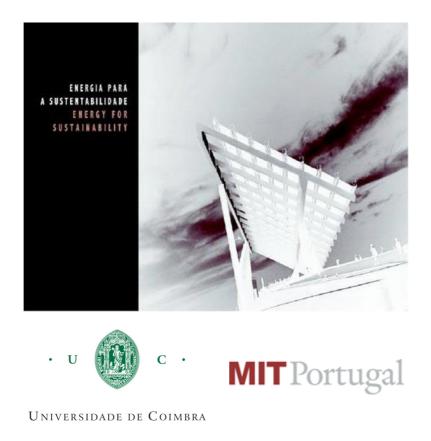


José Eduardo Fernandes Dias


Energy and CO2 Emissions in the EU's Economies

Master in Energy for Sustainability

2014

Universidade de Coimbra

José Eduardo Fernandes Dias

Energy and CO2 Emissions in the EU's Economies

Dissertation submitted for the degree of Master's in Energy for Sustainability

Supervisor: Professor Luís Cruz

2014

Universidade de Coimbra

Acknowledgements

I would never have been able to finish my dissertation without the guidance of my supervisor, help from colleagues and support from family and friends.

I would like to express my deepest gratitude to my supervisor, Professor Luís Cruz, for his excellent guidance, caring, patience, stimulating suggestions and encouragement. The biggest certain that I have at the end of this project is that it wouldn't have been possible to get to this point without his and Professor Eduardo Barata assistance.

The colleagues that I've had during this journey immediately became friends.

And to my friends I want to say that they were essential. From the one who offered me the monitor to the one that designed my cover page and last but not least important, all the ones that have listened to my worries.

Fundamental was also the support from my parents, brother and grandfather, no words can express how I am eternally grateful to them.

This work has been framed under the Energy for Sustainability Initiative of the University of Coimbra and supported by the R&D Project EMSURE - Energy and Mobility for Sustainable Regions (CENTRO 07 0224 FEDER 002004).

Abstract

Sustainability has been traditionally focused in the three pillar model - Economy, Ecology and Society - all considered to be interconnected and mutually enforcing pillars. One of today's major challenges is to tune environmental sustainability with economic growth and welfare by decoupling resources use and environmental degradation from the growth of the economy. However, the continuous growing demand for energy and resources - to sustain human needs and economic growth - and corresponding consequences on climate change are challenging this objective.

The main aim of this work is to assess these energy-economy-environment interactions by focusing on the analysis of energy and CO2 emissions intensities through a comparative examination of their recent progress in the EU countries, using data from the World Input Output Database (WIOD). The analysis of the progresses achieved in these indicators will be performed both by assessing whether resources use and/or environmental degradation are decoupling from the growth of the economies, and by the decomposition of the overall rates of change of energy and CO2 emissions into the different explanatory effects contributing to such progression (using a LMDI-Logarithmic Mean Divisia Index approach).

One of the major contributions expected from this work is to derive policy recommendations from the analysis of energy and CO2 emissions intensity trends, with a greater geographical and temporal focus than prior studies (by exploiting the international dimension of the WIOD).

Assessing decoupling became evident that to accomplish the important move towards more energy (resource) and CO2 emissions (impact) efficient economies there are still many improvements to be made. All countries have increased Gross Domestic Product (GDP) but a noteworthy number of them are still increasing energy use and/or CO2 emissions. Further, although the less developed EU regions (East) are registering interesting structural improvements they still have a long way to go until reaching the higher stages of development. Accordingly, if the economic activity growth in the East countries is particularly desirable to get closer to the richest EU countries, it reinforces the governments and the EU institutions' need to analyze the other explanatory effects in order to improve the intensity indicators in this European region. To this, there is the need to combine the already interesting results in terms of the intensity effects with improvements to be achieved by moving to less energy (and CO2 emissions) intensive structures of these economies.

Keywords: Sustainability, Energy Policy; Energy Intensity, CO2 Emissions Intensity; Decoupling; Decomposition Analysis.

Resumo

A sustentabilidade é geralmente associada à interligação e reforço mútuo de três pilares – a Economia, a Ecologia e a Sociedade. Um dos maiores desafios da sociedade atual é o de conciliar sustentabilidade ambiental com crescimento económico e bem-estar humano, utilizando os recursos de forma eficiente e protegendo o ambiente. No entanto, a crescente procura de energia e recursos - para satisfazer as necessidades humanas e o crescimento económico - e correspondente impacto em termos de alterações climáticas têm colocado em causa este desafio.

O principal objetivo deste trabalho é o de estudar as interações energia-economia-ambiente através de uma análise comparativa da evolução recente das intensidades (energética e das emissões de CO2) nos países da UE, usando dados da *World Input Output Database (WIOD)*. A avaliação do progresso destes indicadores será concretizada analisando, por um lado se o uso de recursos e/ou a degradação ambiental seguem a mesma tendência do crescimento das economias e, por outro através da decomposição das taxas de variação do uso de energia e das emissões de CO2 em fatores explicativos dessa evolução (usando a abordagem *LMDI-Logarithmic Mean Divisia Index*). A partir desta avaliação, com um foco geográfico e temporal mais alargado que estudos anteriores (explorando a dimensão internacional da WIOD) procede-se à derivação de recomendações de política.

Comparando a evolução das intensidades com o crescimento do Produto Interno Bruto (PIB), torna-se evidente que para atingir uma UE mais eficiente há ainda um longo caminho a percorrer. Todos os países viram crescer o PIB, mas há um número considerável de países onde o uso de energia e/ou as emissões de CO2 ainda continuam a aumentar. Assinala-se igualmente que as regiões menos desenvolvidas (Leste) da UE, apesar de estarem a alcançar resultados interessantes ao nível da estrutura da economia, estão ainda longe de atingir os níveis de desenvolvimento de outras regiões. Deste modo, e sendo o crescimento da atividade económica particularmente desejável nestes países (de forma a convergirem para os patamares dos mais desenvolvidos), sai reforçada a necessidade dos governos nacionais e das instituições Europeias se focarem na evolução de outros fatores explicativos, de modo a melhorar os indicadores de intensidade desta região europeia. Para o efeito há necessidade de combinar os já razoavelmente bons resultados em termos de eficiência energética com melhorias a alcançar ao nível da transição para uma estrutura das economias menos intensiva no uso de energia (recursos) e na geração de emissões de CO2 (impactos).

Palavras-chave: Sustentabilidade, Política Energética, Intensidade Energética, Intensidade das Emissões de CO2; Análise de Decomposição.

Ackı	nowled	lgements	i
Abst	ract		. ii
Resu	ımo		iii
Tabl	e of Co	ontents	iv
I.	Introd	luction	. 1
II.	Energ	y-economy-environment interactions: Scope of analysis	.4
1.	Ene	rgy and CO2 intensities	.4
2.	The	analysis of Decoupling	. 5
3.	Ene	rgy and CO2 emissions changes: Decomposition Analysis	.7
III.	Metho	odological background and Data	. 8
1.	Nat	ional Accounts	. 8
2.	The	classic Input-Output modelling framework	. 8
3.	Env	ironmental extensions of the Input-Output framework	12
4.	The	World Input Output Database	14
5.	Dat	a treatment	17
	5.1	Approaches to derive GDP from the IO Tables	18
	5.2	Converting monetary values at current prices into constant prices	20
	5.3	Currencies' conversion	22
6.	Dec	composition analysis of energy and CO2 emission changes	23
IV.	Resul	ts and Discussion	28
1.	Inte	nsity and trends	29
	1.1	Energy and Resource Decoupling	30
	1.2	CO2 emissions and Impact Decoupling	34
2.	Inde	ex Decomposition Analysis	39
	2.1	Energy Use	39
	2.2	CO2 emissions released	47
V.	Concl	usions and Recommendations	55
Appe	endix A	A Summary of Energy and CO2 emissions progress (1999-2009) by country	59
Appe	endix H	3 Summary of the fuel use mix changes (1999-2009) by country	73
Refe	rences		74

Table of Contents

List of Equations

Equation 2 - Output with returns to scale 11 Equation 3 - Production 11 Equation 4 - Fundamental matrix representation of IO analysis 12 Equation 5 - GDP - product approach 18 Equation 6 - GDP - expenditure approach 19
Equation 4 - Fundamental matrix representation of IO analysis
Equation 5 - GDP - product approach
Equation 6 - GDP - expenditure approach
Equation 7 - Value added 19
Equation 8 - Value Added from the WIOD 19
Equation 9 - Intermediate inputs
Equation 10 - Intermediate consumption
Equation 11 - Value Added decomposition
Equation 12 – GDP from the WIOD
Equation 13 - Deflator
Equation 14 – Deflator - Index after the base year
Equation 15 – Deflator - Index before the base year
Equation 16 - Energy consumption decomposition25
Equation 17 - Energy consumption change
Equation 18 - Energy change decomposition's effects
Equation 19 - Energy change explanatory effects' calculation
Equation 20 - CO2 emissions decomposition
Equation 21 - CO2 emissions change decomposition's effects
Equation 22 - CO2 emissions change explanatory effects' calculation

List of Tables

Table 1 - Simple T-account for domestic production	
Table 2 - Input-Output Transactions table	10
Table 3 - Schematic representation of an environmentally-extended IO table	13
Table 4 - WIOD data assessed	15
Table 5 - The 27 EU member countries considered	15
Table 6 - Energy commodities	
Table 7 - WIOD industry disaggregation (35)	17
Table 8 - Eurozone countries	
Table 9 - EU member states' currencies outside the Eurozone	
Table 10 – Comparison of IDA with SDA decomposition techniques	
Table 11 - EU 27 groups	
Table 12 - Energy Decomposition explanatory effects	
Table 13 - CO2 emissions decomposition explanatory effects	

List of Figures

. 6
. 9
28
30
31
32
33
35
36
37
38
41
41
42
43
43
44
45
46
49
49
50
51
51
52
53

I. Introduction

The Paris Summit of the European Economic Community (Community, 1972) is often used to spot the beginning of the European Union's (EU) environmental policy. The environmental policy has developed remarkably in the past four decades, becoming an essential area of European politics (Baldock, 2013). From 1973 to 2012, many of the ideas behind "sustainable development" have been emerging in the six Environmental Action Programs (EAP) meanwhile adopted. Today, the EU has some of the most progressive environmental policies in the world.

Initially, EU environmental policy was rather inner looking. More recently, however, the Union has demonstrated a growing leadership in global environmental governance. The role of the EU in securing the ratification and entry into force of the Kyoto Protocol (in the face of US opposition), as well as the EU's leader role in its successor – the Copenhagen Accord (UNFCCC, 2009) – are examples in this regard. Accordingly, one of the top priorities of EU environmental policy is fighting climate change, and this makes the environmental and the energy policies even more interconnected than before.

In 2007, the member states agreed that, by 2020, the EU is to use 20% renewable energy, to reduce carbon dioxide (CO2) emissions by at least 20% compared to 1990 levels, and 10% of the overall fuel quantity used by cars and trucks should be running on renewable energy such as biofuels (EREC, 2013). This is considered to be one of the most ambitious moves of an important industrialized region to fight climate change. Further, on December 2011, through the Communication "Energy Roadmap 2050" (European Commission, 2011), the EU has committed to reducing greenhouse gas emissions to 80-95% below 1990 levels by 2050 (in the context of necessary reductions by developed countries as a group). In this "Energy Roadmap 2050" the European Commission explores the challenges posed by delivering the EU's decarbonization objective while at the same time ensuring security of energy supply and competitiveness. This clearly reinforces the guidance of the EU energy policy throughout the last decades by the continuous search for a balanced management amid the opportunity costs of three critical goals: energy security, environmental protection and economic growth (Cruz and Barata, 2011).

Fighting climate change thus requires putting together and exploring the interconnections between energy, environmental and economic policies and, thus, is much in line with the pursuance of sustainability.

Sustainability has been traditionally focused in the three pillar model - Economy, Ecology and Society - all considered to be interconnected and mutually enforcing pillars. Indeed, the Sustainable development approach considers the integration of economic development, social progress and environmental protection (often measured through Gross Domestic Product (GDP) analysis, employment and impacts on Greenhouse Gas (GHG) emissions, respectively).

One of today's major challenges is to tune environmental sustainability with economic growth and welfare by decoupling resources use and environmental degradation from the growth of the economy. However, the continuous growing demand for energy and resources - to sustain human needs and economic growth - and corresponding consequences on climate change are challenging this objective.

Further, improving energy efficiency has received growing attention as a key component of sustainable development that would tackle energy security and poverty while addressing climate change concerns. E.g., at the EU level, in 2012 was adopted the Energy Efficiency Directive in reaction to the fact that EU Member States were not on track with the 20% reduction of primary energy consumption by 2020 (EEA, 2013a). According to the IEA (2012), efficiency improvements in the use of energy could alone achieve the 31% of the emission reduction necessary to halve emissions by 2050 compared to 2009 levels. This study intends to add to the analysis of energy and CO2 emissions intensities through a comparative examination of their recent progress in the EU countries.

Accordingly, the main aim of this research is to contribute to raising the level of general awareness of the complex interactions between energy, economic and environmental issues. For this, the energy use and the CO2 emissions embodied in the economic activity, as well as the corresponding energy and emission intensities, will be assessed for the 27 EU countries, using data from the World Input Output Database (WIOD). Further, through the analysis of corresponding trends, this study also intends to analyze whether resources use and/or environmental degradation are decoupling from the

growth of the economies, as well as to estimate the explanatory effects of the rates of change of aggregate energy use and CO2 emissions.

Accordingly, one of the major contributions expected from this work is to provide an analysis of energy and emission intensity trends, with a greater geographical and temporal focus than prior studies, by exploiting the international dimension of the WIOD database. The processed information has the potential to help police makers to make better-informed decisions.

To fulfill its objectives, this study is structured as follows: In Chapter 2 there is a discussion on energy use, CO2 emissions released and corresponding intensities, as well as on the analysis of their changes, particularly through the concepts of Decoupling and Decomposition Analysis. Chapter 3 encloses the crucial information on how the empirical analysis is performed and provides a brief review of the theory and methods, as well as a description of the calculation procedures and data treatment requirements. Chapter 4 presents the main results and its discussion, firstly by analyzing energy and emission intensity trends and secondly by decomposing the different explanatory effects contributing to such progression, for each of the 27 EU countries. Chapter 5 concludes with a summary of the most important findings and the derivation of corresponding policy recommendations.

II. Energy-economy-environment interactions: Scope of analysis

Several of the earth's crucial environmental problems derive from the energy demand to sustain human needs and economic growth. Indeed, all goods and services produced in an economy are directly or indirectly associated with energy use and, as current energy production and use patterns rely heavily on the combustion of fossil fuels, also to CO_2 emissions (Cruz, 2002). Therefore, this work intends to assess these energy-economy-environment interactions by focusing on the analysis of energy and CO_2 emissions intensities and their trends in the 27 EU member states. The analysis of the progresses achieved in these indicators will be performed both by assessing (resource and impact) decoupling and by the decomposition of the rates of change of energy and CO_2 emissions in their main explanatory effects.

1. Energy and CO2 intensities

Energy efficiency improvements are generally considered as (one of) the best strategy to reduce CO2 emissions, to limit the energy dependence and to alleviate the effects of oil price increase. Most EU countries have been implementing energy efficiency programs and there is the need to monitor the energy performance achieved in order to evaluate the impact of these policies and to tune them for the near future. Besides the assessment of each countries' case it is also particularly relevant to compare the experience – both in terms of policy measures and in terms of results – of the different countries (Medener, 2013).

Economy-wide energy efficiency indicators have been developed and applied for evaluating, monitoring and explaining country comparisons in energy performance. Energy efficiency occurs when the level of service is maintained with reduced amounts of energy used. However, at the level of the aggregate economy, energy efficiency is not a meaningful concept because of the heterogeneous nature of the output. Accordingly, when multiple technologies or multiple products underlie what is being compared it is crucial to distinguish between energy intensity and energy efficiency. Indeed, while it would not be sensible to compare e.g. the energy efficiency of steel production with the energy efficiency of ethanol production, it is possible to compare the energy intensity for all the industry sectors. Therefore, it is not surprising that energy intensity has been a particularly relevant issue in many energy studies and the focus of many policy programs to lower anthropogenic CO2 emissions and thus combat climate change (Liddle, 2012). Assumptions about energy intensity and how it changes often form the backbone of energy use and CO2 emissions projections. Policies to decrease energy intensity are generally recognized as an important means to reduce energy-related CO2 emissions and save exhaustible fossil fuel resources - coal, oil and natural gas (Farla and Blok, 2001), while simultaneously promoting economic growth (Wang, 2013).

In general terms, energy intensity is measured as the quantity of energy required per unit of output or activity, so that using less energy to produce a product reduces its intensity. Thus, high (low) energy intensities indicate a higher (lower) cost of converting energy into wealth.

Energy intensity is a ratio and thus there are several variants of the indicator, taking into consideration different elements in the numerator and/or in the denominator of the ratio. Nevertheless the most common measure of energy intensity is drawn from the International Energy Agency's (IEA), namely total primary energy supply (TPES)¹ divided by GDP. Largely, both the principles of analysis and the procedures to estimate energy intensities can be applied almost straightforward to (energy-related) CO2 emissions intensities.

2. The analysis of Decoupling

The analysis of energy and CO2 intensities through time is closely interconnected with the concept of decoupling. The OECD was the first international body to adopt the concept of resource decoupling, treating it as one of its main objectives in the 'OECD Environmental Strategy for the First Decade of the 21st Century'. Since then the term decoupling has been applied in several situations and to innumerous subjects, generally to translate the idea of using less resources per unit of economic output and/or of breaking the link between "environmental bads" and "economic goods" (UNEP, 2011).

¹ TPES accounts for all the energy consumed within a country (including energy imports and excluding energy exports); in addition, it adjusts for the energy consumed in producing electricity and, as such, is different from delivered energy (also called net energy or total final consumption (TFC)). Thus, TPES measures the total amount of energy used by a country in that country's economic activity. Because of the energy losses incurred in generating electricity and the increased use of electricity as a final energy supply, TFC is less than TPES, although the ratio of TFC to TPES has been declining in OECD countries to an average of 0,72 (Liddle, 2012).

In this work it is first considered the distinction between resource and impact decoupling, and then between relative and absolute decoupling.

On the one hand, resource decoupling means reducing the rate of use of resources (e.g. energy use) per unit of economic activity (GDP) and thus could be referred to as increasing resource productivity. On the other hand, impact decoupling requires increasing economic output while reducing negative environmental impacts (e.g. CO2 emissions), and thus could be referred to as increasing eco-efficiency.

Figure 1 (UNEP, 2011) illustrates the two types of decoupling, applied to sustainable development, namely resource decoupling and impact decoupling.

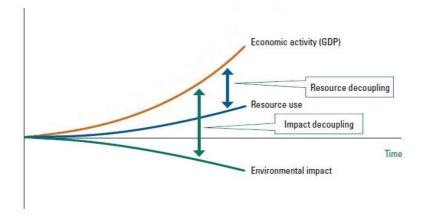


Figure 1 - Resource and Impact Decoupling

Indeed, to grow without damaging the environment, economies need to decouple from its ecological impact. This can result from technological progress (e.g. by moving from heavy industry to services, using renewable energy, recycling or increasing energy and material efficiency, and thus decreasing the amount of CO2 emissions released into the atmosphere) and social development (which may reduce anthropogenic CO2 emissions by having a more educated society with higher awareness of the climate concerns). If an economy is growing, then efficiency gains have to happen faster than the growth.

Further, when an economy is growing it is particularly relevant to distinguish between relative and absolute decoupling. Relative decoupling (of resources or impacts) means that the growth rate of the environmentally relevant parameter (resources used or some measure of environmental impact) is lower than the growth rate of a relevant economic indicator (e.g. GDP). Absolute decoupling, in contrast, means that resource use (or environmental impact) declines, despite of the growth rate of the economic driver.

3. Energy and CO2 emissions changes: Decomposition Analysis

The analysis of energy use and CO2 emissions changes are also meaningful as it has potential to highlight signals of human development and progress, namely through its connection with changes in the economic structure, fuel mix, and/or the technological level of a country (Sun, 2002). E.g., the IEA (2004) reports that the energy intensity of final consumption of the OECD countries has declined by a third between 1973 and 1998, due to declines in sub-sectoral energy intensities - manufacturing, households, transportation and services (which accounted for approximately 80% of the energy intensity reduction), and to structural changes in consumption (accounting for the remaining reduction).

Decomposition Analysis provides important insights regarding trends in both energy use and energy intensity changes. Changes in aggregate energy intensity are usually decomposed into a structural effect (the impact associated with the output structure of an economy) and an intensity effect (the impact associated with changes in sectoral energy intensity) (Wang, 2013). Further, this type of analysis allows for an extension to the trends in CO2 emissions and CO2 emissions intensity. When analyzing the changes in aggregate emission intensity two additional effects are measured; energy-mix effect (the impact associated with changes in the sectoral energy mix) and emission-factor effect (the impact associated with changes in the carbon emission factors).

Such decomposition analysis is particularly relevant when comparing countries, as they typically have and use different energy (re)sources, diverse degrees of economic specialization, and present different sizes (both in terms of the overall population and of the overall scale of the economy), and thus it is important to distinguish how much of the overall evolution of an aggregate is due to the progress of specific components.

III. Methodological background and Data

In this chapter the methods and data used are described. First with the fundamental concepts (IO tables and environmental extensions) behind WIOD. Secondly with the explanation of the data treatment necessary. Finally the different methods used to perform the analysis are explained.

1. National Accounts

The System of National Accounts (SNA) is a standardized accounting system representing all economic activities in a given national economy. Its origin dates back to the 1920s, but it was first after World War II that a standardized system of national accounts was established internationally, under the auspices of the United Nations. The first version was published in 1953, followed by revisions in 1968, 1993 and 2008, and it is under continuous development. The European System of Accounts (ESA), updated in 2010, is the equivalent system used by the EU member countries (EEA, 2013b). This kind of structured and comprehensive data framework, comprising sectoral data for both domestic and external consumption and production, allows for the derivation of several macro-economic indicators (such as, e.g.: Gross Domestic Product (GDP), National Income, Gross Value Added of industry branches, Trade Balance and Net Savings) as well as for performing comparisons between countries and/or regions. It is also important to notice that this data framework allows for the derivation of those indicators, but often specific measures (as, e.g., the GDP) are not just directly taken, rather there is the need to follow some procedures in order to estimate it. Further, specific procedures are also needed regarding e.g. currencies conversion and/or adjustments to measure at constant or at current prices, in order to then allow for comparisons between countries or for the analysis of the progress through time within a specific country. Some details on the adjustments needed for particular purpose will be presented in a following section regarding the needs for the empirical assessment proposed in this work.

