

Development of an algorithm which generates

functional floor plans for residential buildings

based on modular construction

Dissertation submitted for the degree of Master of Civil Engineering in Structural

Mechanics

Author

João Francisco Rodrigues Costa

Supervisors

Prof. Doc. Luís Alberto P. Simões da Silva (FCTUC)

Prof. Doc. Vítor Manuel Bairrada Murtinho (FCTUC)

Esta dissertação é da exclusiva responsabilidade do seu

autor, não tendo sofrido correções após a defesa em

provas públicas. O Departamento de Engenharia Civil da

FCTUC declina qualquer responsabilidade pelo uso da

informação apresentada.

Coimbra, October, 2015

 AGRADECIMENTOS

João Francisco Rodrigues Costa i

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

AGRADECIMENTOS

Gostaria de começar não sem antes deixar o meu mais profundo agradecimento a todos os que

de uma forma ou de outra contribuíram para o desenvolvimento desta dissertação, e que me

foram deixando pedaços de informação pelo chão até à saída do labirinto: ao André Perdigão,

ao João Francisco Sousa, ao Dinis Sarmento, ao André Carvalho, ao Guilherme Pires, ao Diogo

Resende, à Catarina Agreira e ao André Tereso. Aos meus orientadores, Professor Doutor Luís

Simões da Silva e Professor Doutor Vítor Murtinho, por todo o apoio e tempo disponibilizado.

Ao Professor Doutor Paulo Providência, por toda a gentileza com que sempre me tratou. Por

fim mas não menos importante, à Arquiteta Tânia Martins, que disponibilizou a sua dissertação

de contributo valioso a este trabalho.

Aos meus amigos, e em especial aos colegas de curso, que me acompanharam durante estes

longos cinco anos, quer em trabalho quer em farra, em particular ao Daniel Oliveira, ao

Francisco Arede, ao Gonçalo Gomes, ao Manuel Porém e ao João Almeida. Ao Filipe Firmo e

ao Gonçalo Duarte, por todo o apoio disponibilizado desde o primeiro dia de aulas, e onde

recorri sempre que precisei. Por fim à Ângela Lemos. Não consigo precisar em quanto ela me

ajudou durante estes anos, quer fosse em apontamentos, conversas, corridas ou explicações.

Aos meus Pais, à minha Irmã, e aos meus Avós, em especial à minha Avó São. Por todas as

oportunidades, todo o amor, e todo o apoio. Nunca seria o que sou hoje sem vocês, e sei que

posso contar com o vosso apoio. O meu mais profundo agradecimento por tudo. Porém, peço

que não se esqueçam,

“Whatever it is you’re seeking, won’t come in the form you’re expecting.”

Haruki Murakami

Ao João Portugal.

Ao meu Avô Álvaro.

Saudades.

 RESUMO

João Francisco Rodrigues Costa ii

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

RESUMO

Um dos objetivos fundamentais da arquitetura e da engenharia civil é a construção e reabilitação

de edifícios habitacionais. Estas áreas colaboram entre si para desenvolver soluções que

satisfaçam os desejos do cliente incluindo as preferências estéticas e os requisitos técnicos

legais, e, obviamente, tendo em conta a segurança, funcionalidade e o conforto da construção.

Isto poderá ser atingido através dum processo iterativo que usualmente começa por um leque

pequeno de soluções, das quais uma é escolhida e seguidamente modificada até se obter o

projeto final da habitação. Este procedimento demora habitualmente um tempo substancial.

Por outro lado, a construção modular constitui um método inovador baseado num conceito de

casa adaptável e flexível, que consiste na organização de soluções uniformes em bloco, pré-

fabricadas em aço enformado a frio, numa grelha organizacional de múltiplos de uma unidade

básica, quase como se de um jogo de Lego® se tratasse. Esta tecnologia é altamente sustentável

e permite modificações na construção final durante o seu período de vida útil. Por fim, os custos

são minorados e a relação custo-benefício é majorada.

Assim, a presente dissertação objetiva o desenvolvimento dum algoritmo que gere várias

soluções de plantas de arquitetura baseado em módulos arquitetónicos de construção modular

previamente estudados. Este objetivo foi atingido através da implementação em Java® deste

algoritmo que testa e combina 3 módulos de arquitetura modular até encontrar todas as soluções

que obedeçam a determinadas restrições.

Palavras-chave: Adaptabilidade; Alocação Espacial; Arquitetura Modular; Construção

Metálica; Flexibilidade; Geração de Plantas de Arquitetura; Habitações Económicas;

Planeamento Espacial Automático.

 ABSTRACT

João Francisco Rodrigues Costa iii

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

ABSTRACT

One of the fundamental objectives of architecture and civil engineering is to construct and

rehabilitate residential buildings. Both parties collaborate in order to provide solutions that fit

the client’s desires, satisfy legal requirements, while granting aesthetic preferences and,

obviously, are functional, safe and satisfy serviceability requirements. This may be

accomplished by an iterative process which commonly starts from a spectrum of a few

solutions, where one is chosen and arranged until achieving the final building design. This

process takes a substantial amount of time.

On the other hand, modular construction presents an innovative constructive method based on

a flexible and adaptive housing concept, which consists on arranging uniform modular

solutions, pre-fabricated on cold formed steel, on an organizational grid of multiple numbers of

a basic unit, almost as if it was a Lego® game. This technology is highly sustainable and allows

modifications on the solutions during its life cycle. Last but not least, costs are diminished and

energy efficiency is improved.

Therefore the objective of the present dissertation is the development of an algorithm that

generates multiple floor plan design solutions based on previously studied architectural

modules of modular construction. This objective was accomplished by implementing the

algorithm in Java® which tests and combines 3 modules of modular construction until it reaches

every solutions that obey specific constraints.

Keywords: Adaptability; Affordable Habitations; Automatic Space Planning; Flexibility; Floor

Plan Generation; Modular Architecture; Space Allocation; Steel Construction.

 TABLE OF CONTENTS

João Francisco Rodrigues Costa iv

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

TABLE OF CONTENTS

AGRADECIMENTOS .. i

RESUMO ... ii

ABSTRACT ... iii

TABLE OF CONTENTS .. iv

ABREVIATIONS .. vi

1. INTRODUCTION ... 1

1.1. General considerations ... 1

1.2. Goals of the dissertation ... 2

1.3. Dissertation outline .. 3

2. BACKGROUND .. 4

2.1. Introduction .. 4

2.2. Space allocation – Modular construction; Requirements and constraints 6

2.3. Mathematical methodologies ... 9

2.3.1. Genetic algorithms & genetic programming ... 11

2.3.2. Evolutionary Program for the Space Allocation Problem ... 11

3. ARCHITECTURAL SPECIFICATIONS – MATHEMATICAL CONSTRAINTS 15

3.1. Introduction .. 15

3.2. Constraints ... 15

3.3. Inquiry and program interface ... 22

4. ALGORITHM, IMPLEMENTATION AND VALIDATION 28

4.1. Introduction .. 28

4.2. Algorithm ... 29

4.3. Program .. 33

4.4. Results .. 43

4.5. Conclusions .. 45

5. CONCLUSIONS AND FURTHER WORKS ... 46

5.1. Conclusions .. 46

5.2. Further works ... 46

REFERENCES ... 48

A.1. TeseMestrado class .. A-1

A.2. Welcome class .. A-1

A.3. Manager class .. A-2

A.4. Habitation class ... A-3

A.5. Shape class ... A-4

 TABLE OF CONTENTS

João Francisco Rodrigues Costa v

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

A.6. KitchenT class .. A-5

A.7. LivingRT class.. A-7

A.8. RoomT class ... A-8

A.9. SolutionsL class ... A-10

A.10. SolutionsLine class .. A-11

A.11. Block class ... A-13

 ABREVIATIONS

João Francisco Rodrigues Costa vi

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

ABREVIATIONS

CAD – Computer Aided-Design;

EPSAP – Evolutionary Program for the Space Allocation Problem;

ES – Evolutionary Strategy;

GA – Genetic Algorithm;

GP – Genetic Programming;

MIT – Massachusetts Institute of Technology;

QAP – Quadratic Assignment Problem;

RGEU – Regulamento Geral das Edificações Urbanas;

SHC – Stochastic Hill Climbing.

 INTRODUCTION

João Francisco Rodrigues Costa 1

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

1. INTRODUCTION

Sustainability. “Development which meets the needs of current generations without

compromising the ability of future generations to meet their own needs.”

World Commission on Environment - Brundtland Report (1987)

1.1. General considerations

The very first step of a construction process begins with a primordial discussion with the client,

during which the designer gathers data, such as clients’ requirements, some personal living

habits, aesthetic preferences, topographical constraints and other relevant information. This step

is mostly known as space planning phase, and consists on the sketching of the future building

where the professional not only considers the constraints mentioned above, but also the ruling

legal requirements, producing a few alternative floor plans that will ideally fulfill every

constraint and satisfy every participant of the process (Neufert, 2010).

This is a considerably complex trial and error process, time consuming, and highly dependent

on the professional’s past experience and style (Rodrigues, 2014). Moreover, it is commonly

an iterative process, since professionals will start mainly with one solution and perform several

arrangements until they reach what they idealize to be the optimum floor plan, or the final

building design, which should meet the client’s needs and desires. This leads to the discard of

potentially better design solutions.

On the other hand, this dissertation takes in mind a new flexible and adaptable housing concept,

where a new house may be based on industrialized modules of cold formed steel on an

organizational square grid where each unit has fixed dimensions. The modules considered

during this dissertation have been previously studied by Martins (2011), who organized them

mainly by their function. An algorithm which combined them in order to facilitate both the

architect and the inhabitant, to idealize and construct an affordable, flexible and adaptive

residence in the shortest period of time possible, would be undoubtedly advantageous.

Modular construction, an obvious result of sustainable conception, will surely play an important

role in the future of construction. Several reasons for this may be pointed out, such as: its

standardized dimensions, which not only eliminates usual construction errors but also speeds

up construction processes (modules may even be assembled in factory and transported to the

construction site in 2D or 3D pieces); or its ecologic sustainability (Lawson, 2014). Buildings

 INTRODUCTION

João Francisco Rodrigues Costa 2

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

and structures are currently erected to last for 50 or 100 years. Which leads to the question:

what should we do with them after this period?

Sustainable development answers this question by implementing a sustainable construction

cycle which considers extraction of stocks, planning, projecting, building, demolition and

management of any resulting solid residues that, until recently, could not be reutilized.

Harmony between natural and constructed environment must be strengthened, and at the same

time, human clusters should be created to reinforce human dignity and to encourage economical

equity (du Plessis, 2002).

Some primordial aspects that affect sustainability on the construction sector should be borne in

mind and can be improved, such as: sustainable materials – around 50% of extracted materials

from earth are to be utilized on construction; buildings’ energetic efficiency – around 40% of

energy production is spent on construction, operation and buildings’ demolition – it also

contributes with a similar percentage to greenhouse gases; management of construction and

dismantling – residues from construction and demolition are the biggest source of waste in

terms of weight in the European Union (Gervásio et al.,2015). This situation must be modified

by decreasing the consumption of raw materials and energy and by promoting recycling of

residues.

Therefore, this dissertation aims at the development of an algorithm, not only to contribute with

a step towards a real time floor plan generation, design and optimization, but also to trigger

another step into sustainable and modular construction. The developed solution uses, as a case

study, Martins’ (2011) proposed solutions of 6x6m modules, and provides an answer for

increasing the range of initial design options, diminishes high design prices, decreases

conception time consumption, and foments material recycling, while also encouraging

sustainability.

1.2. Goals of the dissertation

The present dissertation aims to develop and implement an algorithm that generates floor plan

design solutions for modular construction. This algorithm has two objectives in mind: first, to

accelerate and partially “automate” the design process, and second, to push modular

construction implementation and all the benefits associated with it, as described above. As

innovative as it may be, this work aims to take a step further into the future of automatic

generation of floor plans based on modular construction.

 INTRODUCTION

João Francisco Rodrigues Costa 3

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

1.3. Dissertation outline

The dissertation has the following structure:

Chapter 1 presents a brief introduction on the main topic of the present dissertation, briefly

describing the reasons and the advantages of the developed algorithm. In addition, it outlines

the goals of the essay, and provides a synopsis for each chapter.

Chapter 2 provides a contemporary look on the subject, including previous works, both in

architectural regulation, and on floor plan generation algorithms and its mathematical

methodologies.

Chapter 3 presents the architectural constraints required, and their transformation into

mathematical restrictions. It also describes the implemented inquiry, as well as the program’s

interface.

Chapter 4 presents the developed algorithm and its implementation in Java®, step by step, for

easier comprehension, in case the reader is a layman concerning the programming world. The

algorithm contains approximately 2300 lines of code. The most important utilized processes are

also described in this section.

Chapter 5 presents the final conclusions from the developed work, and offers the author’s

thoughts about possible future works and developments on the theme.

 BACKGROUND

João Francisco Rodrigues Costa 4

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

2. BACKGROUND

It is usual for professionals to begin a building design by a handmade process. There is currently

no available software that offers the designer a first-hand perspective of the building; one which

allows him to choose and develop one design solution from a wide range of initial possibilities.

Yet, there has been some research developed around the subject which may prove automated

generation of floor plans to be fruitful.

Furthermore, modular construction has been growing for the past years simultaneously with the

sustainable development sector, offering multiple advantages that should be taken into account,

such as environmental friendly materials (that may be reutilized), lower prices, faster

construction, or the possibility of remote construction and consequent transportation, among

others. Let us take the medical field as an example: it would be extremely advantageous to be

an adopter of large-scale modular construction, since the standardization of room environments

and of the building itself would greatly improve employees’ efficiency and patients’ welfare.

However that is not the only reason to bear in mind; a modular approach of any building

provides benefits not only for the project and construction stage, but also during its lifetime

maintenance. With a detailed project, it is possible to know what lies within the walls and

confidently solve inefficacies that naturally occur (Ball, 2014). Moreover, a modular approach

may even take advantage of space individualization by providing solutions that are mass

produced but are different on small details, such as window locations and sizes, room positions

or even different floor or wall coverings, leading to extremely similar rooms and/or habitations

on a constructive perspective, but unique on an aesthetic perspective: take Siza’s Malagueira

Houses as an example (Duarte, 2001). To sum up, modular construction companies can

currently work with high levels of design and construction sophistication which are definite

competition for conventional construction companies. All its benefits are telling.

This chapter explores these subjects and related works.

