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Abstract

Li+ transport, intracellular immobilisation and Li+/Mg2 + competition were studied in Li+-loaded bovine chromaffin cells. Li+ influx rate

constants, ki, obtained by atomic absorption (AA) spectrophotometry, in control (without and with ouabain) and depolarising (without and

with nitrendipine) conditions, showed that L-type voltage-sensitive Ca2 + channels have an important role in Li+ uptake under depolarising

conditions. The Li+ influx apparent rate constant, kiapp, determined under control conditions by 7Li NMR spectroscopy with the cells

immobilised and perfused, was much lower than the AA-determined value for the cells in suspension. Loading of cell suspensions with 15

mmol l� 1 LiCl led, within 90 min, to a AA-measured total intracellular Li+ concentration, [Li+]iT = 11.39F 0.56 mmol (l cells)� 1, very close

to the steady state value. The intracellular Li+ T1/T2 ratio of 7Li NMR relaxation times of the Li+-loaded cells reflected a high degree of Li+

immobilisation in bovine chromaffin cells, similar to neuroblastoma, but larger than for lymphoblastoma and erythrocyte cells. A 52%

increase in the intracellular free Mg2 + concentration, D[Mg2 +]f = 0.27F 0.05 mmol (l cells)� 1 was measured for chromaffin cells loaded

with the Mg2 +-specific fluorescent probe furaptra, after 90-min loading with 15 mmol l� 1 LiCl, using fluorescence spectroscopy, indicating

significant displacement of Mg2 + by Li+ from its intracellular binding sites. Comparison with other cell types showed that the extent of

intracellular Li+/Mg2 + competition at the same Li+ loading level depends on intracellular Li+ transport and immobilisation in a cell-specific

manner, being maximal for neuroblastoma cells.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction of them involved in signal transduction pathways, such as
In spite of the successful clinical use of some lithium

salts (lithium carbonate and lithium citrate) over more than

50 years as the drug of choice in the treatment of manic

depression, the molecular and cellular mechanisms under-

lying its biochemical action are still poorly understood.

These lithium salts have been shown to be mood stabilising

drugs, being effective in both manic and depressive states

[1,2]. Various interrelated hypotheses have been formulated

to clarify the pharmacological action of Li+. It has been

reported that this ion inhibits several cellular enzymes, most
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glycogen synthase kinase-3h [3–8], inositol monophospha-

tase [9–14] and adenylate cyclase [15–17]. To explain this

inhibitory effect, it has been proposed that Li+ competes

with Mg2 + (a very well-known protein cofactor) for Mg2 +

binding sites in several biomolecules [7,18–21], due to its

similar chemical properties (Li+ and Mg2 + ions have similar

ionic radii and ionic potentials). We and others have studied

Li+/Mg2 + competition extensively in Mg2 +-dependent bio-

molecules and in cellular systems using fluorescence spec-

troscopy with the Mg2 + indicator furaptra, as well as 7Li

and 31P nuclear magnetic resonance (NMR) spectroscopy

[22–26]. These studies demonstrated that Li+ competes with

Mg2 + for phosphate groups of small phosphorylated mole-

cules involved in second messenger systems, such as

adenosine tri- and diphosphate (ATP/ADP), guanosine tri-

and diphosphate (GTP/GDP) and inositol-1,4,5-triphosphate
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(IP3) [22,23,27], for guanine-nucleotide binding G proteins

[28] and for phosphate groups of erythrocyte membrane

phospholipids [29]. Moreover, Li+/Mg2 + competition also

occurs in Mg2 + intracellular binding sites in Li+-loaded

human erythrocytes [22,26] and human SH-SY5Y neuro-

blastoma cells [21,24]. The 7Li NMR spectroscopic tech-

nique also proved to be useful to investigate Li+ transport

[30] and intracellular binding [31].

Chromaffin cells are excitable endocrine cells, which are

good neuronal models [32] and whose neurotransmitter

release is enhanced by Li+ loading [33–35]. In the present

work, atomic absorption (AA) spectrophotometry and 7Li

NMR spectroscopy were used to examine Li+ uptake and

intracellular Li+ binding in bovine chromaffin cells, where-

as fluorescence spectroscopy, using the Mg2 +-specific

fluorescent probe furaptra allowed us to quantify intracel-

lular competition between Li+ and Mg2 + ions. The NMR

and fluorescence results from this work were compared

with preliminary data already obtained with chromaffin

cells under different experimental conditions [25] and with

other cell types [24,30,31,36]. The present NMR studies

were carried out with the cells immobilised and under

continuous perfusion, while the fluorescence studies were

performed while frequently replacing the incubation medi-

um. These conditions constitute a major improvement

relative to previous work [25], since they ensure the

viability of the cells for a longer period of time and

minimise artefacts resulting from the leakage of the fluo-

rescent probe from the cell. These studies, besides inves-

tigating the membrane transport pathways involved in Li+

uptake by chromaffin cells, under resting and excitable

conditions, also aim at establishing the generality of the

ionic competition model described above, contributing to

the understanding of the pharmacological action of Li+ at

the molecular level.
2. Materials and methods

2.1. Materials

Furaptra (2-[2-(5-carboxy)oxazole]-5-hydroxy-6-amino-

benzofuran-N,N,O-triacetic acid) (salt form), furaptra-AM

(cell permeant acetoxymethyl (AM) ester form) and Plu-

ronicR F-127 were obtained fromMolecular Probes (Leiden,

The Netherlands). Collagenase (type B), Percoll and fetal

calf serum (FCS) were purchased, respectively, from Boeh-

ringer Mannheim (Mannheim, Germany), Pharmacia Bio-

tech AB (Uppsala, Sweden) and Seromed Biochrom

(Berlin, Germany). The shift reagent Na3H2Tm(DOTP)

3NaCl, Dulbecco’s modified Eagle’s medium/Ham’s nutri-

ent mixture F-12 (DMEM/F-12, 1:1 mixture), UrografinR
and tetrodotoxin (TTX) were obtained from Macrocyclics

(Richardson, Texas, USA), GibcoBRL Life Technologies

(Gaithersburg, MD, USA), Schering AG (Berlin, Germany)

and Tocris (Ballwin, MO, USA), respectively. KCl, CaCl2
and MgCl2 were purchased from Merck (Darmstadt, Ger-

many). Bovine serum albumin (BSA), trypan blue, neutral

red, antibiotic-antimycotic, N-2-hydroxyethylpiperazine-NV-
2-ethanesulfonic acid (HEPES), ethylene glycol-bis(2-ami-

noethylether)-N,N,NV,NV-tetraacetic acid (EGTA), poly-L-ly-

sine, NaHCO3, LiCl, NaCl, glucose, LaCl3, choline-Cl,

ouabain, nitrendipine, and low-gelling temperature agarose

were purchased from Sigma Company (St. Louis, MO,

USA).

