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Abstract 

A sharp interface model has been developed for non-catalytic liquid-solid reversible reactions. It is shown that a 
sharp reaction interface can occur, in certain circumstances, even if the reaction is reversible. Because the pseudo- 
steady state approximation may not be valid for liquid-solid reactions, this assumption was not made in the model. 
This led to the need for numerical resolution and the model was solved using orthogonal collocation both in the 
unreacted core and in the ash layer. Owing to the equilibrium relationship, which holds at the reaction interface, the 
concentrations of the liquid species are coupled at this location, resulting in a possibly non-linear set of algebraic 
equations that must be solved in order to evaluate concentrations at the boundaries. An analysis is made of the 
influence of the parameters that characterize the model. The effect of reversibility is a decrease in the driving force 
for diffusion. © 1998 Elsevier Science Ltd. All rights reserved 
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Notation 

C=concentration (mol/m 3 liquid) except C ~ (mol/ 
m 3 solid) 

D~=effective diffusion coefficient (m 2/s) 
K E =equilibrium constant ((mol/m 3) W(mol/m 3) ~A) 
KL =mass transfer coefficient (m/s) 
ntl =total number of collocation points in inner 

zone 
n,2=total number of collocation points in outer 

zone 
PM=molecular weight 

r----radial spatial coordinate (m) 
re=location of the reaction front (m) 
R=outer radius of the particle (m) 
t=time (s) 

v~(j,i,k)=weight of point k of zone j in the evaluation, 
using orthogonal collocation, of the first 
derivative in point i of zonej 

v2(j,i,k)=weight of point k of zone j in the evaluation, 
using orthogonal collocation, of the second 
derivative in point i of zonej 

x=volumetric conversion of particle 
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fpg@delcam.eom; Fax: +44 (0)121 766 5511. 

459 

y=adimensional concentration (C/C °) 

Greek letters 
e=porosity of the particle 

r h =adimensional spatial coordinate for inner zone 

rh=adimensional spatial coordinate for inner zone 

~--stoichiometric coefficient in reaction 
p--density of solid species (kg/m 3) 

Superscripts 
in =referred to initial concentration 
O=referred to bulk concentration 

Subscripts 
A=referred to species A 
B =referred to species B 
c--referred to the reaction front 

R--referred to species R 
S =referred to species S 
1 =referred to inner zone (unreacted core of par- 

ticle) 
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2=referred to outer zone (ash layer of particle) 

1. Introduction 

Heterogeneous fluid-solid reactions can be divided 
into catalytic and non-catalytic. Both types are usually 
influenced to a high degree by heat and mass transfer 
processes (Doraiswamy and Sharma, 1984). A general 
heterogeneous reaction, where reactants and products 
can be either in the solid or fluid phases, can be 
represented by 

r/AA(f) + "r/RR(S)~r/BB(f) + r/sS(s). (1) 

Examples of non-catalytic fluid-solid reactions are the 
reduction, roasting and chlorination of ores, decomposi- 
tion reactions, carbonyl formation, gasification reactions 
(Doraiswamy and Sharma, 1984) and the causticizing 
reaction (Angevine, 1983; Blackwell, 1987; Don'is and 
Allen, 1985, 1986). Two basic types of model have been 
considered so far: the sharp interface model (SIM) and 
the homogeneous model (or volume reaction model). 
The SIM was originally proposed by Yagi and Kunii 
(1955) as a representation of the conversion of solid 
particles by reaction with a gas. This model assumes that 
reaction occurs at a sharp interface between a growing 
layer of solid product and a shrinking unreacted solid 
core. The rate controlling step can be either internal 
diffusion, gas film diffusion or chemical reaction 
(Levenspiel, 1972). Extensions of this model are the 
crackling core model (Park and Levenspiel, 1975, 1977) 
and the grain model (Szekely and Evans, 1970, 1971; 
Sohn and Szekely, 1972) with or without varying 
structural properties (Ranade and Harrison, 1979; Geor- 
gakis e t  al. ,  1979). The homogeneous model holds when 
the solid is porous and the rate of diffusion of the 
reactant fluid is high. In this case the fluid will penetrate 
deeply into the solid and the reaction will take place 
throughout the particle. Comparison between these two 
models has been made by several authors (Ishida and 
Wen, 1968; Doraiswamy and Sharma, 1984). An exten- 
sive model review has been published by Ramachandran 
and Doraiswamy (1982). 

For the sharp interface model to be applicable it is not 
necessary that the unreacted core be totally non-porous. 
If the reaction is irreversible, it is sufficient that the mass 
transfer rate be significantly lower than the rate of 
reaction, and therefore whatever reactant is available via 
mass transfer can be assumed to react instantly. In this 
case the progress of the reaction front will depend on 
local concentration gradients rather than on parameters 
such as the surface reaction rate constant. No studies 
have been found in the literature concerning the 
possibility of a sharp interface model when the reaction 
is reversible. For the SIM to be valid in these 
circumstances, it must be ensured that no reaction occurs 
in the ash layer or in the shrinking core. The main 
purpose of this study is therefore to determine the 
applicability of such a model to reversible reactions. An 

analysis of the phenomena occurring in each zone has 
already been made by Portugal and Pais (1989) and will 
be repeated here for the sake of clarity. It is shown that, 
under certain circumstances, a sharp interface may 
indeed exist for reversible reactions. 

