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Abstract

Mannosylglycerate (MG) is an intracellular organic solute found in some red algae, and several thermophilic
bacteria and hyperthermophilic archaea. Glucosylglycerate (GG) was identified at the reducing end of a polysaccharide
from mycobacteria and in a free form in a very few mesophilic bacteria and halophilic archaea. MG has a genuine role
in the osmoadaptation and possibly in thermal protection of many hyper/thermophilic bacteria and archaea, but its
role in red algae, where it was identified long before hyperthermophiles were even known to exist, remains to be
clarified. The GG-containing polysaccharide was initially detected in Mycobacterium phlei and found to regulate fatty
acid synthesis. More recently, GG has been found to be a major compatible solute under salt stress and nitrogen
starvation in a few microorganisms. This review summarizes the occurrence and physiology of MG accumulation, as
well as the distribution of GG, as a free solute or associated with larger macromolecules. We also focus on the recently
identified pathways for the synthesis of both molecules, which were elucidated by studying hyper/thermophilic MG-
accumulating organisms. The blooming era of genomics has now allowed the detection of these genes in fungi and
mosses, opening a research avenue that spans the three domains of life, into the role of these two sugar derivatives.
r 2008 Elsevier GmbH. All rights reserved.
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Introduction

The term compatible solute reflects the ability of small
molecular weight organic compounds to accumulate in
cells in response to external increases in osmotic
pressure without compromising cell physiology [5].
Dissolved salts commonly determine the amount of
water available to cells and NaCl, in particular, is a
major cause of water stress in aquatic environments.
The vast majority of microorganisms are capable of
e front matter r 2008 Elsevier GmbH. All rights reserved.
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responding, within intrinsic limits, to changes in the salt
concentrations of the environment and many resort to
the accumulation of compatible solutes to counter-
balance the external decrease in water availability and
consequent decrease in internal turgor pressure. Neutral
zwitterionic compatible solutes such as trehalose, glycine
betaine, ectoine and proline are frequent osmolytes in
many mesophilic bacteria [11]. On the other hand,
negatively charged organic solutes like di-myo-inositol-
phosphate and mannosylglycerate (MG) have been
often identified in hyper/thermophilic bacteria and
archaea [45]. However, some compatible solutes have
crossed the boundaries of a role in osmoadaptation and
play a broader range of biological functions [11,12]. It is
to be a compatible solute: Bioversatility of mannosylglycerate and
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currently believed that nature’s economy has provided
alternative functional and structural missions for
compatible solutes. Trehalose, for example, is involved
in the protection of cells against a plethora of different
types of stress such as freezing and heat tolerance, in
addition to the classical role in osmoadaptation [12].
Furthermore, trehalose is also a structural component of
the cell walls of several bacteria [38].

In this review we will address some of the factors
known to elicit the accumulation of MG and glucosyl-
glycerate (GG) in members of the three domains of life
as well as their presence in larger macromolecules with
apparently unrelated functions. We will also illustrate
the diversity of pathways governing MG and GG
biosynthesis as well as the genes and enzymes involved,
and their distribution.
Mannosylglycerate distribution and

physiological roles

Mannosylglycerate in red algae

The first report of the occurrence of a low molecular
weight organic solute composed of mannose and
glycerate, named digeneaside, which we designate as
MG, was published by Colin and Augier in the red
seaweed Polysiphonia fastigiata (Rhodophyceae) in 1939
[7]. Only later, was its structure established by Bouveng
et al. [4]. Although MG has initially been found in
members of the order Ceramiales, and considered a
taxonomic marker for this order, it has recently been
detected in other red algae of the orders Gelidiales and
Gigartinales and its taxonomic significance has been
refuted [30]. However, the concentration of MG does
not always respond to increases in the salinity nor does
it accumulate at levels suitable to contribute to the
internal osmotic pressure of most species under salt
stress, a role attributed to polyols, namely mannitol [29].

