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Resumo

Neste trabalho estuda-se o efeito da energia de simetria nas propriedades de estrelas de neutrões
fazendo uso de variações da parametrização NL3 à temperatura T = 0 K em teoria de campos
relativistas com o modelo de Walecka não linear (NLWM) alterado de forma a conter termos de
mistura entre os mesões ρ-σ e ρ-ω acoplados com o factor Λσ e Λω respectivamente. De modo a
fixar os acoplamentos faz-se um estudo da matéria nuclear simétrica, i.e., constituída por uma
fracção igual de protões e neutrões em primeiro lugar e depois em equilíbrio β. Comparam-se
os modelos com três estrelas com 1M�, 1.44M� e 1.67M�. Verifica-se que o raio de uma estrela
com massa fixa, maior do que uma massa solar, aumenta linearmente com declive da energia
de simetria e que as variações provocadas pela mistura Λω são de maior grandeza do que com a
mistura Λσ.

iii



Abstract

In this work we studied the effect of the symmetry energy on the properties of a neutron star
using variations on the NL3 parameter set at T = 0 K within the framework of the relativistic
non-linear Walecka model with an extra ρ-σ and ρ-ω meson interaction with the couplings Λσ

and Λω respectively. For the purpose of fixing the aforementioned couplings we first studied
matter with a fixed 0.5 proton fraction. We used these values to study their implications on the
star structure with a model for nuclear matter in beta equilibrium. We fixed the masses of three
different stars (1M�, 1.441M�, 1.67M�) and verified that for stars with masses above 1 M�,
the radius of the star varies linearly with the symmetry energy slope, L, and that the slope of the
growth is greater with the Λω coupling than with the Λσ coupling.
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Chapter 1

Introduction

1.1 Work description

Knowledge of the equation of state (EOS) of high density nuclear matter greatly populated by
neutrons is of prime importance to get insights into the physics of compact stars [1]. Some
authors [2–4] used data from the observation of compact stars to restrict the parameters of the
EOS. One author [3] has used information about a set of stars to set up an empirical dense
equation of state. In this work we develop the EOS in the framework of the relativistic mean
field theory. These nuclear models are usually fitted to the ground-state properties of nuclei
and nuclear matter saturation properties [5]. Different fits are possible, with giant resonances
[6] and for twin bands in rotating super-deformed nuclei [7]. These models only work for an
asymmetry smaller than 0.2 [8,9] and work better close to saturation leaving open questions for
high densities, i.e. each model predicts a different neutron star with very distinct properties and
there should be only one, i.e. all the models need refinement or we need to choose between one
of them. In the present work we want to understand how the symmetry energy and its slope
at saturation influences the mass-radius curve of a family of stars. We study not only maximum
mass configurations but also three stars with masses 1M�, 1.44M� and 1.67M�. Any of these
observed stars have a central density that goes from 1.14 ρ0 to 1.82 ρ0 within the framework of
our model, and therefore we will be testing the equation of state at supra-saturation densities.
As a first approximation we will discuss only neutron stars constituted only by neutrons, protons,
electrons and muons. At high density the formation of hyperons is energetically favourable and
the effect of the symmetry energy on the appearance of these exotic degrees of freedom [5,10] is
important to neutron star structure, therefore we introduce the full Lagrangian density including
hyperons and calculate some consequences for star structure. This will be considered in more
detail in future work. In section 1.2 we make a small description of how neutron stars may
appear. We start by making a presentation of the main aspects of relativistic mean field theory
in chapter 2. In chapter 3 we make a short discussion on what is needed to know the structure
of a neutron star and content. In chapter 4 we develop the formalism and discuss the results. In
chapter 5 some conclusions are drawn.
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1.2 A sketch of stellar evolution

The interstellar medium (ISM) is very tenuously composed of gases and dust. The average den-
sity of the ISM is approximately one atom per cubic centimetre and represents ≈20-30% of the
mass of a galaxy. The interstellar dust particles have a medium size of approximately 450 - 495
nm and are composed mostly of hydrogen (H), carbon (C), oxygen (O), silicon (Si), magne-
sium (Mg) and iron (Fe) in the form of silicates, graphite, ices, metals and organic compounds.
Nebulae are denser agglomerations of gas and dust that may coexist with newly born or dead
stars. Huge complexes of interstellar gas and dust left over from the formation of galaxies, called
molecular clouds (MC), are composed mostly of molecular hydrogen. They are the densest (106

particles/cm3) and coolest (10 to 20 K) objects. Their size ranges over 1 light-year to 300 light-
years and have the possibility of forming 10 to 107 stars like our Sun. MC’s that exceed a mass
of about 105 solar masses are called giant molecular clouds (GMC). In a common spiral galaxy
there are a 1000 to 2000 of these objects and many other smaller ones. Because these clouds do
not emit visible light, they emit mostly radio waves, they were first discovered in our own Milky
Way galaxy by radio telescopes. There is a GMC in the Orion constellation that was mapped
by its carbon monoxide content. Star forming GMC’s are found mostly in the arms of spiral
galaxies. GMC’s are internally violent and turbulent, the self gravitational energy of clumps of
matter is counter balanced by the pressure from the gases and magnetic field lines. Perturbations
from the spiral density within the spiral arm, collisions with other parts of the GMC, supernova
shock-waves and closeby massive star formation make up for some of the triggers that cause
the necessary imbalance within the GMC for the clumps of matter to begin collapsing. As a gas
core begins collapsing it heats up due to friction of its constituents. The gravitational energy
of the gas particles gets converted into thermal energy. The gas cores become warm enough
to produce infrared and microwave radiation. The initial collapse is very quick and as the core
becomes more and more dense it becomes more and more opaque to radiation. The radiation
gets trapped inside the core and the temperature and pressure in the centre begins to increase.
The core starts evolving into a proto-star, it has only 1% of its final mass and it continues to
grow because of gravity. After some millions of years the temperature at the centre of the core
becomes hot enough to fuse hydrogen. This prevents further accretion because of the strong
stellar wind it causes. Proto-stars reach temperatures of 2000 to 3000 K, hot enough to send
red light but they are enveloped in gas and dust that blocks visible light from escaping. The
transition from proto-stars to stars is not assured, in fact, only 10% of all proto-stars survive the
savage formation regions to become stars and planetary systems.
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Figure 1.1: Scheme of stellar evolution. Source: Chandra X-Ray observatory.

If the mass of the star is high enough (≈8 to 30M�) in its final stage just before becoming a
supernova it will turn out being a very compact neutron star (average density ≈ 7× 1014 g/cm3)
with a radius of approximately 10-15 km and ≈ 1.4M� (Chandrasekhar mass). One other way,
maybe, of forming neutron stars is to have a white dwarf accrete enough mass to reach the
Chandrasekhar mass, causing a collapse but this is a speculation. In the 10 billion year lifetime
of the galaxy there have probably been 108 to 109 neutron stars formed in favour of the formation
of black holes which is harder to accomplish. In figure 1.1 we have a schematic notion of how
black holes, neutron stars and dwarfs stars are formed. Astronomers can find black holes and
neutron stars by observing the effects on other objects nearby. The intense gravity from a black
hole or a neutron star will pull in dust particles from a surrounding cloud of dust or a nearby
star and as the particles speed up and heat up, they emit x-rays. They can also be detected by
observing rapidly rotating stars around an x-ray source. If neutron stars or black holes are alone
in space we can infer their presence by gravitational lensing. Compact stars are a playground
in which we can test and extend our knowledge of the atomic nucleus. They are a glimpse at
the amazing structures brought about by the hitherto earthly non replicable conditions of the
cosmos and also provides us new sorts of tests for general relativity.
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Chapter 2

RELATIVISTIC NUCLEAR MEAN FIELD
THEORY

2.1 Nuclear properties

Of all the densities found on a neutron star, at some point, we should find the usual nuclear
density that we find in our common experiments. The theory that we use to describe nuclei is
also used to describe neutron stars. Our current knowledge of the nucleus was much clarified
in the years that passed since the Rutherford experiment and now correlates thousands of data
with a precision higher than was ever achieved. We characterize the nuclei binding energy by its
mass number (A), proton (Z) and neutron (N) numbers. Nuclei are saturated systems because
the strong force that binds nucleons is short ranged and it is repulsive at very short distances.
This means that the density of the central region remains constant, even if we add more nucleons
to nuclei. Nuclei with neutron number N close to proton number Z are more tightly bound than
their neighbour nuclei and even numbers for both N and Z are more likely. The latter property
reflects to some extent the Pauli principle. Nucleons in the interior of nuclei are more bound
because they are completely surrounded by other attracting nucleons and the nucleons on the
surface will have a smaller number of nucleons binding them1. Let’s consider the nuclear mass
m(Z,A). Any nucleus can, in principle, be pulled apart into Z protons and N = A−Z neutrons.
If the nucleus is stable against break-up into individual nucleons, its mass m(Z,A) should be
smaller than the sum of the individual masses of the protons and neutrons when separated by
large distances that is

m(Z,A) = Zmp +Nmn −B (2.1.1)

mn andmp are the masses of the neutron and the proton respectively andB is the nuclear binding
energy. B is the energy required to dismantle the nucleus into Z protons and N neutrons. In
the nuclear liquid drop model we write the binding energy per nucleon (B

A
) for a nucleus in the

1If the nucleus is very large they will have at best, on average, half the number of nucleons of a nucleon on the
interior binding them.
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form

B

A
(A,Z) = avolume − asymmetry

(
Z −N
A

)2

− asurfaceA
−1/3 − acoulombZ(Z − 1)A−4/3 +

+
(−1)N + (−1)Z

2

apairing√
A

+ ... (2.1.2)

This is the Weizsäcker formula, B(A,Z) is a truncated power series in A for a certain nucleus
with mostly non-integer negative exponents. We can adjust the resulting curve to experimental
data, one of such fits leads to avolume = 15.75, asymmetry = 23.7, asurface = 17.8, acoulomb = 0.710 and
apairing = 34.0 all in MeV. In the limit A→∞ and picturing nuclear matter as a degenerate Fermi
gas we get, from another fit:

ρ0 = 0.153 fm−3 (2.1.3a)