2.1. Introduction

Computer Aided-Design (CAD) systems – “the use of computer systems to assist in the

creation, modification, analysis, or optimization of a design” (Groover, 1983) – appeared

around the late 1960’s, and came up as a response to the need of production and automation of

accurate drawings at a real scale (Narayan, 2008). Fairly straightforward small buildings could

take two days to be drawn with paper and a slide rule – obviously, engineering knowledge was

put aside and was replaced by arithmetic skills. Consequently, with the CAD industry

 BACKGROUND

João Francisco Rodrigues Costa 5

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

development, design processes became faster, more precise, definitely cheaper, and automated

in a certain way, since even labour force was reduced (Weidsberg, 2008).

Since then, several programs have been developed for the automated production of spatial

layout problems. In order to fully incorporate artificial intelligence into the architectural field,

these problems need to be further analysed. Objectives and scope of programs have varied

widely and were directed to multiple scientific areas, one of these being floor planning

generation (Ligget, 2000). Yet, this type of problem is known for its complexity, since there is

a massive number of constraints to be overcome. Also, professionals’ styles and preferences

are hard to define mathematically, and it should not be forgotten that the majority of space

allocation problems will hardly overcome every requirement in the future.

Several methods for solving spatial layout problems started to be developed around the 1980’s.

In order to create and evaluate alternative layout variations these methods use a generative and

an evaluation mechanism respectively (Mitchell, 1998). These methods can be divided into

three categories that are relevant to layout systems: procedural, heuristic, and evolutionary

(Kalay, 2004). According to Galle, in the early 80s, the first algorithms for the exhaustive

generation of building floor plans started being developed (Galle, 1981). A decade later, SEED

was born, a new system that would generate layouts through constraint programming

(Flemming & Woodbury, 1995), a hierarchical extension of a system named LOOS (Flemming,

1989), which uses orthogonal structures for the representation of loosely packed arrangements

of rectangles. Gero was one of the first to make use of evolutionary approaches for solving

spatial layout problems in architecture (Gero & Kazakov, 1996; Schnier & Gero, 1996; Jo &

Gero, 1998; Rosenman & Gero, 1999). During these years various methods began to appear,

such as planar edge-connected squares, rectangle dissection, proxemics dimensions, packing

rectangles, graph theory, and space partitioning (Rodrigues, 2014). The main purpose of most

of these programs was the exhaustive generation of floor plan solutions. Soon it became obvious

that this approach would fail against medium and large problems, since space allocation is a

combinatorial problem on its basis, which not only produces an unbearable amount of solutions,

but also demands for high computation and memory capacity - this fact may be solved by

increasing restrictions and requirements, and also by computer evolution, since computation

and memory capacity are continuously increasing.

Therefore, researchers progressed from the idea of enumerating all possible solutions onto the

evolutionary methods’ path. This type of methods are known for solving both constrained and

unconstrained optimization problems based on Charles Darwin theory of evolution by natural

selection – “Survival of the fittest”. Thus, starting from an initial set of individuals (floor plan

solutions, represented by chromosomes and called population when in a group), “evolutionary

operators select, recombine and mutate the genetic material to produce the offspring. Solutions

 BACKGROUND

João Francisco Rodrigues Costa 6

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

which will mutate into new ones are selected according to their fitness - the more suitable they

are the more chances they have to reproduce. The procedure is repeated until some condition

is satisfied” (Rodrigues, 2014). This type of algorithm will be discussed is section 2.3.1.

The reviewed approaches seemed to be too specific or too abstract. For instance, some only

tackled topologically aspects (Wong and Chan, 2009), others only geometrically ones, and

others even tried to imitate some architectural design styles (Jackson, 2002; Serag et al., 2008).

The use of basic crossover among different alternative methods may result on a less diverse set

of floor plans from a topological and geometric perspective. Hence, in order to maintain the

chromosome’s coherence, a judicious use of crossover must be carried out as well (Rodrigues,

2014), to avoid problems such as duplication of spaces, or the lack of these (Flack, 2011).

Variables also vary according to each approach, and may be exterior and interior doors and

windows, wall thicknesses and dimensions, orientation, floor levels, building boundaries,

adjacent buildings, among others. Topological features of crucial relevance also disparate

between approaches, and they can be the openings’ orientations, or adjacencies between spaces,

for example. Few approaches dealt with both openings and floor levels. Mostly, research works

treat each space as an orthogonal space, which is advantageous to our final objective.

It is important to mention that the proposed algorithm, which would ideally evolve into a user-

friendly program for the professionals to use on a first-hand approach of a building design, may

be object of rejection by them, since they would possibly argue its conflict with their creative

process. Nonetheless, creativity is not intended to be put aside but to be stimulated by

substantially increasing the range of initial floor plan solutions.

It is crucial to point out that the algorithm is intended for the connection of pre-fabricated

modular spaces, based on typologies studied on previous dissertations of the University of Beira

Interior in collaboration with the University of Coimbra.

2.2. Space allocation – Modular construction; Requirements and constraints

“Architecture is a complex amalgamation of science and art” (Flack, 2011). There is a

countless number of normative requirements to follow and to add to clients’ and professionals’

personal aesthetics preferences, which will lead to a vast range of solutions. Nonetheless,

professionals are most likely to begin with one solution and iterate it, until the result becomes

pleasant for both parties. No solution will surely suit every client. Thus, a large amount of initial

alternatives would be of major relevance to assist with a computer algorithm.

On the other hand, the housing concept based on modular construction consists on a structure

comparable with a Tetris® game: an agglomeration of pre-fabricated/pre-modelled forms, not

 BACKGROUND

João Francisco Rodrigues Costa 7

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

only on the same floor level but also on upper levels (multi-layer buildings). Therefore, it

consists on a perfectly flexible and resilient solution, able to meet the needs of mobility and

adaptation, whenever there is a necessity of increasing or decreasing the household. Modular

construction companies provide a set of elements of multiple shapes, which can be arranged in

the way both the designer and the client desire the most, enhancing the formation of multiple

typologies and their combination. This solution also allows the adaptation to existing facilities.

The modules main advantages are their customization and optimized dimensions, which enable

the articulation between elements, the use of a constructive system where the elements are able

to be disaggregated, enabling future addition or subtraction of modules, or even their

demolition, taking advantage of the elements to be recycled and, last but not least, its

substantially lower budget than traditional solutions (Cool Haven@, 2015). Figure 2.1 presents

a modular habitation example by Cool Haven.

Figure 2.1 – Coolhaven’s example of a modular habitation (Cool Haven@, 2015).

Tânia Martins, a former architecture student from the Faculty of Civil Engineering and

Architecture of the University of Beira Interior, performed a research on modular typologies on

an organizational grid of measures multiple of 0.6m, in cooperation with the University of

Coimbra. This dimension is an estimate of the most favourable structural rhythm, i.e., which

 BACKGROUND

João Francisco Rodrigues Costa 8

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

optimizes construction, and from which resulted Martins’ customized modules of 6x6m –

advantageous due to their square shape and their larger stiffness and structural strength,

enabling their future adaptation to other forms in different ways. Martins grouped those

typologies according to their context and interior arrangement, taking into account some crucial

factors, such as circulation minimization, space optimization, legal requirements, variety of

solution for each typology and respective function, and even its free interior space (Martins,

2011).

Each module has a total area of 36m2 and 29m2 of usable space, approximately – with 0.3 and

0.1m thickness for exterior and interior walls, respectively. There are three kinds of modules,

A, B and C. Generally, A refers to kitchens with stair cases allocated, with the possibility of

adding a pantry, a machine room or even a small service toilet, not forgetting that corridors may

vary its size; B refers mainly to rooms which may have variations such as different room sizes,

a single large room with private bathroom, the possibility of adding wardrobes, and even a small

exterior space, with a small garden or even a balcony; finally, C modules refer to living rooms,

one of the house’s larger spaces, which has a bathroom included that may be just a service toilet

or a bathroom that fulfills accessibility requirements. Variations on the last one would be the

addition of a small office or an exterior space, or even changing the living room area to a L-

shape (Martins, 2011).

Bearing in mind Martins’ conclusions (2011), one must mention the following details:

 Toilets must always be placed alongside with exterior walls;

 Living rooms must be placed near to, at least, one service toilet;

 In the case of a two-floor building, the lower floor must not exceed 4 modules, and the

upper floor 3 modules.

Also, RGEU imposes minimum and maximum space areas, minimum floor height, stair steps

sizes, areas’ positioning, ventilation, among others (RGEU, 2009).

This dissertation aims to turn Martins’ idea of adaptability and flexibility that modular

construction may offer into reality by developing an algorithm and implementing a user-

friendly program for the generation of floor plan alternatives based on modular construction.

“One habitation may have several possible organizations” (Martins, 2011). Martins’

conclusions, RGEU and other regulations altogether should be translated into mathematical

restrictions and inserted into the algorithm. All these restrictions are fully described in section

3.2. After a preliminary inquiry from the algorithm, it will generate a number of floor plan

alternatives depending on user’s selection choices.

 BACKGROUND

João Francisco Rodrigues Costa 9

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Creativity, a much valued argument by architects, will not be put aside, but instead promoted

as it offers a broader range of initial floor plan solutions for the professional to choose. This

happens as the algorithm will not decide which alternative should be chosen.

2.3. Mathematical methodologies

As mentioned in the introduction above, a large amount of algorithmic search methods have

been used for the automatic generation of floor plans. Rodrigues has aggregated them into 6

groups according to the type and purpose of each approach, which are presented below

(Rodrigues, 2014)1:

Area assignment approach – The problem is treated as a Quadratic Assignment Problem in

which “a number of department unit areas must be assigned to an equal or larger building

area.” This approach consists in assigning a minimum cost for allocating objects to locations.

The costs are calculated as the sum of the product between distance and flow. Therefore, instead

of dealing with spaces – house rooms such as the kitchen or bedrooms –, the objective is “to

assign unit areas of each department to a building floor area”. Therefore, this approach

abdicates “individual spaces, circulation or openings, which are decided at a future stage of

the design, or are implied constraints”. The methods used were Genetic Algorithms and

Genetic Programming.

Space allocation approach – Allocation of “spaces with a defined shape according to their

topological relations and geometric restrictions”. In order to determine the best topological

arrangement of the spatial layouts and to resize the floor plan according to particular constraints,

the used approach was to analyse relations between these spaces through graph theory.

Hierarchical construction approach – One may treat a floor plan as a hierarchical system of

elements. Considering a discrete unit of space as the most basic element, one may create a room

by joining several units, several rooms to create a zone, and finally regarding several zones as

a floor plan. In order to evaluate the relation of elements, different performance assessment

criteria may be used depending on the hierarchy levels.

Conceptual exploration approach – The main objective of this approach is to foster creativity

in cases where requirements or constraints are not a concern for the designer. As such,

professionals are encouraged to generate novel shapes and configurations using a set of

solutions for conceptual exploration of ideas, not necessarily to draft final floor plans.

1 Rodrigues’ work (2014) was profoundly valuable and as such adapted for section 2 and 2.3.2. To further explore

the evolution on spatial layout algorithms and Rodrigues’ EPSAP, consult his work.

 BACKGROUND

João Francisco Rodrigues Costa 10

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Design adaptation approach – This is designed to adapt “previously stored floor plans for new

requirements and constraints that have not been taken into account when the first drafts were

produced”. New solutions are generated using these stored designs and go through consecutive

iterations until a satisfactory design is obtained. There is no guarantee though, that for any given

solution, the algorithm may not be stuck in a local optimum or even that a single solution can

be obtained according to these new requirements and constraints. Basically, “it is the pursuit

for the fittest individual in a very small search region of an already drafted design”.

Area partitioning approach – When a floor plan is divided into smaller areas, the rooms of the

layout are afterwards assigned to those areas according to topological requirements. “Given the

fact that “partitioning is made before the assignment of the design program, these approaches

do not guarantee that the geometry will comply with topological requirements”. In order to

solve this issue, several techniques were used such as Genetic Algorithms, Evolutionary

Strategy, Genetic Programming, or even Rectangle Dissections with Non-Dominated Sorted

Multi-Objective Genetic Algorithm. This method appears to be the most adequate one to the

intended algorithm.

Depending on the researcher’s intentions, the algorithms may have different scopes: geometric,

topological, related to energy efficiency, the walking space between areas or even the

generation of novel shapes to foster creativeness; and variables: such as wall dimensions,

communications between areas, wall thickness, door dimensions and thickness, floor levels,

furniture, orientations, building boundaries or even adjacent buildings . Topological features,

which will be discussed on section 3.2, may refer to opening orientation or relation between

spaces.

Usually, “research works treat each space as an orthogonal shape […], and therefore the use

of non-convex shapes is absent”. This dissertation will treat L-shape floor plans as non-convex.

Problems involving multi-floor space allocation can also be solved by QAP, considering

elevators and staircases as means for vertical circulation between floor levels. Researchers first

tried to use QAP to solve this issue since it provided an efficient method for designing large

spaces with various floor levels such as office buildings, hospitals or big facilities.

Methodologies vary from Heuristic Search Methods, Genetic Algorithms and Programming, or

even Mixed-Integer Programming. This type of solution proved to be of difficult

implementation, since the building envelope is generally pre-determined and vertical

circulations are fixed elements and as such, need to be treated as variables.

 BACKGROUND

João Francisco Rodrigues Costa 11

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

2.3.1. Genetic algorithms & genetic programming

“Natural Selection almost inevitably causes much Extinction of the less improved forms of life

and induces what I have called Divergence of Character”

Charles Darwin, The Origin of Species

Based on Charles Darwin’s Theory of Evolution, genetic algorithms (GA) are one of the most

commonly utilized evolutionary techniques. Transposed to programming language, genetic

algorithms simulate natural selection using a heuristic search process which is routinely used

to generate useful solutions to optimization and search problems (Mitchell, 1996). It is not

guaranteed that results from these algorithms are optimal, as virtually all of the steps involve

random elements. On the other hand, this stochastic nature means that it can quickly hone in on

good solutions in the population as it does not need to search everything (Flack, 2011).

These algorithms usually begin by creating a list of randomly generated individuals or

chromosomes, which represent solutions to the problem. Chromosomes are typically

represented as strings of characters which can be transformed into problem solutions. These

solutions are evaluated according to some defined fitness function. There is some termination

criteria that is checked at this point to see if the GA should continue running. Usually this is a

fixed number of generations, a specific target fitness, or the lack of change in fitness for some

number of generations. If the termination criteria has not been met, a new population is created.

This is done through the use of genetic operators such as crossover and mutation. These

stochastically select the fittest chromosomes from the current population, perform some

alterations to or combinations between them, and insert them into a new population for the next

generation. Since the fittest chromosomes are favoured in the selection process, the population

tends to have more and more fit chromosomes with each generation. Eventually, this process is

said to converge. That is, the fitness levels of the chromosomes in the new population are no

better than those in the current population. There are many causes for this. Most often it is due

to the population being clustered around similar or even identically good solutions (Flack,

2011).

