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Abstract 

Alzheimer’s Disease is the most common cause of dementia in elderly people. Nonetheless, 

its diagnosis still presents some challenges, notably at the very early stage of the disease when the 

clinical presentation is not yet apparent: Such an early detection requires the use of molecular and 

genetic biomarkers. A key contribution to this comes from in vivo imaging using Positron 

Emisson Tomography (PET), as it allows for the detection of Aβ deposition and also for the 

monitoring of its progression. This is achieved by using the radiotracer Pittsburgh Compound B 

(PiB). The information extracted from the obtained scans requires a degree of processing in order 

to make it usable in a clinical setting. This thesis focuses on the development, optimisation and 

application of a processing pipeline for dynamic PET data to be used by clinicians, focusing on 

semi-parametric Standardized Uptake Values (SUV). This pipeline corrects for motion correction, 

accounts for space registration and motion, reference region normalisation, and extracts region of 

interest (ROI) data. This latter data is, however, hindered by the PET scanner limited spatial 

resolution leading to errors affecting the constructed images and distorting the true activity. This 

class of errors are known as Partial Volume Effects (PVEs) and are caused by the scanner Point 

Spread Function (PSF) and Tissue Fraction Effect (TFE): their correction is required to aid the 

correct interpretation of clinical PET data, both as a whole and through ROIs..  This thesis also 

focuses on the implementation and assessment of five different partial volume correction 

methods and the respective results are discussed in order to understand which one presents the 

best choice for general usage, to be integrated into the pipeline. This assessment also includes 

sensitivity-specificity analyses of PiB scans, as corrected by these methods, using an automated 

classifier. A continued investigation and improvement of PiB-PET analysis is therefore necessary 

to achieve better results in the future. 
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Resumo 

A Doença de Alzheimer é a maior causa de demência nas pessoas idosas. No entanto, o seu 

diagnóstico ainda apresenta alguns desafios, nomeadamente nos estados mais precoces da doença 

quando o seu quadro clínico ainda não é evidente. Esta detecção precoce pressupõe o uso de 

biomarcadores genéticos e moleculares. Uma contribuição importante provém de imagiologia in 

vivo usando a Tomografia por Emissão de Positrões (PET), uma vez que esta tecnologia permite a 

detecção da acumulação da proteína Aβ e também a monitorização do avanço deste processo de 

acumulação. Isto é possível através do uso do radiotraçador Pittsburgh Compound B (PiB). A 

informação extraída dos scans obtidos requer um nível de processamento para que seja possível 

de ser usada em ambiente clínico. Esta tese foca-se no desenvolvimento, optimização e aplicação 

de uma pipeline de processamento de dados de PET, adquiridos com base num protocolo 

dinâmico, de forma a serem usados pelos neurologistas. As imagens são obtidas com base em 

Standardized Uptake Values (SUV). A pipeline tem em conta a correcção de movimento, o 

registo de imagem em diferentes espaços de referência, normalização à região de referência, e 

extrai também informação de cada região de interesse (ROI). Esta informação é, no entanto, 

afectada pela limitada resolução espacial do scanner PET, originando erros que influenciam a 

reconstrução das imagens e distorcem a actividade real. Este tipo de erros é conhecido por 

Efeitos de Volume Parcial (PVEs) e estes são causados pela Point Spread Function (PSF) do 

scanner e pelo Tissue Fraction Effect (TFE): as suas correcções são necessárias para 

proporcionar uma correcta interpretação da informação clínica das imagens PET, quer 

globalmente ou em cada ROI. Esta tese foca-se também na implementação e análise de cinco 

métodos diferentes de correcção de volume parcial (PVC) e os respectivos resultados são 

discutidos para se perceber qual dos métodos apresenta a melhor escolha para uso geral e para ser 

definitivamente integrado na pipeline. Este trabalho inclui também análises de sensibilidade e 

especificidade de scans PiB, corrigidas através destes métodos, usando um classificador 

automático. Uma contínua investigação e melhoria das análises de PiB-PET são portanto 

necessárias para alcançar melhores resultados no futuro. 
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Neurodegenerative diseases have a great impact in the quality of life of mainly the elderly 

people. Of these, the most predominant is Alzheimer’s Disease (AD). In Portugal, around 

153000 people suffer from any kind of dementia, 90000 of these are identified with diagnosed 

AD and according to Alzheimer Europe, the number of AD patients are approximately 7.3 

million in Europe, estimating a duplication of these until 2040 in western Europe [1]. This thesis 

focuses on its impact in the human brain, notably on imaging diagnosis techniques, as well as on 

the respective processes of analysis. 

Apart from its clinical presentation of progressive loss of episodic memory, AD may be 

characterized by the accumulation of plaques of Amyloid-β (Aβ) in certain regions of the brain, 

as well as by the presence of brain atrophy, notably in the mesial temporal lobe [2]. In order to 

test these in vivo, imaging techniques such as Positron Emisson Tomography (PET) and Magnetic 

Ressonance Imaging (MRI) are required: PET provides high signal sensitivity as well as the 

possibility of assessing measurements of the brain function; with MRI, this non-ionizing radiation 

imaging method provides good soft tissue contrast and high spatial resolution, making it ideal for 

analysing brain atrophy. 

In this thesis, the focus will be in PET. Either Fluorodeoxyglucose (FGD) or Pittsburgh 

Compond B (PiB) can be used on AD investigations and diagnosis, but the main modality of this 

study was PiB-PET. PiB is a Carbon-11 radiotracer with 20 minutes half-life, which binds 

specifically to Aβ plaques. It was chosen as a focus of this study for two reasons. First, the 

production of PiB on Institute of Nuclear Sciences Applied to Health facilities together with the 

available PET scanner made possible the AD imaging with a predefined acquisition protocol. 

Second, the imaging processing and data analysis was performed in the Biomedical Institute of 

Investigation on Light and Imaging, in order to optimize a previous developed process of analysis 

of PET with PiB. 

AD has different PET-PiB imaging profiles depending on the stage of disease, making it 

critical to assess the resulting scans in a systematic way. Here, the Standardized Uptake Value 

(SUV - Figure 1.1) assessed from the PET scanner plays a key role in the diagnosis, as it is a 

simple metric that can be compared among subjects. More refined, quantitative information can 

be obtained, through the calculation of parametric images of Binding Potential (BP) and 

Distribution Volume Ratio (DVR), but this work focus on semi-quantitative assessments, such as 

SUV and SUVr (Standardized Uptake Value Ratio), as these are enough for diagnostic purposes. 

In fact, a scan can be described as a table of mean SUVr values per region of interest (ROI), 

including both positive and negative controls, and these can help inform the diagnosis. 
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The use of ROIs in PET is limited by the quality of the images obtained. Looking in detail 

to the PET images below in Figure 1.1 it is noticeable the lack of anatomical detail, a 

characteristic of this imaging modality due to its low resolution (around 5mm isotropic) and large 

point spread function (PSF). As a consequence, PET images suffer from severe Partial Volume 

Effects (PVE). These effects can be described as the contamination of the areas with less uptake 

value because of the adjacent regions with higher radiotracer retention. This effect can be 

corrected with Partial Volume Correction (PVC) algorithms, one of the main themes in this 

thesis: PVC methods can provide finer detail, while making the mean ROI values more reliable. 

Several methods were applied providing different results either with images, values, or both. The 

results were compared and the some conclusions were made after the classification. 

 

 

Figure 1.1 - Comparison of SUV images from a control and an AD patients - University of Pittsburgh 

 

As a conclusion to this work, in order to explore the discriminating power of the PiB 

radioligand in diagnosing AD, an automated supervised classification (negative versus positive 

PiB scans) was performed through the use of a Support Vector Machine (SVM). This procedure 

also provided the necessary information to establish assumptions about which PVC method 

would be the more informative for solving this problem. 
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2.1. Alzheimer’s Disease 

The recent years have been presented with the strong efforts made on the study of 

neurodegenerative diseases by neuroscientists, physicist, psychologists and all the other 

professionals who are related to the field that studies the human behaviour and the mental 

illnesses. These kind of diseases do not allow the affected subject to notice when the biological 

development is beginning, and unfortunately most of the times it is their family or friends who 

verify slight differences in the social behaviour of the patients with an apparent loss of memory. 

Alzheimer’s Disease (AD) is characterized by a slowly progressive disorder of the brain that leads 

to abnormal brain function and results in death [3].  

Usually, the AD occurs after the 65 years of age. However, there are some cases of people 

who develop this condition in their 40s. The statistics show that 10% of people over the age of 

65 may suffer from AD, but these numbers rise up to 50% if we refer to people around 85 years 

old [4]. It is important to underline that AD is not a normal condition of aging process, but by 

now, although science knows how to detect the disease and that it is not contagious, it is not 

totally clear how to avoid AD development. Since the beginning of all the investigations about 

AD, the significant differences in behaviour and psychological symptoms among patients are very 

difficult to understand, given that the physical changes in the brain are very similar from person 

to person. Typically AD evolves to a state of dementia characterized by the loss of mental skills 

and abilities including self-care capabilities, which are generally carried out by the family of the 

patients or by some other form of health care facilities [5]. 

According to the Alzheimer’s Association and National Institute of Aging from USA, in 

1984 AD was defined in one single stage and people without any symptoms were not assumed as 

suffering from the disease. This original definition comprises only the later stages of the usual 

definition that can be divided into three different phases: Preclinical AD, Mild Cognitive 

Impairment (MCI), and dementia caused by AD [6]. However, other research based in the criteria 

for the diagnosis of AD suggest a more complete and updated classification separating the whole 

process of AD into five stages [2]. The first indicator a possible or probable AD is the state of 

MCI. This state can be variably defined but most of the times the clinical condition includes 

subjective memory or cognitive symptoms or both, objective memory or cognitive impairment or 

both, and generally unaffected activities of daily living. Although this first stage is being classified 

as one indicator of AD, MCI presents a very wide meaning and it might be diagnosed in patients 

due to some other clinical reason rather than AD (eg.: fatigue, emotional or physical stress). The 

second indicator is the Amnestic Mild Cognitive Impairment (aMCI) and this can be described as 
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a more specific type of MCI in which there are subjective memory symptoms and objective 

memory impairment but the other cognitive processes remain normal as well as the daily 

activities. Again, the identification of this clinical situation might be synonym of dementia that is 

not AD. In a cohort of people with aMCI clinically identified to have progressed to dementia, 

just 70% met the neuropathological criteria for AD [2]. The period between the first brain lesions 

and the posterior appearance of symptoms is called Preclinical AD. Just the normal people that 

later fulfil the AD diagnostic criteria is classified as being in this stage. When the symptoms are 

clear but not severe enough to enter the criteria for AD the patients are categorized as being in 

the Prodromal AD phase, which is the predementia phase of AD, generally included in the MCI 

category. This is another wide concept that must be distinguished within the broad and different 

situations of abnormal cognitive functioning, typical from the normal ageing process. The last 

stage, when the symptoms are sufficiently severe to meet the clinical diagnostic criteria for AD, 

and the dementia is evident, the patients are classified as being in the stage of AD dementia. 

Although all the efforts are being done in order to detect AD or its first symptoms as soon as 

possible along the dementia development, a more refined and precise definition of AD is still 

needed to reliably identify the disease at its earliest stages [2]. 

Focusing on the diagnostic criteria used to distinguish the five stages described in the 

previous paragraph, it is also possible to identify the supportive features of these core criteria and 

the exclusion criteria. The alarm for a possible or probable patient with, or developing, AD is 

settled when there is noticed an early and significant episodic memory impairment over the last 

six months, with a gradual and progressive change in memory function. This symptom can be 

reported by the patients or by other people close to their. Usually the patients have also problems 

in recall and recognition testing and this does not improve significantly or does not normalize 

with cueing even though there was an effective encoding of the information before the onset of 

AD. The memory impairment can also be isolated or associated with other cognitive changes 

during the advance of the state of dementia [2]. The supportive features of these criteria are 

mostly achieved through imaging and according to other researches within the AD, the study of 

the biomarkers is today providing important knowledge about the state of dementia [7]. The 

Cerebrospinal Fluid (CSF) and Amyloid-β (Aβ) are specific biomarkers that can also provide 

information about the state of dementia [7]. A widely accepted assumption is that AD begins 

with an Aβ abnormal processing, more precisely, an irregularity on the processing of amyloid 

precursor protein, that leads to the formation of Aβ plaques and neurofibrillary tangles that 

results in abnormal protein depositions and characterizes AD pathologically, even when the 

patients are cognitively normal [7]. If the patients have low Aβ42 concentrations, or a positive 
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PiB Aβ imaging findings there is a great evidence of deposition of Aβ plaques. The correlation 

between these two facts is very high so these are valid biomarkers for the diagnosis support. The 

neurodegeneration may be assessed throughout the analysis of CSF-tau concentrations, 

Fluorodeoxyglucose-PET (FDG-PET) or structural Magnetic Resonance Imaging (MRI). The 

former is an indicator of possible pathological changes and associated neuronal injury. It can be 

divided in Total tau and Phosphotau and the concentrations of both increase when the patients 

are developing AD. CSF-tau is not specific for AD, however its higher concentrations are 

strongly associated with greater cognitive impairment and with the presence of neurofibrillary 

tangles in autopsy [7]. The brain metabolism is measured with the FDG-PET which includes a 

large indication about the synaptic activity. In the AD framework, decreased FDG uptake in the 

lateral temporal-parietal and posterior cingulate is typical in patients and the greater the decrease 

in the uptake of FDG-PET, the greater the cognitive impairment verified among the studied 

patients. There are also clear correlations between decreased FGD-PET uptake and both CSF Aβ 

and increased CSF tau, for cognitively normal elderly individuals, validating thereby FDG-PET as 

an indicator of the synaptic dysfunction that is present in neurodegeneration in AD [7]. The 

patients with symptoms that meet the AD diagnostic criteria generally show an atrophy of the 

medial temporal region with a volume loss of hippocampi, entorhinal cortex and amygdala. These 

evidences of cerebral atrophy, which is caused by dendritic pruning and loss of synapses and 

neurons, are possible to confirm with the Magnetic Resonance Imaging (MRI). Furthermore, 

there is a strong correlation between the severity of brain atrophy and the severity of cognitive 

impairment. 

