of steel. At the sections where the yielding of
steel takes place, the stiffness is so lowered that a plastic
hinge can be assumed to have taken place.

The evaluation of the ductility of reinforced concrete
beams is very important, since it is essential in order to
avoid a fragile collapse of the structure by ensuring ade-
quate deformation at ultimate load. Ductility is defined
as the capacity of a material, section or structure to suffer
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considerable plastic deformation without significant loss
of strength. Ductile elements show signs of failure in the
plastic phase as the collapse load is approached; in addition
to serious deformation they also exhibit severe cracking.
The concept of ductility is related to the moment redistri-
bution capacity and, consequently, to the safety of the
structure. In ductile beams the process of moment redistri-
bution is slow and gradual, with no instantaneous trans-
mission of forces that could eventually cause an abrupt
collapse of the structure.

One of the procedures used to quantify the ductility is
based on the plastic rotation capacity (hpl). The knowledge
of the plastic rotation capacity of certain regions of the
structure is important in a plastic analysis or an analysis
based on moments redistribution (Fig. 1). The plastic rota-
tion capacity of critical regions dictates the available degree
of moment redistribution and the ability to exploit the
additional resistance of hyperstatic structures.

Plastic rotation may be calculated as the integral of
curvatures after reinforcement yielding in the plastified
area, see Eq. (1). However, this equation is not easy to
apply because the curvature has a strongly non-linear
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development along the length of the beam due to the vari-
ation of the bending stiffness between the cracked and non-
cracked sections.

hpl ¼
Z

lpl

1

r
:dx ¼

Z
lpl

es � esy

d � x
:dx ð1Þ

where 1/r is the curvature; es the tensile strain in the steel;
esy the yielding strain; d the effective depth of a cross-sec-
tion; x the neutral axis depth and lpl the length of the plas-
tic zone.

The plastic rotation calculations proposed by codes of
practice are either very simple or very difficult to carry
out. Those very difficult are based on the definition of the
moment–curvature or moment–rotation relationships.
Those very simple are based on a graph relating the rota-
tion capacity with x/d, but only takes into account the steel
type and the slenderness of the member (for example, see
Model Code 1990 or Eurocode 2) [2,3]. The complexity
of the phenomenon is not sufficiently represented by the
simple calculation procedure, and there is a need for a
new intermediate method that combines the simplicity of
the calculations with a good approximation to the actual
behaviour of the structures.

The plastic rotation capacity depends on several interre-
lated factors, which makes the analysis quite difficult. For
linear elements in bending the main factors are: the con-
crete compressive strength, the size and shape of the
cross-section, the compressive reinforcement ratio, the
shear reinforcement ratio, the slenderness of the element,
and the shear force. But the most important factors are
the tensile longitudinal reinforcement ratio, the reinforce-
ment ductility and the bond–slip relationship [4].

Understanding and quantifying how the plastic rotation
capacity varies with the above factors allows a global struc-
tural analysis to be made, where the predicted moment
distribution will be closer to reality. As a consequence,
structures will be more economical because the design of
the elements will be optimised.

The theoretical procedure presented in this paper
models the actual behaviour of structural concrete mem-
bers. Plastic rotation capacity of critical regions can be
worked out by taking into account some parameters,
namely, steel type, concrete strength, rate of longitudinal
steel, shear force and the confining effect on compressed
concrete exercised by the shear reinforcement. Beyond
the determination of the plastic rotation capacity,
the behaviour of the critical regions is also character-
ized by means of a non-linear moment–rotation rela-
tionship.
2. Proposed model: deformable strut-and-tie model

2.1. General description

The deformable strut-and-tie model (DST model) is
based on the truss analogy. DST model is a mechanical
model that consists of dividing a continuous structure into
a hinged structure composed by its components, capable of
both representing the internal mechanisms of force trans-
mission as well as the overall deformation behaviour of
the structure. One of the advantages of this model is to help
the understanding of the internal behaviour of the concrete
member. Michalka completed a study on the model in 1986
[5]. He used the strut-and-tie model to calculate the rota-
tion capacity of plastic hinges, by taking into consideration
the non-linear behaviour of the tension ties and compres-
sion struts.

