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A R T I C L E I N F O A B S T R A C T

Keywords:
Sizing
Scheduling
Resource task network
Mixed-integer linear programming
Ceramic industry

This paper addresses the optimal design of the grinding section of a ceramic tile plant operating in a cyclic
mode with the units (mills) following a batch sequence. The optimal design problem of this single product
plant is formulated with a fixed time horizon of one week, corresponding to one cycle of production, and
using a discrete-time resource task network (RTN) process representation. The size of the individual units
is restricted to discrete values, and the plant operates with a set of limited resources (workforce and
equipment). The goal is to determine the optimal number and size of the mills to install in the grinding
section, the corresponding production schedule, and shift policy. This problem involves labor/semi-labor
intensive (LI/SLI) units with a depreciation cost of the same order as that of the operation cost. The
optimal design of the grinding section comprises the trade-off between these two costs. The resulting
optimization formulation is of the form of a mixed integer linear programming (MILP) problem, solved
using a branch and bound solver (CPLEX 9.0.2). The optimal solution is analyzed for various ceramic tile
productions and different shift policies.

Scope and Purpose

This paper addresses an optimal design case study of the grinding section of a ceramic tile plant with
respect to the net capacity to install, the operation scheduling and the shift policy to implement. A
mathematical programming model is formulated based on the resource task network (RTN) framework
representation. The problem is solved using a branch and bound algorithm. The main goal of this work
is to apply optimal design/scheduling general tools to real problems commonly found in the ceramic
industry sector, a particular case of labor intensive plants. The application of these methodologies to this
case study demonstrates as well the importance of adopting suitable optimization strategies for plant
design in order to improve the economical performance of the production lines.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The planning and scheduling in the process industry has re-
ceived considerable attention from the research community in the
last decades. From the industrial point of view, Grossmann [1] ob-
serves that enterprise-wide optimization has become a major goal
in the process industries due to the increasing pressures for re-
maining competitive in the global marketplace. In an increasingly
competitive market, adequate process planning and scheduling is
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essential to achieve significant economical benefits and to keep the
plant in business. The category of problems in this area may in-
clude features such as multipurpose and multiproduct batch plants,
combined cyclic material flows, multi-stage, batch and campaign
production, and different storage and transference policies. Recent
overviews describing the main features and current state of the art
of planning and scheduling problems in the chemical process in-
dustry can be found in the works of Méndez et al. [2], Floudas and
Lin [3], and Kallrath [4]. Early mathematical programming formula-
tions for planning and scheduling process problems are based on a
discrete-time representation. However, discrete-time formulations
may require a large number of time slots to represent accurately a
problem. This in turn requires a large number of binary variables as-
sociated to each discrete-time interval, leading to problems of higher
dimensionality, and often numerically intractable. The adoption of a
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continuous time representation overcame these difficulties, and at
the same time allowed to solve problems of higher dimensionality
and complexity. For more details on the advantages and limitations
of these approaches see for instance the discussion in the reviews
by Floudas and Lin [3] and Méndez et al. [2].

The integration of the plant scheduling in the early stage of the
plant design is essential to improve the economical goals. Therefore,
the design of new processes or plants must take into consideration
the interplay with the planning and scheduling aspects of the pro-
duction. This trend motivated the formulation of even more complex
optimization problems in an attempt to determine simultaneously
the optimal plant sizing and scheduling. Several approaches have
been reported in the literature to model and solve this class of prob-
lems. See for instance the reviews in Castro et al. [5] and in Floudas
and Lin [3]. Yeh and Reklaitis [6] proposed a two stage approach for
the design of single product batch/semicontinuous plants. The design
problem is partitioned in two subproblems: the plant network syn-
thesis subproblem and the sizing subproblem. These problems are
solved by adopting an evolutionary strategy, and using an approxi-
mate method. Concerning the optimal integrated design of biochem-
ical processes, Samsatli and Shah [7] also adopt a two-stage design
approach. The processing times, rates and conditions for the batch
tasks are determined in the first stage, whereas the scheduling of
the plant operation is determined in the second stage.

In general, the mathematical formulations for simultaneous plant
synthesis, sizing and scheduling can yield problems of the form
of mixed integer non-linear programming (MINLP). However, these
nonlinear representations can be simplified to mixed integer linear
programming (MILP) problems when the size of the equipment is
restricted to discrete values [8]. This assumption allows to address
even more complex design models and systems. To handle the com-
plexity associated with the representation of chemical processes in
a systematic fashion, Kondili et al. [9] proposed a state-task net-
work (STN) representation. This representation considers two types
of nodes: states and tasks. State nodes represent feeds, intermedi-
ate and final products. On the other hand, task nodes represent the
processing operations which transform material from one or more
input states to one or more output states [9]. This suitable approach
to represent the process was extended by Pantelides [10], resulting
in a resource task network (RTN) representation. The RTN process
representation can be viewed as an advanced version of the STN.
The major difference between them is that the STN treats equipment
resources implicitly, while the RTN treats them explicitly [5]. It in-
volves two types of nodes: resources and tasks. Here, resource nodes
represent all entities that describe the process, such as raw-materials
and products, processing and storage equipment, utilities (workforce,
energy), and the equipment condition or state (clean, dirty, empty,
filled). All these formulations provide general tools to handle com-
plex processes and focus on algorithms, taking advantage of the de-
velopment of robust and fast optimization solvers. Several simulta-
neous design and scheduling problems using either STN or RTN rep-
resentations, in the form of either discrete or continuous-time for-
mulations, are reported in the literature. For instance, Barbosa-Póvoa
and Macchietto [11] developed a formulation with a STN process
representation to solve simultaneously the problem of the optimal
plant equipment design, including the determination of their associ-
ated connections, and the associated production schedule. Barbosa-
Póvoa and Pantelides [12] use a discrete-time RTN representation
to model the design problem of multipurpose plants, taking into
account the trade-offs between capital costs, revenues and opera-
tional flexibility. Lin and Floudas [13] address the problem of inte-
grated design, synthesis and scheduling of multipurpose batch plants
using a continuous-time STN representation. Maravelias and Gross-
mann [14] proposed a novel algorithm for the minimization of the
makespan of multipurpose batch plants using the STN formulation.

