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bstract

In the core of many process systems engineering tasks, like design, control, optimization and fault diagnosis, a mathematical model of the
nderlying plant plays a key role. Such models are so important that extensive studies are available, recommending different modeling techniques
o be adopted for specific processes or goals. It is usual and practical to split modeling techniques under two main groups: mechanistic methods and
mpirical or statistical methods. Both paradigms have been adopted, but very few frameworks were developed to combine and integrate features
rom both of them. In this article we describe a framework for data-driven evolution of static mechanistic models with a selective inclusion of simple
mpirical terms. To illustrate its practical potential, our framework is applied to the identification of a non-ideal reactor and to the optimization of

he Otto–Williams benchmark reactor.

2006 Elsevier Ltd. All rights reserved.
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. Introduction

The construction of mathematical models to forecast and un-
erstand the behavior of chemical processes forms the basis
or a countless number of process systems engineering tasks
planning, optimization, improvement, fault diagnosis, control,
tc.). Depending on the nature of the specific process and
ts desired goals, several kinds of models have been devel-
ped, differing, namely in scope, level of detail, and underlying
tructures.

However, for many practical situations two separate schools
f thought have emerged. On one hand, we have fully mech-
nistic approaches, where models are built based upon first-
rinciples phenomena. On the other hand, and specially for oper-

tion improvement at existing plants with complex transforma-
ions, fully empirical techniques have also been suggested and
pplied, relying in operators knowledge extraction, data analy-
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is based upon machine learning (Saraiva, 1996) or statistical
ools. But only a few efforts have been done in the past to com-
ine and integrate both of the above paradigms, although they
re conceptually believed to be complementary to each other:
mpirical components will in general lead to better local predic-
ion capabilities through the full exploration of all information
hat is available, while mechanistic elements make it possible
or one to get a better understanding of the underlying physico-
hemical phenomena, predict the values for unmeasured state
ariables, provide additional trust, reliability and extrapolation
haracteristics.

One of the most widespread techniques employed for plant
ptimization is response surface analysis (Box & Draper,
987) based on experimentation and empirical modeling. But
xperiments are often expensive, its number tends to grow
xponentially with the number of relevant process variables, and
mpirical models are known to fail on wide operation domains.

he use of mechanistic model-based optimization (Garcia &
orari, 1981) has been advocated as an alternative solution.
priori process knowledge reduces the need for experimental

ata and optimization can be carried out over a larger space of
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mailto:eq1pas@eq.uc.pt
dx.doi.org/10.1016/j.compchemeng.2006.07.006


362 P.V. Lima, P.M. Saraiva / Computers and Che

Nomenclature

a, b CSTR kinetic parameters for the Arrhenius ex-
pression

A, B CSTR output concentration of A and B
A0 CSTR inlet concentration of A
Fi Otto reactor mass flow for species A and B
FR Otto reactor total mass flow
IMMS initial mechanistic model structure
ke CSTR reaction heat constant
ki,ai,bi Otto reactor Arrhenius kinetic parameters
kp CSTR heat transfer constant
M Otto reactor mass content
PMM perfect mechanistic model
P2 second degree polynomial
SMMS semi-mechanistic model structure
T CSTR output temperature
Tp CSTR heat transfer temperature
Tr CSTR reference temperature
T0 CSTR inlet temperature
vn neutral value reformulation variable
V multi-response data covariance matrix
wi new internal variable
x model variables
Xi Otto reactor mass fraction for component i
y response variables
ym response measurements

Greek symbols
Φ extension set
αi extension slot in the model structure
δi CSTR stream fractions
εki CSTR prediction error for variable k and mea-

surement i
τ CSTR residence time
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to build alternative semi-mechanistic model structures (SMMS)
θ model parameters

rocess variables. However, the mismatch between mechanistic
odel predictions and plant data leads to results that can be

uite suboptimal when applied to the real plant. For plant opti-
ization, there is thus a clear need for strategies that effectively

ncorporate both mechanistic and experimental knowledge.
When doing statistical based plant optimization, one often

otices that the amount of information needed to build adequate
mpirical models requires a lot of time and resources. Further-
ore, because of safety considerations, the search space for ex-

erimentation in real plants is somewhat limited around regular
perating conditions, and in doing so limits some improvement
otential that may be associated with other areas of the decision
pace. This situation makes the usage of mechanistic model-
ased techniques very important for some plants.
The main problem quite often consists of being able to de-
ive a fully mechanistic model good enough to support deci-
ionmaking. In real plant optimization, there is a clear need for

t
b
l
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ombining known mechanistic models together with available
perating data, in a way that goes further than just doing pa-
ameter adjustment in the mechanistic model. But when using
parallel or serial combination of a mechanistic model and an

rtificial neural network (or other empirical based modules) the
esulting model behavior in extrapolation is known to be unsta-
le and non-reliable (Braake, van Can, & Verbruggen, 1998).
ith the internal simple empirical extensions that we will pro-

ose in our framework, to be described in this paper, it is possible
or one to keep the main relations between variables, provided
y an initial mechanistic model of the plant, but obtain from
t a derived model with a better data fitting and prediction ca-
abilities, and therefore able to provide a closer representation
f a real industrial plant. The extrapolation stability of the hy-
rid structures thus obtained is an important characteristic for
odel-based plant optimization.
Model-based plant optimization can also performed on-

ine, using a real-time optimization loop, based upon this kind
f semi-mechanistic models. Forbes, Marlin, and MacGregor
1994)show that the choice of an appropriate mechanistic model
tructure is very important and certain criteria must be met in
rder to obtain convergence to the plant optimal conditions. A
ully mechanistic model built with reasonable considerations
ay however fail completely in real-time optimization of in-

ustrial units, due to approximations and lack of data fit that
riginate an error surface that does not enable convergence to
he real world plant optimal conditions. The hybrid mechanistic–
mpirical models that we propose have both parameter and struc-
ure adjustment capabilities, and therefore are able to result in
mproved optimization solutions, as we will see in one of the
ase studies to be presented.