2.2. Isolation and culture of bovine chromaffin cells

Chromaffin cells were isolated from bovine adrenal

medulla by collagenase B digestion and purified on a

continuous Percoll density gradient, as described before

[37]. Cell viability was checked for each preparation by the

Trypan Blue exclusion method [38]. The purity of cell

preparations was analysed by the Neutral Red dye test [39],

which showed that 65–80% of the cells in the preparation

were chromaffin cells. The cells were cultured in a 1:1

mixture DMEM/F-12 (1.56%) medium with 15 mmol l� 1

HEPES, 26 mmol l� 1 NaHCO3, and supplemented with

5% of heat-inactivated FCS, 100 units ml� 1 of penicillin,

100 Ag ml� 1 of streptomycin and 0.25 Ag ml� 1 of

amphotericin B, at 37 jC, in a humidified CO2 (5%) and

air (95%) atmosphere.

For the AA and NMR experiments, the cells were

cultured up to a density of 1�106 cells ml� 1 in 100 mm

Petri dishes, and maintained in culture for 3 days before the

assays. For the fluorescence experiments, the cell prepara-

tion was further purified using an Urografin gradient [40],

and the cells were plated at a density of 0.8� 106 cells

cm� 2 on square (1 cm2) coverslips previously coated with

poly-L-lysine. The cells were maintained in culture for 2

days before the experiments.

2.3. Characterisation of Li+ influx pathways in bovine

chromaffin cells by AA spectrophotometry

Several aliquots of 3� 106 bovine chromaffin cells,

maintained in suspension, were incubated at 37 jC in a

culture medium containing 15 mmol l� 1 LiCl. The experi-

ments were performed in the absence (control experiments)

and in the continuous presence of ouabain, an inhibitor of

the (Na+, K+)-ATPase (50 Amol l� 1, 5 min of preincubation

in a LiCl-free culture medium). Other influx experiments

were performed under continuous depolarising conditions

(in culture medium containing 45 mmol l� 1 KCl and 15

mmol l� 1 LiCl) in the absence (control-KCl) and in the

presence of nitrendipine, a specific blocker of the L-type

voltage-sensitive Ca2 + channels (10 Amol l� 1; 5 min of

preincubation in a LiCl-free culture medium) during the

time course of the experiment. The cells were collected at

different time points (1, 10, 20, 30, 45, 60, 90, and 150

min) and the extracellular Li+ was removed by washing the

cells with an ice-cold choline Krebs medium (in mmol l� 1:
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choline-Cl 140, KCl 5, CaCl2 2, MgCl2 1, glucose 10,

HEPES 20, pH 7.35). The use of this medium prevents Li+

efflux as described before [30]. The cells were then lysed in

500 Al of deionised water, and dissolved in 500 Al of

perchloric acid (0.15 mol l� 1 final concentration). The

lysates were then analysed by AA spectrophotometry using

a Perkin Elmer AAnalyst 100 apparatus equipped with a

flame source. For each experiment, the cytocrits (percent-

age of cell volume in the sample) were measured using an

International microcapillar centrifuge, Model MB (IEC),

and estimated to be approximately 2–3%. The dilution of

the analysed solutions was taken into account in the

determination of the total intracellular Li+ concentrations,

[Li+]iT.

Li+ concentrations were obtained from the AA spectro-

photometer analysis using a calibration curve (Li absorption

vs. Li+ concentration). This calibration curve was obtained

by registering the Li absorption intensity of three standard

solutions, with three different LiCl concentrations: 0.75, 1.5

and 3 mg l� 1.

The kinetics of Li+ influx in these cells was analysed

using the equation:

ð½Liþ�iTÞt ¼ ð½Liþ�iTÞl½1� expð�kitÞ� ð1Þ

where ki is the rate constant for Li+ influx, ([Li+]iT)t and

([Li+]iT)l are the total intracellular Li+ concentrations at the

different time points (t) and when a steady state has been

reached, respectively. The kinetic parameters were obtained

by nonlinear least squares fitting of the experimental data to

a monoexponential function using the Origink 5.0 program

(Microcalk Software, Inc, USA). A Student’s unpaired

two-tailed t-test was used to ascertain which differences

between rate constants were significant. A value of P < 0.05

was considered significant.

2.4. Li+ influx studies in bovine chromaffin cells by 7Li

NMR spectroscopy

Bovine chromaffin cells were collected, after 3 days in

culture, and centrifuged at 115� g during 8 min at 25 jC
(Sigma 3K10). The pellet was resuspended in culture medium

up to a volume of 500 Al. The cells were immobilised in

agarose gel threads, placed in a 10 mm NMR tube and

perfused with oxygenated culture medium (5% CO2/95%

O2), at 37 jC, supplemented with 7 mmol l� 1 of the shift

reagent [Tm(HDOTP)]4� (thulium(III)-1,4,7,10-tetrazacy-

clododecane-N,NV,NU,NUV-tetramethylenephosphonate) [25,

30] and later with 15 mmol l� 1 LiCl, pH 7.35. The cell

immobilisation was performed by mixing the 500 Al of cell
suspension (50–75� 106 cells) with 500 Al of Krebs medium

(in mmol l� 1: NaCl 140, KCl 5, CaCl2 2, MgCl2 1, glucose

10, HEPES 20, pH 7.35) containing 2% of low-gelling

temperature agarose, in a 1:1 proportion (final agarose

concentration of 1%), at 37 jC. The threads were formed

by passing this cell mixture through a Teflon tubing with 0.5-
mm internal diameter, partially submersed in ice. Once it had

passed through the iced portion of the tubing, the mixture

solidified and threads with 0.5-mm diameter were formed

into the 10 mm NMR tube. The immobilised cells were

continuously perfused at approximately 1 ml min� 1 with

culture medium containing 7 mmol l� 1 [Tm(HDOTP)]4�,

pH 7.35. LiCl was added to the perfusate medium to have a

final concentration of 15 mmol l� 1 and the influx experiment

was considered to start (time zero) when the amount of

extracellular 7Li+ in the NMR tube became constant as

monitored by consecutive acquisitions of 7Li NMR spectra.