“Genetic programming can be considered as an extension of genetic algorithms: instead of

using fixed-length strings of characters as the chromosomes or individuals, a more complex

computer program is used” (Flack, 2011).

2.3.2. Evolutionary Program for the Space Allocation Problem

Rodrigues (2014) opted for a space allocation approach combined with an evolutionary strategy

(ES). “In addition to being a population-based technique that allows” to globally search the

 BACKGROUND

João Francisco Rodrigues Costa 12

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

space solution, “it is traditionally known for not having a crossover genetic operator, which

has been reported to disrupt or converge the population to similar arrangement of floor plan

in other evolutionary algorithms such as genetic algorithms.” The idea is to apply

transformation operators which will randomly alter specific elements of the floor plan

individual; using genetic programming, these operators will self-adapt and adjust their

behaviour according to the evolving stage of the search process, “evolving” the individuals, and

discarding poor solutions. This will result on an expected reduction of the computation intensity

(Rodrigues, 2014).

Therefore, Rodrigues proposes a technique named Evolutionary Program for the Space

Allocation Problem (EPSAP), which combines evolutionary strategy (ES) with stochastic hill

climbing (SHC), resulting on a hybrid evolutionary technique. According to Rodrigues, “By

combining the two, it is possible to benefit from the known capabilities of a global search by

the former and a local search by the latter consisting in a two-stage approach.”

In the first stage, ES randomly generates the initial population of individuals which will consist

on a floor plan design with randomly assigned objects. Thus, the genetic operators are “applied

and the fittest individuals are selected for the next generation. The fitness of the individual must

be better than the average fitness of the population.”

The second stage, called SHC, is called upon every time a new population of individuals is

generated, whereas the individuals are subjected to a set of transformation operations. “If a

given transformation improves or maintains the individual fitness, it is accepted, otherwise, it

is rejected. These operators adapt their behaviour according to the evolving stage of each floor

plan design.” This process is represented on Figure 2.2, which presents the diagram of

Rodrigues’ proposed technique.

 BACKGROUND

João Francisco Rodrigues Costa 13

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 2.2 – Rodrigues’ scheme of his EPSAP algorithm (Rodrigues, 2014).

According to Rodrigues (2014), the assessed objectives may be collected into the following

groups depending on the evaluators and area functions:

1. Connectivity/Adjacency Evaluator objectives:

- To set connectivity (interior doors);

- To set adjacency.

2. Overlap Evaluator objectives:

- To avoid objects overlapping other objects;

- To avoid objects overlapping adjacent buildings.

3. Space Location Evaluator objective:

- To place spaces in a specific place in the floor plan.

4. Opening Overlap Evaluator objectives:

- To avoid openings overlapping other openings;

- To avoid openings overlapping objects;

 BACKGROUND

João Francisco Rodrigues Costa 14

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

- To avoid openings overlapping adjacent buildings.

5. Opening Orientation Evaluator objective:

- To set the orientation of openings.

6. Dimensions Evaluator objectives:

- To dimension the spaces;

- To dimension the openings.

7. Compactness Evaluator objective:

- To set the floor plan compactness among objects.

8. Overflow Evaluator objective:

- To avoid the overflow of the building boundary by the objects.

9. Construction Area Function objective:

- To limit the floor plan to the maximum construction area.

10. Gross Area Function objective:

- To limit the floor plan to the gross area.

Rodrigues method is the algorithm that presents the best solutions within the studied cases.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 15

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

3. ARCHITECTURAL SPECIFICATIONS – MATHEMATICAL

CONSTRAINTS

3.1. Introduction

As already mentioned above, the main objective of this dissertation is to come up with the first

steps towards an algorithm that generates floor plans for modular habitations, taking in mind

the user’s preferences and any companies’ pre-fabricated modules solutions. The proposed

algorithm uses, as a case study, Martins’ proposed solutions of 6x6m modules (Martins, 2011).

Nonetheless, these modules may be changed afterwards according to the products of a specific

company. This chapter intends to clarify the imposed restrictions implemented so far into the

algorithm and inherent to the program, and to illustrate how the user is supposed to interact

with the latter, by explaining the proposed inquiry interface.

3.2. Constraints

First and foremost, it is essential to dissect the algorithm as a mathematical problem in three

parts: variables to consider, mathematical restrictions, and expected result.

Firstly, one must bear in mind that the implemented algorithm will operate exclusively with

square modules of 6x6m2
 for the time being. Martins has already studied the interior

architectonic arrangement of the square modules (Martins, 2011), and their architectures are

exclusively studied bearing in mind a two bedroom habitation typology (T2). From her

conclusions a group of ten samples were selected: two kitchens, three living rooms with

accessible bathrooms, and five rooms with service toilets, see Figure 3.1. The darker areas refer

to possible circulation spaces. In the case of the kitchens it refers to an ante-camera/entrance

hall.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 16

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Kitchens

Living Rooms

Bedrooms

Figure 3.1 – Set of 10 modules used in the implementation of the algorithm (Martins, 2011).

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 17

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

One of the main advantages of modular construction is the distribution of elements inside each

module which is strictly associated to a squared grid whose subdivisions have a fixed dimension

x. The modules were studied taking in mind an organizational grid of multiples of 0,6m. This

way, fitting these modules is undoubtedly facilitated. For instance, openings – doors and,

possibly, windows – are confined to one of three places that each side has available for it – let

us call them the possibilities of connection. These are at fixed locations in each module – from

0,3m to 2,1m, from 2,1m to 3,9m and from 3,9m to 5,7m, see Figure 3.2. 0,3m were left

surrounding the square module which represent the possibility of a wall, exterior or interior.

For the present study, this width was not considered relevant. Figure 3.2 presents a

representation of a 6x6m2 module which clarifies these concepts.

Figure 3.2 - General 6x6m2 area, with a grid of 0,6m per unit.

These openings correspond to three units of the grid – 3x0,6m. Since a door has a standard

dimension of 0,80m on average, it is considered that, if one of the three spaces is occupied

within the module and the remaining two are still free, a door can still be allocated on that space.

Figure 3.3 clarifies this concept.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 18

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 3.3 – Example of a door with only two units available.

It is important to mention that each module may be allocated in any position. This means that

the same modules presented above may undergo 90º clockwise rotations, and may be reflected

and rotated again. Therefore, each module presents 8 possible transformations. Figure 3.4

presents an example of a room transformation. Every rotation is clockwise.

Figure 3.4 – Example of the 8 possible transformations of a module (R1_R0).

At the time of the computer implementation, modules are processed into variables and matrix

structures and are later imported in the form of JPG files (computer images) on the output

process. Therefore, the algorithm will allocate those variables by testing and inserting them

within a predefined space of the allocation area – right to, left to, above of, or below of each

modules, according to these possibilities of connection described above.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 19

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Therefore the main concern for this algorithm was to agglomerate those pre-defined modules.

For this purpose, it is now essential to enumerate and justify what constraints were implemented

within the algorithm.

• Only T2 habitations are considered – This option was made bearing in mind Martins’

conclusions. For the internal arrangement of the modules she suggested, the most adequate

space to result from their allocation would be a T2. For other typologies, new modules’

arrangements should be made. This implies that only three modules are to be combined for the

final solution.

• Every habitation has one kitchen, one living room, and two rooms – As already mentioned

above, Martins has already studied this part where she separated these different areas within

modules. Therefore three modules total are to be allocated, on which both rooms are within the

same module.

• There is at least one possible communication path between each pair of contiguous modules

– This restriction guarantees that each two modules, when connecting with each other, have at

least one compatible connection in common since each module has a fixed number of possible

connections, resulting in possible and impossible connections. The latter ones are not to be

accepted by the algorithm. Figure 3.5 shows examples of these two cases.

Figure 3.5 – A possible and an impossible communication path between contiguous modules.

• The habitation shape can be in a L-shape or in line – see Figure 3.6 which shows these two

possibilities, and also see Figure 3.7 which shows discarded configurations for the present work.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 20

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 3.6 – L-shape and Line shape configurations of the habitation.

Figure 3.7 – T-Shape and Z-Shape configurations of the habitation: for other typologies.

• Kitchens cannot be directly connected to bedrooms – Portuguese regulations do not impose

this restriction. Nonetheless it is unwise and unusual to connect such areas directly (Portas,

1996). This is justifiable since residential habitations are usually projected bearing in mind that

the house must have two perceptibly separate spaces – a social space and a private space. It is

easily perceptible that it is desirable to have an ante-camera separating both areas, otherwise

the smells and fumes of that kitchen could easily pass onto the bedrooms. Figure 3.8 clarifies

this concept.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 21

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 3.8 – A correct solution and an impossible one whereas the rooms are at the middle of the social space.

• There should be, at least, a communication from the living room or from the ante-camera of

the kitchen to the exterior – Even though the used sample (the ten modules chosen for the

implementation and validation of the algorithm) always guarantees an exit from one of these

modules, it is fundamental for the algorithm to have this restriction implemented, otherwise, in

case the sample was changed, an exit would not be guaranteed within the architecture.

• Toilets must always be placed alongside with exterior walls; Living rooms must be placed

near to, at least, one service toilet; A toilet cannot be placed inside the kitchen – These three

constraints are satisfied even without any additional restriction within the algorithm. This is a

consequence of the interior arrangement of the modules.

Last but not least, from the above constraints one may conclude that the correct order for the

arrangement of the three modules on the allocation area cannot have rooms, at any point, in the

middle, since private space and social space would be intersected.

It is now important to give examples of what should be the expected result from this kind of

algorithm. Accordingly, Figures 3.9 and 3.10 present examples of two final T2 habitations: a

possible one and an impossible one.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 22

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 3.9 - A possible result by the algorithm.

Figure 3.10 - An impossible result by the algorithm.

The purpose of this algorithm is to present every possible combinatorial solution. Hence, every

presented result within the program is followed by its solution number, and the total number of

solutions, as well as the name of the utilized modules.

3.3. Inquiry and program interface

As suggested by several architectural guidelines, technical drawing lessons or even according

to Neufert (2010), one of the most utilized handbooks on the architecture field: before the design

process begins there should be an inquiry. Ideally, there should be questions about terrain

location, sewers network, compartment necessities – areas, inter-relations, orientation –,

available capital, type of construction, not to mention the client’s special requirements,

neighbourhood buildings’ aspects and designs, among other (Neufert, 2010). The list is

enormous and depends on the professionals’ previous work experience and adopted methods.

For this reason, the proposed program starts with an interactive inquiry in order to import some

variables that are going to confine final solutions. Moreover, the questions mentioned above

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 23

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

may be translated into mathematical restrictions and added to the inquiry afterwards, at another

stage of the development of the algorithm and its respective implementation. Consequently, the

program’s general scheme is presented on Figure 3.11.

Figure 3.11 – Interface’s general scheme.

This Figure shows the several steps which require user’s selection. Only after this input will the

program run the algorithm which determines the alternative admissible solutions and outputs

the correspondent graphical representations and other data. The program initializes with a panel

which is the first approach to the interface, see Figure 3.12. By selecting Begin button, the

program proceeds to the second panel.

Figure 3.12 - Interface's first panel: begin panel.

The second panel begins the interactive inquiry with what is one of the most imperative

questions: “Which habitation type would you like?”. There is a drop-down list next to the

question which offers the possibility of choosing a typology from T0 to T4. It is relevant to

mention that the algorithm was developed only for the T2 typology, because this suffices to

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 24

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

illustrate its capabilities. The other options are left for future development of this program.

Figure 3.13 presents the second panel and its response in case another typology is chosen

besides T2.

Figure 3.13 - Interface's second panel: typologies option.

After the T2 option is chosen, a third panel shows up, which requires a new parameter: “Which

configuration should the habitation have here?”. The user can select the final solution of

modules in line, L-shape, or both these types. In the case of other typologies, which are left for

future developments, the offered options must be changed, according to the number of modules

– for instance, if four modules were to be allocated, they could form a perfect square, a L-shape,

a T-shape, or even a Z-shape. This variety requires not only the improvement of the proposed

algorithm, but also to have new kinds of modules available to combine and allocate. Figure 3.14

shows third the panel.

Figure 3.14 - Interface's third panel: allocation options – L-shape and Line shape.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 25

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

The following three panels refer to the selection of the eligible modules. They allow the user to

choose from a list of available modules the ones that he/she wishes to allocate. Ultimately, the

idea is that a company can add as many modules as it desires, and similarly to a catalogue, users

can choose any solution. For the present illustration of the program a sample of two kitchens,

three living rooms, and five rooms hypothesis were selected, which are specified in Figure 3.1.

These panels may be seen on Figure 3.15.

Figure 3.15 - Interface's modules’ panel: user’s selection.

After inputting the data, the combinatorial algorithm is executed. After the conclusion of this

execution, the found optimum alternative will be presented in the following panel(s). This

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 26

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

solutions’ panel presents the total number of solutions, and for each of these, its “tag” (reference

number), which modules (kitchen, living room, and room) were used, and their relative location.

Also, it presents three buttons: Previous and Next buttons, that offer the possibility of showing

the previous/next solution, and Menu button, that will lead the user back to the selection

interface where he/she is able to redefine his/her module selections and observe new solutions.

Figures 3.16 and 3.17 present the layout of the mentioned panels. As it is possible to observe,

this allocation will arrange a T2 typology with a kitchen, a living room with an accessible

bathroom, and two rooms with a service bathroom.

Figure 3.16 - Interface's results’ panels – Line shape.

ARCHITECTURAL SPECIFICATIONS –

MATHEMATICAL CONSTRAINTS

João Francisco Rodrigues Costa 27

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 3.17 - Interface's results’ panels – L-shape.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 28

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

4. ALGORITHM, IMPLEMENTATION AND VALIDATION

4.1. Introduction

The presented dissertation was developed and written by a Civil Engineering student whose

algorithmic and programming skills were basic, not to say null, at the very beginning of the

semester, and had to be developed exponentially. The first step was to produce a bibliographic

review and inquire several IT and computer engineer students, professors and professionals

about which programming language should be used for the task of codifying the algorithm. The

general choice was Java®, a completely new programming language for the writer – an object-

oriented one. This decision was made not only because the majority of the developers use it –

Eugénio Rodrigues on EPSAP for example (Rodrigues, 2014) –, but also because it is a leading

language in object oriented technologies nowadays, which allows the algorithm to be easily

further developed on future studies, if necessary.

The object oriented approach is a programming paradigm, in terms of the vision that the

programmer has about the structure and execution of its program. On object oriented

technologies, such as Java, the algorithm may be divided into a collection of objects, with its

own attributes and capabilities which interact with each other. Before this paradigm came out,

traditional methodologies consisted on programs or algorithms as a list of functions to be

followed, almost like a cake recipe. With object oriented technology, each object is capable of

receiving messages, process information, to send messages to other objects, or even to evoke

them when required. It is even possible to evoke the same object within itself, this being called

recursiveness, one of the processes utilized in the developed algorithm and program. To provide

a helpful visual cue, think of object oriented languages like playing with plasticine. Whenever

needed, the programmer can choose from the range of his/her forms, which are his/her classes

and methods, and apply them on his/her plasticine.