Castro et al. [5] present a general mathematical formulation for the
simultaneous design and scheduling of multipurpose plants based
on a continuous-time RTN representation.

The case study addressed in this work was motivated by a Por-
tuguese ceramic factory planning to install a new facility to produce
ceramic tile. Typically, ceramic tile plants feature continuous oper-
ating units such as furnaces and involve some degree of labor/semi-
labor intensive (LI/SLI) batch units as well, such as mills. The Por-
tuguese ceramic company was particularly interested in the optimal
design of the grinding section. The grinding section is a single prod-
uct plant of LI/SLI type, with a set of ball mills operating in batch
mode. The optimal design of LI/SLI plants must address the trade-off
between the operation costs and the installed equipment depreci-
ation costs. Resources such as workforce and energy very often ac-
count for an important part of the overall plant cost. Thus, the cost of
the resources required to operate the plant may interact significantly
with the plant design and/or synthesis. Hence, the equipment cost
based objective function in typical sizing problems is replaced by a
function that considers both the operation and depreciation costs of
the equipment to install. Since these two costs depend on each other,
the resulting optimal structure comprises the optimal design, the re-
sources allocation policy, and the corresponding optimal schedule.

In this case study, the plant operates in a cyclic mode with a
fixed horizon of one week. The grinding section is designed with
mills of discrete capacity, available in the market with four different
net capacities. The mills are loaded through conveyors under the
supervision of operators, and their operation is energy intensive. The
energy usage is defined in accordance with the commercialization
policy practiced by the energy supplier. The objective of this single
product plant optimal design problem is the determination of: (i) the
number and net capacity of the mill units to be installed to satisfy a
given demand, taking into account the discrete capacities of the mill
units available in the market; (ii) the optimal plant schedule taking
into account the workforce and equipment resources constraints;
(iii) the optimal shift policy.

The paper is organized as follows. Section 2 introduces the for-
mulation of the optimal design and scheduling problem of the grind-
ing section of the ceramic tile plant, based on the discrete-time
RTN process representation. Section 3 describes the problem of the
optimal sizing and scheduling—Problem I—assuming that there is
only one worker available to operate the entire grinding section.
This formulation is extended in Section 4 to determine the optimal
shift policy—Problem II—, where up to five operators are available
to run the grinding section. Finally, concluding remarks are given in
Section 5.

2. RTN process representation

The design and scheduling problem in this case study involves
individual batch units, and their net capacity is restricted to dis-
crete values. The grinding section produces one single product, and
its operation is cyclic with a fixed time horizon of 1 week. These
characteristics fit on a discrete-time formulation since it leads to a
mild optimization problem in terms of dimensionality and complex-
ity. The discrete-time feature allows to handle problems where time
dependent resource constraints are set a priori, such as the work-
force. This class of problems can be handled either with a discrete-
time STN or a discrete-time RTN representation. These formulations
lead to different model constraints (the RTN representation treats
the equipment resources explicitly) and different computational per-
formances [5]. Recent results for scheduling problems favor the RTN
representation [15].

The cyclic scheduling problem is modelled using a discrete-time
RTN framework [10]. The RTN framework stands on the representa-
tion of the process by a set of topological entities comprising two
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types of nodes: tasks and resources. Tasks represent operations that
change the state of the product or piece of equipment. Resources are
entities necessary to promote state changes. The time horizon of one
production cycle, H, is discretized into T time slots (Fig. 1) bounded
by event points or time events t, t = 0, . . . , T. This set of time events,
t ∈ T, defines the time instants where process changes may occur,
such as resources allocation and state changes. All time slots have
the same time duration of �� units of time. The value of �� is se-
lected to be equal to the time required to complete the fastest task.
The tslotth time slot, tslot = t, t�1, starts at the event point t−1 and
ends at the event point t (Fig. 1). The absolute time at which the
production cycle is initialized is �0, and the absolute times at which
an event may occur are � = �0 + t��, for t = 0, . . . , T.

A smaller time slot duration �� (higher number of event points)
leads to a better accuracy of the model representation. However,
the problem complexity increases with the decrease of ��, and the
model dimension is proportional to H/��. In general, accurate model
representations can be obtained if the discretization interval is made
equal to the duration of the shortest task [9]. This allows to trade off
the model dimension with the accuracy, and consequently to reduce
the computational effort.

A discrete representation of the time horizon is adopted to for-
mulate the problem because the time availability of the workforce

�0
�fH = TΔ�

with �f = �0 + TΔ�

discretized horizon
Δ�

slot 1 slot 2 slot T

time
horizon H

time slots
tslot = 1, •  •  •  ,T

•   •   •

•   •   •

•   •   •

event points,
t = 0, •  •  •  ,T 

absolute time

0 1 2 T − 1 T

�0 �0+Δ� �0 + TΔ��0  + 2Δ�

Fig. 1. Time horizon discretization. Definition of time slots, time events or event
points, and the corresponding absolute time.
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Fig. 2. Resource task network representation of the grinding section with n mills.

resources, and the time dependent cost of the energy is fixed a
priori. The inclusion of the workforce availability constraints and
the energy cost in the model formulation is straightforward af-
ter setting the absolute time at which the production cycle is
initialized (�0) and the time horizon (H) of the scheduling prob-
lem. The production scheduling must satisfy labor contracts en-
forced by the ceramic industry sector, and take advantage as much
as possible of the lowest energy prices proposed by the energy
supplier.

