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Abstract

A sufficient condition for robust asymptotic stability of nonlinear constrained model predictive control (MPC) is derived with respect
to plant/model mismatch. This work is an extension of a previous study on the unconstrained nonlinear MPC problem, and is based on
nonlinear programming sensitivity concepts. It addresses the discrete time state feedback problem with all states measured. A strategy to
estimate bounds on the plant/model mismatch is proposed that can be used off-line as a tool to assess the extent of model mismatch that
can be tolerated to guarantee robust stability.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A prominent research topic for nonlinear model predic-
tive control (MPC) is the development of a theoretical
framework for stability of the closed-loop system in the
presence of disturbances and modeling errors. A broad
review by Mayne et al. [7] on constrained MPC points
out that while research on stability has reached a relatively
mature stage, further research is required to develop imple-
mentable robust MPC for nonlinear systems. More recent
studies [6,4,5] have analyzed the robust design of nonlinear
MPC discrete time controllers. There a robustness margin
is derived in conjunction with the Lyapunov stability con-
ditions. A related analysis is also presented for uncon-
strained nonlinear MPC problems in [10]. On the other
hand, the treatment of constrained MPC systems is more
difficult, and in [6,5] a robust analysis is presented based
on Pontryagin difference sets, which can lead to conserva-
tive controllers.
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In this study, we consider a different approach based on
exact penalty functions. Here, we develop a framework
that can be used to evaluate off-line, the closed-loop
robustness of a constrained MPC system in the presence
of plant/model mismatch. This is a direct extension of pre-
vious work on the unconstrained case [10] for the discrete
state feedback problem. Both the plant and model are
described using nonlinear state-space models. The results
in this paper lead to a criterion that is a sufficient condition
for asymptotic stability in the presence of plant/model mis-
match. We note, however, that we do not treat the weaker
(but very useful) property of input to state stability (ISS),
covered in [6,5], although in future work we plan to extend
this framework to deal with ISS as well.

The paper is organized as follows. Section 2 is devoted
to preliminary definitions and assumptions on the model-
ing errors, and to a brief description of the MPC problem.
In Section 3, we analyze both the perfect and model mis-
match MPC cases, by exploiting the properties of the exact
penalty function, and we establish a sufficient condition for
robust asymptotic stability. In Section 4, using nonlinear
programming sensitivity concepts, we characterize this suf-
ficient condition for the MPC problem with a general cost
function. We further detail this characterization for the
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case of a quadratic cost function, and we obtain a quanti-
tative, computable bound on the plant/model uncertainty.
This bound can be estimated through off-line calculations
using a procedure that constitutes a tool to analyze robust
stability for constrained MPC. These results are illustrated
in Section 5 with a simple example. Finally, concluding
remarks regarding the analysis of conditions for robust sta-
bility of MPC in the presence of plant/model mismatch are
given in Section 6.
2. Definitions and notation

For this study we consider only the state feedback case
and assume that at every time index i all the states can
be measured accurately. We assume the state dynamics of

the plant are described by the following nonlinear, contin-
uous-time set of equations:

_xp ¼ f pðxp; uÞ; ð1Þ

where xp 2 Rns is the vector of states and u 2 Rnm is the vec-
tor of inputs, with f p : Rns � Rnm ! Rns .

The stationary discrete-time plant counterpart of (1) is

xp
kþ1 ¼ f pðDt; xp

k ; ukÞ; ð2Þ

where Dt is the sampling period and f p : Rns � Rnm ! Rns .
We will drop the Dt for convenience. A model with the
same dimension as (2) is considered for the MPC
framework:

xkþ1 ¼ f ðxk; ukÞ; ð3Þ

where xk 2 Rns is the vector of nominal states, uk is the same
vector of inputs as in (2), with f : Rns � Rnm ! Rns . We
consider ðxp

k ; ukÞ ¼ ðxk; ukÞ ¼ ð0; 0Þ the point at which both
the plant and the model operate at steady state, such that
f(0,0) = fp(0,0) = 0.