To discretize a region, the designer should divide it
according the path of the forces throughout a structure.
However, the identification and separation of the compo-
nents may cause some difficulties, since they could interfere
with each other. Normally, three zones can be identified:
compressive, tension and shear zones. The compressive
zone is formed by the compressed concrete and by the com-
pressed bars. The tension zone is formed by the tensioned
bars and by the concrete between cracks. The shear zone
is formed by the stirrups and by concrete. The different
sources of deformability are modelled by struts and ties.
This struts and ties are associated in order to represent
the compressive and tensile stress fields, respectively. The
truss model ensures the compatibility of the deformations
and therefore the static equilibrium. The transfer of the
individual components to the moment–rotation curve,
M–h, of the region studied was thus achieved. Once the
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behaviour of the plastic hinge is characterized by the
M–h curve, it is easy to determine the plastic rotation
capacity. The rotation is calculated based on the deforma-
bility of the tension and compressed zones, with the tension
zone being the most important.

To characterize the behaviour of the various struts and
ties (strength and deformability) the mechanical properties
of materials and the geometric characteristics of the cross-
section must be known.
2.2. Behaviour of the reinforced tie

In a cracked section, the tension forces are supported
by the steel bars alone. However, if a certain length of
a cracked member is considered, then there are cracked
sections and non cracked zones between the cracks, where
the concrete resistance is not negligible. These tension
stresses taken by concrete increases the stiffness of the
tie. This is the so called ‘‘tension stiffening effects’’
(Fig. 2).

Modelling the deformability of the concrete tie follows
the procedure described in Model Code 1990. This model
was chosen because it considers the influence of the tension
stiffening effect, modifying the r–e relationship of the steel.
To overcome the difficulty of steel strain being variable
along the length of the beam (when the concrete is
cracked), the steel strain is described in terms of average
value (Fig. 3).

(i) Uncracked phase, 0 < rs 6 rsr1:
es;m ¼ es1 ð2Þ

(ii) Crack formation phase, rsr1 < rs 6 rsrn:
es;m ¼ es2 �
btðrs � rsr1Þ þ ðrsrn � rsÞ

rsrn � rsr1

ðesr2 � esr1Þ

ð3Þ

(iii) Stabilized cracking phase, rsrn < rs 6 fyk:
es;m ¼ es2 � btðesr2 � esr1Þ ð4Þ
plastic rotation

naked steel curvature
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Fig. 2. Moment–rotation curve
(iv) Post yielding phase, fyk < rs 6 ftk
M

, M–h, o
es;m ¼ esy � btðesr2 � esr1Þ þ d 1� rsr1

fyk

� �
ðes2 � esyÞ

ð5Þ
where es,m is the mean steel strain; es1 strain of reinforcement
in uncracked concrete; es2 the strain of reinforcement in the
crack; esr1 the steel strain at the point of zero slip under crack-
ing forces reaching fctm; esr2 the strain of reinforcement at the
crack under cracking forces reaching fctm; Desr the increase of
steel strain in the cracking state; bt the factor related with the
percentage of concrete cracked, for short-term loading (pure
tension) bt = 0.40, for long-term or repeated loading (pure
tension) bt = 0.25; esy the strain at yield strength; esu the steel
strain (unembedded) reaching ftk; esmu the mean steel strain
reaching ftk; rs the steel stress; rsr1 the steel stress in the crack,
when first crack has formed; rsrn the steel stress in the crack,
when stabilized crack pattern has formed (last crack), for
normal cases rsrn = 1.3.rsr1; fyk the characteristic yield
strength of reinforcement and ftk the characteristic tensile
strength of reinforcement. The coefficient d is related with
the type of steel taking into account the ratio ftk/fyk and
the yield stress fyk. For ductile steel (type A) with
fyk = 500 MPa the value d is equal to 0.8.