Mannosylglycerate in thermophilic bacteria

and archaea

Mannosylglycerate was later identified in the thermo-
philic bacteria Thermus thermophilus and Rhodothermus

marinus [37]. MG accumulates in the majority of strains
of T. thermophilus, under salt stress but, in many cases,
trehalose is the major compatible solute [1]. Trehalose
has also been detected in many of the organisms that
accumulate MG and a synergistic role for the two
solutes was proposed by Santos and da Costa [45]. The
construction of MG- and trehalose-negative T. thermo-

philus mutants and the concomitant response to osmotic
stress led to the confirmation that MG is essential for
low-level osmotic adjustment, while trehalose accumula-
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not
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tion is required for growth at higher salt concentrations
[2,48]. Mannosylglycerate also behaves as a compatible
solute in R. marinus, where its concentration increases
with the salinity of the medium, along with very low
levels of glutamate and trehalose. Oddly, a neutral form
of MG designated mannosylglyceramide (MGA) re-
placed MG at higher salinities [47]. Furthermore, MG
was also implicated in the response of R. marinus to
thermal stress [3]. Mannosylglycerate also accumulates
in members of the genus Rubrobacter, which represent a
deep-branching lineage of the phylum Actinobacteria

[17]. These organisms are extremely g-radiation resistant
and the species R. xylanophilus (optimal growth
temperature 60 1C) is the most thermophilic member
of this genus that includes two additional species,
R. radiotolerans and R. taiwanensis which also accumu-
late MG [6]. However, R. xylanophilus shows constitu-
tive accumulation of MG and neither salt or thermal
stress, nor the medium composition had significant
effects on MG levels [17].

Mannosylglycerate has been identified in the hy-
perthermophilic archaea of the genera Pyrococcus,
Thermococcus, Palaeococcus, Aeropyrum, Stetteria and
in some strains of Archaeoglobus, where it accumulates
concomitantly with the increasing levels of NaCl in the
growth medium [46]. The apparent restrictedness of MG
to thermophilic bacteria and hyperthermophilic archaea
(Fig. 1) contributed to the hypothesis that MG is
important in thermal resistance. However, several
studies with hyperthermophilic archaea have shown
that upon thermal stress, di-myo-inositol-phosphate
(DIP) is the dominant intracellular organic solute [46].
Curiously, the hyperthermophilic archaeon Palaeococ-

cus ferrophilus, which does not accumulate DIP, was
found to accumulate high levels of MG both under salt
or thermal stresses strengthening the hypothesis of a role
for MG in thermal adaptation [36].
Glucosylglycerate occurrence and

biological functions

Glucosylglycerate as a compatible solute of bacteria

and archaea

The organic solute GG is a structural analogue of
MG that was originally identified in the marine
cyanobacterium Agmenellum quadruplicatum grown
under nitrogen-limiting conditions [31]. GG was also
recently shown to behave as a compatible solute in the
g-proteobacterium Erwinia chrysanthemi under com-
bined salt stress and nitrogen-limiting conditions,
replacing glutamate and glutamine, the major compa-
tible solutes when abundant sources of nitrogen are
present in the medium [22]. Therefore, it is possible that
to be a compatible solute: Bioversatility of mannosylglycerate and
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Fig. 1. Distribution of mannosylglycerate (white boxes) and glucosylglycerate (black boxes) in the three domains of life.
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GG also accumulates during salt stress in other
microorganisms where the corresponding genes have
been detected, under conditions when limiting nitrogen
has to be mobilized for the synthesis of other nitrogen-
containing cell components [9].

Glucosylglycerate appeared to be a rare organic solute
with a restricted distribution among mesophilic bacteria
(Fig. 1) until it was unexpectedly identified in the
thermophilic bacterium Persephonella marina, a member
of the Aquificales, where it was suggested to act as a true
compatible solute under salt stress [46]. This observation
argued against the initial hypothesis of a restricted role
for GG in organisms living at low temperatures and
suggests that GG and MG could be functionally
interchangeable in the adaptation to stress.

Glucosylglycerate has been detected in the halophilic
archaeon Methanohalophilus portucalensis (Meth. portu-

calensis) as a minor component of the solutes pool,
mostly dominated by amino acids and their derivatives
[44]. Recent research on the biosynthesis of GG in the
psychrotolerant archaeon Methanococcoides burtonii

(M. burtonii) led to the hypothesis that GG could have
a protective role when the organism grows under low
nitrogen conditions. However, it was not possible to
demonstrate this assumption since the organism did not
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not
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grow in the absence of trimethylamine [8]. In spite of the
occasional detection of free GG in a few organisms, the
levels were too low to have any significant osmotic
effect. Further research is required to clarify the role of
GG that is suggested to be synthesized in the large
numbers of organisms that, due to genome sequencing
data, have been found to possess the appropriate gene
homologues.
The GG-containing methylglucose