The 7Li NMR spectra were acquired at 194.3 MHz and

37F 0.1 jC, during 3 h. For these experiments, the

following parameters were used: 64 transients (total accu-

mulation time of 11 min for each spectrum), spectral width

of 5600 Hz, pulse width of 15 As, interpulse delay of 10 s

and acquisition time of 0.360 s. The signal-to-noise ratio

was enhanced by exponential multiplication with a line

broadening of 30 Hz.

The kinetics of Li+ influx in these cells was analysed

using the equation:

½ðAiÞt=ðAi þ AeÞt� ¼ ½ðAiÞl=ðAi þ AeÞl�½1� expð�kiapp tÞ�

ð2Þ

where kiapp is the apparent rate constant for Li
+ influx, (Ai)t,

(Ae)t and (Ai)l, (Ae)l are the areas of the intracellular and

extracellular 7Li+ NMR signals at the different times (t) and

when the intracellular Li+ concentration has reached a

steady state, respectively. The total area of intra- and

extracellular 7Li+ NMR signals, (Ai +Ae), is constant with

time. The kiapp values were obtained by nonlinear least

squares fitting of the experimental data to a monoexponen-

tial function using the Origink 5.0 program (Microcalk
Software).

2.5. Li+ immobilisation within bovine chromaffin cells

The study of the degree of Li+ immobilisation within

bovine chromaffin cells was carried out by determination of

the T1 (longitudinal or spin-lattice) and T2 (transversal or

spin–spin) relaxation times of the intracellular 7Li+ NMR

resonance when the steady state intracellular Li+ concen-

tration was reached during Li+-loading incubations. Relax-

ation times, T1 and T2, were measured using the inversion-

recovery and Carr–Purcell–Meiboom–Gill (CPMG) pulse

sequences, respectively, after Li+ influx experiments mon-

itored by 7Li NMR spectroscopy. The intracellular 7Li+

NMR T1/T2 ratio was used as a qualitative measure of Li+

immobilisation inside the cells [31].

2.6. Cell viability in agarose-embedded bovine chromaffin

cells

To monitor cell viability during the time course of 7Li

NMR studies, proton decoupled 31P NMR spectra were
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acquired at 202.3 MHz and 37F 0.1 jC, before Li+ influx

experiments and after T1 and T2 relaxation times determi-

nations. The acquisition parameters were as follows: 1200

transients (total accumulation time of 30 min), spectral

width of 14998 Hz, a 60j pulse (pulse width of 18 As),
interpulse delay of 0.55 s and acquisition time of 0.996 s.

The signal-to-noise ratio was enhanced by exponential

multiplication with a line broadening of 30 Hz. H3PO4

85% was used as an external reference (0 ppm). All the

NMR experiments were performed on a Varian Unity-500

NMR spectrometer equipped with a multinuclear 10-mm

broadband probe and a temperature control unit.

2.7. Li+/Mg2+ competition studies by fluorescence

spectroscopy

The fluorescence experiments were performed on a

SPEX FluoroMax Fluorimeter, at 30 jC, using furaptra, a

Mg2 +-specific dye at physiological pH value and Ca2 +

levels [41,42]. The binding of this indicator to Mg2 + results

in a blue shift in the excitation spectrum from 370 to 335 nm

with increasing amounts of Mg2 +. The chemical properties

of this probe have already been described in the literature

[43].

Bovine chromaffin cells adherent to 1 cm2 square poly-L-

lysine coated coverslips (0.8� 106 cells cm� 2) were

washed with Krebs medium containing 1% of BSA and

loaded for 45 min, in an humidified CO2 (5%) and air (95%)

atmosphere, at 37 jC, in this medium also containing 5 AM
of the cell-permeant acetoxymethyl ester of furaptra (furap-

tra-AM) and 0.1% PluronicR F-127, previously sonicated

for 3 min. After loading the cells with the fluorescent probe,

they were incubated for an additional period of 20 min in

Krebs medium containing 1% BSA and then washed with a

Krebs medium containing 0.2% BSA.

The coverslips with the cells (previously washed with

Krebs medium) were then attached to plastic holders and

placed in a fluorescence cuvette containing 1.5 ml of Krebs

medium. The emission wavelength was fixed to 500 nm,

and the excitation wavelength changed between 300 and

400 nm (5 nm emission and excitation slits). In the Li+

experiment, a modified Krebs medium containing 15 mmol

l� 1 LiCl was used (NaCl was partially replaced in order to

maintain the osmolarity of the medium). During all the

experiments (in the absence—control—and in the presence

of Li+), the medium was changed every 15 min, along 135

min (before changing the medium to the Li+-modified

Krebs medium, the fluorescence intensity of the probe

was monitored for 45 min; after that, the fluorescence

was monitored during the time course of the Li+ experiment

for an additional period of 90 min), to remove any

fluorescent probe that might have been released from the

cells to the incubation medium. This procedure prevents the

binding of the probe to the extracellular Mg2 +, which

would contribute to an overestimated value of the intracel-

lular free Mg2 + concentration, [Mg2 +]f, and also ensures a
higher cellular viability. The fluorescence intensity ratio at

335 and 370 nm, R=(F335/F370), was measured every 15

min, immediately after replacing the medium, and the

[Mg2 +]f was determined by direct application of Eq. (3),

which corrects for Li+ binding to furaptra [23]:

½Mg2þ�f ¼ KdSminðR� RminÞ=SmaxðRmax � RÞ
þ KdSmaxV ðR� RmaxV Þ½Liþ�if=KdVSmaxðRmax � RÞ

ð3Þ

where Rmin, Rmax and RmaxV are the ratios of the fluores-

cence intensities at 335 and 370 nm observed for the

biological sample in the absence of metal ions and in the

presence of saturating amounts of Mg2 + or Li+, respective-

ly; Smin, Smax and SmaxV are the fluorescence intensities at

370 nm, respectively, in the absence of metal ions and in

the presence of saturating amounts of Mg2 + or Li+; Kd and

KdV are the dissociation constants of the furaptra-Mg2 + and

furaptra-Li+ complexes, respectively. The Kd and KdVvalues
were previously calculated to be 1.5 mmol l� 1 [43] and

237 mmol l� 1 at 37 jC [23], respectively. In this equation,

the intracellular free Li+ concentration ([Li+]if) should be

used, rather than the total intracellular Li+ concentration

([Li+]iT) [24], as it corresponds to the Li+ ions capable of

competing with Mg2 + for furaptra [23].