In this model the bond between steel and concrete is
considered through the value of bt, which is related with
the mean spacing between cracks. This subject is developed
with more detail in Model Code 1990. It should be pointed
out that the tension stiffening effect is greater before yield-
ing of the steel and less significant after. In theory, there-
fore, a large tension stiffening effect should have a greater
influence on the deformation capacity of beams with a high
tensile reinforcement ratio than on that of beams with a
low tensile reinforcement ratio.

2.3. Behaviour of the concrete strut

To model the deformability of the compressive zone of a
member under flexion through a strut, the constitutive law
for concrete needs to be known. To obtain a more realist
k

1k

θ

2

f the plastic hinge.
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model, a non linear r–e relationship should be considered.
The ultimate strain plays an important role if rupture takes
place by concrete crushing. To adopt a constitutive curve,
the authors followed Eurocode 2 and Model Code 1990
(Fig. 4). For each strength class of concrete, an equation
rc = f(ec) is defined:

rc

fcm

¼ k � g� g2

1þ ðk � 2Þ � g ð6Þ

where g = ec/ec1(ec < 0); ec1 is the strain at peak stress,
ec1ð‰Þ ¼ �0:7:f 0:31

cm and fcm = fck + 8 MPa; k = �1.1.Ecm.
ec1/fcm and Ecm = 22 Æ [(fcm)/10]0.3; Eq. (6) is valid for
0 < jecj < jecu1j, where ecu1 is the nominal ultimate strain;
for concretes with fck < 55 MPa, ecu1 = �3.5 (&); for con-
cretes with fck P 55 MPa, ecu1 = �2.8–27 Æ [(98 � fcm)/
100]4 (&).
2.4. Behaviour of the confined concrete strut

The most practical way of considering the lateral confin-
ing effect on concrete is by modifying the constitutive law
used for short duration axial loads. The usual way of con-
fining the concrete is to use high shear reinforcement ratios.
The concrete only exhibits the lateral confinement effect
when the applied stress is close to the maximum axial
strength. The transverse deformations are higher for those
stresses, owing to the progressive internal cracking, which
forces the concrete against the shear reinforcement. Then
the shear reinforcement exerts a confinement action relative
to the concrete core. This action is, therefore, a passive
confinement.

Section 3.5.2 of MC90 defines a model for analysing ele-
ments to the ultimate limit states under axial loads. In the
absence of more precise data a linear relationship between
f �cc and fcc can be used (Fig. 5)

f �cc ¼ fcc � ð1:000þ 2:50 � a � xwÞ if r2=fcc < 0:05 ð7Þ
f �cc ¼ fcc � ð1:125þ 1:25 � a � xwÞ if r2=fcc > 0:05 ð8Þ
e�c1 ¼ ec1 � ðf �cc=fccÞ2 ð9Þ
e�c;85 ¼ ec;85 þ 0:1axw ð10Þ

where fcc is the unconfined strength; f �cc the confined
strength; xw the volumetric mechanical ratio of confining
steel; a the effectiveness of confinement, equal to an Æ as,
an depends on the arrangement of stirrups in the cross sec-
tion and as depends on the spacing of the stirrups; and r2

the effective lateral compression stress due confinement.
The CEB Bulletin of Information no. 228 proposes altera-
tions to the above equations when the concrete compres-
sive strength is higher than 50 MPa. Eq. (7) is modified
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as shown in Eqs. (11), (8) disappears and Eq. (10) is mod-
ified as shown in Eq. (12)

f �cc ¼ fcc � ð1:000þ 1:50 � a � xwÞ ð11Þ
e�c;85 ¼ ec;85 þ 0:05axw > e�c1 ð12Þ

The application of this model, defined for elements
under axial loads, to the compressive zone of elements
under bending-moment can introduce some mistakes
because, in the latter situation, the reinforcement ratio con-
fines the concrete less efficiently. The compressive stresses
due to bending are not uniform throughout the compres-
sive zone, with the compressive stress varying from a max-
imum at the most extreme fibre to zero at the neutral axis,
and so the lateral strain are also variable. As a conse-
quence, the lateral confinement stress provided by shear
reinforcement will also not be constant throughout the
compressive zone. However, the approach of considering
the lateral confinement stress to be constant seems to be
acceptable because the compressive zone in beams close
to failure is relatively small and because the confining effect
is larger in fibres where the concrete strains are greater. It is
M

