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Abstract

In this thesis we visit the problem of real-time collision avoidance for robotic manip-
ulators in unstructured and dynamic environments. The main objective will be to
implement a human-robot collision avoidance algorithm for a robotic cell that utilizes
an industrial robotic manipulator where the human coworker and the robot share the
same working area. For this purpose the pioneering work of Khatib in the arti�cial
potential �eld method was taken as the basis to our work. Thus, an implementation
of two di�erent collision avoidance controllers is addressed. The �rst of which is based
on kinematics, while the other is based on force control that take into consideration
robot's dynamics.

For developing the force controller, and for achieving real time performance of the
virtual-reality simulations, we had to implement a light weight numerical method for
computing robot's dynamics. Several e�cient algorithms for calculating robot dynam-
ics were deduced. Results indicate that the proposed methods compare favourably
with state-of-the-art methods.

Throughout this work MATLAB® was opted as the tool for implementing the
algorithms, while the real-time virtual-reality simulations were carried out using the
Virtual Experimentation Platform (V-REP). Using these tools several controllers, al-
gorithms, techniques and simulations were applied and the results achieved were dis-
cussed. We conclude this study by identifying some of the issues associated with the
arti�cial potential �eld method.

Keywords

Collision avoidance, collaborative robots, safety, Joint space inertia matrix, Coriolis
matrix, Centrifugal matrix, time derivative of joint space inertia matrix.
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Chapter 1

INTRODUCTION

Nowadays, robots are corner stones in modern factories. Their involvement in work
space contributes to higher production capabilities, �exibility and accuracy. They are
used extensively in manufacturing for pick and place operations, painting, welding,
metal processing, and even in food industry. Owing to their accuracy, they are also
becoming valuable tools for performing precise medical procedures. Also, with an
ageing population, their existence in household environments is of an importance, while
repetitive low level tasks can be delegated to them. This fact can be seen around us
with robotic vacuum cleaners or lawn mowers. As such, robots are becoming more
and more involved in our lives so that full human robot interaction and coexistence
of robots in human-centered environments seems almost inevitable. This will require
robots with better capabilities that are able to avert danger and ensure safety of the
human coworker under all circumstances.

One of the �rst methodologies that can be utilized to achieve safe interaction with
machines is through endowing them with collision avoidance capabilities. This thesis
address this topic, and delves into the subject of collision avoidance for robotic manip-
ulators in a human-robot shared workspace.

1.1 Collision avoidance

One of the �rst and the most important capabilities that robots need to be provided
with are biological-like re�exes that allow them to circumvent obstacles and avoid
collisions. This is extremely important in order to give robots more autonomy and
minimum need for human intervention, especially when robots are operating in chan-
ging workspace and dynamic environment. Collision avoidance is also very important
when humans and robots are collaborating with each other. Nowadays, it has been the
norm to have boundaries and safety fences that stand between humans and industrial
robots. The idea is to eliminate these boundaries and have humans and robots shar-
ing the same workspace together, collaborating with each other, Figure 1.1. In such
scenario robot's control system shall ensure the safety of the human coworker under
all circumstances.

Several research e�orts have focused on collision avoidance for industrial robots in
gas and oil industry [3], their work is motivated by the fact that robots are vital if
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Figure 1.1: Baxter robot with coworker in a factory, collision avoidance is of vital
importance to guarantee the safety of the coworker.

Figure 1.2: A robot locate in potentially explos-
ive environment, among pipes carrying gas [1].

Figure 1.3: Morphin map of
Curiosity Mars rover, cour-
tesy of Mars autonomy pro-
ject.
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humans want to tap into oil and gas reserves in remote regions where extremely harsh
environments prevail, for example the reservoirs in the Barents Sea where temperatures
can reach as low as−50◦C. In such places working conditions for humans are unfeasible.
Also, collision avoidance is important for robots operating in hazardous and harsh
environments. Figure 1.2 demonstrates such concept with a robotic arm is operating
a valve in explosive environment.

Apart from safety, autonomy is vital when robots are operating in remote places
and unstructured environments. An example on this is the Curiosity Mars rover, which
utilizes an obstacle avoidance algorithm called Morphin. This algorithm maintain a
map of the environment, Figure 1.3, and based on this map Morphin recommends safe
steering commands to the rover.

The problem of collision-avoidance is handled at one of two levels: global level
addressed through planning and local level treated by low level control. The global
solutions are high-level solutions that guarantee to �nd a collision-free path from the
initial con�guration to the �nal con�guration, if such a path exists. These algorithms
treat the problem in con�guration space. In such case the manipulator and the environ-
ment need to be remapped to con�guration space and a collision-free path is searched
in the unoccupied portion of the con�guration space. However, these algorithms are
very costly in terms of computation, and because of that their use is not feasible for
real-time application. On the other hand, the local reactive control is suitable for
real-time implementation, since that its mathematical formulation is computationally
e�cient, so it can be embedded directly into the low level-control.

1.2 Tasks and objectives

The �rst objective is to implement light weight algorithms to calculate the dynam-
ics of serially linked manipulators. When the modelling is complete, we implement
two low-level robot controllers with collision avoidance capability for a collaborative
robotic cell. The proposed robotic cell is commanded by a 6 DOF anthropomorphic
manipulator and a human coworker operates in the same work area with the robot.
The controller's function is to perform a prede�ned task while at the same time provid-
ing the robot with the capacity to perform real-time collision-avoidance in a dynamic
and changing environment. For testing the proposed controllers and to assess its per-
formance virtual-reality simulations were carried out using V-REP. To achieve these
objectives the following topics were explored:

1. Comprehensive survey in the literature about robot's dynamics and collision
avoidance for robotic manipulators.

2. Methodology to model the robot and the obstacles' geometry to calculate the
distances between them.

3. Implementation of virtual reality robotics simulation program V-REP.

4. Modeling robot's dynamics and kinematics. Implementing the algorithms in
MATLAB® and performing simulations.

5. Collision avoidance implementation based on potential �eld method.
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1.3 Contribution

The thesis contribution is two-fold. The �rst pertains to the subject of dynamics of
serially linked robots, while the other pertains to the subject of collision avoidance for
robotic manipulators.

Regarding dynamics:

1. Implementation of several light weight algorithms to calculate the joint space,
inertia matrix, Coriolis matrix, centrifugal matrix and the time derivative of the
inertia matrix.

2. New algorithm for calculating the dynamics of serially linked robots. In which the
algorithm proposed for calculating joint space inertia matrix (JSIM) for robots
with high degrees of freedom achieves better e�ciency over state-of-the-art.

3. E�cient algorithm for calculating rotation of inertia tensor of a rigid body, that
achieves 14% better e�ciency over the most e�cient algorithm to our knowledge.

Regarding collision avoidance:

1. Developing fast algorithm based on optimization techniques for fast calculation
of minimum distances between cylinders.

2. Proposing a novel collision avoidance controller based on linearising the inverse
dynamics equation.

3. Novel solutions are proposed for solving some of the drawbacks associated with
the arti�cial potential �eld method namely vibrations and joints limits avoidance.

1.4 Nomenclature

The notation used throughout this study is the same notation used in [4], and is
described below:

1. Bold capital letters are used to denote matrices, J for the Jacobean matrix.

2. Bold and Italic small letters are used to denote vectors, q for the joints positions
vector.

3. Italic small letters are used to denote scalars, qj is the angular position of joint
j.

4. Dot operators are used to denote time derivatives q̇ = dq/dt.

5. Column k of matrix A is denoted by colk(A).

6. Transpose of a matrix A is denoted by AT.

7. Row k of matrix A is denoted by colk(AT).

12



8. Vector cross product is denoted by ×.

9. The skew symmetric operator of a vector p is notated by p̂. Where p̂ is used as
the matrix representation of the cross product p×.

13



Chapter 2

DYNAMICS OF SERIALLY

LINKED ROBOTS

2.1 Abstract

The evolution of advanced robots with higher degrees of freedom impose a need for
calculating more complex dynamics. As a result, better e�ciency in carrying out
dynamics computations is becoming more important. In this study an e�cient method
for computing the dynamics for serially linked robots is addressed. We call this method
the Geometric Dynamics Algorithm (GDA). GDA is non-symbolic, preserve simple
formulation, and is convenient for numerical implementation. It allows the calculation
of various quantities of robot dynamics while at the same time achieving computational
e�ciency. GDA-based algorithms are deduced to calculate (1) joint space inertia matrix
(JSIM), (2) joint space Coriolis matrix, (3) joint space centrifugal matrix, and (4) the
time derivative of joint space inertia matrix in O(n2). The proposed algorithms were
implemented in MATLAB®. Results compare favorably with existing methods. One
of the proposed algorithms, GDAHJ, achieves better performance over state-of-the-art
when applied for high degree of freedom robots.

2.2 Introduction

Dynamics of robots is an important topic since that it is highly involved in their
design, simulation and control. Owing to its importance this subject had been studied
extensively in the past thirty years. Thus, several algorithms and methods had been
developed to calculate robot dynamics. A comprehensive overview of the most import-
ant algorithms can be found in [5] and in [6]. Nevertheless, this subject remains till this
day open for extensive research while every year there are new studies being published,
methods and algorithms being proposed. In this section we give a brief introduction
into the state-of-the-art regarding robot dynamics.

Robot dynamics can be described by one of two formulations:

1. Operational space formulation. In this formulation the dynamics equations are
referenced to the manipulator end-e�ector. In a pioneering study this approach



was described and used to control PUMA600 robot [7]. It is also applied for
the combined application of motion and force control [8]. Algorithms for e�cient
robot dynamics calculations based on operational space formulation are presented
in [9] and [10].

2. Joint space formulation. This formulation describes the dynamics of robot in joint
space. This formulation manifests the e�ect of the joints' positions, velocities and
accelerations on the torques and vice-versa.

The mathematical formulation of the inverse dynamics in joint space [4, 11, 12, 13] is
given by:

τ = A(q)q̈ + B(q, q̇)q̇ + g (2.1)

Where τ is the vector of robot's joints torques, q is the vector of joints positions, q̇ is the
vector of joints' angular velocities, q̈ is the vector of joints' angular accelerations, A(q)
is joint space inertia matrix of the robot, B(q, q̇) is the joint space Coriolis matrix
of the robot, and g is the vector of joint's torques due to gravity. As described in
[14] equation (2.1) can be extended to include contact forces, joints elasticity, friction,
actuators inertias and dynamics. A(q) is an n × n matrix, in which n is the number
of robot's joints considering that each joint has one degree of freedom (DOF), it is
symmetric, positive de�nite and has the property of being a function of only joints'
positions. B(q, q̇) is also an n × n matrix. It is a function of joints' positions and
velocities, and describes the centrifugal and Coriolis e�ects on joints' torques.

One of the earliest methods used to deduce the equations of robot dynamics was the
one based on Lagrangian formulation. This method is well described in the literature.
A methodology for deducing the dynamics of gear-driven serially linked robot by using
Lagrangian formulation is described in [15]. This study took into consideration the
e�ects of the driving motors. The Lagrangian formulation is widely used as the bases
for automatic generation of equations of robot dynamics in symbolic form. Most recent
toolboxes for generating equations of robot dynamics using Lagrangian formulation are
described in [16, 17].

The Lagrangian formulation is a straight forward approach that treats the robot
as a whole and utilizes its Lagrangian, a function that describes the energy of the
mechanical system:

L = T − U (2.2)

Where L is the Lagrangian function, T is the kinetic energy and U is the potential
energy. The function described previously is formulated in terms of the generalized
coordinates q. By di�erentiating that function we can derive an expression of the
associated generalized forces v, as in:

v =
d

dt
(
δL
δq̇

)T − (
δL
δq

)T (2.3)

Even though the Lagrangian formulation can be considered as a straight forward
approach, the method requires partial di�erentiation, and despite the fact that sym-
bolic manipulation methods have been utilized to perform the di�erentiation [18], the
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method still lacks the e�ciency in terms of execution-time. This can be clearly noticed
when the robot presents a high number of DOF as noted in [12] and most remarkably
in [19], where the author performed comparison of execution-times required to run
simulations based on dynamical models derived by Newton-Euler recursive technique
and Euler-Lagrange technique. It was reported execution-times di�erence of order of
magnitude which clearly put the case in favor of the Newton-Euler recursion method.

The formulation of robot-speci�c dynamics using Kane's dynamical equations is
in [20]. In this study the authors argue that using Lagrange method to compute dy-
namics produces huge equations resulting in slow execution and costly computations,
while the Recursive Newton-Euler is a generalized method that might perform unne-
cessary calculations on speci�c robot. Thus, a faster execution algorithm with less
computational-cost could be achieved if robot-speci�c equations are carefully deduced.
The study elaborates in step by step manner the methodology for deriving dynamics
equations of Stanford manipulator starting from Kane's dynamical equations. Never-
theless, the method requires a knowledgeable analyst to take on a pencil and paper
in hand and work out the equations of a speci�c robot. A comprehensive review of
Kane's equations and Gibbs-Appell equations is in [21].

In [22] the authors presented an algorithm for calculating JSIM, Coriolis matrix and
the vector of gravity torques. In the algorithm proposed, several parameters are pre-
calculated o�-line, and others are calculated on-line, afterwords the inertia and Coriolis
matrices are deduced, the computational complexity of the presented algorithm was of
O(n3).

A computationally e�cient Newton-Euler recursive method is described in [23].
This method is performed in two phases: the �rst phase (forward propagation) during
which the accelerations and velocities of robot links are calculated, and the second
phase (backward propagation) where torques and forces are calculated. The method
proved to be very e�cient for calculating the inverse dynamics. However, the cal-
culations are carried out implicitly such that the inertia matrix cannot be retrieved
directly. It is shown in [24] that the inertia matrix A(q) can be calculated from the
model of the inverse dynamics by assigning a unit value to one element of the joints'
accelerations vector and assigning a zero value to the remaining elements, including the
joints' velocities and the gravity term. In such scenario the associated column of the
inertia matrix can be calculated, and by iterating the procedure through all of the ele-
ments of the joints' acceleration vector the inertia matrix is achieved. This method was
later re-named composite-rigid-body algorithm (CRBA), by Featherstone [25]. Using
CRBA to calculate the inertia matrix proved to be computationally e�cient, especially
if the calculations are performed in links-attached local frames. Computer code of the
algorithm based on 6D or spatial vectors algebra is available in [25]. A comprehensive
review of spatial vectors and Plücker basis is in [26] and in chapter 2 of [27].

In [28] the author reformulated robot dynamics using Riemannian geometry. Sev-
eral algorithms were presented. Based on Newton-Euler formulation a recursive al-
gorithm of O(n) for calculating the inverse dynamics was introduced. Based on Lag-
rangian formulation, algorithms for deducing closed form equations of dynamics, JSIM
and Coriolis matrix were presented. In-addition the paper laid down a frame-work
for calculating the derivative of dynamics, which is of importance when performing
dynamic optimization. Building on [28], in [29] the author introduced coordinate in-
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variant formulation of the dynamics. In those two studies algorithms were proposed,
but no quantitative measure about their e�ciency, apart from the case of the recursive
algorithm, was given.

In [30] the dynamics was formulated using 4×4 matrices. This method can be con-
sidered as an extension to homogeneous transformation matrices proposed by Denavit
and Hartenberg. Thus, �ve new 4 × 4 matrices were introduced, to quantify velocity,
acceleration, momentum, actions, and the inertia. In [31] two software packages in ad-
dition to applications of the proposed approach were presented, though no quantitative
measure on the computational e�ciency of the proposed method was given.

Calculating Coriolis matrix is important for some control applications, for example
in passivity-based control as noted in [32]. In [33], the Coriolis matrix, C(q, q̇), accord-
ing to the notation of that paper, was used for calculating collision detection signal.
In that study the Coriolis matrix transpose appears in the term CT(q, q̇)q̇ of equa-
tion (22), as such Coriolis matrix needed to be calculated explicitly in real time for
performing collision identi�cation and real time reaction control.

Coriolis matrix can be deduced in a symbolic form by utilizing Euler-Lagrange
formulation through partial di�erentiation and by utilizing Christo�el symbol of the
�rst kind. However, as discussed in the case of inertia matrix, the attained formulas
are slow in execution. Other approaches have been proposed, most recently in [34],
where Coriolis matrix was factorized in a closed form expression of kinematic matrices
and their derivatives. Later, the method was extended in [35] in order to include the
coupling e�ect for a geared serial robot. In [32] Coriolis and centrifugal terms were
factorized using a modi�ed recursive Newton-Euler method. The paper focused on
computational e�ciency.