The Rmin and Smin parameters were determined in a

Mg2 +-free and Ca2 +-free solution (in mmol l� 1: KCl 120,

NaCl 20, HEPES 10, EGTA 1, pH 7.35) containing 2 Amol

l� 1 of furaptra (salt form). To calculate SmaxV, 3.5 mol l� 1

LiCl was added to the previous solution also in the

presence of the same concentration of the dye. The Rmax

and Smax parameters were determined by adding the salt

form of furaptra (2 Amol l� 1) to a Mg2 +-saturated solution

(in mmol l� 1: MgCl2 70, KCl 15, NaCl 20, HEPES 10, pH

7.35).
3. Results

3.1. Li+ influx experiments by atomic absorption

spectrophotometry

AA spectrophotometry was used to investigate the mem-

brane transport pathways involved in the uptake of Li+ by

chromaffin cells during loading experiments. Fig. 1 com-

pares the dependence of the total intracellular Li+ concen-

tration on incubation time in the control situation and in the

presence of the (Na+, K+)-ATPase inhibitor ouabain. The

kinetics of Li+ influx under depolarising conditions (45

mmol l� 1 KCl) in the absence and in the presence of

nitrendipine, a specific blocker of the L-type voltage-sensi-

tive Ca2 + channels, is also shown. All these experiments

were carried out at constant cell number (cytocrit of 2–3%)

and total Li+ concentration in the loading medium (15 mmol

l� 1). In all cases, the intracellular Li+ concentration



Fig. 1. Plots of [Li+]i (determined by AA spectrophotometry) vs. loading

time during Li+ influx experiments on bovine chromaffin cells in

suspension subject to loading with 15 mmol l� 1 LiCl. Data are for control

(.), in the presence of ouabain (n), in the presence of KCl (o), and in the

presence of KCl and nitrendipine (5). The lines correspond to the best

exponential fits of the data to Eq. (1) (see Materials and methods).
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increases up to 60–90 min and then reaches a steady state,

except for the experiment done under depolarising condi-

tions without nitrendipine, where the steady state is reached

earlier, at 30 min.

Li+ influx rate constant (ki) values, obtained from the

curves presented in Fig. 1 using Eq. (1), are summarised in

Table 1. The ki value in the presence of 50 Amol l� 1 ouabain

(0.036F 0.005 min� 1, n = 7) does not differ significantly

(P= 0.69) from the control ki value (0.040F 0.006 min� 1,

n = 14). However, a significant increase in ki value is

observed (0.110F 0.038 min� 1, n = 5, P= 0.01) when the

cells are depolarised with 45 mmol l� 1 KCl, an effect that is

completely suppressed in the presence of 10 Amol l� 1

nitrendipine (0.038F 0.007 min� 1, n = 8, P= 0.04, Fig. 1

and Table 1).

The steady state values of intracellular Li+ concentration,

[Li+]iT, obtained by AA spectrophotometry, for bovine
Table 1

Li+ influx rate constantsa,b and steady state intracellular Li+ concentrationsc

for bovine chromaffin cells in the absence (control) and in the presence of

inhibitors, obtained by AA and by NMR

Experimental conditions ki (min� 1) [Li+]iT
c

Suspensions: control (AA) 0.040F 0.006 (n= 14) 11.39F 0.56

+ 50 Amol l� 1 ouabain (AA) 0.036F 0.005 (n= 14) 8.38F 0.38

+ 45 mmol l� 1 KCl (AA) 0.110F 0.038 (n= 5) 4.16F 0.27

45 mmol l� 1 KCl + 10 Amol l� 1

nitrendipine (AA)

0.038F 0.007 (n= 8) 4.14F 0.28

Perfused: control (NMR) 0.012F 0.003 (n= 4)d – e

a The values (at 37 jC) are averageF standard error of the mean (SE)

for the number (n) of trials indicated in parenthesis (refer in the text for P

values).
b The starting Li+ concentration in the medium was 15 mmol l� 1.
c In mmol (l cells)� 1.
d Apparent influx rate constant, kiapp.
e Could not be calculated accurately.
chromaffin cells, in the absence (control) and in the pres-

ence of inhibitors are also shown in Table 1. Under the

control situation, the [Li+]iT was determined to be

11.39F 0.56 mmol (l cells)� 1 (n = 14), significantly higher

than the values obtained in the presence of ouabain

([Li+]iT = 8.38F 0.38 mmol (l cells)� 1, n = 7, P= 0.00)

and under direct depolarisation by 45 mmol l� 1 KCl

([Li+]iT = 4.16F 0.27 mmol (l cells)� 1, n = 5, P= 0.00)

(Fig. 1 and Table 1). The [Li+]iT value observed under

direct depolarising conditions (45 mmol l� 1 KCl) in the

presence of nitrendipine is not significantly different from

the value in its absence ([Li+]iT = 4.14F 0.28 mmol (l

cells)� 1, n= 8, P= 0.96, Fig. 1 and Table 1).

3.2. Li+ influx and intracellular degree of immobilisation by
7Li NMR

7Li NMR spectroscopy with the shift reagent

Tm(HDOTP)4� was used to follow Li+ cell uptake and

study the degree of immobilisation of this ion inside the

bovine chromaffin cells [25,30,31]. Several 7Li NMR influx

experiments were carried out using a number of cells in the

range 50–75� 106 immobilised in agarose gel threads and

perfused with culture medium supplemented with 15 mmol

l� 1 LiCl and 7 mmol l� 1 Tm(HDOTP)4� [25]. Fig. 2

represents the average of the results of all the influx experi-

ments (n = 4), showing a graphical representation of the time

dependence of the percentage of intracellular 7Li resonance

area, Ai, relative to the total area of intra- and extracellular
7Li NMR resonances, (Ai +Ae). Fitting this curve with Eq.

(2) yields an apparent ki value, kiapp, because for the cells

immobilised in agarose gel threads the influx rate constant

has a contribution from the diffusion process of Li+ across
Fig. 2. Plot of the area of the intracellular 7Li+ NMR signal normalized to

the total area of intra- and extracellular signals, [(Ai)/(Ai +Ae)], as a function

of time during loading of agarose gel-embedded bovine chromaffin cells

(50–75� 106 cells) with 15 mmol l� 1 LiCl. The cells were perfused with

the experimental medium at approximately 1 ml min� 1. The NMR

acquisition and processing parameters used are described in Materials and

methods. The experimental data was fitted using Eq. (2) (see Materials and

methods). The line corresponds to the best exponential fit of the data.