In the limited previous work that has been done in order to
uild hybrid mechanistic–empirical models (Cameron & Han-
os, 2001; Psichogios & Ungar, 1992; Schubert, Simutis, Dors,
avlík, & Lubbert, 1994; Su, Bhat, & McAvoy, 1992; Thompson
Kramer, 1994; Van Can, Hellinga, Luyben, & Heijnen, 1996; ),

ne may find different perspectives, including the choice among
lternative first-principles models followed by some parameter
tting to existing data or combination of the available mecha-
istic model with an empirical model adjusted to the residuals.
esearch in the area of system identification also introduced the
oncept of grey-box models (Lindskog & Ljung, 1995; Ljung,
999) for representing models with physical components (white-
ox models) and empirical components (black-box).

However, none of them take into account the detailed fine
tructure of the available underlying mechanistic model, neither
o they allow for partial localized and selective introduction of
mpirical elements. In this article we present a framework for
uilding semi-mechanistic models with such capabilities.

In order to state, in a simple language, the goals and practical
alue of our work, one may say that given an initial mechanistic
odel structure (IMMS), and sets of collected industrial data

rom the plant that such a model is trying to represent (D), we try
hat make use of available phenomenological knowledge but
uild on top of it in order to come up with model structures that
ead to a closer approximation to the plant reality, as expressed
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rithms (Quesada & Grossmann, 1995). For semi-mechanistic
model identification we also propose such a transformation, in
order to expose the model linear and non-linear basic building
blocks. As an example of our reformulation strategy, let us take,
for instance, the non-linear kinetic Eq. (2), where a, b and c
are constants and r, x, y and z are the variables, as our initial
mechanistic model structure. Through the introduction of new
variables wi, Eq. (2) can be represented as a set of equations as
shown next:

r = a eb/x y z2

c + y + z
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1 = b

x

w2 = ew1

w3 = z2

w4 = aw2yw3

w5 = c + y + z

r = w4

w5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

The new equations in (2) are either linear equations, product
terms, fractions, powers or unary functions (like exp, log, etc.).
We thereby propose a representation similar to the one used for
global optimization (Smith & Pantelides, 1999), but with re-
formulated product equations having any number of terms. This
proposed representation lends to less sparse reformulated model
structures, better suited for semi-mechanistic model identifica-
tion and construction.

2.1. Symbolic reformulation algorithm

In this section we present the algorithm that we use for refor-
mulation of an initial set of equations. This symbolic algorithm
is based on the binary tree representation (Knuth, 1973) of the
equation expression. The binary tree is an acyclic graph data
structure with three types of nodes (one root node, internal nodes
and leaf nodes) and arcs connecting the nodes. The binary tree
representation of the kinetic expression (2) is shown in Fig. 1.

The algorithm goes through the tree nodes by recursive call-
ing of the function presented in Algorithm 1.

Algorithm 1. Algorithm for symbolic reformation.
P.V. Lima, P.M. Saraiva / Computers an

y the available data. Our framework provides a decision
upport system to guide the user in the construction and test
f such alternative model structures. One main difference
etween our framework and genetic programming is that our
earch space is constructed in a way that reduces the number
f possible combinations to the ones that introduce simple and
ocal changes to the original IMMS model structure. While
enetic programming is able generate new complex structures,
ur framework is focused in finding simple extensions that build
n top of the knowledge and vocabulary of terms connected
ith the initially available mechanistic features, expressed by

MMS. We will only deviate from it as much as is needed to
ome up with acceptable data fitting performances.

. Semi-mechanistic modeling framework

As stated above, given a set D of nd industrial or experimen-
al data records (x, y), where x are system inputs and y stand
or the variables that we want a model to be able to predict, our
oal is to come up with a final model structure and set of as-
ociated parameters (SMMS), able to fit the available data, and
aving as starting point an initial mechanistic model structure,
hich is however to provide an acceptable forecasting perfor-
ance within the scope of its underlying structure. The search

pace that we will consider therefore covers both model struc-
ures and the sets of corresponding adjustable np parameters, θ.
he search space of model structures that we will consider is
ighly constrained by the mechanistic knowledge that is avail-
ble and expressed under the form of our IMMS. Since we will
e using real data for parameter estimation, one must also take
nto account that the number of available data records must
e an order of magnitude larger than the number of adjustable
arameters.

Therefore, on a more formal notation, one can say that the
eneric representation used in our semi-mechanistic model iden-
ification problem corresponds to a non-linear programming for-

ulation (NLP). It allows for the explicit consideration of model
estrictions and differential-algebraic systems solved through
iscretization techniques. Our NLP representation for a multi-
esponse least squares parameter optimization is as follows:

minθ

∑
(ym − y)TV−1(ym − y)

s.t. f (y, x, θ) = 0

g(y, x, θ) ≤ 0
(1)

here f are the linear and non-linear model equations, either from
he initial mechanistic model structure or other alternatives de-
ived from it, g the model inequalities, y the response variables,
m the response measurements, x the remaining model vari-
bles, θ the model parameters and V is the multi-response data
ovariance matrix (Bates & Watts, 1988).