In this study we propose e�cient algorithms for calculating: joint space inertia
matrix (JSIM), Coriolis matrix, centrifugal matrix, and the time derivative of JSIM,
(TD-JSIM), for serially linked robots. In the proposed method dynamics quantities
are calculated as contributions of frames' e�ects in what we call the frame injection
e�ect. The principal of frame injection e�ect is described in this study. The novelty
of the proposed method is in its structure which describes and preserves the e�ect of
each joint's velocity and acceleration on links' dynamics. As such algorithms can be
deduced for representing dynamical quantities in a mathematical form that resembles
the equation of inverse dynamics, using this representation computational e�ciency
is achieved while maintaining simple algorithms. To support our claim, we give the
following example: it has been noted in [32] that in [33] the authors had to reformulate
the equation of the rate of the generalized momentum in order to avoid numerical
di�erentiation of JSIM. This study shows that by using the proposed method deducing
an e�cient algorithm O(n2) for calculating the time derivative of JSIM is viable and
easy to implement. The proposed method is generic, simple and relies completely on
vector operations, as such no symbolic operations, and the inconvenience they convey,
are required. When executed on single processor this method is of an O(n2), but the
algorithm can be executed in parallel, as such we can reap the power of multiprocessor
machines by using threading. In this scenario the main program will spawn n threads,
equal to the number of links of the robot, each thread will be used to calculate the
dynamical model of one of the links.

In addition to GDA, we present a novel method (GDAHJ) for calculating joint
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Figure 2.1: Inertial moment µCij and linear acceleration p̈Cij of centre of mass of link
i transferred by frame j

space inertia matrix for robots with high degrees of freedom. Using this method for
computing JSIM for articulated bodies with high degrees of freedom achieves better
e�ciency over state-of-the-art method, the famous CRBA. This increase in e�ciency is
achieved through minimizing the number of operations that has O(n2) computational
complexity. While in the proposed algorithm, the number of computations associated
with the quadratic terms are reduced to the minimum value possible, from 16n2 in the
case of CRBA to 5.5n2 for the proposed algorithm.

For evaluating the performance of the proposed algorithms, a comparison with ex-
isting state-of-the-art algorithms was performed and the acquired results are discussed
in section 2.6.

2.3 Theory and principals

The proposed algorithm depends on what we call the frame injection e�ect, Figure 2.1,
in which each frame j attached to joint j will transfer to link i a linear acceleration into
its centre of mass and an inertial moment around its centre of mass. In this study we
notate them by p̈Cij and µCij , respectively. This transfer is due to the rotational e�ect
of joint j around its axes of rotation, or the z axis of frame j according to modi�ed
Denavit Hartenberg (MDH) designation. This cause and e�ect relationship between
frame j and link i is referred to by the subscript ij in p̈Cij and µCij , while the C in
the subscript is used to refer to the mass centre of link i. The same subscript notation
will hold throughout this study for denoting frame-link interaction of cause-and-e�ect
unless stated otherwise.
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Figure 2.2: Tangential acceleration of centre of mass of link i transferred by frame j

2.3.1 Link's acceleration due to the single-frame rotation

As we described previously the algorithm proposed relies on what we call the frame
injection e�ect, while it can be proved that each frame j transfers to link i three accel-
eration vectors tangential acceleration, normal acceleration and Coriolis acceleration.
The �rst of which is shown in Figure 2.2, it is due to the angular acceleration of frame
j, and it can be calculated from:

p̈τCij = εj × pCij (2.4)

Where p̈τCij is the tangential acceleration of the centre of mass of link i due to the
rotation of frame j, the symbol × is used to denote the cross product (the same
notation of the cross product will hold throughout this study) and pCij is the vector
connecting the origin of frame j and the centre of mass of link i. εj is the angular
acceleration of link j, and it is given by:

εj = q̈jkj (2.5)

Where kj is the unit vector associated with the z axis of joint j, and q̈j is the angular
acceleration of that joint.

Then there is the normal acceleration: while each frame j transfers to link i a
normal acceleration due to its rotation as shown in Figure 2.3, and it is given by:

p̈nCij = ωj × (ωj × pCij) (2.6)

Where ωj is the angular velocity of link j due to the rotational e�ect of joint j, and it
is given by:
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Figure 2.3: Normal acceleration of centre of mass of link i transferred by frame j

ωj = kj q̇j (2.7)

We can rewrite the equation of the normal acceleration transferred to link i due to
frame j by the following:

p̈nCij = kj × (kj × pCij)q̇2j (2.8)

The third acceleration transferred is Coriolis acceleration, as shown in Figure 2.4,
while each frame j transfers to link i Coriolis acceleration p̈corCij :

p̈corCij = 2ωj × vrCij (2.9)

Where ωj is as described previously in equation (2.7), and vrCij is the velocity trans-
ferred to the centre of mass of link i from frames j+ 1 up to frame i, while the r in the
superscript is to denote that this is a relative velocity, and C in the subscript is used
to refer to the mass centre of link i, vrCij can be calculated from:

vrCij =

i∑
k=j+1

ωk × pCik (2.10)

The total linear acceleration transferred by frame j to the centre of mass of link i is
given by:

p̈Cij = p̈τCij + p̈nCij + p̈corCij (2.11)

2.3.2 Link's inertial moment due to single-frame e�ect

It can be proved that each frame j will transfer to link i three inertial moments, the
�rst of the inertial moments transferred is due to angular acceleration of frame j and
it is given by:
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Figure 2.4: Coriolis acceleration of centre of mass of link i transferred from frame j

µτCij = (RiI
i
iR

T
i )εj (2.12)

While µτCij is the moment transferred by frame j into link i due to frame's j angular
acceleration, Ri is the rotation matrix of frame i in relation to base frame, and Iii
is 3 × 3 inertial tensor of link i around its centre of mass represented in frame i.
Calculating the similarity transform RiI

i
iR

T
i in the conventional way is expensive, to

achieve the best possible performance we propose a novel way for performing this type
of computation, in Appendix I. The proposed algorithm compares favourably with
state-of-the-art method, and delivers 14% better performance.

The second inertial moment transferred from frame j to link i is due to centrifugal
e�ect:

µn
Cij =

1

2
(Liωj)× ωj (2.13)

Where Li is 3× 3 matrix that is calculated from:

Li = Ri(tr(I
i
i)13 − 2Iii)R

T
i (2.14)

The subscript in Li is to notate that the matrix calculated pertains to link i. While
tr(Iii) is the trace of the inertial tensor, and 13 is the identity matrix.

The third inertial moment transferred from frame j to link i is due to Coriolis
e�ect:

µcorCij = (Liωj)× ωrij (2.15)

Where ωrij can be calculated from:

ωrij =
i∑

k=j+1

ωk (2.16)
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Figure 2.5: Dynamical representation of each link.

Thus, the total inertial moment transferred to link i around its centre of mass due to
the rotational e�ect of frames j is given by:

µCij = µτCij + µn
Cij + µcorCij (2.17)

2.3.3 Dynamical representation of a single-link

Each link i can be represented dynamically by an equivalent acceleration of its centre
of mass p̈Ci and an inertial moment around its centre of mass µCi as shown in Figure
2.5.
The total linear acceleration of the centre of mass of link i is given by the summation of
all of the linear accelerations transferred by all of the serially connected frames indexed
j, starting from frame 1 up to frame i:

p̈Ci =
i∑

j=1

p̈Cij (2.18)

Substituting p̈Cij with its value from (2.11) we get:

p̈Ci =

i∑
j=1

p̈τCij + p̈nCij + p̈corCij (2.19)

From the previous equation we notice that the total acceleration of the centre of mass
of link i can be rewritten in a form similar to the equation of inverse dynamics by using
a matrix vector notation as in the following:

p̈Ci = Ciq̈ + Diq̇ (2.20)

Where Ci is 3× n matrix, and the jth column vector of this matrix is given by:

colj(Ci) =
p̈τCij
q̈j

= kj × pCij (2.21)

The subscript i attached to the matrix Ci is used to notate that the matrix pertains
to link i, while the robot's links model has n of C matrices each pertains to one of
robot's links. Di in equation (2.20) is also 3× n matrix, while the subscript i in Di is
used as before. Di columns can be calculated from:
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colj (Di) = kj × (kj × pCij)q̇j + 2kj × vrCij (2.22)

Using the same reasoning applied for calculating p̈Ci, we can calculate the total inertial
moment transferred to link i by:

µCi =
i∑

j=1

µτCij + µn
Cij + µcorCij (2.23)

Again we notice that the joints' accelerations vector q̈ contribution to the inertial
moment is associated only with µτCij , while the joints velocities contributions are as-
sociated with the other two terms.

As such we can distinguish and show the e�ects of joints' acceleration vector q̈, and
joints' velocities vector q̇ on µCi by rearranging equation (2.23) using a matrix vector
notation as in the following:

µCi = Uiq̈ + Viq̇ (2.24)

Where Ui is 3× n matrix, each column vector of this matrix is given by:

colj(Ui) = (RiI
i
iR

T
i )kj (2.25)

Ri is the rotation matrix de�ning frame i in relation to the base frame, and kj is the
unit vector of the z axis attached to joint j represented in base frame. Vi is 3 × n
matrix, each column vector of this matrix is given by:

colj (Vi) =
1

2
(Liωj)× kj + (Likj)× ωrij (2.26)

As a result each link is represented by a linear acceleration of its centre of mass, and
an inertial moment around its centre of mass, the mathematical equation is formulated
in a way that explicitly express the e�ects of q̈ and q̇. Thus, the dynamics of each
link is de�ned completely by four 3 × n matrices Ui,Ci, Di and Vi as such we have
clear representation of links' dynamics as linearised function of joints accelerations and
velocities.

2.3.4 Moment acting on a joint due to robot dynamics

The total moment acting on any joint j due to robot dynamics, µj in Figure 2.6, can
be calculated from:

µj =
n∑
i=j

µCi +mipCij × p̈Ci (2.27)

Which can be rearranged in a form resembling the inverse dynamics equation as in the
following:

µj = Gj q̈ + Hj q̇ (2.28)

While Gj is 3× n matrix, each column k of this matrix is given by:
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Figure 2.6: Moment acting on joint j due to robot's motion

colk(Gj) =
n∑
i=j

colk(Ui) +mipCij × colk(Ci) (2.29)

In a similar way, each column k of matrix Hj can be calculated from the following:

colk(Hj) =

n∑
i=j

colk(Vi) +mipCij × colk(Di) (2.30)

Subscript j in Hj and Gj is to denote that these matrices are associated with joint j.

2.3.5 Joint space inertia, Coriolis & Centrifugal matrices

The torque acting on joint k due to robot dynamics is calculated from projecting µk,
derived in the previous section, onto the z axis of joint k as in:

τ k = kTkµk (2.31)

Each row k of JSIM, or colk (AT), is calculated from:

colk (AT) = kTkGk (2.32)

Using the same notion, each row k of Coriolis matrix B, or colk (BT) can be calculated
from:

colk (BT) = kTkHk (2.33)

Thus, the inverse dynamics equation of the robot de�ned by the inertial matrix A(q)
and Coriolis matrix B(q, q̇), has been derived.
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Using the same principals developed in this section the joint space centrifugal matrix
can be calculated. This is done by considering only the terms resulting from Centrifugal
accelerations during the calculation of matrices Di, Vi and Hj . Based on the equations
presented in this section three computationally e�cient MATLAB® functions were
implemented for calculating JSIM, in addition to joint space Centrifugal and Coriolis
matrices.

2.3.6 Calculating the time derivative of inertia matrix

The time derivative of JSIM shows up as a by-product when calculating the time deriv-
ative of the generalized momentum in [33], which has applications in collision detection,
while as noted in [32] the author had to change the formulation of the equation describ-
ing the rate of change of the generalized momentum in order to avoid the numerical
di�erentiation of JSIM since calculating it numerically is expensive O(n3). Thus, the
use of TD-JSIM is being avoided, a disadvantage since that it has a favourable prop-
erty of being symmetric. In this section we describe the methodology for deducing
an e�cient and fast algorithm of O(n2) for calculating TD-JSIM on the bases of the
frame injection principal. The proposed algorithm was implemented in MATLAB®.
The computational cost of this algorithm and a comparison with numerically di�eren-
tiating JSIM is presented in operation count section of this study.

It has been shown previously in equation (2.32) that each row of JSIM is given by:

colk (AT) = kTkGk

Thus the time derivative of matrix A is de�ned by the time derivative of its rows as
in:

colk (ȦT) = k̇TkGk + kTk Ġk (2.34)

Since kTk is of a constant magnitude then its time derivative is given by:

k̇Tk = (ω0
k × kk)T (2.35)

Where ω0
k is the angular velocity of frame k relative to frame k. Since that the deriv-

ative of matrix Gk can be de�ned by the derivative of its columns, then by considering
equation (2.29), each column of Ġk is calculated from:

colj(Ġk) =
n∑
i=k

colj(U̇i) +miṗCik × colj(Ci)

+mipCik × colj(Ċi) (2.36)

While it can be shown that the derivative terms inside the summation of the previous
equation are equal to:

colj(U̇i) = ω0
i × (RiI

i
iR

T
i kj)− (RiI

i
iR

T
i )((ω0

i − ω0
j )× kj) (2.37)

It is worth noticing that the term (ω0
i − ω0

j ) of the previous equation is the same
physical quantity ω0

ij in (2.16).
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ṗCik = vCi − vk (2.38)

Where vCi is the linear velocity of the centre of mass of link i and vk is the linear
velocity of origin of frame k.

colj(Ċi) = (ω0
j × kj)× pCij + kj × (vCi − vj) (2.39)

Where vj is the linear velocity of origin of frame j. Thus, the TD-JSIM can be
calculated. The equations of this section were used to write an e�cient O(n2) algorithm
for calculating JSIM. We also want to note here that with slight modi�cation of the
algorithm proposed the term CT(q, q̇)q̇ in equation (22) of [33] can be calculated
numerically and e�ciently from the relation

CT(q, q̇)q̇ = Ȧq̇ − b

Where b is Coriolis vector. This calculation can be done e�ciently, by taking an
advantage of the fact that several parameters of robot dynamics are calculated at
the same time when Ȧ is being calculated, thus b can be calculated as a by-product
while calculating Ȧ, the computational cost of the proposed algorithms is described in
operation count section.

2.4 JSIM for hyper-joint manipulators

In this section we present a novel method, GDAHJ, for calculating joint space inertia
matrix for robots with high DOF. Using this method for computing JSIM for articu-
lated bodies with high degrees of freedom leads better e�ciency over state-of-the-art
method, CRBA. This increase in e�ciency is achieved through minimizing the number
of operations that has O(n2) computational complexity.

As described in section 3.2 of [5], column j of the joint space inertia matrix can be
interpreted as: the torques acting on the various joints of the robot, due to the unit
acceleration of joint j, giving that the angular velocities of all of the joints are equal
to zero. In Figure 2.7 we show the free body diagram of one link of the robot, with
the inertial moments and inertial forces acting on it.

Following the previous de�nition of column j of JSIM, we can calculate that column
as the following: (1) choose a joint j, (2) write the balance equation of a link i from
the robot. By referring to Figure 2.7, the balance equation of link i:

µi,j = µi+1,j + (RiI
i
iR

T
i )kj q̈j +mip̂Cii(q̈jkj × pCij)+

l̂i

n∑
k=i+1

mk(q̈jkj × pCkj) (2.40)

Where µi,j is the total moment acting on joint i due to the acceleration of joint j
only. li is the vector connecting the origin of frame i to the proceeding frame's origin,
the little hat notation above the vector is used to denote the skew symmetric operator
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Figure 2.7: Inertial forces and moments acting on link i due to angular acceleration of
joint j.

associated with that vector. From the de�nition given in the previous section of column
i, we substitute q̈j by its value q̈j = 1. Then the modi�ed balance equation is:

µi,j = µi+1,j + (RiI
i
iR

T
i )kj +mip̂Cii(kj × pCij)

+ l̂i

n∑
k=i+1

mk(kj × pCkj) (2.41)

While:

pCij = pCi − pj (2.42)

And:

pCkj = pCk − pj (2.43)

We substitute the values of pCij and pCkj into (2.41), and we �x:

µi,j = µi+1,j +

(
RiI

i
iR

T
i −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

))
kj

−

(
mipCii + (

n∑
k=i+1

mk)li

)
× (kj × pj) (2.44)

We de�ne the vector ηi by:

ηi = mipCii + (

n∑
k=i+1

mk)li (2.45)

And we de�ne the matrix operator κi by:

κi = −mip̂Ciip̂Ci − l̂i

(
n∑

k=i+1

mkp̂Ck

)
(2.46)
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Algorithm 2.1 Calculating joint space inertia matrix entries.