The resulting combinatorial formulation stands on the assump-
tion that the plant topology is only partially known a priori. Al-
though the sequence of operations of each piece of equipment is
known, the number of pieces of equipment that are needed to sat-
isfy the demand is not known a priori. The problem is formulated
under the assumption that there are no constraints in the quantity
of raw material used to feed the grinding section. After the grinding
operation the clay is immediately feed to the formation units to pro-
duce ceramic tiles, which are later processed in continuous furnaces.

Table 1
Definition of the elements of the production/consumption matrices of the states and
resources, �k,s,� and �k,r,� , respectively

Task k = 1, feeding, with a duration �1 = 1 Task k = 3, emptying, with �3 = 1
� = 0, 1 � = 0, 1

State s = 1 (empty): �1,1,0 = −1; �1,1,1 = 0 �1,1,0 = +1; �1,1,1 = 0
State s = 2 (filled): �1,2,0 = 0; �1,2,1 = +1 �1,2,� = 0,� = 0, 1
State s = 3 (ground clay): �1,3,� = 0,� = 0, 1 �1,3,0 = −1; �1,3,1 = 0
Resource r = 1 (operator): �1,1,0=−1; �1,1,1=+1 �1,1,0 = −1; �1,1,1 = +1
Resource r = 2 (energy): �1,2,� = 0,� = 0, 1 �1,2,� = 0,� = 0, 1
Resource r = 3 (mill): �1,3,0 = −1; �1,3,1 = +1 �1,3,0 = −1; �1,3,1 = +1

Task k = 2, grinding, with a duration �2 = 13

� = 0, . . . , 13

State s = 1 (empty): �2,1,� = 0,� = 0, . . . , 13

State s = 2 (filled): �2,2,0 = −1; �2,2,� = 0,� = 1, . . . , 13

State s = 3 (ground clay): �2,3,� = 0,� = 0, . . . , 12; �2,3,13 = +1

Resource r = 1 (operator): �2,1,� = 0,� = 0, . . . , 13

Resource r = 2 (energy): �2,2,0 = −1; �2,2,� = 0,� = 1, . . . , 12; �2,2,13 = +1

Resource r = 3 (mill): �2,3,0 = −1; �2,3,� = 0,� = 1, . . . , 12; �2,3,13 = +1
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Fig. 4. Characterization of the status of resources during one batch performed in 15h.

The production demand is defined in terms of square meters of ce-
ramic tile per week.

Fig. 2 summarizes the RTN process representation of the grinding
section with a number of n mills. Task nodes are denoted by rectan-
gles whereas both states and resources nodes are denoted by circles
[10,16]. The grinding section runs in batch mode and it involves a
sequence of three tasks, k= 1, 2, 3. The typical cycle of a batch asso-
ciated to a given mill can be described as follows:

• k = 1: feed the mill with raw material. This task changes the state
of the mill unit from empty (s= 1) to filled (s= 2), and needs one
operator (resource r = 1) to feed the mill. Each mill is filled using
a different feed line. This avoids the need to address feeding lines
schedule. This task has a time duration �1 = 1h.

• k=2: grind the material filled. This task changes the state of the raw
material filled to ground clay (s=3), and requires energy (resource
r = 2). The time duration of this task is �2 = 13h.

• k = 3: release the ground clay. Here the mill state is changed from
filled with ground clay (s=3) to empty (s=1), and the correspond-
ing mill unit is made ready for a new load. This task requires also
an operator (resource r = 1) to discharge and clean the mill. The
time duration of this task is �3 = 1h.

Therefore it takes at least 15h to complete one batch (feeding, grind-
ing, and emptying) per mill. The time duration of the fastest tasks
(feeding, k=1, and emptying, k=3) is of 1h. Hence, the time horizon
of the cycle of production H (Fig. 1) must be discretized using time
intervals of �� = 1h. As explained in Section 3, the time horizon H
for this problem is fixed to one week, 168h, corresponding to 169
time events, t = 0, . . . , 168.

Remark that all tasks require the operation of a mill (resource
r=3). Also, to satisfy a given production demand it may be necessary
to install more than one piece of equipment. Hence, the installed n
mills must be numbered appropriately in the problem formulation,
m = 1, . . . ,n (Fig. 2). In the RTN representation described in Fig. 2, it
is assumed that the consumption of energy to perform tasks 1 and
3 (feeding and emptying, respectively) is not significant in compari-
son to the energy necessary for the grinding task. It is noteworthy to
mention that the states of the RTN representation (s = 1, 2, 3) char-
acterize as well the state of the mill units over the production cycle.

Each task k has a fixed time duration expressed in terms of
the number of time intervals, defined by �k = int(�k/��). The
time duration of each task is used to define the so-called pro-
duction/consumption matrices of the states and resources. These
matrices are used to characterize the status of the states and
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resources during the batch, with respect to each task, and over the
entire time horizon of the production cycle. Resources and states are
produced and consumed at a finite set of discrete times during the
execution of a given task [10]. An integer binary variable, Nm,i,k,t , is
introduced to characterize the operation of task k at time t related
to the mill or grinding unit m of net capacity i. Nm,i,k,t defines the
extent of task k, and determines the demands that it places on the
resources and states. Following the lines of the description in [10],
the amount of resource r (or state s) produced at the time point �
relative to the start of task k at time point t is assumed to be re-
lated to the extent through a relationship of the form �k,r,� Nm,i,k,t−�

(or �k,s,� Nm,i,k,t−�), where �k,r,� and �k,r,�, � = 0, . . . , �k, are known
constants. A negative value of �k,r,� or �k,s,� indicates consumption
of the resource or state, respectively. A positive value indicates pro-
duction. For a more detailed description see [10]. The values of �k,r,�
and �k,s,� for this case study are given in Table 1.