We now focus on the process model equations. A standard
pproach is to use mechanistic model equations directly in f.

ut work done on constraint reformulation for convex relax-
tion of NLP models has shown that a generic model Eq. (2)
an be transformed to an equivalent model structure that has
etter characteristics for the development of optimization algo- Fig. 1. Binary tree representation.
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Fig. 2. Reform

As an example, we will apply the algorithm to the binary
ree of expression (2), under the steps illustrated in Fig. 2. The
lgorithm starts from the root node and goes recursively, top–
own and left–right until it gets to a leaf node. The first leaf
ound is constant a and the recursive function returns the type

(constant) for the branch (Fig. 2a). Recursion continues with
he other branch until it stops on b/x. The left branch is type C
nd the right branch is type V (variable). From Table 1, for the
ivision operator, we obtain the action to create a new fraction
efinition, w1 = b/x. The return type is V since a new variable is
laced on the tree (Fig. 2b). Then, from the main function code,
e have a rule to create function definitions for functions applied

o V types (w2 = ew4 ). The recursive process continues to z2

ith the result of w3 = z2 obtained from the corresponding table
ule (Fig. 2c). Then, the table rule for product of two variables is
o identify the subtree with type P (product). The same happens
ith the two upper nodes (Fig. 2d). Processing in the root right
ranch goes down to the leaf nodes y + z and from table rule one
dentifies the type L (linear). Next, the constant addition is still a
ubtree of type L, and we get to the root node, with a left subtree
f type P and a right subtree of type L. From the corresponding
able rule, a new product definition is created for the left subtree

4 = aw2yw3, a new linear definition is created for the right
ubtree w5 = c + y + z and then a fraction w5/w4 definition is
reated for the root node. This concludes the reformulation with
resulting expression equal to the one presented originally in (2).

.2. Semi-mechanistic model hyperstructure
Given an initial mechanistic model structure, its reformula-
ion performed according to the steps mentioned in the previous
ection sets the stage for defining the search space for finding m
on algorithm.

ut alternative semi-mechanistic model structures that are better
djusted to the available set of data records (D). Such a search
pace corresponds to the IMMS hyperstructure, i.e., the one that
ncludes the initial model together with all possible extension
lots over our initial set of equations, after IMMS has been re-
ormulated and represented according to the sets of equations
eported in Section 2.1. This kind of structure is comparable to
he ones used in MINLP flowsheet optimization (Grossmann &
argent, 1978).

Such an hyperstructure is created by adding to our initial
echanistic model all the places where extensions will be al-

owed (extension slots). With the model in the reformulated
orm, the insertion is done using a set of rules applied to the
asic expression types (linear, product, fraction, etc.). For ex-
mple, linear expressions like c + y + z can be transformed to
+ y + z + αwithα representing an extension slot in the model.

There are many possible strategies for determining the ex-
ension slots under consideration. One simple approach is to
nly add slots to linear expressions like in the previous exam-
le, making the identification problem similar to linear stepwise
egression. The strategy that we propose introduces extension
lots in the model as addition terms, according to the simple
ules:

1) For linear definitions, add a single extension slot to the ex-
pression. For example, x + y becomes x + y + α.

2) For non-linear definitions, add an extension slot next to each
variable. For example, ex → ex+α, xy → (x + α1)(y + α2).
As an illustration, by applying these rules to the reformulated
odel (2) one originates hyperstructure (3):
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Table 1
Rules for binary operators reformulation (plus, times, divide and power) under the following nomenclature: operator (Op), left child type (LT), right child type (RT),
left child action (LA), right child action (RA), node action (NA), node result type (N), constant type (C), variable type (V), linear type (L), product (P), new linear
definition (a), new product definition (b), new fraction definition (c) and new power definition (d)

Op LT RT LA RA NA N Op L R LA RA NA N

± C C C × C C C
V C L V C L
L C L L C L
P C b L C V L
C V L C L L
V V L P C P
L V L V V P
P V b L L V a P
C L L P V P
V L L V L a P
L L L L L a a P
P L b L P L a P
C P b L C P P
V P b L V P P
L P b L L P a P
P P b b L P P P

÷ C C C ∧ C C C
V C L V C d V
L C L L C a d V
P C P P C b d V
C V c V C V d V
V V c V V V d V
L V a c V L V a d V
P V b c V P V b d V
C L a c V C L a d V
V L a c V V L a d V
L L a a c V L L a a d V
P L b a c V P L b a d V
C P b c V C P b d V
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V P b c V
L P a b c V
P P b b c V

w1 = b

x

w2 = ew1

w3 = z2

w4 = aw2yw3

w5 = c + y + z

r = w4

w5

→

w1 = b

x + α1

w2 = ew1+α2

w3 = (z + α3)2

w4 = a (w2 + α4) (y + α5) (w3 + α6)

w5 = c + y + z + α7

r = w4 + α8

w5 + α9

(3)

In some situations it may be interesting to adopt a model
yperstructure with some particular characteristics. One of such
odification consists of disabling extensions in some equations,

n order to maintain some known system properties. As an exam-
le of this scenario, we may want to preserve mass conservation
aws from the original mechanistic model. Another modification
e might want to consider is an increase in the number of slots

n some parts of the model. This can be achieved through a vari-

ble transformation before the reformulation, T(x, vn), where
n is a dummy variable, replaced with a neutral value after the
eformulation. For example, by changing x to x/vn before re-
ormulation, we obtain the expression (x + α1)/(vn + α2) in

a
s
n
t

V P b d V
L P a b d V
P P b b d V

he hyperstructure. Then, by changing vn to the neutral value
e obtain the expression (x + α1)/(1 + α2), equivalent to the
riginal model, but with two additional slots. In a CSTR ex-
mple that we present in Section 3 we will apply this type of
odification to increase the number of slots considered in the

inetic law.