For i = 1 : n

For j = 1 : i

% calculating Ai,j will require two vector inner products and one

% scalar addition resulting in total cost of (3n2 + 3n)m+ (2.5n2 + 2.5n)a

Ai,j = kTj di + tTj yi

Aj ,i = Ai,j

End

End

Then we write:

µi,j = µi+1,j +
(
RiI

i
iR

T
i + κi

)
kj − (ηi)× (kj × pj) (2.47)

By performing a recursion on previous equation from link n to link i, and noticing that
µn+1,j = 0 we get:

µi,j =

(
n∑
k=i

(
RkI

k
kR

T
k + κk

))
kj −

(
n∑
k=i

ηk

)
× (kj × pj) (2.48)

To hide the complexity in the previous equation, we denote the terms between paren-
thesis by:

bi =

(
n∑
k=i

ηk

)
(2.49)

And

Di =
n∑
k=i

(
RkI

k
kR

T
k + κk

)
(2.50)

Substituting (2.49) and (2.50) in (2.48) yields:

µi,j = Dikj − b̂i(kj × pj) (2.51)

For calculating the (i, j) entry of JSIM, Ai ,j , we project µi,j on the z axes of joint i,
or in other words we multiply (2.51) by the unit vector kTi :

Ai ,j = kTi µi,j = kTi Dikj − kTi b̂i(kj × pj) (2.52)

By noticing that each entry i, j of the JSIM, or kTi µi,j is a scalar, then we can transpose
the previous equation without loss of generality:

Ai ,j = kTj
(
DT
i ki
)
−
(
kj × pj

)T (
b̂
T

i ki

)
= kTj

(
DT
i ki
)

+
(
kj × pj

)T (
b̂iki

)
(2.53)
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In such a way we have decoupled the dependency between indexes i and j. And
we limited the cross-coupling interaction between joint j and bodies i into a minimum.
The previous equation states that the e�ect of acceleration of each joint j is limited to
the terms kTj , and tj =

(
kj × pj

)
. While the e�ect of the articulated bodies from link

n to link i is manifested by the terms
(
DT
i ki
)
, and

(
b̂
T

i ki

)
. The terms di =

(
DT
i ki
)
,

and yi =
(
b̂
T

i ki

)
can be calculated with an O(n) algorithm using multiple recursions,

while the mass matrix entries can be calculated with minimum quadratic cost using
the nested loop in Algorithm 2.1.

The nested loop in Algorithm 2.1. has the minimal quadratic cost. This cost results
from two vector-inner products and one scalar addition, with a cost (3n2 + 3n)m +
(2.5n2 + 2.5n)a, where m stands for multiplication and a stands for addition. Thus,
the O(n2) computational cost is optimized.

2.5 Algorithm and variables organization in computer's

memory

Figure 2.8, shows how links' models and joints' models are represented in computer's
memory, while sheet i in the �gure represents the dynamics of link i, the dynamics of
link i is described by an acceleration of its centre of mass represented by sub-sheet i.2,
and an inertial moment around its centre of mass represented by sub-sheet i.1, as such
the dynamics of a link is fully described using four matrices as shown in the sub-sheets.

On the other hand sheet j is used to represent the model of joint j. The joint model
is the instantaneous description of the moment acting on that joint due to the collect-
ive e�ect of all of the joints' accelerations and velocities. Each joint's mathematical
representation is described by two matrices, one matrix is used to quantify the e�ects
of the joints' accelerations, while the other is to describe Coriolis and centrifugal e�ect
due to angular velocities.

The models of the joints, represented by the two matrices Hj and Gj , are used
eventually to calculate joint space inertia matrix and Coriolis matrix of the inverse
dynamics equation in row-by-row fashion through performing projections on joint's z
axis.

By considering Centrifugal accelerations only, joint space Centrifugal matrix can
be calculated using the same model.

2.6 Implementation and results

To prove the validity of the proposed algorithm, acronymed (GDA), and to assess
its execution-time performance, a comparison with well established algorithms was
performed. Robotics Toolbox for MATLAB® (RTB) [13], CRBA algorithm by Feath-
erstone [25] and DAMAROB toolbox for MATLAB® [36], were used for comparison.
We want to mention here that computational e�ciency was not the main concern of
RTB, according to the author the main concern was to maintain a simple and an easy
to read code. Yet after a lengthy search for robotics toolboxes, RTB according to our
knowledge, is the only MATLAB® toolbox that we could �nd which calculates Coriolis
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Figure 2.8: Representation of links dynamics and joints moments in memory
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Table 2.1: Execution time comparison for several algorithms, applied for 6 DOF robot.
Method Dynamic parameter Calculation time (s)

CRBA JSIM 0.015

RTB JSIM 0.460

GDA JSIM 0.021

RTB Coriolis matrix 1.328

GDA Coriolis matrix 0.064

GDA Centrifugal matrix 0.030

GDA TD-JSIM 0.069

GDA CT(q, q̇)q̇ 0.080

Numerical di�erentiation TD-JSIM 0.085

DAMAROB JSIM 0.032

matrix numerically. DAMAROB is a Toolbox for MATLAB® that generates dynamics
equations of serial manipulators in symbolic form1.

All the code used for comparison was implemented in MATLAB®, as such six
MATLAB® functions implementing the proposed algorithm were developed:

1. GetMassMatrixGDA: calculates joint space inertia matrix.

2. GetCoriolisMatrixGDA: calculates joint space Coriolis matrix..

3. GetCentrifugalMatrixGDA: calculates joint space centrifugal matrix.

4. GetDerivativeOfMassMatrixGDA: calculates the time derivative of JSIM.

5. GetCTdqGDA: calculates the time derivative of JSIM, Coriolis vector, and CT(q, q̇)q̇
as described before.

6. GetMassMatrixGDAHJ: calculates joint space inertia matrix using method pro-
posed in 2.4, or (GDAHJ).

Table 2.1 shows the execution-time performance for the di�erent algorithms. The pro-
�ler utility from MATLAB® was used for performing the measurements, the geometric
and inertial parameters used for running the algorithms were those of PUMA 560 ro-
botic manipulator. The tests were performed on Intel® CoreTM2 Duo CPU T6500 2.1
GHZ, 2 GB of RAM, working under 32b Windows® 7 operating system.

1Using Lagrange formulation to calculate dynamics matrices in symbolic form is a two step process,
the �rst is performed o�ine where the model of the robot is provided to a symbolic-math program
that automatically generates symbolic functions for calculating the dynamics matrices, those functions
are only applicable for the speci�c robot for which they were generated. Then in the second step
those functions are used online to calculate the dynamics of the robot. This is unlike the numerical
calculation method, which does not require o�ine �preprocessing�, and is not restricted to a speci�c
robot.
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Figure 2.9: Number-of-operations with DOF, required for calculating JSIM using
CRBA, GDA and GDAHJ algorithms.

From Table 2.1 we see that calculating JSIM using CRBA has the best performance,
followed by GDA, then comes the symbolic method utilized in DAMAROB, then RTB
in the �nal place.

Table 2.2 shows the computational complexity of the proposed algorithm against
other algorithms, measured in the number of �oating point operations, additions and
multiplications, as functions of n, the number of DOF of robot. Operation count for
CRBA reported in the table pertains to the most e�cient version of this algorithm as
reported in [27]. In the table the operation count for the various algorithms of GDA is
also given.
Operation count for RTB was assessed after analysing the code. For constructing joint
space inertia and Coriolis matrices, RTB invokes several calls of the e�cient recursive
Newton-Euler, as described in [37]. As such, RTB constructs JSIM column by column.
This is done by assigning unity to only one element of joint's acceleration vector, while
assigning zeros to remaining elements, joints velocities and gravity term, then recursion
is performed, and the associated column vector of the inertia matrix is calculated. The
same procedure is repeated for all of JSIM columns, and since that the computational
complexity of recursive Newton-Euler is O(n) and that constructing the inertia matrix
requires n recursions, then the total computational complexity of the algorithm is of
O(n2). For calculating Coriolis matrix RTB uses the same methodology it applies for
calculating JSIM, that is by performing several recursions, at each recursion the angular
accelerations and gravity term are set to zero, while one of the possible combinations
of (q̇i, q̇j) is utilized, as such RTB invokes n2/2 recursions, and the total computational
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complexity is of O(n3), which is re�ected by the long execution time shown in Table
2.1.

From Table 2.2 we notice that for calculating JSIM, the algorithms of CRBA, GDA,
and RTB are all of the same order O(n2), while the symbolic-numeric method is of order
O(n3). For calculating the TDJSIM, GDA is of order O(n2), while using numerical
methods results in O(n3) computational complexity. For calculating Coriolis matrix
we also notice that the GDA have O(n2) complexity, while RTB and symbolic-numeric
methods are of O(n3).
Figure 2.9 shows curves that represent the number of operations required to calculate
JSIM as function of number of joints. The continuous thick curve represents the case
when using state-of-the-art CRBA for performing the calculation. The dashed thick
curve corresponds to the case when the proposed GDAHJ is used. From the curves
we notice that the GDAHJ perform better for articulated bodies that possess higher
degree of freedom. We want to note here that GDAHJ in its form proposed in this
study, was devoted for attaining the highest e�ciency possible for the O(n2) terms,
nevertheless the O(n) terms of the algorithm can also be optimized for attaining better
overall performance, this goal will be left open for future work.
Even though CRBA performed better than GDA, it can be used only to calculate the
inertia matrix. In contrast the proposed method can be used to calculate the inertia
matrix, Coriolis matrix, Centrifugal matrix, and TD-JSIM matrix with computational
complexity of O(n2), in addition GDAHJ achieves higher e�ciency over state-of-the-
art for hyper-joint manipulators. An added advantage of GDA is that when the afore-
mentioned matrices are being evaluated robot dynamics represented by links' inertial
moments and their accelerations are being calculated as by-product of the calculation.
Finally we want to note that GDAHJ in its form presented in this study focused on
optimizing the number of operations associated with O(n2) cost, nevertheless the O(n)
algorithm for calculating vectors di and yi can be also optimized for achieving better
e�ciency. We believe that further development will render GDA and GDAHJ more
e�cient.

2.7 Appendix I

Almost, in all of the dynamics algorithms proposed in this study, we notice that there
is always a necessity to calculate a rotation of the inertia matrix of a link represented
in its local frame, which is a constant 3× 3 symmetric matrix. When performed in the
traditional way, this transform will cost 18 × (3m + 2a), or 54 multiplications and 36
additions. In this appendix we propose an e�cient method for this purpose, its com-
putational cost is (28m+ 21a). To asses the performance of the proposed algorithm, a
comparison with existing state-of-the-art method is presented. Our proposition com-
pares favourably with 14% higher e�ciency.

Let I be3× 3 inertia matrix of a link, R is a general rotation matrix. The rotation
of matrix I by rotation matrix R is given by the similarity transform RIRT. In the
following we describe an e�cient algorithm for calculating the the rotation RIRT. We
write RT as a combination of three orthonormal vectors:
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Table 2.2: Operation count for proposed method and other methods, m stands for
multiplication and a for addition.

Method Matrix Cost Reference

GDA JSIM (12n2 + 49n)m+ (11n2 + 35n− 3)a

GDAHJ JSIM (3n2 + 88n− 3)m+ (2.5n2 + 95.5n− 18)a

GDA Coriolis (31.5n2 + 53.5n− 3)m+ (33n2 + 31n− 6)a

GDA Centrifugal (15n2 + 58n)m+ (13.5n2 + 39.5n− 3)a

GDA TD-JSIM (46.5n2 + 122.5n− 36)m+ (51.5n2 + 117.5n− 41)a

CRBA JSIM (10n2 + 22n− 32)m+ (6n2 + 37n− 43)a [38] and [27]

EQ. 10.3

Symbolic-

Numeric

JSIM-Coriolis ( 3
2
n3 + 35

2
n2 + 9n− 16)m+ ( 7

6
n3 + 23

2
n2 + 64

3
n− 28)a [22]

RTB JSIM O(n2)

RTB Coriolis O(n3)

Numerical

di�erenti-

ation

TD-JSIM O(n3)

RT = [e1 e2 e3] (2.54)

Then, we can write the transform RIRT, by:

RIRT =

 eT1eT2
eT3

 I[e1 e2 e3] (2.55)

By performing the multiplication we �nd that:

RIRT =


eT1 Ie1 eT1 Ie2 eT1 Ie3

... eT2 Ie2 eT2 Ie3

...
... eT3 Ie3

 (2.56)

Since that I is symmetric, then all of its eigenvalues are real, and it can be written as
a product of a diagonal Γ and orthonormal Q matrices:

I = QΓQT (2.57)

Where Γ is a diagonal matrix of the eigenvalues of I, or the principal moments of inertia,
(B/11) of [2], and Q is an orthonormal matrix, which is formed by the concatenation
of the eigenvectors of matrix I, (q1, q2, q3), or the principal axes of inertia, (B/12) of
[2]. Like so, Γ and Q are given by:
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Γ =

 λ1 0 0
0 λ2 0
0 0 λ3

 (2.58)

And

Q = [q1 q2 q3] (2.59)

Where λ1, λ2, λ3 are the eigenvalues associated with matrix I. We index the eigenvalues
such that λ1 > λ3 and λ2 > λ3. We can rewrite Γ by:

Γ = 13 · λ3 +

 λ1 − λ3 0 0
0 λ2 − λ3 0
0 0 0

 = 13 · λ3 + U (2.60)

Without loss of generality, the eigenvalues in matrix Γ can be in any other order, given
that the inequalities λ1 > λ3 and λ2 > λ3 are held. In other words λ3 shall be chosen
such that the entries of matrix U are positive. By noticing that, Q is orthonormal,
then:

QQT = 13 (2.61)

Then I can be rewritten:

I = QΓQT = 13λ3 + Q

 λ1 − λ3 0 0
0 λ2 − λ3 0
0 0 0

QT (2.62)

By substituting (2.62) into (2.56) and �xing, we notice that each entry (i, j) of equation
(2.56) can be written as:

eTi Iej = δijλ3 + eTi Q̃Q̃Tej (2.63)

Where δij is the Kronecker symbol:

δij =

{
1, if i = j

0, if i 6= j

And Q̃ is given by:

Q̃ = [q1 q2]

[ √
λ1 − λ3 0

0
√
λ2 − λ3

]
(2.64)

Where q1 and q2 are the eigenvectors associated with λ1 and λ2. Where λ1 and λ2 are
the most and second maximum eigenvalues, and Q̃ is 3×2 matrix. We notice that Q̃ is
a constant matrix, thus, it can be calculated o�ine, resulting in considerable reduction
of the amount of computation required during the online calculations. Then we de�ne
the vector s̃i of dimension 2× 1 by:

s̃i = Q̃Tei, i = 1, 2, 3 (2.65)
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In such a way, calculating all vectors s̃i requires 3× (6m+ 4a). And the matrix RIRT

can be rewritten as:

W = RIRT =


λ3 + s̃T1 s̃1 s̃T1 s̃2 s̃T1 s̃3

... λ3 + s̃T2 s̃2 s̃T2 s̃3

...
... λ3 + s̃T3 s̃3

 (2.66)

Calculating the previous matrix from s̃i and λ3 requires: 6 × (2m + 1a) operations
associated with the terms s̃Ti s̃j , and three additions for adding λ3 in the diagonal.
The aforementioned algorithm can be enhanced further by noticing that the trace of
a tensor is invariant under rotation. Then we can calculate w33 entry of the rotated
tensor from the other two diagonal entries and the trace from:

w33 = λ3 + s̃T3 s̃3 = trace(I)− w22 − w33 (2.67)

By noticing that trace(I) is a constant, thus it can be calculated o�ine, exploiting
this property, reduces the amount of computation further by 2 multiplications, while
keeping the number of additions unchanged, as a result the total number of operations
required is:

28m+ 21a

The algorithm, accompanied with break down of its cost, is shown in Algorithm 2.2.