Fig. 6. Division of the critical zone
in those fibres that the confining action is most important.
MC90 also contains a comment that leaves open the
hypothesis of applying this confining model to the concrete
in beams. In Section 3.5.2.1 of MC90 there is a reference to
the case of the compressive zone of beams, in which the
neutral axis may be considered as a ‘‘solid’’ border limiting
lateral expansion.
2.5. Length of the plastic hinge

Several researchers confirmed experimentally the
assumption that the plastic hinge has a length equal to
the effective depth of the section seems to be the most cor-
rect one [4,6]. Eurocode 2 makes a reference in Section
5.6.3 that supports the options of this paper: the length
of the plastic hinge is approximately 1.2 times the depth
of section. It is important to emphasise that the hypothesis
of a constant plastic hinge length, adopted in this study,
being an approximation to the actual behaviour, is widely
accepted as sufficiently accurate for practical proposes.
However, for particular situations, beams with low tensile
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reinforcement ratios containing low ductile steel, this
assumption could be a gross approach and could overesti-
mate the plastic rotation capacity. In these members the
plastic deformations are located near the critical crack over
a very short length of bar.

In the case of simple bending, the region in study should
be divided in small portions with short lengths to enable
the evaluation of the influence of the bending moment/
shear force ratio and the variation of the length of plastic
hinge during the load history.
3. Application of the model to the case of pure bending

In this case the critical zone is divided into two sub-
regions: a compression zone (concrete and compressed steel
bars) and a tension zone behaving as a reinforced concrete
tie (Fig. 6). Where k1 represents the tension tie; k2 the con-
crete strut which do not have a fixed position, since the dia-
gram of the concrete stresses is not constant (a slide was
provided to allow vertical displacements of the strut); k3

the steel bars in compressive zone and lpl the length of
the plastic zone.
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For a particular moment value, the total rotation, htotal,
might be worked out, accordingly to Eq. (13), by calculat-
ing the total deformation of the tensioned concrete tie,
dtension, and the total deformation of the compressed strut,
dcompr (this is the total deformation at the level of the resul-
tant of the compressive stresses). As usual, z is the lever
arm.

htotal ¼
jdtensionj þ jdcomprj

z
ð13Þ
To quantify the forces installed in struts and ties, some
basic assumptions need to be assumed for the behaviour
of reinforced concrete members in flexure. A classical
assumption is the Bernoulli hypothesis which considers
that plane sections remain plane after deformation. This
assumption is valid if bonding between concrete and steel
is perfect. However, this condition is not real when the
sections are close to the ultimate load. The compatibility
condition is defined by Eq. (14)

ec

es

¼ jxj
d � jxj ð14Þ
0.30 0.40 0.50

x/d

C90/105 
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le x/d (class S of steel).
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The principle of equivalence should also be considered.
There should exist an equivalence between strains, stresses,
and internal forces.

4. Application of the model to the case of simple bending

In the presence of shear force, the behaviour of the crit-
ical region can be modelled by a truss designed to resist the
internal forces recorded in the maximum load situation. At
the beginning of the 20th century, Mörsch was the first
researcher to develop the theory of the truss analogy that
allows the design of members with shear reinforcement.
The truss mechanism admits that concrete between diago-
nal cracks works as a compressed strut, that the stirrups
are tension ties and the bending tension/compressed zone
(in the top and bottom of the beam) are also truss struts
and ties.

The first difficulty in the strut-and-tie model conception
for these regions is defining the angle between concrete
compression struts and the main tension ties. Bearing in
mind that the strut-and-tie model is not applied to whole
length of the beam, but only to the plastic hinge region,
the question of the struts’ angle is particularly important.
In the design model codes, Mörsch’s truss is usually taken
to have compressed struts with a 45� angle with the beam
axis. In some situations that supposition gives rise to con-
servative results. The latest version of EC2 allows an angle
other than 45� to be adopted, with limit values of 22� and
45� being recommended.