B

A
= −16.3 MeV (2.1.3b)

asym = 32.5 MeV (2.1.3c)

Experimental evidence also allows us to extrapolate the ranges in which the Dirac effective mass
m∗N and the incompressibility (K) should be:

0.7 < m∗N/mN < 0.8 (Dirac nucleon effective mass/nucleon mass) (2.1.4a)

230.0 < K < 250.0 MeV (compression modulus) (2.1.4b)

2.2 Nonlinear Walecka model

Experimental measurements of electron scattering from high-momentum nucleons in nuclei al-
lows one to conclude that in normal nuclear matter approximately 25% of the nucleons have one
quarter of the speed of light [11] which means that we need to use special relativity to describe
nuclei, thus we must make our theory Lorentz covariant. It also has to be quantum mechanically
consistent because we are dealing with very small distances ≈ 1 fm. In this section we will see
first in broad terms how Johnson and Teller [12], Duerr [13] and Walecka [14] developed a
renormalised quantum field theory (σ-ω model) for the description of nuclei and based it on the
locally Lorentz invariant fields of four types of particles: the nucleons and two mesons; a scalar
meson σ and a iso-scalar-vector meson ω both responsible for the coupling between nucleons.
It is observed that nuclear forces are repulsive at very short range (≈ 0.3 fm) and are attractive
at greater distances (up to ≈ 1.5 fm). One effective potential that approximately describes the
force between nucleons is given by

Vσω(r) =
g2
ω

4π

e−mωr

r
− g2

σ

4π

e−mσr

r
(2.2.1)
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where gσ, gω, mσ and mω are the coupling constants and the masses of the neutral σ and ω
mesons (see table 2.1) and r is the relative distance between nucleons. Each of the terms
g2ω
4π

e−mωr

r
and g2σ

4π
e−mσr

r
are Yukawa like potentials. In Vσω(r) σ is stronger than ω for intermediate

separations and weaker than ω for short distances, we can see this in figure 2.1. For the baryons,
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Figure 2.1: Effective nuclear potential versus inter-nucleon distance r in the σ-ω model illus-
trating short-range repulsion and intermediate-range attraction.

since they are Fermions we use the Dirac Lagrangian density with ψ as their field and m as
their mass. The σ meson is represented with the Klein-Gordon Lagrangian density with a mass
mσ. The ω meson can be represented by the Proca Lagrangian density with mass mω. The
full Lagrangian density is the sum of all these three components and the interactions gσψ̄σψ,
gωψ̄γµω

µψ

LW = ψ̄ [γµ (i∂µ − gωωµ)− (m− gσσ)]ψ+
1

2

(
∂µσ∂

µσ −m2
σσ

2
)
− 1

4
ΩµνΩ

µν +
1

2
m2
ωωµω

µ (2.2.2)

with Ωµν = ∂µων − ∂νωµ and where gσ and gω are coupling constants to be defined according
to table 2.1, the quantum-hadro-dynamics I (QHD-I) [15] parameter set. Please note that here
we use the same greek letter to denote the meson and the field, σ. These fields and couplings
provide the smoothest average nuclear interactions and this way are best to describe bulk nu-
clear matter. This simple Lagrangian allows one to reproduce two things, the saturation density
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m (MeV) mσ (MeV) mω (MeV) gσ gω
QHD-I 939 550 783 9.57 11.67

Table 2.1: σ-ω model parameter set.

ρ0 (fm−3) K (MeV) m∗/m -B/A (MeV) asym (MeV) L (MeV)
0.193 540 0.556 16.3 22.1 74.3

Table 2.2: σ-ω model saturation properties with the QHD-I parameter set.

ρ0 = 0.193 fm−3 and the binding energy at saturation B/A = −16.3 MeV. Other properties are
not well reproduced, the symmetry energy is too low (22.1 MeV) and the incompressibility is
too high (540 MeV). From the Euler-Lagrange equations

∂α

(
∂L

∂(∂αφβ)

)
=

∂L
∂φβ

(2.2.3)

we get the equations of motion

{γµ (i∂µ − gωωµ)−m∗}ψ = 0 (2.2.4a)(
∂µ∂

µ +m2
σ

)
σ = gσψ̄ψ (2.2.4b)

∂µΩµν +m2
ωω

ν = gωψ̄γ
νψ (2.2.4c)

Equation (2.2.4a) is the Dirac equation for the nucleons with m∗ = m − gσσ as the effective
mass. Equation (2.2.4b) is the Klein-Gordon equation for the σ meson with a scalar perturbation
from the Dirac baryon fields. Equation (2.2.4c) is very similar to the quantum electrodynamics
Proca equation except the current is now baryonic, gωψ̄γνψ. Using the energy momentum tensor
definition

T µν =
∂L

∂(∂µφβ)
∂νφβ − gµνL (2.2.5)

we get

Tµν =
1

2

[
−∂λσ∂λσ +m2

σσ
2 +

1

2
ΩλδΩ

λδ −m2
ωωλω

λ

]
gµν

+iψ̄γµ∂νψ + ∂µσ∂
νσ + ∂νω

λFλµ (2.2.6)

Our purpose is to study bulk nuclear matter, and in this case the right hand sides of equations
(2.2.4b) and (2.2.4c) get very large as the nucleon density increases so we can replace the values
of the fields for their expectation values

σ(x)→ 〈σ(x)〉 = σ0 = σ (2.2.7a)

ωµ(x)→ 〈ωµ(x)〉 = δµ0ω0 = ω (2.2.7b)
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This is the mean field approximation (MFA). Now we transform equations (2.2.4b) and (2.2.4c)
into

m2
σσ = gσ〈ψ̄ψ〉 (2.2.8a)

m2
ωω = gω〈ψ̄γ0ψ〉 (2.2.8b)

Casting it into a computationally tractable form, we get

gσσ =

(
gσ
mσ

)2
1

π2

∫ kF

0

k2 m− gσσ√
k2 + (m− gσσ)2

dk (2.2.9a)

gωω =

(
gω
mω

)2

ρ (2.2.9b)

From the energy momentum tensor, we get the energy density and the pressure2:

ε = −〈L〉+ 〈ψ̄γ0k0ψ〉 (2.2.10a)

p = 〈L〉+
1

3
〈ψ̄γikiψ〉 (2.2.10b)

which transforms into

ε =
1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
γ

2π2

∫ kF

0

k2
√
k2 + (m− gσσ)2 dk (2.2.11a)

p = −1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
1

3

γ

2π2

∫ kF

0

k4√
k2 + (m− gσσ)2

dk, (2.2.11b)

where γ is the degeneracy of the baryons. In this work all plots pertaining to the σ-ω model
it was used γ = 4 (symmetric nuclear matter), i.e. an equal fraction of protons and neutrons.
The expression for the pressure was found using the energy-momentum tensor but we could use
thermodynamic definition

p = −∂E
∂V

(2.2.12)

by dividing E and V by the total number of particles, N , getting

p = ρ2 ∂

∂ρ

(
ε

ρ

)
(2.2.13)

It’s possible to use (2.2.13) to get (2.2.11b) in this case or in any other that we will discuss in
this work. Having the equations (2.2.11a) and (2.2.9a) we can now calculate all the properties
of nuclear matter (2.1.3). The effective mass m∗ = m − gσσ is the reduced baryon mass by the

2Which we can cast into an equation of state p(ε).
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interaction of the σ field with the baryons ψ. It tends to zero at high densities. The binding
energy can be calculated by comparison of (2.1.2) with (2.2.11a) by introducing3

B

A
=
ε

ρ
−m (2.2.14)

The symmetry energy can be obtained by comparison of (2.2.10a) with (2.1.2)

asym =
1

2

[(
∂2 (ε/ρ)

∂t2

)]
t=0

(2.2.15)

with t = ρn−ρp
ρ

and ρ = ρn + ρp, asym is then calculated to be

asym =
k2
F

6
√
k2
F + (m− gσσ)2

(2.2.16)

This function corresponds to the coefficient asym in formula (2.1.2), the higher it gets the lower
will be the binding energy if we have asymmetry (N 6= Z). The slope L of the symmetry energy
is defined as

L = 3ρ0
dasym
dρ

∣∣∣∣
ρ=ρ0

(2.2.17)

and indicates how fast will asym grow with density. We can get the incompressibility from the
formula:

K = 9

[
ρ2 ∂

2

∂ρ2

(
ε

ρ

)]
ρ=ρ0

(2.2.18)

The incompressibility, K, gives us the information of how fast the EOS rises with density. The
larger K is the faster the EOS rises and the harder it gets to compress nuclear matter. The σ-ω
model of nuclear matter has, at best, only two properties that are very close to the phenomeno-
logical value B

A
≈ −15.75 MeV and ρ0 = 0.193 fm−3. All the other variables are in disparity from

what is desired, namely m∗/m ≈ 0.5 which is too low, the too high value of the incompressibility
K = 540 MeV and the symmetry energy of 22.1 MeV is below the expected value of ≈ 33 MeV.
The slope of the symmetry energy is 74.3 MeV which is acceptable within the parameter sets
mentioned in [8] and still is under investigation. This way the Walecka model is a good start-
ing point on the study of nuclear matter and further study has shown that it can be perfected.
Boguta and Bodmer [16] extended the theory further by adding self-interactions of the scalar
field to the Lagrangian density (2.2.2)

U(σ) =
κ

3!
σ3 +

λ

4!
σ4 (2.2.19)

where κ = 2mg3
σb and λ = 6g4

σc are coupling constants (see table 2.4). The introduction of these
nonlinear σ allow a better adjustment to the incompressibility K and the effective mass, m∗ (see

3Note that we can now write p = ρ2 ∂
∂ρ

(
B
A

)
9



table 2.5). Besides the phenomenological need of these terms, there is also a theoretical reason
for their presence, the model becomes renormalizable. One of the consequences of renormal-
ization is that once the parameters of the model are selected to fit observed nuclear properties,
we can extrapolate into regimes of high density or temperature whithout the appearance of new
unknown sets of parameters. The equations of motion for the new Lagrangian density LW−U(σ)
are the same as (2.2.4a) except for the σ equation (2.2.4b) which transforms into(