Algorithm 2.2 The proposed algorithm, and its cost, for e�cient computation of the
rotation of a symmetric matarix

Operation: Cost:

Calculate vectors s̃i = Q̃Tei, i = 1, 2, 3 : 3× (6m+ 4a)

Calculate products s̃Ti s̃j , i = 1, 2/j = 1, 2, 3: 5× (2m+ 1a)

Add λ3 to the terms s̃Ti s̃i, i = 1, 2: 2× (1a)

Calculate w33 from w33 = trace(I)− w22 − w33 2× (1a)

Total number of operations: 28m+ 21a

Comparison

In appendix A.5, of [27], Featherstone presented an e�cient algorithm for comput-
ing the rotation of a symmetric matrix I, which was accomplished by the following
decomposition of matrix I:

I = L + D+vÖ (2.68)

Where vÖ is the skew symmetric matrix associated with vector v. And matrices L
and D, and vector ν are given by:

L =

I11 − I33 I12 0
I12 I22 − I33 0

I31 + I13 I32 + I23 0


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D = I33 · 13

v =

−I23I13
0


Where Iij are the (i, j) entries of matrix I, nevertheless, the resulting cost of the
presented algorithm is (28m + 29a), which requires in total 57 operations. In other
words the method of [27] requires 8 extra operations over our proposition.

In this study, we proposed an e�cient algorithm for computing the rotation trans-
form of 3 × 3 symmetric matrices. We propose to store any 3 × 3 symmetric matrix
I, in a data structure of the form(λ3, t, Q̃

T), where λ3 is he minimum eigenvalue, t is
the trace of the inertia tensor, and Q̃T is (2 × 3) matrix given in (2.64). Using our
proposition the total number of operations required to calculate the rotation transform
is reduced from (54m+36a) using the conventional way, to the more e�cient operation
count(28m+21a), as illustrated in Algorithm (2.2). The proposed algorithm compares
favourably with state-of-the-art method, and delivers 14% better performance.

2.8 Appendix II

In the following we present a prove of frame-injection principal that we adopted
throughout this paper. Let P be a point of interest of link i, let p0i be the posi-
tion vector of this point in the base frame, and pii the position vector of this point
represented in frame i, as shown in Figure 2.10, and let Tk−1

k be the 4× 4 transform-
ation matrix from frame k to frame k − 1 then the relationship between p0i and p

i
i is

given by:

p0i = T0
1T

1
2T

2
3 . . .T

i−1
i pii (2.69)

For deriving an expression of the acceleration of point P we take the second time
derivative of the previous equation while taking into consideration that the vector pii
is constant, as such p̈0i can be written as follows:

p̈0i = e1 + e2 + e3 + · · ·+ ei (2.70)

While expressions of vectors ek are given in Table 2.3, the expressions of ek involve
the transformation matrices and their derivatives, and since that the transformation
matrix Tk−1

k is given by:

Tk−1
k =

[
Rk−1
k pk−1k

0 1

]
(2.71)

Where Rk−1
k is the rotation matrix from frame k to frame k − 1, and pk−1k is the

coordinate vector of origin of frame k described in frame k − 1.
By taking the �rst derivative of the aforementioned matrix, and realizing that pk−1k

is a constant vector according to MDH convention, and that Ṙ
k−1
k = S(ωk )Rk−1

k for
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Figure 2.10: Coordinate vectors of point of interest P on link i of a serial robot.

Table 2.3: Acceleration terms of a point of interest P from a link i, described in
reference frame.

Term Equivalent expression

e1 T̈
0

1T
1
2T

2
3 . . .T

i−1
i pi

i + 2Ṫ
0

1Ṫ
1

2T
2
3 . . .T

i−1
i pi

i + 2Ṫ
0

1T
1
2Ṫ

2

3 . . .T
i−1
i pi

i + · · · · · ·

+2Ṫ
0

1T
1
2T

2
3 . . . Ṫ

i−1

i pi
i

e2 T0
1T̈

1

2T
2
3 . . .T

i−1
i pi

i + 2T0
1Ṫ

1

2Ṫ
2

3 . . .T
i−1
i pi

i + · · · · · · + 2T0
1Ṫ

1

2T
2
3 . . . Ṫ

i−1

i pi
i

e3 T0
1T

1
2T̈

2

3 . . .T
i−1
i pi

i + · · · · · · + 2T0
1T

1
2Ṫ

2

3 . . . Ṫ
i−1

i pi
i

...
...

ei T0
1T

1
2T

2
3 . . . T̈

i−1

i pi
i
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a revolute joint, while S(ωk ) is a skew symmetric matrix of the angular velocity, then
the �rst time-derivative of the transformation matrix becomes:

Ṫ
k−1
k =

[
S(ωk )Rk−1

k 0
0 0

]
(2.72)

Also calculating the second time-derivative of the transformation matrix is straightfor-
ward:

T̈k−1
k =

[
Ṡ(ωk )Rk−1

k + S2(ωk )Rk−1
k 0

0 0

]
(2.73)

If we substituted the �rst and the second time derivatives of the transformation
matrices into equations of vectors e1 up to ei of Table 2.3, we can reinterpret the
equations as follows:

� The equation of e1 can be interpreted as the injection of frame 1 into point P
of link i in terms of a tangential and centrifugal accelerations represented by the
�rst-most term of the equation, in-addition to an injection of Coriolis acceleration
represented by the rest of the terms of the same equation.

� The equation of e2 represents the injection of frame 2 into point P in terms
of tangential and centrifugal accelerations, also represented by the �rst term
of that equation, while the remaining terms represent the injection of Coriolis
acceleration.

� The same applies on the equation of e3 and the following equations up to ei
which represents the injection of frame i into point P in terms of tangential and
centrifugal accelerations, while the e�ect of Coriolis acceleration is zero due to
the fact that the velocity of any point of link i relative to frame i is zero.

Thus, if we re-notate e1 by p̈i1, e2 by p̈i2 and ei by p̈ii then we can reformulate the
total acceleration of point P by:

p̈i =

i∑
j=1

p̈ij (2.74)

Where p̈ij is the acceleration of point P of link i due to injection of frame j, which is
a combination of tangential p̈τij , normal p̈nij and Coriolis p̈corij accelerations as in:

p̈ij = p̈τij + p̈nij + p̈corij (2.75)

Where p̈τij is:

p̈τij = εj × pij (2.76)

Where pij is the vector connecting the origin of frame j to point P. Also p̈nij is given
by:

p̈nij = ωj × (ωj × pij) (2.77)
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And p̈corij is:

p̈corij = 2ωj × vrij (2.78)

Where vrij is similar to vrCij described in equation (2.10), but it di�ers in that it
describes the velocity of the point of interest P rather than the centre of mass of link
i.

The total acceleration of the point of interest had been derived. In case point
P is chosen to be coincident with the centre of mass of link i then the equation of
total acceleration of point P (2.74) renders back to equation (2.18) representing the
acceleration of the centre of mass of link i.

Deducing the equation of inertial moment µCi of link i, used in this paper, is easily
done by integrating the inertial moments of all of the particles of link i throughout the
volume of that link.
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Chapter 3

COLLISION AVOIDANCE

3.1 State of the art

Collision avoidance is a major topic in robotics research, especially in the new context
of collaborative robotics. Owing to its importance, numerous studies approaching col-
lision avoidance had been presented. Nevertheless, we can notice that the variety of
methods proposed, though di�erent in their own right, have some underlying similar-
ities and can be divided into four major classes. Based on the principle on which those
methods are built, those classes are:

1. Potential �elds (PF) principal;

2. Optimization techniques;

3. Heuristic methods;

4. Others.

3.1.1 Potential �elds

In PF-based methods the robot is in a hypothetical vector �eld in�uenced by two types
of forces. Forces of attraction that guide the robot towards the goal, and repulsion
forces that repel it away from obstacles. Subjected to these forces the robot �nds its
way to the goal while avoiding collisions.

One of the most revolutionary methods proposed in this category was the arti�cial
potential �eld [39]. Unlike its predecessors, this method was the �rst of its kind that
treated the problem of collision avoidance at the low-level control, which is best suited
for achieving real-time response. Owing to its simplicity and high performance this
method was used as the bases for this study.

Another method that is based on a similar principal is the 3 Dimensional (3D)
force �eld method [40]. In this method each link of the robot is surrounded by a vir-
tual elliptical volume. When the obstacle penetrates into the ellipsoid, a hypothetical
repulsive force is generated, repelling the robot away from it and avoiding collision.

Based on the PF principal, an approach to collision avoidance and trajectory plan-
ning was proposed in [41]. This method requires as an input a preliminary trajectory,
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generated by other method. Repulsion poles are used to represent obstacles. An attrac-
tion pole is utilized for guiding the robot toward the goal. The attraction pole moves
along the preliminary trajectory and the robot will follow it while being repelled away
from obstacles. This method is suitable for generating collision free paths that are as
close as possible to a prede�ned trajectory. A similar implementation is adopted in
this study.

Recently, in [42], a depth space approach for collision avoidance between a robot
and coworker was presented. The study describes an improved implementation of the
arti�cial potential �eld method in which an estimation of obstacle's velocity was taken
into consideration when computing the repulsion vector. This is an advancement to the
original arti�cial potential �eld that utilizes only information about minimum distances
for calculating the repulsion vectors. Also, the paper proposed a novel approach for
estimating obstacle's velocity.

While the arti�cial potential �eld is inspired by electric �eld phenomena, other
approaches, inspired by other types of �elds, were proposed. The circular �elds method,
inspired by electromagnetism, was investigated in [43]. One of the advantages o�ered
by this method over the arti�cial potential �eld is that it is immune to getting stuck
in local minima, a major drawback in the arti�cial potential �eld.

Other researchers drew inspiration from �uid dynamics phenomena. In this context,
[44] utilized the stream lines of potential �ow for attaining collision free paths. The
Circular Theorem from �uid dynamics was implemented for computing the stream lines
of the potential �ow. Similarly, in [45] collision free paths are attained by superimposing
elementary �ows. Doublets are used to model cylindrical obstacles inserted in a uniform
�ow. In such a way, collision free paths are attained after calculating the stream lines
of the �ow. Analogous to circular �elds, the methods based on �uid dynamics are also
immune to dead-lock (getting stuck in local minima). Nevertheless, almost all of the
studies based on �uid mechanics techniques are dedicated to applications of collision
avoidance for mobile robots.

In [46] the authors proposed the application of biharmonic potential functions for
collision free path calculation, inspired by the phenomena of stress distribution in
materials. In this method, the navigation zone is considered to be a continuous solid
with elasticity properties, obstacles are voids inside the solid, and the goal is modelled
by a pressurized cavity. The distribution of stresses inside the material is calculated
and from this distribution a collision free path is established.

3.1.2 Optimization techniques

Apart from the methods based on the potential �elds, several researchers have ap-
proached robot collision avoidance as an optimization problem. In [2] the authors
utilized the square of a norm of an error vector as objective function. This error was
de�ned from the di�erence between the end-e�ector's velocity and the desired velocity.
The constraints are formulated from limits on (1) joints angles, (2) joints velocities and
(3) the likelihood of collision. The optimization problem is solved in real-time using the
logarithmic barrier method, and the computed velocity is used to command the robot.
To test their algorithm they used two di�erent setups: (1) using two robotic manipu-
lators, Figure 3.1, and (2) a robot avoiding collision with a spherical obstacle, Figure
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Figure 3.1: Collision avoidance between two robots [2]

Figure 3.2: Collision avoidance between a spherical obstacle and a manipulator [2]

3.2. In the �rst setup, on of the manipulators is mounted on a prismatic base and
is commanded to move on a preprogrammed trajectory while the collision avoidance
algorithm is used to command the second robot. In the second setup, the manipulator
has to avoid collision with a spherical obstacle moving in the scene.

Another motion planner that takes into consideration obstacle avoidance is presen-
ted in [47]. This planner employs both the potential �eld and a genetic optimization
algorithm. In this method the planning process is divided into two procedures. In the
�rst the arti�cial potential �elds method was employed to �nd a collision free path
for the end-e�ector. In the second procedure, collision free con�gurations were calcu-
lated using Genetic Optimization techniques. The method was validated by performing
simulations on a virtual robot with twelve DOF.

In [48] the authors described an algorithm for collision avoidance for redundant
manipulators. The algorithm operates at the kinematics (joint-velocities) level. At
�rst, the minimum distance between the robot and the obstacle is calculated, if closer
than a prede�ned safety distance, a motion component is assigned to the part of the
robot closest to the obstacle, repelling the robot away from collision. The novelty in
their approach was in the way the repulsion motion was de�ned, or what they call �one
dimensional operational space� approach. In such approach, the repulsion component
is projected on a certain direction aligned with the closest distance between the robot
and the obstacle. This way of de�ning the repulsion motion gave their algorithm
better immunity against singularities. Nonetheless, the proposed method was built
around the fact that the end-e�ector's task is the primary task, or the task with the
highest-level priority, while collision avoidance was treated in the null space of the end-
e�ector's Jacobean. This will cause the manipulator to fail in avoiding collision with
the obstacle in some situations. For example, when there is a contradiction between
the end-e�ector's task, assigned the highest-level priority, and the collision avoidance
task, assigned a lower-level of priority. For solving this drawback the authors proposed
to re-invoke a high-level path planning algorithm, so that a new collision free path can
be calculated. Another solution for this problem, more e�cient and not requiring re-
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planning, is proposed in [49]. In this solution a coe�cient is introduced into the control
equation, and by changing the value of this coe�cient the priority level between tasks
can be switched smoothly.

In [50] the authors proposed an inverse kinematics solver that takes into consid-
eration joint limits and collision avoidance. The inverse kinematics problem was for-
mulated as a minimization of the square of the error between the goal position and
the end-e�ector position. The minimization is subjected to (1) constraints due to
joints limits, and (2) constraints due to restrictions on minimum distance between
the obstacle and the robot. Fiacco and McCormick algorithm was used to solve the
optimization problem. The method was tested on a 5 DOF robotic manipulator.

3.1.3 Heuristic methods

The most famous method of this category is the Probabilistic Road Maps (PRM),
[51]. PRM is a powerful method for generating collision free paths for robots with
high degrees of freedom in non-dynamic environments where obstacles are stationary
in space. This method is composed of two phases. The �rst phase is called the learning
phase, it is performed o�ine, and used for stochastic generation of a roadmap of the
scene. The second phase is called the query phase. In this phase, paths are queried,
and the roadmap is searched for a feasible path. While PRM is a powerful method,
it su�ers two major problems. The �rst of which is that it is unsuitable for real-time
implementation. This is due to the high computational cost of the method, particularly
for robots with high degrees of freedom. The second drawback comes from the fact
that the resulting trajectories generated by this planner are not dynamically optimized
for direct implementation on the robot. So much so, PRM is more suited for the o�ine
global planning over real-time collision avoidance implementation. Nevertheless, due
to the advancement in processing power of contemporary computers, and despite the
high computational cost of PRM, a recent study [52] reported success in implementing
PRM for real-time collision free path planning in dynamic environments. Based on
PRM, in [53] the authors proposed the dynamic road maps, a high level algorithm
for planning dynamic paths in changing environment, and more suitable for real-time
collision avoidance applications. This method was used successfully in [54], where
the authors presented a collaborative human-robot system with integrated collision
avoidance capability.

In [55] the authors presented a collision avoidance system in which the control
strategy proposed searches for a motion-direction of the end-e�ector that guarantees
a collision free path between the robot and the coworker. In case this direction exists,
the end-e�ector is commanded to move in that direction. In case the direction does
not exist the robot is stopped, while waiting for the coworker to move from its way.

3.1.4 Others

Another body of research has taken a simpler approach for collision avoidance. The
tradeo� for this simplicity is manifested by (1) a limited reaction capabilities of the ro-
bot and/or (2) a requirement for a complete knowledge of object's trajectory. Though
restrictive, the methods that require a total knowledge of object's trajectory are ap-
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pealing when performing collision avoidance between di�erent robotic manipulators.
For example, in multi-robot cells or for dual-arm manipulators, where the trajector-
ies of the manipulators are known a priori. A study that utilizes this knowledge for
achieving collision avoidance between two end-e�ectors is presented in [56]. In this
study the end-e�ectors are modelled as spheres, using their pre-calculated trajectories,
a collision map is constructed. Afterwards, an iterative time shifting algorithm is ap-
plied and the time delay required to achieve collision avoidance is calculated. In other
words, collision free operation is achieved by performing time-rescheduling on motion
commands before sending them to controllers. This approach was developed further in
[57], where an Advanced Collision Map is introduced, the method can be applied for
collision avoidance between two manipulators rather than their end-e�ectors only. In
[58] the method was generalized to perform collision avoidance between any number
of manipulators. In short, this method is powerful and oriented for collision avoidance
between manipulators sharing the same workspace.