On the other hand, nearly all the analytical model 
resolutions found in the literature for shrinking core 
models rely on the pseudo-steady state assumption. Its 
physical significance is that the interface can be 
considered stationary at any time, while a steady state 
diffusion flux is evaluated to find the concentration 
profile (Doraiswamy and Sharma, 1984). This assump- 
tion is valid when the concentration of the reacting fluid 
phase species in the bulk is much less than the molar 
density of the solid, that is 

cO p M  
- , ,----R < 10 -3 (2) 

PR 

where C ° is the concentration of the fluid reactant in the 
bulk, P M  R is the molecular weight of solid species R, 
and PR is the density of solid species R. It may not hold 
for liquid-solid reactions when C ° has a value compara- 

PR ble to P--~R" Because the model developed in this study 

is to be applied to a liquid-solid reaction, the pseudo- 
steady state assumption was not made so that no 
limitations exist in the concentrations of the liquid phase 
species. Analytical solutions found in the literature also 
assume, for mass transfer-limited models, that the 
concentration of A at the reaction interface is nil, which 
is valid only if the reaction is irreversible. 

In this work, a sharp interface model has been 
developed for reactions of the type described by (1) for 
cases (such as most liquid-solid reactions) where the 
pseudo-steady state approximation is not valid. Moreo- 
ver, reactions have been considered to be reversible 
rather than irreversible. The model relies on the 
assumptions that mass transfer (either through ash layer 
or fluid film) is the limiting step, reversible reaction is 
instantaneous, and spherical particle is isothermal. If 
reaction is reversible, the concentrations of the liquid 
species are coupled at the reaction interface by the 
equilibrium relationship. They are therefore not known a 
priori and must be determined during the solution 
process. Together with the fact that the pseudo-steady 
state assumption was not made, this led to the need for 
numerical resolution. Solution is non-trivial since there 
is a discontinuity in the concentration gradients at the 
reaction interface and a possibly non-linear system of 
algebraic equations must be solved in order to determine 
the concentrations in all the boundaries. 

2. Validity of  the sharp interface model  for 
reversible reactions 

In this section, the validity of the SIM model for 
reversible reactions is analysed. Several authors refer to 
the causticizing reaction as following a moving-bound- 
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Fig. 1. Schematic representation of the particle undergoing a 
SIM reaction. 

ary pattern (Angevine, 1983; Blackwell, 1987; Dorris 
and Allen, 1985). However, no model has been found in 
the literature that could represent this situation for a 
reversible reaction such as the causticizing reaction. This 
was therefore one of the first issues approached in this 
study. Could a sharp interface model exist for a 
reversible reaction? Based on a study of the fundamental 
physical and chemical mechanisms involved, it can be 
concluded that such a situation is possible. 

Figure 1 represents graphically the classical SIM 
pattern, where zone 1 corresponds to the inner shrinking 
core and Zone 2 to the ash layer: 

A very important issue, fundamental to the validity of 
the model proposed, is, since the reaction is reversible, 
whether it can be guaranteed that the ash layer does not 
re-react (reverse reaction) to form solid reactant R again 
(in which case a sharp interface model would not be 
valid). Let us examine in greater detail what happens in 
this zone. 

As the particle is immersed in the bulk liquor and 
starts to react, a layer of infinitesimal width of R will 
react with A to produce S. At this surface, both R and S 
are available and both A and B are also available. If the 
chemical reaction is instantaneous--a commonly used 
assumption--chemical equilibrium (which determines 
the ultimate concentrations achievable) is attained 
instantly, i.e. the concentrations of A and B at this layer 
are such that they satisfy the equilibrium relationship. In 
a simplified case, let us suppose that the equilibrium 
relationship depends on the concentrations of the liquid 
species only. If, for equilibrium concentrations, KE= C ~ /  

CA ~A, where r/A and "r/B are the stoichiometric coefficients 
of A and B in the reversible reaction, respectively, then 
the concentration of the bulk liquid is such that there is 
an excess of A and a deficiency of B, i.e. C o "~/C°A "A<K E. 

This condition must be met since the purpose of the 
reaction is to consume A and produce B. If, in the bulk 
liquid, the relationship of the concentrations were such 
that C o ~ /C  ° ~^>--KE, no observable reaction would take 
place. 

As soon as the forward reaction starts, the solid 
product S is formed and is therefore available for 
reaction. At the reaction interface, A is being consumed, 
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producing B. Both A and B were present in the bulk 
liquid and are present in the whole particle, due to 
diffusion. Because, in the bulk liquid, there is an excess 
of A and a deficiency of B with respect to equilibrium, 
and equilibrium concentrations exist at the reaction front 
(initially the surface of the particle), A will be trans- 
ferred from the bulk liquid to the particle, and B will be 
transferred from the particle to the bulk liquid. As A 
arrives at the reaction surface, and B leaves it, the 
concentrations at this point are momentarily disturbed by 
the diffusion process and will tend to return (instantly) to 
equilibrium, consuming the excess of A by reaction with 
the solid reactant R, available at the inner core. This 
causes the movement of the reaction front towards the 
centre of the particle. 