lipopolysaccharide (MGLP) from mycobacteria

Free GG had been detected in trace amounts in
Mycobacterium smegmatis and was considered to be the
precursor for a GG-containing polysaccharide almost
exclusively found in mycobacteria, designated methyl-
glucose lipopolysaccharide [28,50]. This unusual poly-
saccharide contains about 16–20 hexoses some of which
are methylated and have variable levels of acetate,
propionate, isobutyrate and octanoate and succinic acid
as lateral groups, while GG is located at the reducing
end of the molecule [32,51]. The MGLP was found to
sequester newly synthesized fatty acyl-CoAs, protecting
them from cytoplasmatic esterases and decreasing
to be a compatible solute: Bioversatility of mannosylglycerate and
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inhibition by the product for fatty acid synthase I [26].
This polysaccharide can reach high intracellular con-
centrations (0.5–1mM), which allows mycobacteria to
accumulate high levels of acyl-CoA derivatives without
disturbing normal metabolism [21].

The GG-containing glycolipid from Nocardia
otitidis-caviarum

Glucosylglycerate has also been found in the polar
head of a glycolipid in Nocardia otitidis-caviarum [39].
This organism, which also synthesizes an MGLP similar
to that of mycobacteria, is phylogenetically related to
these organisms [40]. Other species of Nocardia have
been examined where this glycolipid has not been
found [39]. However, the physiological role of the
GG-containing glycolipid is not known.
Mannosylglycerate- and glucosylglycerate-

derived compatible solutes

MG is accumulated by R. marinus under moderate
salt stress but replaced by the neutral derivative MGA
when the organism is grown at salinities near the
maximum tolerated (Fig. 2) [47]. Although it seems that
MG is the substrate for an amidation reaction, the
corresponding gene and enzyme as well as the regulatory
events involved, have not been detected [3]. Curiously,
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the closely related R. obamensis can only produce and
accumulate MG but not MGA [47].

A unique compatible solute derived from GG has
recently been identified in Petrotoga miotherma, a
thermophilic member of the Thermotogales isolated
from oil reservoirs, and characterized as mannosyl-
(1,2)-glucosylglycerate (MGG) (Fig. 2) [27]. The levels
of MGG increase markedly with the NaCl concentra-
tion of the medium up to the optimum for growth.
However, proline and a-glutamate become the domi-
nant compatible solutes at higher NaCl concentrations
and the levels of MGG decrease. Curiously, the strategy
for MGG production does not mirror that of
R. marinus, which seems to convert a pre-existing
compatible solute (MG) into a different form (MGA).
In fact, GG has not been detected in P. miotherma in
any of the conditions tested and the precursor for MGG
biosynthesis has recently been identified to be glucosyl-
3-phosphoglycerate (GPG) (Fernandes, unpublished
results). This compound is the phosphorylated precursor
for the GG found in several organisms [8,9].

An additional GG derivative, glucosyl-(1,6)-glucosyl-
glycerate (GGG) (Fig. 2) has been detected in P. marina,
which is also known to accumulate GG [46]. This
compound had already been detected in M. smegmatis

where it was suspected to be one of the intermediates in
the synthesis of the MGLP [28]. However, detailed
information on the conditions leading to GG and GGG
accumulation in P. marina is not available and the genes
for GGG synthesis remain elusive.
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Biosynthetic pathways for MG

Mannosylglycerate biosynthesis in bacteria

and archaea

MG biosynthesis was initially investigated in the
thermophilic bacterium R. marinus and found to involve
a glycosyltransferase designated mannosylglycerate
synthase (Mgs) that catalyzed the conversion of GDP-
mannose and D-glycerate into MG in one step [34]
leading to the creation of the new glycosyltransferase
family GT78 (www.cazy.org). However, an alternative
pathway using 3-phosphoglycerate (3-PGA) instead of
D-glycerate was also identified in this organism. The
utilization of a non-phosphorylated acceptor has been
observed for other sugar-based compatible solutes.
Trehalose and sucrose, for example can be produced
using glucose and fructose, respectively, as acceptor
substrates [10,41]. The Mgs from R. marinus has been
characterized and more recently the three-dimensional
structure was determined [20,34].