.3. Extension set

Each extension slot can accommodate one or more terms from
he extension set. In the simplest case we may consider only the
ddition of new free parameters. We represent the extension set
or free parameters as Φ = {1}, meaning that each α slot can have
new parameter p multiplied by 1. This simple set can be useful

or first exploratory runs in the search for model modifications.
The extension set we propose for developing semi-

echanistic models includes free parameters, the mechanistic
odel variables and the reformulated non-linear definitions hav-

ng only variables from the mechanistic model. When the refor-
ulation exposes terms like 1/x or xy we consider these terms
s part of our basic variable set. When working with non-linear
ystems, it is important for the extension set to be able to model
on-linear behavior. With that goal in mind, we also include in
he extension set the quadratic forms of the previous terms, in
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rder to introduce some curvature in the internal extensions.
As an example, the extension set for expression (2) results as

hown:

=
{

1, x, y, z,
1

x
, x2, y2, z2,

(
1

x

)2
}

(4)

The hyperstructure, together with the extension set, make up
he search space for finding semi-mechanistic model structures,
.e., for identification of possible SMMS solutions. The combi-
atorial problem size for adding one new parameter to the mech-
nistic model is n × m with n being the number of extension slots
nd m being the number of elements in the extension set.

The terms in the extension set are the elements needed to in-
roduce quadratic polynomials in the mechanistic model struc-
ure. These elements may be introduced individually in the

odel or we can choose to add quadratic polynomials directly in

he extensions. Both strategies will be used in the case studies:
he first approach has the advantage of originating models with a
maller number of new parameters, while the semi-mechanistic
odels based on the polynomial approach use a reduced number

S
b
c
m

mical Engineering 31 (2007) 361–373

f extension slots and are easier to compute, since their search
pace is smaller.

.4. Optimization algorithm

The mechanistic model hyperstructure and its extension
et define a disjunctive search space (Turkey & Grossmann,
996). Disjunctive optimization problems are often associated
ith models having logical conditions or decision variables

Bjrkqvist & Westerlund, 2001). In our optimization problem,
he disjunctive spaces correspond to the multiple possible ex-
ensions.

This kind of optimization problems can be transformed into
ixed integer problems formulations (MINLP) and solved using

elaxation and branch and bound techniques. Nevertheless, when
olving relaxed non-linear models using local optimization, the
ranch and bound strategy may cut important parts of the search
ree due to non-global convergence.

The search for semi-mechanistic models is an optimization
roblem that involves non-convexities from the non-linear
odel and from the considered non-linear extensions. In

ractice, as expected, we found it to be very hard to find the
lobal optimum for the hyperstructure identification search
pace, but we also noticed that very good results could be
btained effectively using an approximated search strategy. On
ne hand, by using sequential introduction of new extensions
n the model, the combinatorial space is considerably reduced.
lso, the sequential solution of several non-linear optimizations

an be very effective, with variables starting values for the next
tep inherited from the previous one. This was the case for the
emi-mechanistic structures, that are in a close range of the
ase model structure, and thus the optimization solution for
ach sequential model extension can be obtained by exhaustive
earch in the disjunctive space. This sequential/exhaustive
olution of MINLP problems was the strategy used to solve the
ase studies presented in the next sections. The new parameters
re added sequentially to the model until one of the conditions
et for the stop criterion is met: the error improvement is lower
han a minimum value, the relative error goal is achieved or the

aximum number of new extensions is reached.
As our hybrid model is built around a mechanistic model, en-

anced with simple empirical structures that have a low number
f new adjustable parameters,our SMMS possible solutions are
ompact in the number of parameters. Therefore, the sizes of
he datasets (D) that we need to have in order to support model
tructure building and refinement do not have to be very large. In
act, just like for the determination of adjustable parameters in
echanistic models, it may be better to use a smaller data set by

oing some data preprocessing in order to improve performance
nd stability of the optimization search.

In the next sections we will describe the application of our
emi-mechanistic model building framework and evaluate its
erformance when applied to a pair of simulated case studies.

o that we can benchmark performances with the best possi-
le answer, corresponding to a perfect mechanistic model, our
omparisons are carried this way: at first, a perfect mechanistic
odel (PMM) is used just for generating simulated operating



P.V. Lima, P.M. Saraiva / Computers and Che

d
t
P
j
n
i
o
n
S
w

h
a
S
o
e

3

w
h
C
l
p
t
d
c
g
p

w
n
h
a
i
u

A

t

e
n
t
e
a
a
δ

(
t
e

d
d
o
r
w
t
f

p
g
m
m
f
(
a
s

Fig. 3. Non-ideal CSTR assumed real plant behavior.

ata (D), replacing the chemical plant as a data creation source;
hen, to emulate real world situations, we forget the existence of
MM (since no perfect models are usually available), adopted

ust to build D; given the nature of the plant and available mecha-
istic knowledge about it, an initial mechanistic model structure
s adopted, corresponding to the efforts that one would carry
ut to represent such a plant through a mathematical model; fi-
ally, starting with IMMS and building from it several alternative
MMS solutions are created and tested, leading to a final model
hose underlying structure is different but derived from IMMS.
When presenting the results, the mechanistic model should

ave the main focus as it is the main source of interpretability
nd quality of prediction. To achieve that goal we present the
MMS results as the mechanistic model plus the extension set,
r, when presenting all equations together, we underline the
xtension terms.

. Non-ideal CSTR application

We assume here that the real plant corresponds to a situation
here we do have two reaction zones with different kinetics,
eat transfer and a bypass stream (Fig. 3), corresponding to a
STR under non-ideal conditions. Therefore, to generate simu-

ated data collected from such a plant, we will consider as our
erfect mechanistic model the set of Eq. (5). This set of equa-
ions is the one that we will be using to generate plant simulated
ata (D). As the departures from ideal behavior which do oc-
ur are not considered to be known, model (5) is only used to
enerate simulated data measurements and identify benchmark
erformances.