2. The classic Input-Output modelling framework

The SNA also provides the detailed data required for the implementation of Input-Output (IO) approaches. In an IO approach the economic structure is defined in terms of sectors, and this provides a modelling framework for asking specific questions about the relationship between economic structure and economic action. Moreover, extensions of the traditional input-output model can be performed, making particularly explicit the link between the level of economic activity in a country, its corresponding impact on the environment, and/or the corresponding energy interactions. Thus, such an approach provides a consistent and systematic tool to evaluate impacts of measures regarding the achievement of both pollution control and sustainable development (Cruz, 2002).

The simplest way to represent a national economy is breaking it down into a two sector model, only with industries on one side and households on the other. The two establish connections via transactions, physical and monetary flows. Households represent the largest final user of products, industries represents the production of those.

Figure 2 (EEA, 2013b) represents a closed economy, thus the production of goods and services and its final use are closely related.

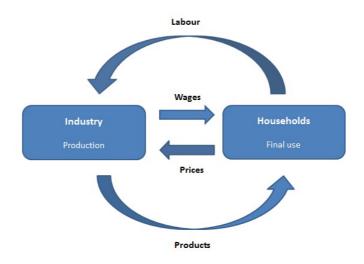
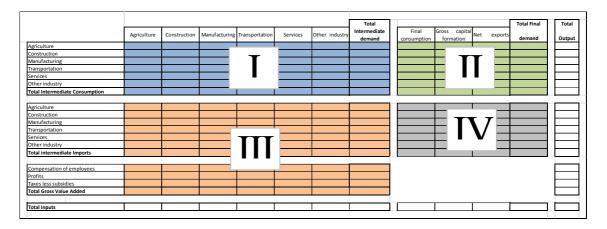


Figure 2 - Simplified 2-sector model of a national economy

A more disaggregated way to present the flows shown above is through a T-account table (Table 1), in which on the left is represented the production of goods and services and on the right the use of those products.

Inputs	Outputs
• Intermediate products supplied for domestic production	Intermediate products used for domestic production
• Imported intermediate products	
Gross Value Added	• Final use of domestic production
Compensation of employees	Final consumption expenditure
Profits	Gross capital formation
Taxes less subsidies	Exports
Input for domestic production	= Output from domestic production


Table 1 - Simple T-account for domestic production

Source: Adapted from EEA (2013b)

The total value of inputs for domestic production should be exactly balanced with the value of the outputs from domestic production, as everything which is produced is used, either as a final or as an intermediate good.

Among the fundamental information used in input-output analysis figures the flow of products from each industrial sector, considered as a producer, to itself and to each of the other sectors, considered as (intermediate) consumers. This representation can be also named as an inter-industry transactions table - Quadrant I in Table 2.

 Table 2 - Input-Output Transactions table

Source: Adapted from Miller and Blair (1999)

In Table 2 each economic activity is represented simultaneously in a column and a row. Reading by rows, on the left hand side (Quadrant I) there are the intermediate products for use by the other sectors of the economy, while the right hand side (Quadrant II) shows the end destination (households, government and export) of final products from each economic activity (e.g., electricity is sold both to businesses in other sectors as an input to their production but also to residential consumers as a final product). Reading by columns, Quadrant I shows the domestically produced intermediate goods that are inputs to each economic activity, and Quadrant III shows the imported (intermediate goods) inputs, as well as the non-industrial inputs (mentioned as the Gross Value Added) required by a particular industry to produce its output. Finally, the monetary values of products imported directly for final use are added in underneath the final use matrix (Quadrant IV).

In its most basic form, an input–output model consists of a system of linear equations, each one describing the distribution of an industry's product throughout the economy. The corresponding description, below, follows very closely the form used by Cruz (2009).

The total output of a sector $i(X_i)$ can be delivered for intermediate or for final demand by the following equation:

$$X_i = \sum_j X_{ij} + Y_i$$

Equation 1- Output

in which X_{ij} represents the value of input from sector *i* to sector *j* and Y_i represents the total final demand for sector *i*. Considering constant returns to scale, the output equation of one generic sector becomes:

$$X_i = \sum_j a_{ij} X_{ij} + Y_i$$

Equation 2 - Output with returns to scale

where the coefficients a_{ij} , defined as the delivery from sector *i* to *j* per unit of sector's *j* output, are known as the technical or technological coefficients.

To represent a nation's productive system there is a system of n linear simultaneous equations, each one describing the distributions of one sector's product through the economy. In matrix form one can represent it as:

$\mathbf{A}x + y = x$

Equation 3 - Production

in which A is the matrix of the technological coefficients, y is the vector of final demand and x is the vector of corresponding total outputs.

Using the basic concepts of matrix algebra, with I as the unit matrix, the expression can be reorganized to give:

$$x = (\mathbf{I} - \mathbf{A})^{-1} y$$

Equation 4 - Fundamental matrix representation of IO analysis

This corresponds to the fundamental matrix representation of input-output analysis, and the inverse matrix $(\mathbf{I} - \mathbf{A})^{-1}$ is known as the Leontief inverse matrix, whose elements are denoted by α_{ij} , representing the total amount of commodity *i* required both directly and indirectly to deliver one unit of final demand of commodity *j*.

The basic Leontief input–output model is generally constructed from observed economic data for a specific geographic region or country. In practice, the number of industries considered may vary from only a few to hundreds or even thousands.

3. Environmental extensions of the Input-Output framework

Briefly stated, monetary input-output (IO) tables give insight into the value of economic transactions between different sectors in an economy, including output for exports, capital formation and final government and private consumption. They allow the calculation of the value added that each sector contributes to the final output of an economy.

Most of the extensions to the basic input-output framework are introduced to incorporate additional detail of economic activity, such as over time or space, to accommodate limitations of available data or to connect input-output models to other kind of economic analysis tools. E.g., such monetary IO tables can be 'extended' with environment related information for each sector, such as its emissions or resource use, then having the potential to provide powerful tools for environmental related policy analysis.

Indeed, since the late 1960s the input–output framework has been extended by many researchers to account for natural resources use and environmental pollution generation and abatement associated with inter-industry activity. These studies can be considered as benchmarks of an approach that would be further developed by some energy analysts

during the 1970s and the 1980s, extending the use of I-O analysis to consider energy-economy interactions.

Over time, the modeling approaches have become more and more complex, to allow, for example, the consideration of global environmental issues such as the greenhouse effect and the resulting climate change problem. This had led to the development of numerous theoretical models and empirical studies that combine both perspectives, making it hard to distinguish between environment and energy models, and therefore it become usual to talk about 'energy-economy-environment' models (Cruz et al., 2005).

Table 3 represents schematically an Environmentally Extended IO Table.

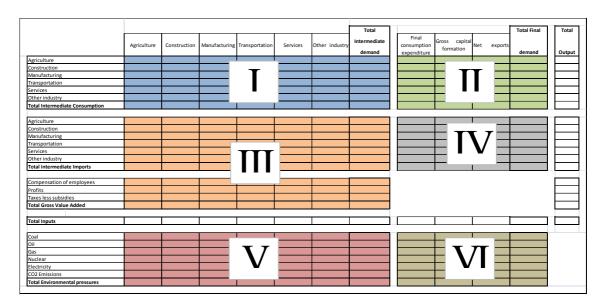


Table 3 - Schematic representation of an environmentally-extended IO table

Source: Adapted from Miller and Blair (2009)

As before, columns are inputs required for production and rows are the outputs of that activity.

Departing from Table 2, Quadrants V and VI are added right below the economic matrices in order to extend an IO table now with environmental pressures. It represents environmental inputs to, and outputs from, the economic branches (Quadrant V) and environmental pressures resulting directly from final use (Quadrant VI).

Further, such tables allow for the analysis from two complementary perspectives: production and consumption. As Cruz and Barata (2011) present, according to the 'components' of the (total) final demand considered, it is possible to distinguish environmental pressures attributable to the domestic consumption of goods and services

produced in a country, from that attributable to exports, as well as to estimate the levels of environmental inputs or impacts 'embodied' in the country's imports. Regarding the production perspective, the environmental intensity (which is the environmental pressure per monetary unit of output) of different economic sectors can be compared. On the other hand, from the consumption perspective, the products that indirectly cause the majority of environmental pressures can be identified and the environmental performance of different product groups compared. This is a key piece of analysis in today's global economy where a large proportion of pressures caused by our consumption are being released overseas.

4. The World Input Output Database

The main data source to be used in this work is the World Input Output Database (WIOD). This database is built on national accounts data, which was developed within the Seventh Framework Programme (FP7) of the European Commission. It has two main advantages with respect to previously available data sources. First, throughout the data collection effort, harmonization procedures were applied to ensure international comparability of the data. This ensures data quality and minimizes the risk of measurement errors which are rather unlikely to occur. Moreover, since the data collection is consistent and fully comparable across countries, it allows one to describe and analyze efficiency gains at the sectoral and global level.

The core of the database is a set of harmonized national input-output tables, linked together with bilateral trade data in goods and services. National tables are typically only available for benchmark years and often not comparable over time but WIOD allow that comparisons. The results provide international tables at current (and previous) year prices, 35 industries by 59 products, for 41 regions in the world. Based on this, annual world input-output tables are derived for the period from 1995 to 2009 (Timmer, 2012).

The environmental satellite data are defined such as to cover the broadest range of environmental themes as reasonably achievable while maintaining a data quality that is well grounded in the empirical availability of primary data. In general terms, the variables cover: use of energy; emission of main greenhouse gases; emissions of other main air pollutants; use of mineral and fossil resources; land use; and water use. Most if not all environmental variables that are needed to fill the data framework derive from sources (e.g. energy statistics, water statistics, etc.) that use a different framework, not compatible with national accounts. Data transformations were therefore necessary to achieve conceptual consistency.

For this study, the database assessed displays a time series with the information detailed in Table 4, below, for the 27 EU countries.

National Input-Output Tables (NIOT)• National Input-Output tables (NIOT) at curren (35 industries by 35 industries)		
Socio-Economic Accounts (SEA)	• Industry output, value added, at current and constant prices (35 industries)	
Environmental Accounts	 Gross energy use by sector and energy commodity CO2 Emissions modeled by sector and energy commodity 	

Table 4 - WIOD data assessed

Source: Timmer (2012)

The 27 EU member countries considered in this study are presented in Table 5.

Austria	Czech Republic	France	Ireland	Luxembourg	Portugal	Spain
Belgium	Denmark	Germany	Italy	Malta	Romania	Sweden
Bulgaria	Estonia	Greece	Latvia	Netherlands	Slovak Republic	United Kingdom
Cyprus	Finland	Hungary	Lithuania	Poland	Slovenia	

Table 5 - The 27 EU member countries considered

Source: Timmer (2012)

It is worth to mention that since July 2013 the EU was enlarged to 28 member countries with the accession date of Croatia, but this country is not here considered for reasons of data (un)availability.

Table 6 presents a list of the energy commodities aggregation used for this study and the WIOD codes provided in the database.

	WIOD Code	Flow	
	HCOAL	Hard coal and derivatives	
Coal	BCOAL	Lignite and derivatives	
	COKE	Coke	
	CRUDE	Crude oil, NGL and feedstock's	
	DIESEL Diesel oil for road transpo		
	GASOLINE Motor gasoline		
Oil	JETFUEL Jet fuel (kerosene and gasol		
Uli	LFO	Light Fuel oil	
	HFO	Heavy fuel oil	
	NAPHTA Naphtha		
	OTHPETRO	Other petroleum products	
Car	NATGAS	Natural gas	
Gas	OTHGAS	Derived gas	
Nuclear	NUCLEAR	Nuclear	
Electricity	ELECTR	Electricity	
	BIOGASOL	Biogasoline	
	BIODIESEL	Biodiesel	
	BIOGAS	Biogas	
	OTHRENEW	Other combustible renewables	
Renewables	HEATPROD	Heat	
	HYDRO	Hydroelectric	
	GEOTHERM	Geothermal	
	SOLAR	Solar	
	WIND	Wind power	

 Table 6 - Energy commodities

Source: Timmer (2012)

Finally, the level of industry disaggregation is presented in Table 7.

Agriculture, Hunting, Forestry and Fishing
Mining and Quarrying
Food, Beverages and Tobacco
Textiles and Textile Products
Leather, Leather and Footwear
Wood and Products of Wood and Cork
Pulp, Paper, Paper, Printing and Publishing
Coke, Refined Petroleum and Nuclear Fuel
Chemicals and Chemical Products
Rubber and Plastics
Other Non-Metallic Mineral
Basic Metals and Fabricated Metal
Machinery, Nec
Electrical and Optical Equipment
Transport Equipment
Manufacturing, Nec; Recycling
Electricity, Gas and Water Supply
Construction
Sale, Maintenance and Repair of Motor Vehicles and Motorcycles; Retail Sale of Fuel
Wholesale Trade and Commission Trade, Except of Motor Vehicles and Motorcycles
Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of Household Goods
Hotels and Restaurants
Inland Transport
Water Transport
Air Transport
Other Supporting and Auxiliary Transport Activities; Activities of Travel Agencies
Post and Telecommunications
Financial Intermediation
Real Estate Activities
Renting of M&Eq and Other Business Activities
Public Admin and Defence; Compulsory Social Security
Education
Health and Social Work
Other Community, Social and Personal Services
Private Households with Employed Persons

Source: Timmer (2012)

5. Data treatment

As one of the most widely cited macroeconomic indicators for measuring sustainability through estimates of the decoupling effect, the Energy/GDP (or energy intensity) ratio has been the focus of a significant number of published studies. In this study it is also analyzed the progress of another indicator, the CO_2 emissions/GDP (or CO2 emissions intensity) ratio.

Data for the CO_2 emissions and energy use is available in Gigagrams (Gg) and Terajoule (TJ) respectively, with no manipulation needed. Thus, such information is directly taken from the WIOD.

Regarding the economic dimension, for the purposes of our analysis some preliminary adjustments and calculus are required regarding the way the relevant information is compiled in the WIOD. Indeed, there is the need to define the GDP estimation approach to follow, and to allow comparative analysis it is also required to express GDP at constant prices and also to perform some currency conversions, as follows.

5.1 Approaches to derive GDP from the IO Tables

The GDP is the final result of the economic activity of residents in a specified area within a given period of time. In order to calculate the GDP using the WIOD data some manipulation is needed, but first it is important to frame the concept and the different approaches to determine it. E.g., if one simply sums the total output of an economy there will be problems of double counting and the value obtained would be much higher than the actual GDP.

There are three different ways to calculate the GDP. These are the income, product, and expenditure approaches.

In the income approach, GDP is the sum of the incomes of all the individuals, taxes less subsidies on production and imports and gross operating surplus. However, the information available in the WIOD does not provide enough detail to calculate the GDP using this approach.

For the product approach, GDP is obtained through the sum of the gross value added (VA) (i.e. gross output (GO) minus intermediate consumption (IC)) at basic prices of the different industries, plus taxes (T) less subsidies (S) on products.

$$GDP = VA + (T - S)$$

Equation 5 - GDP - product approach

Finally, for the expenditure approach, GDP is the sum of the final consumption expenditure of resident families and non-profit institutions serving households (usually designated as the private consumption - C), and of public authorities (in this case commonly designated as public consumption - G) with the investment (I) and net exports (XP) to imports (M).

GDP = C + G + I + (XP - M)

Equation 6 - GDP - expenditure approach

Both of these last two approaches can be performed using the information available in the WIOD. As the main purpose of this study is focused on the energy (and CO2 emissions) intensity assessment, and this is more adequately done through the analysis of the input requirements to generate a given level of output (the columns analysis of the IO tables) the option is to follow the product approach.

As mentioned, gross value added (VA) is the sum of gross output (GO) minus intermediate consumption (IC).

$$VA = GO - IC$$

Equation 7 - Value added

Assessing the WIOD Socio Economic Accounts (SEA) one has in different sheets the values for *GO*, Intermediate Inputs (*II*) and *VA* for the different economies in the different local currencies. In this case *VA* is also the result of the subtraction of *II* to the *GO*.

 $VA_{SEA} = GO_{SEA} - II_{SEA}$

The GDP calculation is not direct because II is different from IC, as in II is included the taxes (T) less subsidies (S) on products and International Transport Margins (ITM).

$$II = IC + (T - S) + ITM$$

Equation 9 - Intermediate inputs

Taxes less Subsidies on products and International Transport Margins can be found in the National Input Output Tables (NIOT) of the WIOD, but unlike the previously mentioned SEA, these tables are expressed in dollars. Thus, there is the needed to convert these values into the local currencies, which can be done using the exchange rates (*exc*) provided by the WIOD.

Consequently, in order to get *IC* one needs to subtract taxes less subsidies on products and International Transport Margins.

$$IC = II_{SEA} - [(T - S) + ITM]_{NIOT}$$

Equation 10 - Intermediate consumption

Decomposing Value Added, one gets:

$$VA_{SEA} = GO_{SEA} - IC$$
$$\Leftrightarrow VA_{SEA} = GO_{SEA} - [II_{SEA} - [(T - S) + ITM]_{NIOT}]$$

Equation 11 - Value Added decomposition

Using the product approach, all the components needed to calculate the nominal GDP value of each economy are then defined, as follows.

$$GDP = VA + (T - S)$$

$$\Leftrightarrow GDP_{nominal} = GO_{SEA} - [II_{SEA} - [(T - S) + ITM]_{NIOT}] + (T - S)_{NIOT}$$
$$\Leftrightarrow GDP_{nominal} = GO_{SEA} - II_{SEA} + (2 * (T - S) + ITM)_{NIOT}$$
$$\Leftrightarrow GDP_{nominal} = VA_{SEA} + 2 * (T - S)_{NIOT} + ITM_{NIOT}$$
Equation 12 – GDP from the WIOD

5.2 Converting monetary values at current prices into constant prices

Further, to estimate the trends in energy and CO2 emissions intensities it is important to use GDP values at constant prices, instead of current (or nominal) as the data provided by the WIOD. In this way, the effects of price fluctuations (inflation or deflation) are removed and one analyzes the real growth of the economy.

In theory, there are two alternative methods to convert nominal into constant values. On the one hand, using the NIOT at current and previous year prices and on the other hand using the value added price index provided in the SEA. However, while this study was being done, the WIOD removed the access to the NIOT at previous year prices². Therefore, in practice, only the second method could be performed.

Friday, December 06, 2013 10:15:02 AM

² Indeed, when contacted by succeeding emails, one of the managers of the WIOD (namely prof. F.R. Gouma, from the University of Groningen) gave the following justifications :

The website is no longer under construction, but the tables are. At this point we are still experimenting with alternative deflation methods of the WIOTs since earlier results were not satisfactory. Unfortunately, at this point there is no definitive deadline when new tables will be uploaded.

The price index of the VA provided on the SEA uses 1995 as the base year. The base year preferred for this analysis and assessment is 2005, and therefore this requires a change in the base year. In order to perform that change two fundamental steps are required: first to calculate the price index deflator and then to employ that deflator to determine the new index.

The deflator for each year is the ratio between the price index (*PI*) of that year and the one of the previous year.

$$deflator_n = \frac{PI_n}{PI_{n-1}}$$

Equation 13 - Deflator

With this deflator it is relatively straightforward to put up an Index, being t the base year 2005. Indeed:

i. To calculate the Index after the base year one use the following equation:

$$Index_{t+n} = \left(\sum_{t+1}^{t+n} deflator\right) - (n-1)$$

Equation 14 – Deflator - Index after the base year

ii. In order to compute the values before the base year, a different equation has to be used:

$$Index_{t-n} = \left(\sum_{t-n}^{t} \frac{1}{deflator}\right) - (n-1)$$

Equation 15 - Deflator - Index before the base year

iii. The Index of the base year (2005) is 1.

Thus, in order to transform nominal values into 2005 constant prices one divides the nominal GDP values with the correspondent year Index.

Tuesday, December 10, 2013 9:18:20 AM

The tables that have been online in previous years' prices have been removed due to the fact that the construction methods leads to unsatisfactory results for total value added volumes (i.e. constant prices). We deflated the input output tables row-wise using gross output deflators of the exporting country. Value Added in PYP is then calculated as a residual. The problem is that the resulting VA figures do not closely match the volume Value Added Growth observed from the National Accounts. This is why we have taken the tables offline until we find a better method of deflating the tables while preserving Value Added (or GDP) growth rates as published in the National Accounts."

5.3 Currencies' conversion

GDP values expressed in US dollars at the WIOD were converted into each country's currencies, using the exchange rates provided by the WIOD. In order to compare intensity values amongst countries (instead of each country trends), it is necessary to use a single currency - Euro.

The Eurozone, or Euro area, is an economic and monetary union (EMU) of 17 EU member states (see Table 8) that from 1999 have adopted the Euro (€) as their common currency.

Country	Euro's adoption date
Austria	1999
Belgium	1999
Cyprus	2008
Estonia	2011
Finland	1999
France	1999
Germany	1999
Greece	2001
Ireland	1999
Italy	1999
Luxembourg	1999
Malta	2008
Netherlands	1999
Portugal	1999
Slovakia	2009
Slovenia	2007
Spain	1999

Table 8 - Eurozone countries

Thus, the 10 other countries considered in this study do not use the Euro, but rather specific currencies, as presented in Table 9.

Country	Currency
Bulgaria	lev
Czech Republic	koruna
Denmark	krone
United Kingdom	pound sterling
Hungary	forint
Lithuania	litas
Latvia	lats
Poland	zloty
Romania	leu
Sweden	krona

Table 9 - EU member states' currencies outside the Eurozone

For these 10 cases the European Central Bank's statistics provided the nominal effective exchange rate (which is a summary measure of the external value of a currency *vis-á-vis* the currencies of the most trading partners (ECB, 2013)).

Thus, even though the different currencies used, it is possible to compare the progression of energy and CO2 emissions intensities among the 27 member states.

6. Decomposition analysis of energy and CO2 emission changes

As mentioned in Chapter 2, the analysis of energy use and CO2 emissions changes, namely through the analysis of its decomposition into specific explanatory effects is particularly relevant to analyze both the progress of the indicator in a specific country and comparing the trends between countries.