Table 2
7Li NMR relaxation time valuesa and T1/T2 ratios for intracellular Li+ in

perfused chromaffin cells and comparison with other studies on various

types of cells

Sample [Li+]

(mM)b
T1 (s) T2 (s) T1/T2

Bovine chromaffin cells

perfused (n= 4)c
11.4 5.4F 1.3 0.05F 0.006 106F 28

Bovine chromaffin cells

suspensions (n= 5)d
1.7 6.1F 0.2 0.02F 0.002 305F 32

Neuroblastoma cells

(n= 3)e
2.9 5.1F 0.8 0.05F 0.02 102f

Lymphoblastoma cells

(n= 3)g
3.1 2.6F 0.4 0.06F 0.01 43F 4

Human RBCs (n= 3)h 3.5 6.5F 0.2 0.46F 0.01 14f

Viscosity adjusted

LiCl solutionh,i
4.0 3.9F 0.4 3.6F 0.6 1.1F 0.2

a Each T1 and T2 value is an averageF standard error of the mean (SE)

for the number (n) of trials indicated in parenthesis.
b For the cell samples, this is the steady state intracellular Li+

concentration of Li+-loaded cells, [Li+]i, expressed as mmol (l cells)� 1,

with errors less than 10%.
c This work.
d Data from Ref. [25].
e Data from Ref. [30].
f Errors are less than 10%.
g Data from Ref. [36].
h Data from Ref. [31].
i Sample viscosity was adjusted to 5 centipoise (cP) with glycerol.
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the gel before reaching the cell membrane [44]. The average

value obtained for kiapp is 0.012F 0.003 min� 1.

Three hours after the beginning of the 7Li+ influx NMR

experiments, when the steady state intracellular Li+ concen-

tration was reached (Fig. 2), the Li+ degree of immobilisa-

tion inside the chromaffin cells was investigated using 7Li

NMR relaxation measurements by determining intracellular
7Li+ T1 and T2 values and the respective T1/T2 ratio, which
Fig. 3. 1H-decoupled 31P NMR spectrum of Li+-loaded agarose gel-embedded bo

Materials and methods for NMR acquisition and processing parameters. PME: pho

Pa-, Ph- and Pg-ATPcyt: a, h and g phosphate groups, respectively, of cytosolic A

respectively.
is a sensitive measure of Li+ immobilisation [25,30,31,36].

Table 2 compares the results obtained in this work with

those from previous studies in other types of cells

[24,25,30,31,36].

3.3. 31P NMR spectra of agarose-embedded bovine

chromaffin cells

Cell viability of the agarose-embedded bovine chromaf-

fin cells was monitored, in the experimental conditions of

the perfusion experiments, by obtaining 31P NMR spectra

during the time course of the 7Li NMR experiments. Fig. 3

shows a proton-decoupled 31P NMR spectrum obtained

after a sequence of Li+ influx and intracellular 7Li T1 and

T2 relaxation measurements (a total of 7 h 30 min of

perfusion). The assignments of the 31P spectral resonances

of phosphorylated cell metabolites, such as ATP, phospho-

monoesters (PME), sugar phosphates (sugar-P) and inor-

ganic phosphate (Pi), were taken from data previously

published on immobilised and perfused bovine chromaffin

cells [45]. This spectrum shows the compartmentation of

some of these metabolites, namely of ATP, in the cytosol

and inside the granules. The 31P NMR signal of cytosolic

Pa-ATP is not observable, as it is part of the composite peak

at � 10.8 ppm with the resonance from intragranular Pa-

ATP, as well as from the vesicular Pa-ADP and the bisphos-

phate moiety of NAD+ and NADH [45].

3.4. Li+/Mg2+ competition studies by fluorescence

spectroscopy

Li+/Mg2 + competition studies in bovine chromaffin cells

were carried out by fluorescence spectroscopy using the

Mg2 + fluorescent probe furaptra. According to established
 

 

 

vine chromaffin cells (50–75� 106 cells), after 7 h 30 min perfusion. See

sphomonoesters; Sugar-P: sugars phosphate groups; Pi: inorganic phosphate;

TP; Pa-, Ph- and Pg-ATPgran: a, h and g phosphate groups of granular ATP,



Fig. 4. Time dependence of fluorescence intensity ratio R=F335/F370 in

bovine chromaffin cells previously loaded with the Mg2 + fluorescent probe

furaptra, under control Li+-free conditions (q) and when the cells were

incubated for 90 min with 15 mmol l-1 LiCl (x).
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data [23–25], an increase in the ratio of fluorescence

intensities at 335 nm and 370 nm, R =F335/F370, during

Li+ cell loading is indicative of Mg2 + binding to furaptra

(salt form) inside the cells, which is a consequence of the

displacement of Mg2 + by Li+ from its binding sites. The R

values are converted into intracellular free Mg2 + concen-

tration, [Mg2 +]f, using Eq. (3). The Li+/Mg2 + competition

depends on the type of cells and on the intracellular free Li+

concentration, which, in turn, is dependent on the extracel-

lular Li+ concentration (data not shown). Fig. 4 shows a

graphical representation of the time dependence of the R

values for a control situation (in the absence of Li+) and for

a 90 min Li+-loading experiment using a total Li+ concen-

tration in the medium of 15 mmol l� 1. In the former

experiment, the basal R value, which corresponds to

[Mg2 +]f = 0.54F 0.01 mmol (l cells)� 1 (n = 12) ([Li+]if = 0),

was maintained over time for 135 min. In the latter exper-

iment, while at the time zero of Li+ loading [Mg2 +]f was not

significantly different from the previous one ([Mg2 +]f =

0.52F 0.02 mmol (l cells)� 1 (n = 6), P= 0.21), [Mg2 +]f
increased very significantly (by 52%) during the 90 min

of the Li+ loading process to a value of 0.79F 0.05 mmol

(l cells)� 1 (see Discussion).
4. Discussion

Li+ accumulates inside the cells via different mechanisms,

such as passive diffusion, voltage-dependent Na+ channels

and by replacing Na+ in counter-transport mechanisms,

while it is not extruded via the (Na+, K+)-ATPase [30, 46].

Initially, only influx occurs, but as intracellular Li+ builds up,

Li+ efflux also takes place until a steady state intracellular

Li+ concentration, determined by the membrane potential, is

reached. In the present study of the Li+ uptake by chromaffin

cells in suspension, the ki value for the control (0.040F
0.006 min� 1, n = 14) obtained by AA spectrophotometry is
similar to the value reported for bovine chromaffin cells in

suspension (ki = 0.040F 0.003 min� 1, n = 4) obtained by
7Li NMR [25]. However, as expected from the slow Li+

diffusion across the gel before reaching the cells, these two

values are significantly higher than the one obtained by 7Li

NMR for chromaffin cells immobilised in agarose gel

threads (kiapp = 0.012F 0.003 min� 1, n = 4; P= 0.02 and

P= 0.00 when compared to the ki value obtained for

chromaffin cells in suspension using both AA spectropho-

tometry and 7Li NMR spectroscopy [25], respectively).