Figs. 3 and 4 illustrate the use of the constants defined in Table 1
to characterize one batch operation of a mill under the assump-
tion there are no dead times between tasks. Thus, the minimum
time to complete one batch (feeding, grinding, and emptying) is
15h. However, in practice a batch may take longer to be completed
because of the resource constraints. The elements of the produc-
tion/consumption matrices, �k,s,� and �k,r,�, are used in Figs. 3 and
4 to define the status of the states and resources at each time point
tb of the batch, tb = 0, 1, . . . , 15, with respect to each task k. For
instance, in Fig. 3, regarding the feeding task (k = 1), at the time
point tb = 0 the state empty (s = 1) is consumed, �1,1,0 = −1. One
hour later (tb = 1), the state filled (s = 2) is produced, �1,2,1 = +1.
To perform the feeding task the resource operator (r = 1) (Fig. 4) is
consumed at tb = 0, �1,1,0 = −1, and produced (released) at tb = 1,
�1,1,1 = +1. This task involves the allocation (consumption) of the
resource mill (r = 3) at tb = 0, and its release (production) at tb = 1,
�1,3,0 = −1 and �1,3,1 = +1, respectively. Both energy and mill re-
sources (r=2 and 3) are consumed at tb=1 (relative time point �=0),
�2,2,0 = −1 and �2,3,0 = −1, to perform the grinding task (k= 2), and
produced at time point tb=14 (relative time point �=13), �2,2,13=+1
and �2,3,13 = +1. The arrows in Figs. 3 and 4 illustrate the cyclic
nature of the states and resources status changes as described in
Table 1.

The mills are operated as units with intermediate storage capac-
ity because after the feed task they can be programmed to start later
the grinding operation. Therefore, after the end of the grinding oper-
ation the ground clay can wait inside the mill until being discharged.
Therefore, depending on the availability of the workforce resource,
the time to run one batch may be longer than 15h. This transference
policy provides the opportunity to optimally schedule the units op-
eration taking into account both the labor work availability and the
energy cost.

3. Optimal sizing and scheduling

The optimal sizing and scheduling problem described in this
section—denoted by Problem I—is formulated assuming that there
is only one single operator available to operate the entire grinding
section. The working period of time stipulated for the ceramic in-
dustry sector is from 08:00 to 12:00 and from 14:00 to 18:00. Also,
it is assumed that the operator can only feed or discharge one mill
at a time. The operator might be allocated to perform other tasks re-
quired by the process operation in the remaining time, but those are
not addressed in the present case study. The cost of the labor work is
based on the average salary in the Portuguese ceramic industry sec-
tor (C161. 50 per worker and week). The length of the time horizon
of the production cycle H is of 168h, starting on Monday at 00:00.
Note that the workforce is not available during the weekend. Since
the grinding mills can operate during the weekend, the final task

(release of the ground clay) may be accomplished only when the op-
erator is back on Monday at 08:00. The absolute initial time of the
production cycle, �0, is set to 00:00 of Monday, and as explained in
Section 2, the time slot duration is �� = 1h (Fig. 1). This gives origin
to a discretized horizon with 169 event points.

The proposed problem formulation is not concerned with the
start-up or shut-down stages of the plant operation. It is focused on
finding the optimal plant design and scheduling for one weekly cycle
of production. In normal operating conditions the same production
scheduling is repeated week after week. Therefore, it is possible that
one or more tasks start in one cycle and finish into the next one. Shah
et al. [17] introduced the concept of task wrap-around to address the
problem of tasks that start within the cycle of interest and finish into
the next cycle. The conceptual idea standing in this approach is to
displace the tasks extending beyond the cycle duration to the begin-
ning of the cycle, thus producing the so-called wrap-around effect.
To take this into account in the problem constraints formulation, a
wrap-around operator is formulated as follows [17]:

�(t) =
{
t if t�0

t + T if t <0
(1)

where T is the fixed number of time intervals of the production cycle
(Fig. 1), and t=0, . . . , T, with T=168. For example, �(−1)=�(167)=167.
Further details on this concept can be found in [17], as well as in
various applications to periodic scheduling problems reported in the
literature, e.g., [18–21].

The indices, sets, variables, and parameters associated with Prob-
lem I formulation are described as follows:

Indices
i unit size
k task
m unit number
r resource
s state
t time event or event point
� time index

Sets
I {i : set of all net capacities of units}
K {k : set of all tasks}
M {m : set of all unit numbers of net capacity i}
R {r : set of all resources}
S {s : set of all states}
T {t�0 : set of all time events}
Ts {t >0 : set of all time slots}
Tu

r {tr : set of all time events at which resource r is not available}

Continuous variables
P weekly tile production demand
Z total cost

Binary variables
Nm,i,k,t assigns the task k at unit m of net capacity i at time event t
Qm,i,t assigns the availability of mill unit m of net capacity i

at time event t
Rr,t assigns the availability of resource r at time event t
Sm,i,s,t assigns the state s at unit m of net capacity i at time event t
ym,i assigns the unit number m to the net capacity i