A study dedicated for collision avoidance between two manipulators for industrial
applications is in [59]. The problem was addressed in a simple way, by dividing the work
space of the manipulators into a shared work area, accessible to both manipulators,
and an external work area accessible to only one manipulator. The authors added a
processing layer into the control structure, in which point to point control commands
are processed before being sent to the controllers. As consequence, the manipulators
are allowed to operate in their own external work area at any time. However, the
presence of one of the manipulators inside the shared work area will deny access to the
other manipulator, causing it to wait until the shared work area is free from the other
manipulator.

Another simpli�ed approach for collision avoidance between a manipulator and
obstacles is to stop the manipulator as quickly as possible when the minimum distance
between the manipulator and obstacle is smaller than a prede�ned safety distance.
This approach is addressed in [60].

All of the studies previously described focused on collision avoidance between re-
mote obstacles and the robot. However, in the case of redundant manipulators, self-
induced collisions are also possible. A Representation of Body by Elastic Elements
(RoBE) is a method used for avoiding robot self-collisions, in which each link is covered
by a �ctitious elastic elements [61]. Whenever the elements touch, a force is generated,
and collision avoidance is achieved.

3.2 Proposed approach

In concept, the proposed strategy for achieving collision avoidance is similar to the
one used in [62]. Though, unlike [62], we apply the method in the context of real-
time collision avoidance, rather than the o�ine path planning problem. The control
objective will be divided into two separate tasks. The purpose of the �rst task is
to generate a motion that satis�es a prede�ned trajectory of the end-e�ector, while
the purpose of the second task is to generate collision avoidance motion. In such a
way, the resulting control signal will be the superposition of the two motions. This
superposition can be performed either in joint space as in [62], or more e�ciently in
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operational space as proposed in this study.
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3.3 Implementation overview

For providing a manipulator with collision avoidance capability several tasks had to
be implemented. This section can be considered as an outline to the discussion of
the next sections, where an in-depth overview, accompanied with mathematical treat-
ment of each topic is provided. As we mentioned before, the arti�cial potential �eld
was chosen as the bases for our study. The obstacles and the robot are represented
by geometrical primitives, after the geometrical representation, a computationally ef-
�cient method for calculating the minimum distance between the robot and obstacles
is implemented. This method has the capability of computing the coordinates of the
minimum distance points from the obstacle and the robot. Then, we present the con-
ventional ways for calculating the repulsion forces, based on the information attained
in the minimum distance calculation and the methodology for computing the attrac-
tion forces that attract the end-e�ector to the goal is presented. Afterwards, robot's
kinematics and dynamics is implemented, and the controller is established. Two types
of controllers are implemented, one is based on kinematics and the other is a force-
based controller. Finally, additional functionalities had been added: (1) work space
limits avoidance, (2) joints limits avoidance and (3) self-collision avoidance. To val-
idate the algorithms proposed in this study, real-time virtual-reality simulations were
carried out. Two programs were developed. One is a MATLAB® source code for
numerical calculations and is used to run the collision avoidance algorithm. The other
program was implemented for V-REP which is mainly used for visualization. The
communication between the two programs was established through sockets, Figure 3.3.

Figure 3.3: The main building blocks for collision avoidance
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3.4 Potential �eld method

The arti�cial potential �eld method introduced by the pioneering work of Khatib [39]
is one of the most famous methods for performing real-time collision avoidance. This
method was applied successfully for both manipulators and mobile robots. In this
method the robot is subjected to two types of potential �elds. One represents the
attraction forces that pull the robot toward the goal position, while the other represents
the repulsion forces that push the robot away from obstacles in the environment. Those
forces are de�ned by the gradient of the potential �eld. As a result the robot will move
toward the goal while avoiding collisions with obstacles. Owing to its additive property,
the total potential �eld is the sum of the attraction and the repulsion potentials:

Utotal = Uatt + Urep (3.1)

Figure 3.4 demonstrates the arti�cial potential �elds concept and illustrates their ad-
ditive property. The total �eld is the sum of the attraction �eld, with forces pulling
towards the goal, and the repulsion �eld, with forces pointing away from obstacle.
Owing to its computational e�ciency the method can be implemented in real-time,
and can be deployed easily into the low-level control system of the robot. The use of
this method had been extended successfully to o�ine global path planning problems.
However, in the context of this study we limit the discussion to real-time collision
avoidance implementation.

Figure 3.4: Arti�cial potential �eld concept.
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3.5 Geometrical representation

To implement a collision avoidance algorithm it is of vital importance to have a geo-
metrical representation of the robot and the obstacles. In the following sections, an
overview of some existing methods for geometrical representations of the robot and the
obstacles are presented. Based on the type of representation chosen, a computationally
e�cient algorithm to calculate the minimum distance between obstacle and the robot
is proposed.

3.5.1 Representing objects geometry

Several methods had been proposed in literature for geometrical representation of the
robot and the obstacles. A method of representation utilizes convex polyhedrons, this
method is used in [63] to represent two PUMA 560 manipulators. In [64] the authors
opted for ellipses to represent the links of the robot, while obstacles were represented
by spheres. Another technique that is computationally e�cient represents the robot
and the obstacles by primitive shapes, as segments of lines with spheres swept onto
them, [2] and [62]. A similar convention was implemented in [65], where obstacles and
robot are represented by spheres and cylinders. Also, in [66] the authors represented
a humanoid robot by cylindrical shapes for e�cient implementation of self collision
avoidance algorithm. For e�cient calculation of the minimum distance, in [55] the
authors opted to represent the robot and the coworker by a collection of spheres.

Another technique, which is more precise for representing the robot and the en-
vironment around it, utilizes mesh representation [1]. This type of representation has
the disadvantage of being extremely costly in terms of computations for performing
minimum distance calculations between the robot and the obstacle. To speed up the
computation, researchers have utilized the power of parallel processing, and GPU pro-
cessors, to carry out the calculations [1]. Nevertheless, programming a GPU is not
an easy task, it requires considerable amount of time and special skills, so it had been
avoided for the sake of this study. Thus, the primitive geometry method was our choice
for this study.

3.5.2 Obstacles representation

Obstacles are represented by primitive shapes, spheres and cylinders. The spherical
primitive is de�ned by the coordinates of its center in addition to its radius. The
cylindrical primitive is de�ned by a line segment at its axis in addition to its radius.
In this study the cylinder representation is used for the coworker. For a more precise
representation of obstacles, a collection of primitive shapes, several cylinders or mixture
of cylinders and spheres, can be used together.

3.5.3 Robot representation

To perform fast calculation of the minimum distance between the robot and obstacles,
the robot's geometry is simpli�ed. Two cylinders were used to represent it, one cylinder
runs through the upper arm of the manipulator and another runs through the lower
arm, Figure 3.5.
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Figure 3.5: A robot represented by cylindrical primitives superimposed on it

3.6 Minimum distance calculation

Amethodology for calculating the minimum distance between the robot and obstacle(s)
is described. Since that we are using a simpli�ed representation of the robot and the
obstacle as primitive shapes, we describe the methodology for calculating the minimum
distance analytically. This is because a closed form analytic solution can be deduced
with minimum e�ort, it is computationally e�cient and achieves real-time performance.

According to the type of objects between which the minimum distance is to be
calculated, we can distinguish three di�erent cases: (1) the two primitives are spheres,
(2) one of the primitives is a cylinder while the other is a sphere, (3) the two primitives
are cylindrical primitives.

3.6.1 Minimum distance between two spheres

The minimum distance is the center-distance between the two spheres minus the sum
of the radiuses of the two spheres. As shown in Figure 3.6, p1 and p2 are the position
vectors of the center of the two spheres, and ρ1 and ρ2 are the radiuses of the �rst and
the second spheres, respectively. The minimum distance can be calculated from the
relation:

dmin = |p2 − p1| − ρ1 − ρ2 (3.2)

3.6.2 Minimum distance between a cylinder and a sphere

This case represents the situation when calculating the minimum distance between the
robot (cylinder) and an obstacle (sphere), Figure 3.7. The sphere's center, in relation
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Figure 3.6: Minimum distance between two spheres

to base frame, is given by the vector p0, while the cylinder's primitive is the segment
line de�ned by the vectors p1 and p2. Vector u represent the point associated with
the projection of the sphere's center on the line segment of the cylinder. According to
the position of the obstacle's center p0 relative to the robot's primitive-segment L, p0
and L can be in one of three di�erent con�gurations.

3.6.2.1 First con�guration

The projection of point p0 on the primitive segment L is in between its two ends p1
and p2. To identify this case the following condition shall be satis�ed:

(p0 − p1)T(p2 − p1) > 0 and (p0 − p2)T(p1 − p2) > 0 (3.3)

The coordinate's vector u of the point from the primitive associated with the minimum
distance is calculated from:

u = p1 + (p0 − p1)T
(p2 − p1)

|p2 − p1|
(3.4)

While the associated minimum distance is given by:

dmin = |u− p0| − ρ1 − ρ2 (3.5)

Where ρ1 is the radius of the cylinder and ρ2 is the radius of the sphere.

3.6.2.2 Second con�guration

The projection of point p0 on the primitive segment is outside the line segment that
de�nes the cylindrical-primitive and is closer to point p1. This case is veri�ed by the
following condition:

(p0 − p1)T(p2 − p1) < 0 (3.6)
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Figure 3.7: Minimum distance between line segment (associated to a cylinder) and a
point (center of a sphere)

And the minimum distance is given by:

dmin = |p1 − p0| − ρ1 − ρ2 (3.7)

3.6.2.3 Third con�guration

The projection of point p0 on the primitive segment is outside the line segment that
de�nes the primitive and is closer to point p2. This case is veri�ed by the following
condition:

(p0 − p2)T(p1 − p2) < 0 (3.8)

And the minimum distance is given by:

dmin = |p2 − p0| − ρ1 − ρ2 (3.9)

3.6.3 Minimum distance between two cylinders

Calculating the minimum distance between two cylinders in an e�cient-manner is quite
important for our implementation of collision avoidance method. Several researchers
have proposed solutions for this purpose. Chapter 3 of [67] describes a method for
minimum distance computation between two cylinders with spherical ends. Also in
[68] the author presented an algebraic method for this matter. Another method for
computing the minimum distance between cylinders with �at ends was proposed in
[69] . Nevertheless, the aforementioned methods are lengthy, because they consider
the di�erent con�gurations in which two cylinders might collide with each other. In

52



[69] seventeen di�erent con�gurations are considered and in [68] nine di�erent con�g-
urations are considered. For the sake of simplicity, in this section we propose a novel
solution for calculating the minimum distance between cylinders. This method is based
on optimization techniques, it is easy to implement and computationally e�cient. To
fully describe the proposed method, �rst we describe the methodology for calculating
the common normal on two line segments using least squares technique, followed by re-
formulation of the minimum distance calculation into a bounded-variable optimization
problem. Finally, we propose a novel solution for the minimum distance calculation
problem.

3.6.3.1 Common normal on two line segments

In Figure 3.8 it is shown two line segments representing the axis of two primitive
cylinders and their associated common normal. Each segment can be de�ned by two
vectors in base frame, one at the beginning of the segment and the other at the end of
that segment. Those vectors are denoted by u1, p1 and u2, p2 as shown in Figure 3.8.

It is known that the minimum distance between two lines, L1 and L2, is measured
by the length of the common normal on the two segments. It is our objective to �nd
this segment that represents the common normal. For this purpose we describe a
simple method that is based on optimization technique and is suitable for computer
implementation.

For the calculation of the minimum distance between two line segments, two main
cases can be distinguished. The �rst is when the two lines are not parallel and the
common normal is uniquely determined. The other case arose when the two lines are
parallel. In such case the common normal is not uniquely determined. We have the
freedom to choose one of them, which can be optimized to improve the response of the
robot.

Let's designate the position vectors de�ning the end points of the primitive segment
of the �rst cylinder by p1 and u1, and the position vectors de�ning the end points of
the primitive segment of the second cylinder by p2 and u2. Then, we can de�ne two
vectors s1 and s2 as:

s1 = u1 − p1 (3.10)

And:

s2 = u2 − p2 (3.11)

While s1 is a vector representing the �rst primitive segment, s2 is a vector representing
the second primitive segment. We can verify whether L1 and L2 are parallel, through
the following equality:

|s1Ös2| = 0 (3.12)

For practical implementation, we would like to know whether the two lines are parallel
or close to being parallel. Thus, we can use the following inequality:
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Figure 3.8: Minimum distance between two line segments

abs(sT1 s2)

|s1| · |s2|
≥ cos(α) (3.13)

Where α is the tolerance angle below which the near parallel approximation is applied
and abs is the absolute value function. If the aforementioned inequality is satis�ed
the two segments are close to being parallel. Verifying this condition is important
because if the two line segments are parallel then the minimum distance between the
two segments is constant, and the common normal on both segments is not unique.

To solve the minimum distance problem, when L1 and L2 are not parallel, we
considered two points of interest on the two primitive segments. Those points are
represented relative to base frame by two vectors, r2 and r1, while the parametrized
equation of r1 is:

r1 = p1 + s1λ1 (3.14)

And the parametrized equation of r2:

r2 = p2 + s2λ2 (3.15)

Where λ1 and λ2 are scalar parameters that have a value in the range from zero to one
when the points they represent are con�ned in between the two ends of the primitive
segment. The di�erence vector 4r, between r1 and r2 is:

4r = r2 − r1 (3.16)

When the two line segments, L1 and L2, are not parallel, the problem of calculating
the minimum distance and their associated points renders to a minimization problem
of the norm of vector 4r:
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min(|4r|) = min(|p2 + s2λ2 − (p1 + s1λ1)|) (3.17)

The previous equation is a least squares problem. Its solution is given by the pseudo
inverse of the matrix A:

xls = (ATA)−1ATy (3.18)

We mention here that ATA is invertible since that A is full rank, which is assured
by the assumption that L1 and L2 are not parallel, or in other words, the column
vectors of A are independent. The solution xls can be interpreted as the coe�cients
associated with the projection of y on R(A), where R(A) is the range of A. Thus, the
minimum distance between the two segments, dmin, is the norm of the residual minus
the radius of the two cylinders. The residual is the di�erence between vector y and its
projection Axls. dmin is given by:

dmin = |(13 −A(ATA)−1AT)y| − ρ1 − ρ2 (3.19)

The vectors r1 and r2 associated with the minimum distance are calculated from:

r1 = p1 + A

[
0 0
0 −1

]
xls (3.20)

r2 = p2 + A

[
1 0
0 0

]
xls (3.21)

Thus, the common normal and its end points are fully speci�ed.

3.6.3.2 Quadratic optimization

In this section we present a method for calculating the minimum distance between
line segments, taking into consideration that the optimization variables of the previous
least squares problem are bounded. As shown in the previous section, the minimum
distance calculation between two line segments reduces to the following optimization
problem:

min(|4r|) = min(|Ax− y|) (3.22)

Where matrix A is the concatenation of vectors s1 and s2:

A =
[
s2 −s1

]
(3.23)

And vector y is:

y = p1 − p2 (3.24)

We can rewrite the optimization function in the following equivalent quadratic form:

min(f) = min((Ax− y)T(Ax− y)) (3.25)
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And the problem can be viewed as minimizing the previous function, subject to the
following constrains:

0 < x1 < 1 (3.26)

And:

0 < x2 < 1 (3.27)

Where x1 and x2 are the components of the vector x. We can reformulate the function
f by performing QR factorization on matrix A. Then, the optimization function can
be rewritten:

f = (QRx− y)T(QRx− y) (3.28)

Where Q is a 3× 2 orthogonal matrix and R is a 2× 2 upper triangular matrix. The
previous function can be manipulated by taking advantage of the fact that QTQ = 12.
Thus, after manipulation and �xing we �nd that minimizing (3.25) is equivalent to
minimizing the function:

f = (Rx−QTy)T(Rx−QTy) (3.29)

Or we can rewrite:

min(f) = min(uTu) (3.30)

Where u is given by:

u = (Rx−QTy) (3.31)

Thus, the region of feasible solutions can be transformed using the transformation
function (3.31). There are several points that we can notice from (3.31). First, the
transform function is an a�ne function and the transformation matrix R is an upper
triangular matrix. The rectangular region of feasible solutions becomes a parallelogram
region after the transformation. Second, due to the fact that the transform is an a�ne
and the original feasible solution region (rectangular region) is a convex set, then the
resulting region after the transform is also a convex set [70]. Figure 3.9 and Figure
3.10 show the rectangular regions before the transform and the parallelogram regions
after the transform, for two di�erent cases.