Since one of the first archaeal genomes to be
completely sequenced was that of Pyrococcus horikoshii,
this organism was selected to study MG biosynthesis.
MG synthesis in P. horikoshii cell-free extracts was
tracked from GDP-mannose and 3-PGA through a
phosphorylated intermediate, mannosyl-3-phosphogly-
cerate (MPG) [14]. This two-step strategy via a synthase
and a phosphatase had frequently been observed for the
synthesis of carbohydrate compatible solutes such as
trehalose or glucosylglycerol [12,23]. The purification of
the native mannosyl-3-phosphoglycerate synthase
(MpgS) allowed the identification of the corresponding
gene (mpgS) in the P. horikoshii genome. The mpgS

gene, which was part of a 4 gene operon-like structure
comprising two additional genes involved in GDP-
mannose synthesis, was functionally characterized as
MpgS (EC 2.4.1.217) representing a new family of
glycosyltransferases designated GT55 (www.cazy.org).
A putative phosphatase gene, located immediately
downstream mpgS, was functionally characterized as
mannosyl-3-phosphoglycerate phosphatase (MpgP)
(EC 3.1.3.70) [14].

The elucidation of the two-step pathway in hyperther-
mophilic archaea and the increasing genome sequences
available allowed the detection of homologous genes,
namely in a number of euryarchaeotes and in the
crenarchaeotes Aeropyrum pernix and Staphylothermus

marinus. Some crenarchaeal and euryarchaeal metagen-
omes isolated from environments such as deep-sea
samples and forest soils were also found to contain
mpgS homologues, sometimes without the associated
phosphatase gene [24,42].

The two-step pathway was also identified and
characterized in R. marinus and in T. thermophilus

[3,15]. This pathway is identical to that found in
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not
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hyperthermophilic archaea and involves the enzymes
MpgS and MpgP, which are also encoded by consecu-
tive genes. Rhodothermus marinus is, so far, the only
known organism to have two pathways for the synthesis
of MG. Pathway multiplicity undeniably reflects a
higher flexibility for the regulation of compatible solute
pools upon different environmental stimuli, as shown in
R. marinus, which differentially regulates each route
when sensing salt or thermal stress; i.e. the single-step
pathway is activated by thermal stress and the two-step
pathway activation is related to salt stress [3].

Surprisingly, a gene for the synthesis of MG,
comprising a MpgS and an MpgP in a single polypep-
tide, was identified in the mesophilic bacterium Deha-

lococcoides ethenogenes. This organism is known to
completely dechlorinate groundwater pollutants such as
tetrachloroethene (PCE) and trichloroethene, to ethene
[35]. The functional expression of this gene (designated
mgsD) both in E. coli and in Saccharomyces cerevisiae

showed that the recombinant enzyme synthesized MG in

vitro and in vivo, arguing in favor of a similar function in
the native organism, which unfortunately is notoriously
difficult to grow [16]. Preliminary experiments have
shown that ‘‘D. ethenogenes’’ can grow at NaCl
concentrations as high as 0.5M (Hsu and Zinder,
unpublished results). Therefore, it is conceivable that
MG may act as a compatible solute under salt stress in
this organism. These data, along with the identification
of MG genes in archaeal metagenomes retrieved from
cold environments, refute the hypothetical exclusive
association of MG with hyper/thermophilic prokar-
yotes.
The ambiguous MpgS from Rubrobacter
xylanophilus

The synthesis of MG in R. xylanophilus was tracked
in vivo from GDP-mannose and 3-PGA. The purifica-
tion of the native enzyme allowed the identification of a
highly divergent MpgS from which sequence homology
to the known MpgSs had been extensively erased
(Empadinhas et al., unpublished results). Adjacent to
this mpgS gene we detected genes encoding two
unspecific phosphatases, leading to the hypothesis that
one or both could complete the two-step synthesis of
MG. On the other hand, this atypical MpgS had high
homology with one enzyme found in mycobacteria and
related Actinobacteria, later found to be a glucosyl-3-
phosphoglycerate synthase (GpgS) with low homology
to the homo-functional GpgSs from M. burtonii and
P. marina [8,9,18]. In fact, the R. xylanophilus MpgS
could synthesize GPG, the phosphorylated precursor of
GG, with higher efficiency than that for MPG, although
free GG has never been detected in R. xylanophilus.
However, the failure to detect GG in R. xylanophilus
to be a compatible solute: Bioversatility of mannosylglycerate and
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does not assure that its precursor is not synthesized and
incorporated into a macromolecule like the glycolipid
found in N. otitidis-caviarum or the MGLP from
mycobacteria [28,39]. In any case, the discovery of this
ambiguous MpgS/GpgS constituted a major break-
through because it might represent the branch from
which all known MpgSs and GpgSs evolved, indicating
the possible link between the MG and the GG two-step
pathways.