The biomarkers previously described have a fundamental role in the AD detection, having 

all of them different time-windows along the AD evolution, as can be expressed in Figure 2.1. 

The graph explains which biomarkers firstly provide valuable information about the stage of AD 

cascade. Figure 2.2 shows that the neurodegenerative biomarkers are temporally ordered and 

there is also an evidence that before the MRI changes, the neurologists might be capable of 

notice the FDG-PET changes suggesting that the brain metabolism start to become significantly 

different before any apparent sign of brain atrophy.  
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Figure 2.1 - Dynamic biomarkers of the Alzheimer's pathological cascade. Aβ – Aβ42, Tau-mediated 

neuronal injury and dysfunction – CSF tau or FDG-PET, Brain structure – MRI. [7] 

 

The clinical disease stages are similarly correlated with the brain regions, i.e. at a given 

timepoint, different brain areas will be at different stages. Some regions might be firstly affected 

than other ones, and here imaging techniques play an important role because they can resolve the 

different phases of the disease both temporally and anatomically and this implies a great 

advantage of imaging biomarkers over fluid biomarkers. This statement can be confirmed by 

analysing Figure 2.2. 

 

Figure 2.2 – Anatomical imaging information vs Temporal Disease Stage [7] 

 



CHAPTER 2   9 

 

In the other hand, the exclusion criteria are also stated and it is possible to assure that there 

is a lower probability of an emerging AD in patients who accomplish these diagnostic criteria. 

First, if the patient has a sudden onset or if there is an early occurrence of gait disturbances or 

behavioural changes, it is too soon to assume that these are signs of AD. If the person has 

another type of dementia, some major depression, a cerebrovascular disease or even metabolic 

abnormalities which require specific investigations, the neurologists cannot identify a clear 

evidence of AD in these criteria. However, the clinicians should be sure that the patients are in 

the presence of definite AD when their have both clinical and histopathological indication of the 

disease, or if there is both clinical and genetic evidence of AD, with mutations on chromosome 1, 

14 or 21 [2]. 

 

2.2. Imaging 

Along the imaging technology advances PET and MRI have been developed and provide 

different clinical advantages. On the one hand, PET enables measurements of biological 

metabolism using radioactive molecules. Due to its high sensivity – picomolar-range – PET is 

considered the modality of choice for molecular imaging.  In the other hand, MRI modality offers 

a high spatial resolution with great soft tissue contrast. Also the fact of not using ionizing 

radiation is one more advantage of MRI. However, the poor spatial resolution of PET and the 

low signal sensivity of MRI are still problems to be solved in clinical imaging [8].  

 

2.2.1. PET 

PET was previously introduced as a key component of AD diagnosis. Entering into the 

detail of this modality, some essential parameters are needed to perform this analysis. First of all, 

it is necessary to define what is going to be analysed. Depending on the object of study, usually 

an abnormality of the physiology of certain organs, it is necessary to choose the proper 

radiotracer, a positron emitter. Looking in detail to the physics of the PET systems, during the 

natural decay of the radioactive molecule, the emitted positrons annihilate themselves with the 

free electrons, generating two antiparallel photons, both with 511 KeV. This split angle of 180° 

between the two produced photons makes possible the detection by the scanner of the exact 

position where the positron was emitted, and so, the 3D location of the radiotracer in the 

moment of that positron emission. The acquisition data is then processed with image 

reconstruction algorithms (not discussed herein) and consequent studies are made to analyse the 

biological outcome from the images. The process of data acquisition is explained in Figure 2.3. 
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Figure 2.3 - Scheme of PET physics and scanner performance [9] 

 

For AD diagnosis different radiotracers may be used, depending on what neurologists are 

analysing. In order to map and study the Aβ protein concentration or spatial distribution, PiB 

would be the best option to use due to its high affinity to this biomarker, as it will be explained 

on Section 2.3. On the other hand, if the aim of study is cerebral glucose metabolism to assess 

the possibility of the existence of some kind of neuronal injury, FDG-PET should be used [10]. 

However, the sensitivity and specificity of FDG-PET in AD is not as high as PiB-PET imaging 

in terms of biomarkers for MCI due to AD in MCI patients - Table 2.1 [10]. Sometimes 

abnormalities in FDG-PET scans might occur in cognitively normal patients who are at risk for 

future cognitive decline and aging is one factor that can modify this risk. Some authors suggest 

that if the degree of cognitive decline is uncertain, FDG-PET results might not provide clinical 

relevance in order to diagnose the state of dementia [11]. 

Table 2.1 - Sensitivity and specificity for positive PiB-PET and FDG-PET biomarkers for MCI due to AD 

Biomarker Sensitivity Specificity 

Aged 50 - 89 

PiB-PET 96.6% 42.1% 

FDG-PET 93.3% 23.6% 

Aged ≥ 75, lower delayed recall 

PiB-PET 100% 66.6% 

FDG-PET 91.6% 44.4% 
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Not only the Aβ accumulation in brain or the glucose metabolisms are measured in AD 

PET imaging. Neuroinflammation can also be assessed using [11C]PK11195 which is a 

radiopharmaceutical that selectively binds to peripheral benzodiazepine present in the activated 

microglia. This cell is involved in inflammatory responses, and several studies have previously 

reported that brain inflammation is an active process underlying AD. Posterior cingulate, 

hippocampus and entorhinal cortex are brain areas where the radiotracer uptake is increased, in 

patients with AD. Although neuroinflammation imaging is still under evaluation, it was not part 

of this thesis framework [12]. 

Efforts are being made in order to develop new techniques that allow the diagnosis of early 

predementia states. As previously addressed on section 2.1 and graphically shown on Figure 2.1 

and Figure 2.2, either PiB-PET or FDG-PET have the capability of identify earlier AD stages 

compared to structural MRI, that just evidences atrophy of the affected brain regions on 

prodromal stage [13]. The novel multimodal imaging techniques might have a relevant impact on 

the diagnosis of early predementia AD stages. In addition, the possible new approaches correlate 

PET with radiochemistry, that plays here an important role in the way of producing other 

radiopharmaceuticals which would made possible the imaging of neurotransmission in AD, such 

as cholinergic presynaptic terminals and glutamate synaptic function [12]. Regarding the various 

aspects of neurobiology of AD, PET provides valuable information, not only with PiB, but also 

using other radiotracers as described before. This imaging technique has several research 

applications which allow the neuroscientists to achieve an early detection and the efficient 

treatment monitoring, providing the better quality of life as possible to the patients [12].  

 

2.2.2.  MRI 

MRI is a modality that is usually used in AD imaging due to its high spatial resolution and 

good soft tissue contrast. During the preclinical phase cognitively healthy elderly people may 

suffer from cognitive decline [2].  This phase can last for several years: the biological changes in 

the brain may start due to a clinically hidden pathology, eventually resulting in a visible 

presentation due to medial-temporal, including hippocampal, volume loss [13], [14]. The sooner 

the diagnosis of these typical brain changes and evidences of AD, the more efficient the 

treatment planning can be. MRI plays an important role in early detection based on brain 

anatomy changes.  

The MR systems generate an external magnetic field that is felt by the nuclei in the body 

tissue, notably Hydrogen, the most common nucleus. The degree of magnetization is 
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proportional to the density of these nuclei, in other words, it depends on hydrogen 

concentration. This imaging modality is sensitive to these concentrations, and its efficiency in 

mapping soft tissues is higher when compared to X-ray imaging modalities such as Computed 

Tomography (CT). The imaging is possible due to the nuclei relaxation to their ground energy 

state after the magnetization. The usual relaxation processes T1 and T2 reflect the way the 

protons revert back to their resting states after the initial radiofrequency (RF) pulse provided by 

the MRI system. Each tissue has a unique T1 and T2 relaxation time. Usually the goal is to 

achieve a contrast image used to distinguish pathologic from normal tissue (not in AD imaging, 

though). The MR image contrast can be changed by performing alterations on the parameters of 

pulse sequences. The strength and timing of RF are specific on each pulse and the most 

important parameters are: the time between two consecutive 90° RF pulses, known as repetition 

time (TR) and the time between the initial 90° RF pulse and the echo, known as echo time (TE). 

T1 and T2 are related to these parameters. For T1-weighted sequences, the highest signal is 

obtained using short TR and TE (TR < 1 second, TE < 30 milliseconds). For T2-weighted 

sequences, by the opposite, long TR and long TE assure the highest signal (TR > 2 seconds, TE 

> 80 milliseconds) [15], [16]. For brain imaging the most used is T2-weighted sequences. Thus, 

the voxels will have an intensity that is related to the different relaxation times, which in turn 

depends on the characteristics of the tissue surrounding the nuclei, making this modality able to 

distinguish between e.g. grey matter and white matter in the brain [16]. This technique, however, 

has some disadvantages and not all the patients can be submitted to it. Metallic objects must be 

taken out of the room where the machine is operating, people with pacemakers cannot be 

scanned due to the high magnetic fields generated and the patients that suffer from 

claustrophobia should be advised and conscious about the tight space where they have to be 

during the exam. The necessity of holding very quietly during a long period of time and the very 

loud noise produced by the machine are also some other disadvantages of this imaging technique 

[17]. 

As explained previously, as AD progresses, the brain morphology suffers changes that are 

possible to see in MRI. Figure 2.4 shows a coronal slice of a MRI scan performed in a normal 

subject, as well as in two other subjects in different stages of the disease: a mild cognitive 

impairment (MCI) stage, which can be considered pre-AD, and an advanced case of AD. The 

differences in brain morphology are clear, as is the progression of the atrophy, mostly affecting 

the hippocampi and surrounding tissue, the posterior cingulate, and enlarging the ventricles in the 

process. 
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Figure 2.4 - Differences in brain morphology in different stages of AD comparing to a normal subject [18] 

 

2.3. Pittsburgh Compound B  

It was 100 years ago when Aβ plaques and neurofibrillary tangles were recognized as the 

neuropathological hallmarks of AD and on that period, its presence or absence could only be 

assessed post-mortem using the available techniques such as dyes that identified such structures 

microscopically [19]. Molecular imaging has upgraded our knowledge of the time course of 

biological events leading to AD. Amyloid imaging has shown high accumulation of amyloid in 

very early state of disease and precedes functional changes measured as reduction in cerebral 

glucose metabolism and cognitive impairment as already explained before [20]. After a decade of 

investigation studies and evaluations to improve the first PiB molecule ([11C] N-methyl [11C] 2-

(4′methylaminophenyl)-6-hydroxy-benzothiazole), involving chemical modifications and design 

improvements, the first successful Aβ plaques-specific PET imaging study was achieved in a 

patient clinically classified as probable AD. This molecule, which is an analogue of Thioflavin-T, 

was chemically labelled with positron emitter 11-Carbon (11C) and nowadays, ten years after this 

first study, PiB remains as the most used radiotracer in many human research protocols 

throughout the world to detect early AD due to its high affinity and selectively binding to only 

fibrillar forms of Aβ, demonstrating its usefulness many years before the clinical diagnosis of AD 

[19].  

In order to validate PiB and its suggested features, patients had to undergo conventional 

PET imaging to determine the brain areas that showed lower levels of brain activity (FDG-PET). 

After this, the same patients were again submitted to PET imaging but with PiB, to see if the 

areas which had shown low brain activity met the areas with Aβ accumulation. To evaluate the 

amounts of PiB that were bounding to amyloid, sequences of blood samples were taken from 

each patient during the imaging. The samples were analysed and provided a comparison between 
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the amounts of PiB entering and leaving the brain. Through these measures it was possible to 

confirm the specific binding of PiB to Aβ [21]. 