The relationship of the liquid concentrations ( C ~ I  

C~ A) ranges from an excess of A in the bulk liquid to 
equilibrium at the reaction interface. Although S, A and 
B are present in the ash layer, there is an excess of A 
compared to equilibrium. The reaction is reversible and 
equilibria are dynamic, so both the forward and reverse 
reactions take place in this zone simultaneously. How- 
ever, if an infinitesimal amount of B reacts with S, in the 
ash layer, to form R again, the large amount of A present 
will immediately react with this amount of R. This is due 
to the fact that excess A, with respect to equilibrium, 
means in practical terms that the rate of the forward 
reaction is higher than the rate of the reverse reaction. As 
a consequence, although S is present, the reverse 
reaction is not observed, in global terms, because that 
would draw the concentrations even further from 
equilibrium, increasing the excess of A with respect to B. 
In other words, the excess of A inhibits the reverse 
reaction in the ash layer. Therefore, in overall terms 
(forward-reverse reaction), no observable reaction 
occurs in this zone since any R formed is immediately 
consumed and the forward reaction cannot proceed any 
further since there is no solid reactant R available; a 
layer of S alone will form. Please note that this 
phenomenon does not depend on the value of the 
equilibrium constant. 

If the reaction is irreversible or the inner core is non- 
porous, then A cannot diffuse into the inner core. 
However, in this study, the reaction is taken to be 
reversible and the inner core is porous. Since equilib- 
rium is assumed at the reaction interface and therefore 
the concentration of A at this location is not zero, A is 
also present in the inner core. An equally important issue 
is whether R does not react with A in this zone, 
producing S and therefore invalidating the SIM pattern 
again. For the set of parameters used in this study, the 
forward reaction does not take place in this zone, in 
observable terms, because there is an excess of B and 
deficiency of A, compared with equilibrium, that inhibit 
the progress of the forward reaction. This is represented 
quantitatively later, in Section 5 (Fig. 4). While it can be 
ensured that the concentrations in the ash layer inhibit 
the reverse reaction from taking place, the same cannot 
be guaranteed for the inner core with respect to the direct 
reaction. It does happen for this specific set of parame- 
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ters, such that the effective diffusion coefficient of B is 
twice as large as for A (estimate justified later in the 
paper) and therefore it is easier for B to diffuse to the 
centre of the particle. This leads to an excess of B, in the 
inner core, compared with equilibrium. For the values of 
the effective diffusion coefficients used in this study, the 
value of the equilibrium constant, i.e. the degree of 
reversibility, does not seem to influence this phenome- 
non. This was checked for trial runs of cases with lower 
values of Ke (namely, all the cases represented in Fig. 8 
also resulted in an excess of B in the inner core). A trial 
run was made for KE=500mol/m 3, for which the 
concentration of A at the reaction interface is sig- 
nificantly higher than the concentration of B at the same 
location (reaction is highly reversible), which also 
resulted in an excess of B in the inner zone. However, if 
the effective diffusion coefficient of A in zone 1 is 
greater than the effective diffusion coefficient of B in the 
same zone, then A diffuses more easily into the centre of 
the particle than B and a deficiency of B may exist in this 
zone, leading to the occurrence of forward reaction in all 
or part of the shrinking core. This can be observed if the 
values of the effective diffusion coefficients for A and B 
are swapped, i.e. value for A twice as large as for B (test 
runs have been made for this case). For this combination 
of parameters, the SIM pattern is not valid, although the 
concentration of A at the reaction interface is much 
lower than the concentration of B, since there is an 
excess of A in the inner core. Because the concentrations 
of A and B in the inner core are determined by diffusion 
alone, their relationship depends on the effective diffu- 
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sion coefficients arid on the driving force for diffusion. 
In this study, the driving force is determined by the 
concentrations at the reaction interface, which in turn 
depend on the equilibrium constant and stoichiometric 
coefficients. Since the model was solved numerically, 
the conditions for a sharp interface will not be gener- 
alized in quantitative terms. However, its existence 
depends on the value of the effective diffusion coeffi- 
cients of A and B in the inner core, and possibly on the 
value of the equilibrium constant and stoichiometric 
coefficients. During simulation, the existence of an 
excess of B in the inner core must therefore be verified 
for the model to be valid. 

Summarizing, in the ash layer, the existing solid is S, 
and A and B are present. However, the reverse reaction 
is inhibited by the excess of A with respect to 
equilibrium. In the inner core, for the set of parameters 
used, the existing solid is R, and A and B are also 

Table I. Parameters used for the simulation of the base case 

C ° 1150 C o 600 
C~ 25,700 
e~ 0.15 e2 0.05 
DeAl 1X 10 - i i  Dea I 2X 10 - i i  

DeA 2 3 .33X 10 -12 DuB 1 6 . 6 7 X  10 -12 

KLA 5 X 10 -4 KLa 1 X l0 -3 
KE 50X 103 R 5>(10 -5 
~/A = "r/R 1 r/a 2 
P M  R 74.09 P M  s 100.09 

PR 2240 Ps 2710 

1.0" 
o t = 2s 

0.8" 

u t = 1200 s 

A t = 2 2 4 0  s 

= t = 2 8 8 0  s 

o 

0 

0.6" 

0.4" 

0.2 '  r /R 
O 

0 . 0 ~  
0 . 0  0 . 2  0 . 4  0 . 6  0 . 8  1 .0  

r / R  

Fig. 2. Calculated adimensionalized COl- profiles for various values of time t. For clarity no interpolated profiles have been 
calculated and only collocation points are represented and connected by straight lines. 
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Fig. 3. Calculated adimensionalized OH- profiles for various values of time t. For clarity no interpolated profiles have been 
calculated and only collocation points are represented and connected by straight lines. 

present. However, the forward reaction is inhibited by 
the excess of B. 

Finally, this discussion was based on the assumption 
of a mass transfer-limited process. If reaction rate is the 
limiting step, and since the particle is porous, then both 
A and B will diffuse into the particle and react before 
equilibrium is attained at any point in the solid. In this 
case no sharp interface will form and the heterogeneous 
reaction is described by the conventional homogeneous 
or volume reaction model, where both the forward and 
reverse reactions must be taken into account, as well as 
the variation of the solids concentrations in space and 
time. 