Moreover, with more than 9 million developers worldwide, Java is the global standard for

developing several kinds of applications, games, Web-based content, and enterprise software.

An enormous amount of applications and services are currently developed in Java, since it is

useful to program high-performance applications for the widest range of computing platforms

possible. This versatility and widespread use across heterogeneous environments boosts end-

user productivity, communication, and collaboration, as well as dramatically reduces the cost

of ownership of both enterprise and consumer applications (Java@, 2015), making it the perfect

choice for the implementation of this algorithm.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 29

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

This chapter will progress by explaining the developed algorithm. However, since there is a

huge step from theory to practice, which is without comparison way more complex, it was

decided to implement this algorithm and also to present the developed code of the program,

which will be used to validate the algorithm.

4.2. Algorithm

The first challenge was to transform the modules’ characteristics into mathematical constraints.

As previously explained, twelve possibilities of door locations exist for each module. Therefore,

a mathematical shortcut was used which consists in a matrix of ones and zeros (Boolean matrix)

to be filled. As an illustration of the contents of this matrix, the second type of kitchen (L1_R0)

is presented on Figure 4.1, together with its corresponding doors matrix, in order to perceive

this concept.

[1 1 1 | 1 1 0 | 0 0 0 | 0 1 1]

It can be seen that: (i) the matrix is subdivided into four ordered sub-matrices, corresponding

to the north, east, south and west sides; (ii) for each side of the module three possibilities for

door locations exist, showing a “1” if there is an opening and a “0” otherwise.

Then, because every module may be rotated and reflected (and on its turn rotated again), the

problem was solved by finding a pattern on each rotation and reflection. Thus, and bearing in

mind that all rotations were considered clockwise, in any 90º rotation one may conclude that

every three columns progress three places to the right. The matrix of the same kitchen rotated

once is now presented, as well as the respective kitchen, on Figure 4.2.

Figure 4.1 – L1_R0 module

(2ndKitchen, Rotation zero).

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 30

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

[0 1 1 | 1 1 1 | 1 1 0 | 0 0 0]

For reflecting the module around a vertical axis, the above module appears as illustrated on

Figure 4.3, along with its doors matrix.

[1 1 1 | 1 1 0 | 0 0 0 | 0 1 1]

In this case: (i) the order of the first terms inside the sub-matrix is inverted, and similarly for

the third one; (ii) the order of the other two sub-matrices is also inverted, but these two sub-

matrices also swap their position.

In conclusion, it is now possible to define the doors matrix, which for the sample of 10 modules

and for the 8 types of rotation and reflection will have 80 lines (and 12 columns). Adding a first

column to the matrix with the description of the module and the geometric transformation, the

result will be the following, partially represented, matrix.

[

𝐾0_𝑅0_ 1 1 1 1 0 0 0 0 0 0 0 1
𝐾0_𝑅1_ 0 0 1 1 1 1 1 0 0 0 0 0
𝐾0_𝑅2_ 0 0 0 0 0 1 1 1 1 1 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑅4_𝑆3_ 0 0 0 0 0 0 0 0 0 0 0 1]

Figure 4.2 - L1_R1 module

(2ndKitchen, Rotation one).

Figure 4.3 - L1_S0 module

(2ndKitchen, Symmetry zero).

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 31

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

The first letter of the description may be K, L or R, standing for kitchen, living room, or room.

The digit after this letter sub-specifies the module type; for instance L0, L1, L2 represent three

living room types. The second letter may be R or S, standing for rotation or symmetry. This is

followed by an integer ranging from 0 to 3, standing for the number of 90º rotations. It is now

possible to deal with modules mathematically, because their interactivity is fully described by

this matrix.

As every important piece of code will be presented, described and analysed in detail in the next

section, note however that the program was implemented alongside with the development of

the algorithm. Therefore, even though they cannot be seen as independent one from the other,

a brief description of the algorithm will now be presented. First, there are two distinct

subroutines within this work. The first imports the above doors matrix from a txt file and turns

it into variables. The second deals with the general combinatorial problem and deals with brute

forcing and recursiveness. The latter consists on the basic core structure of the work.

The first subroutine uses each line of the text file and separates it into several arrays of strings.

Then, it saves the description of the module (“K0_R0_”, for instance) on a string variable, the

first character of the description (“K”, for instance) on a char variable, and transforms the strings

of the bits into integers and saves them on an integer list. Then it uses another method named

place() in order to place all these elements on their correct place. Figure 4.4 consists on a small

diagram which explains this concept for the kitchens arraylist, which solely has two different

types.

Figure 4.4 - Kitchens arraylist of block objects.

The second subroutine is significantly more complex. It begins by selecting living rooms to be

the first allocated modules; this first module always occupies the middle (second of the three

possible) position. Therefore, this procedure will be repeated for every living room and for

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 32

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

every kitchen, but never for rooms. Let us suppose that the first module is a living room: for

every living room, if selected by the user, for every transformation, the algorithm will allocate

one living room. Then the next part of this subroutine will allocate a second module in one of

the two still empty possible locations. This means that the programmer may choose both the

second module to be allocated and the second space to be filled, which leads to two other

structures of code to fill all options: with the same places in the same order to be filled, and

changing the order of the modules to be filled. Again as an example, and thinking about the L-

shape solution on the first algorithmic structure (first A block on the Figure 4.5), firstly it will

allocate a kitchen above the living room, and a room to the right of the living room. Each of

these processes uses the same method. Therefore, for each case the code goes into another

method, which now allocates the second module, on the second place. Hence, and continuing

with the same example, for every kitchen, if chosen by the user, and for every transformation,

it allocates a kitchen, if there is at least one connection in common between both modules,

which is tested using a new method. Then, if the spaces to be allocated are not totally filled yet

– both the third space and module are yet to be filled and allocated respectively, the process is

repeated. In other words, the method evokes itself and repeats the procedure, this time for the

room modules, making the same tests with respect to the living room previously mentioned.

At the end there is one solution. However, it is only saved on the list of solutions if, for the four

sides of the kitchen and of the living room, it verifies that there is at least one exit to the exterior,

since no solution can be valid without at least one. This is tested using another method that, for

each of the four sides that should have an exit, runs all three possible openings from that side

and verifies that there is at least one door. These procedures are repeated as many times as

required. Figure 4.5 presents a diagram which intends to make the complete procedure

described perfectly clear.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 33

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Figure 4.5 – Algorithm’s diagram for L-shape solutions.

4.3. Program

Java is an object-oriented language, therefore several classes were used for the code’s

development: a main class, a class per each panel presented in the program and already

described on section 3.3, a Manager class which manages all panels, and a class containing the

most important algorithmic core within the program, called Block class, constituting a total of

eleven classes. This section will fully explain the program piece by piece, skipping non-relevant

parts such as the automatic code generated by the IDE used. The entire code is fully commented

and is included in the appendix at the end of this document, except for the code lines referent

to the interface, which were excluded.

To begin with, as in any program, the main class initializes the program. The present main

declares and initializes (instances) a variable called manager from the Manager class and sets

a Welcome panel visible. It is called TeseMestrado class.

public class TeseMestrado {

 public static void main(String[] args) {

 Manager manager = new Manager();
 manager.Wwelcome.setVisible(true);

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 34

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Next, the Manager class is described. This class declares all panels that exist (once again, each

panel has its own class), and two Booleans which receive the user’s choice of allocation, i.e. in

Line or in L-shape. Next it starts two auxiliary variables, br and line, that will read the config.txt

file which contains the doors matrix, as mentioned on section 3.2. br equals the content of

config.txt file, and while each line from config.txt is different from null, createBlock method is

invoked for each line as a parameter.

public class Manager {

 public Welcome Wwelcome;
 public Habitation Whabitation;
 public Shape Wshape;
 public KitchenT Wkitchen;
 public LivingRT Wliving;
 public RoomT Wroom;
 public SolutionL WsolL;
 public SolutionLine WsolLine;

 public boolean shapeLine;
 public boolean shapeL;

 public Manager(){

 BufferedReader br = null;
 String line = null;

 try {
 br = new BufferedReader(new FileReader("config.txt"));
 while((line = br.readLine()) != null)
 Block.createBlock(line);
 } catch (FileNotFoundException ex) {
 System.out.println("Text file containing doors matrix not found:
config.txt");
 System.exit(0);

 } catch (IOException ex) {
 ex.printStackTrace();
 }

 this.Wwelcome= new Welcome(this);
 this.Whabitation = new Habitation(this);
 this.Wshape = new Shape(this);
 this.Wkitchen = new KitchenT(this);
 this.Wliving = new LivingRT(this);
 this.Wroom = new RoomT(this);

From each line the createBlock method receives as a parameter it declares and initializes an

auxiliary Block b with the constructor which receives a string as a parameter (the second

constructor in the class). Basically, a description string, a typeB character and a doors matrix

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 35

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

are created. Afterwards these variables are placed within the correct arraylist with the place

method. createBlock method is presented below.

 public static boolean createBlock(String config)
 {
 Block b = new Block(config);
 return b.place();
 }

The Block constructor which receives a string, starts by creating two arrays of string type. The

first string consists on splitting the line it receives every time a “_” appears, resulting in a matrix

with three columns where the third contains a list of integers (in the form of characters)

separated by tab (“\t”). For instance, the first line will result in: [RO] [S0] [0 0 0 …(bits)]. Then

the second string consists on splitting the third column whenever a tab (“\t”) appears, resulting

in a matrix with twelve columns. Afterwards, for each column of the third string, it fills the

doors matrix by transforming the string into an integer, resulting in a Boolean array named

doors[]. The description string is also filled, saving the module name, as well as the typeB

character, which saves the first character: K, L or R, standing for Kitchens, Living rooms, or

Rooms. Pointers are matched to null.

 public Block(String config) {

 this();
 String[] split = config.split("_");
 String[] bits = split[2].split("\t");

 int i = 0;
 for(int j=0;j<bits.length;j++)
 {
 doors[i++] = (Integer.parseInt(bits[j])==1);
 }
 description = split[0].concat("_").concat(split[1]);
 typeB=split[0].charAt(0);
 up = left = right = down = null;
 }

Place method consists on allocating description, typeB and doors[] on the correct position

within kitchens, livingRooms or rooms arraylists. These variables are within a block variable,

which is one of the possible transformations of a module, that is also within another block

variable that stands for the type of the module, and these types are within a final arraylist with

all types of modules. Figure 4.4 explains the concept. The Place method is presented below.

 public boolean place()
 {
 String split[] = description.split("_");
 char tipo = split[0].charAt(0);
 char transformation = split[1].charAt(0);
 int number = Character.getNumericValue(split[0].charAt(1));
 int pos = Character.getNumericValue(split[1].charAt(1));

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 36

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 if(transformation == 'S')
 {
 pos += 4;
 }
 switch (tipo)
 {
 case 'K':
 if(kitchens.size() == number)
 {
 kitchens.add(new Block[8]);
 }
 kitchens.get(number)[pos] = this;
 return true;

 case 'R':
 if(rooms.size() == number)
 {
 rooms.add(new Block[8]);
 }
 rooms.get(number)[pos] = this;
 return true;

 case 'L':
 if(livingRooms.size() == number)
 {
 livingRooms.add(new Block[8]);
 }
 livingRooms.get(number)[pos] = this;
 return true;
 }
 return false;
 }

After filling kitchens, livingRooms and rooms arraylists, one must go back to Manager class,

which leads us to Welcome class. This class is not worth further explaining, since its only

objective is to show the first panel. As explained on section 3.3, a begin button leads us now to

Habitation class. This class allows the user to move on to other panels when he/she selects “T2

typology”. When this option is chosen and Next button is selected, the Shape class is evoked.

This class’ unique purpose is to save two Booleans, shapeLine and shapeL, which indicate if

the user pretends solutions in line or L-shape (or both).

Next, three panels appear whose purpose is to save on a Boolean array (per panel) the user’s

selection of the types to module he/she chooses to combine for the final solution alternatives.

The program does not allow to progress without selecting at least an option of each (a kitchen,

a living room and a room). All these classes described are attached to this document, since even

though they are not algorithmically relevant, they are all imperative. The arrays described are

presented below.

 public static boolean[] kitchensAvailability = new boolean[2];

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 37

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 public static boolean[] livingRoomsAvailability = new boolean[3];
 public static boolean[] roomsAvailability = new boolean[5];

Rooms panel leads to the alternative solutions panels, depending on if the Booleans shapeLine

and shapeL are or are not true. These latter panels present solutions, in line or in a L-shape.

Only the solution in L will be described since both algorithms are similar except for the input

parameters. Therefore, what SolutionsL panel does is to call solveL method from Block class.

This method consists on the implementation of the algorithm developed within this dissertation

and hence on its most important part. Let us start by presenting all the variables of Block class.

 public static ArrayList<Block[]> kitchens = new ArrayList<>();
 public static ArrayList<Block[]> livingRooms = new ArrayList<>();
 public static ArrayList<Block[]> rooms = new ArrayList<>();
 public static boolean[] kitchensAvailability = new boolean[2];
 public static boolean[] livingRoomsAvailability = new boolean[3];
 public static boolean[] roomsAvailability = new boolean[5];
 public static boolean kitchensAvailable, roomsAvailable, livingRoomsAvailable;
 public static ArrayList<Block[]> solutionsLine = new ArrayList<>();
 public static ArrayList<Block[]> solutionsL = new ArrayList<>();

 public boolean[] doors;
 private String description;
 public char typeB;
 public Block up, left, right, down;

kitchensAvailable, roomsAvailable, livingRoomsAvailable are indicators of which modules are

being allocated. Hence, this method begins by setting the three variables as true. An integer j is

declared. solutionsL arraylist is also declared and initialized within the method in order to, if

the user modifies his/her selection, clean up the previous arraylist.

 public static void SolveL()
 {
 solutionsL = new ArrayList<>();
 kitchensAvailable = true;
 roomsAvailable = true;
 livingRoomsAvailable = true;
 int j;

This subroutine utilizes a brute force search. A brute force method consists on an exhaustive

search which looks at every single possible solution for a problem and returns the ideal

(optimal) answer, and, basically, on the present case, it consists on saving the ones which fill

certain restrictions. The living rooms modules are the first to be allocated and are forced to be

at the middle. Then, for every type of living room, if it was chosen by the user, and for each of

the 8 transformations a module may have (rotations and symmetries), every four pointers are

set to null with the removeNeighbours method. Then checkAreaList method is applied for each

of these modules with certain input parameters, and, finally, removeNeighbours method is once

again applied. This part of the code is presented below, as well as the removeNeighbours

method.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 38

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 livingRoomsAvailable = false;
 j = 0;
 for (Block[] livingRoom : Block.livingRooms) {
 if(livingRoomsAvailability[j++]){
 for (int i = 0; i< 8; i++){
 livingRoom[i].removeNeighbours();
 livingRoom[i].checkAreaList(Block.kitchens, kitchensAvailability,
"up", "right", false);
 livingRoom[i].removeNeighbours();
 }

 public void removeNeighbours()
 {
 up = left = right = down = null;
 }

checkAreaList is crucial for the program and is now going to be described. It receives five

parameters: an arraylist of block variables (blocklist), a Boolean array (areaAvailability), two

strings (direction and nextDirection) and a Boolean (isLine). Depending on the blocklist it

receives, it will turn its availability to false. For instance, if the first arraylist received is

kitchens, it will set kitchensAvailable to false and will start working on kitchen blocks.

 public void checkAreaList(ArrayList<Block[]> blockList,boolean[]
areaAvailability, String direction, String nextDiretion, boolean isLine){

 if(blockList == Block.kitchens)
 kitchensAvailable = false;
 if(blockList == Block.rooms)
 roomsAvailable = false;
 if(blockList == Block.livingRooms)
 livingRoomsAvailable = false;

Next, a similar process to the one described above occurs: for every type of blocklist – which

at the time being are the kitchens –, if it was chosen by the user, and for each of the 8

transformations a module may have (rotations and symmetries), an auxiliary block variable is

created. Then, the living room block is tested with the kitchen block and the numConnections

method is applied.