A typical study for fully quantitative PiB PET that included MRI scan, arterial input 

function determination and 90 minutes of PET data acquisition is described in [22]. 15 patients 

have been undergone to this study (5 AD’s, 5 MCI and 5 controls) and verified that the level and 

pattern of Standardized Uptake Value (SUV) measures were consistent with those observed for 

the quantitative PiB retention measures (which are going to be described later on) and showed 

significant differences in the magnitude and distribution of PiB binding measures in AD subjects 

compared with controls. The results of this study showed that MCI subjects were classified as 

having either control-like or AD-like patterns of PiB retention. 

Recently (approximately 6 year ago) a newer and longer-lived Aβ specific binding 

radiotracer has started to be developed. 18F-florbetapir was already approved for clinical use and 

its great advantage comparing to PiB is the half-life. The use of PiB is only possible on facilities 

which have cyclotron due to its ~20 minutes half-life. More and more exams are needed until the 

usage of florbetapir reaches the levels of PiB usage [19]. Its unambiguous interpretation of the 

specific binding in human brain is the key factor for using PiB for early disease detection. The 

wide scientific knowledge about this radiotracer is also a proof of confidence for its usage, 

although the comparisons that have already been made suggest high correlation between both 

radiotracers [23]. 

 

Figure 2.5 - Axial slices of florbetapir and PiB scans of two subjects. A cognitively normal control on the 

top showing low radiotracer retention and an AD patient on the bottom with high radiotracer retention 

(SUVr) [23] 
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 Some region based studies were performed with PiB for AD purposes [24], [25]. Among 

all the analysed regions, frontal cortex showed higher PiB uptake in AD subjects, comparing with 

the other regions, but occipital, parietal and temporal cortex as well as striatum have also shown 

increases in the radiotracer uptake levels. Other regions such as cerebellum, pons and subcortical 

white matter were confirmed as having similar levels of binding places for PiB across all the 

subjects (AD, MCI and controls) [24]. 

The existence of regions with such characteristics presented above (non-specific binding) is 

extremely useful in SUVr analysis as it will be explained on sections 3.2 and 3.3. In the case of 

PiB, cerebellum was chosen as the reference region to be used, since it always shows a lack of 

fibrillar amyloid plaques [24]. In order to support this statement, in a post-mortem analysis 

negligible levels of binding PiB to cerebellar grey matter were found either in AD subjects, 

controls, and also non-demented AD subjects [22]. Thus, to perform the SUVr calculation the 

obtained values from the different regions are normalized to the ones obtained in the reference 

region, minimizing therefore the influence of nonspecific effects.    
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Regarding the use of PiB on PET studies, there are two main approaches that can be 

performed in order to yield the proper conclusions about the activity distribution over the 

analysed regions. These approaches can be divided into quantitative methods and the semi-

quantitative methods. The objective of the next sections is to describe and compare both 

methods with the perspective that semi quantitative methods may be a strong alternative to 

quantitative methods, providing results with similar clinical relevance and with lower complexity 

of implementation and analysis. 

The former are based on compartmental models, which allow the radiotracer quantification 

on the different regions depending on its specific binding. The regions are described as 

compartments and the radiotracer kinetics within this system are explained with a mathematical 

framework based on differential equations [22], [26], [27], [28]. Semi-quantitative methods use the 

standardized uptake value (SUV) provided by the PET scanner to analyse the tracer distribution 

over the brain of the patients, through images, where the regions with higher uptake are 

emphasized according to a colour scale. Usually reference regions are used to obtain SUVr 

(relative SUV) images, usually the ones analysed by the neurologists [22], [29]. 

The basis of both methods will be explained on the following sections, giving more 

attention to the semi-quantitative methods which were the main focus of this thesis, regarding 

the methodology for PiB data analyses. 

 

3.1. Quantitative Methods 

Quantitative methods are based on mathematical formulations used to understand the 

tracer kinetics within the biological system, notably the way the radiotracer flows and specifically 

binds in the brain. A common formulation relies on the use of compartmental models [27], the 

choice of which depends on the chemical and biological properties of the radiotracer [27]. The 

aim of these methods is to achieve a valid quantification of certain parameters [30], required for a 

proper quantification of the PET data in a so called parametric fashion, i.e. the images are fully 

quantitative in their information, the value at each coordinate corresponding to a certain 

biological parameter [22]. 

A general compartmental model is shown in Figure 3.1, as well as the respective parameters 

describing how the radiotracer concentration on each compartment influences its binding and  its 

dynamics over the compartments. Arterial blood is assumed as the first compartment, on the left. 

The radiotracer flows from arterial blood to the free compartment, and the other way around, 

according to the transfer rate of    and   , respectively. The exchange between the free 
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compartment, where the tracer is in the brain tissue but unbound, and the binding compartment, 

where the tracer is specifically bound to the structures that are likely to be detected, is described 

by the rate constants    and   . The non-specific binding compartment,  is also included [27], 

[30]. 

 

Figure 3.1 - Three tissue compartmental model [27] 

 

Usually, on quantitative studies, the most relevant parameters that can be achieved are the 

distribution volume (DV) and the binding potential (BP), which detailed formulations are not 

going to be addressed here. Assessing these macro parameters provides important information 

either about the radiotracer dynamics such as its pharmacokinetics and/or about the 

physiological function, which can be very useful to perform a precise diagnosis [27]. 

As said before, the number of compartments used in the model depends on the chemical 

and biological properties of the radiotracer which is going to be studied. For instance, using the 

model presented on Figure 3.1, most of times it is difficult to estimate with precision the six 

parameters at once due to the statistical quality of the PET data [27]. This wide statistical 

variability of parameters can be decreased or even suppressed by reducing the number of 

compartments in the model. The radiotracer addressed on this work is PiB and its dynamics in 

human body can be analysed using the two tissue compartmental model [31], described by only 4 

rate constants - Figure 3.2. The rapid equilibrium between the non-specific binding and free 

compartments allows the removal of one compartment thus, this model is enough to interpret 

the tracer kinetics [27]. 
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However, these methods require the precise quantification of arterial input function, 

generally obtained by an invasive procedure such as arterial cannulation where blood samplings 

are collected during the acquisition protocol [30]. These techniques are troublesome and in order 

to avoid the invasiveness and the complexity of scanning protocol, the arterial input function 

given by blood sampling can be replaced by using a reference region model. These are preferred 

to the ones that require the blood sampling and are used when a suitable reference region is 

available [28]. Usually the chosen reference region is the one which best describes the radiotracer 

non-specific binding and in the case of PiB it is grey matter cerebellum. 

 

Figure 3.2 - Two tissue compartmental model [27] 

  

In addition, using the reference region models through either the Logan graphical analysis 

[28], the Lammertsma simplified reference tissue model (SRTM) [30] or the Gunn receptor 

parametric mapping (RPM) [26] frequently leads to inaccurate estimation of arterial blood 

concentration assuming that all the pixels of interest within the PET scanner field of view (FOV) 

share the same arterial input function [27]. These assumptions require care when performed, and 

the use of semi-quantitative methods may present an alternative technique to the quantitative 

analysis. 

3.2. Semi-Quantitative Methods 

As an alternative to the previous quantification methods, the use of SUV is a different way 

of assessing the physiological function through images without being necessary the use of blood 

sampling [29], while also avoiding complex mathematical operations, fairly approximated in the 

absence of arterial blood samples. The use of quantitative methods is still fundamental within a 

research setting, given the mathematical properties of the resulting images, but a cruder approach 

is acceptable in a clinical context, where the analyses of scans are performed visually most of the 

time. 
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SUV has been widely used in PET imaging and in the recent years, and studies have been 

performed in order to compare both quantitative and semi-quantitative methods in PET in order 

to establish a correlation between them, and to assign the comparable clinical relevance to both 

methods [22]. SUV is a unitless measure and is calculated: 

 

    ( )   
 ( )

                          
 Equation 3.1 

having  ( ) as the tissue radioactivity concentration at time   (Bq/Kg), the injected dose 

 (   ) (Bq) and the patient body weight (Kg) [32].  

 An important reason for using this method in PET is that SUV images, contrary to raw 

PET data that depends on the injected dose and patient volume, are easily comparable amongst 

different subjects, notably when trying to distinguish controls from patients [33]. There are 

additional factors affecting SUV, such as the body composition and the length of the acquisition 

protocol. The variability on SUV because of the body composition is often related to the 

percentage of fat in the body. For instance, in the case of FDG, fat has much lower uptake 

comparing to other tissue. Corrections regarding this effect have already been proposed [34] and 

will not be further discussed, as this is not an issue in PiB. The length of acquisition affects the 

SUV in the way that the radiotracer has different dynamics in the course of the time. In the case 

of PiB-PET, studies were performed searching for an optimal time-window to use on SUV 

measurements (40-70 minutes) and the best results of SUVr analysis are achieved when the 

proper protocols are used [22], [29]. Partial volume effects have also an impact on the quality of 

the images obtained with this imaging modality [35]. These effects are related to the nature of 

PET systems and to image reconstruction algorithms. This topic will be addressed on the 

following chapters. 

 In order to account for further inter-individual variability, SUVr images are used due to 

their improved reliability and low test-retest variation [29]. SUVr represents the ratio between the 

SUV values of the brain and the SUV values of the reference region. The reference region  is 

chosen so that it does not show uptake variation between confirmed patients and controls [22], 

[29]. In order to perform this normalisation, the acquisition interval is not irrelevant. Concerning 

AD PiB-PET analysis the most used time-window for obtain the relevant SUV measures is the 

one referred in the above paragraph (40-70min)  [22], [29]. The ROIs and the frequent reference 

region used for SUVr have also been aim of study in some comparisons [22] which will be 

explained in the next section. 
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3.3. Comparison between quantitative and semi-quantitative 

methods in AD PiB-PET studies 

The most common outcome measures of quantitative methods on PiB-PET studies are 

frequently the DVR and BP [22]. Both DVR and BP are directly related to the availability of 

binding-sites in a certain region of interest. As the concentration of the specific regions cannot be 

measured but only the total tissue concentration [30], considering the compartmental model, a 

suitable reference region has to be used.  

Although the focus of this thesis relies on SUVr analysis, the main comparisons between 

quantitative and semi-quantitative methods were studied. Those have been supported by region 

based analysis and the key evaluations were performed to DVR and SUVr [22], [29]. These 

investigations were made in order to assure that SUVR analysis could easily provide clinical 

results similar to the ones given by DVR, with less complications. Different time intervals and 

several ROIs (a few more ROIs than the ones addressed on section 2.3) were used on both the 

experiences that support these comparisons [22], [29]. The main aims of this studies were the 

evaluation of the correlation between the Logan graphical analysis and SUVr, and the contrast of 

SUVr between AD patients and controls [29]. 

On one study [29], the first evaluation focus on comparing SUVr to DVR for each time 

window, each individual ROI and across AD, MCI and control subjects. The achieved results 

showed a great correlation between SUVr and DVR with slight variations depending on the time-

window. This correlation was higher for the latest time windows when using the arterial input 

function and for the intermediate time windows (40-60 and 40-70min) when using cerebellar 

reference region [29]. The differences between SUVr and DVR using cerebellar reference region 

were slight and identical across the analysed ROIs. 

The second evaluation focused on the effect that each ROI had on differentiating AD from 

control subjects. This assessment was made throughout the predefined time-windows, taking into 

account the simple group mean difference and the effective contrast for each ROI. The results 

showed that the greatest differences in group means were verified on Pregenual Anterior 

Cingulate, Dorsal Frontal Cortex and Anterior Ventral Striatum [29]. In contrast, the ROIs that 

did not show a significant difference or even negative difference were Pons and Mesial Temporal 

Cortex.  

The last assessment on this study was the evaluation of SUVr temporal dynamics between 

AD and controls. The PiB uptake and DVRs were simulated using the arterial input function 

obtained from the two-tissue compartmental model. As expected, the PiB uptake was higher for 
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AD than for control subjects over the acquisition period and the dynamically changing of SUVr 

suggested that it might be unstable at earlier times [29]. 

From all the experiments performed over this study, the researchers conclude that it is 

simple to reach a great proximity between SUVr and DVR. They also verified that SUVr 

overestimated DVR and the degree of overestimation increased for later time-windows. Thus, 

taking into account the measurements stability, study feasibility and outcome similarities, they 

suggested 40-70min as the optimal time interval for SUV measures regarding PiB-PET analysis in 

AD. 

On the scope of the comparisons between quantitative and semi-quantitative methods, 

another work [22] was carried out with a different methodology than the comparison described 

before. The aim of these experiments was to extend the quantitative PiB studies to include an 

evaluation of simplified methods of analysis, such as SUVr [22]. Similarly to the previous one, 

this study underwent experiences with and without blood sampling. The data analysis was based 

on 3 different outcomes and two time windows (60min and 90min): the results obtained from 

SUVr using cerebellum as reference region; the Logan graphical analysis in order to assess PiB 

specific retention through DVR calculation, using arterial input function from blood sampling 

and from Carotid imaging; the Lammertsma SRTM image-based analysis to study the radiotracer 

dynamics and to obtain BP. 