In this section we consider a continuous stirred tank reactor
ith first order reaction kinetics, A → B. The case study sce-
ario uses a model with two reaction zones of different kinetics,
eat transfer and a bypass stream (Fig. 3), in order to simulate
CSTR with non-ideal conditions. As the departure from the

deal behavior is considered to be unknown, model (5) is only
sed to generate system simulated data measurements.

The system independent variables are the inlet concentration
0 and the inlet temperature T0, and its dependent variables are

he output concentrations of A and B, and temperature T.
1

τ(A0 − A1) − r1
= 0

1

τB1 + r1
= 0
T0 − T1 + ker1 − kp(Tp − T1)2 = 0

r1 = k1A
1/2
1

k1 = a exp
(

−b

(
Tr

T1 − 1

))
(5)

p
c
fi
p
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1

τ(A0 − A2) − r2
= 0

1

τB2 + r2
= 0

T0 − T2 + ker2 = 0

r2 = k2A2

k2 = a exp

(
−b

(
Tr

T2 − 1

))
A = δ1A1 + δ2A2 + δ3A0

B = δ1B1 + δ2B2

T = δ1T1 + δ2T2 + δ3T0

The assumed PMM for this plant corresponds to consid-
ring the first reaction zone to behave according to the ki-
etic expression r ∝ A1/2and heat removal to be proportional
o T 2, while for the other zone we considered r ∝ A. The plant
quations given by (5) represent our PMM, for a non-ideal re-
ctor, where the heat transfer parameters are kp = 0.01 K−1

nd Tp = 300 K, the stream fractions δ1 = 0.35, δ2 = 0.60 and
3 = 0.05, τ the residence time (100 s), ke the reaction heat
ke = (−�Hr)/(ρCp) = 105 K l/mol) and Tr is the reference
emperature (800 K). The kinetic parameters for the Arrhenius
xpression are a = 0.01717 s−1 and b = 12.58.

The mathematical model (5) was used to build a training
ataset from simulations for different values of T0 and A0. The
ataset comprises 30 measures of output A, B and T from values
f T0 ∈ [425, 475] K and A0 ∈ [0.925, 0.975] mol/l. They cor-
espond to the collection of such data from operating records,
ith 30 sets of (x, y) measurements being adequate for parame-

er fitting (since the number of parameters, as we will see, ranges
rom 2 to 8).

Since in practice we will have operating data (D), but no
erfect model structures available or known, we now will for-
et about PMM and consider how one usually tends to address
echanistic modelling of a CSTR, by assuming as our initial
echanistic model structure the one that corresponds to a per-

ect CSTR (6), where the residence time (τ) the reaction heat
ke) and the reference temperature (Tr) have the same values as
bove. We start by evaluating this mechanistic model for repre-
enting the information contained in the simulated dataset.

A0 − A − τr = 0

B + τr = 0

T0 − T + keτr = 0

r = kA

k = a exp

(
−b

(
Tr

T − 1

))
(6)

The training total square error (TSE) (7) for the estimation

roblem is the sum of errors for concentration of A (εAi), con-
entration of B (εBi) and temperature (εT i), being the error de-
ned by the difference between dataset measurement and model
redicted value. The values 0.02, 0.02 and 5.5 are the dataset
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Table 2
Initial mechanistic model performance result

TSE a b

Mechanistic model 14.597 0.01717 12.58
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Table 3
Semi-mechanistic models with extension polynomials

Model TSE Extensions

SM-P1 1.0676 α1 = 5.83 − 72.0A + 80.9A2

SM-P2 0.4494 α1 = −0.02 − 0.13A + 0.27A2

α3 = −12.4 + 2.95A + 6.50A2
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e
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w
the same number of adjusted parameters. In this case, by ad-
justing the mechanistic model kinetic parameters in the IMMS
structure we ended up getting biased values, in order to try to
minimize errors which are actually due to the lack of a right

Table 4
Semi-mechanistic models with elementary extensions

Model TSE Extensions

SM-E1 1.403 α1 = −1.11 × 10−5T 2

SM-E2 0.745 α1 = −1.46 × 10−5T 2

−4 2
Mechanistic model with
adjusted parameters

7.9082 0.0161 12.331

ariances for concentrations A, B and temperature.

SE =
∑

i

( εAi

0.02

)2 +
( εBi

0.02

)2 +
(εT i

5.5

)2
(7)

The TSE result for the mechanistic model, and for the mech-
nistic model having kinetic parameters a and b determined by
LP minimization of the multi-response least squares (7), is
iven in Table 2.

The prediction quality obtained with the mechanistic model is
eak (large mean square error), even with adjusted parameters,

nd therefore we applied to it our strategy to search for semi-
echanistic model structures. Thus, IMMS was reformulated

nd its hyperstructure created according to our framework (8).
his reformulation used two modification rules: the first was

he exclusion of extension slots in the mass balances for A and
in order to maintain the mass conservation law; the second
as the inclusion of a neutral variable in the kinetic expression
= kA/vn in order to increase the number of extension slots in

hat expression.

