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Abstract

Mathematical models have proven to be a valuable tool in the understanding of phys-
iological processes in the human body [1]. The intent of this thesis is the development of
physiological models, both computational and hybrid.

A computer model is a representation of a system or process created on a computer,
to assist calculations, predictions or/and visualizations. In this work, this type of model
was used to analyse a system/make predictions.

Using a collections of several physiological variables from 7 different surgical proce-
dures, a relation between the recorded variables (measures) and the bi-spectral index, BIS,
was sought. This index can be used during surgeries to monitor the anaesthetic state of a
patient, but can be very difficult to obtain or reliably be used. For this reason, an interest
arise in using other measures to complement the BIS, in order to aid physicians when
monitoring a patient. From the analysis performed, a correlation between some measures
and the BIS was found, and using these correlation two different type of models were
developed.

A hybrid model can be defined as the usage of computer models in parallel with
transducers. In this thesis, a remote lab simulating the ingestion of a drug was developed
and compared to a computer model for the ingestion of paracetamol.

This model was achieved by using a three-tank process, in which each tank represents
a different body compartment (intestine, bloodstream or bladder). The developed model
was then ported to a web interface in order to be used as a remote lab, allowing simulation
of ingestions to be performed remotely and monitored using water level sensors and a
camera. An off-line model was developed as well in order to provide a testing ground for
users to experiment different settings. The development of this lab resulted in a demo in
a conference (appendix H), an article submission to a journal and is going to be used as
a teaching aid in the subject ”Modelos Computacionais de Processos Fisiológicos”.
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Resumo

Os modelos matemáticos têm provado ser uma ferramenta valiosa para a compreensão
de processos fisiológicos do organismo humano [1]. O objetivo desta tese foi o desenvolvi-
mento de modelos fisiológicos, tanto computacionais como h́ıbridos.

Um modelo computacional é uma representação de um sistema ou processo criada em
computador, como aux́ılio ao cálculo, à previsão e/ou visualização dos mesmos. Nesta
tese estes modelos foram usados para analisar um sistema e fazer previsões.

Usando uma coleção de diversas variáveis fisiológicas de 7 procedimentos cirúrgicos
diferentes, foi pesquisada uma relação entre as variáveis recolhidas e o ı́ndice bi-espetral
(BIS). Este ı́ndice pode ser utilizado durante cirurgias para monitorizar o estado anestésico
de um paciente, mas pode ser muito dif́ıcil de obter ou de ser utilizado com segurança.
Por esta razão, houve interesse em utilizar outras variáveis para complementar o BIS, a
fim de auxiliar os médicos durante a monitorização de um paciente. A partir da análise
efetuada, foi encontrada uma correlação entre algumas das variáveis e o BIS, e apartir
desta correlação dois tipos diferentes de modelos foram desenvolvidos.

O modelo h́ıbrido pode ser definido como um modelo que combina transdutores e
instrumentos com um modelo de computador para estudar ou simular um processo. O
modelo desenvolvido simula a ingestão, propagação e excreção de um fármaco no corpo
humano, neste caso o paracetamol.

Este modelo foi conseguido usando um processo de três tanques, em que cada tanque
representa um compartimento diferente do corpo (intestino, corrente sangúınea ou bexiga).
O modelo desenvolvido foi adaptado para uma interface web, a fim de ser utilizado como
um laboratório remoto, permitindo que se executem remotamente simulações de ingestões
e estas possam ser monitorizadas por meio de sensores nos tanques e uma câmara de video.
Foi também desenvolvido um modelo off-line, a fim de proporcionar uma área de testes
para os utilizadores experimentarem diferentes configurações. Do desenvolvimento deste
laboratório resultou uma demonstração numa conferência (apêndice H), uma submissão
de um artigo para uma revista da área e irá ser usado como um auxiliar no ensino da
disciplina ”Modelos Computacionais de Processos Fisiológicos”.
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Chapter 1

Introduction

This project was developed in the Department of Informatics Engineering (DEI) of
the Faculty of Sciences and Technology of the University of Coimbra (FCTUC), within
the Biomedical Engineering Masters program.

1.1 Motivation

Mathematical models have proven to be a valuable tool for the understanding of phys-
iological processes in the human body [1]. As modelling techniques evolve in academia,
porting such techniques onto real-life applications is a very appealing proposition. They
can be used in different contexts, from helping physicians to establish a diagnosis, dis-
cover previous unknown patterns and relations, predict the behaviour of an action or in
a teaching environment.

In other engineering fields, such as mechanical or electrical engineering, modelling is a
common practice and with the surfacing of powerful computer systems in recent time, is
getting increasing popularity. In recent years, three major areas of influence were found
where mathematical modelling finds application in a physiological environment: medical
research, education and supporting clinical practices [10], especially in the pharmaceutical
R&D where silicio studies and trial simulations complement experimental approaches [11],
or medical simulation (a brief history starting in 1938 can be found in [12]).

1.2 Objectives

The main objective of this thesis was the building of physiological models, both com-
putational and hybrid (a mixture of computer based controllers and real world equipment).

A computer model is a representation of a system or process created on a computer,
to assist calculations, predictions or/and visualizations. In this work, this type of model
was used to analyse a system/ make predictions.

In the development of a computer model, a dataset made up by a set of 43 biomedical
measures recorded during surgery of seven different patients, in a collaboration between
the Anaesthesiology Department of the of Centro Hospitalar e Universitário de Coimbra
(CHUC) and the Centre for Informatics and Systems (CISUC) of the Department of
Informatics Engineering of the University of Coimbra.
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Based upon other studies and research and an interest to use available data from real
patients, an idea of constructing a model that could predict the anesthetic state of a
given patient by modeling the bi-spectral index, BIS, arose. An insight about this vari-
able is given in the beginning of chapter 4. The main objective was the development of
a model that uses the input of four different variables to make a prediction about the BIS.

A hybrid model can be defined as the usage of computer models in parallel with
transducers. In this thesis, a remote lab simulating the ingestion of a drug was developed
and compared to a computer model for the ingestion of paracetamol.