∂µ∂
µ +m2

σ

)
σ = gσψ̄ψ −

κ

2
σ2 +

λ

3!
σ3 (2.2.20)

introducing a correction in the baryon effective mass. The equation of state also changes:

ε =
κ

3!
σ3 +

λ

4!
σ4 +

1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
γ

2π2

∫ kF

0

k2
√
k2 + (m− gσσ)2 dk (2.2.21a)

p = − κ
3!
σ3 − λ

4!
σ4 − 1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
1

3

γ

2π2

∫ kF

0

k4√
k2 + (m− gσσ)2

dk (2.2.21b)

Further development is possible by adding the nonlinear ωµ term

U(ωµ) =
ξ

4!
g4
ω(ωµω

µ)2, (2.2.22)

where ξ is a coupling constant, which allows corrections of the symmetry energy in high densities
(see tables 2.4 and 2.5). To be able to alter the proton fraction (Yp = ρp

ρp+ρn
) we add the terms

for the vector-isovector ~ρ µ meson to also include isospin

U(~ρ µ) = −iψ̄γµ
gρ
2
~τ · ~ρ µψ − 1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρ µ (2.2.23)

with ~Rµν = ∂µ~ρν − ∂ν~ρµ − gρ~ρµ × ~ρν , ~τ is the isospin operator, gρ is a coupling constant and
mρ is the ρ meson mass (see tables 2.4 and 2.5). The total nonlinear Walecka model (NLWM)
Lagrangian density is then defined as

LNLWM = ψ̄
[
γµ

(
i∂µ − gωωµ −

gρ
2
~τ · ~ρ µ

)
− (m− gσσ)

]
ψ +

+
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − κ

3!
σ3 − λ

4!
σ4 +

−1

4
ΩµνΩ

µν +
1

2
m2
ωωµω

µ +
ξ

4!
g4
ω (ωµω

µ)2 +

−1

4
~Rµν · ~Rµν +

1

2
m2
ρ~ρµ · ~ρ µ (2.2.24)

Table 2.3 lists some of the properties of all the mesons used in the NLWM lagrangian density.
Note that the same letter was attributed to the σ meson as to the field σ. After the MFA the
equations of motion become

10



0 = gσ〈ψ̄ψ〉 −m2
σσ −

κ

2
σ2 − λ

3!
σ3 (2.2.25a)

0 = gω〈ψ̄γ0ψ〉 −m2
ωω −

ξ

3!
ω3 (2.2.25b)

m2
ρρ03 =

gρ
2
〈ψ̄γ0τ3ψ〉 (2.2.25c)

The first of these equations for NLWM (2.2.25a) and for σ-ω, equation (2.2.9a) allows us to
define the effective mass for both models. The parameter set TM1 was determined as the best

Meson m (MeV) Quark content Spin Isospin Charge τ (s)
σ 550 - 0 0 - -
ω 783 uū+ dd̄ 1 0 - 7× 10−23

ρ 770 ud̄, dū, (uū− dd̄)/2 1 1 (+1,0,-1) 0.36× 10−23

Table 2.3: Mesons that represent the interactions of the NLWM model, their masses, quark
content, spin, isospin, electric charge (in units of e−) and lifetimes (in seconds).

to reproduce the properties of nuclei [19], even unstable ones are included. The fit of TM1 to
nuclear matter is in very good agreement with experimental data.

mσ (MeV) mω (MeV) mρ (MeV) gσ gω gρ b c ξ
511.19 783 770 10.029 12.614 9.264 0.00156 0.000061 0.0169

Table 2.4: NLWM model TM1 [19] parameter set. The nucleon mass is m = 938 MeV.

ρ0 (fm−3) K (MeV) m∗/m -B/A (MeV) asym (MeV) L (MeV)
0.145 281 0.634 16.29 36.8 110.7

Table 2.5: NLWM model TM1 saturation properties.

We can see in figure 2.2 how the NLWM model for nuclear matter improves on the σ-ω model
effective mass by rising it from 0.556 to 0.6 at saturation density.

The EOS changes:

ε =
κ

3!
σ3 +

λ

4!
σ4 +

1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
ξ

6!
(gωω)4 +

1

2
m2
ρρ

2
03

+
1

π2

2∑
i=1

∫ kFi

0

k2
√
k2 + (m− gσσ)2 dk (2.2.26)

p = − κ
3!
σ3 − λ

4!
σ4 − 1

2
m2
σσ

2 +
1

2
m2
ωω

2 +
ξ

6!
(gωω)4 +

1

2
m2
ρρ

2
03

+
1

3

1

π2

2∑
i=1

∫ kFi

0

k4√
k2 + (m− gσσ)2

dk (2.2.27)
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Figure 2.2: Effective mass versus density in the σ-ω and in the NLWM models of nuclear matter
for the QHD-I and the TM1 parameter sets respectively.

The sum in both equations is on neutron and proton Fermi momentum. The symmetry energy
has now a different form

asym =

(
gρ
mρ

)2
k3
F

12π2
+

k2
F

6
√
k2
F +m∗2

(2.2.28)

and figure 2.3 lets us see the change made by NLWM in comparison with the σ-ω model. The
symmetry energy now has a higher value at saturation density (asym = 36.8 MeV) than the value
obtained by σ-ω (asym = 22.1 MeV) bringing the symmetry energy closer to the requirement in
(2.1.3c). In figure 2.4 the slope of the symmetry energy is plotted for the two models σ-ω and
NLWM. The NLWM model rises the value of the slope at saturation density from L = 74.3 MeV
to L = 110.7 MeV. Both are in accordance with some phenomenological extrapolations [17,18].
The curves for the binding energy per nucleon in either of the models are fitted to the saturation
properties (see figure 2.5) B/A ≈ −16.3 MeV and the saturation density is almost the same for
the two models. The difference in the incompressibility in the two models σ-ω is clear in figure
2.5 because B/A rises so much faster in σ-ω (K = 540 MeV) than B/A for NLWM (K = 281
MeV). This also means that nuclear matter is more bound for high densities in NLWM than in
σ-ω.
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Chapter 3

COLD NEUTRON STARS

3.1 Tolmann-Oppenheimer-Volkov equations

To describe such a dense object as a neutron star we must use general relativity (GR). In this work
we consider a neutron star to be a spherically symmetric, homogeneous, isotropic and static mass
agglomeration. The GR prescription to calculate its properties is the Tolmann-Oppenheimer-
Volkov (TOV) pair of equations, to be solved simultaneously

M(r) = 4π

∫ r

0

ε(r)r2dr (3.1.1a)

dp

dr
(r) = − p(r) + ε(r)

r [r − 2M(r)]

{
M(r) + 4πr3p(r)

}
(3.1.1b)

where ε is the energy density, p is the pressure, M(r) is the total mass of the star up to radius
r. We solve the equations simultaneously from the origin (r = 0) out, subject to the boundary
conditions

p(r = R) = 0 (3.1.2a)

M(0) = 0 (3.1.2b)

p(r = R) = 0 means that at some point r in the calculation we force p = 0 and at that point we
will define the r = R radius of the star. At the same time we will define M(R) the total mass of
the star. The energy density and the pressure we use as input depends on the constituent matter
of the star we want to build. In our case, we will make it of nuclear matter. For each EOS there
is a different central energy density ε(0) = εc and central pressure p(0) = pc. Each EOS defines a
unique relation between [r, ε(r), p(r), ρ(r),M(r)] and also maximum mass and radius.
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3.2 Nuclear and neutron star matter

Neutron stars have masses M ≈ 1 − 2M� and radii R ≈ 10 − 12 km [20]. The main similarity
of nuclei and neutron stars is that both contain nucleons and at some point along its radius,
the neutron star has a density equal to the normal nuclear density. Neutron stars are bound
by the long range gravitational force and nuclei by the short ranged nuclear strong force. The
gravitational force acts on everything that is mass or energy. The normal nuclear matter density
is ρ0 = 2.8× 1014 g cm−3 and the average densities inside a neutron star are

ρ̄ =
3M

4πR3
= 7× 1014 g cm−3 ≈ (2− 3)ρ0 (3.2.1)

and in the centre it is much larger, of the order ≈ (5 − 10)ρ0. On the other hand, nucleons
inside a neutron star, feel repulsion because of being so tightly packed together. In this way the
nuclear force contributes negatively to the binding energy of a neutron star. The binding energy
per nucleon due to gravity in a neutron star is ≈ 160 MeV/A and inside a nucleus, mostly due
to the nuclear force, is ≈ 16 MeV/A [10,20]. The charge in a nucleus is positive and the charge
density changes significantly with total baryon density as we can see in figure 3.1 where we plot
the more stable nuclei neutron number as a function of proton number. The total number of
charged particles inside a neutron star Znet, is virtually zero. Let us try to build a spherical star
of radius R that is composed of same charge particles but bound by gravity. We should then
force the condition that the electrical force that pulls them apart should be smaller than the
gravitational force that pulls them inside1, i.e.

||~Fe|| < ||~Fg|| ⇔ Ke
(Znete)e

R2
< G

(Am)m

R2
⇔ Znet <

G

Ke

(m
e

)2

A⇒

⇒ Znet ≈ |Z+ − Z−| < 10−36A (3.2.2)

This classical approximation sets an upper limit on the total number of like charges. It means
that a neutron star has to be a neutral object and also that Z+ or Z− need not be zero. Since we
have densities much larger than the normal nuclear matter density then we should expect that
the nucleons could even be split into their ultimate components, the quarks. Several theoretical
approximations are possible in guessing what’s inside a neutron star and in this work we will
study only the relativistic mean field theory approach with the baryon octet and the lightest
leptons.

1Exceptionally in this calculation we use S.I. units.
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Figure 3.1: Neutron number (N) versus proton number (Z) and a fit to nuclei with half-lives
greater than 3.8 months.