The kinetics of Li+ influx, as shown by AA spectropho-

tometry, is not affected in the presence of ouabain, which is

in agreement with the noninvolvement of (Na+, K+)-ATPase

in Li+ uptake by chromaffin cells, under resting conditions.

However, when the cells are depolarised with 45 mmol l� 1

KCl, a significant increase in ki value is observed, an effect

that is completely suppressed in the presence of 10 Amol l� 1

nitrendipine. This is a clear indication that, under increased

cellular excitability conditions, a new contribution to Li+

influx appears, which results from activation of L-type

voltage-sensitive Ca2 + channels. Cell depolarisation leads

to a massive Ca2 + entry and to a large increase of intracel-

lular Ca2 + concentration, which increases the activity of the

Na+/Ca2 + exchanger, known to be a high-capacity, low-

affinity mechanism of Ca2 + efflux in chromaffin cells

[47,48]. It is well known that Li+ can replace Na+ in the

Ca2 + influx via the Na+/Ca2 + exchanger pathway in Li+-

loaded chromaffin cells [33,35] and in rat skeletal muscle

cells [49], where Ca2 + influx is counterbalanced by Li+

efflux. In the present case of Li+ loading of the chromaffin

cells, we propose that the Na+/Ca2 + exchanger uses the

external Na+ and Li+ to remove intracellular Ca2 +. Blocking

of the L-type voltage-sensitive Ca2 + channels by nitrendi-

pine prevents the Ca2 + entry through these channels when

cell depolarisation occurs and therefore depresses the activ-

ity of the Na+/Ca2 + exchanger, suppressing this new Li+

entry pathway.

Li+ transport pathways have been shown to be highly

cell-type specific [30,36,46,50]. (Na+, K+)-ATPase provides

a major Li+ influx pathway in lymphoblastoma cells [36],

but it is not active in red blood cells (RBCs) [46] and in

chromaffin cells, as shown in this work. The 4,4V-diisothio-
cyna-2,2V-disulfonic stilbene (DIDS)-sensitive anion ex-

change pathway is a major contributor to Li+ influx in

RBCs [46], but not in neuroblastoma or lymphoblastoma

cells [30,36]. In human neuroblastoma SH-SY5Y cells and

other excitable cells, it has been shown that voltage-

sensitive Na+ channels contribute to Li+ influx [30,46],

but not in lymphoblastoma cells [36,51]. In bovine chro-

maffin cells, besides the known Li+ influx pathway using

voltage-sensitive Na+ channels [33,52], we propose here a

Ca2 +-dependent Li+ influx pathway in depolarising con-

ditions, where Li+ replaces Na+ in the Na+/Ca2 + counter-

transport.

In the absence of active transport pathways for Li+

influx in chromaffin cells, the steady state values of
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intracellular Li+ concentration obtained, [Li]iT, which re-

flect the capacity of the cells to accumulate Li+, are

controlled by the plasma membrane potential, which has

a resting value of � 55 mV [53]. When depolarisation

occurs, the membrane potential becomes less negative, and

the total amount of positively charged ions (such as Li+)

that can be accumulated by the cells is lowered, when

compared to the control situation, due to charge effects (see

Fig. 1 and Table 1). This dependence is demonstrated by

the observation that the amount of Li+ accumulated by the

cells is significantly lowered when they are directly depo-

larised by 45 mmol l� 1 KCl. The [Li+]iT values observed

under direct depolarising conditions in the presence and in

the absence of nitrendipine are not significantly different,

as expected, since in these conditions the membrane

potential is kept constant by the high extracellular K+

concentrations, even if nitrendipine affects the Li+ uptake

kinetics. The observation that ouabain, which has no effect

on the kinetics of Li+ uptake, lowers the steady state [Li+]iT
also shows its depolarising effect on these cells [54].

The present results also show that, under the same cell

loading conditions (15 mmol l� 1 LiCl), the steady state

[Li+]iT value reached for the chromaffin cells in resting,

nondepolarised control conditions is much higher than that

reported for veratridine nonstimulated human neuroblasto-

ma SH-SY5Y cells (2.9 mmol (l cells)� 1 [30], despite

having similar resting membrane potentials, � 55 mV for

chromaffin cells [53] and � 53 mV for neuroblastoma SH-

SY5Y cells [55]. Lymphoblastoma, neuroblastoma and

RBCs cells have been found to reach [Li+]iT values in the

range of 14.5, 11.5 and 6.0 mmol (l cells)� 1, respectively,

after 60 min loading with 50 mmol l� 1 LiCl [36]. In this

case, the relative accumulation of Li+ by the cells partially

follows the trend of their membrane potentials, which are

more negative for the former two types of cells (range of

� 50 to � 90 mV) [51,55] than for RBCs (� 10 mV) [46].

Thus, variations in Li+ transport pathways cause further Li+

accumulation differences in the various cell types studied.

While it is easy to follow the kinetics of Li+ uptake by

the perfused chromaffin cells through the time dependence

of the area (Ai) of the intracellular
7Li NMR resonance (Fig.

2), intracellular Li+ concentrations, [Li+]i, could not be

calculated from this area because the cell volume cannot

be determined by the 7Li NMR method [30]. The fitting

procedure of the data of Fig. 2 using Eq. (2) gave values

of intracellular-to-total signal area ratios [Ai/(Ai +Ae)] of

(5.91F 0.96)� 10� 2 (n = 4) at 90 min and of (8.89F
1.09)� 10� 2 (n = 4) at steady state. A rough estimate of

the cell volume was made, based on the average cell

diameter [56] and the average number of cells (65.7� 106,

n = 4) used in the samples. Assuming that the cells are

uniformly dispersed in the gel, this cell volume estimate

was used together with an assumed total sample volume of 1

ml, a total Li+ concentration of 15 mmol l� 1, and the

experimental [Ai/(Ai +Ae)] ratios to obtain rough estimates

of the intracellular Li+ concentrations at 90 min and at
steady state. These estimates are 20–40% lower than the

corresponding intracellular Li+ concentrations determined

by AA spectrophotometry, [Li+]iT. One possible reason for

this discrepancy between estimates of intracellular Li+

concentrations measured by the two techniques is that while

the AA-derived values correspond to the total intracellular

concentrations, including granular and cytosolic, free and

bound Li+, the weakly quadrupolar 7Li+ nuclei may be

partially NMR invisible when bound in the highly viscous

granular compartment.