As in Keerthi and Gilbert [3] we apply the definition of a
function belonging to class K1. Here, a function
W ðrÞ : Rþ ! Rþ, r 2 Rþ, belongs to class K1 if: (a) it is
continuous; (b) W(r) = 0 () r = 0; (c) it is nondecreas-
ing; (d) W(r)!1 when r!1. We define k Æ k as the
Euclidean norm and assume there exists a modeling bound
function W mð�Þ 2K1 such that

kf pðxp
k ; ukÞ � f ðxk; ukÞk 6 W mðkxkkÞ; ð4Þ

and positive constants Km and c such that

W mðkxkkÞ ¼ Kmkxkkc: ð5Þ

The MPC problem minimizes

Wðxi; siÞ ¼
Xiþp�1

k¼i

hðxk; ukÞ þ hFðxiþpÞ; ð6Þ

where W : Rns � Rnm ! R, W(0,0) = 0. Here hðx; uÞ 2K1
and hFðxÞ 2K1 are general cost functions, xi is the initial
state vector at the time index i, i P 0, and si is the solution
vector over the predictive horizon, given by
sT
i ¼ sT

i sT
iþ1 � � � sT

iþp

� �
; where sT

iþk ¼ xT
iþk uT

iþk

� �
;

k ¼ 0; 1; . . . ; p: ð7Þ

This formulation allows a shorter input horizon m, with
m 6 p and uk = ui+m�1, k = i + m, . . . , i + p. Traditionally,
the decision variables of the MPC problem are the control
profiles. In the optimization framework used in this study
the state profiles are decision variables as well. It uses a
multiple shooting method to solve (3) over the predictive
horizon [11,9]. State and control constraints over this hori-
zon are included in the MPC formulation, set as lower and
upper bounds – subscripts L and U,

bxðxkÞ ¼
xk � xUk

�xk þ xLk

� �
6 0 and

buðujÞ ¼
uj � uUj

�uj þ uLj

� �
6 0 ð8Þ

with k = i + 1, . . . , i + p, and j = i, . . . , i + m � 1. We define
the vector of inequality constraints of the problem at i as

bðsiÞT ¼ bxðxiþ1ÞT � � � bxðxiþp�1ÞT buðuiÞT � � � buðuiþm�1ÞT
� �

:

ð9Þ

Finally, within this framework we impose two types of ter-
minal constraints to enforce the nominal stability of the fi-
nite horizon MPC controller. The most straightforward is a
zero state constraint with xi+p = 0, although this constraint
may become difficult to enforce. In addition, we consider
the dual mode controller. Here, hF(Æ) is chosen as an upper
bound on the cost of a stabilizing controller, say u = j(x),
that regulates the system, whenever it is within the neigh-
borhood of the origin defined by kxk 6 d. This controller
should also be feasible to bounds on u. Nominal stability
then follows by applying the condition [7,5]

hFðf ðx; jðxÞÞÞ � hFðxÞ 6 �hðx; jðxÞÞ 8x j kxk 6 d: ð10Þ

We denote by PðxiÞ the MPC problem solved at every time
index i, i P 0, given by

min
si

Wðxi; siÞ ð11Þ

s:t: cðxi; siÞ ¼ 0; ð12Þ
bðsiÞ 6 0; ð13Þ

where

cðxi; siÞ ¼

xiþ1 � f ðxi; uiÞ
..
.

xiþp � f ðxiþp�1; uiþp�1Þ
xiþp

266664
377775

for the zero state constraint or

cðxi; siÞ ¼

xiþ1 � f ðxi; uiÞ
..
.

xiþp � f ðxiþp�1; uiþp�1Þ
kxiþpk � dþ r2

266664
377775



L.O. Santos et al. / Journal of Process Control 18 (2008) 383–390 385
for the dual mode controller, with r as a slack variable.
Optional constraints can also be added for a shorter input
horizon, m 6 p. We assume in this analysis that si is also a
feasible solution for (11)–(13) and that there exists a suffi-
ciently long horizon that ensures an admissible trajectory
to satisfy the terminal constraints and (13).