 Block b;
 int j = 0;
 for (Block[] area : blockList) {
 if(areaAvailability[j++])
 for (int i = 0; i< 8; i++){
 b = area[i];
 if(numConnections(b, direction) > 0){

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 39

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

The numConnections method basically tests two different modules and returns an integer if

there is any possible communication between both modules, and fills pointers. Even though this

method seems basic, it is also imperative, and consists on the most important restriction

implemented. A switch case is utilized, but just one of the four cases will be presented below,

in order to not extend this explanation with repetitions. The other cases are presented in the

appendix.

public int numConnections(Block b, String positionb)
{
 int connections = 0;
 switch (positionb.toLowerCase()) {

 case "left":
 // 0 1 2 0 1 2
 // 11 3 11 3
 // 10 b 4 10 this 4
 // 9 5 9 5
 // 8 7 6 8 7 6

 if(doors[11] && b.doors[3])
 connections++;
 if(doors[10] && b.doors[4])
 connections++;
 if(doors[9] && b.doors[5])
 connections++;
 if(connections > 0)
 {
 this.left = b;
 b.right = this;
 }
 break;
 }

//(...)
return connections;
}

Now back to checkAreaList method. After numConnections verification the code verifies if

nextDirection is null. In case it is not, which will happen on the first iteration of this method,

the method is called again within itself. This is the called recursiveness – a method which calls

itself directly or not. Each recursive method must have a basic case, which must be calculated

without using its recursive process, and a recursive step, which should call itself to solve the

problem. Usually, the recursive step call is a simplification of the state of the problem. Normal

errors may be the incorrect definition of the state of the problem, divergence, or even recursive

calls which overlap themselves and lead to exponential complexity (Paquete & Araújo, 2008).

Hence, and back to the subroutine, checkAreaList is called again, which will deal with the

module that was not combined so far – this being the rooms at this iteration –, and setting next

iteration as null – thus on the next iteration it does not go into this process again.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 40

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

//(...)
if(numConnections(b, direction) > 0){
 if(nextDiretion != null){
 if(kitchensAvailable){
 checkAreaList(Block.kitchens, kitchensAvailability,
nextDiretion, null, isLine);
 }
 else if(roomsAvailable){
 checkAreaList(Block.rooms, roomsAvailability, nextDiretion,
null, isLine);
 }
 else if(livingRoomsAvailable){
 checkAreaList(Block.livingRooms, livingRoomsAvailability,
nextDiretion, null, isLine);
 }
 }

At this time a solution with a kitchen, a living room and a room which have communications

between each other was already found. Therefore, it only remains to verify if there is at least a

communication from the kitchen or from the living room to the exterior. Firstly, the solution is

allocated on a temporary array of Block variables named sol. Then, depending on the fifth

parameter of checkAreaList method – isLine Boolean –, the program goes deeper in another if

structure. Only the isLine = false case, which will lead for in a L-shape, is going to be analysed.

In this case, four new variables – integers – are declared and initialized: exitL, and the arrays

upL, cornerL, and rightL. These three arrays contain only ones and zeros (Boolean). One stands

for the sides of the module which need to be tested for an exit, i.e. the sides which are not

connected to other sides. The solution is then allocated to the temporary array sol. Then, for

each of the modules found within the solution, and if they are not a room – which does not need

an exit door –, exitL sums up if there is an exit and immediately breaks. This is tested using the

checkExit method.

else{
 int exitL = 0;
 int upL[]={1,1,0,1};
 int cornerL[]={0,0,1,1};
 int rightL[]={1,1,1,0};

 sol[0] = this.up;
 sol[1] = this;
 sol[2] = this.right;
 for(int g=0;g<3;g++){
 if(sol[g].typeB != 'R'){
 switch(g){
 case(0):exitL += Block.checkExit(upL, sol[0]);break;
 case(1):exitL += Block.checkExit(cornerL, sol[1]);break;
 case(2):exitL += Block.checkExit(rightL, sol[2]);break;
 default:break;
 }

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 41

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 }
 }

The checkExit method basically checks if there is a communication on each of the sides where

it is possible to have one. For the four sides, if it can be tested, the method goes to the possible

communications of that side, and tests. When it finds one, it immediately returns one. The code

may be consulted below.

public static int checkExit(int [] exits, Block current){
 for(int i = 0 ; i<4; i++){
 if(exits[i] == 1){
 for(int j = i*3; j<(i+1)*3; j++){
 if(current.doors[j] == true){
 return 1;
 }
 }
 }
 }
 return 0;
}

Therefore, when it finds a solution, it goes back to checkAreaList method and adds the solution

to the arraylist of solutions.

if(exitL > 0){
 solutionsL.add(sol);

Concluding, the checkAreaList method, the only thing left to do is to set all modules back to

true, for the new iteration.

if(blockList == Block.kitchens)
 kitchensAvailable = true;
if(blockList == Block.rooms)
 roomsAvailable = true;
if(blockList == Block.livingRooms)
 livingRoomsAvailable = true;

At this time, after concluding this process (checkAreaList), the program has tried every solution

for the rooms on the right and kitchens above the living room, saving on an arraylist every

possible solution. Then it leads back to the removeNeighbours method where it puts pointers

back to null, and repeats this process for every of the eight possible transformations that each

type of living rooms has. Then it repeats the process to allocate rooms above and kitchens right,

and just after that the program changes for another type of living room. After this, it repeats this

group of processes for kitchens at the middle of the solution. This structure is now presented

below, without any interruption, for a better understanding of it.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 42

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

kitchensAvailable = false;
j = 0;
for (Block[] kitchen : Block.kitchens) {
 if(kitchensAvailability[j++]){
 for (int i = 0; i< 8; i++){
 kitchen[i].removeNeighbours();
 kitchen[i].checkAreaList(Block.livingRooms, livingRoomsAvailability, "up",
"right", false);
 kitchen[i].removeNeighbours();
 }
 for (int i = 0; i< 8; i++){
 kitchen[i].removeNeighbours();
 kitchen[i].checkAreaList(Block.livingRooms, livingRoomsAvailability,
"right", "up", false);
 kitchen[i].removeNeighbours();
 }
 }
}
kitchensAvailable = true;

The solveL method finishes by setting all pointers back to null by utilizing the

removeNeighbours method again.

for (Block[] kitchen : Block.kitchens) {
 for (int i = 0; i< 8; i++)
 kitchen[i].removeNeighbours();
}
for (Block[] livingRoom : Block.livingRooms) {
 for (int i = 0; i< 8; i++)
 livingRoom[i].removeNeighbours();
}
for (Block[] room : Block.rooms) {
 for (int i = 0; i< 8; i++)
 room[i].removeNeighbours();

This basically concludes the algorithm implementation. From this point on, the code goes back

to solutionsL panel. This panel (and solutionsLine as well) basically imports the solutions list

from Block class and applies a method called updateImg, which essentially imports images

within the package of the code that have the exact same names as string the description plus

“_”, from the solutions list. This method is presented below.

public void updateImg(){
 if (num < Block.solutionsL.size())
 {
 jLabel4.setText("Solution number " + (num +1) + " of " +
(Block.solutionsL.size()));
 jLabel1.setText("The upper module is " +
Block.solutionsL.get(num)[0].getDescription());

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 43

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 jLabel2.setText("The corner module is " +
Block.solutionsL.get(num)[1].getDescription());
 jLabel3.setText("The right module is " +
Block.solutionsL.get(num)[2].getDescription());
 Image1.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[0].getDescription() + "_.jpg")));
 Image2.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[1].getDescription() + "_.jpg")));
 Image3.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[2].getDescription() + "_.jpg")));
 }
}

At this point, if the user selects the previous button, the program goes to the previous admissible

solution, while if next button is selected, it goes to the next one.

The most relevant parts of the code were described within this section. The complete code is in

the appendix at the end of this document, except for the interface’s code lines.

4.4. Results

After the complete description of the program, it is now relevant to present some case studies

and their results. Therefore, and firstly, one must bear in mind that the user is always forced to

choose one module of each type, which means that for any input the user selects, there will

always be solutions. Several cases were tested but for the section’s purpose only seven are

presented. Table 4.1 presents the cases and their respective results, both for Line and L-shape

solutions, and sums both.

Table 4.1 - Case studies' results.

 Kitchen Types Living room Types Room Types Line shape L-shape Total

Case 1 1 1 1 160 200 360

Case 2 2 1 1 184 220 404

Case 3 1 2 1 128 160 288

Case 4 1; 2 1 1 344 420 764

Case 5 1 1; 2; 3 1 416 520 936

Case 6 1 1 1; 2; 3; 4; 5 1352 1660 3012

Case 7 1; 2 1; 2; 3 1; 2; 3; 4; 5 8488 10008 18496

Case 1, 2 and 3 stand for choosing one type of every modules; case 1 selects all the first types

whereas case 2 selects a different type of kitchen and case 3 a different type of living room. By

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 44

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

comparing the three one may conclude that: (i) Results coincide on the same range of values;

(ii) Results always present pair values and L-shape provides bigger solutions than Line shape;

(iii) By summing the cases one may perceive the results for combining different types of

modules as seen on case 4, which combines the two types of kitchen and thus results on the

sum of case 1 and 2 (despite being an expected and obvious conclusion, one must state it); (iv)

Even though the first cases are solely combining one module of each, the results are already

excessive to be submitted to a thorough analysis by the user.

Lastly, and further exploring the program’s capabilities and aiming for the worst case scenario

on which every modules are selected and combined – 2 kitchens, 3 living rooms and 5 rooms –

, one concludes once again the fourth point supra-mentioned, but on a larger scale. For this

particular case – case 7 –, results will increase to 18496 solutions, being 8488 for Line shape

and 10008 for L-shape. It is certain that no user could accurately analyse this amount of

solutions.

This results are easily explained since the problem is combinatorial on its basis, and this kind

of problem’s approach can easily and quickly explode into massive results, which leads not

only to memory capacities’ problems but also to an unnecessary amount of data to be analysed.

Given the case where there were not any restrictions and the purpose was solely to combine the

2 kitchens, the 3 living rooms and the 5 rooms on a line and taking into account the 8 possible

transformations, equation (1) presents the following result.

 (2𝑥8)𝑥(3𝑥8)𝑥(5𝑥8)𝑥(3𝑥2𝑥1) = 92160 (1)

As it is possible to conclude the amount of solution is exorbitant even though the sample being

fairly small. Hence the question is: how to reduce the number of results to an analysable output?

A more heuristic approach should be implemented. This means that more restrictions should be

applied such as minimal areas parameter, or the automatic adjustment of the interior areas, and,

for instance, sieve solutions by groups. Another idea would be to use a genetic approach as

described on section 2.3.1, and that Rodrigues applied on section 2.3.2. One other suggestion

would be to provide random solutions from which the user would select the ones best preferred.

From a sample of some of this user’s selection, the program would provide a new generation

of random solutions based on the information received, resulting on an iterative process.

Concluding, this results are yet on the field of the T2 typology, on a spatial organization

perspective, and not on an architectonic formalization. A first-hand approach to the problem is

already presented within this work which is prepared for further development on a near future.

ALGORITHM, IMPLEMENTATION AND

VALIDATION

João Francisco Rodrigues Costa 45

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

4.5. Conclusions

Even though the title of the present dissertation is “Development of an algorithm which

generates functional floor plans based on modular construction”, the final result is in fact a

program. On a first analysis this program may be perceived as a non-essential part of this

dissertation. However, it is the author’s belief that an algorithm has no use if not validated, and

also because the author could not progress in any algorithmic structure without any

programming or algorithmic knowledge in advance. Therefore, the algorithm and its

implementation and validation should be seen as a unique piece of work, with a beginning,

middle, and an end. One only exists if the other does as well.

The code and algorithm implemented were developed from scratch. This means no pre-existing

algorithms or codes were found that could be used for the final objective of this work:

generation of functional floor plans based on modular construction. This was a long process

which required heavy assistance in programming, and a large amount of time spent studying

tutorials and reading books on Java. Hence, one must say that the only way to learn

programming is programming.

CONCLUSIONS AND FURTHER WORKS

João Francisco Rodrigues Costa 46

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

5. CONCLUSIONS AND FURTHER WORKS

5.1. Conclusions

The algorithm was implemented in Java® 1.8.0_40, executing the timing trials on an Asus with

an Intel® CoreTM I7-3537U CPU @ 2.0GHz with 4GB of RAM and a 64–bit Operating System.

The algorithm was started to be implemented on eclipse© but was completed on NetBeans©

IDE, due to its auxiliary graphic component. The algorithm exhibits run time suitable for real-

time applications, and for the implemented sample it is capable of generating 18496 different

architectures houses in few seconds. It is a brute force search algorithm which obeys to some

imposed restrictions, using a recursive method, and that generates plausible residential floor

plans for modular construction. Even though this approach does not yet offer a very high degree

of automation, which might be considered for this kind of problem, it already enables the user

to select some variables which were implemented as rule sets. Nonetheless, this algorithm is

novel because it consists on a new approach to automatically combine and generate floor plans

based on modular construction. Like any other calculus software, it is believed that these

procedural methods may dramatically reduce the need for human labour in the field of

engineering, design and architecture, as well as substantially reduce time consumption.