There are two broad categories of decomposition techniques (Hoekstra and Bergh, 2003): using input–output techniques — structural decomposition analysis (SDA) and with disaggregation techniques — index decomposition analysis (IDA). Table 10 present the main characteristics of each of these decomposition techniques.

	Application	Scope	Time series	Decomposition form	Factors included	Data needed	Effects studied
IDA	Flexible	Specific sector or economy wide	Annual time series	Additive and multiplicative	From two to eleven	Data with high or low aggregation	Only direct effect
SDA	Restricted to availability of IO tables	Whole of the economy	Benchmark years	Additive	Same number of factors	IO tables	Direct and indirect effects

Table 10 - Comparison of IDA with SDA decomposition techniques

Source: Adapted from Su and Ang (2012)

The SDA approach is based on input–output coefficients and final demand from input– output tables, while the IDA framework uses aggregate input and output data that are typically at a higher level of aggregation than input–output tables. This basic difference also determines the main advantages and disadvantages of the two methods.

One advantage of SDA is that the input–output model includes indirect demand effects – demand for inputs from supplying sectors that can be attributed to the downstream sector's demand – so that SDA can differentiate between direct and indirect energy demands. The IDA model is incapable of capturing indirect demand effects.

The advantage of the IDA framework is that it can readily be applied to any available data at any level of aggregation. While input–output tables may only be available sporadically, IDA can be applied to data available in time series form (Ma and Stern, 2008). SDA is used primarily by researchers who are familiar with input–output (I–O) analysis and wish to extend it to study changes in energy consumption or emissions in the economy. In contrast, IDA studies are normally for a sector of energy consumption, such as transportation, industry or household, or its energy-related emissions (Su and Ang, 2012)³.

As previously mentioned, in the due course of this study, some tables were removed from the WIOD, due to unsatisfactory results on the deflation process. These database problems made impossible the initial intention of computing a structural decomposition analysis (SDA) (precisely taking advantage of the time series for the NIOT at that time available in the WIOD). Accordingly, the disaggregation technique computed in this work is an index decomposition analysis (IDA).

An IDA begins with defining a governing function relating the aggregate to be decomposed to a number of pre-defined factors of interest. With the governing function defined, various decomposition methods can be formulated to quantify the impacts of changes of these factors on the aggregate (Ang, 2004). There are two main decomposition approaches: Divisia and Laspeyres index, to which a number of different

³ The simplicity of IDA allows considerable flexibility in problem formulation. Many decomposition schemes designed to cater for different types of aggregates and decomposition methods have been proposed. In contrast, the fact that SDA is linked to the I–O tables reduces its flexibility but helps to introduce some special features that are not applicable to IDA. Other than the second-stage decomposition, such features include multi-regional SDA by considering the interregional feedback effects, having both demand-side and supply-side viewpoints, and linkages with neoclassical functions when analyzing input technology changes (Su and Ang, 2012).

methods have been proposed by researchers⁴. Laspeyres index measures the percentage change in some feature of a group of items over time, using weights based on values in some base year. The Divisia index is a weighted sum of logarithmic growth rates, where the weights are the components shares in total value, given in the form of a linear integral. In simple terms, the building block of methods linked to the Laspeyres index is based on the familiar concept of percentage change whereas the building block of methods linked to the Divisia index is based on the concept of logarithmic change (Ang, 2004). Ang (2004) classifies the IDA methods and recommends the use of a Logarithmic Mean Divisia Index (LMDI). Accordingly, this is the method chosen in this study to track economy-wide energy and CO2 emissions efficiency trends. The LMDI method description below follows very closely the one proposed by Ang (2005).

Changes in industrial energy consumption (D_{tot}) may be studied by quantifying the impacts of changes in three different factors:

- i. The overall industrial activity (activity effect D_{act});
- ii. The activity mix (structure effect D_{str});
- iii. The sectoral energy intensity (intensity effect D_{int}).

Thus, energy consumption (*E*) can be presented as:

$$E = \sum_{i} E_{i} = \sum_{i} X \frac{X_{i}}{X} \frac{E_{i}}{X_{i}} = \sum_{i} X S_{i} I_{i}$$

Equation 16 - Energy consumption decomposition

In which *i* represents the sectors, *X* the overall output level, S_i the activity share and I_i the energy intensity of each sector.

There are two methods to calculate these effects, the additive and the multiplicative. In this study the chosen one is the multiplicative because it presents the effect variations in percentages, which allows for a better comparison between countries. Accordingly, with

⁴ In the late 1970's and early 1980's, the methods used were based on the Laspeyres index while a decade later related studies proposed the Divisia index approach as an alternative. Thereafter, extensions and refinement of both methods have been made and the reported studies using the two approaches are now about equal in number. According to Ang (2004), there is no simple answer to which is the preferable method as some may be easily explained theoretically while others are more directly applied, each having its strengths and weaknesses. Generally, researchers and analysts need to consider at least four issues in method selection: theoretical foundation, adaptability, ease of use, and ease of understanding and result presentation.

the multiplicative decomposition the variation of E is the ratio between the final energy consumption level and the initial one:

$$D_{tot} = E^T / E^0$$

Equation 17 - Energy consumption change

And can be broke down in the three effects mentioned (overall activity level, activity structure and sectoral energy intensity):

$$D_{tot} = D_{act} D_{str} D_{int}$$

Equation 18 - Energy change decomposition's effects

These effects can be calculated as:

$$D_{act} = exp\left[\sum_{i} w_i \left(\ln \frac{X^T}{X^0}\right)\right]$$
$$D_{str} = exp\left[\sum_{i} w_i \left(\ln \frac{S_i^T}{S_i^0}\right)\right]$$
$$D_{int} = exp\left[\sum_{i} w_i \left(\ln \frac{I_i^T}{I_i^0}\right)\right]$$
$$w_i = \frac{\left(\frac{(E_i^T - E_i^0)}{(E^T - E_i^0)}\right)}{(E^T - E_i^0)}$$

Equation 19 - Energy change explanatory effects' calculation

This analysis can be further extended in order to assess energy-related CO₂ emissions. For that, two more factors are added to the previously mentioned, namely:

- iv. Sectoral energy mix (energy-mix effect D_{mix});
- v. CO_2 emission factors (emission-factor effect D_{emf}).

Therefore, total energy-related CO_2 emissions (CO), can be presented as:

$$CO = \sum_{if} CO_{if} = \sum_{if} X \frac{X_i}{X} \frac{E_i}{X_i} \frac{E_{if}}{E_i} \frac{CO_{if}}{E_{if}} = \sum_{ij} X S_i I_i M_{if} U_{if}$$

Equation 20 - CO2 emissions decomposition

In which C_{if} represents the CO2 emissions arising from fuel f in industrial sector i, E_{if} is the consumption of fuel f in industrial sector i, M_{if} is the fuel-mix variable and U_{if} is the CO₂ emission factor.

Consequently, the variation of *CO* is the multiplication of the 5 different factors mentioned:

$D_{tot} = D_{act} D_{str} D_{int} D_{mix} D_{emf}$

Equation 21 - CO2 emissions change decomposition's effects

This can be calculated from:

$$D_{act} = exp\left[\sum_{i} w_{if} \left(\ln \frac{X^{T}}{X^{0}}\right)\right]$$
$$D_{str} = exp\left[\sum_{i} w_{if} \left(\ln \frac{S_{i}^{T}}{S_{i}^{0}}\right)\right]$$
$$D_{int} = exp\left[\sum_{i} w_{if} \left(\ln \frac{I^{T}}{I^{0}}\right)\right]$$
$$D_{mix} = exp\left[\sum_{i} w_{if} \left(\ln \frac{M_{if}^{T}}{M_{if}^{0}}\right)\right]$$
$$D_{emf} = exp\left[\sum_{i} w_{if} \left(\ln \frac{U_{if}^{T}}{U_{if}^{0}}\right)\right]$$
$$w_{if} = \left[\frac{\left(CO_{if}^{T} - CO_{if}^{0}\right)}{(CO^{T} - CO^{0})}/(\ln CO_{if}^{T} - \ln CO_{if}^{0})\right]$$

Equation 22 - CO2 emissions change explanatory effects' calculation

This decomposition method is used to study, for the 27 EU member states, the variation in energy and CO2 emissions from 1999 (0) to 2009 (T). Using the index method previously explained, the variation of the Output level (X) is considered in real terms (i.e. without the inflation/deflation effect).

IV. Results and Discussion

This chapter presents and discusses the main results of this study. Firstly, regarding the estimates of energy use and CO2 emissions released, as well as the corresponding intensities. The analysis of energy and GDP trends also supports the assessment of each country's performance regarding (absolute or relative) resource decoupling, while the analysis of CO2 emissions and GDP trends indicates each country's successfulness achieving (absolute or relative) impact decoupling. Then, in subsection 2, there is the analysis of the LMDI decomposition of energy use and CO2 emissions released into their main explanatory effects.

Before such detailed analysis it is worth to establish an overview comparing the energy intensities for the 27 EU countries considered for 2009 (the most recent data available, and with the GDP for all the countries expressed in the same currency, namely Euro), as shown in Figure 3.

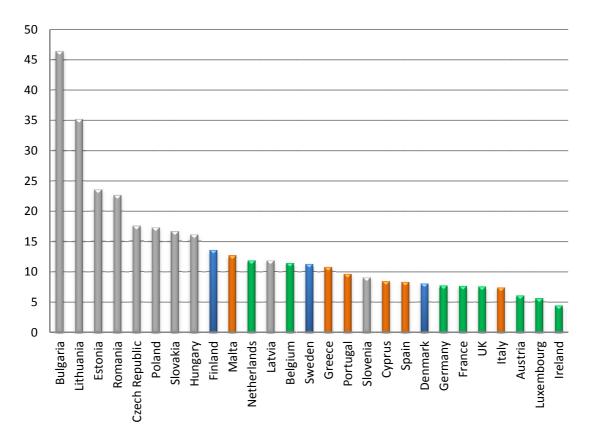


Figure 3 - Energy Intensity in the EU 27 (Tj/millions of Euro)

The observation of Figure 3 makes clear the wide range of values for the Energy Intensity (Tj/Euro) in the 27 EU countries, varying from 4.4 in Ireland to 46.4 in

Bulgaria. Further, into some extent, it is possible to identify some groups of countries taking into account on the one hand their position in the energy intensity "ranking", and on the other hand their geographical proximity, similar weather patterns and expected level of technological progress within Europe. Accordingly, and as the comparative analysis and discussion of the results can be better structured with a subdivision of the 27 EU countries, it is considered as appropriate, for purposes of the analysis in this chapter, to consider 4 groups of countries, as presented in Table 11.

Group	Countries				
	Bulgaria, Czech Republic, Estonia, Hungary,				
East	Latvia, Lithuania, Poland, Romania, Slovak				
	Republic and Slovenia				
South	Cyprus, Greece, Italy, Malta, Portugal and Spain				
North	Denmark, Finland and Sweden				
G (Austria, Belgium, France, Germany, Ireland,				
Center	Luxembourg, Netherlands and UK				

Table 11 - EU 27 groups

The generality of the most energy intensive countries are comprised in the East group (which were not expected to have levels of productivity particularly high and most of them usually facing harsh climate conditions). Followed by the countries considered here as the North group, in which the weather patterns are ruthless (but in some part compensated by higher productivity). Next is the South group which in terms of energy needs is the more beneficiated (at least during winter) by the weather (mild) conditions. Finally, as the least energy intensive countries (with the exception of the northern countries of this group) one can find those here categorized in the Center group, which are expected to have the best combination between weather patterns and industries productivity.

1. Intensity and trends

In this subsection, energy use and CO2 emissions released and corresponding intensity trends of all the 27 EU members are assessed. Summary tables, with the main results analyzed in this Chapter, for each of the 27 EU countries, are presented in Appendix A and B.

1.1 Energy and Resource Decoupling

Figures 4 to 7 display, for the different groups of countries, the progress of energy use (expressed in Tj) and GDP (expressed in the local currencies of each country), as well as of the corresponding ratio, i.e. the energy intensity (Tj/Euro), from 1999 to 2009.

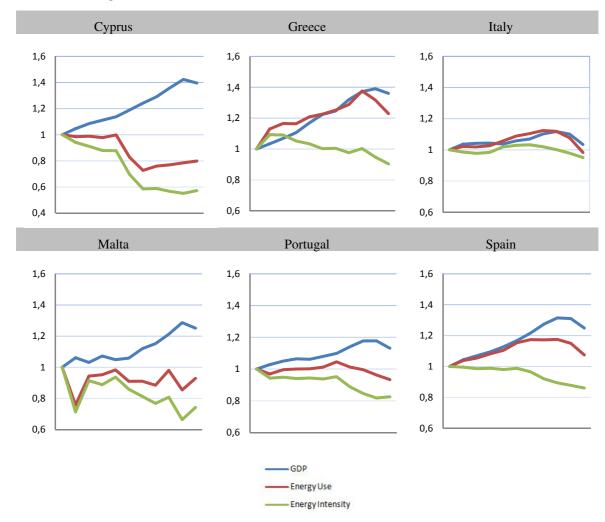
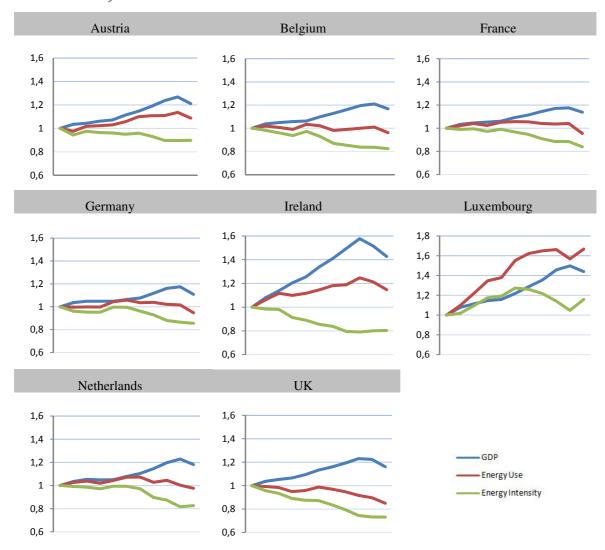
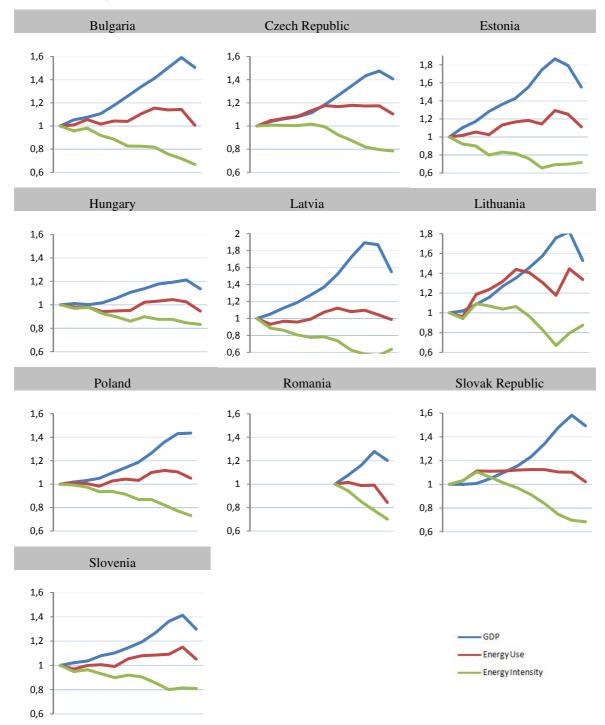



Figure 4 - Energy intensity in South countries (1999-2009)

The GDP, at constant (2005) prices, has grown in all the six countries of the South group in the period considered. The largest growth occurred in Cyprus and Greece, with rates over 30% through in this 11 year period. Malta and Spain had very similar rates of growth, around 25%. The two countries with lower growth were Portugal (with 13.1%) and Italy (with 3.4%).

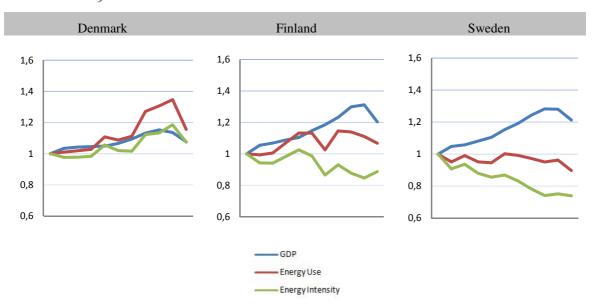
Regarding energy use, only in two countries the amount of energy used in 2009 is higher than the one used in 1999, namely Greece and Spain. Accordingly, these can be considered as the only two countries in which there is no absolute resource decoupling. Actually Greece has severely increased energy use by 22.9% while on the opposite situation one can find Cyprus (decreasing 20.1%). Even though, all the six countries have reduced its energy intensity. The two greater reductions happened in the smallest consumers - Cyprus and Malta, followed by Portugal (17.5%), Spain (14%), Greece (9.6%) and finally Italy (4.9%).



b) The Center countries

Figure 5 - Energy intensity in Center countries (1999-2009)

The highest growth on GDP (over 40%) is found in Luxembourg and Ireland. All the other grew positively, although at a smaller pace. On the other hand, Luxembourg increased dramatically the quantity of energy used (66.7%) and this makes this country to be the only in this group with no (absolute or relative) resource decoupling. Two other countries have also increased the energy use- Ireland and Austria, which lead them


to achieve only relative resource decoupling. The five remaining countries have decreased the quantities of energy used, especially the UK (15%). Accordingly, the largest energy intensity reduction took place in the UK (26.8%) and the only country in which this indicator grew was the Luxembourg (15.8%).

c) The East countries

Figure 6 - Energy intensity in East countries (1999-2009)

The GDP growth rates in the East group of countries were substantially higher than in the other groups. Only Hungary had less than 20% (more precisely, 13.6%). Over the 50% mark one can find Estonia, Latvia, Lithuania and Bulgaria. Also unlike the other groups previously analyzed, only three out of these ten countries managed to reduce its energy use from 1999 to 2009. Latvia, Hungary and Romania⁵ were then the only recording absolute resource decoupling. The seven remaining countries achieved relative resource decoupling. Despite the growth in the amount of energy used in the majority of the countries, the GDP growth compensated such increase, with the entire group presenting improvements in the energy intensity indicator. Latvia, Bulgaria and Slovakia with the highest intensity reductions, and Slovenia, Hungary and Lithuania on the other end.

d) The North countries

Figure 7 - Energy intensity in North countries (1999-2009)

Sweden and Finland have had similar GDP growth rate patterns (21.3% and 20.3%, respectively) while Denmark grew noticeably less (7.7%). Sweden and Finland showed improvements in the energy intensity indicator (26% and 11.3%, respectively) while Denmark decreased (in 7.4%) its energy intensity. In terms of resource decoupling the three countries achieved different results: Denmark increased the energy use in 15.6%, and thus it had no absolute or relative resource decoupling; Finland also increased the

⁵ It is important to notice that the observation period considered for Romania (namely from 2005 to 2009) is smallest than the one considered for the other 26 countries, for reasons of data (un)availability and (un)consistency problems. The discussion of the results for Romania should, therefore, take this into account.

amount of energy used (6.8%) resulting in a situation of relative resource decoupling; and Sweden reduced its energy use in more than 10%, therefore being successful in terms of achieving a situation of absolute resource decoupling.

e) The EU 27

In summary, all the 27 countries have increased its GDP throughout this 1999-2009 period. The smallest growth (bellow 10%) happened in Italy and Denmark while the higher growth (over 50%) was experienced in the East countries. The majority of the East and North groups' countries have increased its energy use. Further, although more than half of the countries have increased the energy used from 1999 to 2009, only Denmark and Luxembourg did not achieved either relative or absolute resource decoupling. Thus, also only these two countries did not showed improvements in terms of the energy intensity indicator.

1.2 CO2 emissions and Impact Decoupling

Figures 8 to 11 show, for the different groups of countries, the progress of energy-related CO2 emissions released (expressed in Gg) and GDP (expressed in the local currencies of each country), as well as of the corresponding ratio, i.e. the CO2 emissions intensity (Gg/Euro), from 1999 to 2009.

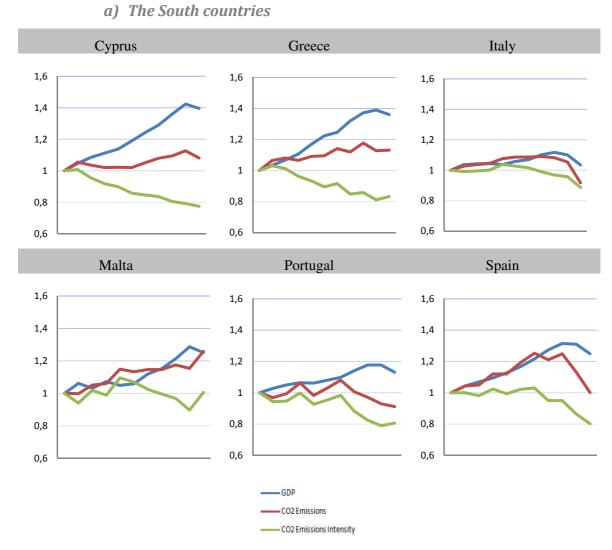
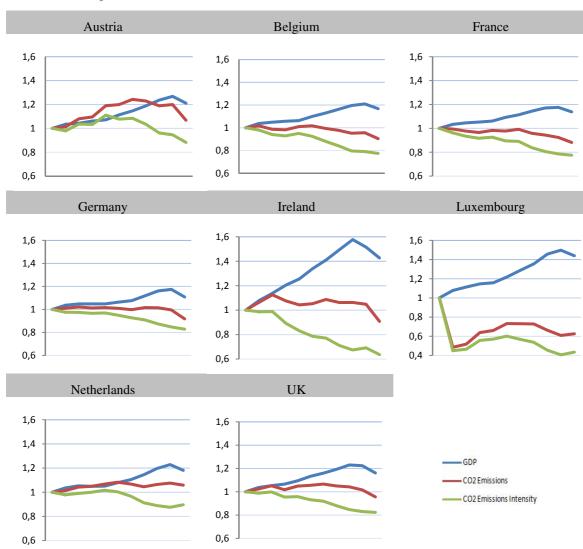



Figure 8 – CO2 emissions intensity in South countries (1999-2009)

Only in two countries the CO2 emissions have decreased throughout this period, namely Italy and Portugal. This means that these were the only countries where absolute impact decoupling occurred. Greece, Cyprus and Spain can be considered to have achieved relative impact decoupling, although they have registered CO2 emissions' increase. Malta saw its emissions growing by more than a quarter, with no decoupling at all from GDP. Malta is also the only country in which CO2 emissions intensity grew through this period. The highest CO2 emissions intensity reductions were found in Cyprus (22.6%), followed by Spain (19.8%), Portugal (19.4%), Greece (16.8%) and then Italy (11.3%).

b) The Center countries

Figure 9 - CO2 emissions intensity in Center countries (1999-2009)

Only in two out of the eight countries the emissions grew from 1999 to 2009, namely Austria and Netherlands, although reporting a situation of relative impact decoupling. From the six cases of absolute impact decoupling, Luxembourg was the one that reduced CO2 emissions the most (by almost 40%). The entire group has reported CO2 emissions intensity reduction over the period, more significantly in Luxembourg and Ireland.