3. Stability analysis

To extend the analysis made for the unconstrained case
by Santos and Biegler [10] to (11)–(13) we use an exact pen-
alty formulation as developed by Oliveira and Biegler [8].
This approach converts (11)–(13) to the problem PqðxiÞ:
min

si
� ðxi; si; qiÞ ð14Þ

s:t: cðxi; siÞ ¼ 0; ð15Þ
with � ðxi; si; qiÞ ¼ Wðxi; siÞ þ P ðsi; qiÞ; ð16Þ

� : Rns � Rnm ! R, � (0,0,0) = 0, where

P ðsi; qiÞ

¼ qi �
Xiþp�1

k¼iþ1

maxf0; bxðxkÞg þ
Xiþm�1

k¼i

maxf0; buðukÞg
" #

;

ð17Þ

and qi is the penalty parameter. We remark that P(si,qi) is
bounded from below by zero as well. Use of the exact pen-
alty function is motivated by the property that the solu-
tions to PðxiÞ and PqðxiÞ are equivalent for all
qi > kx�i k1, where x�i is the vector of the Lagrange multi-
pliers associated to PðxiÞ [2]. The condition on qi ensures
that the control and state profiles do not exceed the region
delimited by (8) over p. We will assume that the parameter
qi can be chosen in advance to be sufficiently large, i.e.,
q P maxifqig, and that if qi cannot be bounded, then
PðxiÞ has no feasible solution. Of course, feasible solutions
of PðxiÞ cannot always be guaranteed and for this reason, a
‘reasonable’ value can be chosen for q so that solutions of
PqðxiÞ can be considered even if they cannot always satisfy
the bound constraints. To simplify the notation we set

� �ðxiÞ ¼ � ðxi; s
�
i ; qÞ: ð18Þ

For our analysis we also assume the equality constraints
(15) can be satisfied for all cases of model mismatch. Usu-
ally, this can be satisfied by choosing a sufficiently long
(and possibly infinite) prediction horizon for the zero state
constraint case, or by choosing a robust stabilizing control
in the dual mode case. We will also observe instances that
violate this assumption for the case study presented in
Section 5.

3.1. Perfect model case

The essence of our stability analysis follows from famil-
iar arguments summarized in [7]. We first consider the case
where the model is perfect and there is no source of distur-
bances. From the assumptions stated in Section 2, the solu-
tion of PqðxiÞ satisfies (xk,uk) = (0,0) for kPi + p. Hence
the locally optimal solution gives

� �ðxiÞ ¼
Xiþp�1

k¼i

hðx�k ; u�kÞ þ hFðx�iþpÞ þ Pðs�i ; qÞ: ð19Þ

Note that we assume the point ðxp
k ; ukÞ ¼ ðxk; ukÞ ¼ ð0; 0Þ is

within the state and control bound constraints.
Consider now the problem at the next time index,

Pqðxiþ1Þ. Because the model is perfect and there is no
source of disturbances, the resulting optimal sequence of
PqðxiÞ is a feasible solution for Pqðxiþ1Þ. Moreover, the
objective function at the solution of Pqðxiþ1Þ can be no
greater than the solution PqðxiÞ. Substituting hF(xi+p) = 0
for the zero state constraint case or applying (10) with
x = xi+p for the dual mode case leads to the following
relation:

� �ðxiÞ � � �ðxiþ1ÞP ~hðxi; u�i ; qÞ; ð20Þ
where

~hðxi; u�i ; qÞ ¼ hðxi; u�i Þ þ q �maxf0; bxðxiÞg
þ q �maxf0; buðu�i Þg: ð21Þ

Note also that ~hðxi; u�i ; qÞ 2K1. Taking the sum of (20)
over N, noting that {� *(xi)} is nonincreasing and letting
N!1, leads to ~hðxi; u�i ; qÞ ! 0 and xi! 0.

