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The unscented filter as an alternative to the EKF for nonlinear state
estimation: a simulation case study
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Abstract

The Kalman filter has been widely used for estimation and tracking of linear systems since its formulation in 1960 due to its simplicity and
robustness. In many chemical engineering applications the extended Kalman filter (EKF) is often used to deal with certain classes of nonlinear
systems. In spite of that, designing an EKF for highly nonlinear processes is not a trivial task, particularly those involving highly exothermic
reactions. In this work we compared the performance of a new technique, the unscented filter, with that of the extended Kalman filter. The
unscented filter produced better results without performing potentially ill-conditioned numerical calculations and linearly approximating the
evolution of the state vector covariance.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In many engineering areas the extended Kalman filter
(EKF) is widely used for state estimation and tracking. Nu-
merous successful applications of this tool have been re-
ported in the literature. Nonetheless, when one applies an
EKF to a complex system, a few implementation and numer-
ical problems may arise. One of them is the computation of
the state transition matrix which calls for calculation of the
Jacobian matrix and its matrix exponential. Besides being
a computationally expensive operation, there is no univer-
sal and robust numerical way to carry it out (Moler & Van
Loan, 1978).

Moreover, the linearization at each time step can introduce
large errors and even cause divergence of the filter (Wan &
van der Merwe, 2000). These concerns are especially acute
in complex industrial set-ups (Wilson, Agarwal, & Rippin,
1998). Although higher order Kalman filters exist, they are
more difficult to implement and prone to instability.Grewal
and Andrews (1993)introduced measures to improve nu-
merical stability of the EKF whileMostov (1996)proposed
a way to stabilize higher order EKF. In some applications
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(Chang & Hwang, 1998a,b), however, when suboptimal fil-
tering is justified, the original EKF algorithm can be modi-
fied in order to make it more robust in a nonlinear dynamic
environment.

In his work, Schei (1997)proposed an improvement for
the EKF in which using a central difference method it is
possible to perturb the system and determine covariances
without explicit calculation of the Jacobian.

Julier, Uhlmann, and Durrant-Whyte (1995)argued that
with a fixed number of parameters it should be easier to ap-
proximate a Gaussian distribution than to approximate an
arbitrary nonlinear function and introduced a new general-
ization of the Kalman filter,the unscented filter(UF), which
permits the direct propagation of means and covariances
through the nonlinear system equations. The main difference
between the UF and the method developed bySchei (1997)
is that the unscented filter approximates the underlying dis-
tribution.

In a striking review of new contributions in the field of
state estimation,Nørgaard, Poulsen, and Ravn (2000)com-
pared the two above mentioned filters and proposed a third
formulation whose performance is argued to be superior to
the filter described in(Schei, 1997)and similar to the one
of the UF.

Despite the fact that these techniques apparently surpass
the EKF, there have been no references in the literature to
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their application in the field of chemical engineering. In this
work we apply the extended Kalman filter and the unscented
filter to a highly nonlinear simulated CSTR in a system state
estimation framework and compare their performance.

2. The EKF and UF algorithms

The linear filtering problem is concerned with the estima-
tion of the state vector of a dynamic system, approximated
in discrete time as

xk = f(xk−1,uk−1, νk−1, k − 1), (1)

provided discrete observations, according to the measure-
ment model

yk = h(xk,uk,ωk, k), (2)

wherex is the state vector,u the control input vector,ν the
system noise vector,ω the measurement noise vector,f()

the process model, andh() is the measurement model.
The extended Kalman filter algorithm can be summarized

as a series of the following steps:

x̂k|k−1 = f(x̂k−1|k−1,uk−1, k − 1), (3)

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 + Bk−1Qk−1B

T
k−1, (4)

ŷk = h(x̂k|k−1,uk−1, k), (5)

Kk = Pk|k−1H
T
k [HkPk|k−1H

T
k + DkRkD

T
k ]−1, (6)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk), (7)

Pk|k = [I − KkHk]Pk|k−1, (8)

provided

Φk−1 = ∂f

∂x
, Bk−1 = ∂f

∂ν
, Hk = ∂h

∂x
, Dk = ∂h

∂ω
.

In the equations above,Q and R are the covariance ma-
trices of the process and measurement noises, respectively.
More detailed information about the EKF algorithm, in-
cluding different implementation equations and improve-
ments, can be found elsewhere (Jazwinski, 1970; Grewal &
Andrews, 1993).

One of the main flaws of the EKF is the assumption that
the errors in the state estimates are small and that the pre-
dicted mean of the state vector is equal to the prior mean
projected throughf(). It is also assumed that the state er-
rors propagate through a separate linearized system(4). In
a nonlinear environment these assumptions may undermine
the filter performance.