After applying the transform, the bounded variable optimization problem becomes
equivalent to searching for that point within the parallelogram region which is closest to
the origin. According to the relative position of the parallelogram and the origin, we can
distinguish two di�erent situations. In the �rst the origin is inside the parallelogram,
the closest point of the parallelogram region to the origin is the origin itself, and the
minimum value of the modi�ed objective function (3.29) is zero. In this situation the
problem's solution is:

u = 0 =⇒ Rx−QTy = 0 (3.32)

Equivalently:
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Figure 3.9: Region of feasible solutions for the quadratic optimization problem. The
origin is outside the transformed region.

x = R−1QTy (3.33)

We notice that the previous solution is equal to the least squares solution (3.18) of
the unbounded least-squares problem, xmin = xls, which is easily veri�able by blog-
ging A = QR into least squares solution (3.18). The second situation occurs when
the origin is outside the parallelogram. In this case the solution is the point of the
parallelogram closest to the origin. If we denoted the position vector of the point of the
parallelogram closest to the origin by umin, which also represents the solution-vector
of the modi�ed optimization problem (3.30), then the solution-vector of the original
problem (3.25) can be calculated from:

xmin = R−1(umin + QTy) (3.34)

Once the parameters vector xmin is calculated, the minimum distance can be com-
puted:

dmin = |Axmin − y| − ρ1 − ρ2 (3.35)

The point of the robot's primitive closest to the obstacle can be calculated from (3.36)
and the point of the obstacle's primitive closest to the robot can be calculated from
(3.37).

r1 = p1 + A

[
0 0
0 −1

]
xmin (3.36)

r2 = p2 + A

[
1 0
0 0

]
xmin (3.37)

The minimum distance between the two cylinders, dmin, can be computed without
a need of inverting R. This can speed up calculations in applications where collision
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Figure 3.10: Region of feasible solutions for the quadratic optimization problem. The
origin is inside the transformed region.

detection is the main objective. This is achieved by substituting the solution of the
bounded variable optimization problem (3.34) into equation (3.35):

dmin = |QRR−1(umin + QTy)− y| − ρ1 − ρ2 (3.38)

By eliminating the term RR−1:

dmin = |Q(umin + QTy)− y| − ρ1 − ρ2 (3.39)

Thus, from the previous expression, the minimum distance can be computed directly
after retrieving the point umin closest to the origin.
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Algorithm 3.1 Bounded variable least-sequares optimization for minimum distance
calculation
Input : R region of feasible solutions

(Q,R) facorization matrices of A
Output : xmin vector of coefficients [λ1, λ2]

T associated with minimum distance

01 : Transform R using the function f(x) = (Rx−QTy)
02 : If Origin is inside R then
03 : umin ← [0, 0]T

04 : else
05 : for each boundary segment of R do
06 : c← point of segment closest to origin
07 : If first iteration then
08 : umin ← c
09 : else
10 :: If norm(umin) > norm(c) then
11 : umin ← c
12 : end if
13 : end if
14 : end for
15 : end if
16 : xmin ← R−1(umin + QTy)

3.6.3.3 Conclusion:

In this section we proposed a novel method to solve the minimum distance between
two cylinders. We reformulated the problem as a bounded variable optimization prob-
lem. For solving the optimization problem we performed an a�ne-transformation on
the region of feasible solutions. This transformation was deduced from QR decom-
position of matrix A. After the transform, the region of feasible solutions becomes a
parallelogram, and remains convex. We showed that the solution to the optimization
problem corresponds to the point of the parallelogram region closest to the origin. Fig-
ure 3.11 and Figure 3.12 give a visual illustration of the idea. Figure 3.11 shows the
optimization problem, where ellipses represent level sets of the cost function and the
rectangle represents the region of feasible solutions. Figure 3.12 shows the equivalent
optimization problem after applying the proposed transform. The contour ellipses and
the level sets of the original cost function are transformed into concentrated circles.
The rectangular region of feasible solutions was transformed into a parallelogram. In
the example illustrated in Figure 3.11 and Figure 3.12, the origin is inside the paral-
lelogram region resulting after the transformation, so we deduced that the solution of
the bounded-variable least squares problem is coincident with the origin, and as we
showed previously, the solution attained for this case shall be equal to the solution of
the unbounded least squares problem. Otherwise, the solution would be the point of
the parallelogram boundary closest to the origin.
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Figure 3.11: The original optimization problem de�ned by level sets of objective func-
tion and region of feasible solutions, before applying the transform.

Figure 3.12: Equivalent optimization problem de�ned by level sets of equivalent ob-
jective function and region of feasible solutions, after the transform.

3.7 Mathematical model of the robot

To control the robot, a mathematical model of its kinematics and/or dynamics shall
be established. Robot's con�guration is described by its joints angular position vector
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q. The mapping from the robot's con�guration q to the end-e�ectors position x is
established by the direct kinematics:

x = f(q) (3.40)

Where f is the manipulator's forward kinematics, a highly non-linear vector function,
that gives the position and orientation of the end-e�ector as a function of joints angles.
This function can be calculated using the homogeneous transformation matrices, follow-
ing Denavit-Hartenberg convention [13], [4]. Di�erentiating (3.40) gives the equation
of di�erential kinematics:

ẋ = Jq̇ (3.41)

Where q̇ is the joints velocities vector, ẋ is the end-e�ector's velocity and J is the
manipulator's Jacobean:

Jij =
δfi
δqj

(3.42)

J is a function of links geometry and the robots' con�guration. Regarding dynamics
modelling, the subject was fully treated in the dynamics chapter of this study.
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Figure 3.13: Repulsion vector aligned with minimum distance segment

3.8 Vectors in�uencing robot's motion

To achieve robot's motion that satis�es the collision avoidance objective while adhering
as possible to the original trajectory, the concept of hypothetical repulsion and attrac-
tion vectors will be introduced. Depending on the type of control used, those vectors
represent velocities, or forces, that attract the robot towards its goal while repelling
it away from obstacles. Those vectors, their physical meaning and their mathematical
representation will be analysed.

3.8.1 Repulsion vector

After computing the minimum distance between the obstacle and the robot, and after
calculating the point of the robot primitive associated with the minimum distance, the
repulsion vector has to be calculated. The repulsion vector is de�ned by amplitude and
direction, Figure 3.13. The direction of the repulsion vector s will be aligned with the
line segment associated with minimum distance. If we designate the position vector of
that point of the obstacle closest to the robot by po and the point of the robot closest
to the obstacle by pr, then, the vector s is given by:

s =
pr − po
|pr − po|

(3.43)

The magnitude of the repulsion vector could be calculated based on one of several
measures that quantify the risk of collision:

� The minimum distance between the obstacle and the robot, [39].

� Time to collision, Chapter 5 of [71]. This parameter was calculated from the
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Figure 3.14: Magnitude of normalized repulsion vector as function of normalized dis-
tance using di�erent functions.

minimum distance and an estimation of the relative velocity between the robot
and the obstacle.

� An estimation of the acceleration required to achieve collision avoidance, [72].

In this study we choose the minimum distance as the measure of collision imminence.
For successful collision avoidance strategy, the repulsion vector is calculated such that
its magnitude increases when the minimum distance decreases. Based on this criteria,
three functions for calculating the magnitude of the repulsion vector had been proposed:

1- The inverse of the minimum distance is usually used for calculating the mag-
nitude of the repulsion vector. This function was used in [39] and is given by:

frep =

{
k
(

1
dmin

− 1
d0

)
, if dmin < d0

0 if dmin ≥ d0
(3.44)

Where d0 is the safety-zone parameter or the distance at which the repulsion vector is
activated. We notice that the magnitude of the repulsion vector increases to in�nity
when dmin goes to zero. To avoid saturation on motors the resulting joints action values,
torques in case of revolute joints, need to be clamped to the maximum permissible
value.

2- Another function that is also used to calculate the magnitude of the repulsion
vector is given by a linear function of the minimum distance:

frep =

{
k
(

1− dmin
d0

)
, if dmin < d0

0 if dmin ≥ d0
(3.45)
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3- In Chapter 6 of [73] the author selected a cosine shaped function to calculate
the repulsive vectors.

It is worth noting that during the course of this study other functions, in addition to
the aforementioned, were utilized, and a good response have been achieved using the
following function:

frep =

k
((

d0
dmin

)5
− 1

)
, if dmin < d0

0 if dmin ≥ d0
(3.46)

For the tests performed in this study, the above function was utilized. Figure 3.14
shows di�erent curves representing the aforementioned force functions.

3.8.2 Attraction vector

An attraction vector attached to the end-e�ector allows the robot to follow the goal.
This vector has the function of guiding the end-e�ector towards the goal point. During
this study, a proportional - integral (PI) controller was utilized for computing the end-
e�ector's attraction vector. The error vector is de�ned as the di�erence between the
end-e�ector's position and the attraction pole position:

e = pe − ppole (3.47)

Where e is the error vector, represented by a dotted arrow in Figure 3.15, pe is the
end-e�ector's position, notated (TCP) for tool center point, and ppole is the position
vector of the attraction pole on the path. The attraction vector is calculated from the
PI equation:

ve.att = −Kpe−Ki

ˆ
edt (3.48)

Where ve.att is the attraction vector acting on the TCP and it has a physical meaning
of velocity. The subscript att denotes that this is an attraction vector, e is used to
denote that the vector is acting on the end-e�ector, Kp is the proportionality coe�cient
matrix and Ki is the integral term coe�cient matrix.

3.9 Collision avoidance controllers

Control of robots can be performed using one of two strategies, kinematics based control
and the force based control [74]. In the context of this study, and following those two
strategies, two di�erent types of controllers with collision avoidance capabilities were
implemented, Figure 3.16. We will designate the controller based on kinematics by (K)
controller, and the controller based on force control by (F) controller.

3.9.1 Kinematics control

In this case the control acts at the kinematics level, as such the attraction vector is
treated as a velocity that causes the motion of the end-e�ector towards the goal, while
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Figure 3.15: The path curve, the attraction pole, and the error vector

Figure 3.16: Outline of collision avoidance strategies
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the repulsion vector is treated as repulsion velocity. This repulsion velocity acts on
the point of the robot associated with the minimum distance and repel it away from
collision.

For controlling the robot in the joint space, the corresponding joints velocities have
to be calculated. This conversion from Cartesian velocities to joint space velocities is
accomplished by utilizing the Jacobean inverse, or to a better extent, the generalized
inverses of the Jacobeans associated with the control point and the end-e�ector. Note
that the control point (CP) is the point of the robot closest to the obstacle.

On the other hand, when the robot is being controlled in operational space, as
in this study, the repulsion velocities shall be propagated from the control point as-
sociated with the minimum distance up to the robot's end-e�ector. In this case, the
operational space control command utilized is the velocity of the end-e�ector described
in operational space. This command is calculated as the vector sum of the attraction
velocity, acting at the end-e�ector, and the repulsion velocity, propagated from CP
up to the end-e�ector. In this study the attraction velocity is calculated by the PI
relation given in (3.48). The propagation of the repulsion velocity, from the control
point associated with the minimum distance up to the end-e�ector, is performed by
utilizing the Jacobean and inverse kinematics. There are several techniques proposed
in the literature for performing inverse kinematics calculation. Comprehensive review
about the subject is given in [75] and a performance-comparison of the most important
methods for computing inverse kinematics is presented in [76]. In this study two tech-
niques were utilized, one is the Jacobean transpose and the other is the damped least
squares (DLS). Despite the fact that the DLS is more costly in terms of computation,
the method o�ers better stability than the Jacobean transpose method, which is lighter
to compute.

The DLS solution for propagating the velocity from the control point up to the
end-e�ector can be deduced as follows. First the angular velocities q̇rep associated
with the repulsion velocity vector are calculated:

q̇rep = JT
cp(JcpJT

cp + λ21m)−1vcp.rep (3.49)

Where q̇rep is the repulsion angular velocities vector, Jcp is the Jacobean associated
with the control point on the robot, λ is a damping constant, 1m is the identity matrix
and vcp.rep is the repulsion velocity at the control point. Then, the propagated velocity
from the CP up to the end-e�ector is given by:

ve.rep = Jeq̇rep (3.50)

Where ve.rep is the repulsion velocity transferred to the end-e�ector and Je is the
Jacobean associated with the end-e�ector. Another way to calculate the propagation
of the repulsion velocity to the end-e�ector is by using the Jacobean transpose:

ve.rep = αJeJ
T
cpvcp.rep (3.51)

Where α is a scalar, which according to [75] is de�ned by:
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α =
vTcp,repJcpJT

cpvcp.rep

vTcp,repJcpJT
cpJcpJT

cpvcp,rep
(3.52)

From [75], for a faster calculation of α, an intermediary vector ε can be de�ned:

ε = JcpJT
cpvcp.rep (3.53)

Then, the expression of α reduces to:

α =
εTvcp.rep
εTε

(3.54)

Thus, the total operational space command sent to the robot is the summation of two
vectors:

ve = ve.att + ve.rep (3.55)

For the purpose of this study and to achieve better numerical stability, we follow the
recommendation of [75], where the alternate Jacobean was utilized. The alternate
Jacobean is the Jacobean associated with the point of the goal position, rather than
the robot's end-e�ector. To give an intuition about the physical meaning of this for-
mulation, the reader can think of it as trying to move the goal position toward the
end-e�ector, rather than the end-e�ector toward the goal position. A complete de-
scription along with mathematical formulation of the alternate Jacobean is in [75].

3.9.2 Force control

In this case the dynamics of the robot is taken into consideration when generating
collision avoidance motions. The repulsion vectors acting on the points associated
with the minimum distance are treated as forces. These forces shall be transformed
into control commands. The method of transformation depends on the way in which
the control is performed. We can distinguish between two types of control, joint space
control and operational space control.

3.9.2.1 Joint space control

This method is used in [41], where control commands are calculated in joint space, and
each command is composed of the joint generalized forces. Joint generalized forces is
a synonym for joints torques in case of robot with all revolute joints. In this case, the
control command is calculated as the summation of two di�erent torques:

1- Torque command that pulls the robot toward the goal con�guration. We can
use o�-the-shelf proportional-derivative (PD) controller to achieve this result, as used
in [41]:

τatt = −Kp(q − qd)−Kd(q̇ − q̇d) (3.56)

Where τatt is the joints torques vector that drives the robot towards the goal con�g-
uration, qd is the goal's con�guration, q̇d is the vector of the desired joints' velocities
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at goal con�guration, and coe�cients Kp and Kd can be adjusted as the robot gets
closer to the goal. This equation shed a light on the drawback of this method, due
to the fact that robot's tasks are usually described in the Cartesian space. Thus, qd
and q̇d need to be calculated by transferring the trajectory from the Cartesian into the
joint space domain. This conversion is computationally expensive.

2- Torque command that pushes the robot away from the obstacle:

τrep = JT
cpfrep (3.57)

Where JT
cp is the transpose of the Jacobean associated with the point of the robot

closest to the obstacle and frep is the repulsion force calculated at that point. Then,
the total control torque command is:

τc = τatt + τrep (3.58)

To avoid saturations on the motors, the torques are clamped by the maximum per-
missible torque of the motors:

τ̄c = Cτc + (1n −C)τmax (3.59)

Where τ̄c is the truncated control-torque command, 1n is the identity matrix, n is the
DOF of the robot, and C is an n× n diagonal matrix:

cij =


1 i = j, τc.i < τmax,i

0 i = j, τc.i ≥ τmax,i
0 i 6= j

(3.60)

Where τc is the ith element of the vector τc and τmax is the maximum permissible
torque that can be applied on link i. If we have a torque controlled robot, then
motor-torques commands are applied directly to robot's controllers after performing
the proper transformation on torques from joint space to actuator space. In other
situations joints angles have to be calculated. This is done by integrating robot direct-
dynamics equation.