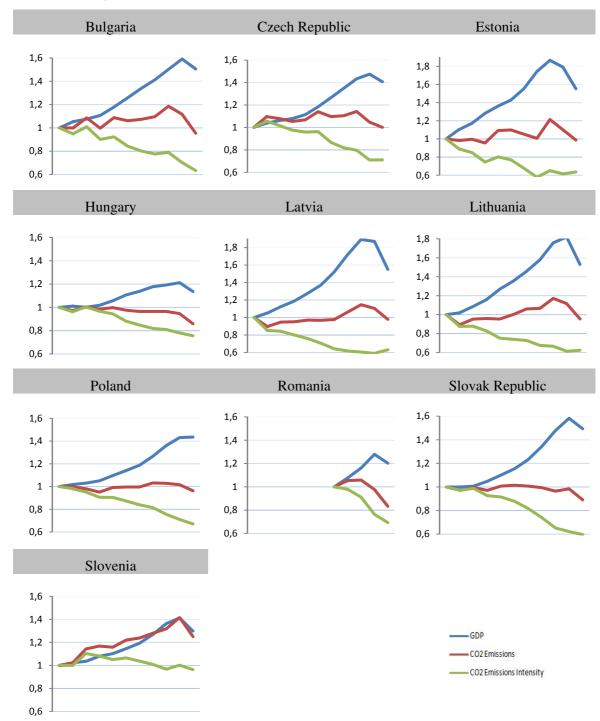


Figure 10 - CO2 emissions intensity in East countries (1999-2009)

CO2 emissions grew only in two out of the ten East countries, more precisely in Czech Republic (0.1%) and Slovenia (25%), the former achieving relative impact decoupling and the later was unsuccessful to decouple CO2 emissions from GDP. The eight other countries achieved a situation of absolute resource decoupling.

All the countries improved in terms of the CO2 emissions intensity indicator (the majority of them more than 30%, and. Slovenia with a poor performance - a 3.7% improvement).

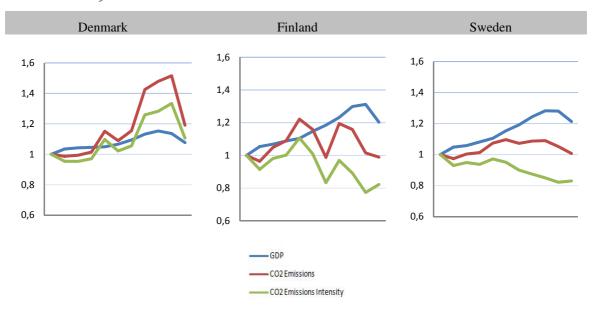


Figure 11 - CO2 emissions intensity in North countries (1999-2009)

Only Finland managed to reduce CO2 emissions in the period, thus achieving a situation of absolute impact decoupling. Sweden and Denmark increased emissions (0.7% and 19.1%), the former achieving relative impact decoupling and the later was unsuccessful to decouple CO2 emissions from GDP. Regarding CO2 emissions intensity, Sweden and Finland had similar decreases (17% and 17.7% respectively) and Denmark increased 10.7%.

e) The EU 27

To sum up, a larger number of countries have been successful in achieving absolute impact decoupling (17) than those reaching resource decoupling (13). Three countries have not 'decoupled' at all, namely Denmark, Slovenia and Malta. Even though, Slovenia managed to reduce its CO2 emissions intensity. From the countries that have increased CO2 emissions, the group more represented is the one of the South countries while the East and Center groups are the most representative in terms of CO2 emissions reductions.

2. Index Decomposition Analysis

The LMDI decomposition that follows in subsection 2.1 presents the variation in the amount of energy used and how this amount would progress considering the activity, structure or intensity explanatory effects alone (i.e. a *ceteris paribus* analysis). Then, in subsection 2.2, follows a similar approach regarding the CO2 emissions released.

2.1 Energy Use

Table 12 summarizes the results for the energy decomposition exercise (according to the methodology presented in subsection III.6). After this overall presentation of the values estimated follows the analysis by groups of countries with the support of the corresponding graphs.

Group	Country	Energy use change (1999- 2009) (Tj)	Total Change (%) D _{tot}	Activity (%) D _{act}	Structure (%) D _{str}	Intensity (%) D _{int}
South	Cyprus	-29885,6	-20,1	47,2	-38,8	-11,3
	Greece	412126,1	22,9	38,3	11,9	-20,6
	Italy	-171854,5	-1,7	7,2	-14,5	7,2
	Malta	-4995,7	-7,1	37,7	4,8	-35,6
	Portugal	-105749,0	-6,7	15,4	-9,7	-10,5
	Spain	541166,5	7,5	39,3	1,1	-23,7
	Total/Average	640807,9	-0,9	30,8	-7,5	-15,7
	Austria	126505,3	8,7	29,5	4,8	-19,9
	Belgium	-145734,0	-3,8	15,7	3,9	-19,9
	France	-630112,6	-4,5	29,7	22,2	-39,7
н	Germany	-990301,2	-5,3	11,3	12,1	-24,1
Center	Ireland	92610,9	14,7	67,9	38,6	-50,7
Ŭ	Luxembourg	74843,7	66,7	72,1	-8,5	5,9
	Netherlands	-160457,9	-2,4	18,0	2,4	-19,2
	UK	-1909056,8	-15,0	21,5	-17,8	-14,9
	Total/Average	-3541702,7	7,4	33,2	7,2	-22,8
	Bulgaria	6978,1	0,6	131,2	15,9	-62,5
	Czech	211856,6	10,4	62,1	-26,2	-7,8
	Estonia	25723,3	11,3	60,7	-13,8	-19,6
	Hungary	-73316,4	-5,4	36,0	-19,2	-13,8
	Latvia	-1896,8	-1,2	76,7	-18,4	-31,5
East	Lithuania	186947,6	33,8	64,9	13,4	-28,4
	Poland	245237,6	5,1	67,3	6,5	-41,0
	Romania	-116521,3	-6,0	208,5	-20,8	-61,5
	Slovakia	21699,3	2,2	86,8	-39,1	-10,2
	Slovenia	13682,1	5,1	47,5	1,4	-29,7
	Total/Average	520389,8	5,6	84,2	-10,0	-30,6
	Denmark	217043,2	15,6	20,4	-3,4	-0,6
rth	Finland	137677,1	6,8	32,0	-12,9	-7,1
North	Sweden	-354511,5	-10,3	20,9	-2,5	-23,9
_	Total/Average	209	4,0	24,4	-6,3	-10,5
Te	EU 27 otal/Average	-2380296,0	4,5	50,6	-3,9	-22,8

 Table 12 - Energy Decomposition explanatory effects

a) The South countries

Figure 12 highlight Greek and Spanish contributions to the South group's overall energy use increase through the period.

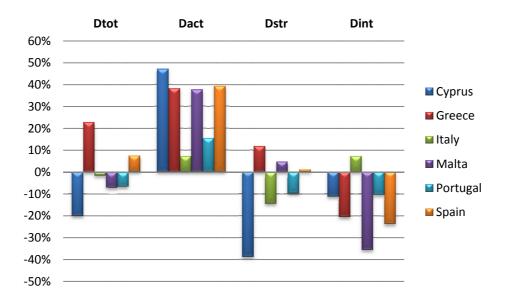


Figure 12 - Energy decomposition explanatory effects in South countries

The Portuguese industrial energy consumption decreased in the period considered. If only the activity effect were considered (i.e. the growth of economic activity) the Portuguese energy consumption would have grown 15.4% in this period. But the decrease (9.7%) in the structure effect (move to an economy with a sectoral structure less energy intensive) and (10.5%) in the intensity effect (sectoral energy efficiency improvements) exceeded the activity effect.

Further, as shown in Figure 13, changes in the output of each sector reinforce the results provided by the decomposition concerning the move to less energy intensive industries.

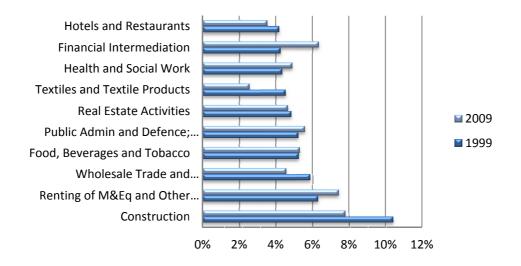


Figure 13 - Share of the total output in Portuguese industries

Indeed, e.g. there are two dominant cutbacks, Construction and Textile, and a significant raise in the Financial Intermediation sectors. The global industry output also grew more than 15% in the period.

As it was previously analyzed, only Greece and Spain did not manage to reduce energy use. Greece increased it in almost 23% and Spain in 7.5%. Even so, in both countries there were significant improvements in energy efficiency.

In relative terms, Cyprus had the best performance in the group, reducing energy use in more than 20%. Although the significant increase in the structure effect (47.2%) the achievements in the economic structure (38.8%) and in the energy efficiency (11.3%) allowed such reduction. As shown in Figure 14, this move to a less energy intensive structure can be significantly explained with the 'disappearance' of the Coke industry.

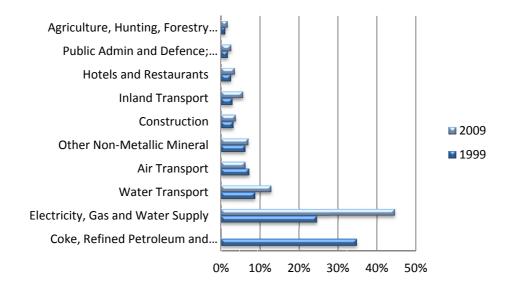


Figure 14 - Share of the total energy use in Cyprus industries

Italy was the only country which did not improve energy efficiency and Malta was the one that ameliorated the most.

Regarding the structure effect, Cyprus, Italy and Portugal moved to a less energy intensive structure while Spain, Malta and Greece did the opposite. In Greece and Malta the growth in energy use on the Water transport sector and in Spain in the Air transport sector might be the main responsible. These last three countries also had similar results regarding the activity effect.

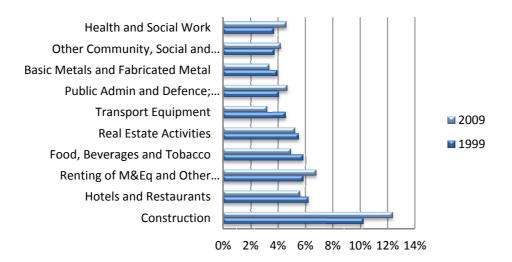


Figure 15 - Share of the total output in Spanish industries

It is also notable that the growth in the Construction sector in Spain represented the largest output increase amongst all industries.

b) The Center countries

Figure 16 makes evident the UK's contribution to the Center group's overall energy use reduction.

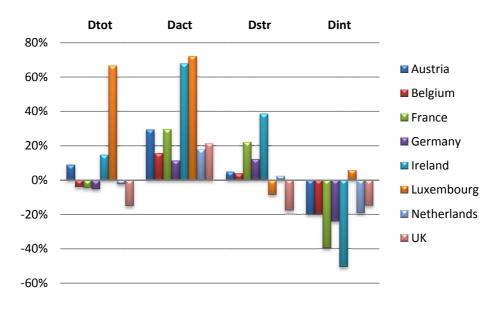


Figure 16 - Energy decomposition explanatory effects in Center countries

Among the Center countries it is noticeable that Luxembourg increased its energy use in 66.7%. One of the main reasons to justify this increase is the growth in the output. From 1999 to 2009 it grew from 16.1% to 53.1% in the top-5 most energy intensive industries

and a total of 72.1% in all industries. Luxembourg has made improvements regarding a move to a less energy intensive structure but it is the only country within this group with a regression in terms of energy efficiency.

Ireland and Austria are the other two countries that have increased energy consumption. Ireland had remarkable improvements in energy efficiency but the high growth in the economic activity and the poor performance in terms of the structure effect exceeded the first positive effect. In Austria one of the main justifications comes from the growth in energy use in the Construction industry and the output growth in the Electricity sector.

France combined a considerable growth in the activity effect (29.7%) and a deterioration in terms of its structure (22.2%), but these were compensated by improvements in the energy efficiency (39.7%) to achieve an overall reduction (-4.5%) in energy use.

Netherlands, Belgium and Germany had similar results in the three explanatory effects, namely recording decreases in energy use, growth in the economic activity, more energy intensive industries and improvements in energy efficiency.

In terms of the structure explanatory effect, it is notorious that the UK (together with Luxembourg) moved to less energy intensive industries, as shown in Figure 17.

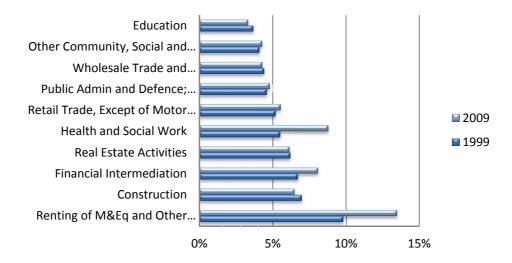


Figure 17 - Share of the output in the UK's industries

Indeed, the growth in the output of industries such as Health and Social Work and Renting are among the explanations for this shift.

c) The East countries

Figure 18 show that all the countries from the East group observed an increase in the economic activity and improvements in terms of energy intensity.

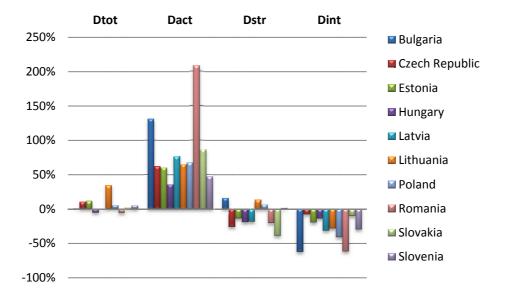


Figure 18 - Energy decomposition explanatory effects in East countries

Although only three of the ten East countries did manage to reduce energy use, all of them have reported improvements in energy efficiency and the majority had also improved in terms of the structure. Another particularity of this group is the remarkable expansion in the economic activity with eight out of the ten countries growing more than 60%.

Romania and Bulgaria are the two countries that have increased the most its economic activity. They have also had similar results in terms of energy efficiency improvements. Considering the results from the structure effect, Romania reduced its energy use while Bulgaria did not.

Poland, Slovenia and Lithuania had similar results in the three effects considered, increasing overall energy use, the economic activity, more energy intensive industries and improvements in energy efficiency.

Czech Republic and Slovakia were the two countries more successfully moving to less energy intensive structures. Although they have also improved energy efficiency, the final result was an increase in the overall energy use. Likewise, Estonia, although showing improvements in the structure and intensity effects, have increased its energy use (because of the 60% output growth from 1999 to 2009).

Latvia and Hungary have both reduced its energy use because of changes in the economic structure and improvements in energy efficiency, although the economic activity growth.

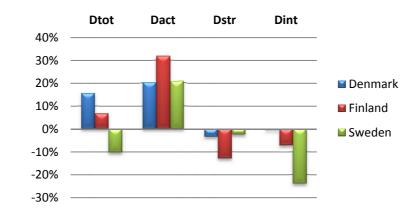


Figure 19 - Energy decomposition explanatory effects in North countries

All the three North countries have registered growth in the economic activity, a less energy intensive structure and improvements in energy efficiency. Even though, only one (Sweden) did manage to reduce its overall energy use, mainly because of the greater enhancement in energy efficiency.

e) The EU 27

The European Union has decreased its total energy use through the period mainly because of the progress in the Center countries (as the other three groups of countries increased their energy use).

The UK is the country who decreased the most its energy use, both in relative and absolute terms. Center countries (with the exception of the northern countries within the group) have the best performances in terms of energy use reduction. On the other hand Spain and Greece (unlike the rest of the South group) present poor performances. Clearly, the East group needs to change its energy use increasing trend.

Regarding the activity effect, with the exception of the East Group, the other groups registered similar values (South 30.8%, Center 33.2%, North 24.4% and East 84.2%). Accordingly, this increase in energy use can be in part explained by the large improvement in the activity effect occurred in the East group.

The groups that moved to less energy intensive structure were the South, East and North (7.5%, 10% and 6.3% respectively) while Center countries have deteriorated in this indicator (moving to a more energy intensive structure (7.2%)). The majority of the countries (14) improved in terms of this indicator.

Regarding sectoral energy efficiency improvements, all the groups have made improvements. Especially the East (30.6%), followed by the Center (22.8%), and then by the South (15.7%) and the North (10.5%). Only Italy and Luxembourg deteriorated in this time period.

Overall, the EU 27 have reduced the energy use, as a "counter-balance" of the increase because of the growth in the economic activity (a 50.6% effect), with the moving to a less energy intensive structure (3.9%) and of improving sectoral energy efficiency (22.8%).

2.2 CO2 emissions released

The decomposition of energy-related CO2 emissions presents the change in the amount of emissions released according to the same explicative effects considered regarding energy use and two extra effects, namely the energy-mix and the emission-factor effects, as shown in Table 13.

Group	Country	Emissions released Change (1999-2009) (Gg)	Total Change (%) D _{tot}	Activity (%) D _{act}	Structure (%) D _{str}	Intensity (%) D _{int}	Energy- mix (%) D _{mix}	Emission- factor (%) D _{emf}
	Cyprus	1217,1	18,9	56,7	12,4	-32,6	-0,1	0,0
.c	Greece	19158,6	23,5	37,9	12,2	-19,2	-3,2	0,2
	Italy	-17894,8	-5,8	7,0	-5,5	-1,2	3,7	-2,9
South	Malta	-416,9	-8,8	37,7	4,9	-37,0	0,0	0,0
S	Portugal	-5302,0	-10,3	14,9	20,7	-34,4	-0,1	0,1
	Spain	6063,4	2,8	37,1	3,3	-20,6	-18,2	-1,3
	Total/Average	2825,4	3,4	31,9	8,0	-24,2	-3,0	-0,7
	Austria	1370,4	3,7	29,1	6,8	-25,3	-1,3	-0,5
	Belgium	-16468,2	-18,9	15,0	-7,9	-16,7	-5,2	-5,1
	France	-31914,4	-12,3	29,1	0,4	-32,6	-3,4	-0,1
H	Germany	-92724,2	-13,4	11,3	10,2	-27,6	-3,3	0,3
Center	Ireland	3402,9	11,2	64,9	27,7	-46,3	-2,5	0,5
0	Luxembourg	4716,3	74,0	69,5	-5,1	6,3	-0,8	0,0
	Netherlands	-35215,0	-18,8	17,7	0,5	-18,7	-0,3	0,0
	UK	-54123,3	-13,5	21,3	-15,1	-13,0	-0,5	-3,3
	Total/Average	-220955,5	1,5	32,2	2,2	-21,7	-2,2	-1,0
	Bulgaria	3278,4	8,5	129,0	-24,5	-38,2	3,1	0,3
	Czech	1161,9	1,3	61,4	-25,9	-18,9	2,0	2,4
	Estonia	-141,0	-1,0	60,1	-14,8	-23,2	3,0	-4,3
	Hungary	-10951,4	-24,3	35,2	-11,8	-32,1	-4,2	0,5
	Latvia	-650,3	-10,3	70,3	3,6	-44,9	-2,0	-0,1
East	Lithuania	-729,5	-6,8	61,2	3,2	-40,6	1,3	0,0
_	Poland	-15824,5	-5,9	66,6	-13,1	-34,1	-5,5	1,1
	Romania	-10200,6	-14,5	199,1	-21,6	-64,4	20,7	-2,4
	Slovakia	-3336,9	-12,1	82,1	-32,7	-32,1	2,9	0,3
	Slovenia	784,7	7,2	47,9	3,0	-30,1	-2,7	1,6
	Total/Average	-36609,2	-5,8	81,3	-13,4	-35,9	1,9	-0,1
North	Denmark	13716,1	22,2	20,1	9,0	-7,7	2,0	0,0
	Finland	1039,0	2,2	30,6	-10,4	-6,4	0,1	-6,9
	Sweden	-8570,0	-19,2	20,0	-8,4	-22,4	0,6	0,0
	Total/Average	6185	1,7	23,6	-3,3	-12,2	0,9	-2,3
То	EU 27 otal/Average	-248554,2	-0,8	49,4	-2,9	-26,4	-0,5	-0,7

 Table 13 - CO2 emissions decomposition explanatory effects

a) The South countries

Although half of the South countries' group have decreased its emissions, the group's total emissions have increased.

Figure 20 - CO2 emissions decomposition explanatory effects in South countries

As shown in Figure 20, all the countries had increased emissions because of the economic activity and decreased emissions due to improvements in terms of intensity.

Portugal and Malta had similar results in the five explanatory effects recording a decrease in the total emissions released. Both had moved to more CO2 emission intensive structures, present analogous improvements in CO2 emissions efficiency and negligible results regarding the energy-mix and emission-factor effects.

Italy emerged has the only country that moved to a less CO2 emissions intensive structure but it is also the one in which the activity effect was the smallest and where the energy-mix deteriorated the most. From 1999 to 2009 Italy only reduced Coal consumption in 0.2% which might help explain why it deteriorated.

Regarding the energy-mix effect, Spain had a remarkable improvement of 18.2%.

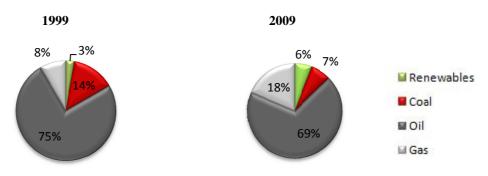


Figure 21 - Fuel use mix evolution in Spain

As represented in Figure 21, Spain have increased Renewables use as a fuel in 3.2%, reduced Oil use in 6.4% and registered the largest raise in Gas consumption (10.3%) and the largest reduction in Coal use (7.1%).