A0 − A − τr = 0 A0 − A − τr = 0

B + τr = 0 B + τr = 0

T0 − T + keτr = 0 T0 − T + keτr + α1 = 0

r − w1 = 0 r − w1 + α5 = 0

w1 = kA w1 = (k + α2)

(
A + α3

1 + α4

)
k = aw2 k = (a + α5)(w2 + α6)

w2 = exp(w3) w2 = exp(w3 + α7)

w3 = bw4 w3 = (b + α8)(w4 + α9)

w4 = 1 − w5 w4 = 1 − w5 + α10

w5 = Tr

T
w5 = Tr + α10

T + α12

(8)

The first extension set we will use corresponds to the set used
or extension polynomials (9), where P2(A) represents the sec-
nd degree polynomialP2(A) = p1 + p2A + p3A

2. The search
esults are presented in Table 3 for an increasing number of ex-
ensions over:{ ( )
1 = P2(A),P2(B),P2(T ),P2(r),P2(k),P2
Tr

T
,

P2(kA)

}
(9)

The hyperstructure identification problem was also solved
ith a set of elementary extensions (10):
SM-P3 0.2744 α1 = −17.1 − 1.09A + 6.37A2 + 30.2B + 3.28B2

α3 = −0.24 + 0.36A + 0.01A2

2 =
{

1, A, B, T, r, k,
Tr

T
, kA, A2, B2, T 2, r2, k2,

(
Tr

T

)2

, (kA)2

}
(10)

The search results for determination of the best semi-
echanistic models with elementary extensions are presented

n Table 4.
Both the polynomial and elementary strategies were able to

roduce semi-mechanistic models with clearly better prediction
rrors than the original mechanistic model, even when consid-
ring the adjustment of its kinetic parameters. The performance
riteria shown above correspond to the evaluation obtained over
he same training dataset. To better access the value of the
emi-mechanistic models, performance was evaluated over two
ataset grids, one corresponding to interpolation in the range
0 ∈ [425, 475] K and A0 ∈ [0.925, 0.975] mol/l, and the other

o extrapolation in the range T0 ∈ [400, 425[ ∪ ]475, 500] K and
0 ∈ [0.9, 0.925[ ∪ ]0.975, 1.0] mol/l (once again, we use here
MM just for the purpose of obtaining simulated operating data,
s a replacement for real plant data). The mean square errors
MSE) for both interpolation and extrapolation are shown in
able 5.

In both interpolation and extrapolation the semi-mechanistic
odels outperform the original mechanistic model with adjusted

arameters. It is worth noting that the performance of the mech-
nistic model with adjusted parameters is an order of magnitude
orse than the performance of a semi-mechanistic model with
α2 = 1.60 × 10 A

SM-E3 0.502 α1 = −1.40 × 10−5T 2

α2 = 0.001A2 − 3.63 × 10−4
(

Tr

T

)2

SM-E4 0.023 α1 = −1.43 × 10−5T 2

α2 = 0.0019A2 − 0.0014
(

Tr

T

)2

α6 = 23.653A2
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Table 5
Testing datasets model results

Model Interpolation
MSE (×103)

Extrapolation
MSE (×103)

Mechanistic 642.01 782.34
Mechanistic adjusted parameters 269.92 439.21
SM-P2 14.32 84.34
SM-P3 8.76 45.02
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Table 7
Optimal reactor operating conditions

FA = 1.8 FA = 1.9 FA = 2.0 FA = 2.1 FA = 2.2

a
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SM-E2 31.77 182.43
SM-E3 38.76 98.78
SM-E4 1.90 36.14

nderlying model structure in IMMS. This is a situation very
ikely to happen when we try to adapt a mechanistic model to
xperimental data by adjusting some of the model parameters.

hen the model parameters are not known, one may be trying
o overcome lack of model structure through wrong parameter
stimations. This example shows that our framework can pro-
ide better alternatives and lead to the development of SMMS
odels with much better prediction performance than IMMS,

oth in interpolation as well as in extrapolation.

. Otto–Williams reactor optimization

The Otto–Williams reactor, proposed by Williams & Otto
1960), was widely used in process optimization case studies.
he model that we will use in this section is the one operating
nder the conditions proposed by Roberts (1979).

This plant corresponds to a continuous, stirred, isothermic
eactor with the following reactions occurring in the vessel:

A + B → C

B + C → P + E

C + P → G

The corresponding kinetic laws are presented in (11), with
i being the mass fraction of component i. The kinetic rates are

etermined by Arrhenius equations with the parameters given
n Table 6.

r1 = k1XAXB (s−1), k1 = a1e−b1/T

r2 = k2XBXC (s−1), k2 = a2e−b2/T

r3 = k3XCXP (s−1), k3 = a3e−b3/T

(11)

The reactor model comprises rate laws (11) and mass bal-
nces (12), where FA and FB are the mass flow (kg/s) of A and
, FR the total mass flow and M is the mass content, considered
onstant and equal to 2104.7 kg. Similarly to what happened

n the previous case study, this set of equations is what we will
onsider as being a perfect mechanistic model, employed to gen-
rate simulated operating data but assumed not to be known for

able 6
rrhenius law kinetic parameters

k1 k2 k3

a (s−1) 1.6599 × 106 7.2117 × 108 2.6745 × 1012

b (K) 6666.7 8333.3 11111.0

4

(

FB 4.72 4.95 5.19 5.42 5.64
T 362.7 363.3 363.9 364.4 364.9
f 921.5 943.2 963.6 982.6 1000.5

ny other purposes.

FA − FRXA − r1M = 0

FB − FRXB − (r1 + r2)M = 0

−FRXC + (2r1 − 2r2 − r3)M = 0

−FRXE + 2r2M = 0

−FRXG + 1.5r3M = 0

−FRXP + (r2 − 0.5r3)M = 0

(12)

The reactor model was used to determine optimal operations
alues for FA, FB and T . The optimization profit function (13)
s based on the value of final products (E and P) and on the cost
f raw materials:

= 5554.1FRXP + 125.91FRXE − 370.3FA − 555.42FB

(13)

Based on the optimization function (13), the model has an
ptimal operation value (FB, T ) for a given value of FA. Con-
idering some reference values for FA, optimal operation con-
itions are given in Table 7 and Fig. 4 displays some cuts of the
rofit surface.