3.9.2.2 Operational space force control

In this type of control the robot is controlled in Cartesian space by specifying motion
parameters of a unit-mass of the decoupled end-e�ector [7]. In this case, the dynamics
equations are referenced to the end-e�ector.

We recall that our control is acting under the in�uence of an attraction force that
acts on the end-e�ector, attracting it towards the goal, and a repulsion force that acts
on the point of the robot associated with the minimum distance to the obstacle. Thus,
the operational space representation of our problem would be to reference both of these
vectors, attraction and repulsion, to the end-e�ector.

The �rst part of the problem, referencing the attraction vector to the end-e�ector, is
done through the application of an attraction force on a single unit-mass that represents
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the decoupled end-e�ector. This method is described in [39], where the author used
proportional derivative (PD) control to calculate the attraction force:

fe.att = −Kp(x− xd)−Kv(ẋ− ẋd) (3.61)

We note that the force acting on the decoupled unit-mass is equal to its acceleration,
so fe.att has the interpretation of a force and acceleration.

The repulsion force that acts on the point of the manipulator closest to the obstacle
shall be transferred to the end-e�ector. We saw previously that in the case of the
K controller the transformation of the repulsion velocity was done by utilizing the
Jacobean. However, in the case of the F controller the transformation law shall take
into consideration the dynamics of the manipulator. The transformation law can be
deduced from the equation of the inverse dynamics of the manipulator's motion:

τ = Aq̈ + B(q, q̇)q̇ + g (3.62)

To describe the equation of motion of the end-e�ector in the operational space, it is ne-
cessary to reformulate the equation of the inverse-dynamics to include the acceleration
of the end-e�ector ẍ, instead of joints accelerations q̈. To do this we need an equation
that relates ẍ and q̈ together. This equation is deduced through the di�erentiation of
the end-e�ector's Cartesian velocity expression. The end-e�ector's Cartesian velocity
is given by:

ẋ = Jeq̇ (3.63)

By di�erentiation with respect to time:

ẍ = Jeq̈ +
dJe

dt
q̇ (3.64)

Or:

q̈ = J−1
e

(
ẍ− dJe

dt
q̇

)
(3.65)

Then, the equation of the inverse-dynamics (3.62) can be reformulated in terms of the
end-e�ector's acceleration as:

τ = AJ−1
e

(
ẍ− dJe

dt
q̇

)
+ B(q, q̇)q̇ + g (3.66)

To deduce a relationship between the motion of the unit-mass of the decoupled end-
e�ector and the virtual forces acting on the robot we apply the following principal:

[Total torque] = [Follow target torque] + [Collision avoidance torque]

Which can be translated into the following equation:

AJ−1
e

(
ẍ− dJe

dt
q̇

)
+ B(q, q̇)q̇ + g =
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{
AJ−1

e

(
fe.att −

dJe

dt
q̇

)
+ B(q, q̇)q̇ + g

}
+
{

JT
cpfrep

}
(3.67)

It is important to mention that the unknown of the aforementioned equation is ẍ, or
the resulting motion of the unit-mass of the decoupled end-e�ector. By simplifying
the aforementioned equation we �nd that the total acceleration of the unit-mass of the
decoupled end-e�ector ẍ is:

ẍ = fe.att + JeA
−1JT

cpfrep (3.68)

Where ẍ satis�es the requirement of a motion that is as close as possible to the pre-
de�ned trajectory, while avoiding collision with the obstacle.

3.9.2.3 Linearising force control equation

To deduce an expression of a velocity-level control that takes into consideration robot's
dynamics, and starting from (3.68), we notice that the equation can be linearized near
the current position of the end-e�ector. By using forward Euler approximation, we can
re-write the acceleration of the end-e�ector:

ẍ =
ẋ− ẋ0

4t
(3.69)

Where ẋ is the end-e�ector's velocity that achieves collision avoidance while trying
to adhere as possible to the prede�ned trajectory, ẋ0 represents the current velocity
of the end-e�ector, and 4t is the simulation update interval. By applying the same
notion, the force of attraction fe.att can be approximated by:

fe.att =
ẋe.att − ẋ0

4t
(3.70)

Here fe.att is interpreted as the acceleration of the decoupled unit mass of the end-
e�ector. By substituting (3.69) and (3.70) into (3.68), and �xing, we see that the
linearized equation of motion becomes:

ẋ = ẋe.att + JeA
−1JT

cpfrep4t (3.71)

For calculating ẋe.att a PI controller (3.48), was utilized. The aforementioned equation
has a higher numerical stability than inverting the Jacobean. Since that A is symmetric
positive de�nite it is always invertible [77]. In addition, the resulting motion have the
added advantage of taking into consideration robot's dynamics.

3.10 Other considerations

When calculating control commands it is not satisfactory to avoid collisions with
obstacles only. There are other aspects that shall be taken into consideration, such
as self-collisions due to robot's links colliding with each other, joints limits, and work-
space limits which all shall be avoided. In the following subsections we describe how
to incorporate the aforementioned considerations into the collision avoidance method.
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Figure 3.17: Work space limits approximated as spheres in operational space

3.10.1 Workspace limit

Workspace limits can be addressed directly in operational space. This is done by
adding virtual repulsion surfaces to the environment model. These surfaces act on the
robot with repulsion forces when it comes closer to work space limits. In this study the
workspace is approximated by two half spheres and a plane, Figure 3.17. Half sphere
for modelling the interior limit of the workspace, half sphere for the exterior limit of
the workspace and a �at plane for the �oor. These limiting surfaces are considered as
sources of repulsion potentials. These potentials act on robot's links when they reach
some prede�ned safety margin from workspace limits. The generated repulsion vectors
are transferred to robot's joints if the robot is controlled at joints level, or transferred
to the decoupled unit mass of the end-e�ector if the robot is controlled in operational
space.

3.10.2 Joint limits

The control algorithm shall be capable of avoiding joints limits. In [50] and [2], col-
lision avoidance was treated as an optimization problem, and their way of addressing
joints-limits-avoidance (JLA) was through adding extra constraints to the optimization
problem. Those constraints are inequalities that represent the limits imposed on joints
variables. While in [39] the author addressed this issue by adding potential �eld, that
is a function of joints angles, this potential is activated when the joint's angle is near
its limit. From equations (28) and (29) in [39], and by noticing that the derivative of
the potential �eld due to joint limit corresponds to repulsion torque, joints limits are
addressed by adding repulsion torques that act on robot's joints when the con�guration
of the joint comes close, by some safety margin, to its limit. The repulsion torque can
be chosen as reversely proportional to the error between the joint limit and the actual
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joint position. In this study the following function was used to avoid joints limits:

τi,lim =


sign (qi − qi,ll) k

(abs(qi−qi,ll))
n , qi,ll +4qi > qi > qi,ll

sign (qi − qi,ul) k

(abs(qi−qi,ul))
n , qi,ul > qi > qi,ul −4qi

0 qi,ul −4qi > qi > qi,ll +4qi

(3.72)

Where τi,lim is the torque acting on joint i to avoid violating joint limit, sign is a
function that returns the sign of the operand, k is the proportionality constant, qi is
the position of joint i, qi,ul is the upper limit position of joint i, qi,ll is the lower limit
position of that joint, 4qi is a safety margin, and n is the exponent. k and n can be
adapted to get a better response.

3.10.3 Joint limits in the linearised dynamics approach

To incorporate JLA in our linearized-dynamics (3.71), the equation can be modi�ed
by adding repulsion torques:

ẋ = ẋe.att + JeA
−1
(
JT
cpfrep + τlim

)
4t (3.73)

Where τlim is the vector of repulsion torques that act on the joint when their angle
come closer to its limit. The aforementioned controller was used through this study.
However, after performing several tests, we conclude that the previous strategy is not
optimal for our application, collision avoidance for collaborative robotics. In Figure
3.18 the external repulsion force due to the obstacle and the repulsion torque due to
JLA are acting against each other. Thus, the repulsion vectors due to the coworker,
and the repulsion torque due to joint limit avoidance, increases dramatically, while each
element is trying to counteract the e�ect of the other. In such case we got oscillations,
while in other scenarios the control failed to avoid the collision or failed to avoid the
joint limit. To solve this problem we propose that when joint i come closer to its limit,
we smoothly scale-down the action of that joint. In this study a scaling factor ai was
used:

ai =


0.5
(

1− cos
(
π
qi−qi,ll
4qi

))
, qi,ll +4qi > qi > qi,ll

0.5
(

1− cos
(
π
qi−qi,ul
4qi

))
, qi,ul > qi > qi,ul −4qi

1 qi,ul −4qi > qi > qi,ll +4qi

(3.74)

Where ai is a unitless scaling factor associated with joint i. Other variables are the same
as in (3.72). 4qi can be optimized according to the maximum angular acceleration
applicable on joint i. The curve representing (3.74) is shown in Figure 3.19.
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Figure 3.18: Drawback of repulsion torques method for incorporating joints limits

Figure 3.19: A curve representing the scaling factor ai

To integrate our solution of joint limits avoidance into the linearized-dynamics control-
ler (3.71), we collect the scaling factors ai into a diagonal matrix N:

N = diag(a) (3.75)

Then, the modi�ed control law of the linearized dynamics controller is:

ẋ = ẋe.att + JeNA−1JT
cpfrep4t (3.76)
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This equation is a complete frame work for performing collision avoidance for non-
redundant manipulators, it is formulated in operational space, it incorporates JLA,
and the resulting motion takes into consideration robot's dynamics. Hence, it was
used during the simulations of this study as the F controller.

3.10.4 Self-collision avoidance

Avoiding self-collisions is important in redundant manipulators and dual arm manip-
ulators. For a 6 DOF serially linked robot self-collisions cannot occur if joints limits
and work space limits were respected. Thus, when dealing with redundant manipulat-
ors susceptibility to self-collisions shall be taken into consideration. The procedure of
avoiding self-collisions is similar to the collision avoidance with foreign obstacles, i.e.,
by calculating the minimum distance internally between robot's links that are likely
to collide with each other. Afterwards, a repulsion vector is added, and transferred
into an appropriate control command. This topic is studied in [61], a study entirely
dedicated to self-collision avoidance.

3.11 Modifying attraction force to reduce the risk of col-

lision

Since that this study is devoted to collision avoidance for collaborative human-robot
interaction, the highest priority shall be dedicated to maintaining the safety of the
human coworker under all conditions. A strategy for this purpose was introduced in
(6.13) of [73], where a weighting factor cv was introduced, and used to scale down the
velocity of the end-e�ector towards the goal when an obstacle is nearby, thus reducing
the risk of collision. In [73], cv was de�ned as a combination of two cosine functions,
one takes into consideration the direction of the repulsive force, while the other is based
on its magnitude.

Following [73], in this section we describe a similar strategy to enhance the safety
of the system and to reduce the risk of collision. Unlike [73], we sought this objective
in a much simple way. To assure collision avoidance precedence over all other tasks, we
modify the function of the attraction vector, where the attraction vector magnitude is
scaled down the closer the coworker is to the robot. This is achieved by modifying the
magnitude of the attraction vector using the following function:

vatt.mod = vatt

(
2

1 + e
−
(

dmin
d0

)n − 1

)
(3.77)

Where vatt.mod is the modi�ed attraction vector, vatt is the attraction vector from
section 3.8.2, dmin is the minimum distance to the obstacle, d0 is the distance at which
the repulsion vector starts to act, and n is the exponent. The curve of the proposed
modi�cation coe�cient is shown in Figure 3.20. Though simple in formulation, (3.77)
demonstrated its robustness in the virtual-reality simulations performed throughout
this study.
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Figure 3.20: Modi�ed of attraction force as a function of normalized distance
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3.12 Drawbacks associated with arti�cial potential �eld

Despite the fact that the arti�cial potential �eld is a powerful method for performing
collision avoidance, it can be improved. Some problems associated with its implement-
ation have been reported. In [78] the authors identi�ed �ve drawbacks that pertains to
path planning for mobile robots using the potential �eld method. In this study, similar
problems, but in the context of robotic manipulators, were noticed:

1. Oscillations when the robot is subjected to several counteracting, repulsion forces
from several obstacles.

2. Goal Non Reachable Obstacles Near By (GNRON) as described in [78].

The above problems where noticed while performing tests, we describe them in the
following.

3.12.1 Oscillations

Oscillations occur when the robot is con�ned in spaces of reduced manipulability, i.e.
when it is subjected to repulsive forces from di�erent potential sources. To solve this
problem a moving average �lter was utilized to �lter the signal before sending it to
the robot. Despite their simplicity, moving average �lters are optimal and o�er a
solution for reducing random noise and smoothing out rapid changes in a signal. The
mathematical representation of the moving average �lter is:

vi =
1

m

m−1∑
j=0

xi−j (3.78)

Where vi represents the �ltered signal, xi−j is the original signal, and m is the number
of samples used for averaging.

3.12.2 Goal Non-Reachable Obstacles Nearby (GNRON)

This problem shows up when the obstacle and the goal are close to each other's,
especially when the obstacle is wedged between the robot and the goal. This problem
was described in [78]. However, the discussion was in the context of path planning
for mobile robots. This problem was also identi�ed during simulations performed
in the context of this study. Figure 3.21 demonstrates this problem. In the �gure
O represents obstacle's center and T represents goal position. In such situation the
robot was trapped in an oscillatory motion and the direction of oscillations is shown
in a double-pointed arrow. In [78] a solution for this problem was presented, through
modifying the function of the attraction potential �eld. Nevertheless the solution
presented was kept in the framework of path-planning for mobile robots, which is not
directly applicable for robotic manipulators. In Chapter 4 of this study testing results
associated with this problem are presented.
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Figure 3.21: Goals non-reachable with obstacle nearby
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Chapter 4

Experiments and Results

In the context of the methodology presented in this study and to validate the pro-
posed framework several real-time virtual-reality simulations were performed. In these
simulations the robot used is 6 DOF serially linked manipulator. The robot is idle or
performing a task, while an obstacle is moving in a collision course with the robot.
Statistical data of velocities and positions were collected, and the results were ana-
lyzed. The simulations were run on Intelr Core i7 machine, with 4 GB of RAM. The
overall simulation update time was 0.158 seconds/cycle on average.

4.1 Testing set and Results

Tests 1, Test 2 and Test 3 were performed to measure the performance of the pro-
posed kinematics controller under di�erent con�gurations. Test 4 was performed to
evaluate the performance of the force controller. In Test 5 the kinematics controller
is implemented in a typical robotic cell. In this cell the robot is performing a pick
and place operation while avoiding collision with a coworker moving randomly in the
shared workspace. Test 6 was performed to demonstrate the problem of GNRON and
Test 7 measures the e�ectiveness of scaling factor method for achieving JLA. Table 4.1
shows the parameters for each test.

Table 4.1: Tests parameters (K-kinematics controller, F -force controller).
Test Distance of in�uence m Controller Approaching direction MVA �lter

1 1 K X − direction yes/no

2 0.5 K X − direction yes

3 0.7 K Y − direction yes

4 1 F X − direction yes

5 1 K Random yes

6 1 K Random yes

7 1 K Random yes
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Figure 4.1: Layout of simulation scene for Test 1

4.1.1 Test 1

In this test the robot is stationary in resting position and the human coworker is ap-
proaching the robot from the front (along X direction), Figure 4.1. The coworker walks
towards the end-e�ector, the minimum distance between them decreases, and when it
reaches a prede�ned safety-distance the robot reacts by moving-away to avoid collision
with the coworker. After performing the real-time virtual reality simulation of the
aforementioned scene, it can be noticed that the robot manages to avoid collision with
the coworker successfully. To quantify the response of the robot, several parameters
where collected during the simulation:

1. The position of the end-e�ector expressed in Cartesian coordinates of the refer-
ence frame;

2. The position of a reference point on the coworker expressed in Cartesian coordin-
ates of the reference frame;

3. Minimum distance between the coworker and the robot1;

4. Time of each data sample;

5. Velocity of the end-e�ector;

6. Velocity of a reference point on the coworker;

The response of the robot is analyzed using the plot in Figure 4.2 that describes the
X coordinate of the end-e�ector, the X coordinate of the coworker and the di�erence
between them.

1Calculated from the formulas presented in section 3.6
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Figure 4.2: Test 1 results.