The results showed that 90min analysis achieved better results than the 60min one, 

although this also yielded useful data. The estimation of input function from carotid imaging 

showed important limitations mainly on assessing the unchanged fraction of PiB on plasma, 

which resulted on overestimations of DV values. However, these results were comparable to the 

ones that were achieved by using the arterial input function, in terms of test-retest variation. The 

use of a reference region for input function determination appears to be more stable than either 

blood samplings or carotid imaging methods. Regarding the analysis simplification, SUV is most 

used in clinical studies where input function determination is not required. For PiB data, SUVr 

values were relatively constant for an analysis of 40min after the tracer injection in both AD and 

controls. The use of this ratio is also useful since it eliminated some sources of variability on 

calculations, such as the body composition. In addition, cerebellar imaging must be carefully 

assessed due to the possible artifacts that may appear such as cerebellum region misplacement 

and PiB measurements contamination from adjacent regions. Taking into account the whole 

achievements of this study, the researchers concluded that 90min SUVr analysis shall be the 

method of choice when the simplicity of calculations is the main concern, presenting a valid 

alternative to quantitative arterial based methods. 
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3.4. Using Support Vector Machines for imaging classification 

Machine learning plays an important role on computed techniques for automatic 

classification of imaging scans [36]. The classification procedures are based on pattern 

recognition which is related to the discovery of regularities among datasets which leads the 

computed algorithm to the organization of the data into different categories [37]. In order to 

perform this classification, the algorithm needs to extract the features that are going to be used to 

compare the data. These features are just data characteristics able to be compared across the all 

dataset. After choosing the features, a proper feature selection has to be done to create a suitable 

learning model. This selection can improve the algorithm performance by removing all the 

irrelevant features and thus the whole process become faster and more precise [37]. For instance, 

in the case of AD vs controls classification, a feature selection would select just the ROIs that are 

known as having specific binding levels of PiB comparing to controls, such as posterior cingulate, 

frontal cortex and precuneus. After these procedures, the algorithm is trained with previously 

labelled data, and use the information gathered during the training to classify the unknown 

datasets according to the classification used in the training processes. The general performance of 

a classification algorithm is described below on Figure 3.3. 

 

 

Figure 3.3 – Performance of classification algorithms [38] 

 

On this work, the classification was used to classify the scan as AD or non-AD so the used 

labels were just two. Furthermore, the used algorithm was the Support Vector Machines (SVMs). 

For binary classification, SVMs searches for the optimal solution for the classification of subjects 

according to pre-defined criterion. The optimal solution is the highest distance that can separate 

two subjects from different classes [36]. The classified subjects can be expressed as points in a 2 

dimensional plot and the separating line between the groups is known as separating hyperplane 

[39] as shown on Figure 3.4. 
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Figure 3.4 - SVM training and classification. A) Hyperplanes found on the training phase. B) Optimal 

hyperplane found for classification. [37] 

 

It is also possible to assess the classifier performance by calculating its sensitivity and 

specificity, parameters that are usually analysed in order to conclude whether or not is better to 

use another classifier. According to the amount of well classified and misclassified subjects (true 

positive (TP) and true negative (TN), false positive (FP) and false negative (FN), respectively) the 

calculations are done as follows [40]: 

Sensitivity = TP/(TP+FN) 

Specificity = TN/(TN+FP) 
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4.1. Partial Volume Effect 

The Partial Volume Effect (PVE) is an important degrading phenomenon in several PET 

and SPECT imaging applications such as oncology, cardiology and neurology. In the context of 

this thesis, PVE was studied and approached relative to AD PET imaging. Regarding this, the 

quantitative information of PET images is reduced and the degree of PVE is related to the size of 

the structure under analysis. The smaller the structure, the more severe PVE is [35], [41]. In 

quantitative studies, the tracer distributions are associated with the induced PVE distortions 

noticed in the images, both in the targeted and in the adjacent regions. The calculated time-

activity curves (TACs) usually presents typical changes both in their magnitudes and shapes 

which results in errors of approximately 50% in estimated rate constants for transfer of tracer 

between compartments (assuming compartmental models, which were not part of this work) [42]. 

 

 

Figure 4.1 - In PVE the small object of study (red square - real size) may partially occupy the sensitive 

volume (triangular shadow). The arrow represents the possible object motion during acquisition [43] 

  

In general, PVE does not cause a loss of information in terms of the total amount of 

counts in an image, i.e. the intensity of the image as calculated by radioactive activity. Instead, it 

displaces the values of activity between regions in the neighbourhood of the source region [35]. 

The most dangerous situation in neurology, particularly in AD, is that due to PVE some 

identified disease patterns might be lost, or diffuse enough to become hard to assess, leading to 
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erroneous diagnoses. As such, not only this effect has an impact on quantitative analyses, it also 

affects the use of SUV and SUVr images for diagnostic purposes. 

There are two main reasons responsible for the occurrence of PVE in PET imaging, 

described below. 

 

4.1.1. Scanner Point Spread Function 

In general, PET scanners have a limited spatial resolution. The spatial resolution can be 

described as the ability to separate and detect two distinct objects, and this capability is related 

with the scanner Point Spread Function (PSF). In PET imaging, the image can be defined as a 

convolution of the true activity distribution with the scanner PSF. The PSF may be modelled by a 

3-Dimensional Gaussian function that just depends on the Full Width at Half Maximum 

(FWHM) in the order of a few millimetres, which can be either the same or different in the 

different spatial directions [35], [44]. The spill-over effect (cross-contamination) between adjacent 

regions in images reflects the low spatial resolution and can be defined as the apparent gain of 

activity in some regions in contrast with others, and is divided in two distinct effects: spill-in and 

spill-out.  

 

 

Figure 4.2 - Point Spread Function Effect on true objects [45] 
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This notation makes sense when examining small areas such as the ones analysed in the 

brain for AD diagnosis, and when it is essential to have precise information about the total 

activity in those areas, reflecting tracer concentration. 

 

4.1.2. Tissue Fraction 

PET images are displayed as a map of voxels, where each voxel dimensions are related to 

the PET scanner resolution and to the image reconstruction process, which is not discussed in 

this thesis. The placement of a geometrical sampling grid onto the variable geometry of the 

human anatomy, causes that within a voxel different types of brain matter may coexist [35]. In 

terms of image processing, this is due to the discrete sampling of images into finite voxels. This 

effect is known as the tissue fraction effect (TFE) [46]. The problem of this situation is that 

different brain tissues may have different tracer concentrations. Thus, each voxel may display the 

average activity of all the tissues contained on it instead of the true activity of a unique type of 

brain matter which is what is required with this measurements. Generally the mixture of brain 

tissues within a voxel includes grey matter (GM), white matter (WM) and cerebrospinal fluid 

(CSF). Usually, to correct this effects additional data is required so as to inform of the real 

underlying tissue locations, such as a high-resolution segmented MRI scan from the current 

patient. The coregistration of both images (PET and MRI) is necessary to perform the Partial 

Volume Correction (PVC) for this effect, using the algorithms described in the next paragraphs. 

 

 

Figure 4.3 - Tissue Fraction Effect on PET images [47] 
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Figure 4.3 reflects the result caused by TFE on measured images. Image A is the real object 

with all the activity concentrated within the sphere. PET imaging systems do not know where the 

borders of the objects are, so during the image reconstruction pixels assume the activity 

concentration as the mean of the activity concentration within the pixel space. Thus, the result is 

a misdistribution of the true activity concentration on the final image, due to TFE. Some of the 

studied methods apply corrections to this effect. 

 

4.2. Partial Volume Correction 

In the presence of PVE, neuroscientists and researchers felt the necessity of developing 

some techniques for correction such effects produced during the image formation. These 

techniques are called the Partial Volume Correction and were the main focus in the optimization 

of the analysis process described on this thesis. As explained before, there are two principal 

causes of PVE and these were the ones whose possible correction algorithms were addressed on 

this work. 

The main goal of PVC methods is restoring the true activity distribution in PET images. 

Generically, a distortion of the real scenario is always intrinsic in imaging systems due to its 

electronics and image processing algorithms, usually transformed in the form of blurring and 

noise. PVC is useful in restoring as much as possible the original information that is trying to be 

sampled in images [48]. As will be explained in detail below, there are PVC methods to correct 

the effects due to either the PSF in separate or the PSF plus the tissue fraction effect. 

 

4.3. Studied PVC Methods 

As told before, the main PVEs studied on this work were the tissue fraction effect and 

spill-over effect due to the PSF. Different PVC algorithms were implemented and the reason for 

this variety of studied methods were the analysis of the results achieved when correcting taking 

into account just the scanner PSF or both the scanner PSF and the tissue fraction. Depending on 

the used method, the obtained results can be different. Some methods provide corrected images, 

having as input the original uncorrected image and the scanner PSF (estimated or real – in all the 

implementation the PSF was estimated as 5.5mm FWHM isotropic 3D Gaussian function). Some 

other ones need as input segmented MRI data as well as the scanner PSF and the corrected 
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output are just values of the corrected ROIs. Next, all the implementations are described in detail 

with all the equations on which the algorithms are based on. 

A statistical noise model is frequently associated to the image formation [49]. The noise in 

PET data derives from nature of radioactive decay and results on image deterioration. Some PVC 

methods take into account this typical noise while performing the corrections. Considering the 

observed image as  ,   the ideal image reflecting the true activity distribution without PVEs and 

  the scanner PSF, mathematically, the image   can be described as  

  ( )    (     )( ) Equation 4.1 

with   representing the 3 dimensional convolution operator and   the 3D coordinate of an 

image voxel [50]. Generally some authors consider a second noise process    responsible for the 

noise amplification prior to the blurring by the PSF but that was not considered on the studied 

PVC techniques. Some of the following methods present iterative approaches of deconvolution-

based algorithms (also referred as deblurring algorithms) that take into account different noise 

models (Gaussian and Poisson noise models). Their complete description will take place on the 

next sections. 

 

4.3.1. Van Cittert 

Van Cittert (VC) is the simplest PVC method implemented on this work [50]. It is based on 

a deconvolution process in order to restore the original information, removing the blurring effect 

and improving the contrast, imperfections created by the scanner PSF and visualized after the 

image processing. The disadvantage of deconvolution methods is the increased noise produced 

during the image correction, since they are iterative procedures and the noise levels increase 

proportionally with the number of iterations [51]. 

Based on the image reconstruction stated on Equation 4.1, the algorithm assumes as input 

the scanner PSF   and the uncorrected image   on which the iterative deblurring algorithm will 

be applied. VC method suggests an approximate solution for  , since due to the statistical noise 

associated to the image formation, there is no exact solution. Thus, the algorithm proposed by 

VC, expressed in Equation 4.2, estimates   as  

 

  ( )( )   (   )( )   (     (   ))( )  ( )    at each voxel Equation 4.2 



34 CHAPTER 4 

 

where  ( ) denotes the estimation of the true image   at the iteration   and  ( ) is the input 

image,  . Figure 4.4 shows the typical differences possible to be observed on PET images when 

VC is used for PVC.  

 

 

Figure 4.4 - Van Citter PVC effect on PET images. Left: CT image; Middle: Original PET image; Right: 

PVC PET image. CT image can be used as reference image for comparison [52] 

 

There are some constraints that need to be fulfilled during this image correction 

procedure. First, as expressed in Equation 4.2, the voxels must be non-negative. Furthermore, 

there is a convergence factor  , that usually ranges between 1 and 2 (herein set to 2), and the 

higher the convergence factor the faster the convergence is achieved.  However, at some point 

the successive iterations lead to degradation in the corrected image due to excess of noise 

amplification produced by this inverse filtering solution, so a termination condition should be 

applied to stop the process when the maximum optimization is accomplished [41]. The 

condition, stated in Equation 4.3, is common to all the methods that apply a correction for the 

PSF effect and it follows the same structure, although the number of iterations and the stopping 

points are different because of the diverse levels of noise produced by the different algorithms 

during their performances. 

 
√∑ ( (   )( )   ( )( )) 

 

√∑  ( ) 
 

      Equation 4.3 

This condition follows a voxel-wise convergence and when applying this criterion the algorithm 

may converge after 10-30 iterations [50]. However, if the convergence is not achieved until 100 

iterations the algorithm is forced to stop. This subject will be discussed with more detail further 

on when the results are presented and examined. 
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4.3.2. Reblurred Van Cittert 

This method is similar to the previous one. It follows a deconvolution iterative approach, 

although this is a technique based on a Gaussian noise model instead of a simple error-correcting 

procedure that does not rely on the optimization of any well-known statistical criterion [41]. It 

requires no anatomical information and it seeks a minimization of the least squares formulation 

stated on Equation 4.4. 

 ∑‖ ( )  (   )( )‖
 
 Equation 4.4 

The direct solution for this criterion would be the inverse filtration but an iterative scheme for 

minimizing the gradient ensuring convergence is suggested in Equation 4.5 [35] 

  (   )( )   ( )( )    (   (     ( )) )( ) Equation 4.5 

As like as in the method described in section 4.3.1, the algorithm proposed in the Reblurred Van 

Cittert (RVC) method has similar constraints to accomplish. The convergence criterion is the 

same voxel-based analysis and the convergence factor   was also set to 2 to achieve convergence 

faster. The algorithm needs the original uncorrected image and the estimated PSF as inputs and 

the voxels non-negativity is also necessary.  ( )is the original image   like in VC method. 