In theunscented transformation(Julier et al., 1995; Julier
& Uhlmann, 1997), on which the UF is based, a set of
weighedsigma pointsare deterministically chosen so that
certain properties of these points match those of the prior
distribution. Each point is then propagated through a non-
linear function and the properties of the transformed set are

calculated. With this set of points, the unscented transform
guarantees the same performance as the truncated second
order Gaussian filter, with the same order of calculations as
an extended Kalman filter butwithout the need to calculate
Jacobians or Hessians (Julier, Uhlmann, & Durrant-Whyte,
2000).

At first, the system state vector is augmented as

xa
k−1|k−1 �




xk−1|k−1

νk−1

ωk−1


 . (9)

Its mean is

E[xa
k−1|k−1] =




x̄k−1|k−1

0q×1

0r×1


 , (10)

where 0q×1 and 0r×1 are vectors of zeroes andq and r

are the sizes of the covariance matrices of the system and
measurement noise, respectively.

The covariance of the augmented state vector is, therefore

Pa
k−1|k−1 =




Pk−1|k−1 0n×q 0n×r

0q×n Qk−1 Pνω
k−1

0r×n Pων
k−1 Rk−1


 , (11)

wheren is the dimension of the original state vector, and
Pνω

k−1 andPων
k−1 are the correlations between the system and

measurement noises.
At the next step, a set of 2(n+q+r)+1 symmetricsigma

points is computed

X∗
k−1|k−1 =

[
0,

√
(n + q + r + κ)Pa

k−1|k−1,

−
√
(n + q + r + κ)Pa

k−1|k−1

]
, (12)

whereκ is a parameter for “fine tuning” the higher order
moments of the approximation (Julier & Uhlmann, 1997).
For any symmetric prior distribution with kurtosisk, if κ is
chosen such that 0< n+q+ r+κ ≤ k, then the predictions
of means and covariances are more accurate than those of
the EKF (Julier et al., 1995). For a Gaussian distribution,
n + q + r + κ = 3 should be used.

It is known that the matrix square root has no unique
solution. Despite this fact, the algorithm properties presented
above hold for any choice of its form.Julier et al. (1995)
recommends the Cholesky decomposition as a robust and
efficient method, which is of special importance in real-time
applications.

The sigma point setX∗ is zero mean and has the same
variance as the augmented state vectorxa. In order to correct
the mean, the estimatex̂a

k−1|k−1 is added to each sigma point
in vectorX∗

k−1|k−1 and the resulting vector of sigma points is

Xk−1|k−1 =
[
X∗

k−1|k−1,1 + x̂
a
k−1|k−1, . . . ,

X∗
k−1|k−1,2na+1 + x̂

a
k−1|k−1

]
, (13)
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wherena is the dimension of the augmented state vector. In
(13), the subscriptj of X∗

k−1|k−1,j is the sigma point index.
The state temporal update consists of two steps in which
the vectorX is mapped through the nonlinear system

Xk|k−1 = f(Xk−1|k−1, uk−1, k − 1), (14)

and the predicted mean is computed as

x̂k|k−1 =
2na+1∑
i=1

WiX
a
i,k|k−1, (15)

whereW is a weight vector of size 2na + 1 with elements

Wi =




κ

na + κ
, if i = 1,

1

2(na + κ)
, otherwise.

(16)

The predicted covariance is computed as

Pk|k−1 =
2na+1∑
i=1

Wi

[
Xi,k|k−1 − x̂k|k−1

]

× [
Xi,k|k−1 − x̂k|k−1

]T
. (17)

In a similar way the statistics for the innovation sequence
must be determined. The mean observation is found from

Yk = h(Xk|k−1, uk, k), (18)

ŷk =
2na+1∑
i=1

WiYi,k, (19)

and the covariance is determined as

Py =
2na+1∑
i=1

Wi[Yi,k − ŷk][Yi,k − ŷk]
T. (20)

The cross-correlation between the state estimate and the
measurement sequence is, therefore,

Pxy =
2na+1∑
i=1

Wi[Xi,k|k−1 − x̂k|k−1][Yi,k − ŷk]
T. (21)

At this point, the Kalman gain can be determined as

Kk = PxyP
−1
y , (22)

the measurement update can be performed from

x̂k|k = x̂k|k−1 + Kk(yk − ŷk), (23)

and the corresponding covariance matrix

Pk|k = Pk|k−1 − KkPyK
T
k . (24)

3. Application and results

In order to evaluate the relative performance of the un-
scented filter in comparison to that of the EKF, they were