We can notice from the plot that at the beginning of the simulation the robot is
stationary in a resting position, while the coworker is moving with a negative velocity
about 0.3 m/sec, along X direction towards the robot. When a prede�ned safe distance
between the robot and the coworker is reached, the robot reacts by moving away from
the coworker. When the coworker changes its motion to the opposite direction, the
robot moves back towards its resting position.The simulation cycle continue for several
more periods and the same reaction was noticed in each period. To show the in�uence
of moving average �lter (MVA) on reducing vibrations, we plot the response for the
same simulation but in the scenario where MVA is deactivated. It is clear that the
moving average �lter was successful in suppressing the vibrations.

Figure 4.3 shows the evolution of the minimum distance between the coworker and the
robot as function of time. Data pertaining to several simulation cycles were collected.
The minimum distance reported is 0.75 meter.
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Figure 4.3: Minimum distance between robot and cowrker for Test 1.

Figure 4.4 shows the X component of end-e�ector's velocity in two situations: using the
MVA �lter and without using the MVA �lter. The moving average �lter was successful
in suppressing the vibrations and achieving a smoother reaction from the robot.
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Figure 4.4: End-e�ector velocity for Test 1.
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4.1.2 Test 2

This test is similar to Test 1. The only di�erence is in the dimension of the area of
in�uence2 around the obstacle, which is changed from 1 meter to 0.5 meter. From
Figure 4.5 we see that reducing the area of in�uence caused the minimum di�erence
of X coordinate between the end-e�ector to the coworker to change from 0.82 meter
for Test 1, to 0.32 for Test 2. And Figure 4.6 shows that the reduction of the area of
in�uence caused the minimum distance to change from 0.75 m for Test 1, to 0.35 m for
Test 2. Figure 4.7 show the X component of the end-e�ector's velocity as function of
time, where the maximum reaction velocity reached is 0.41 m/sec as opposed to 0.56
m/sec for Test 1. In addition, velocity pro�le for Test 2 appears to be smoother.

Figure 4.5: Test 2 results.
2During the tests presented in this section the dimension of the area of in�uence is calculated as

the minimum distance between obstacle's primitive center and the robot's primitive center, i.e. in
the case of two cylinders, the measure of the area of in�uence is considered as the minimum distance
between their corresponding axis segments.
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Figure 4.6: Minimum distance between coworker and robot.

Figure 4.7: End-e�ector's velocity.
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4.1.3 Test 3

In this test the coworker approaches the robot from the side along Y direction, Figure
4.8. At the beginning the coworker is 2.5 meters away from the end-e�ector and then
he/she starts walking toward the robot, with an average velocity of 0.2 m/sec in the
Y direction. Figure 4.9 shows that at the beginning the end-e�ector is stationary
while the coworker is walking towards the robot. By the time the safety distance
between the robot and the coworker, 0.7 meter, is reached the robot starts to react to
avoid the collision with the coworker. From the curve in Figure 4.9 we notice that the
minimum Y distance reached between the end-e�ector and the coworker is 0.52 meters.
This approach by the side is di�erent from the frontal approach in terms of robot's
reaction, in which collision avoidance relies mainly on motion along axis 1 of the robot.
Nevertheless, the results obtained are similar. Figure 4.10 shows the evolution of the
minimum distance between the robot and the obstacle, in which the minimum distance
reached is 0.5 meters, in line with previous tests.

Figure 4.8: Test 5 simulation scene.
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Figure 4.9: Test 3 results.

Figure 4.10: Test 3 minimum distance between robot and coworker.
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4.1.4 Test 4

While in the previous simulations the kinematics controller was used to test the system,
in Test 4 the force control strategy, described in 4.3.2, is applied. The simulation scene
of this test is identical to the scene of Test 1.

Figure 4.11 shows that the minimum value of the distance di�erence in the X direction
is 0.7m as opposed to 0.75m in Test 1. Figure 4.12 shows that the maximum reaction
velocity is 0.61 m/sec as opposed to 0.56 m/sec attained in Test 1.

Using the F controller resulted in a di�erent reaction motion when compared to
the reaction motion generated using the K controller. This is because the F controller
takes into consideration robot's dynamics for generating the motion. The presence of
the inverse of the inertia matrix causes the joints associated with the lowest articulated
inertia to have the highest rate, in other words, the F controller generates faster motions
to joints associated with lowest inertias. The result is a more natural way for motion
generation.

Figure 4.11: Test4 results.
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Figure 4.12: End-e�ector's velocity.
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4.1.5 Test 5

In test 5 the robot is manipulating an object from one conveyor to another. It is
required that the robot moves as close as possible to a predetermined nominal traject-
ory, while avoiding collision with human coworker that shares the same workspace. For
performing this test a state-�ow control logic was developed based on state machine
diagram in Figure 4.13. At any time the simulation progresses in one of seven di�erent
states which are:

1. In the �rst step the robot moves toward the home position.

2. Once the home position is reached, the robot moves along a prede�ned trajectory
towards the object.

3. Once the object is reached the robot picks the object.

4. Then the robot moves along a prede�ned trajectory towards the goal position.

5. Once reached, the robot places the object at the goal position.

6. The robot moves back to home position.

7. At any state, whenever the coworker is closer than some safety distance from
the robot, the state will transit to collision avoidance mode, and the collision-
avoidance controller is activated.

Figure (4.14) shows motion trajectories of the robot and the coworker. Figure (4.15)
shows snapshots of the simulation progression, the simulation was performed success-
fully, the robot avoided collisions with the coworker and the objectives of the method
were satis�ed.
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Figure 4.13: State machine for robotic cell control with collision avoidance capability.
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Figure 4.14: Motion trajectories.

Figure 4.15: Robotic cell simulation.
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4.1.6 Test 6

This test was performed to demonstrate the problem of GNRON. Figure 4.16 shows
the simulation scene. In such situation the robot was trapped in an oscillatory motion,
the direction of oscillations are shown by the double-pointed arrow in the �gure.

Figure 4.16: Goal non-reachable with obstacle nearby.

Figure 4.17: Test 6 velocity results.

From Figure 4.16, statistical data pertaining to the end-e�ector and the obstacle's
were collected. Figure 4.17 shows the X component of end-e�ector's velocity and the
X component of obstacle's velocity. The obstacle is stationary while the end-e�ector is
oscillating. The oscillatory phenomena of the end-e�ector is evident in the X coordinate
of the end-e�ector in Figure 4.18, while the obstacle is stationary as represented by
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Figure 4.18: Test 6 results.
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4.1.7 Test 7

Test 7 is performed to evaluate the performance of the scaling factor method as opposed
to assigning a potential �eld to the joint, for achieving JLA. Thus, three simulations
are performed. In the �rst and second simulations a potential �eld was added to each
joint. This potential �eld is activated when the joint is near its limit, causing it avoid
its limit. In the third simulation the scaling factor was utilized, as de�ned in (3.74).

For the three simulations, the scene proposed is illustrated in Figure 4.19. In the
beginning of the simulation the robot and the coworker are stationary as illustrated in
sub�gure (a). Then, the human coworker walks towards the end-e�ector from the front,
as a result the minimum distance between the robot and coworker decreases, until it
reaches some prede�ned safety distance, 0.7 meter for this simulation, at which the
robot starts to react, sub�gure (b). Then, the coworker continues its motion towards
the robot until it is about 25 cm from the robot, sub�gure (c). Our choice of placing
the coworker in such a close proximity to the manipulator is to force the third joint
to reach its minimum limit, so that we can test the performance of JLA algorithm.
In all three simulations the minimum limit chosen for the joint is 10 degrees. The
�rst and second simulations are totally identical but they di�er in the strength of the
potential �eld utilized. To assess the performance of the algorithms, the following data
are acquired:

1. Third joint angle, to measure the algorithm's performance in avoiding joints
limits.

2. X component of end-e�ector's velocity.

Figure 4.19: Scene overview.

4.1.7.1 Simulation 1

In this simulation a potential �eld is used to incorporate JLA. Figure 4.20 shows the
resulting angle variations of third joint as a function of time. In the �gure we see that
the third joint failed to avoid its limit because the strength of the potential �eld chosen
is not satisfactory.
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Figure 4.20: Third joint angle for simulation 1.

4.1.7.2 Simulation 2

To achieve limit avoidance of joint three, the strength of the potential �eld was in-
creased. Figure 4.21 shows the joint's angle as function of time. It can be seen that
after increasing the strength of the potential �eld the joint is able to avoid its limit.
Figure 4.22 shows the velocity of the end-e�ector where the jerky sections of the curve
are highlighted by the green frames.

Figure 4.21: Third joint angle for simulation 2.
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Figure 4.22: End-e�ector X component of velocity.

4.1.7.3 Simulation 3

In this simulation the joint limit avoidance strategy is changed. The scaling factor
method was utilized instead of the potential �eld. Figure 4.23 shows that the scaling
factor strategy was successful in achieving joint limits avoidance. Even better, the
minimum value reported for joint three was 12.4 degrees, an improved performance
over the previous simulation where the minimum value attained for joint three was
close to 10 degrees. By comparing the reaction curves, especially the parts of the
curves con�ned with the green frames with their associate from simulation 2, we notice
that the scaling factor strategy gives a smoother reaction.
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Figure 4.23: Third joint angle, scaling factor method.

Figure 4.24 shows the X-component of the velocity of the end-e�ector.From the areas
of the curve highlighted with green frames we notice that the reaction attained in the
scaling factor method is smoother than the reaction attained when the potential feild
strategy was utilized.
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Figure 4.24: End-e�ector X component of velocity.
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4.2 Discussion

From the previous simulations we see that in general the proposed collision avoidance
algorithm achieved its requirements while:

� Test 1 shows that the K controller with MVA �lter combined with the scaling
factor method for achieving JLA attains remarkable results. This controller was
tested with di�erent parameters and under di�erent con�gurations in Test 2, Test
3 and Test 5. The results were satisfactory.

� In Test 4 the force controller achieved smooth collision avoidance motion. Un-
like the Kinematics controller, the dynamics controller generated higher angular
velocities in the directions associated with lower articulated inertias and smaller
angular velocities for joints associated with higher articulated inertias. However,
due to time limitations we were unable to provide a full analysis of this controller.

� Scaling down the attraction vector magnitude when the obstacle is near the robot
assured better safety for the system.

� As demonstrated by Test 6 the scaling factor method demonstrated superior
performance for dealing with JLA, utilizing this method attains safer reactions,
because it assures zero velocity for joints approaching their limits in situations
where there are con�icts between avoiding collision and avoiding joint limits.

� The proposed system allows contact avoidance and provide a safety margin that
can be adjusted by changing the distance of the area of in�uence around the
obstacle.

� The proposed system can be easily integrated into a higher level control archi-
tecture, as demonstrated in Test 5, for assuring safe human-robot collaboration
even for situations where the robot is performing complex tasks.

� The system behaves well regardless of the direction of approach, front, side or
randomly.

� The system is computationally e�cient, it is easy to implement, and it can be ad-
apted easily to operate on di�erent types of robots using their speci�c parameters
(Denavit Hartenberg, links masses and inertias).

� The system su�ers from GNRON drawback as demonstrated in Test 7, solving
this problem will be left for future work.
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this study we proposed GDA, a novel algorithm for representing the dynamics of
serially linked robots, and for calculating its joint space inertia matrix, joint space
Coriolis matrix, joint space Centrifugal matrix, and the time derivative of joint space
inertia matrix. In-addition we presented GDAHJ an algorithm that achieves better
e�ciency over state-of-the-art when calculating JSIM for hyper-joint manipulators.
This increase in e�ciency is achieved through minimizing the number of operations
that has O(n2) computational complexity. In such case, the number of computations
associated with the quadratic terms are reduced to the minimum value possible, from
(16n2) in the case of CRBA to (5.5n2) for the proposed algorithm. In addition we
described and proved the frame injection principal. The proposed algorithms are im-
plemented in MATLAB®, six functions were realized for calculating the dynamics
matrices e�ciently. In addition comparison between the proposed algorithm against
other well established algorithms was made, the performance of the proposed algorithm
was discussed in operation count section of this study.

The computational e�ciency of the realized MATLAB® functions compares fa-
vourably with existing code. After comprehensive search on MATLAB® robotics tool-
boxes, according to our knowledge, the implemented GDA code, is the most e�cient
MATLAB® code available for calculating Centrifugal and Coriolis matrices numeric-
ally.

We perceive that GDA's way of representing robot dynamics in a mathematical
form resembling the equation of the inverse dynamics as intuitive, simple and easy to
implement. It's e�ciency is re�ected by the O(n2) algorithm deduced for calculating
the time derivative of joint space inertia matrix. By using this methodology other
parameters of robot dynamics can be calculated e�ciently in a like manner to what
had been presented in this study.

Also we presented a novel real-time collision avoidance algorithm based on the ar-
ti�cial potential �elds, i.e., using attraction and repulsion vectors. The control process
is based on two main principals: (1) generation of end-e�ector's motion close as pos-
sible to a prede�ned trajectory, and (2) generation of collision avoidance motion from
an estimated collision imminence measure. To estimate collision imminence, the min-
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imum distance between the robot and the moving obstacle is used. The geometry of
the robot and the coworker are approximated using primitive geometries, i.e. they are
modelled using cylinders and spheres. After modelling, a methodology for measuring
the distance between the robot and the obstacle is developed. A novel method for cal-
culating the minimum distance between cylinders is proposed. The proposed method
reformulates minimum distance calculation into an optimization problem constrained
by bounded value variables. For attaining a solution, a novel method utilizing QR
factorization and coordinate transformation is proposed. Based on this method an
e�cient formulation for collision detection between cylinders is proposed.

A repulsion vector is calculated based on the minimum distance between the ro-
bot and the obstacle and the attraction vector is calculated based on the error vec-
tor between the end-e�ector and required goal position. Those vectors are used by
the controller to control the robot. Two controllers with collision avoidance cap-
ability are presented. The kinematics controller (K controller) is a kinematics-level
controller which utilizes inverse-kinematics calculations. Two di�erent methods for
inverse-kinematics computation are utilized, the damped least squares and the Jac-
obean transpose. The second controller (F controller), is force based controller that
takes into consideration robots dynamics for generating the motion. The implementa-
tion was successful, though during early simulations three main issues were identi�ed, a
solution is proposed to solve those issues and a system with better response is achieved.
The vibrations problem appeared when the robot is in areas of reduced manipulability,
subjected to several forces. This problem was solved by utilizing moving average �lter.
Failure to avoid joint limits happened when the obstacle is in close proximity to the
robot, where the repulsion vector and the action due to joint limit are counteracting
each other and the concept of scaling factor was utilized to solve the problem. The
drawback of GNRON appeared when the obstacle is wedged between the robot and
the goal, due to time limitation this problem remains unresolved, and it is open for
future work.

The study is concluded with real-time simulations for testing the proposed al-
gorithms. The main computations are implemented in MATLAB®, while real-time
virtual-reality simulations are carried out in V-REP, the two programs are connec-
ted together through sockets. Several statistical data were attained from simulations.
Those data pertains to the robot's dynamical response and the distance between the
robot and the coworker.

Then the collision avoidance controller is embedded in a higher level hybrid auto-
mata control system that is developed to control a typical industrial robotic cell. The
industrial cell was simulated successfully, i.e. the robot was able to avoid collision with
the coworker while achieving the required objective.

In addition to the tests presented in this study, other tests were performed, where
the obstacle is moved in random directions and the response of the robot is observed.
The system gave good performance, and we concluded that the �nal system is ro-
bust and able to achieve collision avoidance for collaborative robotics. Based on this
con�dence, we envisage implementing the system on real robot.
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5.2 Future work

Future work will focus on implementing the collision avoidance method in this study
on a real robotic manipulator, the system will integrate Kinect sensor for detecting
obstacles and their position, this data will be provided to the proposed algorithm and
the output will be used to command the manipulator. In addition extra e�orts will be
dedicated for solving the problem of GNRON for achieving a robust system.

Also, the author would like to extend the collision avoidance method presented in
this study for mobile robotic manipulators applications. The �nal goal is to create an
advanced manipulation system, based on the idea of attraction and repulsion vectors,
in which a robotic manipulator mounted on a mobile platform is able to navigate
autonomously in a cluttered environment, avoid collisions with obstacles and reach the
designated goal. In this system the operator commands the robot to grasp an object,
the mobile platform navigates towards the object, and the mounted arm picks the
required object and deliver it back to the operator. The key for performing the control
for this system will be the concept of attraction and repulsion vectors presented in this
study.
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