The objective of building a hybrid remote lab in this thesis context was to provide
a platform where the intake, propagation and excretion of a drug can be simulated and
viewed remotely. In conjunction with the online hybrid model, an offline simulation of
the process was developed.

By being a remote lab, the simulation and the model can be used in a teaching envi-
ronment, to explain what is an equivalent model and how can one be developed.

The remote lab experiment was used as a demonstration at Experiment@ Portugal
International Conference in Azores (exp.at’15), where the process was remotely controlled
[13] (appendix H). An article will also be submitted to the International Journal of Online
Engineering (iJOE) [14]. This lab will also be used during the subject ”Modelos Com-
putacionais de Processos Fisiológicos” as a teaching aid.

In summary, the objectives of this thesis were the development of a BIS predictor
based on other recorded variables and the development of a drug ingestion model adapted
into a three-tank system integrated in a remote lab environment.

1.3 Planning

Figure 1.1 presents the time spent for each stage of this thesis. For each major stage
there is a brief description of the work done.

1.3.1 Literature review

The state-of-the-art was developed during the first semester. Included in the knowl-
edge discovery period are the meetings with physicians from Internal Medicine A of the
CHUC. The purpose of these meetings was to query the units physicians about possible
questions to be answered in line with this thesis.

During this period, different physiological systems were study in order to find the most
suitable in this context.
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Work Plan
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Description
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Figure 1.1: Gantt chart representing the work plan.

1.3.2 Case studies

Hybrid model

The first of the two models developed was the hybrid model, due to a hard deadline
for submission and presentation of this model at the exp.at’15 conference. During this
period, research was done about other case studies using remote labs, control models, sys-
tem limitations and capabilities and alternative models. At the same time, the platform
used to access and send control values to the tank pumps was being developed by Vitor
Sousa in the context of his master thesis [15]. After exp.at’15, an offline model was also
developed.

During several discussions on what hybrid model should be developed based on the
state of the art, the possibility of using a remote lab to model and simulate a drug
ingestion, propagation and excretion surfaced was a good choice.
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To achieve this objective, a three-tank process, coupled with two voltage controlled
pumps, an ADC/DAC controller interface, a computer controlling the process and an IP
webcam were used. Also, a web interface that allows the simulation of a drug ingestion
in ’real time’1 and monitor the water tank reaction, was developed, as well as an offline
simulation in order to compare the results obtained by the online model and, if the remote
lab cannot be accessed, be a replacement of it.

The online model was showcased at exp.at’15 conference in Azores (appendix H), will
be used as a teaching aid and an article will also be submitted to the International Journal
of Online Engineering (iJOE) [14].

Computational model

A common metric to assess a patient level of anaesthesia is the BIS. One of the main
problems encountered when using the BIS2 was missing values. One of the reasons that
can explain these missing values is the interference caused by the electric scalpel or a low
signal quality.. The state of the art include some examples where other measurements are
used in conjunction with the BIS to provide an alert system in the Intensive Care Unit
(ICU).

The objective of this case study was to develop models that could predict the value of
the BIS using physiological measures.

1.4 Document structure

In this thesis two different types of models were developed: a computational and a
hybrid models.

For both models, the state of the art is presented in the next chapter, in order to
contextualize the choice of the physiological process underlying each of them. The state
of the art chapter is divided in 4 different sections, starting with the definition of physio-
logical systems, some examples, the case studies and a brief conclusion.

Each of the chosen models has its own chapter, starting with the hybrid model (chap-
ter 3). This chapter begins with a description of a drug ingestion model, followed by
the adaptation to the three-tank system and an overview of the developed platforms to
interface with the model.

Chapter 4 corresponds to the anaesthesia monitoring computer model built using the
available datasets. This chapter is divided in a description of the datasets and their anal-
ysis, the development of models and a brief discussion.

In the last chapter, the conclusions and future work are presented.

1Process is accelerated, instead of taking hours takes minutes
2Based on CHUC dataset.
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Chapter 2

State of the Art

This chapter starts with a brief discussion about the definition of a physiological model
followed by some examples, a review about each of the case studies used in this work and
a summary.

In the preparation of this thesis a substantial amount of time was spent during the
first semester in the research of different types of physiological systems that could be
modelled, such as the liver or the glucose regulatory system.

2.1 Physiological models

Modelling and simulation of physiological systems has long been the subject of inter-
disciplinary research, especially in recent years with the availability of accurate clinical
measurements and powerful computer systems [16].

Seven different generic purposes for physiological models1 have been identified [17]:

• To determine the structure of a system;

• To compute parameters of interest;

• To integrate information on a system;

• To predict responses to a perturbation;

• To derive mechanistic principles underlying the behaviour of a system;

• To identify differences under different conditions;

• As an educational tool.

As an educational tool, the simulation of physiological systems is a very helpful tool2.
Coupled with an explanation of the model behind the simulation, it allows the students
to observe the behaviour of a system in a low risk environment while providing an insight
into the modelled system.

1A model can be defined as a simplified representation of a system
2To build these simulations, often an iterative process is used in an effort to match the simulations to

the real biological systems [2].
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Additionally, as simulation often goes together with visualization (the results of changes
made by a student can be directly shown on the screen), its usage is appealing to the
students [2].

As tool to discover new relations or principles underlying the behaviour of a sys-
tem, modelling and simulation of physiological systems have helped in the study of their
dynamical behaviour and to estimate and optimize parameters that cannot be directly
measured.

To build these models, two different types of information can be used: a-priori knowl-
edge about the process or experimental data (by measure the inputs and outputs of the
system). These models should have two important characteristics [2]:

• Be a simplification of reality (but not too simple that its answers are not true);

• Be simple and easy to use;

A model can be used in three different concepts represented in Figure 2.1.

Figure 2.1: Model concepts. (Taken from [2])

From these concepts, the analysis/prediction concept is the one that best fits the sys-
tems modelled. In the drug ingestion model, a drug concentration in the body throughout
the time is predicted following an ingestion. In the anaesthesia monitoring model, the
BIS is predicted using a combination of physiological measures recorded during a surgery.