3. Formulat ion  of  mathemat ica l  model  

The distributed model developed for the solid parti- 
cles is therefore a sharp interface model that assumes the 
reaction is reversible and mass transfer-limited (either in 
the fluid film or in the ash layer). If the rate of both 
forward and reverse reactions is high compared with the 
rate of mass transfer, then chemical equilibrium exists at 
the reaction interface. Particles are supposed to be 
spherical and physical properties of the solid are allowed 
to be different in the inner shrinking core (zone l) and 
ash layer (zone 2), as well as effective diffusion 
coefficients for liquid species A and B in both zones (see 
Fig. 1). 

If the exponents in the equilibrium relationship are 
taken to be equal to the stoichiometric coefficients in the 
reversible reaction, then the model is described by the 

following set of partial differential equations, where rc 
represents the position of the reaction interface: 

0C D ~ ( 0 2 C  2 0 C )  
Ot - 8 ~ +-r Or O<r<r~(D, 

=Do.e=~,) 

and rc<r<R(De=De2,e=62) , C=C^,Cs (3) 

. . . .  dt C~ 'IA LDoA2 O~- ,~ --DeA'-ffr-r r: (4) 

subject to boundary conditions 

OC 
O---r =0 r=O, C=CA,Cs (5) 

KL(C ° -  C)=De2 ~ r=R, C=CA,Cs (6) 
o r  

oc,  o oct) 
OeA2 ~ ) , .  -- eat ),: = -- - -  D~B2 

OCB) Jr=re (7) - D~s' -~r r: 
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cp 
=K~ r=~. (8) 

(7) and (8) state that: 

a) for a certain amount of reacted A, a corresponding 
amount of B is produced, according to their 
stoichiometric relationship; 

b) concentrations at the reaction interface obey the 
equilibrium relationship. 

Together with (4), they imply that the rate of advance of 
the reaction front is such that the concentrations at the 
interface, momentarily disturbed by the diffusion proc- 
ess, return to their equilibrium values. 

As the reaction front approaches the centre of the 
particle, Zone 1 tends to disappear and only one zone 
remains. An appropriate way to deal with this problem 
would be to stop the integration process when the 
reaction front is very close to the centre of the particle 
(when r c tends to zero or, for numerical purposes, when 
r c is lower than a certain tolerance), which corresponds 
to a fully reacted particle. In this study a different 
approach was taken since the model for the solid 
particles was to be used as a component of a larger 
model for the determination of the steady-state of two- 
phase continuous stirred tank reactors (see Pais and 
Portugal, 1994, 1996). In the model for the CSTR it is 

necessary to know the state (i.e. the internal concentra- 
tion profiles) of the particles for the entire age range (i.e., 
from 0 to +oo), which implies that the integration 
process should continue after the particle was thoroughly 
reacted. In order to avoid switching from two distinct 
zones to a single one, eqs. (9-10) were used as the 
boundary conditions at the reaction interface, replacing 
eqs. (7-8). In practice eqs. (9-10) state that there is 
continuity of fluxes across the interface, so both zones 
behave as one and diffusion alone takes place. If it is not 
necessary to know the behaviour of the particle after it 
has fully reacted, then the use of an ODE solver which 
stops at this point would be simpler and is recom- 
mended. 

OCA ) 
OCA =DeAl ~ r  r=rc DeA2 ~ - r  ¢ rE (9) 

O OC,  O OCB) 
eB2 ~ | = eBI --:-- r=rc. 

or Jr: or r; 
(10) 

As a consequence, the reaction interface ceases to 
advance. 

Initial conditions are: 

2.5 Excess B 

1.0" 

0.5' 
Excess A 

.0 I I I I 

0.0 0.2 0.4 0.6 0.8 

Zone 2 

(s) 
1 

1.0 

r l R  

c~/c, 
Fig. 4. Variation of the ratio ~ for t=2 s (see Fig. 2 and Fig. 3). 
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C=C~"t=O,C=CA,CB (11) Oy Oy 1-(~(1-11c)+11c) d11~ 

rc=r~" t=0 (12) 

3.1. Adimensionalization of dependent and independent 
variables 

The model was solved using orthogonal collocation 
(Villadsen and Michelsen, 1976) in both the unreacted 
core and the ash layer, using (7) and (8) or (9) and (10) 
to couple the two zones. The position r along the radius 
of the particle was used as the spatial independent 
variables. 

In order to immobilize the moving boundary, a change 
of variables similar to the one used by Stamatakis and 

CA Ca r 
Tien (1991) can be made. I fyg= C~ A , ys = C~ s , rh= re' 

r - r¢  r~ 
112= R~r~rc and 11c= ~ ,  then the equations that describe 

the model are 

Oy Oy 111 d11c Del [ O2y 2 Oy "~ - ~ ~ - - + - -  ) Ot 011E 11c dt c.11cR 011~ 11, 

0< 11. < 1, Y =YA,YB (13) 

Ot 0112 (1 - 11~)2 dt 

- -  D e 2  1 r 1 o 2y 
62 R2(1 - 11~) L 1 - 11c 0112 

"1 
2 Oy J + 

J 112(1 - 11e)+11~ 0112 

0< 112< 1, Y=YA,YB 

d11c__ C ° 11R[ DeA20YA~ 

dt R2C~ 11A ! - 11c 0rh ,/~=o 

DeM ay  ̂
11~ O'rh ),1,=,] 