3.2. Model mismatch case

Consider now the case with plant/model mismatch. To
obtain the solution Pqð�Þ at time index i + 1 we have two
initial state conditions available. One is the prediction
made at time index i for i + 1, �xiþ1 from (19), and the other
is defined by the state measurements at i + 1, xi+1 from (2).
This leads to two MPC problems denoted by Pqð�xiþ1Þ and
Pqðxi þ 1Þ, respectively. Both problems are solved with the
same model (3), and the difference between their solutions
reflects the degree of plant/model mismatch. From the per-
fect model case we assume that q is large enough in order
to obtain feasible solutions to Pð�xiþ1Þ if they exist. How-
ever, since xi+1 can be different from �xiþ1, we accept that
the bound constraints may be violated and P ðs�iþ1; qÞ > 0.
Nevertheless, we will still assume that terminal constraints
are satisfied for xi+1.

To account for mismatch we add and subtract � �ð�xiþ1Þ
to the difference � *(xi) � � *(xi+1), and use (20) to get

� �ðxiÞ � � �ðxiþ1Þ ¼ � �ðxiÞ � � �ð�xiþ1Þ � ð� �ðxiþ1Þ
� � �ð�xiþ1ÞÞ

P ~hðxi; u�i ; qÞ � ð�
�ðxiþ1Þ � � �ð�xiþ1ÞÞ

P W ðkxikÞ; ð22Þ

where the last inequality forces the right hand sides to be
bounded by a positive function W ðkxikÞ of class K1. This
ensures that asymptotic stability holds. Note that the differ-
ence � �ðxiþ1Þ � � �ð�xiþ1Þ is a measure of the plant/model
mismatch and will be referred to as the mismatch term.
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4. The mismatch term

To characterize the mismatch term we first invoke the
mean value theorem to derive an expression for the mis-
match term as a function of the difference between the
two problem solutions. Then we consider the optimality
conditions of both problems to derive a bound on the mis-
match term, which leads to a sufficient condition for closed-
loop stability under the presence of plant/model mismatch.
4.1. Preliminaries

Assuming that a value of q can be chosen that is suffi-
ciently large, we slightly modify � *(Æ) by applying a
smoothing function from Balakrishna and Biegler [1] to
every element of (17), e.g., for a scalar y:

maxf0; bxðyÞg � bnxðy; nÞ ¼
bxðyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bxðyÞ2 þ n2

q
2

ð23Þ

with small n > 0; the corresponding modification is also
made for bu. The definition (16) is now replaced by

� ðxi; si; qi; nÞ ¼ Wðxi; siÞ þ P nðsi; qi; nÞ ð24Þ

with P nðsi; qi; nÞ ¼ qi

Piþp�1
k¼iþ1bnxðxk; nÞ þ

Piþm�1
k¼i bnuðuk; nÞ

h i
.

� (xi, si,qi,n) is continuous and at least twice differentiable
with respect to si. Invoking the mean value theorem yields

� �ðxiþ1Þ � � �ð�xiþ1Þ ¼
Z 1

0

d

dx
� �ð�xiþ1 þ sðxiþ1 � �xiþ1ÞÞ½ �T

� �
� ðxiþ1 � �xiþ1Þds: ð25Þ

From (21) and (23) we can write ~hnðxi; u�i ; q; nÞ ¼
hðxi; u�i Þ þ q � bnxðxi; nÞ þ q � bnuðu�i ; nÞ. Returning to the
notation (18), defining

e�iþk ¼ s�iþk � �s�iþk

� �
¼

x�iþk � �x�iþk

u�iþk � �u�iþk

� �
ð26Þ

for k = 1, . . . ,p, and substituting (6), (23) and (26), (25) into
(24) leads to

� �ðxiþ1Þ � � �ð�xiþ1Þ ¼
Xp

k¼1

Z 1

0

rsiþk
~hnð�s�iþk

þ se�iþk; q; nÞ
Te�iþk ds: ð27Þ

Proceeding as in the unconstrained case study by Santos
and Biegler [10] with � *(Æ) replacing W*(Æ) we derive the fol-
lowing bound on the mismatch term:

j� �ðxiþ1Þ � � �ð�xiþ1Þj

6

Xp

k¼1

Z 1

0

rsiþk
~hnð�s�iþ1 þ se�iþk; q; nÞ

Tds

				 				 � C � W mðkxikÞ;