It must be pointed out that the (AA- and NMR-derived)

intracellular Li+ concentrations expressed per liter of cells

are not directly comparable with concentrations expressed

per liter of water (e.g., extracellular concentrations). The

later ones are considerably higher because the ratio of

volume of intracellular water accessible to Li+ ions to cell

volume is a < 1, owing to the presence of membranes,

organelles and cytosolic proteins. For example, if granular

Li+ is not NMR observable (the granular compartment

accounts for about 10% of the cellular volume), as the

cytosolic volume is about 50% of the extragranular cell

volume [57], an a = 0.45 value would give [Li+]i mmol l� 1

values more than twice the mmol (l cells)� 1 values.

The T1/T2 ratio is a sensitive measure of the rotational

correlation time, sc, of the Li+ ion, and hence of Li+

immobilisation, independently of the fraction of bound Li+

and of its binding affinity [25,30,31,36]. The T1/T2 ratio

obtained for the bovine chromaffin cells, under the perfusion

experimental conditions, is considerably lower than for the

same cells in suspension [25] at similar intracellular Li+

concentrations, indicating an increased degree of immobili-

sation of Li+ in the later case. This difference could reflect

some loss of viability of the cells during the NMR experi-

ments without perfusion. The disruption of the cell mem-

brane and the probable nonintegrity of the cytoplasm may

contribute to a higher immobilisation of this ion through

binding to the cytoplasmatic membrane and intracellular

structures. Comparing the T1/T2 ratios of the various per-

fused cell systems at similar Li+ loading levels (Table 2), the

degree of Li+ immobilisation is larger in bovine chromaffin

cells and in SH-SY5Y human neuroblastoma cells, followed

by lymphoblastoma cells and is smaller in RBCs [30,31,36].

This reflects the relative local mobility of the intracellular Li+

binding sites of the different systems. The T1/T2 ratios of all

these cell types are much higher than the value for an

aqueous LiCl solution whose viscosity was adjusted to

approximate the intracellular viscosity.

Cell viability during the time course of the 7Li NMR

experiments with the perfused cells was monitored by

obtaining 31P NMR spectra at the beginning and at the end

of the perfusion (Fig. 3). In fact, some 31P NMR parameters

reflect the viability of the cells throughout the perfusion

experiments. The ratio of the areas of the Ph-ATP(cytosol) and

Pi(cytosol)
31P NMR resonances (Ph-ATP(cytosol)/Pi(cytosol)),

which reflects the energetic status of the cells [58], re-

mained constant at 0.17 during the course of the NMR
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experiments. The chemical shift of the Pg-ATP(granule)
resonance gave intragranular pH values at the beginning

and at the end of the perfusion experiments of 5.47F 0.02

(n = 3) and 5.52F 0.04 (n = 3), respectively, which did not

significantly change (P= 0.43), as determined using the

calibration curve reported in the literature [59]. These

intragranular pH values, although higher than those reported

in some studies (5.3) [60], are comparable to the pH

reported in viable, but hypoxic, chromaffin cells (5.57F
0.13) [45] and of isolated chromaffin granules (5.65F 0.15)

[61], but lower than the pH reported for oxygenated,

superfused chromaffin cells cultured on polystyrene micro-

carrier beads (5.84F 0.11) [45]. Another indicator of the

viability of the chromaffin cell samples, obtained through
31P NMR spectra, is the observation of the cytosolic Pg-

ATP and Ph-ATP signals. When the cells are in suspension

[25] or immobilised without perfusion [45], the cytosolic

Pg-ATP and Ph-ATP signals are not observed. When the

cells are under good perfusion conditions, these resonances

appear at approximately � 4.5 and � 18.4 ppm, respec-

tively (see Fig. 3), which is indicative of cell viability

during the time course of the NMR experiments. The area

ratio (Ph-ATP(cytosol)/Ph-ATP(granule)) was reported to have a

value of 0.19 in perfused chromaffin cell preparations of

optimal viability [45]. After correction for the saturation

factors of the cytosolic ATP signals using the experimental

repetition rates and the reported 31P T1 values, this ratio was

0.17 in our samples throughout the perfusion experiments

(the corresponding corrected ratio for the Pg-ATP signals

was 0.20), indicating that the viability of the perfused cells

was kept throughout the experiments.

Besides being used to monitor the viability of cellular

systems, 31P NMR methods have been previously validated

to study Li+/Mg2 + competition [22], which can also be

followed by fluorescence spectroscopy. In fact, the fluores-

cence method was found to be the most sensitive for

cellular studies [23, 24]. Despite its reduced sensitivity,
31P NMR has been widely used with biomolecules

[22,23,29] and several cell types [24,25,62] to determine

intracellular free Mg2 + concentrations, [Mg2 +]f. However,

this 31P NMR method, which is based on the change of the

measured chemical shift difference between the 31P reso-

nances of the Pa and Ph phosphate groups (Ddah) of ATP
due to Mg2 + binding [62], is not applicable to chromaffin

cells due to their particular characteristics. In fact, ATP

compartmentation in these cells causes the overlap of the

Pa
31P NMR signals of cytosolic and granular ATP (Fig. 3),

preventing the use of this technique to determine [Mg2 +]f
in the cytosol of these cells. Although Ddah can be

obtained for the granular compartment, the high ionic

strength and specific ATP interactions in the granule make

it inappropriate to use the simple dilute aqueous model to

determine [Mg2 +]f values accurately in this organelle

[59,61,63]. However, we saw no effect of Li+ loading on

the granular Ddah value, indicating no significant Li+/Mg2 +

competition there.
Therefore, fluorescence spectroscopy was in this work

the method of choice to study Li+/Mg2 + competition in

bovine chromaffin cells. The experimental conditions used

here (see Materials and methods) allowed an improvement

in the quality of the fluorescence data collection relative to

previous data obtained by us in similar experiments with

these cells in suspension [25]. Using fluorescence measure-

ments of furaptra, the intracellular free Mg2 + concentration

was found to increase very significantly during the 90 min

of the Li+ loading process but did not reach a steady state

value. However, the accuracy of the calculation of [Mg2 +]f
at any time point depends on the accuracy of the evaluation

of the intracellular free Li+ concentration, [Li+]if, in Eq. (3),

which affects the negative contribution of its second term.