1 Oy 

11J¢ 011j 
=0 111 =0, Y=YA,Ya 

KL(I - y ) =  - -  
D~2 Oy 

R(I - 11~) 0112 
112 = 1, Y=Y^,Ya 

De^ 2 Oy  ̂'~ Des j Oy A 

1 - 11c 07]2 ),7--o 11c 0111 )~,=1 

1.0 

0 .9  
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(14) 

(15) 

(16) 

(17) 

(18) 

n- 

1_0 
£. = 0 . 2 5  
"1 

F_. = 0.12 

F.. = 0 . 2 0  
1 

o,] 
0.0 

0 

£ = 0.15 
x ,  1 

2 0 0 0  4 0 0 ' 0  6 0 0 0  8 0 0 0  1 0 0 0 0  

t ( s )  

Fig. 5. Influence of porosity and effective diffusion coefficients on the advance of the reaction front with time. 
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--- ' r /A C_..~gg[ DeB20ya )  

C° 1 - r h  0 ~  ,=0 

D.BI OyB. . 
rh ~ )~,=,J 'q,=l, 'rh=O 

y~" C 7  .,--1..72--0. (19) 

Eqns (9-10) become eqns. (20-21): 

\ 
DeA2 OYA ~ DeAl OYA. 
1 - r  h 8r h )~=0 = "r/¢ ~ )n' = ' r h = l ' r h = 0 ( 2 0 )  

Dea2 Oya ~ Deal Oya . 
1 - - r  h Or/.,/re.f0 r" r h Or h J~,=' rh=l,r/2=0.(21) 

4. Numer ica l  solut ion 

As mentioned before, this model was solved by 
orthogonal collocation in both zones using r as the 
spatial independent variable (see Appendix A). The 
resulting system of ODEs was then solved by the BDF 
method using subroutine LSODI (Hindmarsh, 1980). In 
the general case where the equilibrium re!ationship is 

1.0 
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non-linear the system of unknowns corresponding to the 
variables at the boundaries has to be solved by means of 
a formula (for degrees up to 3) or by a numerical method 
for non-linear equations (see Appendix B). 

The base case corresponds to the causticizing reac- 
tion, which is a liquid-solid reversible reaction that has 
been repeatedly described as following a moving- 
boundary model (Angevine, 1983; Blackwell, 1987; 
Dorris and Allen, 1985, 1986): 

CO ]- (aq) + Ca(OH)2(s)~--"2OH - (aq) + CaCO3(s)(22 ) 

Most of the parameters used correspond to the ones 
used in the causticizing reaction in paper pulp mills. The 
set of data used for the simulation of the base case is 
presented in Table 1. 

Values for PMR, PMs, PR and Ps were taken from 
Weast (1983). It was assumed, for the base case, that the 
order of magnitude of the effective diffusion coefficients 
was l0 -I~, which has been verified for a number of 
alcohols in water (Blasifiski and Amanowitz, 1979). The 
parameter DeB was always assumed to be twice greater 
than DeA, which is approximately verified for the 
diffusion coefficients of NaOH and Na2CO 3 in aqueous 
solutions (Leaist and Noulty, 1985; Noulty and Leaist, 
1984). Supposing that a simple relationship such as 

De=D _6, where D is the diffusion coefficient and r is  the 
r 

tortuosity, holds, then values of D= for several porosities 
can be evaluated, if ~" is constant: 

IlC 

L.O 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3~ 

0.2"] 

0.1 t 
0.0 

0 

- 5  
R = 7x10 

/ - 5  - 5  \ \ 

2000 4000 6000 

t (s) 

Fig. 6. Influence of the outer radius of the particle R on the advance of the reaction front with time. 
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D'e ¢ '  

D, - e " 

This relationship was used to estimate the values of 
the effective diffusion coefficients for several porosities 
(always taking the base case for D e and ¢). 

If a decrease in the porosity of the ash layer is 
attributed to the increase in the molar volume of the solid 
alone (Don'is and Allen, 1985), then the following 
relationship can be established between the porosity in 
the shrinking core and the ash layer: 

where 

e,_=(I - or)+ o~¢, (23) 

I~ PMs 
Ol= 

Ps PMR" 

For the values corresponding to Ca(OH)2 and CaCO3, 
we then haves 2 = - 0.117 + 1. I ! 7¢~. 

It is obvious that a lower limit exists for E~ so that ¢2 
is always greater or equal to zero. In this case the limit 
is 8~--0.105. The physical meaning of this limitation is 
that although pore closure may occur and reduce the ash 
layer porosity, theoretically to zero (total pore closure), 
the initial void volume must be enough to accommodate 
the increase in volume, otherwise structural changes 
such as cracking and fissuring would have to be 
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considered. Although they can also be dealt with, they 
are outside the scope of this work. 

Concentration of the bulk liquid corresponds to green 
liquor concentration used in the paper pulp industry 
(Rydin, 1978). 