ð28Þ

where C is a bound on variations of the stationarity condi-
tions for Pqð�Þ as defined by Eq. (4.12) in [10], with � *(Æ)
replacing W*(Æ).
Moreover, we can consider more specific MPC objec-
tives (6) defined by

hðsiþkÞ ¼ sT
iþkQiþksiþk; ð29Þ

where Qi+k = diag{Qxi+k,Qui+k}, and Qxiþk 2 Rns�ns and
Quiþk 2 Rnm�nm are diagonal matrices corresponding to the
state and input weighting matrices at predictive horizon
time index i + k, respectively. From (29), the analytical
form of the integral term in (28) is (see Appendix A)Z 1

0

rsiþk
~hnð�s�iþk þ se�iþk; q; nÞ

Tds

¼ ð2�s�iþk þ e�iþkÞ
TQiþk þ q � rð�s�iþk; e

�
iþk; nÞ; ð30Þ

where rð�s�iþk; e
�
iþk; nÞ denotes a vector whose elements are

nonlinear functions of �s�iþk, e�iþk and n. Following the same
developments as in Santos and Biegler [10] we obtain

j� �ðxiþ1Þ � � �ð�xiþ1Þj

6

Xp

k¼1

k2�s�iþkk þ ke�iþkk

 �

kQiþkk
�

þq � krð�s�iþk; e
�
iþk; nÞk


� C � W mðkxikÞ: ð31Þ

We assume there are positive constants Q, a1 and a2, such
that for all i P 0 and k 6 p

krð�s�iþk; e
�
iþk; nÞk 6 a1k2�s�iþkk þ a2ke�iþkk ð32Þ

and kQiþkk 6 Q. Moreover, since �s�iþk, k = 1, . . . ,p, depends
on xi, we set

k2�s�iþkk 6 bKkxik; ð33Þ

where bK is a positive constant. From (5), with c = 1 (see
[10]),

ke�iþkk 6 C � W mðkxikÞ 6 CKmkxik ð34Þ

for every k, k 6 p. Finally, substituting (32)–(34) in (31)
leads to

j� �ðxiþ1Þ � � �ð�xiþ1Þj 6 KBkxik2
; ð35Þ

where

KB ¼ pfðbK þ CKmÞQþ q � ða1
bK þ a2CKmÞgCKm: ð36Þ

Note that the first term of the sum on the right hand side of
(36) is the expression of KB obtained for the unconstrained
case [10]. Therefore, when there are no active constraints
q = 0 and (35) is equal to the unconstrained case sufficient
stability bound. Also, from (22) and (35) it follows that

~hðxi; u�i ; qÞ � j�
�ðxiþ1Þ � � �ð�xiþ1Þj

P hðxi; u�i Þ � KBkxik2 ¼ W ðkxikÞ: ð37Þ

In particular, consider the case where Qxi = axI and
Qui = auI, with constants ax > 0 and au P 0. From solution
of PðxiÞ u�i is an implicit function of xi, so we can write



Table 1
Steady state operating conditions and model parameters

A Heat transfer area 0.623 m2

CA, CA0 Reactor and inlet
concentrations of A

10.0 mol/l

Cp Heat capacity of the liquid 4184 J/kg K
Ea/R Activation energy over R 10,080 K
F0 Feed flow rate 4.00 l/min
k0 Arrhenius constant 6.20 · 1014 mol/m3 s
T j, T r Coolant and reactor temperatures 34.0 �C
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ku�i k
2 ¼ bkxik2, for some b > 0. Thus, without constraint

violations,

hðxi; u�i Þ ¼ axxT
i xi þ auu�i

Tu�i ¼ ðax þ aubÞkxik2
: ð38Þ

For a given xi, and with au = 0, it follows from (37) that
KB < ax satisfies the sufficient condition for stability. When
au 5 0, this condition is relaxed to

KB < ax þ aub: ð39Þ

T 0 Feed temperature 11.1 �C
U Overall heat transfer coef.