MG genes in eukaryotes

The biosynthesis of MG in red algae has not been
addressed in detail, but recent sequences deposited in
public databases (GenPept accession AAM93991) in-
dicate that the single-step pathway (Mgs) found in
R. marinus may be involved in the synthesis of MG. The
apparent acquisition of MG biosynthesis by red algae
may reflect endosymbiosis of a prokaryote carrying a
mgs gene [33]. However, the rarity of sequences makes
evolutionary conclusions premature and the origin and
evolution of the Mgs pathway remains untraceable.

A functional mpgS is present in Magnaporthe grisea,
as verified by its expression in S. cerevisiae and
concomitant accumulation of this solute by the yeast
[13]. However, the specific phosphatase gene normally
associated with the mpgS is absent from these organisms
and the function of MPG is unknown. Moreover, mpgS

homologs have also been detected in the genomes of
Neurospora crassa, Chaetomium globosum, Podospora

anserina, Pyrenophora tritici-repentis and in Phaeo-

sphaeria nodorum. Although polyols are the preferred
compatible solutes in fungi, accumulation of MG
cannot be entirely excluded.

Physcomitrella patens, the first moss (Bryophyta)
whose genome was sequenced, has an intronless gene
encoding a protein with high amino acid identity to the
Mgs from R. marinus. Evolutionarily, P. patens symbo-
lizes the first adaptation of ancient plants to land, and
the exposure to drastic temperature fluctuations and
water scarcity [43]. It is possible that this organism may
accumulate MG as a trend acquired from red algae [49].
However, the factors underlying MG accumulation in
red algae and possibly in mosses, as well as the
evolutionary scenario, remain unknown.
Pathways for the synthesis of GG

Glucosylglycerate biosynthesis in archaea

and bacteria

A mannosyl-3-phosphoglycerate phosphatase gene
homologue (mpgP) was found in the genome of
M. burtonii, but a mpgS gene was not detected.
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not
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A glucosyltransferase gene immediately upstream of
the phosphatase was functionally characterized as a
glucosyl-3-phosphoglycerate synthase (GpgS) [8]. The
new family GT81 of glycosyltransferases was created to
accommodate this enzyme and homologues (www.
cazy.org). The enzyme from M. burtonii was specific
for GDP-glucose and despite the similarity of this
substrate with GDP-mannose and of the reaction
mechanism, GpgSs and MpgSs shared no sequence
identity, save for short motifs. Remarkably, this GpgS
also had very low amino acid sequence identity with the
homo-functional GpgSs from mycobacteria [18]. On the
other hand, the recombinant MpgP from M. burtonii

dephosphorylated GPG to GG and MPG to MG. Due
to the vicinity with the gpgS gene, it was designated
gpgP. Similar flexibilities in substrate specificity were
confirmed in vitro for the MpgPs from T. thermophilus,
P. horikoshii, and ‘‘D. ethenogenes’’ [8].

The GpgS has homologues in many bacteria and a
few archaea and was also partially identified in the first
archaeon known to accumulate low amounts of GG, the
halophilic Meth. portucalensis [8,44]. Interestingly, gpgS

genes have been detected in the genomes of some
extremely halophilic archaea such as Halorubrum lacu-

sprofundi, Halobacterium sp., Natronomonas pharaonis

and the square archaeon Haloquadratum walsbyi but not
in other nearly 50 archaeal genomes sequenced so far. In
archaea, the apparent restrictedness of gpgS homolo-
gues to extremely halophilic organisms still lacks
physiological explanation.

The pathway for GG via GpgS and GpgP is
mechanistically similar to the pathway for MG found
in some hyper/thermophilic prokaryotes (see above).
However, the genetic sequence of adjacent mpgS/mpgP

was not as conserved in gpgS and gpgP since they can be
found in the genome as adjacent but divergently
oriented genes, separate from each other or in operon-
like structures [8]. The accumulation of significant levels
of GG has only been shown to occur in Synechococcus

sp. (formerly Agmenellum) and in E. chrysanthemii,
despite the high number of gpgS homologues found in
bacteria [22,31].
Two pathways in a single operon for synthesis of GG

in Persephonella marina

Genes coding for GpgS and GpgP are contained in a
complex operon-like structure in P. marina, along with a
putative histidine kinase regulator, a putative glycerate
kinase/dehydrogenase and a glucosyltransferase (Fig. 3)
[9]. A second operon-like structure located immediately
upstream contains genes related to phosphate uptake
leading to the speculation that the synthesis of GG
might be controlled by phosphate availability. The
recombinant GpgS of P. marina has a more flexible
to be a compatible solute: Bioversatility of mannosylglycerate and
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substrate requirement than that of M. burtonii since it
can synthesize GPG from any NDP-glucose donor
and from 3-PGA. The recombinant GpgP, like the
M. burtonii homologue, dephosphorylated GPG and
MPG. The glycosyltransferase found in the above-
mentioned operon was found to catalyze the synthesis
of GG from NDP-glucose and D-glycerate in one step,
and was designated glucosylglycerate synthase (Ggs)
[19]. The reaction catalyzed by this enzyme resembled
that of the enzyme from the single-step pathway for MG
described in R. marinus [34].