In figure 3.1 we can see that if A is small, nuclei withN ≈ Z are more stable than others. This
changes as A gets larger, the more stable nuclei obey the equation N ≈ 192 tan[0.007(Z−1)] [21]
so if we think of Z = 82 (Pb) we get N ≈ 122 so a much greater number of neutrons than that of
protons, though it is a very stable nucleus with a very long half-life of τ1/2 > 1.4× 1017 years. A
neutron star can be highly isospin asymmetric, it is only required that the total electrical charge
be zero. Strangeness was discovered during a cosmic ray study in 1947 in which a product of the
collision between a proton and a nucleus was found to live for a longer time than was expected,
10−10 seconds, instead of the 10−23 seconds. The particle was named Λ-particle and the property
that made it live for so long was coined "strangeness" and that name persisted and became the
name of one of the quarks from which the Λ is built (see table 3.1). A shorter lifetime (10−23

seconds) was expected because it was a reaction in which the strong force was involved and
that usually leads to very short lifetimes. This was later developed into a new conservation law
called the "conservation of strangeness". If a particle has a strange quark, this is denoted by
the quantum number S=-1. Strong or electromagnetic decays preserve strangeness. Λ has a
mass of 1115.6 MeV and there is no lighter particle in which it can decay which has the strange
quark so this quark is transformed into another quark in the decay, this can only happen by the
weak interaction which leads to longer lifetimes. Strangeness is produced abundantly in nuclear
reactions at high energies. Strangeness need not be conserved on a neutron star nor it is forcibly
zero [10]. Nucleons in their fundamental state are devoid of strangeness and therefore nuclei in
their fundamental state are also non-strange.
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Baryon Mass (MeV) Charge Quark content Principal decays Half-life

Proton 938.27 +1 uud stable > 2.1× 1029 years

Neutron 939.57 0 udd p+ e− + ν̄e 881.5± 1.5 s

Λ 1115.6 0 uds pπ−,nπ0 2.63× 10−10 s

Σ+ 1189.4 +1 uus pπ0,nπ+ 0.8× 10−10 s

Σ0 1192.5 0 uds Λγ 6× 10−20 s

Σ− 1197.3 -1 dds nπ− 1.48× 10−10 s

Ξ0 1314.9 0 uss Λπ0 2.90× 10−10 s

Ξ− 1321.3 -1 dss Λπ− 1.64× 10−10 s

Table 3.1: Spin 1
2

baryons and some of their properties.

Higher densities than the normal nuclear density such as those occurring in neutron stars
will rise the Fermi energy and nucleons obey the Pauli principle so those protons and neutrons
on the top Fermi levels are likely to transform into other heavier baryons, possibly strange ones.
Table 3.1 lets us know all the spin 1/2 baryons with or without strangeness, the baryon octet.

3.3 Chemical equilibrium in a star

Many reactions occur during the evolution of a neutron star until it reaches its final thermo-
dynamic equilibrium (thermal equilibrium, mechanical equilibrium, radiative equilibrium, and
chemical equilibrium) state (in this work, at zero temperature, which, on the nuclear scale is
T ≈ 1010 K). Many different reactions may occur during its evolution to equilibrium, semi-
leptonic reactions, hadron reactions, etc. Charge and baryon number are conserved on the
lifetime of the star. Many reactions end up by creating leptons, photons and neutrinos. We
expect that neutrinos and photons diffuse out of the star until no more reactions are possible,
leaving the star in a degenerate state. In this state we assume that some of the reactions taking
place inside the star are

B1 → B2 + l + ν̄l (3.3.1a)

B2 + l→ B1 + νl (3.3.1b)

where Bi are baryons and l are the two lightest leptons. The data on nucleon-hyperon (NH)
interactions and hyperon-hyperon (HH) are scarce and still have a lot of uncertainties contrary
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to the complete and precise data on NN interactions. Above a certain energy, baryon-baryon
interactions allow the possibility of the conversions

Λ + p→ Σ+ + n, Λ + p→ Σ0 + p (3.3.2)

taking place. There are many other possibilities. Knowing how strong the connection of hyper-
ons to neutrons and protons is very important to know how a neutron star may be populated by
these particles. We can write for charge neutrality and chemical equilibrium

8∑
i=1

(
ρ

(+)
Bi

+ ρ
(+)
li

)
=

8∑
i=1

(
ρ

(−)
Bi

+ ρ
(−)
li

)
(3.3.3a)

µi − biµn = qiµl, µS = 0 (3.3.3b)

where ρBi is the ith baryon density, ρli is the ith lepton density. The (+) and (−) superscripts
indicate the positive or negative charges respectively. bi is the baryonic number (0 or 1) and
qi the electric charge (−1 or 1). µn is the chemical potential of the neutron, µl is the chemical
potential of the lepton l and µi is the chemical potential of the baryons or the leptons. µS
is the strangeness chemical potential which is zero because on the any macroscopic timescale
strangeness is not conserved.
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Chapter 4

ASTROPHYSICS APPLICATION

4.1 Formalism

We now present the hadronic equation of state (EOS) used in this work. It is an extension of
NLWM. In this model the nucleons are coupled to the neutral scalar σ, the iso-scalar-vector ωµ

and isovector-vector ~ρµ mesons. We include simultaneously the σ-ρ and the ω-ρ meson dimen-
sionless couplings Λσ and Λω respectively. The Lagrangian density reads

L =
8∑
j=1

ψ̄j
[
γµ (i∂µ − gωjωµ − gρj~τj · ~ρ µ)−m∗j

]
ψj

+
2∑
l=1

ψ̄l (iγµ∂
µ −Ml)ψl

+
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − κ

3!
σ3 − λ

4!
σ4

−1

4
ΩµνΩ

µν +
1

2
m2
ωωµω

µ +
1

4!
ξg4

ω (ωµω
µ)2

−1

4
~Rµν

~Rµν +
1

2
m2
ρ~ρµ · ~ρ µ

+g2
ρ~ρµ · ~ρ µ

[
Λσg

2
σσ

2 + Λωg
2
ωωµω

µ
]

(4.1.1)

where m∗j = mj − gσjσ is the baryon effective mass, Ωµν = ∂µων − ∂νωµ, ~Rµν = ∂µ~ρν − ∂ν~ρµ −
gρ (~ρµ × ~ρν), gij are the coupling constants of the mesons i = σ, ω, ρ with the baryon j, mi is the
mass of the meson i and l represents the leptons e− and µ−. The couplings κ (κ = 2mng

3
σb) and

λ (λ = 6g4
σc) are the weights of the non-linear scalar terms and ~τ is the isospin operator. The

sum over j in (4.1.1) extends over the octet of the lightest baryons {n, p,Λ,Σ−,Σ0,Σ+,Ξ−,Ξ0}.

We established the values for the couplings Λσ and Λω for symmetric nuclear matter and then
we applied those values to the resulting EOS from (4.1.1). After that, we get the various profiles
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for the resulting stars from TOV, maximum masses, maximum radii, particle populations depen-
dence on either of the couplings. The mean field approximation to the equations of motion is:

σ0 =
gσ

m2
σ,eff

∑
B

xσB
π2

∫ kBF

0

m∗B k
2 dk√

k2 +m∗B
2

ω0 =
gω

m2
ω,eff

∑
B

xωB
(
kBF
)3

3π2
,

ρ03 =
gρ

m2
ρ,eff

∑
B

xρBτ3B

(
kBF
)3

3π2

where the meson effective masses are defined as:

m2
σ,eff = m2

σ +
k

2
σ0 +

λ

6
σ2

0 − 2Λσg
2
σg

2
ρρ

2
03

m2
ω,eff = m2

ω +
ξ

6
g4
ωω

2
0 + 2Λωg

2
ωg

2
ρρ

2
03,

m2
ρ,eff = m2

ρ + 2g2
ρ

[
Λωg

2
ωω

2
0 + Λσg

2
σσ

2
0

]
The EOS is changed by both mixing factors on the Lagrangian density 4.1.1 as we can see next
in equations 4.1.4 and 4.1.5.

ε =
1

2
m2
σσ

2 +
κ

3!
σ3 +

λ

4!
σ4 +

1

2
m2
ωω

2 +
ξ

8
(gωω)4 +

1

2
m2
ρρ

2
03 +

+3(gρρ03)2

[
Λω(gωω)2 +

Λσ

3
(gσσ)2

]
+

1

π2

8∑
i=1

∫ ki

0

k2
√
k2 + (mi − gσσ)2 dk

+
1

π2

2∑
l=1

∫ klF

0

k2
√
m2
l + k2 dk (4.1.4)

p = −1

2
m2
σσ

2 − κ

3!
σ3 − λ

4!
σ4 +

1

2
m2
ωω

2 +
ξ

4!
(gωω)4 +

1

2
m2
ρρ

2
03 +

+(gρρ03)2
[
Λω(gωω)2 + Λσ(gσσ)2

]
+

1

3π2

8∑
i=1

∫ ki

0

k4√
k2 + (mi − gσσ)2

dk

+
1

3π2

2∑
l=1

∫ klF

0

k2
√
m2
l + k2 dk (4.1.5)

The formula in which we are really interested in and that changes what happens to the EOS and
ultimately, to neutron stars, is the symmetry energy, we can compare it to the symmetry energy
on the NLWM model (2.2.28)

asym =
k2
F

6
√
k2
F + (m− gσσ)2

+
g2
ρ

8

ρ

m2
ρ + 2g2

ρ [Λω(gωω)2 + Λσ(gσσ)2]
(4.1.6)
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and by this we can see that variations on the symmetry energy by the constants Λσ and Λω

cause significant changes in how asym grows with density. For neutron star matter consisting of
a neutral mixture of baryons and leptons, the β equilibrium condition without neutrino trapping
are given by

µp = µΣ+ = µn − µe
µΛ = µΣ0 = µΞ0 = µn
µΣ− = µΞ− = µn + µe
µµ = µe (4.1.7)

where µi is the chemical potential of species i. The chemical potentials of baryons and leptons
are given by

µB =

√
kBF

2
+m∗B

2 + gωBω0 + gρBτ3Bρ03

µl =

√
klF

2
+m2

l . (4.1.8)

and the charge neutrality condition is written by

ρp + ρΣ+ = ρe + ρµ + ρΣ− + ρΞ− , (4.1.9)

where ρi = (kiF )
3
/ (3π2) is the number density of species i. In this work, we employ the NL3

parameter set of the NLWM listed in table 4.1 which has the saturation properties listed in table
4.2. The meson-hyperon and the strange meson-hyperon coupling constants gωH , gρH and gσH
are determined by using SU(6) symmetry