 

 

Figure 4.5 - Effect of RVC PVC method on PET images. A) Original uncorrected image. B) RVC PVC 

corrected image. Adapted from [49] 

 

The main advantage of deconvolution-based techniques such as VC and RVC is the speed 

of processing and the ease to implement on image processing algorithm. Nevertheless they 

amplify the noise to enormous proportions [35], [41], [50]. At some level of convergence the 

process needs to be stopped to ensure the solution quality. After analysing the results efforts 
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were made to reach some ways of controlling the moment for stopping the iterative progressions 

in addition to the convergence criterion. These ways will be explained later on results discussion. 

 

4.3.3. Richardson-Lucy 

This PVC method presents another class of deconvolution iterative approaches. 

Richardson-Lucy (RL) is based on the Poisson noise model and on the maximum likelihood 

principle [41]. The noise is intrinsic to the counting statistics and each voxel is drawn 

independently from the noise distribution. 

The log-likelihood this algorithm intends to maximize is given by Equation 4.6 

  ( )  ∑   ( )    (   )( )
 

 (   )( )  Equation 4.6 

 

This method uses the Expectation Maximization (EM) algorithm to maximize the log-likelihood 

given by the previous equation and it is accomplished with the following iterative rule  

  (   )( )  (   )( ) ( )( ) Equation 4.7 

where   is given by  

  ( )   
 ( )

( ( )  )( )
 Equation 4.8 

As like as in the previous models, in the first iteration  ( ) is estimated as being the observed 

image  . 
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Figure 4.6 - Richardson Lucy PVC method. A) Original image; B) RL corrected image. Adapted from [53] 

 

The initial non-negativity is also required and the algorithm itself preserves the positivity and the 

total amount of counts, i.e.  ( )( )    if  (   )( )    and ∑  ( )( )  ∑  (   )( )  [49]. 

In order to avoid the noise amplification common on deconvolution algorithms, the convergence 

criterion stated on Equation 4.3 is also applied here. The main advantages are the ease to 

implement, the no necessity of anatomical data and the speed of processing until the convergence 

to the maximum likelihood solution is achieved [54]. The results obtained from this method 

implementation will be shown and discussed later on. 

 

4.3.4. Müller-Gartner 

Müller-Gartner (MG) PVC method is based on different assumptions comparing with the 

former ones (VC, RVC and RL). This one described a PVC approach directed to GM correction 

specifically. Due to the physics of PET systems, brain structures such as GM, WM and CSF are 

often mixed in the same voxel and consequently the tracer concentrations are often 

underestimated [55], including the GM brain structures known as the most affected ones in AD. 

This MR-based PVC method requires a MRI scan to assess the regional anatomical 

structures. The MRI scan has to be properly segmented in order to provide the tissue maps that 
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are not available on PET image [56]. The image formation basis is the same as the one stated in 

the previous sections (Equation 4.1) and the algorithm mathematical formulations assume the 

total radioactive distribution displayed by the true image as the linear sum of radioactive 

distribution of the three brain matters GM, WM and CSF as follows 

       ( )  (            )( ) Equation 4.9 

From Equation 4.1 and Equation 4.9 and due to the nature of the convolution the observed 

image can be written by 

  ( )                         ( ) Equation 4.10 

As said before, this method results on the correction of only the GM. Because of this, it is 

assumed that GM tracer concentration is unknown, in contrast to WM and CSF radiotracer 

concentrations which are assumed to be constant and known.          is the segmented MRI 

scan. It is a binary image that contains 1 on voxels representing the tissue and 0 otherwise. Thus  

 

   ( )   ̅      ( ) 

    ( )   ̅        ( ) 

   ( )   ̅      ( ) 

Equation 4.11 

where  ̅       represents the tracer concentration within the tissue.  ̅   is also unknown so it 

cannot be used in the algorithm formulations. Using the above equations and substituting them 

on Equation 4.10, the observed image is given by  

  ( )          ̅           ̅            ( ) Equation 4.12 

and solving Equation 4.12 in order to achieve a solution to     it becomes  

      ( )     ̅           ̅            ( ) Equation 4.13 

Using Equation 4.11 and the properties of the 3D convolution operator, 

 ( ̅              )    ( )   ̅      (           )( )  Equation 4.14 

it is possible to yield a solution for  ̅   as stated on Equation 4.15 

  ̅  ( )  
   ̅           ̅            ( )

       ( )
 Equation 4.15 

Since  ̅   and  ̅    are assumed to be constant and homogeneous within the correspondent 

tissues, some modifications need to be done. Their voxels are replaced by the average of the PET 



CHAPTER 4 39 

 

counts, respectively. If these changes are not made it is not valid to estimate  ̅   by Equation 

4.15 due to the heterogeneity of  ̅   and  ̅    [55]. 

 

 

Figure 4.7 - Partial Volume Correction by MG method with grey matter segmentation. A) Original MRI 

scan used for segmentation; B) Original PET brain image; C) MG PVC corrected image (grey matter). 

Adapted from [57] 

 

 This method presents a voxel-wise correction only for GM structure that takes into 

account the tissue fraction effect in addition to the PSF effect. Apart from the previous methods, 

this one requires a trisegmented MRI scan and a proper PET-MRI image registration, and it is 

not an iterative approach. However, the accuracy of this MR-based PVC method may be affected 

by several sources of error [56]. The misregistration of the MR and PET volumes and the 

inaccurate segmentation of the MR scan into the necessary brain tissue compartments, with 

consequent over/underestimation of structure volumes and finally under/overestimation of GM 

tracer concentration, respectively, are actually the most common causes of unfeasible results. 

  

4.3.5. Rousset 

Appart from all the PVC methods described so far, Rousset does not provide corrected 

images, but corrected values for the tracer concentrations on specific ROIs, previously selected 
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with the MRI data support. Similar to MG, Rousset on its approach considers the PVEs caused 

by the tissue fraction and the scanner PSF [58]. The origins of both effects have already been 

explained so, on this section just the formulations and approaches suggested by this method will 

be presented. 

The image formation expressed by Equation 4.1 is here assumed in the form of a weighted 

integration of the activity distribution  ( ) over the scanner FOV, by the PET system response 

function in the form of PSF,  , as follows:  

  ( )   ∫  (  ) (    )   
   

 Equation 4.16 

having   and    as the 3D vectors on image and object reference spaces, respectively [42]. The 

true activity distribution   , which is what one seeks to find, is likely to be distributed over several 

tissue components, defined by the domain   , and the Equation 4.16 can be written as  

  ( )   ∑∫   ( 
 ) (    )   

  

 

   

 Equation 4.17 

where N is the amount of tissues over which    is distributed. On each tissue domain    the 

activity distribution   ( ) is assumed to be constant, thus the integration remains only over the 

scanner PSF  

  ( )   ∑  ∫  (    )   
  

 

   

 Equation 4.18 

and the integration of the PSF over a regional domain    is the same of having a regional spread 

function (RSF) correspondent to that domain  

     ( )  ∫  (    )   
  

 Equation 4.19 

A great advantage of using this method is the possibility of assessing the domain of calculation to 

the specific ROIs to be corrected. If the correction was directed to the total tissue compartment, 

for instance GM, the spillover effect of small structures within GM would not be accounted for, 

and the small activity contaminations between adjacent structures would remain uncorrected. 

This way, Rousset restricts the spatial domains to ROIs instead of the total tissue compartments 

such as MG does [42]. In order to perform this ROIs segmentation accurately, the segmented 

MRI scan is essential. 
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 Assuming the observed activity concentration    within each      as the sum of the 

activity contributions from the regional domains, it can be expressed as 

    
 

    
∑  ∫     ( )  

    

 

   

 Equation 4.20 

where       is the amount of voxels on      and   represents the index of the regional domain 

whose activity contributes to the observed activity   . Equation 4.20 can be described as the 

multiplication of the true activity concentration by a weighting factor that depends on the region 

domain that provides the contribution. Since 
 

    
 is constant for each      the contribution 

factor is expressed by  

     
 

    
∫     ( )  
    

 Equation 4.21 

and represents the relative contribution of each domain    to each      of the image. In other 

words, it represents the activity concentration that is spilled over the domain    and is assumed 

as part of the observed activity concentration of     . Thus, the observed activity concentration 

can be written by the following expression:  

    ∑     

 

   

 Equation 4.22 

Moreover, Equation 4.22 can be extended into the matrix like      

 [

  
  
 
  

]  [

        

        

 
    

 
    

    

     

     

 
 

 
    

] [

  

  

 
  

] Equation 4.23 

Analyzing Equation 4.23 in detail it is possible to create a system of linear equations with   and 

 , solving it in order to identify the values of   that represent the true activity concentration in 

each specific ROI.   is known as the Geometric Transfer Matrix (GTM) and it is easy to 

understand that diagonal factors represent the ROIs self-interaction so they are expected to be 

the highest values of the respective line of GTM. 

 A great advantage of applying this method is that it does not perform the deconvolution 

procedure used on the VC, RVC and RL methods, which result in noise amplification. Previously 

studied and reviewed [42], [58], Rousset method yields results that assure the accuracy and 

capability of providing corrected activity concentrations even for small structures/ROIs 
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surrounded by background activity. Similar to MG, misregistration and missegmentation are 

common sources of error. Misregistration has already been studied and reported an error of 

approximately 5% of true activity per mm of axial misregistration [42]. 

The analyzed ROIs and respective values achieved with Rousset method will be discussed 

and compared with the other PVC methods ahead. 

 

 

Figure 4.8 - GTM estimation. The lines represent the intersection of each RSF with the ROIs (expressed by 

VOI) of each collumn. [58] 
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5.1. MRI and PET image acquisition protocol 

MRI and PET data are obtained on Nuclear Sciences Institute Applied to Health, 

University of Coimbra (ICNAS) facilities using different systems with the respective acquisition 

protocols. MRI scans are performed on a Siemens Trio 3T system (Siemens Medical Systems, 

Erlangen, Germany) achieving T1-weighted anatomical acquisitions 92x192x144 slices with a 

voxel resolution of 1.25x1.25x1.25mm3, and consisting of 3D magnetization prepared, rapid 

gradient-echo (MPRAGE) volumes with the following imaging parameters: repetition time/echo 

time/inversion time/flip angle = 2300ms/2.86ms/900ms/9º, lasting less than 8 minutes.  

PET acquisitions for PiB were also optimised at ICNAS. PET scans are acquired using the 

Philips Gemini GXL 16 PET/CT scanner. For PiB acquisitions, patients are injected with 15mCi 

of 11C-PiB. Dynamic acquisition starts immediately after injection and lasts for 90 minutes, with 

data acquired in multiple frames with increasing duration (4x15s, 8x30s, 9x60s, 2x180s, 14x300s). 

Data are reconstructed using the standard clinical protocol (3D LOR-RAMLA) with all standard 

corrections applied. Final attenuated corrected images are in Standard Uptake Values (SUV). 

In this context, the frames are 3D volumes that contain the acquired data during the 

respective acquisition time interval. The acquisition protocol defines how many frames are 

generated as the output. PET acquisition protocol may vary depending on what is required on the 

study. The static protocol consists of only 30 minutes of acquisition, with 6 frames of 5 minutes 

each one. In this case, after the tracer injection, the patient rests for 40 minutes and in the next 30 

minutes the acquisition is performed. This 40-70mins time window is used due to the signal 

stability achieved here, as explained before. However, although the obtained signal is very 

amyloid specific on this interval, this protocol does not allow for quantitative studies. Therefore 

the dynamic protocol is necessary for research purposes and can also be used for basic clinical 

purposes, as it includes the static protocol within. 

Quantitative methods use the Time Activity Curve (TAC) to indirectly estimate the input 

function of PiB studies [27]. In this case, the reference region is the cerebellum and the TAC is 

measured over time as an expression of the average cerebellum PiB retention (Figure 5.1) As 

such, both for the quantitative analyses (not expanded in this thesis) and for the calculation of 

SUVr, a properly registered cerebellar mask is necessary. The registration procedures will be 

addresses in the next section. 
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Figure 5.1 - Typical Time Activity Curve expressing the radiotracer uptake in function of time 

 

5.2. Image Registration and Image Spaces 

Registration procedures are necessary when taking into account differences between image 

spaces: they involve the optimal estimation of spatial transformations, and subsequent application 

of these on the images, required to transfer an image to the space of a target. Here, two 

modalities are being used (MRI and PET) and the images provided by them present a different 

arrangement of the head of the patient, since its position during the acquisitions is also different. 

In other words, the native spaces on MR and PET images are different as shown on Figure 5.2: one 

must be chosen as the working space, thus requiring the registration of one image to the other.  