Models can be classified in several ways: deterministic versus stochastic; linear versus
non-linear; kinetic versus dynamic (in [2], the authors identify physiological systems as
being normally dynamic) and compartmental versus non-compartmental.

The latter (compartmental) is the most adopted model when physiological systems are
modelled. A compartmental system consists of two or more compartments interconnected
(when there is exchange of materials by diffusion, chemical reactions, etc.). For example,
the ingestion and subsequent metabolism of a drug can be represented by such models [4].

Another interest topic of analysis is the usage of equivalent models using physical
systems to describe a physiological system. The variables from each systems have a direct
relationship to the physiological mechanisms [18].
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For example, the cardiovascular system can be modelled by an equivalent electric cir-
cuit (Figure 2.2.(a)) known as the windkessel model. In this circuit the voltage represents
the blood pressure, the current represents the blood flow, Cp and Rp are the compliance
and the resistance of the systemic arterial tree and Zo the characteristic impedance of the
proximal aorta.

Another example is the representation of a skeletal muscle using mechanical elements
(Figure 2.2.(b)).

(a) Early analog model of a cardiovascular sys-
tem. (Taken from [18])

(b) Mechanical analog model of
skeletal muscle. (Taken from
[18])

Figure 2.2: Analog equivalent models of physiological systems.

One advantage of using physical systems in building equivalent models is the usage
of components that have a well-known behaviour to describe quite complicated systems.
By using different combinations of these components, a system can be modelled and its
mathematical description easily retrieved (by applying the conservation of charge, energy,
mass and force laws).

Figure 2.3 is a summary of the equations and forces used in the analogies. A more
complete table can be seen in Figure A.1 in appendix A.

Figure 2.3: Fluid, mechanical and electrical analogues. (Taken from [3])

In the next section some examples of different physiological models will be reviewed
(with the exception of the case studies).
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2.2 Examples of physiological models

The work consisted initially in the research of different models of different systems
in order to assess which would best fit in this thesis purpose. This search started with
a general system search and then a more detailed and compartmentalized system search
was performed.

One of the most famous and cited physiological model is the circulatory system model
by A.C. Guyton in 1972 [19]. A.C. Guyton and his team developed a model where a
whole body circulatory system is represented. This was done by dividing the system into
small subsets of organs or major fluid vessels, with the inclusion of their regulatory agents.
Using this model, Guyton in 1972 was able to test a variety of physiological hypotheses.
In appendix A, Figure A.2 shows this computer model of the cardiovascular system, while
in Figure 2.4 a section of this scheme including the kidney and the excretion mechanism
can be seen in more detail.

Figure 2.4: Detail section (kidney dynamics and excretion) of the computer model of the
cardiovascular system developed by Guyton. (Full model in appendix A, Figure A.2)

Based on the circulatory model and after several improvements, the hummod model
[20] provides a platform to understand the complex interactions of integrative human
physiology and allows the simulation of different interventions on the human body. Their
creators claim it to be ”the best, most complete, mathematical model of human physiol-
ogy ever created”, with more than 5000 variables describing the human body physiology
and build with the information from a collection of more than 5000 papers.

As mentioned in the previous section, compartmental models are often used to describe
and to make predictions on a host of physiological systems. In ”WinSAAM: a windows-
based compartmental modelling system” [21], the authors describe a platform that can
be used to model and simulate linear and non-linear compartmental models, and illus-
trate some usages in modelling alcohol metabolism, drug metabolism and glucose/insulin
kinetics.
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After this general overview of systems, a narrower research was performed. One of the
systems that aroused the most interest was the liver due to the connection of this research
group with the Internal Medicine Unit of the CHUC. About this topic, two different ap-
proaches were taken: the review of some metabolic related mathematical models and the
review of pure data driven models.

While the first approach returned some interesting results - like the HepatoNet1 [22],
an improvement from the metabolic network Recon1, with more than 200 metabolic func-
tions, heavily used in drug research (since it can simulate the effect a certain drug has
on the hepatic enzymes and output the changes in some metabolic functions) or a math-
ematical model of Hepatitis C evolution in a damaged liver [23] (where the evolution of
the disease was linked to the density of hepatocytes) - this topic was discarded due to
their complexity for the usage in a hospital context.

From the second approach, the black-box models ”predicting mortality in patients
with cirrhosis of liver with application of neural network technology” [24] (by developing
and comparing a neural network capable of predicting one year plus mortality with a
logistic regression model and the gold standard, the Child-Pugh’s score) and ”an intelli-
gent decision-making model combining genetic algorithms and neural networks for hepatic
cancer diagnosis” [25] (where a genetic algorithm is used to find the optimal parameters
to build a neural network instead of training it) were the most interesting application of
data driven models in a hepatic context. It should be noted that both models refer to
cirrhosis, since it is the most prevalent liver disorder in the CHUC. This topic was also
discarded due to scheduling problems with the CHUC physicians.

Other systems and organs models were researched: Epilepsy [26, 27, 28], due to the
connection of one of the supervisors to this topic; Regulatory systems [29, 30, 31, 32, 33,
34, 35, 36, 37], being the most natural systems to be modelled since they can be treated
as a control problem; and some other models about the Liver [38, 39, 40, 41, 42, 43, 44].

2.3 Case studies models

After an evaluation process, two different physiological systems, a drug ingestion pro-
cess and the monitoring of a patient anaesthesia, were selected.

2.3.1 Drug ingestion, progression and excretion models

In [8], the authors define pharmacokinetics as a prediction of the time-dependent con-
centration of a substance in a living system. There are two different approaches to model
this concentration: a classical approach, which utilizes a lumped-compartmental system,
and a physiologically based approach, which separates the body into multiple anatomi-
cally correct compartments interconnected through the body fluid system.

Although these models are useful, they cannot describe a whole body system composed
by different tissues and model the drug affinities for certain organs. By using a classical
approach, the solution of the differential equations that describe the system consist on a
series of decaying exponentials.
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Also in [8], it is mentioned that the first use of a physiological approach in pharma-
cokinetics appeared in the 1930 [45], when mass balance equations for specific organs
were used. Later in 1960 [46], capillary, interstitial and cellular sub-compartments were
included in models. Figures A.3 and A.4 in appendix A represent a physiologically based
model and the vascular, interstitial and intracellular spaces of an organ.