A large number of papers published, usually in 
connection with the paper pulp industry, directly 
addresses the issue of the reversibility of the causticizing 
reaction as the main factor which limits the maximum 
conversion of the reaction. The value used for the 
equilibrium constant is an average value taken from 
experimental studies that aim to determine the (apparent) 
equilibrium constant over a range of concentrations 
(Lindberg and Uimgren, 1983; Don'is, 1990). A mass 
balance may be made, with the parameters used in the 
paper, to evaluate the extension of the reaction for this 
value of the equilibrium constant. The concentration of 
A in the bulk liquid, C °, is 1150 mol/m3=l.15 mold, 
whereas C°=600 mol/m3=0.6 moi/1. If the bulk liquid is 
allowed to reach equilibrium, taking K E to be 
5 × 104 mol/m3=50 mol/l, the amount of A that reacts is 
1.012 mol/i. Although equilibrium is displaced to the 
right, towards the products (which is why this reaction is 
used to produce an appreciable amount of OH - ions), 
the fraction of unreacted A remaining is 12%, far too 
high to be considered negligible. This value for K E was 
taken, together with the rest of the parameters, because it 
corresponds to a real chemical reaction and is therefore 
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Fig. 7. Influence of mass transfer coefficients on the advance of the reaction front with time. 
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more meaningful than an arbitrary value. However, as 
discussed in Section 2, the applicability of this model 
does not depend on the value of KE and it can be used for 
other values of the equilibrium constant. 

Molar concentration of the solid reactant was eval- 
uated from its density, molecular weight and arbitrated 
porosity. Values for the mass transfer coefficients were 
chosen arbitrarily. The outer radius of the particle was 
also arbitrated. 

5. Results and discussion 

Variation of the parameters that define the model has 
been performed in order to study their influence. The 
particle is physically characterized by e~ and ¢2, C~ and 
R. The parameters that define mass transfer properties 
are DeM, DeA2, D~Bj and D~a 2, as well as KLA and KLB. 
Reactional parameters are the equilibrium constant, KE, 
and the stoichiometric coefficients r/A and ~ .  

Profiles obtained for the base case correspond to Figs 
2 and 3. 

As far as A (CO~-) is concerned, it must be noted that 
the gradient of the concentration profile at rc increases as 
the reaction front approaches the centre of the particle. 
There is at first an increase in the local concentration of 
B ( O H - )  in the reaction front. The inner zone is then 
quickly flooded with product B and its concentration 
becomes equal to the equilibrium concentration. 

A. A. T. G. PORTUGAL 

C~ICA 
Figure 4 shows the ratio ~ for the values of the 

concentrations of A and B presented in Figs 2 and 3, for 
t=2 s. 

Note that an excess of A exists in all of the ash layer, 
and an excess of B exists in all of the inner core. This is 
due to the fact that B diffuses more easily towards the 
centre of the particle than A, due to its higher effective 
diffusion coefficient. What determines the occurrence of 
an observable reversible reaction (forward-reverse) is 
not merely the presence of the necessary reactants and 
products, but also the relationship of the concentrations 
involved. Excess A means that the forward reaction is 
faster than the reverse reaction, and therefore if such an 
excess is imposed, no solid reactant R is left although 
both forward and reverse reactions take place. 

The influence of porosity of the original particle and, 
accordingly, porosity of the ash layer has also been 
studied (see Fig. 5). Diffusion coefficients have been 
varied proportionally around their base values. 

As could be expected, smaller porosities and effective 
diffusion coefficients lead simply to a slower advance of 
the reaction front. Although the pseudo-steady state 
assumption was not made in this case and effective 
diffusion coefficients are different on both sides of the 
interface, the shape of the curve matches closely the one 
presented in the literature (Levenspiel, 1972), obtained 
analytically, using the pseudo-steady state assumption, 
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Fig. g. Influence of the equilibrium constant on the advance of the reaction front with time. 
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and assuming irreversible reaction and ash-layer diffu- 
sion control 

where r is the time for the particle to react completely. 
For this specific set of parameters, the pseudo-steady 
state assumption may be valid (although that might not 
occur for more concentrated solutions). It is logical that 
the shape be similar since both models consider two 
purely diffusional zones, separated by a moving bound- 
ary. However, although the shape of the curve is similar, 
the values of z obtained are different (higher) from the 
ones obtained by Levenspiel. For ash-diffusion control, 
the analytical solution yields 

C~R 2 
T =  

6 ~TR De~C o 
17A 

For the base case (e~=0.15) this corresponds to a 
value of ¢ of 2796 s, whereas the results obtained by our 
model give, for the same case, a value of ¢ of about 
3020 s (we are using the term approximately since the 
equations are being solved numerically and therefore the 
time that is considered for the particle to react com- 
pletely depends on the numerical tolerance used). This 
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difference is noticeable already, considering that the 
equilibrium is displaced to the right to a considerable 
extent. Furthermore, as will be shown in Fig. 8, this 
difference increases with lower values of the equilibrium 
constant. 

Different sizes of the particle--which correspond to 
different values of the characteristic dimension R - -  
result, as expected, simply in a slower advance of the 
reaction front for higher values of R (see Fig. 6). 

Several values of KL have been tested (see Fig. 7). 
Once again it can be seen that the shape of the rc(t)lR 

versus tlz curve matches the analytical solution pre- 
viously mentioned as the value of K r decreases. The 
change in the shape of the curve, as K r decreases and the 
process becomes fluid film diffusion-controlled, is also 
similar to the one presented by Levenspiei (1972). 

To study the influence of the reversibility of the 
reaction, which is the main purpose of this work, several 
values of Ks have been tested (see Fig. 8). 

It can be seen that smaller values of KE lead to a 
slower advance of the reaction front without any 
significant change in the shape of the curve. This is 
understandable as lower values of K s correspond to a 
higher concentration of A, in this case C Ol - ,  at the 
reaction front and therefore to smaller driving forces for 
diffusion. 