300 W/m2 K
V liquid volume 0.0551 m3

(�DHr) Heat of reaction, 33,488 J/mol qL liquid density,
1000 kg/m3
4.2. A tool to analyze robust stability

Because b in (39) depends on the optimization problem
solution it is difficult to calculate KB a priori. Moreover,
when constraint violations occur a tighter value of the suf-
ficient stability condition for the constrained case, KB, can
be estimated by exploiting the state-space region of interest
from

KB P max
xi

j� �ðxiþ1Þ � � �ð�xiþ1Þj
kxik2

: ð40Þ

This procedure involves the off-line calculation of KB

according to the following cycle:

1. For a given xi, i P 0, perform the following steps:
2. Solve PqðxiÞ; save �xiþ1.
3. Implement u�i and set i = i + 1.

(i) Using xi+1, solve Pqðxiþ1Þ to obtain � *(xi+1).
(ii) Using �xiþ1, solve Pqð�xiþ1Þ to obtain � �ð�xiþ1Þ.

(iii) Go to 1 and repeat steps with new values of xi.
4. Set
KB ¼ max
i

j� �ðxiþ1Þ � � �ð�xiþ1Þj
kxik2

þ g; ð41Þ

where g > 0 is a user-specified safety factor. Therefore for a
nonzero xi we can compute a reasonable approximation to
KB.

5. Illustrative example

To demonstrate the above approach, we consider an
exothermic zero-order reaction system, A! B, with con-
centration and temperature dynamics described by

dCA

dt
¼ F 0

V
ðCA0

� CAÞ � k0e�Ea=ðRT rÞ; ð42Þ

dT r

dt
¼ 1

qLCpV
ð�QR þ QGÞ; ð43Þ

where QR is the rate of heat removal and QG is the rate of
heat generated by the reaction, given by

QR ¼ �qCpF 0ðT 0 � T rÞ þ UAðT r � T jÞ; ð44Þ
QG ¼ ð�DH rÞVk0e�Ea=ðRT rÞ: ð45Þ

The steady state operating conditions – except for CA

whose value is an initial condition – and parameter values
for this case study are given in Table 1.
Since the reaction is zero order the evolution of Tr is
independent of the evolution of CA and also (45) does
not depend on CA. This nonlinear system is open loop
unstable under certain operating conditions. Fig. 1 shows
the reactor temperature open loop response for different
initial reactor temperature conditions – Tr,i = 33, 34 and
35 �C. Clearly, for Tr,i > 34 �C, the system is open loop
unstable. A more detailed description of this system can
be found in Santos [9].

5.1. Testing for the sufficient stability condition

The control objective is to control Tr – the set-point is
Tr sp = 34 �C – by manipulating the cooling fluid tempera-
ture Tj subject to the operating constraints Tr P 0 �C and
Tj P 15 �C. To satisfy these constraints the control
problems are solved using (16) with q = 1000. We set
(ax,au) = (1, 0), predictive horizons (p,m) = (25,1), Dt =
0.5 min and we impose a zero state terminal constraint.
The steady state data (T j, T r and T 0) in Table 1 satisfy
the assumption in Section 2 that – using deviation variables
– (xk,uk) = (0,0) is the point at which both the plant and
the model operate at steady state. We emphasize that this
assumption is satisfied for all the cases of plant/model mis-
match discussed below. To test for the sufficient stability
condition, we consider parametric model mismatch on
the overall heat transfer coefficient U. Fig. 2 shows the var-
iation of KB with Tr,i varying in the operating region of
interest, from 24 to 44 �C, and for various model mismatch
values, Um = 200, 300, 400 and 500 W/m2 K. The true

plant value is Up = 300 W/m2 K. Each dot in Fig. 2 corre-
sponds to one cycle of the procedure to calculate KB (Sec-
tion 4.2). Thus, we observe that in the case of perfect model