This work represents the writer’s first approach to the algorithmic and programming areas,

which are, now more than ever, essential for the labour of any engineer, architect, or even

designer. Hence, and even though it seems out of context in the structural mechanics field, it is

in fact a fundamental work for any person who is interested in this multidisciplinary subject. In

today's world every engineer needs to be versatile in his/her labour, hence engineers should not

focus entirely on one subject but, in fact, they must have a wide array of multidisciplinary skills

in different fields. In conclusion, the writer tries to highlight this importance by incorporating

programming into the structural mechanics field, showing the two can, and in fact should, work

hand in hand harmoniously in order to allow greater progress on the engineering field.

This dissertation greatly contributed for the writer’s development on the Architecture and

Informatics field.

5.2. Further works

The developed algorithm aims to design a T2 floor plan architecture through modular

construction by combining three square modules on a 2D plane bearing in mind some particular

constraints. These modules are of three different types: a kitchen, a living room and a room –

CONCLUSIONS AND FURTHER WORKS

João Francisco Rodrigues Costa 47

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

which allocates two separate rooms within itself. Obviously this is yet a really incipient work.

Architecture is an enormous, complex and dense world. Creativity is also inherent to the

subject, as well as a number of other factors which were not taken into account for this

dissertation. As already explained, the objective of this study is to take a step up into this area,

and to encourage and promote further development on the matter. Undoubtedly, if a program

comparable to AutoCAD© was intended, a big group of developers, from IT and software

engineers to civil engineers, architects, designers, managers and modular construction

companies, must collaborate to reach what this kind of program can and should be: a fully

developed algorithm which tackles all kind of typologies, adds garages, several floors, solar

orientation, neighbour buildings, a completely new and vast library of modules to allocate, with

different measures, with windows openings on the drawings, and even gardens or open space

modules, and to fulfill a wider range of accessibilities restrictions, or to even design more than

residential buildings such as hospitals, supermarkets or office buildings, all based on modular

construction. In the writer’s opinion, the further development of this algorithm with these

suggestions would be, without question, a crucial tool for optimizing the time consumption of

modular buildings’ projects in the future.

The present work is a small step further into this field.

 APPENDIX

João Francisco Rodrigues Costa 48

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

REFERENCES

“RGEU – Regulamento Geral das Edificações Urbanas” (2009). Porto Editora, Porto,

Portugal.

coolhaven@ (2015). Cool Haven (official webpage), Coimbra.

http://www.coolhaven.pt/conceito/cool-haven-concept.php [viewed at 03/03/2015]

Coyne, R. F. and Flemming, U. (1990). "Planning in Design Synthesis: Abstraction Based

LOOS". J. Gero, editor, Springer, Artificial Intelligence in Engineering V, Vol. 1:

Design (Proc. Fifth International Conference, Boston, MA), New York, pp. 91-111.

du Plessis, C. (2002). “Agenda 21 for Sustainable Construction in Developing Countries”.

CIB & UNEP-IETC, Pretoria, South Africa.

Duarte, J. P. (2001). “Customizing Mass Housing: A Discursive Grammar for Siza’s

Malagueira Houses”. Doctoral Thesis, Department of Architecture, Massachusetts

Institute of Technology, Massachusetts.

Flack, R. W. J. (2011). “Evolution of Architectural Floor Plans”. Master Dissertation,

Faculty of Computer Science, Brock University St. Catharines, Ontario.

Flemming, U. (1989). “More on the representation and generation of loosely packed

arrangements of rectangles”. Environment and Planning B: Planning and Design Vol.

16 Issue 3, pp. 327–359.

Flemming, U. and Woodbury, R. (1995). “Software Environment to Support Early Phases

in Building Design (SEED): Overview”. Journal of Architectural Engineering, Vol.

1, pp. 147-152.

Galle, P. (1981). “An algorithm for exhaustive generation of building floor plans”.

Communications of the ACM, Vol. 24, Issue 12, pp. 813–825.

Gero, J.S. & Kazakov, et al. (1996). “Learning and re-using information in space layout

planning problems using genetic engineering”. Artificial Intelligence in Engineering

Vol. 11, pp. 329–334.

Gervásio et al. [Notes from] “Estruturas Metálicas (2014/15)”. Department of Civil

Engineering of the University of Coimbra, FCTUC.

 APPENDIX

João Francisco Rodrigues Costa 49

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Groover, M. & Zimmers, E. (1983). “CAD/CAM: Computer-Aided Design and

Manufacturing”. Pearson Education.

Jackson, H. (2002). “Chapter 11 – Toward a symbiotic coevolutionary approach to

architecture”. Creative Evolutionary Systems, A volume in The Morgan Kaufmann

Series in Artificial Intelligence, pp. 299-313.

java@ (2015). Java (official webpage). https://www.java.com/en/about/ [viewed at

05/08/2015]

Jo, J.H., & Gero, J.S. (1998). “Space layout planning using an evolutionary approach”.

Artificial Intelligence in Engineering Vol. 12, Issue 3, pp. 149–162.

Kalay, Y.E. (2004). “Architecture’s New Media: Principles, Theories and Methods of

Computer-Aided Design”. Cambridge, Massachusetts, The MIT Press.

Lawson et al, (2014). “Design in Modular Construction”. CRC Press, New York.

Liggett, R. S. (2000). “Automated facilities layout: past, present and future”. Automation

in Construction Vol. 9, Issue 2, pp. 197–215.

lineshapespace@ (2014). Line//Shape//Space (official webpage), Denver.

”http://lineshapespace.com/the-benefits-of-modular-construction/” [viewed at

20/08/2015]

Martins, T. (2011). “Desenvolvimento tipológico de habitação unifamiliar a partir da

solução base “Coolhaven””. Master Dissertation, Department of Civil Engineering

and Architecture, University of Beira Interior, Covilhã.

Martins, T., Murtinho, V., Correia, A., Ferreira, H., Silva, L. (2011). “Avaliação de

versatilidade tipológica em módulos de base quadrada com estrutura em aço

enformado a frio”. VIII Congresso de Construção Metálica e Mista, LNEC, Lisboa.

pp. 1–13.

Mitchell, M. (1996). “An Introduction to Genetic Algorithms”. Cambridge, MA: MIT

Press.

Mitchell,W.J. (1998). “The Logic of Architecture: Design, Computation, and Cognition”.

6th ed. Cambridge, MA: MIT Press.

Narayan, K. Lalit (2008). “Computer Aided Design and Manufacturing”. New Delhi:

Prentice Hall of India. p. 3.

 APPENDIX

João Francisco Rodrigues Costa 50

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

Neufert et al, (2010). “Arte de projetar em arquitetura”. Gustavo Gili, Barcelona.

Portas, N. (1996). “Funções e Exigências de Áreas da Habitação”. LNEC, Lisboa.

Paquete, L. & Araújo, F. [Notes from] “Laboratório de Programação Avançada

(2008/09)”. Department of Informatics Engineering of the University of Coimbra,

FCTUC.

Rodrigues, E. (2014). “Automated Floor Plan Design – Generation, Simulation, and

Optimization”. Doctoral Thesis, Department of Mechanical Engineering, Faculty of

Sciences and Technologies, Coimbra.

Rosenman, M.A.,& Gero, J.S. (1999). “Evolving designs by generating useful complex

gene structures”. Bentley, P.J., Ed., Evolutionary Design by Computers, San

Francisco, CA: Morgan Kaufmann.

Schnier, T., & Gero, J.S. (1996). “Learning genetic representations as alternative to hand-

coded shape grammars”. Gero, J.S., & Sudweeks, Eds., Artificial Intelligence in

Design, Dordrecht, Kluwer Academic Publ. pp. 39–57.

Serag, A., Ono, S., & Nakayama, S. (2008). “Using interactive evolutionary computation

to generate creative building designs”. Artificial Life and Robotics, Vol. 13, Issue 1,

pp. 246-250.

Weisberg, D. E. (2008). “The Engineering Design Revolution – The People, Companies

and Computer Systems That Changed Forever the Practice of Engineering”. S.

Jamaica Court, Englewood.

Wong, S. S. Y., & Chan, K. C. C. (2009). “EvoArch: An evolutionary algorithm for

architectural layout design”. Computer-Aided Design, Vol. 41, Issue 9, pp. 649-667.

 APPENDIX

João Francisco Rodrigues Costa A-1

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

APPENDIX

A.1. TeseMestrado class

public class TeseMestrado {

 //code’s main. initializes the code

 public static void main(String[] args) {

 //declaration and initialization of a variable (Manager

type) by its constructor (go to Manager class)

 Manager manager = new Manager();

 //sets visible 'Welcome' panel which is initialized on

Manager

 manager.Wwelcome.setVisible(true);

 }

}

A.2. Welcome class

public class Welcome extends javax.swing.JFrame {

 Manager manager;

 //constructor
 public Welcome(Manager manager) {
 this.manager = manager;
 initComponents();
 }

 //'graphics' automatic code
 /*********DELETED*********/

 //begin button. leads to Habitation class
 private void BeginBTActionPerformed(java.awt.event.ActionEvent evt) {

 manager.Whabitation.setVisible(true);
 this.setVisible(false);

 }

 public static void main(String args[]) {
 //'graphics' automatic code

/*********DELETED*********/

 // Variables declaration

 APPENDIX

João Francisco Rodrigues Costa A-2

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 private javax.swing.JButton BeginBT;
 private javax.swing.JFrame jFrame1;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JLabel jLabel4;
 private javax.swing.JLabel jLabel5;
 private javax.swing.JLabel jLabel7;
 // End of variables declaration
}

A.3. Manager class

import java.io.*;

public class Manager {

 //declaration of interface's variables. each variable has its own class
 public Welcome Wwelcome;
 public Habitation Whabitation;
 public Shape Wshape;
 public KitchenT Wkitchen;
 public LivingRT Wliving;
 public RoomT Wroom;
 public SolutionL WsolL;
 public SolutionLine WsolLine;

 //Boolean accepts true or false. these variables 'save' user's decision
about a solution in line or L
 public boolean shapeLine;
 public boolean shapeL;

 public Manager() {

 //variables which will read txt file
 BufferedReader br = null;
 String line = null;
 //this debug simply shows in shell the content of ArrayLists<Block[]>
kitchens, livingRooms and rooms
 boolean DEBUG = false;

 try {
 //br equals the content of config.txt file
 br = new BufferedReader(new FileReader("config.txt"));
 //while each line from config.txt is different from null
 while ((line = br.readLine()) != null)
 {
 //createBlock method (from Block class) is used with line as
a parameter (go to Block class, createBlock method)
 Block.createBlock(line);
 }

 if (DEBUG) {
 for (Block[] kitchen : Block.kitchens) {

 APPENDIX

João Francisco Rodrigues Costa A-3

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 for (int i = 0; i < 8; i++) {
 System.out.println(kitchen[i]);
 }
 }
 for (Block[] kitchen : Block.livingRooms) {
 for (int i = 0; i < 8; i++) {
 System.out.println(kitchen[i]);
 }
 }
 for (Block[] kitchen : Block.rooms) {
 for (int i = 0; i < 8; i++) {
 System.out.println(kitchen[i]);
 }
 }
 }

 //case config file doesn't exist
 } catch (FileNotFoundException ex) {
 System.out.println("Text file containing doors matrix not found:
config.txt");
 //abnormal termination
 System.exit(0);
 //exception handling
 } catch (IOException ex) {
 ex.printStackTrace();
 }

 //creates and initializes panels
 this.Wwelcome = new Welcome(this);//go to Welcome class
 this.Whabitation = new Habitation(this);//go to Habitation class
 this.Wshape = new Shape(this);//go to Shape class
 this.Wkitchen = new KitchenT(this);//go to KitchenT class
 this.Wliving = new LivingRT(this);//go to LivingRT class
 this.Wroom = new RoomT(this);//go to RoomT class
 }
}

A.4. Habitation class

public class Habitation extends javax.swing.JFrame {

 Manager manager;

 //constructor

 public Habitation(Manager manager) {

 this.manager = manager;

 initComponents();

 }

//'graphics' automatic code
 /*********DELETED*********/

 //next button

 APPENDIX

João Francisco Rodrigues Costa A-4

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 private void NextBTActionPerformed(java.awt.event.ActionEvent

evt) {

 String op = ListCB.getSelectedItem().toString();

 //if chosen option differs from T2, a text will appear

 if (!op.equals("T2"))

 ErrorL.setText(op + " typology not implemented

yet.");

 else{

 //if not, leads to Shape class

 ErrorL.setText("");

 manager.Wshape.setVisible(true);

 this.setVisible(false);

 }

 }

 private void ListCBActionPerformed(java.awt.event.ActionEvent

evt) {

 }

 //previous button. leads to Welcome class

 private void PrevBTActionPerformed(java.awt.event.ActionEvent

evt) {

 this.setVisible(false);

 manager.Wwelcome.setVisible(true);

 }

 public static void main(String args[]) {

 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration

 private javax.swing.JLabel ErrorL;

 private javax.swing.JComboBox ListCB;

 private javax.swing.JButton NextBT;

 private javax.swing.JButton PrevBT;

 private javax.swing.JLabel jLabel1;

 // End of variables declaration

}

A.5. Shape class

public class Shape extends javax.swing.JFrame {

 Manager manager;

 //constructor

 public Shape(Manager manager) {

 this.manager = manager;

 initComponents();

 LCB.setSelected(true);

 LineCB.setSelected(true);

 }

 //'graphics' automatic code

 APPENDIX

João Francisco Rodrigues Costa A-5

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 /*********DELETED*********/

 private void LCBActionPerformed(java.awt.event.ActionEvent evt)

{

 }

 //previous button. leads to Habitation class

 private void PrevBTActionPerformed(java.awt.event.ActionEvent

evt) {

 this.setVisible(false);

 manager.Whabitation.setVisible(true);

 manager.shapeL = LCB.isSelected();

 manager.shapeLine = LineCB.isSelected();

 }

 //next button. leads to KitchenT class if at least one of the

shapes is selected

 private void NextBTActionPerformed(java.awt.event.ActionEvent

evt) {

 manager.shapeL = LCB.isSelected();

 manager.shapeLine = LineCB.isSelected();

 if (manager.shapeL || manager.shapeLine){

 manager.Wkitchen.setVisible(true);

 this.setVisible(false);

 ErrorL.setText("");

 }

 else{

 ErrorL.setText("Choose at least one of the

options.");

 }

 }

 private void LineCBActionPerformed(java.awt.event.ActionEvent

evt) {

 }

 public static void main(String args[]) {

 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration

 private javax.swing.JLabel ErrorL;

 private javax.swing.JCheckBox LCB;

 private javax.swing.JLabel LI;

 private javax.swing.JCheckBox LineCB;

 private javax.swing.JLabel LineI;

 private javax.swing.JButton NextBT;

 private javax.swing.JButton PrevBT;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 // End of variables declaration