By slower advance of the reaction front we actually 
mean greater values of r. Two important observations 
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Fig. 9. Influence of different equilibrium constants and stoichiometric coefficients on the advance of the reaction front with time. 
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can be made from Fig. 8. The first one is that as reaction 
tends to irreversibility, i.e. as KE--*oo (see the curve 
obtained for KE=2 X 10 S mol/m3), the value of r tends to 
the one obtained by the analytical resolution presented 
by Levenspiel. The second one is that, as the degree of 
reversibility of the reaction increases, the value of r 
totally diverges from the value presented by Levenspiel, 
increasing as the value of KE decreases. For KE= 103, the 
time taken for the particle to react completely is over 
10,400 s. This variation is as expected, since for lower 
values of K E the concentrations at the reaction front are 
closer to the bulk liquid ones and the driving force for 
diffusion is lower (totally unaccounted for in previous 
models). 

The same kind of behaviour is observed for different 
values of the stoichiometric coefficients and equilibrium 
constants (see Fig. 9). 

A slower advance of the reaction front is observed for 
those combinations that correspond to higher concentra- 
tions of A--therefore closer to the bulk ones--at  the 
reaction front. Note that, for the same stoichiometric 
coefficients, the rate of advance of the reaction front, and 
therefore the value of ~', depends on the value of K E 
alone. However, for varying stoichiometric coefficients 
and equilibrium constants, the progress of the reaction 
front is determined by the concentrations at the reaction 
front, which depend on both r /and K E and can only be 
known by solution of the boundary conditions. 

A comparison has been made between the results 
obtained with r for several numbers of collocation points 
(see Fig. 10). 

As can be seen the solution converges to the correct 
one as the number of collocation points increases. The 
main deviation occurs as the length of zone 1 tends to 
zero, but even relatively low numbers of collocation 
points (e.g. 6) in both zones yield an acceptable solution 
in which the curve retains the correct shape. 

5.1. Comparison with previous models 

A very important issue is whether the model proposed 
in this study is different from well-known previous 
models (see Levenspiel (1972, 1993)). In reality, as has 
been already shown, there are significant differences 
between this model and the mass transfer-limited models 
presented by Levenspiel, namely because they are based 
on different assumptions and because they produce 
different results. 

Previous models are based, as has already been 
mentioned, on the pseudo-steady state assumption, valid 

0C . 
if the accumulation term - -  is negligible. Since the 

0t 
model and resolution proposed in this work are not based 
on this assumption, they can therefore be used for 
concentrated solutions (although, in the case of electro- 
lytes, the effective diffusion coefficients may have to be 
estimated by more sophisticated methods). The validity 
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Fig. 10. Influence of the number of discretization points on the solution obtained using r as the spatial independent variable. 
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of this assumption depends on the parameters used and 
will not be discussed further; however, our model is 
valid for a broader range of concentrations. 

Also, previous models are based on the assumption of 
irreversible reaction. As previously shown, the variation 
of rJR with tlz (where ~" is the time it takes for the 
particle to react completely) is similar. However, this 
only means that the shape of the curve is similar, not the 
curve itself since the X axes have different scaling 
factors (l/z). The reversibility of the reaction leads to a 
decrease in the driving force for diffusion, since the 
concentration of A is higher, at the reaction front, than 
zero. This means that the values of z, besides being 
different from the ones predicted by Levenspiel, are also 
dependent on the equilibrium constant and stoichio- 
metric coefficients. Longer times are obtained for lower 
values of K E, i.e. greater degrees of reversibility. In 
general, reversibility leads to retardation of the advance 
of the reaction front, as compared to the irreversible 
case. This being so, the models presented by Levenspiel 
for mass transfer-limited gas-solid reactions are a 
simplified, particular case of the model proposed in this 
study, where 

ac  
a) the term - -  has been neglected; 

at 
b) K~ is assumed to tend to +0% i.e. the reaction can 

be assumed to be irreversible. This leads to the 
further assumption that the concentration of A at the 
reaction interface is nil. 

They cannot predict, in the case of reversible reactions, 

a) the internal concentration profiles of A and B, 
including the concentrations at the reaction inter- 
face (which, in the case of a reversible reaction, 
depend on the profiles themselves, on the equilib- 
rium constant, and on the stoichiometric coeffi- 
cients, and cannot be known a priori); 

b) the time it takes for the particle to react completely 
(r); 

c)since they do not include the additional parameter 
Ks, or the stoichiometric coefficients ~/, they cannot 
predict the influence of the degree of the reversibil- 
ity on the behaviour of the particle. 

6. Conclusions 

It has been shown that, under certain circumstances, a 
sharp reaction interface model can be valid in the case of 
a non-catalytic liquid-solid reversible reaction. Being 
purely diffusional in both the unreacted core and the ash 
layer, this model is obviously influenced by mass 
transfer and physical parameters. The effect of reversi- 
bility is similar to a decrease in the driving force for 
diffusion---or to a decrease in the effective diffusion 
coefficients, for that matter---due to an increase in the 
concentration of A at the reaction front compared to the 
irreversible case. 
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Appendix A 

Discretization using or thogonal  collocation 
_ D e B 2  _ _  

8~: (1  - TIc) \ rh(i - 2ntl - nt2)(l - r/c ) + r/c 

If the number of collocation points in the inner zone is n. and 
the number of collocation points in the outer zone is nt2. then 
variables 1 to n. correspond to concentration of A in the inner 
zone, from ntt+ 1 to 2n a to concentration of B in the inner zone, 
from 2ntl + ! to 2n. +n n to concentration of A in the outer zone. 
and from 2nt~ +na+ 1 to 2n. +2n a to concentration of B in the 
outer zone. Concentrations in both zones must be equal at the 
reaction front, i.e. y(n.)=y(2ntj + 1) and y(2n.)=y(2n. +nt2+ 1). 