Parameters
Ci depreciation cost of the unit of net capacity i
CR r,t cost of resource r at time t
H time horizon
kf task that releases the final product
Vi net capacity of unit i
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W weight of clay necessary to make one square meter of
ceramic tile

�� time slot duration
�k,r,t consumption/production of resource r in task k at event point t
	 density of the clay material
�(•) wrap-around operator
�k number of time intervals of task k, with �k = int(�k/��)
�k duration of task k
�k,s,t consumption/production of state s in task k at event point t

The size of the set M is defined by using a heuristic rule. Its size is
equal to mmax, the number of mills of largest net capacity (Vmax)
required to achieve the desired weekly production rate if only a
single batch is processed per day in each unit, 5 days a week. mmax
is obtained from the following ceiling function:

mmax =
⌈
P
5

· W
0. 5Vmax	

⌉
(2)

where Vmax = maxi∈I {Vi}. From Table 3, it follows that Vmax =
50000L. In Eq. (2), Vmax is multiplied by a factor of 0. 5. This factor is
due to an equipment manufacturer recommendation regarding the
operation of a mill: to resume normal and safe operation the mill can
be feed up to a maximum of 50% of its net capacity. P is the weekly
tile production demand. The density of the clay obtained from the
grinding process is 	=1. 625kg/L. To obtain one square meter of ce-
ramic tile requires on average 17kg of ground clay,W=17kg/m2. For
example, if P = 42000m2, it follows that mmax = 4. One emphasizes
that mmax stands for the maximal number of units of net capacity
Vmax that can be assigned in order to satisfy the production demand
P. Obviously, if one considers the available set of net capacities, the
number of mills (n in Fig. 2) to satisfy P may be greater than mmax.
For instance, the design and scheduling problem for P = 42000m2

is formulated assuming that up to 16 mills can be installed, four of
each net capacity i (Table 3).

Hence, Eq. (2) sets an upper bound on the number of mills of
maximal capacity required to satisfy the production demand. This
condition enforces as much as possible the selection of mills with the
greatest net capacity, and consequently leads to design solutionswith
the least number of mills. This is understood under the assumption
that the installation and operation costs would be the same for every
type of mill, which is not the case (see Table 3). As described next,
these different costs are obviously also taken into account in the
problem formulation.

The optimal design problem is based on the minimization of an
objective cost function Z comprising both the operation and depre-
ciation costs of the equipment. The model has the form of a MILP
problem, and is stated as follows:

min Z =
∑
m∈M

∑
i∈I

ym,iCi +
∑

r∈{1,2}

∑
t∈Ts

(1 − Rr,t)CR,r,t (3)

s. t. Sm,i,s,t = Sm,i,s,�(t−1) +
∑
k∈K

�k∑
�=0

wk,s,�Nm,i,k,�(t−�),

∀m ∈ M, i ∈ I, s ∈ S, t ∈ Ts (4)

Rr,t = Rr,�(t−1) +
∑
m∈M

∑
i∈I

∑
k∈K

�k∑
�=0

uk,r,�Nm,i,k,�(t−�),

r ∈ {1, 2}, ∀t ∈ Ts (5)

Qm,i,t = Qm,i,�(t−1) +
∑
k∈K

�k∑
�=0

uk,r,� Nm,i,k,�(t−�),

r = 3, ∀m ∈ M, i ∈ I, t ∈ Ts (6)

Table 2
Energy cost policy

Period Day C/kWh

1 09:00–11:00, 19:00–21:00 Mon.–Fri. 0.2162
2 07:00–09:00, 11:00–19:00, 21:00–24:00 Mon.–Fri. 0.0945
3 00:00–07:00 Mon.–Fri. 0.0481
4 09:00–13:00, 19:00–22:00 Saturday 0.0945
5 00:00–9:00, 13:00–19:00, 22:00–24:00 Saturday 0.0481
6 00:00–24:00 Sunday 0.0481

Table 3
Characteristics of the mill units available in the market

Type of mill Net capacity, L Depreciation cost,
C/week

Energy consumption,
kWh

M1 50000 1084.44 105.0
M2 35000 867.55 92.5
M3 25000 759.11 80.0
M4 15000 672.35 67.5

Qm,i,t �ym,i, ∀m ∈ M, i ∈ I, t ∈ Ts (7)∑
i∈I

ym,i = 1, ∀m ∈ M (8)

∑
m∈M

∑
i∈I

∑
t∈Ts

Nm,i,kf ,tVi�
PW
0. 5	

(9)

ym,i Vi�ym−1,i Vi, ∀i ∈ I, m>1 (10)

Rr,t = 1, ∀r ∈ R, t ∈ Tu
r (11)

y,N, S,R,Q ∈ {0, 1}
Eq. (3) represents the total cost accounting for both the equipment
depreciation costs and the cost of the resources (workforce and en-
ergy) needed to run the plant. Eqs. (4)–(6) represent the states and
the resources balances at each event point. Eq. (4) accounts for the
states availability, and Eq. (5) represents the workforce and energy
(resources r=1, 2) balances. Eq. (6) establishes the availability of the
mill units (resource r = 3). The equality constraints Eqs. (4)–(6) are
formulated with the wrap-around operator �(•) to account for the
possibility of one or more tasks that start in one cycle of production
and finish into the next one. This also guarantees that the status of
the states and of the resources are the same at the beginning (t = 0)
and at the end (t = 168) of the production cycle.

Eq. (7) represents the allocation of unit m of discrete net capacity
i whenever such an equipment resource is employed to carry out a
task. Eq. (8) aims at reducing the effort required during the process
of solving the MILP problem with the branch and bound solver, by
stating that each unit can have only one discrete capacity i ∈ I.
Eq. (9) is a constraint in order to satisfy the weekly tile production
demand P. As explained previously for Eq. (2), in practice only 50%
of the net capacity can be used.