Table 1
Model parameters

Parameter Expression Value Unit

p1
FR,ref

VR
3.333× 10−2 s−1

p2 k0 4.08× 107 s−1

p3
Ea

RTR,ref
25.347 –

p4
(hAT )i

VR(ρCp)f
6.63× 10−1 s−1

p5
−(�HR)CA,ref

(ρCp)f TR,ref
1.45 –

p6
(hAT )i

VW(ρCp)W
5.97 s−1

p7
(hAT )e

VW(ρCp)W
5.97 s−1

p8
FJ,ref

VJ
1.67× 10−1 s−1

p9
(hAT )e

VJ(ρCp)J
1.33 s−1

applied to a highly nonlinear dynamic system describing the
behavior of a non-adiabatic CSTR in which an irreversible
highly exothermic chemical reaction (A→B) takes place.
The reactor’s wall significantly affects the system dynam-
ics and therefore has also been taken into account. The cor-
responding model leads to the following set of ODEs in a
normalized and dimensionless form:


dx1

dt
= p1u1 + p1u1u2 − p1u2x1

−p2 e−p3/(1+x2)(1 + x1) − p1x1,

dx2

dt
= p1u3 + p1u2u3 − p1x2 − p1u2x2 − p4x2

+p4x3 + p5p2 e−p3/(1+x2)(1 + x1),

dx3

dt
= p6x2 − p6x3 − p7x3 + p7x4,

dx4

dt
= p8u4 + p8u4u5 − p8x4 − p8u5x4

+p9x3 − p9x4,

(25)

with the system state vector defined as

xT =
[
CA − CA,ref

CA,ref

TR − TR,ref

TR,ref

TW − TW,ref

TW,ref

TJ − TJ,ref

TJ,ref

]
, (26)

whereCA is the concentration of reactant A,TR the reactor
temperature,TW the wall temperature, andTJ is the jacket

Table 2
Steady states

Low-temperature stable Unstable High-temperature stable

x1 −0.0140582 −0.37748 −0.97640
x2 0.0068168 0.18304 0.47345
x3 0.0061321 0.16465 0.42590
x4 0.0054473 0.14627 0.37834
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temperature. The unit ofCA is mol/m3 and the unit ofTR,
TW, andTJ is K.

The input vector is

uT =
[
CA0 − CA,ref

CA,ref

FR − FR,ref

FR,ref

T0 − T0,ref

T0,ref

TJ0 − TJ0,ref

TJ0,ref

FJ − FJ,ref

FJ,ref

]
, (27)

whereCA0 is the feed concentration of reactant A,FR the
flowrate,T0 the feed temperature,TJ0 the inlet jacket tem-
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Fig. 1. Results of Test I (state (x), output (y), and the output setpoint (ysp) are represented with solid, dashed, and dotted lines, respectively).

perature, andFJ is the coolant flowrate. The unit ofCA0 is
mol/m3 and the unit ofT0 and TJ0 is K, and the unit of
FR andFJ is m3/s. The corresponding reference values are:
CA0,ref = CA,ref = 3 mol/m3, FR,ref = 60 × 10−5 m3/s,
FJ,ref = 15×10−4 m3/s,TR,ref = TW,ref = TJ,ref = T0,ref =
TJ0,ref = 298 K.

The measurement model is assumed to be

y = Hx with H =




1 0 0 0

0 1 0 0

0 0 0 1


 , (28)
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that is, measurements of the wall temperaturex3 are not
available.

Table 1 summarizes the model parameters used in the
present work. The model has three steady states which are
represented inTable 2.

The objective of the present simulation is to compare the
UF and the EKF in a nonlinear environment where the exact
system and measurement models are available to the filters,
as is the statistical information about the stochastic distur-
bances. Although such situation is oftentimes unrealistic
in industrial practice, yet here it enables a fair comparison
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Fig. 2. Test II: EKF estimation errors and 2σ bounds.

of such “ideally” tuned filters with no model mismatch af-
fecting the results. For the purpose of evaluation the filters’
behavior in a wide range of operating conditions, the sim-
ulation is performed in closed loop with clear intervals
of regulatory and servo control and with the system state
vector driven to each of the three steady states.

Three simulation tests are carried out with different mea-
surement noise parameters. Each of the tests starts out with
the state vector initialized at the high-temperature stable
steady state. The reactor temperature (y2) is under control
of two PI controllers working in a cascade: the first controls
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the reactor temperature by manipulating the jacket temper-
ature (y3) setpoint of the second PI controller, the latter ma-
nipulating the jacket flowrate (u5). In each experiment the
reactor temperature setpoint is

y
sp
2 =




0.47345, if t ≤ 300 s,

0.47345− 0.29041(t − 300)/200, if 300 s< t ≤ 500 s,

0.18304, if 500 s< t ≤ 800 s,

0.18304− 0.1762232(t − 800)/200, if 800 s< t ≤ 1000 s,

0.0068168, if 1000 s< t ≤ 1300 s.