1

3
gωN =

1

2
gωΛ =

1

2
gωΣ = gωΞ, (4.1.10a)

gρN = gρΛ =
1

2
gρΣ = gρΞ (4.1.10b)

2gσΛ = 2gσΣ = gσΞ = −2
√

2

3
gωN (4.1.10c)

where N means nucleon (giN ≡ gi). The scalar coupling constants are chosen to give reasonable
potentials. The coupling constants gσH of the hyperons with the scalar meson σ are adjusted to
the potential depths U (N)

H felt by a hyperon H in symmetric nuclear matter at saturation following
the relation

UN
H = xωHVω − xσHVσ (4.1.11)

with xi,H = gi,H/gi, Vω ≡ gωω0 and Vσ ≡ gσσ0 are the nuclear potentials for symmetric nu-
clear matter at saturation density. For the present work we will fix UN

Λ = −28 MeV, and use
UN

Σ = −30, 0, 30 MeV, and for UN
Ξ we will use different values −18, and 0 MeV. All hyperon

coupling ratios {gσH , gωH , gρH}H=Λ,Σ,Ξ are determined once the coupling constants {gσ, gω, gρ} of
the nucleon sector are given. The hyperons masses are taken to be mΛ = 1116 MeV, mΣ+ = 1189
MeV, mΣ0 = 1193 MeV, mΣ− = 1197 MeV and mΞ0 = 1315 MeV, mΞ− = 1321 MeV.
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4.2 Results

The main objective of the work is to change the symmetry energy density dependence and look
at what happens to the structure of a neutron star and how its radius and mass changes. We
change the dependence of the symmetry energy on the density by changing its slope, L, at
saturation density. We only use the original NL3 parameter set of Lalazissis, König, and Ring [6]
to calculate all EOS for star calculations.

mσ (MeV) mω (MeV) mρ (MeV) gσ gω gρ b c ξ
508.194 783 763 10.217 12.868 8.948 0.002052 -0.002651 0

Table 4.1: NL3 [6] parameter set. The nucleon mass is m = 939 MeV.

ρ0 (fm−3) K (MeV) m∗/m -B/A (MeV) asym (MeV) L (MeV)
0.148 271.76 0.60 16.299 37.2 118

Table 4.2: NL3 saturation properties.

The NL3 set has ξ = Λσ = Λω = 0 and provides a good fit to the ground-state properties of
many nuclei. In this model symmetric nuclear matter saturates at kF = 1.30 fm−1 with a binding
energy per nucleon of B/A = −16.25 MeV and an incompressibility of K = 271 MeV. The original
NL3 parameter set predicts a symmetry energy of 37.4 MeV at saturation density and close to
25.68 MeV at kF = 1.15 fm−1 [6]. In this work adjustments (see section 4.2.1) were made to
fit the symmetry energy with a value of asym = 25.68 MeV at a Fermi momentum of kF = 1.15
fm−1 for all parameter sets generated. We use this because we can find a common ground with
known results for the Λω coupling in the work of Horowitz [22] and is a way of checking that
our results are correct.

4.2.1 Symmetric nuclear matter couplings

Using formula (4.1.6) we can get gρ as a function either of Λσ or Λω

g2
ρ =

m2
ρ

ρ
8Asym

− 2 [Λω(gωω)2 + Λσ(gσσ)2]
(4.2.1)

where Asym = asym − k2F√
k2F+(m−gσσ)2

. We can now select Λσ = 0 or Λω = 0 alternatively and get

the coupling constants. We selected values of kF = 1.15 fm−1 and asym = 25.68 MeV so as to be
able to reproduce the same restrictions as Horowitz [22] did in Λω and gρ. We also proceed the
same way with the pairs (Λσ, gρ). The MFA equations of motion for ω and for σ are not disturbed
by the Λσ or Λω parameters because we are studying the values at Yp = 0.5 (symmetric nuclear
matter, ρp = ρn) and in this case we have ρ03 = 0. Whenever the denominator in (4.2.1) is zero
gρ diverges. We can check algebraically where the divergence happens by solving the equation

ρ

8Asym
− 2

[
Λω(gωω)2 + Λσ(gσσ)2

]
= 0 (4.2.2)
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alternatively picking Λω = 0 and Λσ = 0 we get the system of equations that defines the Λi where
gρ diverges:

Λω =
ρ

16Asym(gωω)2
(4.2.3a)

Λσ =
ρ

16Asym(gσσ)2
(4.2.3b)

Divergence happens when Λσ = 0.04925 and Λω = 0.08019, this can be seen in figure 4.1. We
should note that gρ varies with Λσ in almost the same way as with Λω, the difference is that it
diverges sooner with Λσ than with Λω. This will force us to choose the values of L carefully so as
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Figure 4.1: gρ versus Λi in correspondence with σ-ρ mixing and the ω-ρ mixing in symmetric
nuclear matter. We can clearly distinguish a greater restriction on Λσ values than the restriction
for Λω.

to not introduce numerical errors or, more importantly, non-physical solutions. We will see how
this works in subsection 4.2.2. Figure 4.2 gives L at saturation density as a function of either Λω

or Λσ. We can see here the smaller range of values for Λσ than for the Λω coupling. This is in
agreement with what happens with gρ in figure 4.1. We then chose specific values of the slope L
to fix pairs of both coupling constants (Λω, gρ) and (Λσ, gρ) using both L(ρ0,Λi) curves. We can
visualize this by drawing an imaginary horizontal line in figure 4.2 for, for example L = 50 MeV.
Then we will have two intersections, one for L(ρ0,Λω) = 50 MeV and one for L(ρ0,Λσ) = 50 MeV.
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Figure 4.2: Slope of the symmetry energy at saturation density versus the Λσ and Λω couplings.

This will let us choose, uniquely, values for Λσ and Λω. Then, using Λσ in gρ(Λσ) will fix the pair
(Λσ, gρ). In the same manner, using Λω in gρ(Λω) will fix the pair (Λω, gρ). This way we can fix
the couplings for any value of L. We can see in figure 4.2 that the influence of Λσ systematically
lowers the value of L more than the effect of Λω as each Λi grows. As we can see in figure 4.3
the range of values of asym is [29.32, 37.2] MeV and the range for L is [41, 118] MeV. Many fits of
the coupling constants of relativistic mean field (RMF) theory to nuclear matter have an interval
of symmetry energy at saturation density of asym ∈ [31, 38] at best [8]. Phenomenological values
of the slope of the symmetry energy lie in the range L ∈ [30, 80] [18]. Other authors have
extrapolated other ranges. This work obtains a different range of values for L. We will see
next how we get consistent values for the EOS to use in TOV (3.1.1) if we work in the range
L ∈ [41, 118] in the next section. The slope L of the symmetry energy tells us how fast asym will
grow with the increase of density. Lower L means a less accentuated growth, we can see this
in figure 4.4 where three values of L are plotted, the original 118 MeV of the NL3 parameter
set two for each L = 80 MeV and L = 50 MeV for Λσ and Λω. The influence of the mixture ω-ρ
lowers the growth of asym more than the σ-ρ mixture. If L is lower then asym gets lower for all
densities. We should recall that the greater the difference ρn − ρp is, the greater is the reducing
of the binding energy per nucleon.
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Figure 4.3: Symmetry energy at saturation density versus L. We can see here what are both
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4.2.2 Nuclear matter in β equilibrium

As we saw in section 3.1 the TOV equation is solved using a certain set of values of the energy
density and the pressure (which we can, without loss of meaning, call EOS) and by setting the
boundary conditions (3.1.2) which require that at radius R (the radius of the star) the pressure
has to be zero. This way the binding energy of our model must not have inflection points in
which the pressure is zero before the density reaches zero. In figure 4.5 we show the maximum
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Figure 4.5: Binding energy per nucleon versus density for different values of L for nuclear
matter in β equilibrium and in pure neutron matter.

values of L for the different mixtures σ-ρ and ω-ρ for which there still exist inflection points in the
binding energy i.e., ranges of density for which the pressure still changes signal from negative to
positive. This inflection point is correlated with the fact that the symmetry energy for symmetric
matter is being forced to go through the point kF = 1.15 fm−1 (ρ = 0.69ρ0) with asym = 25.68
MeV. This can be easily seen if we compare figure 4.4 with figure 4.5. Further analysis shows
that the minimum value of L that we can trust to generate a star that obeys p(r = R) = 0 at ρ = 0
for each of the parameters is L = 36.5 MeV for the ω-ρ mixing and L = 41 MeV for σ-ρ mixing.
We can verify in figure 4.6 that the pressure is always positive for the values of L presented in
any of the mixtures σ-ρ or ω-ρ. We can also see in figure 4.6 that pressure rises very fast with
density and, for low densities (up to 0.6ρ0) the pressure oscillates slightly for low L in correlation
with the symmetry energy being forced to go through ρ = 0.69ρ0 and asym = 25.68 MeV. The
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Figure 4.6: Pressure versus density for different values of L for nuclear matter in generalised β
equilibrium. In pink is the σ-ρ mixing and in green is the ω-ρ mixing.

behaviour of the pressure is directly correlated also with the binding energy per nucleon because
the pressure is defined as the derivative of the binding energy per nucleon times ρ2 (see formula
(2.2.13)). The L value was carefully selected so as to the pressure never reach zero before
ρ = 0 for us to get a star with zero density at the surface. For low densities, which means up to
ρ/ρ0 ∼ 0.06 we have included the BPS [23] equation of state values in the figure and in all inputs
to solving the TOV. However, although for L = 41 MeV ω-ρ and σ-ρ mixings have p > 0, there is a
region of instability with ∂p

∂ρ
< 0 in the σ-ρ mixing. No homogeneous matter occurs in this range

of densities for the σ-ρ mixing at L = 41 MeV. We see in figure 4.7 that all the particle fractions
change with density. Charge neutrality is achieved firstly, for low densities, by having the same
number of protons and electrons but, as density rises the proton number becomes greater than
the number of electrons but this charge imbalance is compensated by the appearance of muons.
The rising of the numbers of charged particles at high densities lowers the number of neutrons
in the mixture. Having either of the mixings, lower values of L will decrease the fraction of
charged particles and increase the fraction of neutrons simultaneously in comparison with the
original NL3 parameter set. In figure 4.7 we only show the σ-ρ mixing which behaves in a very
similar manner as the ω-ρ mixing: it will, as L decreases, for densities larger than the saturation
density, lower the fraction of charged particles and increase the fraction of neutrons. The direct
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Figure 4.7: Fraction (Yi = ρi/ρ) of neutrons, protons, electrons and muons in β equilibrium as
a function of density for two values of the slope of the symmetry energy.