Cyprus and Greece have both substantially increased emissions due to the activity effect, and present similar results in terms of the structure, energy-mix and emission-factor effects. The Cyprus economy's improvement in terms of CO2 emissions efficiency was higher than in Greece.

b) The Center countries

The Center countries group's overall emissions decreased, although an increase in three of the countries (namely Austria, Ireland and Luxemburg).

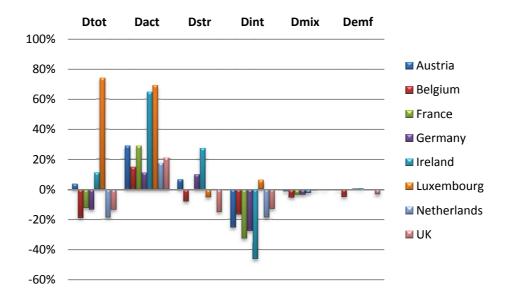


Figure 22 - CO2 emissions decomposition explanatory effects in Center countries

As illustrated in Figure 22, all the countries have increased their emissions because of the activity effect and decreased due to the energy-mix effect.

Luxembourg has improved the economic structure (to a less CO2 emissions intensive) but has deteriorated in terms of CO2 emissions efficiency, which combined with the large activity effect, led to a high increase in emissions. Ireland has also increased its emissions but in this case with improvements in efficiency and deterioration in the structure.

France and Austria had similar values in three effects, except for the structure (France poorer) and the energy-mix (France a little better) effects. As a result, France decreased

and Austria increased their total emissions. This might indicate that a slightly better energy-mix can avoid more emissions than a better structure.

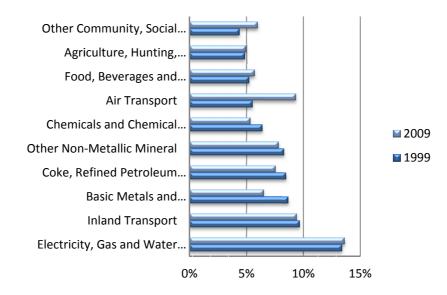


Figure 23 - Share of total CO2 emissions in French industries

Figure 23 denotes that in the case of France the deterioration in the structure can be partially explained by the 3.8% increase in CO2 emissions on the Air transport sector.

UK and Belgium (together with Luxembourg) moved to an economy with a less CO2 emission intensive structure. In the UK case (as seen in Figure 17), this move results from the greater share of total output in less energy intensive sectors, such as Financial Intermediation, Health and Social Work and Renting of Machinery. Additionally only in these two countries the results of the emission-factor effect are not negligible, rather denoting considerable improvements.

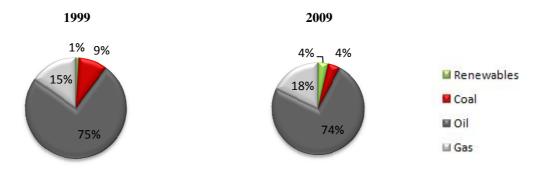


Figure 24 - Fuel use mix evolution in Belgium

Belgium has also reported the largest improvement in terms of energy-mix effect. As represented in Figure 24, this is explained by the reduction in the use of Coal, compensated with the increased use of Gas and Renewables.

c) The East countries

The majority (7) of the (10) countries have decreased the emissions released. Consequently the group managed to reduce total CO2 emissions in the period.

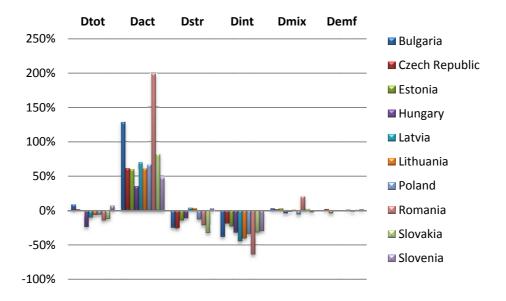


Figure 25 - CO2 emissions decomposition explanatory effects in East countries

The entire group has increased emissions because of the activity effect, but simultaneously decreased due to the sectoral CO2 emissions enhanced efficiency. Only three countries (Latvia, Lithuania and Slovenia) deteriorated in terms of moving into a more CO2 emission intensive structure. From these, only Slovenia did not reduce the emissions released, probably because its improvements in terms of CO2 emissions efficiency are more than ten per cent lower than in the two other countries. Lithuania had the worst performance on the energy-mix effect (Renewables use increased marginally (0.5%) and Oil increased (2.6%)).

Bulgaria, Czech Republic and Slovakia have all depreciated in terms of the energy-mix effect (all of them have increased Oil consumption, while the Czech Republic even reduced the use of Renewables). Accordingly, Bulgaria and Czech Republic have increased the total amount of CO2 emissions released over the period.

Hungary and Poland have decreased significantly emissions explained by the energymix (particularly because of increasing Renewables and decreasing Oil use, while Estonia and Romania deteriorated (both increased Coal's consumption).

d) The North countries

Sweden decreased the emissions released (mainly because of enhanced CO2 emissions efficiency), but this was not enough to decrease the North countries group's total emissions over the period.

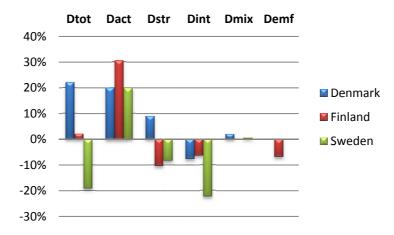


Figure 26 - CO2 emissions decomposition explanatory effects in North countries

Figure 26 shows that all the countries increased their economic activity, enhanced CO2 emissions because of the efficiency and deteriorated due to the energy-mix effects.

In Finland, improvements in the economic structure and CO2 emissions efficiency were not enough to reduce total emissions. Denmark, mainly due to the move to a more CO2 emissions intensive structure had the worst performance.

In terms of the energy-mix all three countries have increased the use of Renewables and reduced Coal use, but only Sweden reduced Oil use.

e) The EU 27

The EU has reduced the energy-related CO2 emissions released in the period considered almost entirely due to Center group's action (decreased six times more than the East group, while the South and the North countries total emissions even increased).

The majority of the countries (16) have decreased their total emissions, despite all of them have faced increasing emissions due to the activity effect (South 31.9%, Center

32.2%, North 23.6% and East 81.3%). Regarding the structure effect, the South and Center groups have deteriorated (8% and 2.2% respectively) while the East and North groups have improved, moving to less CO2 emission intensive structures (13.4% and 3.3% respectively). Concerning the sectoral energy efficiency effect, only Luxembourg deteriorated, with improvements in all groups, especially in the East (24.2%, 21.7%, 35.9% and 12.2% in the South, Center, East and North groups respectively). In relation to the energy-mix effect, the South and the Center groups have improved (3% and 2.2%, respectively), while the East and the North groups have deteriorated (1.9% and 0.9%, respectively). It is also noticeable that many of the East and North countries have increased the use of Oil, while the South and Center countries have reduced its use. Finally, in what concerns to the emission-factor effect, all of them have improved, especially the North group.

To sum up, overall, the EU 27 have decreased total CO2 emissions, moving to less CO2 emissions intensive structures (2.9%) and improving also in terms of the sectoral energy efficiency (26.4%), of the energy-mix (0.5%) and of the emission-factor (0.7%) effects. Contrarily, the activity effect (49.4%) counteracted those effects. Regarding the fuelmix, it is relevant to note that the use of Renewables and Gas increased over the period (2.5% and 0.6%, respectively) while the use of Coal and Oil decreased (1.8% and 1.3%, respectively).

V. Conclusions and Recommendations

Fighting climate change is one of today's top priorities of EU environmental policy. This makes the environmental and the energy policies even more interconnected than before and reinforce the guidance of the EU energy policy by the continuous search for a balanced management amid energy security, environmental protection and economic growth, thus much in line with the pursuance of sustainability. Further, as the implementation of the "Energy Roadmap 2050" and the "Energy Efficiency Directive" denote, improving energy efficiency has received EU's growing attention as a key component of sustainable development that would tackle energy security while addressing climate change concerns.

Accordingly, the main aim established for this research was to raise the level of general awareness of the complex interactions between energy, economic and environmental issues bearing in mind that international comparisons can help in identifying the potential for (energy and related CO2 emissions) intensity reductions and accordingly improving knowledge on how such potential can be used both for defining national policies to reduce energy intensity and for designing international actions to curb the threats of climate change. This has been accomplished through a comparative assessment of the changes in energy and CO2 emission intensities in the EU's countries, using data from the WIOD. The analysis of the progresses achieved in these indicators was performed both by assessing whether resources use and/or environmental degradation are decoupling from the growth of the economies, and by the decomposition of the overall rates of change of energy and CO2 emissions into the different explanatory effects contributing to such progression (using a LMDI approach). Nevertheless, our study of this progress was into some extent limited by the problems with the WIOD, since the database developers had removed information regarding NIOT in previous year prices (has they did not get satisfactory results and are still experimenting alternative deflation methods) in the course of this dissertation's elaboration.

Regarding the Energy Intensity components (energy use and GDP) trends from 1999 to 2009, the majority (14) of the EU's countries have increased energy use and all have increased the GDP throughout the period. Half of the countries where energy use increased are East countries while the ones where energy use decreased are mainly Center and South countries. It is also worth to remind that the largest GDP's growth

occurred in the East countries. In relation to the Energy Intensity indicator itself, only Luxembourg and Denmark have deteriorated over the period, while the major improvements occurred in the East countries. With reference to resource decoupling, the same two countries (Luxembourg and Denmark) did not manage to achieve either relative or absolute decoupling. From the remaining, 12 have reached a situation of relative decoupling (mostly the East countries) and 13 attained absolute decoupling (mainly the Center and South countries).

As regards to CO2 emissions, 10 countries (mostly South countries, with the exception of Italy and Portugal) could not manage to reduce CO2 emissions over the period, and the largest reductions occurred in the Center and East countries. Analysing the CO2 emissions intensity, only Denmark and Malta were not able to reduce it over the period, and the largest enhancements occurred in the East countries. Moreover, three countries (Denmark, Malta and Slovenia) did not achieve neither relative nor absolute impact decoupling. From the other countries, 7 of them have reached relative while the majority (17) attained absolute decoupling (predominantly East and Center countries).

Thus, it is critical to move towards more energy (resource) and CO2 emissions (impact) efficient economies. Resource or impact decoupling comes mostly from energy or CO2 emissions intensity reductions. As the results made evident, in terms of the reduction of energy use there are still many improvements to be made (only the Center group have reduced it) as well as in the CO2 emissions intensity (in which 10 countries increased emissions over the period).

Analyzing the energy decomposition explanatory effects, one observed that the EU, as a whole, has decreased its energy use through the period and the driver of this effect was the Center group of countries, with the East group reporting the poorest performance. This can be partly explained with the increasing energy needs as a result of the activity effect, in which this last group has registered significantly larger values than the remaining. 14 countries (mainly East and North countries) have succeeded in terms of moving into a less energy intensive structure, while the remaining 13 (mostly Center countries) register, at the end of the period, more energy intensive structures than in the beginning. In terms of the energy efficiency explanatory effect, it is noticeable that only Italy and Luxembourg deteriorated, with the largest improvements occurring in the East countries. Overall, the EU 27 have reduced total energy use by moving into less energy

intensive structures and improving sectoral energy efficiency, although the contrarious results of the activity effect.

Assessing the CO2 emissions decomposition effects, one realized that the EU has reduced total CO2 emissions released and, once more, almost entirely due to the Center group's action. Nevertheless, all the countries have increased emissions as a result of the economic activity growth, mainly the ones from the East group. In terms of moving to less energy intensive structures the results are similar to the ones for the energy decomposition and regarding the energy efficiency explanatory effect, only Luxembourg has deteriorated. In relation to the energy-mix effect, the South and Center groups have improved, while the East and North groups have worsened. Concerning the emission-factor effect the worst performance is found in the East countries. Overall, although the growth in the economic activity, the EU 27 have decreased CO2 emissions by moving to less carbon intensive structures and by improving the sectoral energy efficiency, the energy-mix and the emission-factor.

On the context of sustainable development in developing countries, the concept of leapfrogging is being used as a way to induce development by skipping inferior, less efficient, more expensive or more polluting technologies and industries and move directly to more advanced and cleaner ones. The idea is that through this process developing countries avoid environmentally harmful stages of development (unlike the now industrialized countries did in the past). At this level, it is important to highlight that when the most developed EU countries outsource heavy industries to outside their economies (mainly to the East EU countries) instead of investing on eco-efficiency improvements they are doing exactly the opposite from what they should to help those countries leapfrog.

Being energy intensity a measure of energy efficiency, the study of the energy decomposition explanatory effects is significant. Indeed, increases in the energy efficiency can be due to the use of more efficient production technologies and newer vintages of capital equipment or to changes in the structural composition of the economy (i.e. a shift towards less energy-intensive sectors). When technology (intensity) effects are the major driver, policies encouraging technology transfers, economies of scale, and learning-by-doing effects could aim at replicating similar trends in less developed regions, which still display higher-than-average energy intensity levels. This could also have implications for the negotiations of international

environmental agreements and policy design since agreements with emphasis on technology transfers might turn out to be more acceptable than new regulatory frameworks that promote the participation of developing countries. Conversely, if the decline in energy intensity is obtained simply as a result of structural improvements and increasing imports of energy-intensive goods, the observed pattern would not be replicable in other, less developed regions (Voigt et al, 2013).

On energy use matters, the more developed (South, Center and North) EU's countries are not registering structural improvements, and although the less developed regions (East) are, they still have a long way to go until reaching the higher stages of development. The significantly better structure explanatory effects registered in the East (developing) countries in opposition to the others (more developed) might suggest that, as the departing situation by the end of the last century was still very poor, such improvements happened because they still have much room for improvement. Accordingly, if the economic activity growth in the East countries is particularly desirable to get closer to the richest EU countries, it reinforces the governments and the EU institutions' need to analyze the other explanatory effects in order to improve the energy intensity indicator in this European region. These countries have already presented interesting results in terms of the intensity effects, and this can be considered as the best way to help them to 'leaprog' the armful stages of development by encouraging technology transfers. But, at the medium-term, this needs to be combined with improvements to be achieved by moving to less energy (and CO2 emissions) intensive structures of these economies. Regarding the progress in terms of energyrelated CO2 emissions, the two extra explanatory effects considered are related to the fuel mix of an economy (energy-mix) and to the carbon content of those fuels (emission-factor). In this regard, the East and North groups (by increasing Oil use and decreasing the use of Gas) deteriorated in terms of the fuel mix, while in terms of the emissions' carbon content all the groups have improved. Consequently, a better fuel mix (decreasing Oil use while investing in Renewables) would be particularly helpful to the East region. However, this is now a huge challenge for national and EU's policy makers as the current period of austerity has imposed tight constraints on national budgets, with some countries reverting energy policy measures like the ones directed for promoting clean energy technologies.

Appendix A

Summary of Energy and CO2 emissions progress (1999-2009) by country

Austria Austria Energy Use Total Output Most Energy Intensive Industries Accu 1999 - 2009 1999 518884,9 Coke, Refined Petroleum and Nuclear Fuel 35,8% 35,8% 0,7% 0,7% -10,2% Energy Intensity 308483,9 21,3% 57,1% 3,0% 3,79 Electricity, Gas and Water Supply Basic Metals and Fabricated Metal 80609,0 5,6% 62,7% 4,1% 7,8% Pulp, Paper, Paper , Printing and Publishing 77621,9 5,4% 68,1% 2,8% 10,5% 21,1% GDP 76031,5 12,1% Chemicals and Chemical Products 5,3% 73,3% 1,6% 2009 Coke, Refined Petroleum and Nuclear Fuel 468305,1 29,7% 29,7% 0,6% 0,6% Energy Use 8,7% 369587,2 23,5% 5,4% Electricity, Gas and Water Supply 53,2% 6,0% Basic Metals and Fabricated Metal 101159,4 6,4% 59,6% 3,8% 9,8% Resource Decoupling Pulp, Paper, Paper , Printing and Publishing 5,4% 65,1% 2,2% 12,0% 85694,3 Relative Chemicals and Chemical Products 81633,7 5,2% 70,3% 2,2% 14,2%

Austria		Emissions CO2					Total Output	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009			1999					
CO2 Intensity	11.00/	Electricity, Gas and Water Supply	10187,3	22,7%	22,7%	3,0%	3,0%	
CO2 Intensity	-11,8%	Basic Metals and Fabricated Metal	9207,3	20,5%	43,2%	4,1%	7,0%	
		Other Non-Metallic Mineral	4931,2	11,0%	54,2%	1,4%	8,4%	
GDP	21,1%	Inland Transport	3060,2	6,8%	61,0%	3,0%	11,4%	
GDP	21,170	Pulp, Paper, Paper, Printing and Publishing	2366,4	5,3%	66,3%	2,8%	14,2%	
		:	2009					
Emissions CO2	6,8%	Basic Metals and Fabricated Metal	10261,4	21,4%	21,4%	3,8%	3,8%	
Emissions CO2	0,070	Electricity, Gas and Water Supply	9557,6	19,9%	41,4%	5,4%	9,2%	
lass and De secondine		Other Non-Metallic Mineral	5494,9	11,5%	52,8%	1,2%	10,3%	
Impact Decoupling		Inland Transport	4206,5	8,8%	61,6%	2,5%	12,8%	
Relative		Air Transport	3355,9	7,0%	68,6%	0,5%	13,3%	

Belgium

Belgium		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-17,6%	Coke, Refined Petroleum and Nuclear Fuel	1468694,1	38,7%	38,7%	1,9%	1,9%
Energy intensity	-17,0%	Electricity, Gas and Water Supply	846566,2	22,3%	61,0%	2,0%	3,9%
		Chemicals and Chemical Products	368624,2	9,7%	70,7%	4,9%	8,8%
GDP	16.8%	Basic Metals and Fabricated Metal	247910,0	6,5%	77,2%	4,3%	13,1%
GDP	10,0%	Air Transport	193954,6	5,1%	82,3%	0,9%	13,9%
			2009				
Enormilico	-3,8%	Coke, Refined Petroleum and Nuclear Fuel	1421456,5	38,9%	38,9%	0,5%	0,5%
Energy Use	-5,0%	Electricity, Gas and Water Supply	879685,1	24,1%	63,0%	5,2%	5,8%
Resource Decoupli	na	Chemicals and Chemical Products	407840,9	11,2%	74,2%	2,2%	8,0%
Kesource Decoupi	Basic Metals and Fabricated Metal	127636,5	3,5%	77,7%	3,8%	11,8%	
Absolute		Inland Transport	111884,8	3,1%	80,8%	2,6%	14,3%

Belgium		Emission	ns CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	-22,6%	Electricity, Gas and Water Supply	22010,6	21,9%	21,9%	2,0%	2,0%	
CO2 intensity	-22,0%	Basic Metals and Fabricated Metal	15776,8	15,7%	37,5%	4,3%	6,3%	
		Chemicals and Chemical Products	10516,6	10,4%	48,0%	4,9%	11,2%	
GDP	16,8%	Other Non-Metallic Mineral	10400,7	10,3%	58,3%	1,3%	12,5%	
GDP	10,070	Inland Transport	9450,0	9,4%	67,7%	2,4%	14,9%	
			2009					
Emissions CO2	-9,6%	Electricity, Gas and Water Supply	22619,4	24,8%	24,8%	5,2%	5,2%	
Emissions CO2	-9,0%	Inland Transport	10326,6	11,3%	36,2%	2,6%	7,8%	
In part Deservation	-	Chemicals and Chemical Products	8903,6	9,8%	46,0%	2,2%	10,0%	
Impact Decoupling		Other Non-Metallic Mineral	8864,5	9,7%	55,7%	1,3%	11,3%	
Absolute		Air Transport	8700,6	9,6%	65,3%	0,6%	11,9%	

Bulgaria

Bulgaria		Energy Use	Energy Use				utput
4000 300	_	Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009	9		1999				
Energy Intensity	-31,6%	Electricity, Gas and Water Supply	483346,1	43,3%	43,3%	5,8%	5,8%
Energy intensity	-51,0%	Coke, Refined Petroleum and Nuclear Fuel	286902,9	25,7%	68,9%	3,9%	9,6%
		Chemicals and Chemical Products	85302,9	7,6%	76,6%	2,5%	12,2%
GDP	47,1%	Basic Metals and Fabricated Metal	69502,2	6,2%	82,8%	4,0%	16,1%
GDP	47,1%	Inland Transport	30415,9	2,7%	85,5%	4,5%	20,6%
			2009				
Enormalian	0,6%	Electricity, Gas and Water Supply	531566,1	47,3%	47,3%	5,9%	5,9%
Energy Use	0,0%	Coke, Refined Petroleum and Nuclear Fuel	317914,1	28,3%	75,6%	2,5%	8,4%
Resource Decoupling		Inland Transport	52301,3	4,7%	80,2%	2,8%	11,3%
		Chemicals and Chemical Products	44079,4	3,9%	84,1%	2,6%	13,8%
Relative		Other Non-Metallic Mineral	22435,0	2,0%	86,1%	1,6%	15,4%

Bulgaria		Emission	is CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2005	ð	1999						
CO2 Intensity	-35,1%	Electricity, Gas and Water Supply	23081,7	52,8%	52,8%	5,8%	5,8%	
CO2 Intensity	-55,1%	Basic Metals and Fabricated Metal	6169,4	14,1%	66,9%	4,0%	9,8%	
		Chemicals and Chemical Products	3454,4	7,9%	74,8%	2,5%	12,3%	
GDP	47,1%	Other Non-Metallic Mineral	1856,9	4,2%	79,1%	1,4%	13,7%	
GDP	47,170	Inland Transport	1619,4	3,7%	82,8%	4,5%	18,2%	
			2009					
Emissions CO2	1.00	Electricity, Gas and Water Supply	28233,5	67,7%	67,7%	5,9%	5,9%	
Emissions CO2	-4,6%	Inland Transport	2330,4	5,6%	73,3%	2,8%	8,8%	
Impact Decour	aling	Other Non-Metallic Mineral	2141,8	5,1%	78,5%	1,6%	10,4%	
Impact Decoupling		Construction	1334,8	3,2%	81,7%	4,6%	15,0%	
Absolute		Chemicals and Chemical Products	1149,6	2,8%	84,4%	2,6%	17,5%	