The ingestion and absorption of a drug can be modelled by a compartmental absorption
and transit (CAT) model, where the intestine is divided in a n number of compartments.
The usage of this model assumes that there is passive absorption, instantaneous dissolu-
tion, linear transfer kinetics for each segment, and minor absorption from the stomach
and colon. From the most common drug intake routes (intravenous, subcutaneous, in-
tramuscular and oral ingestion), the absorption model can only be circumvented if an
intravenous route is chosen [6].

Other models for drug ingestion and absorption can be seen in [47, 48, 49].

In [6], there is a comprehensive overview of all the factors involved in the transfer of
drugs across membranes, delivery systems, distribution, metabolism and excretion. Due
to the three-tank system used, some simplifications on the distribution, metabolism and
excretion mechanisms had to be made. The distribution and metabolism mechanism are
condensed in the excretion mechanism, represented by the drug clearance, or the rate of
a drug elimination divided by its concentration.

There are already a number of remote labs using the coupled-tanks process, mainly
in water level control problems. In [50], the authors present the design and development
of a web-based laboratory experiment used for teaching and do research. In this experi-
ment the user can implement four different controllers (manual, PID, state-space or fuzzy
knowledge) for a two coupled tank experiment.

A similar lab is presented in [51], where the authors use a three-tank process similar
to the one used in this thesis. In this remote lab, the user can ’control’ the valve opening
between and out of the tanks3 and control the pumps. It also provides a simulated view
of the process, a live feed or an augmented view (overlay of the simulated view on top of
the live view).

In the next chapter, the equations, simplifications and parallel made between a drug
ingestion, progression and excretion model and the three-tank process used will be ex-
plained.

3The interface allows for the specification of the valve opening, but when in operation the opening is
manually controlled.
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2.3.2 Anaesthesia monitoring

Monitoring the state of a patient subjected to general anaesthesia is a difficult and
a highly demanding task for the anaesthesiologist. General anaesthesia of a patient is
maintained by a combination of hypnotic agents, inhalational agents, opioids, muscle re-
laxants, sedatives, and cardiovascular drugs, along with ventilatory and thermoregulatory
support [52].

In [52], they identify heart rate and blood pressure rapid changes, perspiration, tear-
ing, changes in pupil size, the return of muscle tone, movement and changes in EEG
measures of brain activity as indicators of inadequate general anaesthesia. Four EEG
patterns defining the phases of the maintenance period are also shown, as well as the
description of the changes expected when emerging from anaesthesia state and the mech-
anism of unconsciousness induced by general anaesthesia (details of the changes in the
nervous system).

Similar to the liver, a research into intelligent models was done: In [53] a rule based
model that generates two types of alarm depending on the seriousness and quickness of
response, aiding the anaesthesiologist in noticing changes in the patient earlier was de-
scribed. In [9] a clinical decision support and closed-loop control for cardiopulmonary
management and intensive care unit sedation using expert systems was presented. These
systems combine the current formula to obtain the dose of a sedative agent in the ICU,
the Motor Activity Assessment Score, with other variables, and using a Bayesian network
to predict the correct sedative agent. A graph representing this network can be seen in
appendix A Figure A.5.

In the last decade, a new system is being used to aid in assessing the patient anaes-
thesia. This system returns an index named the bi-spectral index, or BIS, which is based
on the inter frequency phase relationships in the electroencephalogram (EEG) and in-
corporates features that correlate with the effects of hypnotic drug (derived from a large
patient database) [54]. It was reported to be efficient on predicting responses to noxious
stimulation during propofol anaesthesia [55]. This monitoring type is one the techniques
that uses objective methods.

Other approaches exist that consider temperature, ventilation, hearth rate and other
variables. Those approaches are considered subjective monitoring, because they depend
on the anaesthetist evaluation [56]. In [57] an overview of both objective and subjective
methods is provided.

However, this index is not being used in a widespread way as an absolute indicator
of patient awareness. The lack of studies that prove the effectiveness of the BIS index
limits its wide acceptance[58], while in [59] their findings do not support routine BIS
monitoring as part of standard practice. Nevertheless, the BIS was reported as a tool to
decrease some post operation delirium and cognitive decline in elderly people [60] and to
help reducing the requirement of propofol for sedation during regional anaesthesia [61].
In [62], the authors conclude that ”the relation between BIS and sedation depth may not
be independent of anesthetic agent. Quality of recovery was similar between drugs, but
excitement occurred frequently with sevoflurane” and that the ”BIS was a better predic-
tor of propofol sedation than sevoflurane or midazolam”. In the available datasets, the
drugs used were mainly sevoflurane and propofol.
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Another topic of interest in the subject of anaesthesia monitoring is the relation be-
tween the BIS and other physiological variables. In [63], the authors found that between
four electrophysiological variables (the BIS, 95% spectral edge frequency, median fre-
quency and the auditory evoked potential index (AEP)), the BIS was the variable that
best correlated with the concentration of propofol, while the AEP index appeared to dis-
tinguish the awake from asleep state. In [64], the authors compare their scale to monitor
or quantify sedation of patient in the ICU - the Sedation-Agitation Scale (SAS) - against
the BIS and another scale, the Visual Analog Scale (VAS). Their conclusion shows that
the SAS agreed with the BIS and the VAS for long term monitoring of a patient sedation
level in the ICU.

2.4 Summary

In this thesis two different process were modelled: a drug ingestion, propagation and
excretion process and an anaesthesia monitoring process. These processes were chosen
due to either the specific laboratory equipment available (hybrid model) or the datasets
available (anaesthesia models).

In the first model, a classic approach to model the pharmacokinetics of drugs was used.
After the development of this, an equivalent model was developed to simulate the process
using a three-tank system. In the end, this equivalent model was integrated into a remote
lab environment to be used as a research and educational tool. Due to the limitations of
the laboratory equipment, a classical approach was used, the intestine was represented by
one compartment and the ingestion was modelled by the flow of a water pump.