Urca process for nucleons refers both to neutron β decay

n→ p+ e− + ν̄e (4.2.4)

and electron capture on protons
p+ e− → n+ νe (4.2.5)

and contributes highly to the rapid cooling of neutron stars [24] because of the neutrino emis-
sions. Neutrino and anti-neutrino Fermi momentum is much less than any of the momenta from
the other particles [25] and we can neglect it. For the direct Urca process to occur we must
admit kFp + kFe ≥ kFn. When stellar matter consists only of protons, neutrons and electrons
charge neutrality forces us to impose ρe = ρp. In this manner we get that, for the direct Urca
process to occur, ρp ≥ ρ/9. In the case we are studying now the muon has a role in this process
because it shares a part in the charge neutrality condition (ρp = ρe + ρµ) so we must meet this
problem in a different manner. Lattimer, Pethick and Prakash [25, 26] establish that the direct
Urca process particle fraction xDU is defined by

xDU =
1

1 + (1 + x
1/3
e )3

(4.2.6)
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Figure 4.8: Zoom of particle fraction versus density, in this case for protons (full lines) and
muons (dashed lines). L = 118 MeV (thick lines, purple), L = 65 MeV (medium lines), L = 41
MeV (thin lines). The Λσ (red lines) and Λω (green lines) couplings are also present.

where xe = ρe
ρe+ρµ

. This number (xe) is 1 for the case where there are no muons in the mixture
and in this case we reproduce exactly the case we already mentioned ρp > ρ/9 to have the
direct Urca process. To establish an upper limit to the process we can assume that ρe ≈ ρµ
and get xe = 1/2 which turns xDU into 0.148. So for each different model EOS we will get
different values for the onset of the direct Urca process within the range defined by the lower
limit Uinf = 1/9 and the upper limit Usup = 0.148.

Leptons Mass (MeV) Charge Principal decays Half-life

Electron e− 0.511003 -1 stable ∞

Muon µ− 105.659 -1 e− + ν̄e + νµ 2.197× 10−6 s

Table 4.3: Leptons used in this work and some of their properties.

The masses and charges of the leptons and other properties that we used in this work are in
table 4.3. As can be seen from figure 4.9 the decrease in L makes the fraction of all the charged
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Figure 4.9: Proton (full line) and muon (dashed line) fractions versus density variation with
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(red) and Λω (green) couplings. Also drawn are the upper xDU = 0.148 = Usup and lower
xDU = 1/9 = Uinf limits of the Urca process.

particles increase slower and also saturate at a lower value than with higher L. The Urca process
is reached at higher densities with decreasing L. We can see this in the plot of figure 4.10. The
effect of Λω on the onset of the Urca process is stronger than the effect of Λσ i.e., with Λω it
appears at higher densities than with Λσ, we can see that on figure 4.10. Also, the range of
densities is from 1.3ρ0 to 3.4ρ0 as L varies from 41 MeV to 118 MeV. Figure 4.8 allows us to
verify that the way the proton fraction increases is correlated with how the symmetry energy
grows at densities lower than the saturation density (compare figure 4.4). When L ≈ 41 MeV
there is a very fast increase of the symmetry at low densities and also on the proton and electron
fractions. The symmetry energy is being forced to go through 25.67 MeV at kF = 1.15 fm−1 with
a low L then it has to "compensate" by giving rise to a great binding at low densities and this is
achieved by a great increase in the number protons/electrons.
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4.2.3 L influence on star variables

Solving the TOV equation is the main purpose of this work once we have the EOS modified
with the nonlinear ω-ρ and σ-ρ terms. In first approximation we make the EOS have protons,
neutrons, electrons and muons in chemical equilibrium and charge neutral. As we saw before,
changing L changes the density dependence of the symmetry energy an here we show the result-
ing effect of asym(ρ, L) on the maximum gravitational and baryonic mass and radius of a neutron
star and other variables. We show also what happens to the central energy density and the cen-
tral density. Though we made calculations both of the EOS and the TOV for a great number of
L values (from 40 to 118 MeV) we here present only some of them, just enough to see the main
trend of the results. Tables 4.4 and 4.5 list the values obtained as function of L of the maximum
gravitational mass Mmax, the maximum baryonic mass MBmax, the central energy density ε0 and
the total central density ρc. What we see in table 4.4 is a systematic decrease in maximum grav-
itational mass down to L = 60 MeV and then a slight increase until L = 40 MeV. The same thing
happens to the maximum baryonic mass. The radius systematically decreases with decreasing
L. The central energy density and total density increase with decreasing L. The TOV system of
equations (3.1.1) generates a family of neutron stars, one for each EOS [1]. Changing L has
made significant changes to our EOS [(4.1.4) and (4.1.5)]. It has generated two EOS for each
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L Mmax(M�) MBmax(M�) R (km) ε0(fm−3) ρc(fm−3)
118.0 2.793 3.331 14.068 4.074 0.621
110.0 2.787 3.325 14.020 4.093 0.624
100.0 2.781 3.320 13.948 4.135 0.630
90.00 2.776 3.318 13.893 4.150 0.632
80.00 2.773 3.317 13.843 4.172 0.636
70.00 2.771 3.319 13.796 4.192 0.639
60.00 2.770 3.322 13.758 4.195 0.640
50.00 2.771 3.327 13.711 4.197 0.641
41.00 2.772 3.334 13.651 4.208 0.643

Table 4.4: Variations of the maximum values of star variables (maximum mass Mmax, maximum
baryonic mass MBmax, radius R, central energy density ε0 and central density ρc) with changing
L, in this case for the σ-ρ mixing.

L Mmax(M�) MBmax(M�) R (km) ε0 (fm−3) ρc (fm−3)
118.0 2.793 3.331 14.068 4.074 0.621
110.0 2.763 3.293 13.953 4.139 0.632
100.0 2.750 3.280 13.829 4.206 0.641
90.00 2.747 3.281 13.751 4.244 0.646
80.00 2.747 3.287 13.700 4.268 0.64965
70.00 2.750 3.296 13.661 4.267 0.64993
60.00 2.754 3.306 13.633 4.262 0.64990
50.00 2.759 3.317 13.612 4.258 0.64981
40.00 2.765 3.330 13.582 4.240 0.64824

Table 4.5: Variations of the maximum values of star variables (maximum mass Mmax, maximum
baryonic mass MBmax, radius R, central energy density ε0 and central density ρc) with changing
L, in this case for the ω-ρ mixing.

L, one for Λσ and one for Λω. The results for the family of stars created for each L are plotted
in figure 4.11 In both sets of (maximum) stars the Urca process definitely appears since for each
of the sets the central minimum densities of ≈ 4ρ0. Decreasing the value of L has globally and
systematically reduced the radius of the families of neutron stars. This is clear in figure 4.11, in
that same figure we can see also that, for each family, the mass is also reduced by the decrease
of L.
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Figure 4.11: Left: M/M� dependence on the radius R in correspondence with the σ-ρ mixing
term for different values of L. Right: M/M� dependence on the radius R in correspondence
with ω-ρ mixing term for different values of L. Both mixings have a similar effect which is to
generally reduce the radii of all calculated stars. The maximum mass is reduced also.

4.2.4 Possible neutron stars

The TOV equations predict families of stars, one for each EOS and, as we saw in subsection 4.2.3
the model predicts a very large array of possible stars but we will always have to compare them
with observation. So here we have fixed the mass of observed stars, 1M�, 1.44M� and 1.67M�
and then, varying the L parameter saw what happens to their radius. Figure 4.12 shows us that
the influence of the nonlinear terms associated with Λω and Λσ in the Lagrangian (4.1.1) force
the radii of all the stars to decrease with increasing Λi. Also the the influence of the ω-ρ term
is stronger in that effect, it hastens the decrease in the radius, more than the σ-ρ term. Stars
with the same maximum radius have systematically more mass with the σ-ρ mixing than with
the ω-ρ mixing. We now fix three masses for observed neutron stars, a 1M�, a pulsar of mass
1.44M� [27] and the J903+0327 pulsar with 1.67M� [28]. Using the masses as input from our
solutions to the TOV equation we calculate how radii change with L. In figure 4.13 we plot the
results. The radii decrease as L decreases. For masses larger than one solar mass the radius
decreases linearly with the decrease of L. For a fixed mass, the effect of the σ-ρ produces a
larger star radius than that with the ω-ρ mixing for the same L. We can see from figure 4.14
the neutron star with 1M� will never reach the direct Urca process. Both the other two neutron
stars will reach it for the range of L with corresponding Λi where ρUrca/ρ0 is lower than ρc/ρ0.
The star with the largest mass also has the largest interval where ρUrca < ρc.

From the calculations that led to figure 4.14 we can build table 4.6 to be able to quantify the
ranges in which the direct Urca process is allowed.
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xDU 1.44M� 1.67M� Mmax

1/9,Λσ (73, 1.73) (87, 1.53) -

1/9,Λω (87.01, 1.77) (96.5, 1.55) -

0.148,Λω - - (87.1, 4.38)

Table 4.6: Intersection points of the curves of ρUrca/ρ0 and the central densities ρc/ρ0 of the
various masses of neutron stars and the two limits of the Urca process. Each point represents
(L, ρ/ρ0) with L in MeV.