Cyprus

Cyprus		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LL	%	Accu	%	Accu
1339-2009			1999				
Energy Intensity	-42,7%	Coke, Refined Petroleum and Nuclear Fuel	51819,2	34,8%	34,8%	1,2%	1,2%
Lifer gy incensicy	-42,770	Electricity, Gas and Water Supply	36484,5	24,5%	59,4%	2,0%	3,1%
		Water Transport	12838,9	8,6%	68,0%	1,0%	4,1%
GDP	39,6%	Air Transport	10664,2	7,2%	75,2%	2,2%	6,3%
GDP	59,0%	Other Non-Metallic Mineral	9261,1	6,2%	81,4%	1,5%	7,8%
			2009				
Frenzellen	-20,1%	Electricity, Gas and Water Supply	52943,5	44,6%	44,6%	5,7%	5,7%
Energy Use	-20,1%	Water Transport	15194,4	12,8%	57,3%	0,0%	5,7%
Resource Decoupl	ing	Other Non-Metallic Mineral	8310,5	7,0%	64,3%	1,4%	7,1%
Kesource Decoup	ing	Air Transport	7356,1	6,2%	70,5%	0,5%	7,7%
Absolute		Inland Transport	6635,6	5,6%	76,1%	2,0%	9,6%

Cyprus		Emissions	CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1939 - 2009		1999						
CO2 Intensity	-22,6%	Electricity, Gas and Water Supply	2773,1	44,6%	44,6%	2,0%	2,0%	
	-22,070	Other Non-Metallic Mineral	844,2	13,6%	58,2%	1,5%	3,5%	
		Construction	696,0	11,2%	69,4%	8,5%	12,0%	
GDP	39,6%	Inland Transport	315,6	5,1%	74,5%	0,8%	12,9%	
GDP	59,0%	Electrical and Optical Equipment	223,7	3,6%	78,1%	0,2%	13,1%	
			2009					
Emissions CO2	0.10/	Electricity, Gas and Water Supply	4010,8	59,7%	59,7%	5,7%	5,7%	
Emissions CO2	8,1%	Other Non-Metallic Mineral	769,7	11,5%	71,2%	1,4%	7,1%	
Instant Deserved	ina	Inland Transport	567,5	8,4%	79,6%	2,0%	9,1%	
Impact Decoupl	ing	Construction	285,6	4,3%	83,9%	7,2%	16,3%	
Relative		Food, Beverages and Tobacco	133,4	2,0%	85,9%	3,4%	19,7%	

Czech Republic

Czech Repul	blic	Energy Use	Energy Use			Total Output	
4000 200		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 200	9		1999				
Energy Intensity	-21,3%	Electricity, Gas and Water Supply	843184,1	41,3%	41,3%	5,4%	5,4%
Energy intensity	-21,570	Coke, Refined Petroleum and Nuclear Fuel	323543,0	15,8%	57,1%	0,9%	6,2%
		Basic Metals and Fabricated Metal	201166,5	9,8%	66,9%	5,8%	12,0%
GDP	40,2%	Chemicals and Chemical Products	134072,3	6,6%	73,5%	2,4%	14,4%
GDP	40,2%	Mining and Quarrying	66845,4	3,3%	76,8%	1,2%	15,7%
			2009				
Frongelles	10,4%	Electricity, Gas and Water Supply	995534,5	44,1%	44,1%	5,1%	5,1%
Energy Use	10,4%	Coke, Refined Petroleum and Nuclear Fuel	405105,7	18,0%	62,1%	0,6%	5,6%
Posourco Doco	unling	Chemicals and Chemical Products	155247,8	6,9%	69,0%	2,3%	7,9%
Resource Decoupling		Basic Metals and Fabricated Metal	141527,6	6,3%	75,2%	3,8%	11,7%
Relative		Mining and Quarrying	64927,4	2,9%	78,1%	0,3%	12,1%

Czech Repu	blic	Emission	s CO2			Total O	utput	
1000 200		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 200	19	1999						
CO2 Intensity	20 50/	Electricity, Gas and Water Supply	55199,6	57,1%	57,1%	5,4%	5,4%	
CO2 Intensity	-28,6%	Basic Metals and Fabricated Metal	9915,6	10,3%	67,4%	5,8%	11,1%	
		Chemicals and Chemical Products	6159,1	6,4%	73,7%	2,4%	13,5%	
GDP	40.2%	Inland Transport	3748,5	3,9%	77,6%	3,3%	16,8%	
GDP	40,2%	Mining and Quarrying	3500,3	3,6%	81,2%	1,2%	18,0%	
			2009					
Emissions CO2	0.1%	Electricity, Gas and Water Supply	53785,1	55,6%	55,6%	5,1%	5,1%	
Emissions CO2	0,1%	Basic Metals and Fabricated Metal	10396,4	10,7%	66,3%	3,8%	8,9%	
Internet Dates		Chemicals and Chemical Products	6945,1	7,2%	73,5%	2,3%	11,2%	
Impact Decoupling		Inland Transport	4849,0	5,0%	78,5%	2,7%	13,9%	
Relative		Mining and Quarrying	3607,6	3,7%	82,2%	0,3%	14,2%	

Denmark

Denmark		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	ιτ	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	7,6%	Electricity, Gas and Water Supply	397013,6	28,6%	28,6%	1,8%	1,8%
Lifer gy intensity	7,078	Coke, Refined Petroleum and Nuclear Fuel	353236,8	25,4%	54,0%	0,5%	2,3%
		Water Transport	209627,3	15,1%	69,1%	2,9%	5,2%
GDP	7,5%	Agriculture, Hunting, Forestry and Fishing	51800,6	3,7%	72,8%	3,1%	8,4%
GDP	7,570	Air Transport	37614,4	2,7%	75,5%	0,8%	9,2%
			2009				
Engamenting	15,6%	Water Transport	477321,2	29,7%	29,7%	0,0%	0,0%
Energy Use	15,6%	Electricity, Gas and Water Supply	391957,9	24,4%	54,1%	4,8%	4,8%
Resource Decoup	ling	Coke, Refined Petroleum and Nuclear Fuel	348217,2	21,7%	75,8%	0,4%	5,2%
Resource Decoup	Agriculture, Hunting, Forestry and Fishing	47998,1	3,0%	78,8%	2,1%	7,3%	
No Decoupling	,	Air Transport	38883,8	2,4%	81,2%	0,6%	7,9%

Denmark		Emissions CC	02			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	10.8%	Electricity, Gas and Water Supply	26393,6	40,2%	40,2%	1,8%	1,8%	
CO2 Intensity	10,876	Water Transport	16064,3	24,5%	64,7%	2,9%	4,7%	
		Other Non-Metallic Mineral	3657,3	5,6%	70,2%	1,0%	5,7%	
GDP	7,5%	Air Transport	2698,9	4,1%	74,3%	0,8%	6,5%	
GDP	7,370	Mining and Quarrying	2675,4	4,1%	78,4%	1,0%	7,5%	
			2009					
Emissions CO2	19.1%	Water Transport	36720,8	46,9%	46,9%	0,0%	0,0%	
Emissions CO2	19,1%	Electricity, Gas and Water Supply	20950,0	26,8%	73,7%	4,8%	4,8%	
Impact Decoupli		Air Transport	2786,5	3,6%	77,3%	0,6%	5,5%	
Impact Decoupling		Inland Transport	2745,9	3,5%	80,8%	2,6%	8,0%	
No Decoupling		Agriculture, Hunting, Forestry and Fishing	2312,9	3,0%	83,8%	2,1%	10,1%	

Estonia

Estonia		Energy Use	Energy Use				
		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 200)9		1999				
Energy Intensity	-28,3%	Electricity, Gas and Water Supply	137559,5	60,6%	60,6%	3,7%	3,7%
energy incensicy	-20,570	Chemicals and Chemical Products	19611,6	8,6%	69,2%	1,2%	4,9%
		Coke, Refined Petroleum and Nuclear Fuel	7030,4	3,1%	72,3%	0,2%	5,1%
GDP	55,3%	Water Transport	6964,7	3,1%	75,4%	2,1%	7,2%
GDP	55,5%	Inland Transport	6275,1	2,8%	78,1%	4,2%	11,4%
			2009				
Freemulies	11.20/	Electricity, Gas and Water Supply	142004,6	56,2%	56,2%	4,2%	4,2%
Energy Use	11,3%	Chemicals and Chemical Products	33546,8	13,3%	69,4%	1,6%	5,9%
Resource Decoupling		Water Transport	7694,7	3,0%	72,5%	0,0%	5,9%
		Inland Transport	6595,3	2,6%	75,1%	2,1%	7,9%
Relative		Coke, Refined Petroleum and Nuclear Fuel	5979,0	2,4%	77,4%	0,4%	8,3%

Estonia		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-36,4%	Electricity, Gas and Water Supply	12155,5	84,2%	84,2%	3,7%	3,7%
CO2 Intensity	-30,4%	Inland Transport	515,8	3,6%	87,8%	4,2%	7,9%
		Other Non-Metallic Mineral	397,9	2,8%	90,5%	1,1%	9,0%
CDD	55,3%	Chemicals and Chemical Products	370,7	2,6%	93,1%	1,2%	10,1%
GDP	55,5%	Coke, Refined Petroleum and Nuclear Fuel	327,4	2,3%	95,4%	0,2%	10,3%
			2009				
Emissions CO2	1.20/	Electricity, Gas and Water Supply	10061,8	70,6%	70,6%	4,2%	4,2%
Emissions CO2	-1,3%	Coke, Refined Petroleum and Nuclear Fuel	1834,3	12,9%	83,5%	0,4%	4,6%
Impact Decouple		Inland Transport	602,1	4,2%	87,7%	2,1%	6,7%
Impact Decoupli	ıg	Other Non-Metallic Mineral	349,8	2,5%	90,2%	1,2%	7,9%
Absolute		Construction	261,0	1,8%	92,0%	6,8%	14,7%

Finland

Finland		Energy Use				Total O	utput	
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu	
1999 - 2009		1999						
Energy Intensity	-11,3%	Coke, Refined Petroleum and Nuclear Fuel	597891,3	29,3%	29,3%	1,1%	1,1%	
Lifer gy incensicy	-11,370	Electricity, Gas and Water Supply	573789,6	28,2%	57,5%	1,9%	3,0%	
		Pulp, Paper, Paper, Printing and Publishing	270853,3	13,3%	70,8%	7,7%	10,7%	
GDR	20,3%	Basic Metals and Fabricated Metal	90520,4	4,4%	75,2%	4,1%	14,7%	
5DP	20,375	Chemicals and Chemical Products	84621,5	4,2%	79,4%	2,0%	16,7%	
			2009					
En en mullen	6,8%	Electricity, Gas and Water Supply	671971,4	30,9%	30,9%	4,6%	4,6%	
Energy Use	0,0%	Coke, Refined Petroleum and Nuclear Fuel	602763,1	27,7%	58,6%	0,5%	5,1%	
Resource Decoupli	ing	Pulp, Paper, Paper , Printing and Publishing	263694,7	12,1%	70,7%	2,2%	7,2%	
Resource Decoupi	ing	Chemicals and Chemical Products	91825,2	4,2%	74,9%	2,2%	9,4%	
Relative		Basic Metals and Fabricated Metal	81088,7	3,7%	78,7%	3,9%	13,3%	

Finland		Emissions CO2				Total Ó	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2005			1999				
CO2 Intensity	-17.7%	Electricity, Gas and Water Supply	20359,3	36,5%	36,5%	1,9%	1,9%
CO2 Intensity	-17,7%	Basic Metals and Fabricated Metal	6249,0	11,2%	47,7%	4,1%	5,9%
		Pulp, Paper, Paper, Printing and Publishing	4302,6	7,7%	55,4%	7,7%	13,6%
¢DD.	20,3%	Coke, Refined Petroleum and Nuclear Fuel	3657,0	6,6%	62,0%	1,1%	14,7%
GDP	20,5%	Inland Transport	3262,3	5,9%	67,8%	2,5%	17,2%
			2009				
Emissions CO2	-1,0%	Electricity, Gas and Water Supply	22462,6	40,7%	40,7%	4,6%	4,6%
Emissions CO2	-1,0%	Air Transport	4835,3	8,8%	49,5%	0,6%	5,2%
Impact Decoup	ling	Basic Metals and Fabricated Metal	4638,1	8,4%	57,9%	3,9%	9,1%
mipaci Decoup	iing	Coke, Refined Petroleum and Nuclear Fuel	4191,0	7,6%	65,5%	0,5%	9,6%
Absolute		Pulp, Paper, Paper, Printing and Publishing	3212,5	5,8%	71,3%	2,2%	11,7%

France

France		Energy Use				Total O	utput
4000 2000		Most Energy Intensive Industries	LΩ	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-16,1%	Electricity, Gas and Water Supply	5174885,7	36,8%	36,8%	2,0%	2,0%
Ellergy intensity	-10,170	Coke, Refined Petroleum and Nuclear Fuel	3976835,2	28,3%	65,1%	1,1%	3,1%
		Chemicals and Chemical Products	878396,1	6,3%	71,4%	3,1%	6,2%
GDP	13.8%	Basic Metals and Fabricated Metal	490452,8	3,5%	74,9%	3,3%	9,5%
GDP	15,670	Inland Transport	405494,5	2,9%	77,7%	2,1%	11,5%
			2009				
Frormulino	-4,5%	Electricity, Gas and Water Supply	5618148,9	41,9%	41,9%	5,7%	5,7%
Energy Use	-4,5%	Coke, Refined Petroleum and Nuclear Fuel	3453312,1	25,7%	67,6%	0,8%	6,5%
Posourco Docour	ling	Chemicals and Chemical Products	678701,5	5,1%	72,6%	2,6%	9,1%
Resource Decoupling		Inland Transport	388721,4	2,9%	75,5%	2,4%	11,5%
Absolute		Basic Metals and Fabricated Metal	294101,0	2,2%	77,7%	3,6%	15,1%

France		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-22,5%	Electricity, Gas and Water Supply	39512,6	13,4%	13,4%	2,0%	2,0%
CO2 Intensity	-22,5%	Inland Transport	28489,6	9,7%	23,0%	2,1%	4,1%
		Basic Metals and Fabricated Metal	25535,0	8,7%	31,7%	3,3%	7,4%
ĆDB.	13,8%	Coke, Refined Petroleum and Nuclear Fuel	24930,8	8,4%	40,1%	1,1%	8,5%
GDP	13,8%	Other Non-Metallic Mineral	24439,5	8,3%	48,4%	0,9%	9,3%
			2009				
Emissions CO2	-11.8%	Electricity, Gas and Water Supply	35408,4	13,6%	13,6%	5,7%	5,7%
Emissions CO2	-11,8%	Inland Transport	24455,8	9,4%	23,0%	2,4%	8,0%
Impact Descuri		Air Transport	24313,6	9,3%	32,3%	0,6%	8,6%
Impact Decoupling		Other Non-Metallic Mineral	20323,1	7,8%	40,1%	1,1%	9,7%
Absolute		Coke, Refined Petroleum and Nuclear Fuel	19608,6	7,5%	47,7%	0,8%	10,5%

Germany

Germany		Energy Use				Total O	utput		
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu		
1999 - 2009			1999						
Energy Intensity	-14,5%	Coke, Refined Petroleum and Nuclear Fuel	5895999,4	31,3%	31,3%	0,7%	0,7%		
Lifel gy intensity	-14,576	Electricity, Gas and Water Supply	5822265,1	30,9%	62,3%	2,0%	2,8%		
		Chemicals and Chemical Products	1355040,5	7,2%	69,5%	3,1%	5,9%		
CDD	10,8%	Basic Metals and Fabricated Metal	988339,6	5,3%	74,7%	3,9%	9,7%		
GDP	10,0%	Air Transport	403275,2	2,1%	76,9%	0,5%	10,2%		
			2009						
Enormaliza	-5,3%	Electricity, Gas and Water Supply	5925762,0	33,2%	33,2%	4,8%	4,8%		
Energy Use	-5,5%	Coke, Refined Petroleum and Nuclear Fuel	5427330,1	30,4%	63,7%	0,5%	5,4%		
Resource Decoup		Chemicals and Chemical Products	1422168,3	8,0%	71,7%	2,1%	7,4%		
Resource Decoupt	ing	Basic Metals and Fabricated Metal	786528,4	4,4%	76,1%	3,6%	11,0%		
Absolute		Air Transport	458835,0	2,6%	78,7%	0,6%	11,6%		

German	y	Emissio	ons CO2			Total O	utput	
1999 - 200	20	Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 200	19	1999						
CO2 Intensity	-17.2%	Electricity, Gas and Water Supply	331088,8	47,8%	47,8%	2,0%	2,0%	
CO2 Intensity	-17,2%	Basic Metals and Fabricated Metal	63806,9	9,2%	57,0%	3,9%	5,9%	
		Other Non-Metallic Mineral	43723,7	6,3%	63,3%	1,1%	7,0%	
CDB.	10.9%	Chemicals and Chemical Products	33065,0	4,8%	68,0%	3,1%	10,1%	
GDP	10,8%	Air Transport	25926,3	3,7%	71,8%	0,5%	10,6%	
			2009					
Emissions CO2	0.00/	Electricity, Gas and Water Supply	324063,2	50,9%	50,9%	4,8%	4,8%	
Emissions CO2	-8,2%	Basic Metals and Fabricated Metal	47986,8	7,5%	58,5%	3,6%	8,4%	
Immed Dece	undia -	Other Non-Metallic Mineral	34559,4	5,4%	63,9%	1,2%	9,6%	
Impact Decoupling		Air Transport	33799,5	5,3%	69,2%	0,6%	10,2%	
Absolute	9	Chemicals and Chemical Products	32075,0	5,0%	74,3%	2,1%	12,3%	

Greece

Greece		Energy Use				Total O	utput
4000 000		Most Energy Intensive Industries	LΩ	%	Accu	%	Accu
1999 - 200	19		1999				
Energy Intensity	-9,3%	Coke, Refined Petroleum and Nuclear Fuel	765968,9	42,6%	42,6%	1,5%	1,5%
Lifergy incensicy	-3,370	Electricity, Gas and Water Supply	465486,3	25,9%	68,5%	2,2%	3,8%
		Water Transport	155561,6	8,7%	77,2%	2,8%	6,6%
GDP	35,5%	Agriculture, Hunting, Forestry and Fishing	54427,5	3,0%	80,2%	6,3%	12,9%
GDP	55,5%	Other Non-Metallic Mineral	49558,7	2,8%	83,0%	1,4%	14,3%
			2009				
Franzilla	22,9%	Coke, Refined Petroleum and Nuclear Fuel	879000,4	39,8%	39,8%	0,5%	0,5%
Energy Use	22,9%	Electricity, Gas and Water Supply	560988,9	25,4%	65,2%	5,7%	6,3%
Resource Decoupling		Water Transport	293509,7	13,3%	78,5%	0,0%	6,3%
		Inland Transport	57323,7	2,6%	81,0%	2,5%	8,8%
Relative	9	Agriculture, Hunting, Forestry and Fishing	44738,8	2,0%	83,1%	2,0%	10,8%

Greece		Emissions CO2				Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	-16,5%	Electricity, Gas and Water Supply	50199,1	60,6%	60,6%	2,2%	2,2%	
CO2 Intensity	-10,5%	Food, Beverages and Tobacco	9008,5	10,9%	71,4%	6,7%	9,0%	
		Mining and Quarrying	6980,9	8,4%	79,9%	0,4%	9,4%	
CDB	35,5%	Inland Transport	3388,2	4,1%	84,0%	1,6%	11,1%	
GDP	55,5%	Agriculture, Hunting, Forestry and Fishing	2754,9	3,3%	87,3%	6,3%	17,4%	
			2009					
Emissions CO2	13,2%	Electricity, Gas and Water Supply	55118,1	58,8%	58,8%	5,7%	5,7%	
Emissions CO2	15,2%	Food, Beverages and Tobacco	9194,1	9,8%	68,6%	3,6%	9,3%	
Impact Descuri		Mining and Quarrying	7305,5	7,8%	76,4%	0,4%	9,6%	
Impact Decoupli	ng	Air Transport	5920,0	6,3%	82,7%	0,5%	10,2%	
Relative		Inland Transport	3672,8	3,9%	86,6%	2,5%	12,6%	

Hungary

Hungary		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009		:	1999				
Energy Intensity	-16.8%	Electricity, Gas and Water Supply	501239,3	36,9%	36,9%	3,8%	3,8%
Energy intensity	-10,8 %	Coke, Refined Petroleum and Nuclear Fuel	399045,4	29,4%	66,3%	2,0%	5,8%
		Chemicals and Chemical Products	90465,4	6,7%	72,9%	2,4%	8,2%
GDP	13,8%	Basic Metals and Fabricated Metal	43978,9	3,2%	76,2%	3,2%	11,4%
ODP	15,6%	Inland Transport	36030,5	2,7%	78,8%	3,0%	14,3%
		:	2009				
Enormy Line	-5,4%	Electricity, Gas and Water Supply	445735,1	34,7%	34,7%	4,3%	4,3%
Energy Use	-3,4%	Coke, Refined Petroleum and Nuclear Fuel	370711,9	28,8%	63,5%	0,4%	4,7%
Resource Decoupli	20	Chemicals and Chemical Products	108205,5	8,4%	71,9%	1,7%	6,5%
Resource Decoupi	ng	Inland Transport	45044,9	3,5%	75,4%	2,3%	8,8%
Absolute		Basic Metals and Fabricated Metal	34525,1	2,7%	78,1%	4,0%	12,8%

Hungary	1	Emission	ns CO2			Total Ó	utput	
1000 00	~	Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 200	09	1999						
CO2 Intensity	-24,5%	Electricity, Gas and Water Supply	24515,4	50,6%	50,6%	3,8%	3,8%	
	-24,370	Inland Transport	5518,4	11,4%	62,0%	3,0%	6,7%	
		Basic Metals and Fabricated Metal	3103,9	6,4%	68,4%	3,2%	9,9%	
GDP	13,8%	Other Non-Metallic Mineral	3015,1	6,2%	74,6%	1,1%	11,0%	
GDP	15,6%	Chemicals and Chemical Products	1998,9	4,1%	78,8%	2,4%	13,4%	
			2009					
Emissions CO2	14 10/	Electricity, Gas and Water Supply	15001,4	36,1%	36,1%	4,3%	4,3%	
Emissions CO2	-14,1%	Inland Transport	9526,0	22,9%	59,0%	2,3%	6,6%	
luces of Deces	ling	Chemicals and Chemical Products	2702,0	6,5%	65,4%	1,7%	8,3%	
Impact Decoupling		Basic Metals and Fabricated Metal	2636,2	6,3%	71,8%	4,0%	12,4%	
Absolute	9	Other Non-Metallic Mineral	2194,5	5,3%	77,1%	1,5%	13,8%	