In the second model, a relation between one index used to monitor the state of anaes-
thesia of a patient (the BIS) and other recorded variables was found, in an effort to find
an index that could be used when there missing values.
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Chapter 3

Modelling and simulation of a
physiological process using a remote
lab

In this chapter the steps taken to develop and integrate a physiological model for a
drug ingestion, propagation and excretion into a remote lab are presented.

3.1 Drug ingestion, propagation and excretion model

When reviewing the literature, it was found that a compartmental model for pharma-
cokinetics was the best fit for this process. The simplest model is using a two-compartment
system, modelling the gastrointestinal (GI) tract, bloodstream and their interactions. Fig-
ure 3.1 is an illustration of this approach.

Figure 3.1: Two-compartment drug ingestion and metabolism model. (Adapted from [4])

After oral ingestion, the drug enters the GI tract, where it is absorbed to the blood-
stream. Afterwards, it is distributed throughout the body to be metabolize and finally
eliminated.

For the first compartment, the variation of the mass of drug in this compartment can
be modelled by equation 3.1.

dq1(t)

dt
= u(t)− f12q1(t) (3.1)
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In equation 3.1, q1(t) represents the mass of the drug in compartment 1 at a certain t
time, u(t) the ingestion rate and f12 a proportional constant to the mass (or concentration)
of a drug in the compartment (in the simplest case of first-order kinetics). This equation
is a mass balance equation.

The same can be determined for the second compartment (equation 3.2).

dq2(t)

dt
= f12q1(t)− f2Oq2(t) (3.2)

In this equation, the first term of the difference represents the inflow rate to the com-
partment (flowing from the first to the second compartment) and the second term the
outflow rate from the compartment. Applying the assumption of first-order kinetics, this
second term is assumed to be proportional to q2(t) (the mass of the drug in compartment
2), with f2O the new constant of proportionality.

Another compartment can be added to this model, the bladder, following the same
approach and first-order kinetics. Figure 3.2 is an illustration of this approach.

Figure 3.2: Three-compartment drug ingestion, metabolism and excretion model.

The third tank model, like the human bladder, has 3 different conditions: it can be
filling up, it can be holding the current amount of liquid or it can be releasing fluid.

dq3(t)

dt
= f2Oq2(t) (3.3)

In the filling up condition, equation 3.3, the changes in the mass of drug in the compart-
ment ( q3(t)) are due to the elimination of the drug from the bloodstream (compartment
2).

When there is no elimination in the second compartment, equation 3.3 yields to 0,
the second condition. In this condition, the mass of drug in the compartment is kept
unchanged.

If this mass crosses the maximum amount of allowed by the system, then the bladder
is emptied. Equation 3.4 represents this new condition.

dq3(t)

dt
= −f3Oq3(t) (3.4)
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3.1.1 Example - Paracetamol intake

Paracetamol (also called acetaminophen) is a widely used analgesic and antipyretic
agent.

Some of the parameters that describe a drug and the effects it has on the body are1:
bioavailability (fraction of a dose of drug that reaches the systemic circulation in an
unchanged form [65]), absorption rate constant, volume of distribution (proportionality
factor between the total amount of drug present in the entire body and the concentration
on the plasma [66]), clearance (measure of the ability of the body/organ to eliminate
a drug from the blood circulation [66]), extraction rate constant and the time to peak
concentration in plasma.

Some of these parameters can be calculated, for example the rate of excretion and the
rate of absorption. In [67], equations 3.5 and 3.6 are used to calculate this rates.

Cl = ke . Vd <=> ke =
Cl

Vd
(3.5)

tmax =
ln(ka)− ln(ke)

ka − ke
(3.6)

In equation 3.5, Cl is the total body clearance and Vd is the volume of distribution.
In equation 3.6, ka is the rate of absorption and tmax is the time to peak concentration in
plasma. In both equations ke is the rate of extraction/elimination.

For paracetamol, the value for clearance, volume of distribution and time to peak
concentration are described in [68]. Table 3.1 contains these values plus the mass ingested
and the calculated rates using the equations above.

Table 3.1: Variables used to simulate a paracetamol ingestion, in fasting and using a oral
solution.

Variable Value
Bioavailability 90 %
Clearance 22.8 (l/h)
Volume of distribution 65 (l)
Time to peak 15 (min)
Body weight 70 (kg)
Ingested drug 840 (mg)
Rate absorption 15.517 (h−1)
Rate elimination 0.35 (h−1)

To simulate an ingestion, equations 3.1 and 3.2 were used. In equation 3.1, u(t) is
zero considering that all of the paracetamol is available in the intestines at t = 0. A
situation where u(t) would not be zero is when a slow release tablet is considered, where
the paracetamol is slowly made available in order to maintain a certain concentration in
the blood.

1When it is considered an oral ingestion
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In equation 3.2, f12q1(t) is multiplied by the bioavailability and then divided by the
volume of distribution to reflect the concentration of the drug in the blood.

(a) Mean plasma concentrations of
paracetamol. White circles is data
from a 12 mg/kg oral doses. (Taken
from [68])

(b) Simulated oral ingestion of a 12 mg/kg oral
dose.

Figure 3.3: Comparison between real patient data and simulation.

Figure 3.3.(a) and 3.3.(b) are two different oral ingestion of 12 mg/kg doses of parac-
etamol, one from real data and taken from [68] while the other is a simulation using the
values from Table 3.1.

In both, the peak concentration value and the time to this peak are very similar.
In [68] it is also mentioned that absorption from tablets is slower, taking approximately

1 hour to reach the peak concentration.

Recalculating the absorption rate for the tablets, the new value for ka is 2.19 h−1. The
result of the simulation for the oral intake of tablets of paracetamol is displayed in Figure
3.4 in blue.

Figure 3.4: Overlay between a simulated intake of paracetamol using two different pro-
cesses: solution and a tablet.
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Due to a slower absorption rate, the time to the peak concentration is higher and the
value for this peak is lower.

