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Abstract

Systems that contain a pure capacitance are not stable and thus the frequency response theorem cannot be applied. Here the

response of a pure capacitive element is addressed and erroneous responses in some textbooks are pointed out. Then an easy way to

obtain the frequency response of systems consisting of the series a pure capacitance and any stable system is presented.
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1. Introduction

Pure capacitances are elements for which the dynamic

behaviour is given by an equation of the form

C
dy

dt
�x(t) (1)

where x (t) and y(t) are the input and the output

variables, respectively, defined as deviation variables

relative to the steady-state. The transfer function for

such systems is given by

G(s)�
Y (s)

X (s)
�

1

Cs
(2)

In chemical processes the most common example of a

capacitance is a storage tank with either the inlet or the

outlet flowrate kept constant. This and other examples

of pure capacitances in various systems are shown in

Table 1.

This paper first addresses a problem that has been

often mistreated in several textbooks on process dy-

namics and control, namely the frequency response of

pure capacitances. Then, systems consisting on the series

of a pure capacitance and any stable system are

analysed. An expedite way of obtaining the frequency

response, avoiding the calculation of the inverse Laplace

transform, is obtained.

2. Response of pure capacitances

The response of a pure capacitance to a sinusoidal
perturbation, x(t)�/a sin (vt), can be obtained by

direct inversion of

Y (s)�
1

Cs
X (s)�

1

Cs

av

s2 � v2
(3)

resulting in

y(t)�
a

Cv
(1�cos vt) (4)

Fig. 1 shows the plots of the perturbation x (t) and the
response y (t) where it becomes clear that the response is

a periodic function that oscillates around a /Cv in the

range 05/y (t)5/2a /Cv .
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3. Frequency response theorem

The fundamental theorem of frequency response

analysis states that:

After an initial transient period, the response of a

linear, stable system to a sinusoidal input is also a

sinusoidal wave with the same frequency; the ratio

between the input and the output amplitudes is given

by AR�/jG (jv )j and the phase shift by f�/�/G (jv ).

The blind application of this theorem to the pure

capacitance transfer function leads to

Amplitude Ratio AR� jG(jv)j� 1

Cv
(5a)

Phase Shift f��G(jv)��
p

2
(5b)

Thus, the ultimate sinusoidal response of a pure
capacitance could be presented as

y�(t)�
a

Cv
sin

�
vt�

p

2

�
(6)

This is clearly not the correct solution since it leads to

a sinusoidal response oscillating around zero with

amplitude equal to a /Cv . The pure capacitance system

is not stable, and therefore, the frequency response
theorem cannot be applied.

On the other hand, Eq. (4) may be rewritten in the

form

y(t)�
a

Cv
�

a

Cv
sin

�
vt�

p

2

�
(7)

or

y�(t)�y(t)�
a

Cv
�

a

Cv
sin

�
vt�

p

2

�
(8)

This function, y*(t ), is a sinusoidal wave with

amplitude and phase shift functions equal to the

modulus and angle directly obtained by replacing s�/

jv on the pure capacitance transfer function. In this way

the frequency response of a pure capacitance, y(t), may

be obtained easily from G (jv ) adding the term a /Cv to

y*(t).

Arising from the abusive application of the frequency

response theorem, erroneous solutions have been pre-

sented in textbooks. This is the case in Stephanopoulos

[1] (example 17.1, page 323) who writes Eqs. (5a) and

(5b) as being applied to the pure capacitance system.

Fig. 1. Response, y (t ), of a pure capacitance to a sinusoidal perturbation, x (t ), and y *(t )�/y (t )�/a /Cv .

Table 1

Examples of pure capacitance in various systems

M.M. Dias et al. / Chemical Engineering and Processing 42 (2003) 939�/942940



Ogunnaike and Ray [2] present the sinusoidal response

of a capacitance system in the correct form of Eq. (4),

and they then rewrite it in the form

y(t)�
a

Cv

�
1�sin

�
vt�

p

2

��
(9)

Based on this formulation they go on and say that the

frequency response of a pure capacity system has an

amplitude ratio and a phase angle given by Eqs. (5a) and

(5b), and show the plot of y*(t ) as the sinusoidal
response of a pure capacitance (figure 5.13, page 161).

4. Response of series of a pure capacitance and a stable

system

Ogata [3] (page 458) points out that if the system with

transfer function G (s )�/Y (s )/X (s) is not stable then the

response to a sinusoidal perturbation may be obtained

by taking the inverse Laplace transform of Y (s )�/

G (s)[av /(a2�/v2)]. In these cases and if the transfer

function is complex the calculation of the inverse may be

a difficult and tedious process.

Systems composed of the series of a pure capacitance
and a stable system, whose transfer function may be

written as

G(s)�
1

Cs
G1(s) (10)

where G1(s) is the transfer function of any stable system,
are also unstable and so the frequency response theorem

may not be applied. However, the result of Eq. (8) may

be extended to these types of systems in the form

y�(t)�y(t)�
aK

Cv
�

aK

Cv
ARN

1 sin

�
vt�

p

2
�f1

�
(11a)

ARN
1 �

1

K
jG1(jv)j f1��G1(jv) (11b)

where K is the gain of the system with transfer function

G1(s).

For example, consider the system composed of a pure

capacitance in series with a first order system, that is

G(s)�
1

Cs

K

ts � 1
(12)

Then

y�(t)�
aK

Cv

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and the system response is obtained by

y(t)�y�(t)�
aK

Cv
(14)

as plotted in Fig. 2. The response at long times is a

periodic function oscillating around aK /Cv with am-

plitude 9aK=(Cv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2t2�1

p
):/

5. Conclusions

The problem of the frequency response of pure

capacitance systems has been addressed, and it was

shown that it has been wrongly solved in some text-

books on process dynamics and control. The reason for

these errors comes from the inadequate application of

the fundamental theorem of frequency response that can

only be applied to stable systems, which is not the case
with pure capacitance systems. An extension to the

frequency response of systems consisting on the series of

a pure capacitance and any stable system has been

introduced and an easy way to obtain the solution is

presented.

Fig. 2. Response, y (t ), of a series of a first-order system and a pure capacitance to a sinusoidal perturbation, x (t ).
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Appendix A: Nomenclature

A hydraulic storage tank cross-sectional area (m2)

a sinusoidal input wave amplitude
AR output wave amplitude ratio

C electric capacitance (F)

Cp thermal capacitance specific heat (J/(kg K))

F mechanic translational force (N)

Fo hydraulic storage tank outlet flowrate (m3/s)

Fi hydraulic storage tank inlet flowrate (m3/s)

G (s) transfer function

h liquid level (m)
I electrical current (A)

J mechanic rotational moment of inertia (N m s2)

K system gain

m mechanic translational mass; thermal capacitance

mass (kg)

q heat flow rate through thermal capacitance (J/s)

T thermal capacitance temperature (K)

T time (s)
s Laplace domain variable (per s)

u mechanic translational velocity (m/s)

y electrical voltage (V)

x input deviation variable

X (s ) input variable transform

y output deviation variable

y* �/y(t)�/a /Cv

Y (s ) Output variable transform

Greek symbols

f output wave lag or phase-shift

V mechanic rotational angular velocity (rad/s)

G mechanic rotational torque (N m)

t system time constant (s)

v sinusoidal input wave frequency
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