}

A.6. KitchenT class

public class KitchenT extends javax.swing.JFrame {

 APPENDIX

João Francisco Rodrigues Costa A-6

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 Manager manager;

 //constructor

 public KitchenT(Manager manager) {

 initComponents();

 this.manager = manager;

 Type1CB.setSelected(true);

 Type2CB.setSelected(true);

 }

 //'graphics' automatic code
 /*********DELETED*********/

 //previous button. leads to Shape class

 private void PrevBTActionPerformed(java.awt.event.ActionEvent

evt) {

 this.setVisible(false);

 manager.Wshape.setVisible(true);

 }

 private void Type1CBActionPerformed(java.awt.event.ActionEvent

evt) {

 }

 //next button

 private void NextBTActionPerformed(java.awt.event.ActionEvent

evt) {

 //fills kitchensAvailability Boolean array

 Block.kitchensAvailability[0] = Type1CB.isSelected();

 Block.kitchensAvailability[1] = Type2CB.isSelected();

 //if at least one of the kitchens is selected

 if (Block.kitchensAvailability[0] ||

Block.kitchensAvailability[1]){

 //leads to LivingRT class

 manager.Wliving.setVisible(true);

 this.setVisible(false);

 ErrorL.setText("");

 }

 //if no kitchen is selected

 else{

 ErrorL.setText("Choose at least one of the

options.");

 }

 }

 public static void main(String args[]) {

 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration

 private javax.swing.JLabel ErrorL;

 private javax.swing.JLabel Kitchen1I;

 private javax.swing.JLabel Kitchen2I;

 private javax.swing.JButton NextBT;

 private javax.swing.JButton PrevBT;

 private javax.swing.JCheckBox Type1CB;

 APPENDIX

João Francisco Rodrigues Costa A-7

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 private javax.swing.JCheckBox Type2CB;

 private javax.swing.JLabel jLabel1;

 // End of variables declaration

}

A.7. LivingRT class

public class LivingRT extends javax.swing.JFrame {

 Manager manager;

 //constructor

 public LivingRT(Manager manager) {

 initComponents();

 this.manager = manager;

 Type1CB.setSelected(true);

 Type2CB.setSelected(true);

 Type3CB.setSelected(true);

 }

 //'graphics' automatic code
 /*********DELETED*********/

 private void Type2CBActionPerformed(java.awt.event.ActionEvent

evt) {

 }

 //previous button. leads to KitchenT class

 private void PrevBTActionPerformed(java.awt.event.ActionEvent evt)

{

 this.setVisible(false);

 manager.Wkitchen.setVisible(true);

 }

 //next button

 private void NextBTActionPerformed(java.awt.event.ActionEvent evt)

{

 //fills livingRoomsAvailability Boolean array

 Block.livingRoomsAvailability[0] = Type1CB.isSelected();

 Block.livingRoomsAvailability[1] = Type2CB.isSelected();

 Block.livingRoomsAvailability[2] = Type3CB.isSelected();

 //if at least one of the living rooms is selected

 if (Block.livingRoomsAvailability[0] ||

Block.livingRoomsAvailability[1] || Block.livingRoomsAvailability[2]){

 //leads to RoomT class

 manager.Wroom.setVisible(true);

 this.setVisible(false);

 ErrorL.setText("");

 }

 //if no living room is selected

 else{

 ErrorL.setText("Choose at least one of the options.");

 }

 }

 APPENDIX

João Francisco Rodrigues Costa A-8

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 public static void main(String args[]) {

 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration

 private javax.swing.JLabel ErrorL;

 private javax.swing.JLabel LR1I;

 private javax.swing.JLabel LR2I;

 private javax.swing.JLabel LR3I;

 private javax.swing.JButton NextBT;

 private javax.swing.JButton PrevBT;

 private javax.swing.JCheckBox Type1CB;

 private javax.swing.JCheckBox Type2CB;

 private javax.swing.JCheckBox Type3CB;

 private javax.swing.JLabel jLabel1;

 // End of variables declaration

}

A.8. RoomT class

public class RoomT extends javax.swing.JFrame {

 Manager manager;

 //constructor
 public RoomT(Manager manager) {
 this.manager = manager;
 initComponents();
 Type1CB.setSelected(true);
 Type2CB.setSelected(true);
 Type3CB.setSelected(true);
 Type4CB.setSelected(true);
 Type5CB.setSelected(true);
 }

 //'graphics' automatic code
 /*********DELETED*********/

 //previous button. leads to LivingRT class
 private void PrevBTActionPerformed(java.awt.event.ActionEvent evt) {
 this.setVisible(false);
 manager.Wliving.setVisible(true);
 }

 //next button
 private void SolBTActionPerformed(java.awt.event.ActionEvent evt) {
 //fills roomsAvailability Boolean array
 Block.roomsAvailability[0] = Type1CB.isSelected();
 Block.roomsAvailability[1] = Type2CB.isSelected();
 Block.roomsAvailability[2] = Type3CB.isSelected();
 Block.roomsAvailability[3] = Type4CB.isSelected();
 Block.roomsAvailability[4] = Type5CB.isSelected();

 APPENDIX

João Francisco Rodrigues Costa A-9

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 //if at least one of the rooms is selected
 if (Block.roomsAvailability[0] || Block.roomsAvailability[1] ||
Block.roomsAvailability[2] || Block.roomsAvailability[3] ||
Block.roomsAvailability[4]){
 this.setVisible(false);
 ErrorL.setText("");
 //if L shape was selected (manager.shapeL is a Boolean)
 if (manager.shapeL)
 {
 //leads to SolutionL class and sets it visible
 manager.WsolL = new SolutionL(manager);
 manager.WsolL.setVisible(true);
 }
 //if line shape was selected (manager.shapeLine is a
boolean)
 if (manager.shapeLine)
 {
 //leads to SolutionLine class and sets it visible
 manager.WsolLine = new SolutionLine (manager);
 manager.WsolLine.setVisible(true);
 }

 }

 else{
 ErrorL.setText("Choose at least one of the options.");
 }

 }

 public static void main(String args[]) {
 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration
 private javax.swing.JLabel ErrorL;
 private javax.swing.JButton PrevBT;
 private javax.swing.JButton SolBT;
 private javax.swing.JCheckBox Type1CB;
 private javax.swing.JCheckBox Type2CB;
 private javax.swing.JCheckBox Type3CB;
 private javax.swing.JCheckBox Type4CB;
 private javax.swing.JCheckBox Type5CB;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JLabel jLabel4;
 private javax.swing.JLabel jLabel5;
 private javax.swing.JLabel jLabel6;
 // End of variables declaration
}

 APPENDIX

João Francisco Rodrigues Costa A-10

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

A.9. SolutionsL class

public class SolutionL extends javax.swing.JFrame {

 Manager manager;
 int num;

 //constructor
 public SolutionL(Manager manager) {
 initComponents();
 this.manager = manager;
 //SolveL() method from Block class
 Block.SolveL();
 //begins counter
 num = 0;
 //updateImg() method from this class
 updateImg();
 }

 //'graphics' automatic code
 /*********DELETED*********/

 private void PreviousBTActionPerformed(java.awt.event.ActionEvent evt) {

 //if counter is bigger than 0 (in case num=0, nothing happens)
 if (num > 0) {
 num--;
 }
 updateImg();
 }

 private void MenuBTActionPerformed(java.awt.event.ActionEvent evt) {
 manager.Wroom.setVisible(true);
 this.setVisible(false);
 }

 private void NextBTActionPerformed(java.awt.event.ActionEvent evt) {
 //if counter is lower than the total number of solutions (in case num
equals the total number of solutions, nothing happens)
 if (num < Block.solutionsL.size() - 1) {
 num++;
 }
 updateImg();
 }
 //updates the interfaces: the nr of solutions, the descriptions and the
images
 public void updateImg() {
 if (num < Block.solutionsL.size()) {
 jLabel4.setText("Solution number " + (num + 1) + " of " +
(Block.solutionsL.size()));
 jLabel1.setText("The upper module is " +
Block.solutionsL.get(num)[0].getDescription());

 APPENDIX

João Francisco Rodrigues Costa A-11

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 jLabel2.setText("The corner module is " +
Block.solutionsL.get(num)[1].getDescription());
 jLabel3.setText("The right module is " +
Block.solutionsL.get(num)[2].getDescription());
 Image1.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[0].getDescription() + "_.jpg")));
 Image2.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[1].getDescription() + "_.jpg")));
 Image3.setIcon(new
javax.swing.ImageIcon(getClass().getResource("/Imagens/" +
Block.solutionsL.get(num)[2].getDescription() + "_.jpg")));
 }
 }

 public static void main(String args[]) {
 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration
 private javax.swing.JLabel Image1;
 private javax.swing.JLabel Image2;
 private javax.swing.JLabel Image3;
 private javax.swing.JButton MenuBT;
 private javax.swing.JButton NextBT;
 private javax.swing.JButton PreviousBT;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JLabel jLabel3;
 private javax.swing.JLabel jLabel4;
 // End of variables declaration
}

A.10. SolutionsLine class

//this class is similar to SolutionL class, but for lines solutions

public class SolutionLine extends javax.swing.JFrame {

 Manager manager;

 int num;

 public SolutionLine(Manager manager) {

 initComponents();

 this.manager = manager;

 Block.SolveLine();

 num = 0;

 updateImg();

 }

 //'graphics' automatic code
 /*********DELETED*********/

 APPENDIX

João Francisco Rodrigues Costa A-12

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 private void MenuBTActionPerformed(java.awt.event.ActionEvent

evt) {

 manager.Wroom.setVisible(true);

 this.setVisible(false);

 }

 private void

PreviousBTActionPerformed(java.awt.event.ActionEvent evt) {

 if(num>0)

 {

 num--;

 }

 updateImg();

 }

 private void NextBTActionPerformed(java.awt.event.ActionEvent

evt) {

 if(num<Block.solutionsLine.size()-1)

 {

 num++;

 }

 updateImg();

 }

 public void updateImg()

 {

 if (num < Block.solutionsLine.size())

 {

 jLabel1.setText("Solution number " + (num +1) + " of

" + (Block.solutionsLine.size()));

 jLabel2.setText("The left module is " +

Block.solutionsLine.get(num)[0].getDescription() + ".");

 jLabel3.setText("The middle module is " +

Block.solutionsLine.get(num)[1].getDescription() + ".");

 jLabel4.setText("The right module is " +

Block.solutionsLine.get(num)[2].getDescription() + ".");

 Image1.setIcon(new

javax.swing.ImageIcon(getClass().getResource("/Imagens/" +

Block.solutionsLine.get(num)[0].getDescription() + "_.jpg")));

 Image2.setIcon(new

javax.swing.ImageIcon(getClass().getResource("/Imagens/" +

Block.solutionsLine.get(num)[1].getDescription() + "_.jpg")));

 Image3.setIcon(new

javax.swing.ImageIcon(getClass().getResource("/Imagens/" +

Block.solutionsLine.get(num)[2].getDescription() + "_.jpg")));

 }

 }

 public static void main(String args[]) {

 //'graphics' automatic code
 /*********DELETED*********/

 // Variables declaration

 private javax.swing.JLabel Image1;

 private javax.swing.JLabel Image2;

 private javax.swing.JLabel Image3;

 private javax.swing.JButton MenuBT;

 private javax.swing.JButton NextBT;

 APPENDIX

João Francisco Rodrigues Costa A-13

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 private javax.swing.JButton PreviousBT;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JLabel jLabel2;

 private javax.swing.JLabel jLabel3;

 private javax.swing.JLabel jLabel4;

 // End of variables declaration

}

A.11. Block class

import java.util.ArrayList;

//block's class initialization
public class Block {

 //variables
 //arraylists of block type with areas allocated
 public static ArrayList<Block[]> kitchens = new ArrayList<>();
 public static ArrayList<Block[]> livingRooms = new ArrayList<>();
 public static ArrayList<Block[]> rooms = new ArrayList<>();
 //essentially indicates which areas the user would like to combine
 public static boolean[] kitchensAvailability = new boolean[100];
 public static boolean[] livingRoomsAvailability = new boolean[100];
 public static boolean[] roomsAvailability = new boolean[100];
 //indicates the availability of a space
 public static boolean kitchensAvailable, roomsAvailable,
livingRoomsAvailable;
 //lists of solutions in line and L
 public static ArrayList<Block[]> solutionsLine = new ArrayList<>();
 public static ArrayList<Block[]> solutionsL = new ArrayList<>();

 public boolean[] doors;
 private String description;
 //indicates 'K', 'L' or 'R'
 public char typeB;
 //pointers of Block type
 public Block up, left, right, down;

 //default constructor
 public Block() {
 //creates doors matrix
 doors = new boolean[12];
 //clean pointers
 up = left = right = down = null;
 }

 //constructor which receives a string
 public Block(String config) {

 //represents the physical memory address location of the object
which is being utilized
 this();
 //creates an array of string type by splitting on "_". Ex: [RO]
[S0] [bits...]