Registration between MR and PET involves rigid-body transformations. A rigid 

transformation is a type of linear registration. A linear registration works globally on an image, i.e. 

all coordinates x are transformed in the same way by the multiplication with a matrix T, which 

includes the transformation parameters, leading to a new volume with new coordinates as 

expressed by Equation 5.1 

        [

  

  
  

 

]  [   

    

] [

  

  
  

 

] Equation 5.1 

where P represents a 3x3 matrix describing the rotations, shears and scaling, and t is a 3x1 vector 

that contains the parameters relative to the translations. This full transformation, with all 12 

parameters involved in three dimensions, is also called an affine transformation. The last row of 
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T is added just to assure that the matrix is square and therefore easily invertible in a single 

computational step, adding to efficiency [59]. 

The rigid-body transformation is a particular case in which T only contains rotations and 

translations, preserving the angles and distances of the image to be registered [60].  

 

 

Figure 5.2 - Spatial transformations of images 

 

In a rigid transformation, three rotations (about the x, y and z axes) and three translations 

(in x, y and z directions) are allowed, without any scaling factor. Thus, the rigid-body registration 

only accounts for gross differences in position, the actual repositioning of a non-deformable 

body. 

 Finally, the use of non-linear registration occurs when coordinates need to be changed 

individually, i.e. xf = T(xi).xi to use the nomenclature above. This is required when the target 

space is not only globally, but also locally different, from the image to be registered, as it happens 

when registering brain scans from different individuals or when using standard spaces, for 

instance. It is applied when is essential to ensure that similar brain structures are represented in 

the same location on the standard space. Therefore, the degrees of freedom given by the linear 

registrations are not enough and herein, many degrees of freedom are used to perform a finer 

registration. On non-linear registrations each voxel undergoes a displacement that may not be the 

same of the surrounding voxels [61]. However, care is needed when performing this type of 

Native Space - PET Native Space - MR Standard Space - MNI 

Rigid (Linear) Transformation Non-Linear Transformation 
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image registration on anatomical images. The amount of degrees of freedom may be such that the 

deformation produced on images can generate an output with no anatomical meaning. 

 The existence of a standard space is useful when comparisons among a group of scans are 

necessary for statistical purposes, or simply to report data on an internationally recognized atlas 

or template. Additionally, these atlas also include regions of interest (ROIs) that can be used to 

extract data from specific brain locations: as these ROIs are in a standard space, either the 

standard space is registered to the subject native space or, more common, it is the individual scan 

that is, non-linearly, registered to the template. In this case, the used standard space is the one 

provided by Montreal Neurologic Institute (MNI) atlases, notably the ICBM152 (International 

Consortium for Brain Mapping template based on the average of 152 brains).   

 

5.3. Pipeline Overview 

The initial work of this thesis involved the improvement of the previously developed 

pipeline of analysis for SUV and SUVr data. This was achieved by using the software MATLAB 

(The Mathworks Inc., Natick, MA, USA) and related software, notably the Statistical Parametric 

Mapping 8 (SPM8, www.fil.ion.ucl.ac.uk/spm/ ). SPM is a widely used software for processing 

and analyzing brain imaging data. Different imaging modalities may be analyzed using SPM, 

although all the usage of this package relied on MRI and PET data in this thesis. This chapter 

focuses on the enhancements performed on the original pipeline whose interface is shown in 

Figure 5.3. Some other options were introduced into the pipeline and a modified interface was 

developed. The PVC methods integration on the pipeline was the most important task, in 

addition to the improvements in the image registration process, as explained ahead. The 

differences between the original and the modified interface, as well as the pipeline options, will be 

explained in detail in this section. 

As shown on the pipeline fluxogram, presented on Figure 5.4, the analysis can be divided 

into three different parts. On the first part an initial processing is performed, where the raw data 

files containing the acquisition information are converted from DICOM format, the standard raw 

data format for images in the scanner, to NIFTI (*.nii) or the older dual file ANALYZE (*.img 

and *.hdr) format, both necessary for seamless usage in SPM and MATLAB. This procedure 

gives as output the frame sequence that corresponds to the information contained on the 

DICOM files - numerous and fragmented - and the output files (4D or 3D volumes) can be 

opened in the form of images showing the results of acquisition. The frame sequence is then 
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realigned to correct for the motion that is usually present on PET acquisitions. After this, all PET 

frames (each a 3D image volume) are rigidly aligned to each other and to their mean so as to 

remove any motion artifacts brought about by the subject moving during the long acquisition 

time. With this, the first part of the analysis is done. 

The second part consists on the spatial conversions when the user can choose either to 

create a PET native space reference or use the MR as the working native space reference (if 

available), for the image registration procedures. On the first case, the first 10 minutes of 

acquisition are used to create the reference since this is the period where the PiB signal is higher, 

as shown on Figure 5.1, due to the initial perfusion of the radiotracer in the head. On the other 

hand, it is possible to use the MR scan as the native space reference, which is ideal given its 

higher resolution and greater potential for non-linear deformation when (if) registering to MNI 

afterwards. In these cases, the PET data is registered to the MR scan through the linear 

registration procedures as explained above on section 5.2. 

Finally, if MNI is chosen as output, the working native space reference, be it PET or MR, 

will be used as basis for the required non-linear transformation using the ICBM152 template as 

target. It should be noted that such a non-linear transformation is required regardless of the 

choice of output space. Indeed, if the images are to remain and be analyzed in their original 

space, the cerebellar and other eventual ROI masks, which exist in MNI space, must still be 

registered from MNI to native PET or MR space in order to be used in the final steps of the 

analysis: this is achieved in SPM8 by estimating the non-linear deformation parameters that 

define the native to MNI registration, inverting them (i.e. MNI to native), and then applying them 

to the individual binary masks. 
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Figure 5.3 - Interface of original pipeline 

 

The last part of the analysis is the calculation of the outputs. Here, the masks are applied in 

order to calculate SUVr from 40 to 70 minutes, extract the ROI values, or compute TACs. 

However, the original pipeline was identified to have some limitations. These limitations 

can be found on the frame realignment, image registration procedures, as well as on the final 

calculations. These were improved, as described below.  
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Figure 5.4 - Simplified Pipeline Fluxogram 
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5.4. Pipeline Improvements 

 

5.4.1. Frame Realignment 

In the original pipeline, the frame realignment was being performed through the standard 

SPM8 method, which is open to issues when using dynamic PET data. In this method, one by 

one, all the frames are registered to the first frame, then the result is summed and the reference 

for the second alignment pass is the average of all the frames. All the images are rigidly registered 

to this reference to achieve a consistent alignment of the frames. This two pass procedure may 

fail if the first pass finds an empty first PET frame, or at least one with few counts and thus little 

spatial detail to guide the process. This is an issue in dynamic protocols because, in the first 

frames, the radiotacer perfusion is still at the beginning. 

An initial improvement was to look for positive values of retention within a central block 

of voxels in the first frame. If this block was not empty, then one could postulate that the frame 

had enough information in it and was not empty, so it could be used in the standard method. If 

no positive values were found, this frame would be ignored and the second frame would be 

considered the first, using only the following frames for the realignment.  

Because sometimes the first few frames were empty rather than just the first, this 

function was further optimized using the Jaccard Coefficient to statistically compare the five 

initial frames to the central one (in this case, the dynamic acquisition is divided into 37 frames, 

consequently the central frame is the frame 19). This coefficient is calculated with the formula 

stated on Equation 5.2 

                     (   )   
|   |

|   |
 Equation 5.2 

where A and B are the subsets whose overlap is necessary to be estimated [62], [63].  

The calculation is performed using binarised volumes, where the threshold for the 

binarization is the average of the voxels values. This coefficient measures the overlap between the 

initial frames and a middle frame, that is certainly not empty: if this overlap is above a certain 

level (heuristically set at 0.2 in this case), the frame is not empty and can be used for realignment; 

if below, then it can be considered empty, or at least without enough spatial information, and is 

discarded. These discarded frames are still used in the subsequent processing, they are only 

eliminated for the realignment step. This analysis is now extended to the first five frames, 

covering approximately the first minute of acquisition (5x15s – assuming dynamic protocol), as 
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opposed to the original function that was only analyzing the first frame (first 15s). Figure 5.5 

shows the different alignment of the same slices of a frame when using the original and the 

current methodology. This is an example of what may happen when the verification is just done 

to the first frame. The following ones may do not have enough information for a proper 

realignment and the differences are obvious. This is an important improvement that has effect on 

the following steps of the analysis. 

 

 

Figure 5.5 - Results of frame realignment methodologies. A) Slice of a frame realigned with the current 

function. B) Same slice and frame realigned with the original function. 

 

5.4.2. Image Registration 

Another point that is improved is the image registration. Originally, it was impossible to 

have the output volumes registered to the standard space. This option was added and now the 

user can choose to register the final output to the MNI space, having already available the 

templates for the image registration. In addition, the user can choose the ROIs (from a list 

previously provided) which are going to be used in the final calculations steps, and these masks 

are registered together with the cerebellum to the native space, as described above (or remain in 

MNI, if that is the choice). All the ROIs are originally on the MNI space. 

 

5.4.3. Final Calculations 

An important part of the pipeline improvement was done on the final steps with the 

implementation of the partial volume correction. Five different methods were implemented and 
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the user can choose which ones are going to be performed. The type of the final output can also 

be chosen: ROI values, SUVr images or both, with the exception of Rousset method that only 

provides ROI values. If Rousset or MG are between the choices of PVC methods to be 

performed, the program chooses automatically to use the MR as reference space, since these 

methods need the MR scan as explained in section 4.3. Figure 5.6, Figure 5.7 and Figure 5.8 show 

the windows of the current interface. 

Another goal was the pipeline extension to analyze different radiotracers beyond PiB. 

This extension was achieved as shown on Figure 5.7 where it is possible to choose between 

Flumazenil, Raclopride and FDG in addition to PiB. For these radiotracers the protocols of 

acquisition might not be the same as the ones used with PiB so the user can also select to input 

the acquisition protocol in order to perform the convenient analysis. The reference region also 

varies depending on the used radiotracer. In the case of PiB, Raclopride and FDG, cerebellum is 

used as the reference region by the reasons explained above on chapter 3, however, when using 

Flumazenil, pons is used as the reference region rather than cerebellum [29], [64], [65], [66]. 

 

 

Figure 5.6 - Interface to choose the type of PVC output (images, ROIs values or both), the PVC methods to 

be performed, and the volumes to apply PVC (SUV or SUVr) 
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Figure 5.7 - Actual main interface 

 

Figure 5.8 - Interface to choose the ROIs to be registered to the reference space and used in PVC methods 
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This chapter contains the results achieved with the implementation of the PVC methods in 

the pipeline as well as the respective discussion. The uncorrected data is also shown in order to 

spot the differences and the effective improvements comparing the images with and without the 

application of PVC. All the displayed images represent the same slice of the same brain, and the 

volumes were registered to the MR space for visualisation and analyses. 

 

 

Figure 6.1 - SUVr image with no correction 

 

This patient corresponds to an AD positive subject. As it is possible to observe, regions as frontal 

cortex, posterior cingulate and precuneus show an increased uptake of PiB. Contrasting with the 

information detailed on chapter 2, the higher the PiB uptake, the greater the amount of Aβ 

deposition on such regions, indicating an advanced state of the disease. The symptoms may be 

evident at this stage and PiB imaging plays an important role herein. It provides a clinical 

confirmation about the neurologic situation of the patient in terms of PiB uptake, which allows 

the neurologist to make the appropriate decisions relying on the treatment that can be applied. 

 

6.1. Clean-up of results 

Particularly, in VC method the noise is amplified to great proportions and that is the reason 

why the process is stopped after a few iterations. In addition, some modifications were necessary 

to be applied in this method as well as in the other deconvolution techniques due to the great 
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amounts of noise that remained in the images after the processing has been concluded. It was 

verified, that the output was most of times generating some voxels with negative values, mainly in 

the lower boundaries of the head. In the PET context it is impossible to have negative activity so 

this was obviously the noise amplification taking place and in the end of the process all the 

negative values were changed by zero. The negative values were affecting the colour scale and the 

scans were difficult to be analysed. This difficulty was also increased because, like in RVC and 

RL, in the borders of the images, great amounts of noise were always being added to the images, 

as a result of the deblurring processes (Figures Figure 6.2, Figure 6.3, andFigure 6.4).  

 

 

Figure 6.2 - VC noise cleaning results comparison. A) Before cleaning; B) After cleaning  

 

 

Figure 6.3 - RVC noise cleaning results comparison. A) Before cleaning; B) After cleaning 
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Figure 6.4 - RL noise cleaning results comparison. A) Before cleaning; B) After cleaning 

 

The steps that leaded to the cleaning-up of the output are described in a few points: 

 Image gradient calculation 

 In all the images this noise was being represented by sections where there were voxels with 

extremely high uptake values followed by voxels with extremely low uptake values, generating, 

thus, regions with a great gradient of uptake values. This effect was quite observable within the 

images and it was producing a region with a typical noise. The step described herein relies on the 

image gradient calculation. This is performed because through visual interpretation, it is expected 

a great gradient on this noise region. Once calculated the gradient, using MATLAB functions, the 

aim was to isolate the regions where the gradient was higher than the normal one, by defining a 

threshold (20% of the maximum gradient for VC and 75% for RVC and RL), and remove these 

regions from the images. 