Putative Ggs sequences were detected in the genomes
of several hyperthermophilic bacteria, archaea and also
in some methanogens. To confirm its function, the
putative ggS gene from P. horikoshii has been expressed
in E. coli and the recombinant product found to
efficiently catalyze the synthesis of GG from ADP-
glucose and D-glycerate [13]. However, the function of
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not

glucosylglycerate, Syst. Appl. Microbiol. (2008), doi:10.1016/j.syapm.2008.
this enzyme in the native organism is elusive since GG
has never been detected in cell-free extracts. It is possible
that GG is synthesized and incorporated into yet to be
discovered larger molecules or that the growth condi-
tions leading to GG synthesis in P. horikoshii and
possible accumulation have not been found yet.
The biosynthesis of GG in mycobacteria as precursor

for the MGLP

The identification of GG in the mycobacterial MGLP,
as well as detection of homologues (40% amino acid
identity) to the mpgS from R. xylanophilus in myco-
bacterial genomes, led to the study of the genes from
two species from which the MGLPs have been studied,
the fast-growing M. smegmatis and the slow-growing
M. bovis BCG [18,28,50]. The corresponding recombinant
to be a compatible solute: Bioversatility of mannosylglycerate and
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enzymes had GpgS activity in vitro. Interestingly, these
GpgS sequences were only distantly related to the
GpgSs found in M. burtonii, P. marina and homologues,
and seemed to be restricted to some actinobacteria. The
gpgS gene was present in all the mycobacterial genomes
available and located in a conserved operon-like
structure containing genes folP and tagA, encoding a
putative dihydropteroate synthase (DHPS) and a DNA
glycosylase, respectively. Despite the fact that GG has
been detected in M. smegmatis extracts no typical
phosphatase gene (gpgP) has been detected in myco-
bacterial genomes suggesting that the dephosphoryla-
tion of GPG may reflect excess GPG that is not used for
MGLP synthesis or is converted into GG by unspecific
phosphatases/hydrolases [18].

Biosynthesis of GG in Nocardia: a precursor for a

glycolipid or for MGLP?

The identification of a glycolipid in N. otitidis-

caviarum in which the polar head was composed of
GG esterified to aliphatic chains, extended the functions
attributable to GG [39]. This organism also synthesizes
MGLP and a gpgS of the mycobacterial type was
detected in Nocardia farcinica, the only Nocardia species
whose genome has been sequenced. The genetic organi-
zation of the gpgS-containing operon closely resembles
that found in mycobacteria. The genome of Thermo-

bifida fusca, another slightly thermophilic actinobacter-
ium, contains two highly homologous and divergently
oriented gpgS genes that seem to be the product of a
recent duplication event [25]. It is not known if this
organism synthesizes the MGLP, the GG-containing
glycolipid or both, but it might be speculated that each
gene is regulated differently and involved in different
pathways, either for MGLP or glycolipid assembly.
Concluding remarks

Evidence gathered during the past few years points to
a fundamental role of MG in osmotic adaptation of
some organisms while others may also accumulate this
compound to withstand hyperthermal conditions. How-
ever, the chemically related organic solute GG appears
to have a limited role as a true compatible solute,
although it was found to accumulate to significant
amounts in a few organisms when the nitrogen supply
was limited for growth at salt stress. Nevertheless, the
genes coding for the key enzymes for the synthesis of
this solute have a much broader distribution and further
studies are necessary to confirm the functional role of
GG as a compatible solute. However, GG has also
found a structural role as it is present in larger structures
such as a polysaccharide almost exclusively found in
Please cite this article as: N. Empadinhas, M.S. da Costa, To be or not

glucosylglycerate, Syst. Appl. Microbiol. (2008), doi:10.1016/j.syapm.2008.
mycobacteria and in a glycolipid from a species of
Nocardia. Future research will answer to the questions
raised on the functional and structural roles for GG and
MG in nature.
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