Ireland

Ireland		Energy Use				Total O	utput
		Most Energy Intensive Industries	LΤ	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-19,6%	Electricity, Gas and Water Supply	211778,8	33,7%	33,7%	0,9%	0,9%
Lifergy intensity	-13,078	Coke, Refined Petroleum and Nuclear Fuel	133593,6	21,2%	54,9%	0,4%	1,3%
		Inland Transport	35659,2	5,7%	60,6%	2,8%	4,0%
CDD	42,7%	Chemicals and Chemical Products	31327,8	5,0%	65,6%	9,8%	13,9%
GDP	42,770	Air Transport	24583,2	3,9%	69,5%	1,8%	15,7%
			2009				
Frenzelles	14,7%	Electricity, Gas and Water Supply	213804,3	29,6%	29,6%	7,9%	7,9%
Energy Use	14,770	Coke, Refined Petroleum and Nuclear Fuel	144589,1	20,0%	49,7%	1,1%	9,0%
Pocourco Docour	aling	Air Transport	88007,4	12,2%	61,9%	0,5%	9,5%
Resource Decoupling		Basic Metals and Fabricated Metal	27454,1	3,8%	65,7%	5,6%	15,1%
Relative		Food, Beverages and Tobacco	20657,8	2,9%	68,6%	4,5%	19,6%

Ireland		Emission	s CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	-36,3%	Electricity, Gas and Water Supply	15427,9	50,8%	50,8%	0,9%	0,9%	
CO2 intensity	-30,3%	Inland Transport	2642,7	8,7%	59,5%	2,8%	3,7%	
		Basic Metals and Fabricated Metal	1528,2	5,0%	64,6%	1,3%	5,0%	
GDP	43 70/	Other Non-Metallic Mineral	1439,3	4,7%	69,3%	1,0%	6,0%	
GDP	42,7%	Food, Beverages and Tobacco	1421,4	4,7%	74,0%	6,6%	12,6%	
			2009					
Emissions CO2	-9,2%	Electricity, Gas and Water Supply	12660,6	45,9%	45,9%	7,9%	7,9%	
Emissions CO2	-9,2%	Inland Transport	3430,7	12,4%	58,4%	2,4%	10,3%	
Impact Decoup	na	Basic Metals and Fabricated Metal	1609,8	5,8%	64,2%	5,6%	15,9%	
impact Decoupt	ing	Other Non-Metallic Mineral	1608,0	5,8%	70,0%	1,7%	17,6%	
Absolute		Food, Beverages and Tobacco	1015,1	3,7%	73,7%	4,5%	22,1%	

Italy

italy		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	υT	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-4,9%	Coke, Refined Petroleum and Nuclear Fuel	4465031,5	43,1%	43,1%	1,0%	1,0%
Energy intensity	-4,970	Electricity, Gas and Water Supply	1828041,2	17,6%	60,7%	2,2%	3,1%
		Basic Metals and Fabricated Metal	768300,7	7,4%	68,1%	4,7%	7,8%
GDP	3,4%	Chemicals and Chemical Products	601300,1	5,8%	73,9%	2,9%	10,8%
GDP	3,4%	Other Non-Metallic Mineral	339287,0	3,3%	77,2%	1,5%	12,3%
			2009				
Enormalian	-1.7%	Coke, Refined Petroleum and Nuclear Fuel	3961646,3	38,9%	38,9%	0,4%	0,4%
Energy Use	-1,7 %	Electricity, Gas and Water Supply	2307476,4	22,6%	61,5%	4,5%	5,0%
Resource Decoup	ling	Basic Metals and Fabricated Metal	558916,6	5,5%	67,0%	3,8%	8,8%
Kesource Decoup	iiiig –	Chemicals and Chemical Products	484620,7	4,8%	71,8%	2,3%	11,1%
Absolute		Inland Transport	457429,5	4,5%	76,2%	2,6%	13,7%

italy		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-11,3%	Electricity, Gas and Water Supply	121134,0	33,8%	33,8%	2,2%	2,2%
CO2 Intensity	-11,570	Other Non-Metallic Mineral	44650,2	12,4%	46,2%	1,5%	3,7%
		Coke, Refined Petroleum and Nuclear Fuel	28056,9	7,8%	54,0%	1,0%	4,7%
GDP	3,4%	Inland Transport	18983,9	5,3%	59,3%	3,5%	8,2%
GDP	5,4%	Basic Metals and Fabricated Metal	18325,1	5,1%	64,4%	4,7%	12,9%
			2009				
Emissions CO2	-8,2%	Electricity, Gas and Water Supply	113538,0	34,5%	34,5%	4,5%	4,5%
Emissions CO2	-0,2%	Other Non-Metallic Mineral	34122,8	10,4%	44,8%	1,3%	5,8%
Increase Deserved		Coke, Refined Petroleum and Nuclear Fuel	24053,2	7,3%	52,1%	0,4%	6,2%
Impact Decoupl	ing	Inland Transport	23960,0	7,3%	59,4%	2,6%	8,8%
Absolute		Basic Metals and Fabricated Metal	14812,5	4,5%	63,9%	3,8%	12,7%

Latvia

Latvia		Energy Use				Total Output	
4000 200		Most Energy Intensive Industries	LΩ	%	Accu	%	Accu
1999 - 200	9		1999				
Energy Intensity	-34,7%	Electricity, Gas and Water Supply	73224,9	47,5%	47,5%	4,3%	4,3%
energy intensity	-34,7%	Inland Transport	8303,3	5,4%	52,9%	4,1%	8,4%
		Food, Beverages and Tobacco	7262,7	4,7%	57,6%	6,0%	14,5%
GDP	51,2%	Agriculture, Hunting, Forestry and Fishing	6989,0	4,5%	62,1%	5,3%	19,8%
GDP	51,270	Wood and Products of Wood and Cork	6309,4	4,1%	66,2%	4,2%	24,0%
			2009				
Energylice	-1,2%	Electricity, Gas and Water Supply	61065,5	40,1%	40,1%	4,8%	4,8%
Energy Use	-1,270	Wood and Products of Wood and Cork	12005,6	7,9%	48,0%	1,4%	6,2%
Perource Deco	unling	Inland Transport	10209,0	6,7%	54,7%	3,0%	9,1%
Resource Decoupling		Real Estate Activities	7832,6	5,1%	59,8%	6,4%	15,5%
Absolute		Agriculture, Hunting, Forestry and Fishing	6954,7	4,6%	64,4%	1,8%	17,3%

Latvia		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-35,3%	Electricity, Gas and Water Supply	2980,8	40,6%	40,6%	4,3%	4,3%
	-33,378	Inland Transport	959,3	13,1%	53,7%	4,1%	8,4%
		Food, Beverages and Tobacco	540,4	7,4%	61,1%	6,0%	14,5%
GDP	51,2%	Basic Metals and Fabricated Metal	411,7	5,6%	66,7%	2,2%	16,7%
אעט	51,2%	Agriculture, Hunting, Forestry and Fishing	399,1	5,4%	72,1%	5,3%	22,0%
			2009				
Emissions CO2	-2,1%	Electricity, Gas and Water Supply	2074,8	28,9%	28,9%	4,8%	4,8%
Emissions CO2	-2,1%	Inland Transport	1515,1	21,1%	50,0%	3,0%	7,7%
Impact Decoupli	50	Air Transport	576,2	8,0%	58,0%	0,7%	8,4%
Impact Decoupli	ng	Agriculture, Hunting, Forestry and Fishing	433,8	6,0%	64,1%	1,8%	10,2%
Absolute		Other Non-Metallic Mineral	402,2	5,6%	69,7%	1,3%	11,5%

Lithuania

Lithuania		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-14,5%	Electricity, Gas and Water Supply	213801,6	38,6%	38,6%	4,9%	4,9%
Lifer gy intensity	-14,5%	Coke, Refined Petroleum and Nuclear Fuel	213634,4	38,6%	77,2%	3,2%	8,1%
		Chemicals and Chemical Products	30069,0	5,4%	82,7%	1,9%	10,0%
CDB	56,5%	Inland Transport	12359,0	2,2%	84,9%	4,1%	14,1%
SDP	50,5%	Water Transport	9671,4	1,7%	86,6%	0,5%	14,5%
			2009				
Francillas	33,8%	Coke, Refined Petroleum and Nuclear Fuel	393390,4	53,1%	53,1%	0,5%	0,5%
Energy Use	55,0%	Electricity, Gas and Water Supply	203297,9	27,5%	80,6%	6,2%	6,6%
Resource Decoup	line	Chemicals and Chemical Products	38987,2	5,3%	85,8%	1,4%	8,1%
Resource Decoup	iing -	Inland Transport	14756,1	2,0%	87,8%	2,1%	10,1%
Relative		Water Transport	9406,2	1,3%	89,1%	0,0%	10,2%

Lithuania		Emissions CO2				Total O	utput		
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu		
1935-2005			1999						
CO2 Intensity	-39,0%	Electricity, Gas and Water Supply	4949,4	41,0%	41,0%	4,9%	4,9%		
CO2 Intensity	-33,0%	Inland Transport	1968,2	16,3%	57,3%	4,1%	9,0%		
		Chemicals and Chemical Products	1156,0	9,6%	66,9%	1,9%	10,9%		
GDP	56,5%	Coke, Refined Petroleum and Nuclear Fuel	996,7	8,3%	75,1%	3,2%	14,1%		
אעט	50,5%	Other Non-Metallic Mineral	869,9	7,2%	82,3%	1,1%	15,2%		
			2009						
Emissions CO2	A E 0/	Electricity, Gas and Water Supply	2969,4	25,8%	25,8%	6,2%	6,2%		
EITISSIOTIS CO2	-4,5%	Inland Transport	2347,8	20,4%	46,1%	2,1%	8,3%		
Impact Decoupli		Coke, Refined Petroleum and Nuclear Fuel	1890,8	16,4%	62,5%	0,5%	8,7%		
Impact Decoupling		Chemicals and Chemical Products	1400,6	12,2%	74,7%	1,4%	10,1%		
Absolute		Other Non-Metallic Mineral	638,0	5,5%	80,2%	1,4%	11,5%		

Luxembourg

Luxembourg		Energy Use					utput	
4000 0000		Most Energy Intensive Industries	τJ	%	Accu	%	Accu	
1999 - 2009		1999						
Energy Intensity	15,8%	Air Transport	36183,5	32,3%	32,3%	1,8%	1,8%	
Lifer gy incensicy	13,8%	Basic Metals and Fabricated Metal	20863,3	18,6%	50,9%	5,4%	7,2%	
		Other Non-Metallic Mineral	7193,4	6,4%	57,3%	1,1%	8,4%	
GDP	43,9%	Inland Transport	5802,0	5,2%	62,5%	1,9%	10,3%	
GDP	43,376	Construction	4985,4	4,4%	66,9%	5,8%	16,1%	
			2009					
Fromelico	66,7%	Air Transport	66280,4	35,4%	35,4%	0,7%	0,7%	
Energy Use	66,7%	Electricity, Gas and Water Supply	23777,1	12,7%	48,2%	5,2%	5,9%	
Perource Decour	ling	Basic Metals and Fabricated Metal	16002,1	8,6%	56,7%	3,1%	9,0%	
Resource Decoupling		Financial Intermediation	9347,4	5,0%	61,7%	3,7%	12,6%	
No Decoupling	}	Inland Transport	8680,5	4,6%	66,4%	3,2%	15,9%	

Luxembourg		Emissions CO2				Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	-56,5%	Air Transport	1188,3	24,5%	24,5%	1,8%	1,8%	
	-30,378	Other Non-Metallic Mineral	1086,7	22,4%	46,8%	1,1%	3,0%	
		Basic Metals and Fabricated Metal	736,4	15,2%	62,0%	5,4%	8,4%	
GDP	43,9%	Inland Transport	396,6	8,2%	70,2%	1,9%	10,3%	
GDP	43,370	Financial Intermediation	258,9	5,3%	75,5%	42,7%	52,9%	
			2009					
Emissions CO2	-37,4%	Electricity, Gas and Water Supply	1164,1	38,3%	38,3%	5,2%	5,2%	
Emissions CO2	-57,4%	Other Non-Metallic Mineral	812,7	26,7%	65,0%	1,3%	6,5%	
Impact Decouplir		Financial Intermediation	286,3	9,4%	74,5%	3,7%	10,1%	
impact Decouplin	rg	Construction	217,8	7,2%	81,6%	7,3%	17,4%	
Absolute		Other Community, Social and Personal Services	107,9	3,6%	85,2%	3,0%	20,5%	

Malta

Malta		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LΩ	%	Accu	%	Accu
1999 - 2009		1	1999				
Energy Intensity	-25,7%	Air Transport	36341,0	51,6%	51,6%	2,8%	2,8%
Lifer gy intensity	-23,770	Electricity, Gas and Water Supply	23549,6	33,5%	85,1%	4,0%	6,9%
		Water Transport	1731,1	2,5%	87,5%	0,6%	7,4%
GDP	25,0%	Inland Transport	1126,4	1,6%	89,1%	1,4%	8,8%
GDP	23,076	Other Supporting and Auxiliary Transport Activities; A	695,2	1,0%	90,1%	3,0%	11,9%
			2009				
Energylles	-7.1%	Air Transport	28392,4	43,4%	43,4%	0,6%	0,6%
Energy Use	-7,1%	Electricity, Gas and Water Supply	26016,7	39,8%	83,2%	5,8%	6,4%
Becourse Decourd	ing	Water Transport	2630,8	4,0%	87,2%	0,0%	6,4%
Resource Decoupl	ing	Construction	1282,6	2,0%	89,2%	8,1%	14,5%
Absolute		Other Community, Social and Personal Services	1054,6	1,6%	90,8%	3,5%	18,0%

Malta		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009		1	1999				
CO2 Intensity	0,7%	Electricity, Gas and Water Supply	1269,4	63,5%	63,5%	4,0%	4,0%
CO2 Intensity	0,776	Inland Transport	486,0	24,3%	87,9%	1,4%	5,4%
		Hotels and Restaurants	61,4	3,1%	90,9%	7,5%	12,9%
GDP	25,0%	Basic Metals and Fabricated Metal	42,0	2,1%	93,0%	0,7%	13,6%
GDP	25,0%	Public Admin and Defence; Compulsory Social Securit	40,9	2,0%	95,1%	4,6%	18,2%
			2009				
Emissions CO2	25,8%	Electricity, Gas and Water Supply	1479,4	58,9%	58,9%	5,8%	5,8%
Emissions CO2	25,8%	Inland Transport	446,7	17,8%	76,6%	2,6%	8,4%
Impact Docoup	ing	Basic Metals and Fabricated Metal	419,7	16,7%	93,3%	4,1%	12,5%
Impact Decoupling		Mining and Quarrying	38,0	1,5%	94,8%	0,4%	12,9%
No Decouplin	g	Hotels and Restaurants	22,4	0,9%	95,7%	3,9%	16,8%

Netherlands

Netherland	s	Energy Use				Total Output	
1999 - 2009		Most Energy Intensive Industries	LΤ	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-17,3%	Coke, Refined Petroleum and Nuclear Fuel	2828153,0	41,8%	41,8%	1,4%	1,4%
Lifer gy intensity	-17,370	Chemicals and Chemical Products	1069429,0	15,8%	57,6%	3,9%	5,3%
		Electricity, Gas and Water Supply	749118,3	11,1%	68,7%	2,6%	7,9%
GDP	18,1%	Mining and Quarrying	308142,7	4,6%	73,2%	1,2%	9,2%
GDP	10,170	Agriculture, Hunting, Forestry and Fishing	271302,5	4,0%	77,2%	2,9%	12,1%
			2009				
Fromelico	-2,4%	Coke, Refined Petroleum and Nuclear Fuel	2508982,3	38,0%	38,0%	0,5%	0,5%
Energy Use	-2,470	Chemicals and Chemical Products	1289217,2	19,5%	57,5%	2,2%	2,6%
Perource Decou	unling	Electricity, Gas and Water Supply	929289,3	14,1%	71,6%	4,6%	7,3%
Resource Decoupling		Mining and Quarrying	270435,9	4,1%	75,7%	0,3%	7,5%
Absolute		Air Transport	219444,7	3,3%	79,0%	0,7%	8,2%

Netherlands		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-10,4%	Electricity, Gas and Water Supply	47341,6	30,2%	30,2%	2,6%	2,6%
CO2 intensity	-10,4%	Chemicals and Chemical Products	15920,0	10,1%	40,3%	3,9%	6,5%
		Air Transport	12070,5	7,7%	48,0%	0,9%	7,5%
CDD	18,1%	Coke, Refined Petroleum and Nuclear Fuel	11907,5	7,6%	55,6%	1,4%	8,9%
GDP	10,170	Agriculture, Hunting, Forestry and Fishing	10427,9	6,6%	62,2%	2,9%	11,8%
			2009				
Emissions CO2	5,9%	Electricity, Gas and Water Supply	55361,2	33,3%	33,3%	4,6%	4,6%
Emissions CO2	5,9%	Air Transport	20243,3	12,2%	45,5%	0,7%	5,3%
Impact Decoupli		Other Community, Social and Personal Services	11170,5	6,7%	52,2%	3,4%	8,7%
impact Decoupi	rg	Agriculture, Hunting, Forestry and Fishing	10497,6	6,3%	58,5%	1,9%	10,6%
Relative		Chemicals and Chemical Products	10466,3	6,3%	64,8%	2,2%	12,8%

Poland

Poland		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	τ	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-26,7%	Electricity, Gas and Water Supply	1781814,7	37,1%	37,1%	3,5%	3,5%
Lifer gy intensity	-20,770	Coke, Refined Petroleum and Nuclear Fuel	1022921,3	21,3%	58,4%	1,3%	4,8%
		Basic Metals and Fabricated Metal	343952,6	7,2%	65,5%	3,2%	8,0%
CDD	43,5%	Chemicals and Chemical Products	275397,5	5,7%	71,2%	2,0%	10,1%
SDP	45,5%	Agriculture, Hunting, Forestry and Fishing	246328,0	5,1%	76,4%	5,7%	15,8%
			2009				
Enormalian	5,1%	Electricity, Gas and Water Supply	1784373,7	35,3%	35,3%	4,1%	4,1%
Energy Use	5,170	Coke, Refined Petroleum and Nuclear Fuel	1305401,1	25,8%	61,2%	1,0%	5,1%
Resource Decoup	ling	Inland Transport	327201,6	6,5%	67,6%	2,3%	7,5%
Resource Decoup	mig	Chemicals and Chemical Products	297750,0	5,9%	73,5%	2,8%	10,3%
Relative		Agriculture, Hunting, Forestry and Fishing	174757,2	3,5%	77,0%	1,7%	12,1%

Poland		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1 999				
CO2 Intensity	-32,9%	Electricity, Gas and Water Supply	159996,5	56,0%	56,0%	3,5%	3,5%
CO2 Intensity	-52,5%	Basic Metals and Fabricated Metal	19750,5	6,9%	62,9%	3,2%	6,7%
		Agriculture, Hunting, Forestry and Fishing	17185,8	6,0%	68,9%	5,7%	12,4%
CDB	43,5%	Other Non-Metallic Mineral	16863,0	5,9%	74,8%	1,6%	14,0%
GDP	45,5%	Chemicals and Chemical Products	14549,5	5,1%	79,9%	2,0%	16,0%
			2009				
Emissions CO2	-3,7%	Electricity, Gas and Water Supply	154031,6	56,0%	56,0%	4,1%	4,1%
Emissions CO2	-5,770	Inland Transport	18954,2	6,9%	62,9%	2,3%	6,4%
Impact Descuri		Other Non-Metallic Mineral	14809,3	5,4%	68,3%	1,6%	8,1%
Impact Decoupli	ng	Chemicals and Chemical Products	12950,4	4,7%	73,0%	2,8%	10,9%
Absolute		Agriculture, Hunting, Forestry and Fishing	12665,6	4,6%	77,6%	1,7%	12,6%

Portugal

Portugal		Energy Use				Total O	utput
4000 2000		Most Energy Intensive Industries	LL	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-17,5%	Coke, Refined Petroleum and Nuclear Fuel	611935,9	38,6%	38,6%	1,0%	1,0%
Energy intensity	-17,5%	Electricity, Gas and Water Supply	326559,2	20,6%	59,2%	2,9%	3,9%
		Chemicals and Chemical Products	89002,9	5,6%	64,8%	1,6%	5,5%
GDP	13,1%	Other Non-Metallic Mineral	88296,4	5,6%	70,4%	2,1%	7,6%
GDP	15,1%	Inland Transport	67160,3	4,2%	74,6%	1,8%	9,3%
			2009				
Fromelico	-6,7%	Coke, Refined Petroleum and Nuclear Fuel	502682,3	34,0%	34,0%	0,2%	0,2%
Energy Use	-0,7 %	Electricity, Gas and Water Supply	327064,3	22,1%	56,1%	6,1%	6,3%
Perource Decou	oling	Inland Transport	73138,5	4,9%	61,0%	3,1%	9,4%
Resource Decoupling		Pulp, Paper, Paper, Printing and Publishing	69572,9	4,7%	65,7%	2,1%	11,5%
Absolute		Other Non-Metallic Mineral	67111,5	4,5%	70,2%	1,6%	13,1%

Portugal		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-19,4%	Electricity, Gas and Water Supply	22236,6	38,8%	38,8%	2,9%	2,9%
	-13,470	Other Non-Metallic Mineral	8483,8	14,8%	53,7%	2,1%	5,0%
		Coke, Refined Petroleum and Nuclear Fuel	2999,7	5,2%	58,9%	1,0%	6,0%
CDD	13,1%	Inland Transport	2878,7	5,0%	63,9%	1,8%	7,8%
GDP	13,170	Chemicals and Chemical Products	2861,0	5,0%	68,9%	1,6%	9,3%
			2009				
Emissions CO2	-8,9%	Electricity, Gas and Water Supply	17430,3	33,4%	33,4%	6,1%	6,1%
Emissions CO2	-8,9%	Other Non-Metallic Mineral	7176,2	13,8%	47,2%	1,6%	7,8%
lesent Deservalia	-	Inland Transport	3920,4	7,5%	54,7%	3,1%	10,8%
Impact Decouplin	g	Coke, Refined Petroleum and Nuclear Fuel	3599,7	6,9%	61,6%	0,2%	11,0%
Absolute		Air Transport	2552,7	4,9%	66,5%	0,7%	11,7%