In this study we will perform the reactor optimization based
n approximate and empirical models. This PMM model was
sed to generate a dataset with 100 simulated records based on
andom values for FA ∈ [1.8, 1.9] kg/s, FB ∈ [4.5, 5.0] kg/s and
∈ [355, 373] K. This dataset will be used to identify approx-

mate empirical and semi-empirical models (with a number of
djustable parameters varying between 4 and 14), so that a com-
arison can be obtained for fully mechanistic, fully empirical
s well as semi-mechanistic alternatives generated through our
odel-building framework.

.1. Empirical model

An empirical polynomial model (14) was developed using
econd order polynomials. Its parameters were estimated by
tandard multi-response non-linear regression, with a resulting
otal sum of squared errors of 8.997.

XE = a1 + a2FA + a3F
2
A + a4FB + a5F

2
B + a6Tn + a7T

2
n

XP = b1 + b2FA + b3F
2
A + b4FB + b5F

2
B + b6Tn + b7T

2
n

Tn = T

350
a = [ −3.826 0.044 −0.013 0.022 −0.002 7.438 −3.597 ]T

b = [ −8.715 0.330 −0.080 −0.010 −0.002 15.927 −7.216 ]T

(14)
.2. Approximate mechanistic model

An approximate mechanistic model, proposed by Roberts
1979) based on the fact that under normal operation conditions
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Fig. 4. Profit function versus temperature (le

ery little is produced of C and G, is considered to be our IMMS,
.e., as a first mechanistic attempt to model this kind of plant.
his IMMS model (15) has four species (A, B, E and P) and one

eaction A + B → E + P , thus leading to the following set of
MMS equations:

FR = FA + FB

FA − FRXA − rM = 0

FB − FRXB − 2rM = 0

−FRXE + 2rM = 0

−FRXP + rM = 0

r = kXAX2
B

k = ae−b/T

(15)

The kinetic parameters a and b of (15) were estimated from
he available set of simulated operating data. The optimal values
ound for the multi-response (XE and XP ) regression problem
ere a = 0.081 s−1 and b = 0.3726 K, with a total square error
f 3461.6. Thus, one can see that this IMMS model structure
s not able to represent the data with good accuracy, as was
lready reported by Roberts (1979) and Forbes et al. (1994).
n fact, this last author shows that this mechanistic model has
structure that is not able to find the optimal reactor condi-

ions and thus is not suitable for usage in model-based plant
ptimization.

The reactor optimization performed with this model origi-
ates optimal values of FA = 1.8587 kg/s, FB = 3.5 kg/s and
= 380 K (were both FB and T are in bounds of the vari-

ble ranges considered for the problem). These conditions
orrespond to a very weak value of 171.6 for the merit

unction.

Given the structural weakness of our IMMS (15), we followed
ur framework to derive from it a number of more interesting
MMS alternatives, according to searches conducted over the

t

t
a

d Profit function versus B mass flow (right).

MMS hyperstructure (16).

FR = FA + FB FR − FA − FB + α1 = 0

FA − w1 − rM = 0 FA − w1 − rM + α2 = 0

FB − w2 − 2rM = 0 FB − w2 − 2rM + α3 = 0

−w3 + 2rM = 0 −w3 + 2rM + α4 = 0

−w4 + rM = 0 −w4 + rM + α5 = 0

r − w7 = 0 r − w7 + α6 = 0

k − aw8 = 0 k − aw8 + α7 = 0

w1 = FRXA w1 = (FR + α8)(XA + α9)

w2 = FRXB w2 = (FR + α10)(XB + α11)

w3 = FRXE w3 = (FR + α12)(XE + α13)

w4 = FRXP w4 = (FR + α14)(XP + α15)

w5 = X2
B w5 = (XB + α16)2

w6 = kXA w6 = (k + α17)(XA + α18)

w7 = w6w5 w7 = (w6 + α19)(w5 + α20)

w8 = exp(w9) w8 = exp(w9 + α21)

w9 = −b

T
w9 = −b

T + α22

(16)

The extension set Φ was defined to have second order poly-
omials of the models term set and basic units (17):

= {P2(FR),P2(FA),P2(FB),P2(XA),P2(XB),P2(XE),

P2(XP ),P2(k),P2(r),P2(FRXA),P2(FRXB),

P2(FRXE),P2(FRXP ),P2(kXA)} (17)

The results obtained for the identification of SMMS struc-

ures with two and three extensions are presented in Table 8.

Both semi-mechanistic models identified have TSE values
hat clearly outperform IMMS scores, as well as those associ-
ted with the fully empirical model, showing that indeed they
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Table 8
Semi-mechanistic models identified

Model TSE Extensions

SM-2 7.705 α1 = 0.2470 − 1.9808XE + 4.3180X2
E

α2 = 0.2718 − 0.6965

Tn

+ 0.4556

T 2
n

, Tn = T

350

SM-3 0.775 α1 = 0.2881 − 2.2173XE + 4.8305X2
E
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α2 = 0.0304 −
Tn

+
T 2

n

, Tn =
350

α3 = −0.1268 − 8.0263XA + 30.8223X2
A

o have better data explanation and prediction quality. In order
o evaluate the usefulness of the previous models for conduct-
ng reactor optimization tasks, each one of them was used to
earch for optimal operating conditions in the variable ranges
efined by FB ∈ [3.5, 6.0] kg/s and T ∈ [320, 380] K with FA

et at different fixed values {1.8, 1.85, 1.9, 2.0, 2.1, 2.2} kg/s.
hese results are presented in Fig. 5, where one can notice that

he IMMS model fails quite strongly in the proper identification
f optimal conditions. Regarding SMMS alternatives, the SM-2
odel presents a big improvement over IMMS, while both SM-3

nd the empirical models find solutions close to the true optimal
onditions.