The measurement and control interval is 1 s.
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Fig. 3. Test II: UF estimation errors and 2σ bounds.

The state vectorx is subject to zero mean additive white
noise with covariance

Q̃ = diag{10−6,10−6,10−6,10−6},
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while the measurements are corrupted by zero mean additive
white noise with covariance

R̃ =




diag{10−8,10−8,10−8} in Test I,

diag{6.5 × 10−7,6.5 × 10−7,6.5
×10−7} in Test II,

diag{10−5,10−5,10−5,10−5} in Test III.

The simulation results of Test I are illustrated inFig. 1. For
the sake of space, we omit the respective graphics of Tests
II and III as the state vector and outputs behave similarly.
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Fig. 4. Test III: EKF estimation errors and 2σ bounds.

The EKF and UF filter parameters are

x̂0 = x0 + [10−3,−10−3,10−3,10−3]T

= [−0.97540, 0.47245, 0.42690, 0.37934]T,

P̂0 = diag{10−6,10−6,10−6,10−6},

Q = Q̃ and R = R̃.

Additionally, parameterκ of the UF is set to−5 based on
the dimension of the state vector and the characteristics of
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the noises. We emphasize that no further adjustment ofκ

with the purpose of improving UF performance took place.
Finally, it is worth mentioning that the filter parameters
are consistent and reflect the parameters of the actual noise
sources acting on the system.

In order to decrease estimation errors of the EKF algo-
rithm, the predicted state estimate(3) was computed using
direct numerical integration of the state equations.

The profiles of the estimation errors (residuals) of both
filters and the respective 2σ bounds in single runs (calcu-
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Fig. 5. Test III: UF estimation errors and 2σ bounds.

lated as twice the square root of the trace of the state covari-
ance matrix) are illustrated inFigs. 2–5. For the purpose of
ensuring a fair comparison of the filtering techniques under
consideration, a Monte-Carlo simulation of 50 runs was car-
ried out for each set of noise parameters with a consequent
step of averaging the results. The overall estimation errors
are summarized inTable 3. A description of the filtering re-
sults obtained in each test follows.

Test I: Since the measurement noise covariance is small
as compared to the dynamics of the system, the estimation
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Table 3
Mean square estimation errors over 50 runs

Method x1 x2 x3 x4

Test I: R = diag{10−8,10−8,10−8}
EKF 1.1918× 10−5 1.1993× 10−5 1.3878× 10−4 1.1808× 10−5

UF 1.1918× 10−5 1.1986× 10−5 1.3830× 10−4 1.1806× 10−5

Test II: R = diag{6.5 × 10−7,6.5 × 10−7,6.5 × 10−7}
EKF 5.3636× 10−4 1.0863× 10−3 8.9844× 10−4 4.3803× 10−4

UF 2.2175× 10−4 2.7366× 10−4 2.6355× 10−4 1.8314× 10−4

Test III: R = diag{10−5,10−5,10−5}
EKF 200.310 71.636 60.324 48.166
UF 1.0423× 10−3 1.3258× 10−3 9.7272× 10−4 7.0139× 10−4

errors of the EKF and the UF are essentially the same
(Table 3), that is, although there may exist linearization
errors in the calculation of the state transition matrix in
the EKF algorithm, they do not have significant impact on
the filter performance as the estimates are mostly based on
measurements. However, even in this case the UF may be
preferred to the EKF because it needs the system and mea-
surement models only and does not require derivative infor-
mation. Because of the similar performance of EKF and UF
in this test, the corresponding graphic of filtering residuals
is omitted.

Test II: As the measurement noise increases, the filters
tend to weigh more the a priori estimate obtained using the
model. In this case, the linearization errors of the EKF begin
to play a significant role and the estimation residuals of the
EKF are from two to five times greater than the ones of
the UF (Table 3). Analyzing the 2σ bounds inFig. 2 one
can observe that the EKF overestimates the state covariance
and this leads to inconsistent results. On the contrary, the
residuals produced by the UF lie within the 2σ interval most
of the time (Fig. 3).

Test III: In this extreme case the measurement noise is
very significant and the filter estimates are based mostly on
the a priori estimate. The linearization errors of the EKF
impact severely its state estimates and ultimately lead to its
divergence (Fig. 4). However, the UF continues operating
satisfactorily (Fig. 5).

4. Conclusions

In this paper, we have assessed the use of the unscented
filter in a typical chemical engineering application and found
out that this estimation tool is able to provide superior ac-
curacy in comparison to the ones produced by the EKF.
The absence of model linearization step and, consequently,
errors induced by it, allows the UF to be used in a wider
range of operating conditions as well as in situations where
the differentiability of the system model cannot be assured.
Furthermore, the derivative free design of the UF makes
its implementation significantly simpler than the one of the
EKF.
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