In summary, in order to use a two-compartment first-order drug pharmacokinetic
model for any drug, the values of Table 3.1 have to be known.

3.1.2 Equivalent model

An obvious equivalent model for the ingestion, progression and excretion model is the
amount of fluid in leaky tanks [4], as pictured in Figure 3.5 for the two-compartment
ingestion and metabolism model.

Figure 3.5: Two-tank equivalent model for the process represented in Figure 3.1. (Taken
from [4])

In this equivalent model, the mass of a drug is represented by the change in water
level from a reference level.

For this thesis a three-tank system was used as an equivalent model. Figure 3.6 is a
picture of the system used, the DTS200 three-tank system manufactured by Amira GmbH
(for more technical information [51] or [5]).

Figure 3.6: Three-tank system by Amira. (Figure taken from [5])

The system used is not the ideal equivalent model. A cascade system (like the one
represented in Figure 3.5) is a better model, since all the tanks are mass uncoupled. This
mass uncoupling does not occur in the system used, imposing some level restrictions to
the coupled tanks. For example, the level of the centre tank cannot be higher than the
level of the left tank, since flow from the centre to the left tank is not assumed.
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To best represent the three-compartment model, the three-tank system was divided
into two sections separating the GI tract and the bloodstream from the bladder. A scheme
of this division can be seen in Figure 3.7.

Figure 3.7: Scheme for the division of the three-tank system.

By using such division, the level constraint imposed by the right tank (because of the
mass coupling) on the rest is eliminated and the control of the right tank is easier.

hl(t) and hl0 are the left tank current and reference water level, hc(t) and hc0 are the
centre tank current and reference water level and hr(t) and hr0 are the right tank current
and reference water level.

clc is the flow coefficient between the left and centre tank and cco and cro are the
outflow flow coefficients of the centre and right tanks, respectively.

fp1(t) is the flow pumped by the pump1.

In Table 3.2, a relation between the equivalent and physiological model variable is
presented

Table 3.2: Relation between the physiological and the equivalent model variables.

Physiological model Equivalent model
Variable Description Variable Description
q1(t) Mass quantity first compartment hl(t) - hl0 Level difference left tank
q2(t) Mass quantity second compartment hc(t) - hc0 Level difference centre tank
q3(t) Mass quantity third compartment hr(t) - hr0 Level difference right tank

f12
Flow from the first to the second

clc
Flow coefficient from the

compartment left to the centre tank

fO2
Flow from the second to third

cco
Flow coefficient for the

compartment centre tank outflow

fO3
Outflow from the third

cro
Flow coefficient for the

compartment right tank outflow
u(t) Inflow for the first compartment fp1(t) Inflow for the left tank
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3.2 Three-tank system model

3.2.1 Right tank (Bladder) equations

The right tank of the three-tank system (Figure 3.7) is used as a virtual bladder,
absorbing the perturbation caused by the drug intake. The water level is controlled by
the pump2, which is acting as a virtual kidney.

When the water level reaches a certain threshold, the bladder stops absorbing the
perturbations and empties. Figure 3.8 represents the bladder tank (section two) of Figure
3.7.

Figure 3.8: Right tank representation.

Considering that the top of the water column and the discharge valve are at the same
pressure (in this case atmospheric pressure), the flow rate at the valve is [69, 70]:

Qout(t) = ac
√

2gh(t) (3.7)

With a being the cross section area of the discharge pipe, c the flow coefficient for the
discharge pipe, g the gravitational acceleration and h the water level of the tank at the
current time t.

Using the mass conservation equation, the variation of level with time can be obtained
using 3.8.

4V (t) = dh(t)A

4V (t) = (Qin(t)−Qout(t))× dt (3.8)

dh(t)

dt
=
Qin(t)−Qout(t)

A

In equation 3.8, A refers to the cross section area of each tank.
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Replacing equation 3.7 in 3.8:

dh(t)

dt
=
Qin(t)− ac

√
2gh(t)

A
(3.9)

Equation 3.9 represents the variation in level for a single tank.

For the the right tank used in this work, then 3.9 yields 3.10.

dhr(t)

dt
=
fp2(t)− acro

√
2ghr(t)

A
(3.10)

In equation 3.10, fp2(t) is the flow being pumped by the pump2 into the right tank,
and is controlled depending on the current bladder condition.

If the bladder is filling, then the pump2 flow will be proportional to the outflow of the
centre tank. On the other hand, if the bladder is emptying then the flow will be zero.

If the bladder is maintaining the level of water inside, then the flow of the pump will
be equal to the flow of water exiting at the current height.

3.2.2 Left and centre tanks (Intestines and bloodstream) equa-
tions

The left and centre tanks of the three-tank system act as the intestines and blood-
stream, respectively, while pump1 serves as an intake mechanism, increasing the water
level of the left tank. This perturbation is then passed on to the centre tank and later
excreted by the right pump into the right tank. Figure 3.9 represent this two-tank section
(section one in Figure 3.7).

Figure 3.9: Coupled tanks fluid level system, with one input and one output.
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By applying the mass conservation equation, the variation of level with time for each
tank can be obtained. The left tank is represented by equation 3.11 and the centre tank
is represented by equation 3.12.

dhl(t)

dt
=
Qin(t)−QLC(t)

A
(3.11)

dhc(t)

dt
=
QLC(t)−Qout(t)

A
(3.12)

Assuming each flow obeys the Bernoulli equation2:

QLC(t) = aclc
√

2g(hl(t)− hc(t)) (3.13)

Qout(t) = acco
√

2ghc(t) (3.14)

Replacing equations 3.13 and 3.14 in equations (3.11) and (3.12), the final equations
representing the variation of each tank water level can be obtained:

dhl(t)

dt
=
Qin(t)− aclc

√
2g(hl(t)− hc(t))
A

(3.15)

dhc(t)

dt
=
aclc

√
2g(hl(t)− hc(t))− acco

√
2ghc(t)

A
(3.16)

3.2.3 Model considerations

To tune the parameters of the three-tank system to model and simulate a drug inges-
tion, progression and excretion, an analysis of a drug mass evolution in the human body
with time was done.