Eq. (10) enforces that the process units needed to satisfy the tile
production demand are numbered in a decreasing order of their ca-
pacities. The purpose of this condition is to reduce the degeneracy
of the minimization problem solution. Eq. (11) states that resource
r is not available at the time events of subset Tu

r . Eq. (11) contains
information on a priori known resources unavailability over the en-
tire horizon H. For instance, it is known a priori that the workforce
resource (r = 1) is unavailable (R1,t = 1) for time events within the
weekend period, and time events outside the time intervals from
08:00 to 12:00 and from 14:00 to 18:00. It is assumed that energy
(r=2) and equipment (r=3) resources are always available over the
entire time horizon H. Hence, in these two cases constraint (11) does
not apply because Tu

r = ∅, r = 2, 3.
The energy is subject to a price policy established by the energy

supplier, and depends on the period of the day and of the week (Table
2). Table 3 presents the four sizes of mills (M1, M2, M3, M4) avail-
able in the market, their discrete net capacity, depreciation cost, and
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Table 4
Optimal solutions of the Problem I for various weekly ceramic tile productions, P

P/m2 M1 M2 M3 M4 Z∗/C CPU time/sa

7000 – 1 – – 1543.77 3.8
14000 1 – – 1 2715.20 9.5
21000 2 – – – 3372.18 3.1
28000 1 2 – – 4594.77 15.4
35000 3 – – – 5167.66 16.4
42000 3 1 – – 6464.73 151.4
49000 Infeasible solution

aOn a Windows XP Intel Core 2 Duo 1. 83GHz computer.

energy consumption. The depreciation cost is determined assuming
a life time period of 9.5 years for the equipment [22].

To summarize, Problem I involves three types of resources (equip-
ment units, energy and workforce), three tasks, and three states. The
energy resource is not subject to any time constraint availability. Its
cost is included in the objective function as one of the components
of the operation costs, such that the resulting optimal schedule takes
into account the energy supplier commercialization policy. Regard-
ing the equipment resources, its cost is accounted by the first term
of the objective function (3).

The resulting MILP problem is solved for several ceramic tile de-
mand production scenarios (Table 4), using the solver GAMS/CPLEX
9.0.2 [23], with a relative tolerance of 10−3. For tile productions equal
or higher than 49000m2 per week the solution becomes infeasible
because the only existing operator cannot carry out more than four
charges and discharges per day. These tasks altogether require the 8h
of daily work stipulated for the ceramic industry sector. It is point-
less to install more mills since the limiting factor is the workforce
resources availability. The CPU time (Table 4) exhibits a non-regular
behavior as the ceramic tile production demand increases. This be-
havior can be explained as follows. A given production target may
require a combination of units/net capacities such that the overall
installed grinding capacity is oversized, and therefore the mills are
operated in a sub-intensive mode. This feature can lead to degen-
erated solutions, where some batches and tasks can be assigned to
different time events without significant variation of the objective
function. The optimal task assignment is then partially dictated by
the energy cost, which has a lower impact on the overall cost. This
causes an increase in the number of feasible solutions to search, with
a consequent increase of the overall CPU time.

3.1. Schedule for a tile production demand of 42000m2 per week

The optimal schedule of the grinding section for a ceramic tile
demand scenario of 42000m2 per week is illustrated in Fig. 5. It
describes how the activities (tasks) associated to each mill are dis-
tributed over the time horizon of the production cycle, from �0 = 0
to �f = 168h. The optimal solution suggests the installation of four
(n = 4 in Fig. 2) mills (Table 4): three mills of class M1 (with a net
capacity of 50000L; mills 1, 2 and 3 in Fig. 5), and one mill of class
M2 (with a net capacity of 35000L; mill 4 in Fig. 5). Thus the to-
tal installed net capacity is of 185000L. As explained previously, in
practice only half of the net capacity can be used, that is 92500L. To
obtain one square meter of ceramic tile requires on average 17kg of
ground clay with 	=1. 625kg/L. Because of the working period of the
operator, the mills can be loaded and/or discharged only from Mon-
day to Friday. Also, because the grinding task takes 13h, each mill
can only perform one batch per day, and during only 5 days a week.
Therefore the maximum tile production that can be achieved with
this set of mills is of 44210m2 per week, which is greater than the
weekly production demand (42000m2). This explains why the mill
of class M2 (mill 4 in Fig. 5) is used in a sub-intensive way, perform-
ing only four batches per week. On the other hand, the tree mills of

class M1 are used in an intensive way as they process five batches
each. The optimal solution also shows that task k = 2 (grinding) is
carried out mainly during the night to take profit of the lowest en-
ergy costs (Period 3 in Table 2). As expected, the feed and discharge
tasks occur during the operator working period of time. The last four
grinding tasks of the production cycle occur during the weekend to
fully take advantage of the lowest cost of energy from saturday 22:00
to monday 07:00. Here, the solution of the problem is not unique
as these four grinding tasks can start at any time between saturday
22:00 and sunday 18:00 without affecting the final production cost.

4. Optimal sizing, scheduling and shift policy

The problem introduced in Section 3 with only one operator is
modified to handle workforce resources with up to five workers.
Here, the problem formulation is extended in order to incorporate the
decision about the optimal shift policy, and is denoted by Problem II.
There are three possible alternative shift policies to be implemented.
They are set according to the Portuguese Labor Contract work policy
for the ceramic industry sector:

• p = 1, shift policy P1: one worker, 5 days a week, with daily
working periods from 08:00 to 12:00 and from 14:00 to 18:00;

• p = 2, shift policy P2: two workers, 5 days a week, with daily
working periods from 07:00 to 15:00 and from 14:00 to 22:00;

• p = 3, shift policy P3: five workers, 7 days a week, with a daily
working period of 24h.