From figure 4.14 and table 4.6 we can see that the 1.44M� neutron star has enough density to
allow the direct Urca process within the range L ∈ [73, 118] MeV for the σ-ρ mixing and in the
range L ∈ [87.01, 118] MeV for the ω-ρ mixing. The 1.67M� neutron star has enough density to
allow the direct Urca process within the range L ∈ [87, 118] MeV for the σ-ρ mixing and in the
range L ∈ [96.5, 118] MeV for the ω-ρ mixing. Maximum mass stars allow the direct Urca process
for all calculated L in any mixing. The 1M� neutron star hasn’t got enough central density to
allow cooling with direct Urca process, but the Urca process is not the only way neutron stars
cool down. The Urca process is not the only way through which neutron stars can cool down,
they also cool down by losing energy in the form of radiation among other processes. If all
neutron stars lose matter as they evolve then we could infer that the 1M� neutron star is an
older star than the pair of 1.44M� and 1.67M� neutron stars. If we knew how much matter they
lose as a function of time then we could know how old they are just by knowing their mass.

4.2.5 Strange stars

The inclusion of hyperons in the calculations change the way everything works, from charge
neutrality to mass-radius profiles. Figure 4.15 lets us see how charge neutrality works in this
case (let us look at only the original NL3 set, the thick lines): at low densities the charged
particles are only the protons and electrons in equal numbers and, from the moment these two
densities start to differ muons appear to compensate for the imbalance. Then, at about ρ ≈ 1.8ρ0

the Σ− baryon starts to appear to compensate for the great fall in electron and muon numbers.
At approximately ρ ≈ 2ρ0 the total number of charged particles is too low and to compensate for
this loss, the neutral baryon Λ0 appears and rises fast until it stabilizes at ρ ≈ 4ρ0. At ρ ≈ 3ρ0 the
number of Σ− lowers enough for the baryon Ξ− make its appearance. Proton populations are
reduced by ρ ≈ 4ρ0 and the Σ+ appears to keep charge neutrality. We can see in the same figure
that the lowering of the slope of the symmetry will make all the hyperons onset happen at higher
densities in this mixing except for the Σ− which appears at a slightly lower density. Muon, proton
and electron populations are lowered at most densities when L = 55 MeV in relation to L = 118
MeV. The same happens for all charged baryons except for Σ− whose production is greater with
L = 55 MeV than with L = 118 MeV. Neutron populations rise for L = 55 MeV at densities higher
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than ρ ≈ ρ0 and all neutral baryons (except neutrons) appear at a higher density in comparison
with the original L = 118 MeV. The Urca cooling process appears at a higher density for L = 55
MeV than for L = 118 MeV. Figure 4.15 is plotted for only one set of hyperon potentials. Were
we to plot any other set the behaviour would change by having different charged hyperon onsets
and, in some cases, some charged hyperons may not appear. The main particle fraction trend
and charge neutrality is shown here.

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7

ρ/ρ0

e
-

µ
-

n
p
Λ
Σ

-

Σ
0

Σ
+

Ξ
-

Ξ
0

Figure 4.15: Particle fractions versus density when the model includes hyperons for the original
NL3 parameter set (L = 118 MeV, thick lines) and for L = 55 MeV (thin lines). The horizontal
lines mark the Urca process limits, a full line for the upper limit Usup = 0.148 and a dashed line
for the lower limit Usup = 1/9. This is done only for one set of hyperon potentials.

In figure 4.16 we can see that having L = 55 MeV reduces the radii of neutron stars in com-
parison with L = 118 MeV for all calculated hyperon potentials. To distinguish the differences
for both mixings at L = 55 MeV we have drawn figure 4.17. In this figure discern differences
in the maximum mass for the two mixings, being highest (in any hyperon potential) for the ω-ρ
mixing than for the σ-ρ mixing. The maximum radius is more reduced with the ω-ρ mixing than
for the σ-ρ mixing and the difference is very tenuous.
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Figure 4.16: Neutron star mass versus radius different hyperon potentials. Both mixings reduce
radii and increase mass with for any of the hyperon potentials. Here we show the σ-ρ mixing,
approximately the same happens for the ω-ρ mixing.
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Chapter 5

CONCLUSIONS

Neutron stars are objects of a very high density, to know their structure we must solve the TOV
equations and for this we must have knowledge the high density nuclear EOS. In this work we
use relativistic mean field theory to build an equation of state and calculate all the other variables
such as saturation density, symmetry energy, slope of the symmetry energy, incompressibility,
effective mass, etc. The main part of this work is the study of the effect of symmetry energy
on the radius and mass of neutron stars and for that we change the NLWM+leptons+hyperons
Lagrangian density by adding the term

g2
ρ~ρµ · ~ρ µ

[
Λσg

2
σσ

2 + Λωg
2
ωωµω

µ
]

(5.0.1)

which changes the EOS and the density dependence of the symmetry energy. We have seen
that the increase in each Λω or Λσ decreases the symmetry energy slope L, at ρ0. The EOS
obtained from this theory is fitted to normal nuclear matter and the information conveyed by
it is trustworthy in that range of densities. The fact that we can make it describe high density
nuclear matter is mathematically sound but physically unknown and should be put to the test of
observation. Our conclusions:

• Decreasing L means softening of the asym and that reduces both the maximum mass and
the maximum radius of neutron stars made up of neutrons, protons electrons and muons
in β equilibrium. This is accompanied by a reduction of the charged particle fractions at
all densities.

• The calculated radii for the selected set of observed stars(1M�, 1.44M� and 1.67M�) is in
the range 14.8 to 16.2 km. This means that if observations are to disprove this theory, they
should find neutron stars with radii in a different range than this. For masses larger than
1M� the radius decreases linearly with L.

• The central densities of even the smallest neutron star admitted (1M�) is in the range 1.14-
1.38 ρ0 and thereby allowing, according to theory, the existence of p+n+ e+µ inside. So,
all the stars considered in the present study are formed by n, p, e− and µ−.

• The onset of the URCA process is reached at higher densities with lower L.
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• The µ− onset density does not depend on L.

• Both the radius and the mass of neutron stars vary more with L if the ω-ρ term rather than
the σ-ρ term is included.

• All maximum mass stars reach the direct Urca process in both mixings.

• The 1.44M� neutron star has enough density to allow the direct Urca process within the
range L ∈ [73, 118] MeV for the σ-ρ mixing and in the range L ∈ [87.01, 118] MeV for the
ω-ρ mixing.

• The 1.67M� neutron star has enough density to allow the direct Urca process within the
range L ∈ [87, 118] MeV for the σ-ρ mixing and in the range L ∈ [96.5, 118] MeV for the ω-ρ
mixing.

• The 1M� neutron star has not enough density to allow for cooling by the Urca process.

For hyperons in any potential:

• both mixings reduce the radii of the families of stars

• the influence of the ω-ρ mixing is greater than for the σ-ρ mixing.

Also, in a certain hyperon potential combination we have:

• the onset of the Urca process takes place at a higher density for lower values of L in any of
the mixings

• the fraction of charged particles is globally reduced for lower L except for Σ− which is
increased

• charged hyperon onset is at higher densities with lower L except for Σ− which is at a lower
density

In future work we will consider a full analysis of the symmetry energy dependence on the density
and other properties:

• with other parameter sets

• the influence of hyperons in more detail and the effect of strange mesons

• influence of low temperatures on the transition to a cold neutron star

• the influence of rotation

• consider what is the role of quark deconfinement, if there is any

These and many other questions arise in theoretical study of neutron stars.
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Appendix A

Units

Throughout this work we use natural units, i.e.

1 = ~ = 6.5821× 10−16 eV s (A.0.1a)

1 = c = 2.9970× 1010 cm/s (A.0.1b)

1 = kB = 1.3807× 10−16 erg/K (A.0.1c)

1 = G = 6.6720× 10−8 cm3g−1s−2 (A.0.1d)

The most used numerical result for conversions in this work is

~c = 197.3 MeV fm (A.0.2)
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Appendix B

Main theoretical procedures

B.1 Equations of motion

These are the equations of motion obtained from the main Lagrangian

[
γµ
(
i∂µ − gωωµ − gρ

2
~τ · ~ρ µ

)
− (mi − gσσ)

]
ψi = 0

∂α∂
ασ = −m2

σσ − κ
2
σ2 − λ

6
σ3 + 2Λσg

2
ρ~ρµ · ~ρ µg2

σσ + gσ
∑

i ψ̄iψi

∂αΩαβ = −gω
∑

i ψ̄iγ
βψi +m2

ωω
β + ξ

6
g4
ωωµω

µωβ + 2Λωg
2
ρ~ρµ · ~ρ µg2

ωω
β

∂α ~R
αβ = −gρ

2

∑
i ψ̄i~τγ

βψi +m2
ρ~ρ

β + 2g2
ρ~ρ

β [Λωg
2
ωωµω

µ + Λσg
2
σσ

2]

(B.1.1)

B.2 MFA equations of motion

We now make the mean-field approximation
σ(x)→ 〈σ(x)〉 = σ0 = σ

ωµ(x)→ 〈ωµ(x)〉 = δµ0ω0 = ω

~ρµ(x)→ 〈~ρµ(x)〉 = δµ0δ
i3ρ3

0 = ρ03

(B.2.1)

Which in turn transform the equations of motion in
gσ
∑

i〈ψ̄iψi〉+ 2Λσg
2
ρρ

2
03g

2
σσ = m2

σσ + κ
2
σ2 + λ

6
σ3

gω
∑

i〈ψ̄iγ0ψi〉 = m2
ωω + ξ

6
g4
ωω

3 + 2Λωg
2
ρρ

2
03g

2
ωω

gρ
2

∑
i〈ψ̄iτiγ0ψi〉 = m2

ρρ03 + 2g2
ρρ03 [Λωg

2
ωω

2 + Λσg
2
σσ

2]

(B.2.2)
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For the Dirac equation we can now write, with the new definitions for the mesons[
γµ

(
i∂µ − gωωµ −

gρ
2
~τ · ~ρ µ

)
− (mi − gσσ)

]
ψi(x) = 0 (B.2.3)

B.3 Expectation values for operators in the ground state

In the MFA approach the nucleon fields satisfy an equation with no x-dependent terms allowing
us to write

ψi(x) = ψi(k)e−ik·x (B.3.1)

where

k · x ≡ kµx
µ = k0t− ~k · ~r (B.3.2)

We then obtain [
γµ

(
kµ − gωωµ −

gρ
2
τiρ

iµ
)
− (mi − gσσ)

]
ψi(k) = 0 (B.3.3)

Now we can make the definitions

Kµ = kµ − gωωµ −
gρ
2
τiρ

iµ

(B.3.4)
m∗i = mi − gσσ

transforming the Dirac equation (B.3.3) in[
/K −m∗i

]
ψi(k) = 0 (B.3.5)

Using the properties of gamma matrices we can find

[KµK
µ −m∗i ]ψi(K) = 0 (B.3.6)

Now we have a numerical equation, that is, the operator on the left has now become a number
that multiplies another number ψi(K) to give 0 and that means

K0 =

√
~K 2 +m∗2i (B.3.7)

Denoting the time component of the four vector k ≡ (k0, ~k) by

e(~k) ≡ k0(~k) = K0 + gωω0 +
gρ
2
τiρ

i0 (B.3.8)
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the nucleon eigenvalues of 3-momentum ~k for particle and antiparticle are

e(~k) = E(~k) + gωω0 +
gρ
2
τiρ

i0

(B.3.9)

ē(~k) = E(~k)− gωω0 −
gρ
2
τiρ

i0

with E(~k) ≡ K0 =
√

(~k − gω~ω −
∑3

j=1
gρ
2
τiρij)2 +m∗2i .