(Um = 300 W/m2 K), KB = 0.
We also emphasize that when the terminal constraint is

not satisfied our assumption from Section 3 fails, a finite
value of KB cannot be calculated and the system is obvi-
ously not robustly stable. This case is illustrated in Fig. 2
by the vertical dashed lines in the region Tr,i > 34 �C. Here,
the nonexistence of a feasible solution can be overcome by
increasing the prediction horizon p appropriately to allow
the calculation of KB.
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As discussed in Section 4.2, when the state and input
weighting matrices are set such that (ax,au) = (1, 0), a suffi-
cient condition for robust stability from (37) requires
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profiles always show KB < 1. Under these conditions the
system is robustly stable and all of our simulated cases con-
verge to the origin (set-point) of Tr = 34 �C.

For Tr,i > 34 �C, the KB profiles cross the line KB = 1 as
Tr,i increases. For example, with Um = 500 W/m2 K, the
system is unstable, as KB > 1 for Tr,i P 39 �C. For this
case, the MPC controller does not converge for initial val-
ues of Tr,i > 34 �C. Moreover, with Um = 400 W/m2 K, the
system is also unstable because the terminal constraint can-
not be satisfied in this region, i.e. for Tr,i = 41 �C. Perfor-
mance of this case can be seen in Fig. 3 with
Tr,i = 37.5 �C and Um = 400 W/m2 K. After t � 72 min
the manipulated variable is set by the controller at its lower
limit. Note that for both Um = 400 and 500 W/m2 K the
cooling rate calculated by the controller is not sufficient
to cool down the reactor liquid and therefore a temperature
runaway occurs.

On the other hand, because the robust stability condi-
tion is based on normed quantities, it is only sufficient. Sta-
ble performance may still be possible because calculation of
KB is based on magnitudes and not the sign of the mis-
match terms in (37) and (40). For instance, for
Um = 200 W/m 2K we also have KB > 1 when Tr,i P 37 �C.
However, for Up > Um, the control solution is actually
favorable to the plant because the controller provides a
greater cooling rate than really necessary, and thus has a
stronger dampening effect.
6. Conclusions

We develop a strategy based on nonlinear programming
sensitivity that determines conditions under which the con-
strained model predictive control is robustly stable with
respect to modeling errors. The approach applies to finite
horizon MPC formulations using either zero state terminal
constraints or the dual mode formulation. Here, a sufficient
condition for robust stability is derived and an off-line pro-
cedure is developed to evaluate constants which determine
sufficient conditions for this property. These constants are
available from bounds on the model mismatch and from
the NLP solution of the receding horizon model. This pro-
cedure is applicable to both linear and nonlinear model
predictive controllers in discrete time that satisfy nominal
stability properties based on Lyapunov arguments.
Appendix A. Quadratic function and finite horizon

To obtain the analytical form of the integral term in (28)
we recall the smoothing function (23) applied to every ele-
ment of (17). From (8) let us define, for a scalar y,
bU(y) = y � yU and bL(y) = � y + yL. Therefore
~hnðy; q; nÞ ¼ y2qy þ q � ðbUnyðy; nÞ þ bLnyðy; nÞÞ ¼ y2qy

þ q
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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þ bUðyÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bLðyÞ2 þ n2

q
þ bLðyÞ

� �
with constant qy P 0. Taking the derivative of ~hnðy; q; nÞ
with respect to y leads to

d

dy
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q
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� bUðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q � bLðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bLðyÞ2 þ n2
q

264
375:

Finally, replacing y by �y þ se and integrating between 0
and 1 givesZ 1

0

d

dy
~hnð�y þ se; q; nÞds
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2

� �
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� �
þ q � rð�y; e; nÞ: ðA:1Þ

From the comparison with the unconstrained case [10] this
analytical form has an additional term which is a nonlinear
function of �y, e and n, denoted by rð�y; e; nÞ. It is straightfor-
ward to obtain (30) from (A.1) using the array definitions
in (26).
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