The problem formulation with shift policies is simplified by taking
into account only the total number of hours of work available for the
production cycle. The goal is to assign hours of work to the needs of
the plant production without distinction on which worker is being
assigned to each task. This aspect of the scheduling problem is not
addressed here because it would require additional information on
the other workforce plant activities. According to the Portuguese
Labor Contract work policy, the individual weekly workload is of 40h.
Hence, shift policy P2 provides 80h of workforce a week whereas
shift policy P3 provides 200h.

The indices, sets, variables, and parameters associated with
Problem II are the same as those presented for the formulation of
Problem I, excepting for the new index p (shift policy), set P, {p :
set of all shift policies}, andTu

p,r , {tp,r : set of all time events at which
resource is not available for the shift policy p}. There is an addi-
tional binary variable as well, to assign the shift policy, xp. The
binary variables and parameters with index p are defined as follows:

Binary variables
Np,m,i,k,t assigns task k to unit m of net capacity i at time event

t, with shift policy p
Qp,m,i,t assigns the availability of mill m of net capacity i at

time event t, with shift policy p
Rp,r,t assigns the availability of resource r at time event t,

with shift policy p
Sp,m,i,s,t assigns the state s at unit m of net capacity i at time

event t, with shift policy p
yp,m,i assigns the unit m to net capacity i, with shift policy

p
xp assigns the shift policy p

The MILP formulation of Problem II is as follows:

min Z =
∑
p∈P

∑
m∈M

∑
i∈I

yp,m,iCi

+
∑
p∈P

∑
r∈{1,2}

∑
t∈Ts

(1 − Rp,r,t)CR,r,t (12)
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Fig. 5. Problem I—schedule of the grinding section for a ceramic tile production demand of 42000m2 per week. Mills 1, 2, and 3 are of class M1, and mill 4 is of class M2.
The white, light gray, and dark gray areas correspond to the energy cost of 0. 0481, 0. 0945, and C0. 2161 per kW h, respectively.

s. t. Sp,m,i,s,t = Sp,m,i,s,�(t−1) +
∑
k∈K

�k∑
�=0

wk,s,�Np,m,i,k,�(t−�),

∀p ∈ P, m ∈ M, i ∈ I, s ∈ S, t ∈ Ts (13)

Rp,r,t = Rp,r,�(t−1) +
∑
m∈M

∑
i∈I

∑
k∈K

�k∑
�=0

uk,r,�Np,m,i,k,�(t−�),

r ∈ {1, 2}, ∀p ∈ P, t ∈ Ts (14)

Qp,m,i,t = Qp,m,i,�(t−1) +
∑
k∈K

�k∑
�=0

uk,r,�Np,m,i,k,�(t−�),

r = 3, ∀p ∈ P, m ∈ M, i ∈ I, t ∈ Ts (15)

Qp,m,i,t �yp,m,i, ∀p ∈ P, m ∈ M, i ∈ I, t ∈ Ts (16)∑
p∈P

∑
i∈I

yp,m,i�1, ∀m ∈ M (17)

∑
m∈M

∑
i∈I

∑
t∈Ts

Np,m,i,kf ,tVi�
PW
0. 5	

, ∀p ∈ P (18)

∑
i∈I

yp,m,iVi�
∑
i∈I

yp,m−1,iVi, ∀m>1, p ∈ P (19)

Rp,r,t = 1, ∀p ∈ P, r ∈ R, t ∈ Tu
p,r (20)∑

i∈I
yp,m,i�xp, ∀p ∈ P, m ∈ M (21)

∑
p∈P

xp = 1 (22)

y,N, S,R,Q , xp ∈ {0, 1}
Eqs. (12)–(20) generalize Eqs. (3)–(11) for the set of shift policies

considered, p ∈ P. Eq. (21) states that the shift policy p is assigned
whenever there is at least one unit under operation. Eq. (22) states
that only one shift policy p is to be implemented.

Table 5 presents the results for several tile production demand
scenarios, ranging from a very small, 7000m2, to a big demand,
70000m2 of tile per week. Although a wider range of production
rates can be selected, there are other factors that shall be taken
into account in the decision making strategy, namely the logistic
costs for the distribution of the ceramic tile product in the market.
These kind of issues are beyond the scope of this work. These fac-
tors were taken into account to select a realistic range of ceramic

Table 5
Optimal solutions of the Problem II for various weekly ceramic tile productions, P

P/m2 M1 M2 M3 M4 Shift policy Z∗/C CPU time/sa

7000 – 1 – – P1 1543.45 79.9
14 000 1 – – – P3 2500.44 61.7
21 000 1 – – – P3 2962.50 2295.6
28 000 1 1 – – P3 4180.92 1691.2
35 000 2 – – – P3 4579.40 1369.6
42 000 2 – – – P3 5123.24 2478.5
49 000 2 – – – P3 5769.63 9031.6
56 000 2 1 – – P3 6764.51 5313.3
63 000 3 – – – P3 7293.25 15470.6b

70 000 3 – – – P3 7918.88 5172.1

aOn a Windows XP Intel Core 2 Duo 1. 83GHz computer.

bThe GAMS resource limit is hit when using the relative tolerance of 10−3. This
solution is obtained when the relative tolerance is relaxed to 2 × 10−3.

tile production demand with respect to the market context. Also,
higher production rates lead to problems of higher dimensionality to
reach feasible solutions, with the consequent increase in computa-
tional effort to solve them. To overcome this, other solution method-
ologies can be exploited to handle problems of extreme dimension,
for instance genetic algorithms [24] and algorithms with heuristic
approaches [25].