In Figure 3.10 a generic drug concentration evolution for a single dose oral adminis-
tration is represented, with a very similar curve as the curves in Figure 3.4

Figure 3.10: Temporal characteristic of a drug effect for a single dose oral administration.
Cp represents the plasma drug concentration. (Taken from [6])

2In equation 3.13 it is assumed that the flow of water only occurs from the left tank to the centre
tank.
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There are two main phases in this figure: before the peak and after the peak. Before
the peak, the drug concentration increases as the drug continues to be absorbed and dis-
tributed. When the peak is reached, the elimination period starts3.

The controller for the right tank (bladder) only starts to accumulate water when this
peak is reached, to simulate this elimination period.

In the simulation of the absorption of paracetamol, it is considered that all the parac-
etamol is available for absorption in the beginning of the simulation. This phenomena is
not possible to replicate since there are not any computer controlled valve, which would
allowed to accumulate all the water needed to represent the mass of the drug.

Also, since the valve in between both tanks allows flow in both directions, the tank
representing the intestine cannot be fully depleted. In fact, the level of the left tank has
to be always higher than the level of the centre tank. Due to this constraint, the mass of
the drug is represented by the difference in height to a reference level.

Finally, since the escape valve in the left tank is kept closed, it is assumed that all the
drug ingested is absorbed.

For a tablet (1 hour to peak time) of orally ingested paracetamol, the rates of absorp-
tion and elimination are 2.19 and 0.35 h−1 respectively. The only constant that can be
changed in the equivalent equations is the flow coefficient.

In order to model the absorption rate, the valve between the left and centre tanks
was opened 75%. This percentage allows for a easier replication of the experiment if for
some reason the position of the valves is changed. From experimentation (view appendix
B) the value for the flow coefficient when the valve is open approximately at 75% is 0.4180.

When comparing with the value for the absorption rate, it is approximately 5.2 times
less. Assuming the 5.2 times relation, the flow coefficient for the outflow valve in the
centre tank should be approximately 0.067 (12%), a value very difficult to replicate due
to technical reasons.

With these values for the flow coefficients, with no height restriction and using a flow
value of 8.08 cm3/s (0.5 V control signal) to maintain the steady state base level, it take
a 3510 s ingestion at a 98.9 cm3/s (5 V) flow to achieve the peak height concentration in
the centre tank 1 hour after the start of the ingestion4. The level difference at this point
is around 7.6 m (Figure 3.11).

3The elimination process occurs in parallel with absorption. When the peak is reached, the elimination
process surpasses the absorption process

4 For a tablet of 12 mg/kg of Paracetamol it takes approximately 1 h to reach the peak concentration
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Figure 3.11: Simulation using the first iteration of an equivalent model.

Since there are height restrictions to the system (less than 60 cm) and the position of
the second valve had to be a value easily replicated, new relations were found.

For the valve position, 25% was the value chosen. This value is easily replicated and
the flow coefficient is 0.1814 (the determination of the flow coefficients is presented in
appendix B), 2.7 times higher than the older outflow flow coefficient value. Since the
value of the outflow valve is higher, the intake flow was also raised from 8.08 to 24.21
cm3/s.

Using this flow coefficient, the peak of the level difference still occurs approximately 1
hour after the ingestion, but the water level is still too high at 3.56 m (2.13 times smaller.
It is not 2.7 times smaller due to the fact it depends of both flow coefficients). Figure
3.12 represents this simulation.

Figure 3.12: Simulation using the second iteration of an equivalent model.
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The next step was to decrease this peak and the time to reach it. First, the ingestion
time was cut by a factor of 100, making it 35 s and, as a precaution, the ingestion flow
was lower from 98 to 78.64 cm3/s (5 to 4 V).

By cutting the ingestion duration, the time to peak was reduced from 3600 to 172 s
and the peak of the level difference was reduced from 7.6 to 0.05 m, a value 152 times lower.

In conclusion, by using an outflow flow coefficient 2.7 times higher and an ingestion
time 100.29 times lower to simulate an oral ingestion of a 12 mg/kg oral tablet the final
result is a concentration 152 times lower, a time to peak 20.93 faster and an overall time
in body 6 times lower (approximately 6 h in Figure 3.11 and 1 h in Figure 3.13).

Figure 3.13: Simulation using the final equivalent model.

In order to verify this relations, they were applied to a simulation of an adapted
ingestion. Figure 3.14 is a comparison between the expected and a rescale.

Figure 3.14: Comparison between a ”real” ingestion and a rescale of an adaptation.

The plots are very similar, but, since there are different approximations and the effect
of the left tank is different in both experiments, the curves do not match perfectly. The
rescale curve has decay rate higher than the expected (the rate of the ”real” curve),
reaching lower drug concentrations (water level differences) faster.
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3.2.4 Controllers

In this section an overview of the controllers used in this work is provided. For the first
section (the left and centre tanks), pump1 control signal is always 1.3 V to maintain the
desired reference level, except when there is an ingestion. The right tank control scheme
is explained below.

Right tank (bladder) controller

This is the general control routine for the right tank. There are three main control
decision points, two control processes (Release Water, described in the flowchart, and
Height Control, described latter and represented by Figure 3.17), and two major routines:
filling up/maintaining the level of the virtual bladder and its discharge.

The outcome of each control process return an updated target height, which will be
used to drive the pump controller.

These control routines are represented by the flowchart in Figure 3.15.

Start

Right tank
level >=
25 cm?

Time
>= 60 s?

Rising ?

Level Control
Release
Water

Release
Water

Level Control

Release Water:
If right tank level is greater than 20
cm then rising No

If right tank level is lower than 20 cn
then rising Yes

Yes

No
No

Yes

NoYes

Figure 3.15: Right tank level controller flowchart.