 APPENDIX

João Francisco Rodrigues Costa A-14

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 String[] split = config.split("_");
 //creates an array of string type by splitting on tabs the 3rd
column of split array. Ex: [0] [0] [1] [1] [0] ...
 String[] bits = split[2].split("\t");

 int i = 0;
 //for each door
 for (int j = 0; j < bits.length; j++) {
 //fills doors matrix
 doors[i++] = (Integer.parseInt(bits[j]) == 1);
 }
 //returns a string. Ex: "R0_S0"
 description =
split[0].concat("_").concat(split[1]);//concat():Returns a string that is the
result of concatenating two or more string values.
 //returns 'K', 'L' or 'R'
 typeB = split[0].charAt(0);
 //clean pointers
 up = left = right = down = null;
 }

 //place method
 public boolean place() {
 //fills array of string type split[]. Ex: K0_R0 -> [K0][R0]
 String split[] = description.split("_");
 //fills character tipo. Ex: [K0] -> K. For the implemented code,
only K(itchens), L(iving rooms) and R(ooms) are being used.
 char tipo = split[0].charAt(0);
 //fills character transformation. Ex: [R0] -> R. For the
implemented code, only R(otate) and S(ymmetric) are being used.
 char transformation = split[1].charAt(0);
 //fills integer number with the integer correspondent to the
second character at split[0]. Ex: [K0] -> 0.
 int number = Character.getNumericValue(split[0].charAt(1));
 //fills integer pos with the integer correspondent to the second
character at split[1]. Ex: [R0] -> 0.
 int pos = Character.getNumericValue(split[1].charAt(1));
 //when transformation is symmetric, sums 4 to pos. Ex: R->0-3,
S->4-7.
 if (transformation == 'S') {
 pos += 4;
 }
 switch (tipo) {
 //case tipo = 'K'
 case 'K':
 //at each cycle it increases ArrayList<Block[]> kitchens
size (allocated space on memory). If it is equal to the present number, if is
used.
 if (kitchens.size() == number) {
 //adds an array of 8 Blocks on each space of
kitchen
 kitchens.add(new Block[8]);
 }
 //allocates present variables(this)on the correct array
 kitchens.get(number)[pos] = this;

 APPENDIX

João Francisco Rodrigues Costa A-15

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 //gives a signal that an module has been placed (place
method returns boolean)
 return true;

 //case tipo = 'R'; same as above.
 case 'R':
 if (rooms.size() == number) {
 rooms.add(new Block[8]);
 }
 rooms.get(number)[pos] = this;
 return true;

 //case tipo = 'L'; same as above.
 case 'L':
 if (livingRooms.size() == number) {
 livingRooms.add(new Block[8]);
 }
 livingRooms.get(number)[pos] = this;
 return true;
 }
 return false;
 }

 //SolveLine method. For more detail read SolveL method.
 public static void SolveLine() {
 solutionsLine = new ArrayList<>();
 kitchensAvailable = true;
 livingRoomsAvailable = true;
 roomsAvailable = true;
 int j;

 livingRoomsAvailable = false;
 j = 0;
 for (Block[] livingRoom : Block.livingRooms) {
 if (livingRoomsAvailability[j++]) {
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();
 livingRoom[i].checkAreaList(Block.kitchens,
kitchensAvailability, "left", "right", true);
 livingRoom[i].removeNeighbours();
 }
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();
 livingRoom[i].checkAreaList(Block.kitchens,
kitchensAvailability, "right", "left", true);
 livingRoom[i].removeNeighbours();
 }
 }
 }
 livingRoomsAvailable = true;

 kitchensAvailable = false;
 j = 0;
 for (Block[] livingRoom : Block.kitchens) {
 if (kitchensAvailability[j++]) {
 for (int i = 0; i < 8; i++) {

 APPENDIX

João Francisco Rodrigues Costa A-16

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 livingRoom[i].removeNeighbours();

 livingRoom[i].checkAreaList(Block.livingRooms,
livingRoomsAvailability, "left", "right", true);
 livingRoom[i].removeNeighbours();
 }
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();

 livingRoom[i].checkAreaList(Block.livingRooms,
livingRoomsAvailability, "right", "left", true);
 livingRoom[i].removeNeighbours();
 }
 }
 }
 kitchensAvailable = true;

 for (Block[] kitchen : Block.kitchens) {
 for (int i = 0; i < 8; i++) {
 kitchen[i].removeNeighbours();
 }
 }
 for (Block[] livingRoom : Block.livingRooms) {
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();
 }
 }
 for (Block[] room : Block.rooms) {
 for (int i = 0; i < 8; i++) {
 room[i].removeNeighbours();
 }
 }
 }

 //SolveL method
 public static void SolveL() {
 //if user goes back to menu and rearrange selection, a new array
is filled
 solutionsL = new ArrayList<>();
 //puts all modules available to allocate
 kitchensAvailable = true;
 roomsAvailable = true;
 livingRoomsAvailable = true;
 int j;

 //forcing living rooms to be in the middle; first to be
allocated
 livingRoomsAvailable = false;
 j = 0;
 //for any type of living rooms
 for (Block[] livingRoom : Block.livingRooms) {
 //if any living room which was selected by the user
 if (livingRoomsAvailability[j++]) {
 //for any of the 8 possibilities a typology has
 for (int i = 0; i < 8; i++) {

 APPENDIX

João Francisco Rodrigues Costa A-17

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 //removeNeighbours method applied to
livingRoom[i] (please read removeNeighbours method)
 livingRoom[i].removeNeighbours();
 //checkAreaList method applied to
livingRoom[i] with these input parameters (please read checkAreaList method)
 //kitchens will be tested above, and rooms
right to the living rooms
 livingRoom[i].checkAreaList(Block.kitchens,
kitchensAvailability, "up", "right", false);
 livingRoom[i].removeNeighbours();
 }
 //same as above. this time, kitchens will be tested
at right, and rooms above the living rooms
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();
 livingRoom[i].checkAreaList(Block.kitchens,
kitchensAvailability, "right", "up", false);
 livingRoom[i].removeNeighbours();
 }
 }
 }
 livingRoomsAvailable = true;

 //same thing but now for kitchens at middle
 kitchensAvailable = false;
 j = 0;

 for (Block[] kitchen : Block.kitchens) {
 if (kitchensAvailability[j++]) {
 for (int i = 0; i < 8; i++) {
 kitchen[i].removeNeighbours();
 kitchen[i].checkAreaList(Block.livingRooms,
livingRoomsAvailability, "up", "right", false);
 kitchen[i].removeNeighbours();
 }
 for (int i = 0; i < 8; i++) {
 kitchen[i].removeNeighbours();
 kitchen[i].checkAreaList(Block.livingRooms,
livingRoomsAvailability, "right", "up", false);
 kitchen[i].removeNeighbours();
 }
 }
 }
 kitchensAvailable = true;

 //puts all pointers back to null (security check)
 for (Block[] kitchen : Block.kitchens) {
 for (int i = 0; i < 8; i++) {
 kitchen[i].removeNeighbours();
 }
 }
 for (Block[] livingRoom : Block.livingRooms) {
 for (int i = 0; i < 8; i++) {
 livingRoom[i].removeNeighbours();
 }
 }

 APPENDIX

João Francisco Rodrigues Costa A-18

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 for (Block[] room : Block.rooms) {
 for (int i = 0; i < 8; i++) {
 room[i].removeNeighbours();
 }
 }
 }

 //checkAreaList method. it has 5 input parameters, as seen below
 public void checkAreaList(ArrayList<Block[]> blockList, boolean[]
areaAvailability, String direction, String nextDiretion, boolean isLine) {
 //puts the following module (blocklist) to be tested false
 if (blockList == Block.kitchens) {
 kitchensAvailable = false;
 }
 if (blockList == Block.rooms) {
 roomsAvailable = false;
 }
 if (blockList == Block.livingRooms) {
 livingRoomsAvailable = false;
 }

 //auxiliary block b (from default constructor)
 Block b;
 int j = 0;
 for (Block[] area : blockList) {
 //if an option was selected by the user
 if (areaAvailability[j++]) //for the 8 types of
transformations
 {
 for (int i = 0; i < 8; i++) {
 //each transformation
 b = area[i];
 //if integer from numConnections method is
bigger than 0. At this point, if auxiliary module (b) can connect to the
current module being tested(this)
 if (numConnections(b, direction) > 0) {
 //at this point 2 of 3 blocks are
already defined
 if (nextDiretion != null) {
 //if there's still an area left
to fill, checkAreaList is called inside its own method
 if (kitchensAvailable) {

 checkAreaList(Block.kitchens, kitchensAvailability, nextDiretion,
null, isLine);
 } else if (roomsAvailable) {

 checkAreaList(Block.rooms, roomsAvailability, nextDiretion, null,
isLine);
 } else if
(livingRoomsAvailable) {

 checkAreaList(Block.livingRooms, livingRoomsAvailability,
nextDiretion, null, isLine);
 }
 } //if all blocks are defined

 APPENDIX

João Francisco Rodrigues Costa A-19

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 else {
 //auxiliary array of blocks sol
 Block[] sol = new Block[3];

 //if isLine=true (line shape)
 if (isLine) {
 int exitLine = 0;
 int leftLine[] = {1, 0,
1, 1};
 int middleLine[] = {1,
0, 1, 0};
 int rightLine[] = {1, 1,
1, 0};

 sol[0] = this.left;
 sol[1] = this;
 sol[2] = this.right;

 for (int g = 0; g < 3;
g++) {
 //if one of the
modules is a Kitchen or a Living Room
 if (sol[g].typeB
!= 'R') {
 switch (g)
{
 //checks if
there is an exit at each position; breaks immediately after finding one
 case (0):

 exitLine += Block.checkExit(leftLine, sol[0]);
 break;
 case (1):

 exitLine += Block.checkExit(middleLine, sol[1]);
 break;
 case (2):

 exitLine += Block.checkExit(rightLine, sol[2]);
 break;
 default:

 break;
 }
 }
 }
 //if there is at least
one exit, adds solution to solutionsLine
 if (exitLine > 0) {

 solutionsLine.add(sol);
 }
 } //if isLine=false (L shape)
 else {
 int exitL = 0;

 APPENDIX

João Francisco Rodrigues Costa A-20

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 int upL[] = {1, 1, 0,
1};
 int cornerL[] = {0, 0,
1, 1};
 int rightL[] = {1, 1, 1,
0};

 sol[0] = this.up;
 sol[1] = this;
 sol[2] = this.right;
 //for the three modules
of the possible solution
 for (int g = 0; g < 3;
g++) {
 //if one of the
modules is a Kitchen or a Living Room
 if (sol[g].typeB
!= 'R') {
 switch (g)
{
 //checks if
there is an exit at each position; breaks immediately after finding one
 case (0):
 exitL
+= Block.checkExit(upL, sol[0]);
 break;
 case (1):
 exitL
+= Block.checkExit(cornerL, sol[1]);
 break;
 case (2):
 exitL
+= Block.checkExit(rightL, sol[2]);
 break;
 default:

 break;
 }
 }
 }
 //if there is at least
one exit, adds solution to solutionsL
 if (exitL > 0) {

 solutionsL.add(sol);
 }
 }
 }
 }
 }
 }
 }
 //sets all Booleans back to true, for the new iteration
 if (blockList == Block.kitchens) {
 kitchensAvailable = true;
 }

 APPENDIX

João Francisco Rodrigues Costa A-21

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 if (blockList == Block.rooms) {
 roomsAvailable = true;
 }
 if (blockList == Block.livingRooms) {
 livingRoomsAvailable = true;
 }
 }

 //numConnections method
 public int numConnections(Block b, String positionb) {

 int connections = 0;
 //switch for direction string
 switch (positionb.toLowerCase()) {
 // b is left to this Block
 case "left":
 // 0 1 2 0 1 2
 // 11 3 11 3
 // 10 b 4 10 this 4
 // 9 5 9 5
 // 8 7 6 8 7 6

 //if any connection verifies
 if (doors[11] && b.doors[3]) {
 connections++;
 }
 if (doors[10] && b.doors[4]) {
 connections++;
 }
 if (doors[9] && b.doors[5]) {
 connections++;
 }
 if (connections > 0) {
 //fills the pointers
 this.left = b;
 b.right = this;
 }
 break;
 // b is right to this Block. as described above
 case "right":
 // 0 1 2 0 1 2
 // 11 3 11 3
 // 10 this 4 10 b 4
 // 9 5 9 5
 // 8 7 6 8 7 6

 if (doors[3] && b.doors[11]) {
 connections++;
 }
 if (doors[4] && b.doors[10]) {
 connections++;
 }
 if (doors[5] && b.doors[9]) {
 connections++;
 }
 if (connections > 0) {

 APPENDIX

João Francisco Rodrigues Costa A-22

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 this.right = b;
 b.left = this;
 }
 break;
 // b is below this Block. as described above
 case "down":
 // 0 1 2
 // 11 3
 // 10 this 4
 // 9 5
 // 8 7 6
 // 0 1 2
 // 11 3
 // 10 b 4
 // 9 5
 // 8 7 6
 if (doors[8] && b.doors[0]) {
 connections++;
 }
 if (doors[7] && b.doors[1]) {
 connections++;
 }
 if (doors[6] && b.doors[2]) {
 connections++;
 }
 if (connections > 0) {
 this.down = b;
 b.up = this;
 }
 break;
 // b is above this Block. as described above
 case "up":
 // 0 1 2
 // 11 3
 // 10 b 4
 // 9 5
 // 8 7 6
 // 0 1 2
 // 11 3
 // 10 this 4
 // 9 5
 // 8 7 6
 if (doors[0] && b.doors[8]) {
 connections++;
 }
 if (doors[1] && b.doors[7]) {
 connections++;
 }
 if (doors[2] && b.doors[6]) {
 connections++;
 }
 if (connections > 0) {
 this.up = b;
 b.down = this;
 }
 break;

 APPENDIX

João Francisco Rodrigues Costa A-23

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 }
 //as self-explanatory, returns integer connections
 return connections;
 }

 //checkExit method
 public static int checkExit(int[] exits, Block current) {
 //exits[upper side, right side, lower side, left side]
 for (int i = 0; i < 4; i++) {
 //if exist[i] = 1 must verify if that side has an exit
 if (exits[i] == 1) {
 //tests doors from that side
 for (int j = i * 3; j < (i + 1) * 3; j++) {
 if (current.doors[j] == true) {
 //when it finds an exit, returns 1
 return 1;
 }
 }
 }
 }
 return 0;
 }

 //createBlock method
 public static boolean createBlock(String config) {
 //creates an auxiliary Block b and initializes it with the
constructor which receives a string as a parameter(first constructor)
 //for each line, creates a doors matrix and a description
string.
 Block b = new Block(config);
 //calls place() function for each auxiliary Block b(please read
place method)
 return b.place();
 }

 public String getDescription() {
 return description;
 }

 //removeNeighbours() method
 public void removeNeighbours() {
 //all pointers are null
 up = left = right = down = null;
 }

 public String s(boolean b){
 if(b)
 return "1";
 return "0";
 }

 public String line1(){
 String str = " "+ s(doors[0]) +" "+ s(doors[1]) +" "+
s(doors[2]) + " ";
 if (left != null)
 str = str + (left.line1());

 APPENDIX

João Francisco Rodrigues Costa A-24

Development of an algorithm which generates functional floor

plans for residential buildings based on modular construction

 return str;
 }

 public String line2(){
 String str = " " + s(doors[11]) + " " + s(doors[3]);
 if (left != null)
 str = str + (left.line2());
 return str;
 }

 public String line3(){
 String str = " " + s(doors[10]) + " " + description + " " +
s(doors[4]);
 if (left != null)
 str = str + (left.line3());
 return str;
 }

 public String line4(){
 String str = " " + s(doors[9]) + " " + s(doors[5]);
 if (left != null)
 str = str + (left.line4());
 return str;
 }

 public String line5(){
 String str = " "+ s(doors[8]) +" "+ s(doors[7]) +" "+
s(doors[6]) + " ";
 if (left != null)
 str = str + (left.line5());
 return str;
 }

 //when an array is sent to print, it will use this override method
 @Override
 public String toString(){
 String str = "";
 if(down != null)
 {
 str = down.toString();
 }
 return line1() + "\n" +
 line2() + "\n" +
 line3() + "\n" +
 line4() + "\n" +
 line5() + "\n" + str;
 }
}