From Table 5, it follows that P3 is the optimal shift policy for a
production higher than 7000m2 per week. As mentioned previously,
this shift policy provides 200h of workforce, a number of hours
superior to the 168h of the production cycle. One emphasizes that
the cost of increasing the workforce resources is lower than the
depreciation cost of an additional grinding unit. Also, in the case
of a production higher than 7000m2 of ceramic tile per week, any
optimal design solution standing on the installation of more than one
unit is more cost effective with the shift policy P3 than a solution
based on the quite limiting shift policy P1. For instance, for a weekly
production of 42000m2 there is need of only two mills of class
M1 (total production cost of C5123. 24, Table 5), whereas with shift
policy P1 it requires 3 mills of class M1 and one mill of class M2 (total
production cost of C6464. 73, Table 4). Therefore, the adoption of
shift policy P3 in this case leads to a cost reduction of about 21% with
respect to the overall cost with shift policy P1. Shift policy P2 is never
selected because to complete one sequence of feeding, grinding, and
emptying tasks takes at least 15h, whereas the operators are only
available for a period of time of 15h. Therefore, with shift policy P2
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Fig. 6. Problem II—schedule of the grinding section for a ceramic tile production demand of 42000m2 per week. The white, light gray, and dark gray areas identify the
periods of time with an energy cost of 0. 0481, 0. 0945, and C0. 2161 per kW h, respectively.

it is not possible to complete a batch cycle and to perform the load
of the mill during periods of time such that one can take profit of
overnight processing at reduced energy costs.

4.1. Schedule for a tile production demand of 42000m2 per week

Fig. 6 presents the schedule of the grinding section for a ceramic
tile production of 42000m2 per week. Here, the optimal solution
suggests the installation of only two (n = 2 in Fig. 2) mills with the
biggest net capacity available in the market (i = 1), mills of class
M1 (Table 5). It is noteworthy to mention that the depreciation cost
of the M1 mill units is C216. 89 higher than the depreciation cost
of the second largest mills (M2). Each batch from a M1 unit allows
a production of 2389. 7m2 of ceramic tile, whereas the production
rate that can be achieved with a M2 mill is of 1672. 9m2 per batch.
Therefore the usage of lower capacity mills requires a higher number
of batches to fulfill the production demand. A batch that is performed
during the regular period of time, taking advantage of the lower price
of the energy during the night period, costs on average C129. It turns
out that the installation of a smaller unit would require two or more
additional batches to satisfy the production goals. As demonstrated
above, such solution is not suitable because the resulting overall
energy cost overcomes the total depreciation cost savings from using
smaller capacity equipment. This clearly explains why the optimal
design solution is defined with M1 class units. Nevertheless, for the
production rates of 35000m2 and 42000m2 of ceramic tile perweek,
both M1 units are operated in a sub-intensive way. Altogether, the
18 batches in Fig. 6 could satisfy a production demand of up to
43000m2 of ceramic tile. Hence, the installed capacity may be used
to target higher ceramic tile production demands (49000m2 in Table
5). Another possible alternative configuration is the installation of
one unit of class M1 and another of class M2 in order to decrease
the total depreciation costs. As discussed above, this solution is not
sufficiently cost effective to trade-off favorably with the consequent
higher total energy cost.

Finally, a short note on the sequence of the last three batches of
each mill processed during the weekend. One can observe in Fig. 6
that the batches of mill 2 are delayed 2h with respect to the set of
batches of mill 1. This is because the problem is formulated such that
no more than one workforce resource can be assigned to the same
time slot. Otherwise, it would be possible to feed and empty the
two mills at the same time, but that would require a more detailed
description of the workforce plant activities besides the emptying
and feeding tasks.

5. Conclusions

This work addresses a case study of the application of general
frameworks devoted to simultaneous sizing and scheduling, such as
the discrete-time RTN framework, to real problems commonly found
in the ceramic industry sector. The case study comprises the optimal

sizing of the grinding section of a ceramic tile plant. Because the
cost of the resources required to operate the plant are of the same
order as that of the equipment depreciation cost, the optimal sizing
comprises the determination of the ceramic tile production schedule,
the resources allocation, and the shift policy. The optimal scheduling
of the grinding section is described by a discrete-time RTN process
representation, using a fixed time horizon discretized into time slots,
where states and resources availability changes. This subproblem is
integrated into a general sizing problem, taking into consideration a
set of resources (equipment, energy and workforce). To account for
the resources availability specifications the initial point of the time
horizon is fixed, and the resources availability constraints are defined
accordingly. The resulting mathematical programming formulation
has the form of aMILPmodel, and is solved by using the GAMS/CPLEX
solver.

This approach was firstly applied considering that the workforce
is constrained to a single operator, and later expanded to handle the
decision regarding the selection of the best shift policy. The solu-
tion of the problem was successfully obtained for various ceramic
tile production scenarios, with the corresponding optimal number
of grinding units to install, their optimal schedule, and the most ap-
propriate shift policy.

This example clearly illustrates the advantages of using optimiza-
tion procedures to provide the decision-making with a quantitative
and reproducible basis to design production units. Furthermore, it
also highlights the need to determine the optimal operation mode,
the scheduling of the associated production factors and policies be-
fore the plant installation, in order to achieve optimal performance,
a rather important goal to keep a company in business.
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