 Isolating the noise using MATLAB functions 

After creating a binary image with the regions where the gradient was higher than the 

threshold, these sections were increased using the MATLAB function imdilate. In order to make it 

more robust, the area to be removed was dilated to assure that all the noisy area would be totally 

cleaned. This function dilates, by a factor of 4, the zone that corresponds to the increased 

gradient. After this, the noisy region was ready to be removed. 

 Removing the noise from the images 

Once isolated the region to be removed, in the form of a binary image, the PET image had 

to be filtered with that, in order to accomplish the cleaning process. Therefore, the binary image 
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was inverted: all the voxels whose value was zero were changed to ones and the same was done 

the other way around, transforming all the original ones in zeros. After this, the PET image that 

was going to be cleaned was multiplied by this transformed image. The final result is the original 

PET image without the region that corresponds to the previously identified noisy area. 

The results of this cleaning task are showed below. The most evident differences 

correspond to VC correction since this is the method that contains a greater noise amplification. 

 

6.2. PVC implementation - Results 

The results obtained with the PVC methods implementation are herein shown and 

discussed. Although the noise constraints that deblurring algorithms have on their mathematical 

framework, it was concluded that additional noise control needed to be made. This was a task 

that required time to be addressed and to find what could be made to improve the quality of the 

image without losing any important information from the image. This topic is properly discussed 

on the next section together with the results comparison. 

Figure 6.5 was obtained using VC method, mathematically described on section 4.3.1. The 

convergence was achieved after 4 iterations and the differences between this image and the 

previous one (Figure 6.1) are notorious. 

 

Figure 6.5 - SUVr image corrected with VC method 

 

Figure 6.6 is obtained using RVC method and despite the similarities to Figure 6.5, this 

method is expected to be less noisy then VC since at the same time that the main deconvolution 
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is being performed an extra convolution is also being made [41]. This process assures a 

slower convergence and the noise stabilization [48], although the convergence criterion is the 

same. Nevertheless, the convergence was achieved after 54 iterations, taking longer than VC due 

to the greater complexity inherent to RVC method comparing to VC and also due to the softer 

convergence curve due to the reblurring step. In both methods the convergence factor   was 

assumed as being 2, heuristically set from literature values [48]. 

 

Figure 6.6 - SUVr image corrected with RVC method 

 

 

Figure 6.7 - SUVr image corrected with RL method 
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Apart from VC and RVC, RL is the other deblurring PVC method that has been 

implemented. Taking into account the algorithm performance, it is very similar to RVC method. 

The convergence was achieved after 49 iterations during approximately the same processing time. 

Figure 6.7 (above) shows the results of its implementation. 

The last image-based PVC method is MG. This algorithm is not based on deblurring 

processes so there are no convergence criteria to be accomplished. MG method requires the 

segmented MRI scan to perform the correction and this is done just for grey matter. However, 

care is needed when using it because misregistration and/or misegmentation of the MRI scan 

frequently lead to errors of image correction. Figure 6.8 represents the correction achieved by 

MG method, whose performance was faster than RVC and RL methods. This can be explained 

based on the fact that the correction of the latter ones is done throughout all the brain, 

contrariwise to the one performed by MG, where it is just made over the grey matter as said 

before. 

 

Figure 6.8 - SUVr image corrected with MG 

 

By selecting the ROIs and applying the respective masks, it is possible to extract PiB uptake 

values from all the presented SUVr images. Having an image as input, Rousset method does not 

provide a corrected image as output, but rather the corrected uptake values for the grey matter of 

each selected ROI. The GTM matrix is also obtained in order to analyse the spill over effect 

among the ROIs. Table 6.1 contains the observed and corrected values for some ROIs extracted 

from the SUVr image shown on Figure 6.1. 
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Table 6.1 - SUVr ROIs values (observed and corrected) and GTM obtained from Rousset PVC method 

 Observed  Putamen Parietal PC Precuneus Frontal  Corrected 

Putamen 1,886  0,514 0,000 0,000 0,000 0,002  3,681 

Parietal 1,566  0,000 0,531 0,018 0,084 0,001  2,865 

PC 1,965  0,000 0,018 0,608 0,356 0,005  2,741 

Precuneus 1,899  0,000 0,091 0,418 0,605 0,001  1,159 

Frontal 1,700  0,019 0,004 0,029 0,007 0,527  4,076 

 

On the table above, PC corresponds to Posterior Cingulate and Parietal and Frontal 

indicate the respective cortices (grey matter). Below, Table 6.2 presents a comparison among the 

same ROIs analysed on Table 6.1. The results are an average of the mean uptake value on each 

ROI on a group of 8 positive AD patients and the comparison is made over the five 

implemented PVC methods. 

 

Table 6.2 – Comparison of ROIs values among implemented PVC methods 

 Rousset MG RL RVC VC 

Parietal 2,784 ± 0,292 2,012 ± 0,326 1,348 ± 0,182 1,351 ± 0,182 1,361 ± 0,183 

PC 2,530 ± 0,414 2,245 ± 0,458 1,631 ± 0,179 1,632 ± 0,181 1,643 ± 0,181 

Precuneus 1,236 ± 0,140 2,188 ± 0,439 1,717 ± 0,186 1,717 ± 0,190 1,729 ± 0,190 

Frontal 3,571 ± 0,488 1,795 ± 0,339 1,494 ± 0,174 1,496 ± 0,177 1,506 ± 0,176 

Putamen 3,504 ± 0,353 1,660 ± 0,255 1,728 ± 0,172 1,727 ± 0,172 1,738 ± 0,174 

 

All these values were statistically tested in order to conclude about the significance of this 

comparison. The majority of them are indeed statistically significant with a p-value < 0.05 even 

after Bonferroni correction (not shown), as seen on Table 6.3. However, some values, mainly the 
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p-values between RVC and RL are not statistically significant and this fact can happen due to 

great similarity of the results provided by both methods. These values are already a great 

comparison in terms of output likelihood. 

 

Table 6.3 - Statistical Significance among all the PVC methods over the analysed ROIs 

 Rousset 

vs MG 

VC vs 

RVC 

VC vs 

RL 

RVC 

vs RL 

MG 

vs RL 

MG vs 

RVC 

MG 

vs VC 

Rousset 

vs RL 

Rousset 

vs RVC 

Rousset 

vs VC 

Parietal 9,60E-

06 

1,18E

-04 

7,41E

-06 

5,70E

-02 

1,13E

-04 

1,10E-

04 

1,29E-

04 

8,85E-

07 

8,33E-

07 

9,47E-

07 

PC 6,05E-

03 

7,36E

-06 

6,83E

-05 

2,82E

-01 

1,52E

-03 

1,47E-

03 

1,60E-

03 

9,67E-

05 

9,31E-

05 

9,99E-

05 

Precuneus 1,24E-

03 

1,97E

-05 

1,63E

-04 

8,37E

-01 

2,92E

-03 

2,72E-

03 

3,19E-

03 

6,99E-

04 

7,72E-

04 

6,47E-

04 

Frontal 4,91E-

08 

2,41E

-06 

4,40E

-06 

1,95E

-01 

4,32E

-03 

4,18E-

03 

5,09E-

03 

1,37E-

06 

1,31E-

06 

1,39E-

06 

Putamen 2,74E-

09 

7,16E

-06 

4,82E

-05 

3,31E

-01 

8,52E

-02 

8,75E-

02 

5,07E-

02 

4,57E-

08 

4,55E-

08 

4,55E-

08 

 

6.3. Comparison of PVC results 

It is clear that the implemented PVC methods provide distinct corrections on SUVr 

images. Among the five methods, deblurring algorithms are the ones that yield the most similar 

results, despite slight differences, having their mathematical frameworks based on deconvolution 

processes. As said before, this kind of methods increase the high frequency component of images 

resulting in excessive noise increments in the final output, so care is needed when using them. 

In terms of quality of output, comparing VC and RVC, the corrected images show 

insignificant differences so the reason to choose RVC as the method to be applied is the lower 

levels of noise added to final image [48]. These algorithms are very similar, as is their 

implementations. The main disadvantage is that RVC is more time consuming, however, it is 
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compensated by the extra convolution that is used by the algorithm which tends to stabilize the 

noise production [49]. 

Comparing RVC to the other image restoration, RL, although very few, the visual 

differences are less evident. These algorithms contain distinct approaches based on noise models 

that are not the same, as explained before: while RVC correction assumes a noise process relying 

on a Gaussian distribution, RL correction is designed to correct the noise process that is 

described by a Poisson distribution [41]. Applied on the available data, both methods did not 

show relevant differences in terms of performance, except on the amount of iterations which was 

generally lower on the RL. The image quality is also very similar and the additive noise levels were 

almost undistinguishable. Researchers have already compared the quantification accuracy 

between RVC and RL, and when PVC is not applied [41]: in this study RVC quantitative 

performance was superior. This can be an indicator that RVC may be better than RL indeed. 

Thus, the choice of RVC instead of RL for PVC would be practicable and scientifically 

supported. 

The other presented methods are MG and Rousset. On one hand, these methods have 

similarities because they perform their corrections taking into account both the tissue fraction 

and the PSF effect. On the other hand, the main difference between them is that MG provides an 

image as output and Rousset just give corrected values for the selected ROIs and the GTM 

matrix. As MG method relies on the assumption of tissue activity homogeneity, it is unable to 

compensate for PVEs between regions of the same tissue class. This fact can be assumed as a 

shortcoming of the method because in an AD subject the uptake in cortical regions often varies 

considerably [35]. The visual interpretation might be difficult because just the GM tissue is shown 

on the corrected images and this band frequently shows a shape variation on AD subjects, being 

significantly thin in some zones of the cortex [55]. Unlike the deblurring algorithms, MG needs 

the MRI scan and its segmentation to perform the method: this is a disadvantage when the scan 

is not available because it is impossible to use it. This method was, however, implemented 

because it has already been studied and well described on the literature [43] and the voxel-based 

correction would be interesting for comparisons among all the implemented PVC methods 

within the analysed data. MG has the advantage of considering the TFE. This effect is present 

because at the voxel level there may be regions where more than one tissue type may coexist. 

This frequently happens in the tissue boundaries as explained on section 4.1.2, and as a result, the 

activity of each tissue within a voxel (whose size is generally in the order of several mm per side 

[43]) will be expressed as the average of the total activity found on that space, leading to 

misunderstandings about the true activities – see Figure 4.3.  Nonetheless, the final output image 
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does not add significant value to the RVC corrected image, therefore, the latter still presents the 

best choice if the intention is the visual observation for diagnosis purposes. 

Rousset can be compared to the other methods in terms of ROIs values because, as said 

before, it just provides corrected values and not an output image as the other methods. The 

considerations are almost the same as the ones taken by MG, with the exception of assuming 

region activity homogeneities instead of tissue activity homogeneity [42]. The main advantage of 

Rousset is that is possible to know how a specific region contributes to the activity observed in 

other regions on the uncorrected image, and its robustness assures that the noise amplification is 

very low during the correction processes. The method has shown to be suitable for dynamic PET 

studies and it may be very useful for quantitative methods since it can be used in order to provide 

corrected TACs although the aim here is to apply PVC techniques for semi-quantitative analysis. 

A study has been made comparing the Rousset and deblurring methods using grey matter maps 

(GMM) in order to assess if the correction performed by both methods would have the same 

results. The conclusions are detailed on the next section. 

 

6.4. PVC using probabilistic grey matter maps 

VC, RVC and RL were compared to MG using probabilistic GMM. After performing the 

methods, the posterior cingulate region was assessed since it is known as an affected region in 

AD subjects. By using the probabilistic GMM it was expected that posterior cingulate uptake 

values were similar among the methods because this technique would add a kind of tissue 

fraction correction to deblurring approaches. The results have shown significant differences as 

expressed by Figure 6.9. 

The values with red dots were achieved by multiplying the probabilistic GMM by the 

posterior cingulate mask and consequent application of the mask on the corrected SUVr images. 

This methodology was performed on a subset of 8 AD positive subjects and these values express 

the mean value for the posterior cingulate region PiB uptake. These values which are represented 

by the red dots were expected to be comparable to MG uptake values and if they were similar, a 

new method of using the deblurring algorithms together with the correction for the TFE would 

be achieved. The conclusions obtained from this study are that MG method may be 

overestimating SUVr values since the real activity is not known. In addition the usage of 

probabilistic GMM is not adding any additional useful information because the values with and 

without the multiplication of those are very similar. 
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Figure 6.9 - Comparison of MG and deblurring techniques by using probabilistic grey matter maps. 