X '~ v,(2,i - 2n,, - ntz,k)y(2na +ntz+k)+ 
k= l  

l ) 
+ ~ k~, v2(2.i - 2n. - na,k)y(2n,, +n,2+k) 

i--2na +nn+2, 2ntl +2nt2-- 1 

dy(i) ~/,(i) dr/c ~ v,(1,i,k)y(k) (24) - - =  R2C~ 
dt r/c dt *=~ dt r/^ (28) 
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a=v,(1.1.1) 
X ( D ~  vl(2,l,k)y(2ntl+k) 
\ a--tic ~= t 

Dê,~¢ k=l '~" v,(l.n..k)y(k)) 

v,(1.l.k)y(k)=O (29) 
k = l  

v,(l.l.k)y(n,, +k)=O (30) 
k=l 

D~^2 '~ v.(2.na.k)y(2n.+k) (31) KL^(I -y(2n, ,  +na))= R(I --- ~/~) k=l 
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y(2n,l + 1) =y(n,i) (35) 

y(2n,, + n a + 1 ) = y(2n,, ) (36) 

b=vl(l . l .n, i)  

n I - I 
c.= 'k~-z vl(l'l'k)y(k) 

A p p e n d i x  B 

Solut ion  of  the boundary  conditions 

The discretized boundary conditions ((29)-(36)) correspond 
to a system of  eight equations in eight unknowns. If  (35) and 
(36) are used to eliminate two variables, we obtain: 

ay(l)+by(n,,)+c, =0 (37) 

ay(n,, + I ) + by(2n t, ) + c2 = 0 

e.y(2n,. +na) +fy(ntl ) -- dl =0  

e2y( 2n,, + 2ha) +fy( 2n,, ) - d2 = 0 

g,y(n,,) + h,y(2n. + na) +o.y( l )= 

=g2y(2n.) +hzy(2n. + 2na)+ozy(n,, + 1)+p 

(y(2n.)) "~=q(y(n,,)) TM 

where 
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After appropriate substitution and elimination of variables we 
obtain 
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If  r/A= 1 and r/a= 1, that is, if the system of equations is linear. 
then resolution will be straightforward. If (38) is or can be 
transformed into second or third order, then resolution by means 
of a solvent formula is possible (as in the case of the 
causticizing reaction, where r/A= 1 and r/a=2). In all other cases 
a numerical iterative method must  be used. such as the bisection 
method. More effective methods such as Newton-Raphson may 
be impossible to use as the coefficients of (38) are highly time- 
dependent and guarantee of convergence is not possible. Care 
must  be taken, where more than one solution exists, to choose 
the physically meaningful solution.If r/c<rk,m, then diffusion 
alone will take place. (33) and (34) will no longer hold. which 
means that concentrations of A and B are uncoupled at the 
reaction front, and will be replaced by 

E I. C.  C.  PAls and  A.  A.  T. G. PORTUGAL 

Do .  
a I = - _ _  vl(1,n.,l  ) 

7/c 

Oo~ i 
a2= - - -  vt ( l ,n . , l )  

vk 

DeA2 
i - -~c ~ v~(2.l,k)y(2n.+k)= *=~'~ v~(l,n.,k)y(k) (39) 

DeB2 i Z ~c ~ v~(2,l.k)y(2nu +na+k)= Der~ ~ v~(l,n.,k)y(n~j+k) 
k=l ~C k=l 

(40) 

Together with (29) to (32), (35) and (36), another system must  
be solved in order to determine concentrations at the bounda- 
ries: 

a,y( l )+ bly(nt,)+cty(2n,, +na)=dl (41) 

ey(1) + fy(nt,)+ g I =0 

hy(n.)+oly(2n. +na)+p~ =0 

a2y(n,, + l )+b~y(2n,,)+czy(2n,, +2n,2) = d  2 

ey(n,, + 1) +fy(2n,,) + &  =0  

hy( 2ntj ) + o2y( 2n,, + 2n,2) + P 2 = 0 

where 

b D°t2 i= ~ v~(2,I,1) 

O©a2 
b 2 =  I - 7 k vt(2' l ' l )  

OeA2 C. = ~ v.(2,l.na) 

Dee2 
c2= ~ vl(2 ' l 'na)  

d, = O ~ ,  . ,~ ,  OeA 2 
Tic *=2 v l ( l ' n ° ' k ) y ( k ) - - -  1 - ~  

X " ~  t vl(2.1 ,k)y(2ntl + k) 
k=2 

~ -  ~2 v j ( l ' n " ' k ) y ( n u + k ) - - -  
I - ~  k 

× , ,~ i v 1(2, l.k)y(2n, i + na + k) 
k=2 

e=vl( l , l . l )  

f=vl( l . l .n . )  

gl= ~.=2 vt(l'l'k)y(k) 

g2 = ",~21 vl( 1.1 ,k)y(n. + k) 

h=vl(2,na, l) 

KLAR 
o t = v l(2.na.na) + ~ (1 -- 7k) 

K~R 1 
o2 = v i(2,na,na) + ~ ( - "r k) 

",~ ~ KtaR 
Pl = k=2 vl(2'n'2"k)y(2n" +k) - ~ (1 - "rk) 

,,,~ l KLaR 
p2 = ~.. vl(2.n,2.k)y(2ntl +n,2 +k) - ~ (1 - ~/c) 

This system is linear and resolution is straightfoward. 