The strut angle inclination is approximately equal to the
inclination of the cracks and it depends on the ratio
between the shear force and bending-moment. Studies
accomplished by Graubner show that crack inclination
decreases as the distance to the support increases [7]. In
regions close to the sections where the concentrated forces
are applied the diagonal cracks stop being parallel to one
another and start to converge directly towards the com-
pressed zone.
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The strut-and-tie model proposed in Fig. 7 is based on
the crack inclination observed in experimental tests, on
the main stress direction obtained in a finite elements
model and on studies carried out by other researchers,
notably Michalka [4,5,8–10]. Regarding the statements
mentioned above, it should be noted that the angle between
the concrete compression struts and the horizontal axis is a
fundamental factor in the study of the shear force influence
on the plastic rotation capacity. On the one hand, the pres-
ence of the shear force makes the beam work as a truss and
causes a tension force shift in the longitudinal bars, and on
the other, the presence of the shear force prevents the aver-
age strain from being constant, in comparison with the
pure bending situation, causing it to have a decreasing var-
iation. This implies smaller rotations for the same moment.
Taking into account these considerations, it can be seen
that shear force can increase or reduce the rotation capac-
ity of the critical beam regions (increase or reduce the
length of the plastic hinge), depending, essentially, on the
angle assumed for the diagonal struts.
5. Parametric study

On the basis of the model presented some extrapolations
can be made with respect to plastic rotation capacity. In the
following graphs the plastic rotation capacity is related to
several variables. In this study the main parameters are: a
constant cross section of 400 · 250 mm, concrete strength
classes C25/30, C55/67 and C90/105, and steel ductility
classes B, A and S (according to Model Code 1990). The
calculations were carried out by considering the character-
istic values for the materials.
5.1. Influence of the concrete strength

From the analysis of the graph on Fig. 8 it can be
observed that, for sections with the same neutral axis
0.30 0.40 0.50

/d

Classe S

Classe A

Classe B

x/d (C25/30 of concrete).
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depth, x/d, the increase of the concrete strength originates
a decreasing of the plastic rotation. The peak point corre-
sponds to sections where the failure occurs simultaneously
by the reinforcement and by the concrete. The right zone of
the peak point corresponds to section failures by crushing
of the concrete and the left zone corresponds to section fail-
ures by the steel reinforcement. For different concrete clas-
ses the differences are more noticeable in the right zone.
For example, a shift of 4 · 10�3 rad may be found when
comparing C25/30 to C90/105 concretes. This might be
explained by the fact that ecu decreases with the increasing
of the concrete strength, consequently conditioning the
value of the maximum rotation. Furthermore, the hpl–x/d
curves corresponding to higher strength concretes suffer a
slight translation to the left relatively to the C25/30 curve.
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This is explained by the fact that the use of high strength
concretes, for the same amount of tensile reinforcement,
results in reduced neutral axis depth when compared to
normal strength concrete.
5.2. Influence of the steel ductility

Steel ductility has a key influence on plastic rotation
when the section fails by the reinforcement. Steel ductility
is usually evaluated through 2 parameters: the ft/fy ratio,
and the strain of steel at maximum load, esu. It is normally
accepted that, smaller values of the ft/fy ratio lead to
shorter lengths of the plastic hinge. As far as the effects
of variation of esu are concerned, larger values of esu result
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in higher maximum curvature values and, consequently, to
larger rotation capacity values.

As it would be expected, the steel class has a consider-
able effect on the capacity of plastic rotation when the sec-
tion fails by the reinforcement and has a null influence
when the section fails by concrete crushing (Fig. 9). It
can be observed that the more ductile the steel is, the higher
the rotation capacity turn out to be.

5.3. Influence of the shear reinforcement ratio

The graphs in Figs. 10 and 11 clearly show that plastic
rotation capacity grows with increasing shear reinforce-
ment ratio. This increase is only relevant in the descending
0

10

20

30

40

0.00 0.10 0.20 0

x

θ p
l
(1

0
-3

ra
d

)

Fig. 12. Relationship between hpl and the parameter x/d for concre

0

8

15

23

30

38

45

2.00 3.00 4.00 5.