Fig. 6 shows in detail the results obtained by the two best
odels (empirical and model SM-3). There is a significant per-

ormance decrease in the empirical model for optimization on
A values larger than 2.0. As the dataset used in model identi-
cation comprises values of FA in the range [1.8, 1.9] kg/s, the
uality of the empirical model can be considered good in in-
erpolation, but bad in extrapolation. On the other hand, model
M-3 maintains good performance characteristics both in the
nterpolation and extrapolation zone.
These results show once again a large improvement of SMMS

olutions over the IMMS mechanistic model, achieved using

ig. 5. Optimized operation profits ((•) true, (�) mechanistic, (
) SM-2, (◦)
M-3, (�) empirical).

f

d
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Fig. 6. Optimized profit ((•) true, (�) empirical, (◦) SM-3).

few localized extensions introduced by our framework. The
emi-mechanistic model with three polynomial extensions is
ble to perform model-based optimization quite well. This semi-
echanistic model was developed based on a mechanistic model

hat was considered in previous studies as being inadequate for
odel-based optimization (Forbes et al., 1994).
In fact, previous studies introduced a more elaborate mech-

nistic model, which may be assumed as an alternative IMMS
tarting point, that considers two reactions and five species (A,
, E, G and P), in order to overcome some of the data fitting

imitations found in (15):

A + B → E + P

A + B + P → G

The new mechanistic model structure is obtained with the
ollowing mass balances and kinetic rate laws (18):

FR = FA + FB

FA − FRXA − r1 − r2 = 0

FB − FRXB − 2r1 − r2 = 0

−FRXE + 2r1 = 0

−FRXG + 3r2 = 0

−FRXP + r1 − r2 = 0

r1 = k1XAX2
BM

r2 = k2XAXBXPM

k1 = a1e−b1/T

k2 = a2e−b2/T

(18)

The kinetic parameters for this mechanistic model (ME),
etermined by regression using our dataset, are presented in
able 9.
This mechanistic model is superior to mechanistic model
15), as can be seen from the large TSE differences between
oth of these possible IMMS starting points. Using ME as our
MMS, we applied our model building framework in order to
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Table 9
Kinetic parameters for mechanistic model ME

a1 7.887 × 107

a2 1.390 × 1011

b1 7868.25
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b2 10621.28

TSE 3.908

ome up with semi-mechanistic alternatives, leading to a final
MMS model:

FR = FA + FB

FA − FR(XA + p1X
2
B) − r1 − r2 = 0

FB − FRXB − 2r1 − r2 = 0

−FRXE + 2r1 = 0

−FRXG + 3r2 = 0

−FRXP + r1 − r2 = 0

r1 = k1XAX2
BM

r2 = k2XAXBXPM

k1 = a1e−b1/T

k2 = a2e−b2/T

(19)

1 = 19.0416, b1 = 8177.206, a2 = 2.9698,

2 = 10824.995, p1 = 0.1036

The mechanistic model ME is able to provide good estimates
f the optimal conditions and in extrapolation outperforms the
mpirical model. The semi-mechanistic model that we deter-
ined is able to find the best optimal conditions for all the cases
tudied. Fig. 7 presents the results obtained for the different
odels in units of deviation from the true optimal values.
The Otto–Williams reactor is a model used in several opti-

ization case studies. It was used here to show the benefits of

ig. 7. Deviations from true optimal values ((�) empirical, (◦) SME-1, (�) ME).
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odel-based optimization, but also to point out the need to use
dequate mechanistic or semi-mechanistic models to support op-
imization efforts. With the semi-mechanistic models obtained
n this study we were able to obtain better results than with the
riginal mechanistic models or with empirical strategies This
as particularly visible with the simpler mechanistic model, a
odel that was considered inadequate for model optimization

nd was extended by our framework into a model with good
ptimization performance and stability in extrapolation.

This case study also highlights the benefits of our framework
ymbolic search space. We limit the search space to simple em-
irical extensions and a set of mechanistic model extension lo-
ations. Although the Otto–Williams is a small model, if we
ere to use symbolic regression based on genetic programming

Koza, 1992), the search space for the structural combinations
sing the equations parsed trees would require powerful comput-
ng resources. On the other hand, the search for the best hybrid
tto–Williams reactor is accomplished with few minutes of a

tandard desktop computer. And a case study with full Otto–
illiams process (Williams & Otto, 1960), having 93 variables

nd 83 equations, was solved with a couple of hours of desktop
omputer time.

. Conclusions

We have introduced and developed a framework that is sup-
orted by the symbolic reformulation of a set of first-principles
quations, in order to derive hybrid mechanistic–empirical mod-
ls. The use of this model reformulation strategy results in a set of
tomic equations that allow for empirical elements to be added
electively and locally. This set is used to create a symbolic
earch space on neighborhood of the initial mechanistic model
nd determine, through combinatorial optimization, the best hy-
rid mechanistic–empirical that represents the information in
he available data.

The development of semi-mechanistic models using this new
ramework has shown to be a simple and effective path for static
echanistic model evolution. In the case studies presented we
ere able to obtain models with an order of magnitude improve-
ent in their performance criteria over the initial mechanistic
odel performance. For the Williams–Otto benchmark prob-

em, we were also able to start with an approximate mechanistic
odel known to be inappropriate, and obtain a semi-mechanistic
odel enabling a very good model-based optimization of the

nit. In both cases, the model predictions in extrapolation indi-
ate very good performance and stability.

This framework opens new possibilities regarding the inte-
ration of empirical and mechanistic modeling. The resulting
odels have very good characteristics of stability and under-

tandability and can replace mechanistic models in many pro-
ess engineering model-based techniques.
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