(*) These values were statistically tested with a Paired T-Test. Each PVC + PVC*GMM pair has statistical significance with a p-

value < 0,01 

 

However, the available scans could not be enough to provide significant conclusions due to 

a few number of samples, so more scans would be necessary to provide a more complete analysis 

and perhaps results closer to what was expected. Future work is necessary for further conclusion 

about the discrepancy between the MG values and the ones from the deblurring methods. 

Nevertheless, the follow up studies should pay attention on the effective differences on the 

methodology between the deconvolution methods and MG because that may be one reason for 

such a discrepancy. The noise amplification is another detail that is inherent to the debluring 

algorithms mathematical framework [50]. The degree of amplification should be compared 

among those and MG, assessing signal to noise ratios of all the methods if necessary. After this 

step, proper conclusions can be drawn about the impact of the noise on the final outputs and if 

the methods are able to be compared. 
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7.1. Applying Machine Learning Methods for scans classification 

This last step has been done in order to achieve an automated confirmation about the state 

of dementia of the patient based on the PET scan. Linear classification has been used here with 

SVM, using a developed toolbox on MATLAB named PRoNTo (Pattern Recognition for 

Neuroimaging Toolbox) [67]. This type of classifier was chosen because it is robust and very used 

in neuroimaging classification, mostly in MRI studies. 

The possible outputs for this classification were limited to "AD" or "no AD", and different 

input scenarios were assessed in trying to have the best results in terms of classification quality. 

The aim was compare all the image-based PVC methods (i.e. not Rousset) either registered to the 

standard space or registered to the MRI scan: as such, only scans from the subjects that had also 

undergone the MRI acquisition were used in this analysis. 

The testing and training were done with cross validation. This procedure consists on 

analysing an initial data subset while the remaining data is then used to confirm and validate the 

initial analysis. There are several ways of performing the cross validation. Herein, leave-one-out 

was the chosen method. The algorithm uses a single observation from original sample as testing 

data, and the remaining observations as training data. This is repeated until each observation in 

the sample has been used once as the validation data [68]. 

The analysis was performed in 16 subjects (8 AD and 8 no AD). All these 16 scans were 

used multiple situations:  

 VC, RVC, RL, MG and No Correction 

 MNI and MRI 

 SUV and SUVr 

In total 20 different situations (modalities) are used having the four PVC methods and the 

images with no correction registered both to the MRI native space and to the standard space 

(MNI). The results of SVM classification are shown below on Table 7.1. These results are very 

useful to confirm the initial expectations, derived from visual interpretation of the outputs, about 

which PVC method would be the most valuable choice for general usage.  

 The Youden index was used to compare each modality in the classification procedures, by 

providing an indicator of the test performance [69]. It is a simple measure that is widely used by 

clinical researchers and statisticians, easy to apply due to the fact that it does not require 

additional information about prevalence rates, such as other classification indices [70].  
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7.2. Results of PiB scans classification 

Sensitivity and specificity values were visualized on PRoNTo toolbox and used to calculate 

the Youden index. The index is calculated by 

                                        Equation 7.1 

 

Table 7.1 - Youden Indices for different modalities of PiB scans classification 

 Sensitivity Specificity Youden Index 

MNI_VC_SUV 0,75 0,75 0,5 

MNI_VC_SUVr 0,75 0,75 0,5 

MNI_RVC_SUV 0,625 0,875 0,5 

MNI_RVC_SUVr 0,75 0,75 0,5 

MNI_RL_SUV 0,625 0,75 0,375 

MNI_RL_SUVr 0,875 0,75 0,625 

MNI_MG_SUV 0,875 0,75 0,625 

MNI_MG_SUVr 0,875 0,875 0,75 

MNI_NoCorr_SUV 0,5 0,75 0,25 

MNI_NoCorr_SUVr 0,75 0,75 0,5 

MRI_VC_SUV 0,75 0,75 0,5 

MRI_VC_SUVr 0,625 0,875 0,5 

MRI_RVC_SUV 0,75 0,75 0,5 

MRI_RVC_SUVr 0,625 0,75 0,375 

MRI_RL_SUV 0,75 0,75 0,5 

MRI_RL_SUVr 0,75 0,75 0,5 

MRI_MG_SUV 0,875 0,75 0,625 

MRI_MG_SUVr 0,5 0,75 0,25 

MRI_NoCorr_SUV 0,75 0,75 0,5 

MRI_NoCorr_SUVr 0,75 0,625 0,375 
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From these results several conclusion can be achieved. First, the indices as a whole do not 

show a clear evidence that the classification algorithm is more accurate using the scans that are 

registered to the standard space rather than the MRI space: both reference spaces can apparently 

be used since the classifier performance was practically the same. 

The second conclusion relied on the output format: SUV or SUVr. Although the used 

literature mention SUVr as the ideal output for PiB imaging and analysis, this fact was effectively 

tested by the used machine learning algorithm. Herein, there is a divergence on the classification 

results depending on the reference space that has been used. Most of the methods that had the 

scans registered to the MNI space achieved higher Youden indices for SUVr than for SUV. 

Contrariwise, when using MRI native space as the reference for the scans registrations, the results 

were the opposite, yielding higher Youden indices for SUV instead of SUVr. However, apart 

from VC, whose indices remained steady, all the other methods that used SUVr, including the 

non-corrected scans, achieved higher indices when registered to the standard space rather than to 

the MRI space, when comparing  the same method but in different reference spaces. The same 

does not happen when this index comparison is made with SUV, which appears to be stable. This 

suggests an interaction effect between the choice of output space and type of quantity (SUV or 

SUVr). Therefore, based on the classification results no effective conclusions about the best 

output can be made but nonetheless, when using MNI as the reference space, the best choice is 

to choose SUVr as final output. According to the literature, as explained on chapter 3, SUVr is 

also suggested as the ideal final output. As a result, and since it is not possible to clearly 

demonstrate through classification that one output provides better results than the other one in 

terms of automatic AD diagnosis, SUVr is recommended to remain the standard.   

There are further interactions between output space, quantity, and method. It would suffice 

to say that the conclusions, based on the classifier alone, critically depend on all factors involved. 

For instance, all three deblurring algorithms showed different performances depending on the 

reference space, with VC being the more robust to this choice. Using RVC or RL method, the 

classifier performed slightly better when using the MNI than MRI registration. The other image-

based method, MG, was the one that achieved the highest score, using the SUVr images 

registered to the standard space. 

There is no clear evidence as to the best PVC method to choose among all the ones tested 

here, provided by the classification results, with Richardson-Lucy and Müller-Gartner seen as 

contenders, the latter more robust to space selection. The absence of correction ("NoCorr" in 

Table 7.1) pointed out, however, through the poor scores that PVC should always be performed. 

Thus, this choice should be made based on the methods performance, regarding to what the user 
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wants to prioritize: either correct for both PSF and TFE effects if the MRI scan is available, 

obtaining a faster correction, but just for the grey matter, or using one of the deblurring 

algorithms, taking longer and just accounting for the PSF effect but obtaining a global image of 

the brain with no necessity of anatomy information.  

The more scans available, the more efficient and realistic the classification results would be 

and perhaps different Youden indices would be achieved among all the PVC algorithms. It is 

important to underline that the lack of PiB-PET / MRI scan pairs is directly related to the 

classifier performance. This also created limitations on the validation process of the SVM 

classification. The cross validation scheme for classifier training purposes was the Leave One Out 

method, and the training data was the same that was used in the classification: there were not 

enough scans to use to different datasets, one for training and the other for the classification. 

Future work should include this kind of machine learning procedures in order to assess how the 

classification changes when using a higher amount of scans and different sets for training and 

classification. With this improvement, an evident discrepancy on the classification results is 

predictable, since all the methods provide different outputs as clearly seen through visual 

inspection. 
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The prevalence of AD reflects the urgency of the active and permanent investigation in this 

field so as to understand more about this disease. This thesis focuses on the image processing 

analysis and how these processes can be improved for a more consistent and precise diagnosis. 

The early detection of the disease is a key factor and it has a great impact on the therapy steps the 

neurologist will take. Imaging techniques play a decisive role as they make it possible to assess in 

vivo the degree of severity of the disease, its progression and prognosis. PET is the gold standard 

of in vivo AD imaging as it allows for the detection of molecular changes that precede atrophy as 

seen e.g. in MRI. Notably, PiB-PET imaging provides valuable information about Aβ deposition 

on brain cortex, due to its great affinity with this protein, whose higher accumulation in certain 

regions of the brain is directly related with AD pathology. As such, PiB-PET is heavily studied in 

this field, seeking as much knowledge as possible about biological and functional responses of 

brain regions in the presence of PiB. 

Two different approaches can be used to study the dynamics of this radiotracer in the 

brain: quantitative methods and semi-quantitative methods. Given the advantages of using the 

latter ones in the AD analysis, these are the focus of the developed pipeline. The developed 

method can, however, also be used with quantitative methods. Several enhancements were 

effectively achieved on the process of analysis, where some functions were improved, such as the 

frame realignment and image registration, and other features were added, like the possibility to 

extend the analysis to other radiotracers where the program can now load a new acquisition 

protocol if necessary, and the ability to choose the ROIs for extracting uptake values if a more 

detailed analysis is required. 

Since these images are the ones used for the diagnosis, it was important to study how to 

improve the quality of the output for a more precise identification of the stage of the disease. 

Herein, PVEs are the major sources of error on PET images, thus the implementation of PVC 

methods was considered as being the key improvement of this pipeline. The research was 

addressed for already validated methods that could correct for TFE and PSF effects, since these 

originate PVEs on PET imaging. This task relied on the implementation of five methods, all of 

them with different methodologies.  

On one hand, deblurring methods just account for the PSF effect and correct the whole of 

the input image, generating a global corrected image as final output. These output images have 

frequently great amounts of noise that is necessary to remove. As such, a practical image 

processing solution was applied so as to remove noise spikes, usually generated by these 

deconvolution processes. It is important to clarify that this task was essential to extract all the 

relevant information these images could provide. Thus, it is possible to conclude that the original 
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mathematical framework was not enough for obtaining acceptable images, even when 

considering noise amplification constraints. However, the image cleaning procedures that were 

posteriorly implemented assure that these images can indeed be used for AD diagnosis purposes. 

On the other hand, MG and Rousset are region-based PVC methods that need anatomic 

information through a segmented MRI scan. While the former method provides grey matter 

corrected images, the latter just gives ROI values as final output.  

The reason for implementing all these methods was to verify which of them achieves the 

best results in the clinical setting. Some conclusions can be reached: first, if the desired final 

output is in image format, then RVC or RL method are the most suitable for usage since based 

on the analysis made during this work, these methods showed consistency on the quality of the 

images and the noise amplification was properly controlled, resulting on a great upgrading in 

terms of image correction comparing to the non-corrected images; second, if the user requires a 

precise and detailed region-based analysis, then the Rousset method is appropriate given its 

robustness and fast performance. The pipeline allows bringing both advantages together, using 

both Rousset and deblurring methods to obtain corrected ROIs uptake values as well as the 

corrected image, simultaneously. 

One of the major limitations of this work is the fact that the true activity on the brain of 

the patient is not known. For that, it would be necessary the use of phantoms to precisely assess 

whether the computed activity in the images is indeed the real activity on the respective brain 

locations. If this was known, further conclusions could have been reached, specifically regarding 

how closer to the truth the PVC methods are, relative to the uncorrected image, and in addition 

to know which PVC method was providing the more realistic uptake values. This, however, is 

not critical for the scope of this thesis as all methods presented here have been previously 

validated using this approach. 

The automatic diagnostic based on the disease likelihood was another goal of this thesis, 

which in turn could also provide some insight as to which PVC method was the best for 

diagnostic purposes. A machine learning algorithm, specifically SVM, was used in order to assess 

if it was possible to implement an automatic classifier that could provide the information about 

the probability of a given scan belonging to a positive (AD type) or negative PiB subject. Efforts 

were made for this purpose using all the implemented PVC methods and analysing which of 

them assured the best results in classification procedures. Unfortunately, the lack of combined 

PET and MRI scans for the same subject did not allow setting a conclusive output from here, 

mainly due to the influence of statistics. Nevertheless, all the conclusions related to the best 

choice for image registration space (standard (MNI) or native (MRI) space) and type of final 
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image (SUV or SUVr) obtained from this step are presented on section 7.2. It is expected that 

with a higher amount of scans, better results on pathologic scan classification could be achieved: 

therefore, a follow up study shall regard the improvement of this step. 

As a general conclusion, it is important to mention that the majority of objectives proposed 

on the beginning of this work were accomplished. Furthermore, additional work on the scope of 

this thesis, more precisely the application of probabilistic grey matter maps on PVC deblurring 

methods, was developed in order to enrich the conclusions on this field and was presented on a 

biomedical engineering conference. In fact, a complete pipeline of analysis was created and it is 

ready for being used on clinical environment. This was the main goal of this thesis and, despite 

the future work that is necessary to improve some details, all the work performed on the pipeline 

optimization is considered to be extremely useful and has led to increase the clinical value of AD 

PET imaging in Coimbra.  
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