We could now construct the ground-state expectation values of the nucleon currents by con-
structing the nucleon spinors first. This can be done because the Dirac equation has the same
form as the free equation; only the four-momentum and mass are shifted by the mean meson
field values. Then the currents could be constructed with the spinors by matrix multiplication
and summation over occupied nucleon states. This is not necessary because there is a more
economical way of evaluating the ground state expectation values that avoids the construction
of the spinors. A single-nucleon state in this theory is characterized by the momentum ~k and the
spin and isospin projection which we denote together by κ. Off course, each neutron and proton
momentum state can have one of two spin projections ±1/2. Let us denote by a round bracket
the expectation value of an operator in a single-particle state, (ψ̄iΓψi)~kκ. The expectation value
of an operator in the ground state of the many-nucleon system is

〈ψ̄iΓψ〉 =
∑
κ

∫
d~k

(2π)3 (ψ̄iΓψi)~kκΘ
[
µ− e(~k)

]
(B.3.10)

where the sum κ is understood to be over the spin-isospin states of the occupied momentum
states and Θ(x) is the unity step function. µ is the Fermi energy, we can also call it chemical
potential.

B.4 Single particle expectation values

The operator Γ appearing in the integral is generally to be found also in the Dirac Hamiltonian.
Use the Dirac equation (B.3.3) and remember that γµkµ = γ0k0 − ~γ · ~k. Isolate k0 and find the
Dirac Hamiltonian

HD = γ0

[
~γ · ~k + gωγµω

µ +
gρ
2
~τ · γµ~ρ µ +m∗i

]
(B.4.1)

Now, take the expectation value in a single-nucleon momentum state as defined above(
ψ†iHDψi

)
~kκ

= K0(~k) = E(~k) + gωω0 +
gρ
2
τiρ

i0 (B.4.2)

In this example the result is independent of spin and isospin projection or, in other words, the
momentum eigenstates are degenerate with occupation number 4. In other cases we may have
to take κ into account in other ways. We can obtain expectation values of other operators by
taking the derivatives (with respect to a variable of interest) of (B.4.2).
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B.5 Symmetry energy formulae

To calculate the symmetry energy we can suppose that the Fermi momenta for the nucleons are
separate, let us see the terms in the energy density that can be turned into explicit functions of
them

2

π2

∫ k

0

k2
√
k2 + (m− gσσ)2 dk =

1

π2

∫ kn

0

k2
√
k2 + (m− gσσ)2 dk +

+
1

π2

∫ kp

0

k2
√
k2 + (m− gσσ)2 dk (B.5.1)

Let note that we can write kn = kF (1 + t)1/3 e kp = kF (1− t)1/3, and then calculate

asym =
1

2

[(
∂2ε/ρ

∂t2

)]
t=0

=
1

2ρ

2k5
F

9
√
k2
F + (m− gσσ)2

=
k2
F

6
√
k2
F + (m− gσσ)2

(B.5.2)

Q.E.D.

If we input the ~ρµ field we must take into account

∂2

∂t2

(
1

2ρ
m2
ρρ

2
03

)
=

∂2

∂t2

(
1

2ρ

(
mρ

gρ

)2
1

4

(
gρ
mρ

)4

(ρp − ρn)2

)
=

=
∂2

∂t2

(
−1

8

(
gρ
mρ

)2

t (ρn − ρp)
)

=

=

(
gρ
mρ

)2
k3
F

12π2
(B.5.3)

After summing all, we get

asym =

(
gρ
mρ

)2
k3
F

12π2
+

k2
F

6
√
k2
F + (m− gσσ)2

(B.5.4)

When we mix ~ρ µ with ων we get

asym =
ρn + ρp(

mρ
gρ

)2

+ 2Λ (gωω0)2
+

k2
F

6
√
k2
F + (m− gσσ)2

(B.5.5)

and almost the same thing happens when we mix ~ρ µ and σ.
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Appendix C

Mathematical results

C.1 Integrals

∫ k

0

mk2

√
k2 +m2

dk =
1

2

[
mk
√
k2 +m2 −m3 log

(
k +
√
k2 +m2

m

)]
(C.1.1)

∫ k

0

m2k2

(k2 +m2)3/2
dk = m2 log

(
k +
√
k2 +m2

m

)
− m2k√

k2 +m2
(C.1.2)

∫ k

0

k2

√
k2 +m2

k2dk = k3
√
k2 +m2

+
3

8

[
m4 log

{
k +
√
k2 +m2

m

}
− k
√
k2 +m2(m2 + 2k2)

]
(C.1.3)

∫ k

0

k2
√
k2 +m2dk =

1

8

[
k
√
k2 +m2

(
m2 + 2k2

)
−m4 log

{
k +
√
k2 +m2

m

}]
(C.1.4)

C.2 Differentiation

Let us denote
~Rµν · ~Rµν = Ri

µνR
µν
i (C.2.1)

in which ~Rµν = ∂µ~ρν − ∂ν~ρµ − gρ(~ρµ × ~ρν) or

Ri
µν = ∂µρ

i
ν − ∂νρiµ − gρεijkρjµρkν (C.2.2)
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Therefore, we can write

Ri
µνR

µν
i =

(
∂µρ

i
ν − ∂νρiµ − gρεijkρjµρkν

) (
∂µρνi − ∂νρµi − gρεijkρµj ρνk

)
(C.2.3)

or still

Ri
µνR

µν
i =

(
∂µρ

i
ν − ∂νρiµ

)
(∂µρνi − ∂νρµi ) +

−gρεijkρµj ρνk
(
∂µρ

i
ν − ∂νρiµ

)
−gρεijkρjµρkν (∂µρνi − ∂νρµi )

+g2
ρεijkεilmρ

j
µρ

k
νρ

µ
l ρ

ν
m (C.2.4)

In our deductions above we must use the following derivatives

∂
(
Ri
µνR

µν
i

)
∂
(
∂αρaβ

) (C.2.5a)

∂
(
Ri
µνR

µν
i

)
∂ρaβ

(C.2.5b)

(C.2.5a) becomes

∂
(
Ri
µνR

µν
i

)
∂
(
∂αρaβ

) = 4
(
∂αρβa − ∂βραa

)
−gρεajk

(
ραj ρ

β
k − ρβj ραk

)
−gρεalm

(
ρlαρ

m
β − ρlβρmα

)
(C.2.6)

(C.2.5b) becomes

∂
(
Ri
µνR

µν
i

)
∂ρaβ

= −gρεiakρkν
(
∂βρνi − ∂νρβi

)
−gρεijaρjµ

(
∂µρβi − ∂βρµi

)
−gρεiamρνm

(
∂βρ

i
ν − ∂νρiβ

)
−gρεilaρµl

(
∂µρ

i
β − ∂βρiµ

)
+g2

ρ

[
εiakεilmρ

k
νρ

β
l ρ

ν
m

+εijaεilmρ
j
µρ

µ
l ρ

β
m

+εijkεiamρ
β
j ρ

k
νρ

ν
m

+εijkεilaρ
j
µρ

β
kρ

µ
l

]
(C.2.7)

The Levi-Civita symbol obeys the following property

εxyzεzwv = δxwδyv − δxvδyw (C.2.8)
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using it, we get

∂
(
Ri
µνR

µν
i

)
∂ρaβ

= −gρεiakρkν
(
∂βρνi − ∂νρβi

)
−gρεijaρjµ

(
∂µρβi − ∂βρµi

)
−gρεiamρνm

(
∂βρ

i
ν − ∂νρiβ

)
−gρεilaρµl

(
∂µρ

i
β − ∂βρiµ

)
+g2

ρ

[
ρmν ρ

β
aρ

ν
m − ρlνρβl ρνa

ρlµρ
µ
l ρ

β
a − ρmµ ρµaρβm

ρβaρ
m
ν ρ

ν
m − ρβmρaνρνm

ρlµρ
β
aρ

µ
l − ρaµρβl ρµl

]
(C.2.9)

One other important differentiation begins with the definitions

Ωµν = ∂µων − ∂νωµ, ΩµνΩ
µν (C.2.10)

and we must calculate

∂

∂(∂αωβ)
ΩµνΩ

µν . (C.2.11)

Before advancing we can note

ΩµνΩ
µν = 2∂µων (∂µων − ∂νωµ) (C.2.12)

and then

∂

∂(∂αωβ)
ΩµνΩ

µν =

=
∂

∂(∂αωβ)
[2∂µων (∂µων − ∂νωµ)] =

= [2δµαδνβ (∂µων − ∂νωµ)] +
[
2∂µων

(
gµαgνβ − gµβgνα

)]
=

= 4
(
∂αωβ − ∂βωα

)
(C.2.13)
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