As the Li+ concentrations determined by AA spectropho-

tometry correspond to the total intracellular values, [Li+]iT,

including granular and cytosolic, free and bound Li+, [Li+]iT
values can be taken as the upper limit of [Li+]if, giving a

lower limit to [Mg2 +]f. However, an upper limit to [Mg2 +]f
is more difficult to obtain, since the 7Li NMR-derived [Li+]i
values may not accurately represent lower limit estimates of

[Li+]if, due to the possible contribution of both free and

bound NMR-visible intracellular Li+ to the intracellular 7Li

NMR signal.

Taking these considerations into account, various esti-

mates of [Mg2 +]f after 90 min of Li+ loading were carried

out. As determined by AA spectrophotometry of the cells in

suspension, the intracellular Li+ concentration reached after

90 min loading is [Li+]iT = 10.07F 0.84 mmol (l cells)� 1

(n = 14) (Fig. 1). Assuming that all intracellular Li+ is free, a

lower limit of [Mg2 +]f is obtained when using this [Li+]iT
value as [Li+]if in Eq. (3). The calculated value for [Mg2 +]f
at 90 min of the Li+ loading period is 0.78F 0.05 mmol (l

cells)� 1, corresponding to a 50% increase of intracellular

free Mg2 + (D[Mg2 +]f = 0.26F 0.05 mmol (l cells)� 1) rela-

tive to the initial value. Even if the steady state [Li+]iT value

is used ([Li+]iT = 11.39F 0.56 mmol (l cells)� 1, n = 14, Fig.

1 and Table 1), the [Mg2 +]f value at 90 min remains

unchanged. However, taking the intracellular Li+ concen-

tration [Li+]i obtained by 7Li NMR for the immobilised,

perfused cells, as a lower limit of [Li+]if, an upper limit

value of [Mg2 +]f is obtained by Eq. (3). As the cells are

trapped in the agarose gel, the kinetics of Li+ loading is

much slower in the immobilised cells (Fig. 2) than in

suspension (Fig. 1) and, consequently, the Li+ loading of

the immobilised cells does not reach the steady state at 90

min. Thus, we should consider the 7Li NMR derived [Li+]if
value for immobilised, perfused cells at steady state,

[Li+]if = 9.42 F 0.01 mmol (l cells)� 1, instead of the [Li+]if
value at 90 min. The [Mg2 +]f value obtained by Eq. (3) in

these conditions is 0.79F 0.05 mmol (l cells)� 1,

corresponding to a 52% increase of intracellular free

Mg2 +. Thus, as demonstrated here, any uncertainty in the

[Li+]if value to be used in Eq. (3) has a very small effect on

the calculated [Mg2 +]f values, because the negative contri-

bution of the second term is quite small.
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The [Mg2 +]f increases when Li
+ enters the cells observed

by fluorescence spectroscopy confirms the capacity of Li+ to

displace Mg2 + from its intracellular binding sites. However,

it is confirmed that they are too small to be detected by the

much less sensitive 31P NMR spectroscopic methods [22–

26]. The [Mg2 +]f increases estimated in the present work are

much smaller than those obtained for these cells in suspen-

sion [25]. This is a result of the improved cell handling

procedures used here, where errors due to the release of the

probe from the cells were avoided, through periodic changes

of the cell medium, which also ensures a higher cellular

viability. For similar [Li+]i values, the percent increase of

[Mg2 +]f observed in chromaffin cells (e.g., 50% at [Li+]i =

10.1 mmol (l cells)� 1) is very similar to the values previ-

ously described in lymphoblastoma cells (52% at [Li+]i =

11.1 mmol (l cells)� 1), but much less than in neuroblasto-

ma cells (158% at [Li+]i = 15.0 mmol (l cells)� 1) and much

higher than in RBCs (6% at [Li+]i = 4.0 mmol (l cells)� 1)

[24,36]. Thus, the relative extent of Li+/Mg2 + competition in

the different types of cells studied expressed by the percent

[Mg2 +]f increase divided by [Li+]i (%(D[Mg2 +]f /[Mg2 +]f)/

[Li+]i ratio) is: neuroblastoma (10.5F 2.0%)Hchromaffin

(4.9F0.1%)clymphoblastoma (4.8F0.2%)HRBCs (1.5F
0.9%) [36].

For the same total Li+ concentration in the medium, the

total Li+ accumulation is different for the various types of

cells, as it depends on the different cell membrane transport

pathways, leading to the following relative order: chromaffin

cells>lymphoblastoma cells>neuroblastoma cells>RBCs.

The effect of the different Li+ accumulation capacity on

the percent of intracellular Li+/Mg2 + competition may be

compensated by increased numbers of intracellular binding

sites and competition sites, as well as extent of Li+ immobi-

lisation, as observed in this work in chromaffin cells and also

in neuroblastoma cells [36]. This may explain why the effect

of Li+ on Mg2 + intracellular distribution is more similar in

chromaffin and lymphoblastoma cells than in neuroblastoma

cells and RBCs, as a consequence of differences in Li+

transport and immobilisation properties, as suggested by the

relative percent [Mg2 +]f increase/[Li+]i ratios. Thus, the

extent of Li+/Mg2 + competition under pharmacological

conditions will be cell-type dependent.

An additional problem in the quantification of Li+/Mg2 +

competition in cells is the possibility of intracellular com-

partmentation of the probe. In fact, the fluorescent probe

furaptra only gives information about Li+/Mg2 + competition

in the cytosol because the ester form of this probe, once

inside the cell, is hydrolysed by esterases present in the

cytosol [63]. In its fluorescent salt form, furaptra does not

enter the granule.

This work provides further evidence for the generality

of the ionic competition mechanism, whose extent depends

on the particular cell types. Li+/Mg2 + competition has been

shown to occur at therapeutic intracellular Li+ levels (0.6–

3.1 mmol (l cells)� 1) in human neuroblastoma SH-SY5Y

cells [20]. Changes in [Mg2 +]f of the order of 10%, ob-
served for these cells at [Li+]i = 0.6 mmol (l cells)� 1, are

expected to have a large impact on the many biochemical

and cell signalling pathways involving Mg2 +-dependent

enzymes [36]. From the present work, and based on the

experimentally observed proportional relationships in

%(D[Mg2 +]f/[Mg2 +]f)/[Li
+]i, much smaller (3%) percent-

age effects in [Mg2 +]f are to be expected in chromaffin

cells at [Li+]i = 0.6 mmol (l cells)� 1, similar to those

proposed for lymphoblastoma cells (3%) and still higher

than for RBCs (1.5%) [36], which possibly will have an

undetectable cell impact. Thus, at therapeutic [Li+]i levels,

the extent of Li+/Mg2 + competition will be cell-type spe-

cific, depending on intracellular Li+ accumulation, binding

and immobilisation.
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