M

θ p
l(

1
0

-3
ra

d)

Fig. 13. Relationship between hpl and M/(V Æ d) for concrete cla
part of the hpl–x/d curves because the concrete confinement
is only advantageous when the section fails by concrete
crushing. Another aspect of the comparisons in the graphs
in Figs. 10 and 11 is that, the benefit in terms of increased
plastic rotation capacity is greater in normal strength con-
cretes than in high strength concretes.

For class C25/30 concrete the plastic rotation capacity
increases about 16 · 10�3 rad when it passes from a situa-
tion of no transverse reinforcement to a situation where
the stirrups have a diameter of 8 mm and are 100 mm
apart. For the same variation of shear reinforcement but
for class C90/105 concrete, the increment of plastic rota-
tion capacity is about 5 · 10�3 rad. This difference is
caused by the theoretical model considering a different
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confinement action for concretes whose strength is above
50 MPa. The increase in plastic rotation capacity with
increasing shear reinforcement ratio is essentially due to
the enlargement of the ultimate concrete strain. In Figs.
10 and 11, / is the diameter of a reinforcing bar; Asw the
transverse reinforcement area and s the distance between
stirrups.
5.4. Influence of the shear force

Fig. 12 shows that the larger the shear force, V, (smaller
M/(V Æ d) relationship) the smaller the plastic rotation
capacity. The shift from a pure bending situation to a sim-
ple bending situation with a M/(V Æ d) relationship equal to
2.0, the plastic rotation capacity reduction is approxi-
mately 5 · 10�3 rad. These results contradict those found
by other researchers (Pommerering and Graubner), who
concluded that shear force exerts a favourable effect on
plastic rotation capacity due to a tension force shift in
the longitudinal reinforcement. The model proposed here
does not ascribe this beneficial effect to the shear force,
because of the angle assumed for the inclined struts. This
model effectively contemplates the tension force shift but,
for the angles of inclination adopted, there is also a
decrease in the variation of the tension force in sections
close to point where the moment is maximum.

MC90 does not consider the influence of the shear force
on the plastic rotation capacity, the hpl-x/d curves recom-
mended depend solely on steel ductility. With respect to
this subject, EC2 is more complete. It defines a correction
factor kk ¼

ffiffiffiffiffiffiffiffi
k=3

p
when the M/(V Æ d) relationship is differ-

ent of 3. In Fig. 13, the results of the theoretical model are
compared with the recommendations in EC2. This graph
relates the plastic rotation capacity to M/(V Æ d) for curves
with different x/d values. There was found to be a similar
tendency relative to the shear force influence, namely, the
smaller the shear force the higher the plastic rotation
capacity. However, that influence is quite muted according
to the model and considerably more preponderant accord-
ing to EC2.

6. Conclusions

This paper presents a theoretical model for the evalua-
tion of the M–h relationship of the plastic hinges in rein-
forcement concrete beams. The proposed model is a
physical model which is able to evaluate the rotation capac-
ity of a critical zone of a structural concrete member. This
is an advantage when compared to the classical strut-and-
tie model. This model takes into account some parameters
that are fundamental for deformability study (concrete
strength, steel ductility, shear reinforcement ratio and shear
force). The consideration of high strength concrete is
important, since the material is less ductile than normal
strength concrete.

The influence of the concrete strength and the influence
of the steel ductility in the plastic rotation capacity were
studied. It was found that for sections with the same x/d
value, the increasing fck originates a decrease of plastic
rotation capacity and the steel ductility only influences
the value of plastic rotation capacity when the section fails
by the reinforcement (low values of x/d).

It was concluded that the increase in the plastic rotation
capacity with increasing shear reinforcement ratio is
greater in normal strength concretes than in high strength
concretes. It was also verified that, larger the shear force
result in a lesser plastic rotation capacity. In this area there
was found to be a slight difference between the model’s
results and the EC2 recommendations. The proposed
model indicates that the influence of shear forces is weaker.

The DST model was applied to simple situations (pure
and simple bending) and it needs to be generalised for other
situations. This model could be a powerful tool for the
study of discontinuities regions in structural concrete
members.
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