Romania

Romania		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-182,9%	Electricity, Gas and Water Supply	759662,7	38,9%	38,9%	7,3%	7,3%
Lifer gy incensicy	-182,975	Coke, Refined Petroleum and Nuclear Fuel	535827,7	27,4%	66,3%	2,5%	9,8%
		Basic Metals and Fabricated Metal	163979,8	8,4%	74,7%	3,5%	13,3%
ĆDB.	-213,4%	Chemicals and Chemical Products	114572,4	5,9%	80,6%	2,1%	15,4%
DP	-213,470	Mining and Quarrying	63576,4	3,3%	83,9%	2,4%	17,9%
			2009				
Francillas	-6,0%	Electricity, Gas and Water Supply	683164,7	37,2%	37,2%	5,6%	5,6%
Energy Use	-0,0%	Coke, Refined Petroleum and Nuclear Fuel	561722,2	30,6%	67,8%	0,8%	6,4%
Bergurse Descuel	ng	Chemicals and Chemical Products	160079,2	8,7%	76,5%	2,3%	8,7%
Resource Decoupli	ng	Basic Metals and Fabricated Metal	71157,5	3,9%	80,4%	4,0%	12,7%
No Decoupling		Inland Transport	48063,8	2,6%	83,0%	2,7%	15,4%

Romania		Emissio	ns CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 2009		1999						
CO2 Intensity	-183,0%	Electricity, Gas and Water Supply	48356,2	59,2%	59,2%	7,3%	7,3%	
CO2 Intensity	-185,0%	Inland Transport	7811,1	9,6%	68,8%	4,7%	12,0%	
		Basic Metals and Fabricated Metal	5667,2	6,9%	75,8%	3,5%	15,5%	
GDP	-213,4%	Other Non-Metallic Mineral	5240,4	6,4%	82,2%	1,4%	17,0%	
אַעט		Construction	4673,7	5,7%	87,9%	5,7%	22,7%	
			2009					
Emissions CO2	F 0%	Electricity, Gas and Water Supply	42719,6	55,6%	55,6%	5,6%	5,6%	
Emissions CO2	-5,9%	Inland Transport	14398,5	18,7%	74,4%	2,7%	8,3%	
Inspect Descurin	-	Other Non-Metallic Mineral	5361,2	7,0%	81,3%	1,3%	9,6%	
Impact Decouplir	lg -	Basic Metals and Fabricated Metal	4016,4	5,2%	86,6%	4,0%	13,6%	
No Decoupling		Construction	3392,8	4,4%	91,0%	8,1%	21,7%	

Slovak Republic

Slovak Repu	blic	Energy Use					utput
4000 200		Most Energy Intensive Industries	LΤ	%	Accu	%	Accu
1999 - 200	9		1999				
Energy Intensity	-34,1%	Electricity, Gas and Water Supply	357987,6	35,8%	35,8%	6,2%	6,2%
Ellergy Intensity	-34,170	Coke, Refined Petroleum and Nuclear Fuel	237031,4	23,7%	59,5%	2,2%	8,3%
		Basic Metals and Fabricated Metal	118333,0	11,8%	71,3%	6,5%	14,8%
GDP	55.0%	Chemicals and Chemical Products	60235,6	6,0%	77,3%	2,2%	17,1%
GDP	55,076	Other Non-Metallic Mineral	27715,5	2,8%	80,1%	1,6%	18,6%
			2009				
Frormelloo	2,2%	Electricity, Gas and Water Supply	318110,1	31,1%	31,1%	3,2%	3,2%
Energy Use	2,2%	Coke, Refined Petroleum and Nuclear Fuel	295446,5	28,9%	60,0%	0,4%	3,6%
Posourco Doco	unling	Basic Metals and Fabricated Metal	123814,5	12,1%	72,2%	4,0%	7,7%
Resource Decoupling		Chemicals and Chemical Products	65007,8	6,4%	78,5%	3,1%	10,8%
Relative		Inland Transport	50514,9	4,9%	83,5%	2,2%	12,9%

Slovak Republic	:	Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
CO2 Intensity	-42,6%	Electricity, Gas and Water Supply	9312,3	25,0%	25,0%	6,2%	6,2%
CO2 Intensity	-42,0%	Basic Metals and Fabricated Metal	7001,6	18,8%	43,7%	6,5%	12,7%
		Coke, Refined Petroleum and Nuclear Fuel	4086,8	10,9%	54,7%	2,2%	14,8%
CDB.	55,0%	Chemicals and Chemical Products	3664,0	9,8%	64,5%	2,2%	17,1%
GDP	55,0%	Other Non-Metallic Mineral	3257,8	8,7%	73,2%	1,6%	18,6%
			2009				
Emissions CO2	-11.0%	Electricity, Gas and Water Supply	8375,4	25,2%	25,2%	3,2%	3,2%
Emissions CO2	-11,0%	Basic Metals and Fabricated Metal	6911,0	20,8%	46,0%	4,0%	7,3%
Impact Decoupli		Coke, Refined Petroleum and Nuclear Fuel	4286,7	12,9%	58,9%	0,4%	7,7%
Impact Decoupling		Other Non-Metallic Mineral	2979,5	9,0%	67,9%	1,5%	9,2%
Absolute		Chemicals and Chemical Products	2488,5	7,5%	75,4%	3,1%	12,3%

Slovenia

Slovenia		Energy Use				Total O	utput
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu
1999 - 2009			1999				
Energy Intensity	-16.6%	Electricity, Gas and Water Supply	124644,0	46,7%	46,7%	2,6%	2,6%
Lifel gy intensity	-10,078	Basic Metals and Fabricated Metal	14313,4	5,4%	52,1%	5,2%	7,8%
		Coke, Refined Petroleum and Nuclear Fuel	13987,3	5,2%	57,3%	0,2%	8,0%
GDP	26,0%	Inland Transport	10342,8	3,9%	61,2%	2,8%	10,8%
GDP	20,0%	Chemicals and Chemical Products	10001,2	3,7%	65,0%	3,1%	13,9%
			2009				
Energylles	5.1%	Electricity, Gas and Water Supply	154091,8	55,0%	55,0%	5,3%	5,3%
Energy Use	5,1%	Inland Transport	23007,1	8,2%	63,2%	2,5%	7,8%
Resource Decoup	ing	Basic Metals and Fabricated Metal	12307,9	4,4%	67,5%	4,5%	12,3%
Resource Decoupi	mg -	Chemicals and Chemical Products	10853,0	3,9%	71,4%	2,5%	14,8%
Relative		Pulp, Paper, Paper, Printing and Publishing	8239,9	2,9%	74,4%	2,3%	17,1%

Slovenia		Emissions CO2				Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009		1	1999				
CO2 Intensity	-0,8%	Electricity, Gas and Water Supply	5188,1	49,7%	49,7%	2,6%	2,6%
	-0,5%	Other Non-Metallic Mineral	1108,0	10,6%	60,4%	1,5%	4,1%
		Sale, Maintenance and Repair of Motor Vehicles and I	1014,7	9,7%	70,1%	1,9%	6,0%
CDD	26.0%	Inland Transport	820,6	7,9%	78,0%	2,8%	8,8%
GDP	20,0%	Pulp, Paper, Paper, Printing and Publishing	554,9	5,3%	83,3%	2,8%	11,6%
			2009				
Emissions CO2	25.0%	Electricity, Gas and Water Supply	6132,4	47,0%	47,0%	5,3%	5,3%
Emissions CO2	25,0%	Inland Transport	3495,8	26,8%	73,8%	2,5%	7,8%
Impact Descur	ling	Other Non-Metallic Mineral	1044,6	8,0%	81,8%	1,3%	9,1%
Impact Decoup	ling	Sale, Maintenance and Repair of Motor Vehicles and I	598,4	4,6%	86,4%	1,6%	10,6%
No Decouplin	g	Pulp, Paper, Paper, Printing and Publishing	409,2	3,1%	89,6%	2,3%	12,9%

Spain

Spain		Energy Use				Total O	utput
		Most Energy Intensive Industries	L	%	Accu	%	Accu
1999 - 2009	į		1999				
Energy Intensity	-14,0%	Coke, Refined Petroleum and Nuclear Fuel	2756887,7	38,0%	38,0%	1,2%	1,2%
Energy intensity	-14,0%	Electricity, Gas and Water Supply	1767005,8	24,3%	62,3%	2,3%	3,5%
		Chemicals and Chemical Products	412802,7	5,7%	68,0%	2,6%	6,1%
GDP	24,9%	Inland Transport	299529,3	4,1%	72,1%	2,7%	8,8%
GDP	24,9%	Basic Metals and Fabricated Metal	287884,1	4,0%	76,1%	3,9%	12,7%
			2009				
Frormilian	7,5%	Coke, Refined Petroleum and Nuclear Fuel	2629732,5	33,7%	33,7%	0,6%	0,6%
Energy Use	7,5%	Electricity, Gas and Water Supply	2065933,2	26,5%	60,2%	5,6%	6,2%
Resource Decou	unling	Chemicals and Chemical Products	381928,0	4,9%	65,1%	2,2%	8,4%
Resource Decou	huug .	Inland Transport	359873,3	4,6%	69,7%	2,5%	10,9%
Relative		Other Non-Metallic Mineral	284190,3	3,6%	73,4%	1,4%	12,2%

Spain		Emissions CO2					Total Output		
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu		
1999 - 2009			1999						
600 L L	-19,8%	Electricity, Gas and Water Supply	85056,6	36,9%	36,9%	2,3%	2,3%		
CO2 Intensity	-19,0%	Other Non-Metallic Mineral	43572,2	18,9%	55,8%	1,8%	4,1%		
		Inland Transport	18848,3	8,2%	64,0%	2,7%	6,8%		
<u> </u>	24,9%	Coke, Refined Petroleum and Nuclear Fuel	18573,2	8,1%	72,1%	1,2%	8,0%		
GDP	24,9%	Basic Metals and Fabricated Metal	12274,9	5,3%	77,4%	3,9%	11,9%		
			2009						
Emissions CO2	0.2%	Electricity, Gas and Water Supply	74188,7	32,2%	32,2%	5,6%	5,6%		
Emissions CO2	0,2%	Other Non-Metallic Mineral	37115,0	16,1%	48,2%	1,4%	6,9%		
Impact Decoupling		Inland Transport	22641,6	9,8%	58,1%	2,5%	9,4%		
		Coke, Refined Petroleum and Nuclear Fuel	18638,0	8,1%	66,1%	0,6%	10,0%		
Relative		Air Transport	12637,7	5,5%	71,6%	0,4%	10,4%		

Sweden

Sweden		Energy Use					Total Output	
1999 - 2009		Most Energy Intensive Industries	LT	%	Accu	%	Accu	
		1999						
Energy Intensity	-25,9%	Electricity, Gas and Water Supply	1309252,3	37,9%	37,9%	1,9%	1,9%	
Lifel gy intensity	-23,370	Coke, Refined Petroleum and Nuclear Fuel	927182,9	26,9%	64,8%	0,7%	2,7%	
		Pulp, Paper, Paper, Printing and Publishing	259118,9	7,5%	72,3%	4,0%	6,7%	
GDP	21,1%	Chemicals and Chemical Products	136056,8	3,9%	76,3%	2,4%	9,1%	
GDP		Basic Metals and Fabricated Metal	129660,0	3,8%	80,0%	3,8%	13,0%	
		:	2009					
Enormalian	-10,3%	Electricity, Gas and Water Supply	1125474,0	36,3%	36,3%	4,5%	4,5%	
Energy Use	-10,5%	Coke, Refined Petroleum and Nuclear Fuel	869492,7	28,1%	64,4%	0,5%	5,0%	
Resource Decoupling		Pulp, Paper, Paper, Printing and Publishing	288259,4	9,3%	73,7%	2,0%	6,9%	
		Basic Metals and Fabricated Metal	106285,3	3,4%	77,2%	3,4%	10,3%	
Absolute		Inland Transport	77627,0	2,5%	79,7%	2,3%	12,7%	

Sweden		Emission	s CO2			Total O	utput	
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu	
1999 - 200	19	1999						
CO2 Intensity	-16.9%	Electricity, Gas and Water Supply	8362,9	17,8%	17,8%	1,9%	1,9%	
	-10,5%	Basic Metals and Fabricated Metal	6116,1	13,0%	30,8%	3,8%	5,8%	
		Water Transport	5406,1	11,5%	42,3%	0,7%	6,5%	
GDP	21 10/	Inland Transport	3389,3	7,2%	49,5%	2,8%	9,3%	
GDP	21,1%	Other Non-Metallic Mineral	3233,9	6,9%	56,4%	0,5%	9,9%	
			2009					
Emissions CO2	0.7%	Electricity, Gas and Water Supply	8834,2	18,7%	18,7%	4,5%	4,5%	
Emissions CO2	0,7%	Water Transport	6758,1	14,3%	32,9%	0,0%	4,5%	
Impact Decoupling		Air Transport	4062,1	8,6%	41,5%	0,6%	5,1%	
		Basic Metals and Fabricated Metal	3569,9	7,5%	49,0%	3,4%	8,4%	
Relative		Inland Transport	3185,6	6,7%	55,8%	2,3%	10,8%	

UK

UK		Energy Use					Total Output	
		Most Energy Intensive Industries	LT	%	Accu	%	Accu	
1999 - 2009		1999						
Energy Intensity	-23,9%	Coke, Refined Petroleum and Nuclear Fuel	4512217,8	35,5%	35,5%	0,7%	0,7%	
Eller gy intensity	-23,370	Electricity, Gas and Water Supply	3469543,3	27,3%	62,8%	2,8%	3,5%	
		Chemicals and Chemical Products	775389,5	6,1%	68,9%	2,5%	5,9%	
GDP	11,6%	Basic Metals and Fabricated Metal	477539,9	3,8%	72,6%	2,4%	8,4%	
GDP		Air Transport	403132,9	3,2%	75,8%	0,6%	9,0%	
			2009					
Francis	-15,0%	Coke, Refined Petroleum and Nuclear Fuel	3641568,5	33,7%	33,7%	0,6%	0,6%	
Energy Use		Electricity, Gas and Water Supply	3174212,6	29,4%	63,1%	4,3%	4,9%	
Resource Decoupling		Chemicals and Chemical Products	448401,1	4,1%	67,2%	1,9%	6,8%	
		Basic Metals and Fabricated Metal	358148,6	3,3%	70,5%	4,5%	11,3%	
Absolute		Agriculture, Hunting, Forestry and Fishing	344665,8	3,2%	73,7%	1,7%	12,9%	

UK		Emission	s CO2			Total O	utput
1999 - 2009		Most CO2 Intensive Industries	Gg	%	Accu	%	Accu
1999 - 2009			1999				
600 L L	-14,4%	Electricity, Gas and Water Supply	150534,7	34,1%	34,1%	2,8%	2,8%
CO2 Intensity	-14,470	Basic Metals and Fabricated Metal	36086,2	8,2%	42,2%	2,4%	5,2%
		Air Transport	33423,7	7,6%	49,8%	0,6%	5,8%
GDP	11,6%	Inland Transport	27096,0	6,1%	55,9%	2,4%	8,2%
GDP		Mining and Quarrying	24987,7	5,7%	61,6%	1,6%	9,7%
			2009				
Emissions CO2	-4,4%	Electricity, Gas and Water Supply	153861,8	36,4%	36,4%	4,3%	4,3%
Emissions CO2		Air Transport	61140,3	14,5%	50,9%	0,6%	4,9%
Impact Decoupling		Inland Transport	25924,0	6,1%	57,1%	2,6%	7,5%
		Mining and Quarrying	20809,4	4,9%	62,0%	0,3%	7,8%
Absolute		Basic Metals and Fabricated Metal	20226,9	4,8%	66,8%	4,5%	12,2%

Appendix B

Summary of the fuel use mix changes (1999-2009) by country

0	Country	Renewables (%)	Coal (%)	Oil (%)	Gas (%)
	Cyprus	0,2	0,0	-0,2	0,0
	Greece	0,7	-2,8	-0,2	2,4
	Italy	4,1	-0,2	-7,5	3,6
South	Malta	0,1	0,0	-0,1	0,0
S	Portugal	5,6	-2,0	-9,9	6,4
	Spain	3,2	-7,1	-6,4	10,3
	Average	2,3	-2,0	-4,1	3,8
	Austria	6,6	-1,9	-5,8	1,1
	Belgium	2,5	-4,9	-0,4	2,8
	France	3,3	-1,7	-2,1	0,6
н	Germany	5,7	-2,6	-3,6	0,5
Center	Ireland	2,2	-4,0	-3,5	5,2
Ŭ	Luxembourg	1,7	-3,2	-1,5	3,0
	Netherlands	0,2	0,2	0,6	-1,0
	UK	1,3	-0,3	-2,5	1,6
	Average	2,9	-2,3	-2,4	1,7
	Bulgaria	2,6	0,6	0,7	-3,9
	Czech	-0,3	-1,4	4,3	-2,7
	Estonia	1,6	5,3	-6,1	-0,8
	Hungary	3,1	-4,9	2,4	-0,6
	Latvia	4,8	-1,4	-10,2	6,8
East	Lithuania	0,5	-0,1	2,6	-2,9
	Poland	1,7	-10,6	6,7	2,2
	Romania	-1,4	1,6	5,9	-6,1
	Slovakia	3,8	-3,7	5,6	-5,7
	Slovenia	3,3	2,9	-5,0	-1,3
	Average	2,0	-1,2	0,7	-1,5
	Denmark	2,5	-4,2	6,7	-5,0
rth	Finland	1,8	-2,5	1,2	-0,5
North	Sweden	5,2	-0,4	-5,4	0,6
	Average	3,2	-2,4	0,8	-1,6
EU	U 27 Average	2,5%	-1,8	-1,3	0,6

- Ang, B.W. (2004) "Decomposition analysis for policymaking in energy", *Energy Policy*, *32*(9), 1131–1139.
- Ang, B.W. (2005) "The LMDI approach to decomposition analysis: a practical guide", *Energy Policy*, 33(7), 867–871.
- Baldock, B. D. (2013) Four decades of EU environmental policy, Institute for European Environmental Policy (IEEP), Issue 32: Newsletter Autumn 2013, London, United Kingdom.
- Cruz, L. (2002) A Portuguese Energy-Economy-Environment Input-Output Model: Policy Applications. Thesis submitted for the degree of Doctor of Philosophy (PhD Thesis), Keele University, United Kingdom.
- Cruz, L. (2009), "Application of IO Energy Analysis for CO2 Emissions by the Portuguese Economy". In Suh, S. (Ed.), *Handbook of Input-Output Economics in Industrial Ecology*, Eco-Efficiency in Industry and Science, 23(25), 507-532, Springer.
- Cruz, L., Barata, E. (2011) "Hybrid IO Analysis of CO2 Emissions: An Application to the Portuguese Economy". In Llop, M. (Ed.), *Air Pollution: Economic Modelling and Control Policies*, Ch. 5, 65-96, Environmental Sciences Series, Bentham EBooks.
- Cruz, L., Proops, J., Safanov, P. (2005) "Input-Output Models". In Proops, J.; Safanov, P. (Eds.), *Modelling in Ecological Economics*, Ch. 3, 36-57, Cheltenham: Edward Elgar Publishing.
- Erumban, A. A., Gouma, R., Los, B., Temurshoev, U. (2012) The World Input Output Database (WIOD): Contents, Sources and Methods, WIOD Working Paper Number 10, April, 1–73, downloadable at http://www.wiod.org/publications/papers/wiod10.pdf, University of Groningen, Netherlands.
- European Central Bank (2013) "External transactions and positions", *ECB monthly bulletin Euro Area statistics methodological notes*, Ch. 7, ECB, Frankfurt, Germany.
- European Commission (2011). *Energy roadmap 2050*, Luxembourg: Publications Office of the European Union.
- European Community (1972) *Meetings of the heads of state or government*, The First Summit Conference of the Enlarged Community: Conclusion of the preparatory work, October, Paris.

- European Environment Agency (2013a) "Achieving energy efficiency through behaviour change: what does it take", EEA technical report Number 5/2013, Luxembourg: Publications Office of the European Union.
- European Environment Agency (2013b) "Environmental pressures from European consumption and production", EEA technical report Number 2/2013, Luxembourg: Publications Office of the European Union.
- European Renewable Energy Council (2013) EU Tracking Roadmap 2013: Keeping track on renewable energy targets towards 2020, June 2013, Brussels, Belgium.
- Farla, J. C., Blok, K. (2001) "The quality of energy intensity indicators for international comparison in the iron and steel industry", *Energy Policy*, 29(7), 523–543.
- Hoekstra, R., Van Der Bergh, J. (2003) "Comparing structural and index decomposition analysis", Energy Economics, 25, 39–64.
- Liddle, B. (2012) "Breaks and trends in OECD countries' energy–GDP ratios", *Energy Policy*, *45*, 502–509.
- Ma, C., Stern, D. I. (2008) "China's changing energy intensity trend: A decomposition analysis", *Energy Economics*, *30*(3), 1037–1053.
- Medener (2013) *Energy efficiency trends in Mediterranean countries*, Report prepared by the MEDENER network on energy efficiency indicators in Southern and Eastern Mediterranean countries, July, Alcor; ANME; ADEREE; APRUE; ALMEE.
- Miller, R.,Blair, P. (1985) *Input Output Analysis: Foundations and extensions*, Prentice Hall, New Jersey.
- Su, B., Ang, B. W. (2012) "Structural decomposition analysis applied to energy and emissions: Some methodological developments", *Energy Economics*, 34(1), 177– 188.
- Sun, J. W. (2002) "The decrease in the difference of energy intensities between OECD countries from 1971 to 1998", *Energy Policy*, *30*(8), 631–635.
- United Nations Environment Programme (2011) *Decoupling Natural Resource Use and Environmental Impacts from Economic Growth,* A Report of the Working Group on Decoupling to the International Resource Panel, UNEP, Paris, France.
- United Nations Framework Convention on Climate Change (2009) *Copenhagen Accord* - *Draft decision -/CP.15. FCCC/CP/2009/L.7*, Conference of the Parties, Copenhagen, Denmark.
- Voigt, S., De Cian, E., Schymura, M., Verdolini, E. (2013) "Energy intensity developments in 40 major economies: Structural change or technology improvement?", *Energy Economics*, 41, 47–62.

Wang, C. (2013) "Changing energy intensity of economies in the world and its decomposition", *Energy Economics*, 40, 637–644.