During the filling up phase (due to perturbations in the centre tank, the bloodstream)
or in maintaining the current level, the control is handled by the Level Control process
(Figure 3.17). If the level of the tank surpasses 25 cm, the Level Control process remains
in control of the tank for a period of 60 s (simulating the time a person would need in
order to reach a bathroom). After this period, the control of the bladder passes to the
Release Water process until a level of 20 cm is reached, returning then the control back
to the Height Control process.
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By using this simple controller, the two major functions of a bladder can be modelled
and afterwards simulated: the accumulation of liquid and its excretion. A level of 20 cm
was set as the lower limit due to the instability caused by the valve when the water level
is low. The threshold was set as 25 cm as an arbitrary level so a discharge could be seen
in the simulation window.

In the human body, when the amount of liquid inside the bladder reaches a volume
close to 350 /400 ml, a person becomes uncomfortably aware. This sensation is given by
stretch receptors in the bladder wall. From 400 to 600 [7] or 700 ml [71], the pressure
and awareness of a full bladder increase steeply. At 600/700 ml, there is the sensation of
pain and often there is a loss of voluntary control [71]. Figure 3.16 represents the relation
between the pressure and volume inside the bladder for a normal situation. There is a
plateau from 100 ml up to 350 ml due to the adaptability of the bladder muscles [7].

Figure 3.16: Relation between the pressure inside the bladder and the volume accumu-
lated. (taken from [7])

This process is controlled by the brain, corresponding to the right tank controller, and
mediated by afferent5 pelvic nerves, corresponding to the discharge threshold.

Level control process

The main function of this process is to check if there was a change in the water level
in the centre tank and if so an action has to be taken. In this process there are two main
decision points and two possible outcomes (increase the water level of the right tank or
maintaining it).

This control routine is represented by the flowchart in Figure 3.17.

5Long nerves connection from a sensory receptor/organ towards the central nervous system. From the
Latin afferentem, carrying info.
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Maintain level
of the right tank
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pertubation

peak?

Increase the target level
of the right tank by the

level of the pertuba-
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Maintain level
of the right tank

Yes

No

NoYes

Figure 3.17: Right tank process flowchart included in the level control flowchart (Figure
3.15.).

If the level of the centre tank does not surpasses a threshold plus a margin (due to
noisy nature of the read signal), pump2 has a flow that maintains the current water level
in the right tank (the right tank target level is not changed). If the margin is surpassed,
but the centre tank is still filling (the peak is not found), the level is also not changed.

It is only when the peak of the perturbation in the centre tank is reached that the
target level of the right tank is changed to reflect the perturbation. This controller ensures
that only the variation between the resting level of the centre tank to the peak of the
perturbation is absorbed by the right tank.

Right pump controller

The pump2 voltage is proportional to a certain level established for the right tank.
This target level is set either by the Release Water process or the Level Control process.
A simple proportional controller can be designed to fulfil this purpose.

A proportional controller (PC) can be defined as a simple linear control algorithm
characterized by a constant relationship between the controller input and output [72].
Equation 3.17 represents the PC implemented.

u2(n+ 1) = Kc × (hr0− hr(n)) (3.17)

In equation 3.17, Kc represents the adjustable parameter of the proportional mode,
hr0 and hr(n) the target and current height for the right tank and u2(n + 1) the new
control voltage for pump2. Changes in the centre tank will change the target level of the
right tank. Each time a new target level is set, it will cause the controller to adjust the
control signal for the pump in order to bring the current level to the established by the
target level.
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The adjustable parameter Kc was found by trial and error and one of the best values
found was 49.349.

To test the performance of the controller, two simulations were done: one when there
was no discharge and another when there was a discharge. In Figure 3.18 the plot for the
change in water level and change in control signals are shown.

(a) Simulation of change in the tanks
water level. Discharge threshold of 25
cm.

(b) Simulation of change in the tanks
water level. Discharge threshold of 24
cm.

(c) Simulation of change in the pumps
control signal. Discharge threshold of
25 cm.

(d) Simulation of change in the pumps
control signal. Discharge threshold of
24 cm.

Figure 3.18: Comparison between two thresholds

As it can be seen in Figure 3.18.(b), when the right tank surpassed the level of 24 cm,
there was a fall in the tank level. In Figure 3.18.(d), the green control signal is increasing,
until the right tank surpasses the threshold and the control signal goes to 0 V6. When
the right tank level is 20 cm, then the pump increases the control signal again, resuming
the function of accumulating water.

3.3 Simulation platforms

3.3.1 Computational only

A web-based computational only platform (simulating an interaction with the remote
laboratory) was adopted in order to cover network-based failures (for example an offline
server or if the power is down) of the online remote laboratory, allowing the user to perform
a drug ingestion simulation. Figure 3.19 provides an overview of the user interface.

6Lower saturation value.
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(a) Screenshot before simulating an ingestion. (b) Screenshot after simulating an ingestion.

Figure 3.19: Screenshots of the online simulation platform.

There is also an option to save the simulation data7 and an animation, mimicking the
evolution of the system when it is used online. (Figure 3.20).

Figure 3.20: Animation option for a simulation of a drug ingestion.

7Only available when using the Chrome browser.
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There are multiple input options for configuring the simulation as it can be seen on
Figure 3.21.

Figure 3.21: Configuration panel.

On the left side of the configuration panel (Figure 3.21), the user can insert the dis-
charge threshold (limited between 20 and 60 cm) and the duration of the simulation.

In the centre of the configuration panel, if the check box is ticked, the option of manu-
ally inputting the percentage of flow for pump1 and the duration of its effect is unlocked.
The percentage must be between 26 and 100%, while the duration of ingestion must be
higher than 30 s. If the ingestion time is too high, the left tank will saturate and pump1

will toggle between the chosen percentage and the base percentage.

When choosing a percentage for pump1 or the duration of ingestion, both values are
compared against a limit. If this limit is surpassed, a warning pop-up window appears
with the option to auto adjust the settings to avoid saturation (Figure C.1.(a) in appendix
C). Figure C.1.(b) in appendix C shows an example of a saturated signal and the warning
pop-up window that appears to the user.

To find the limit aforementioned, a series of simulations were performed. For each
control voltage in a range between 2 to 5 V, small increments in 0.1 V were used. For
each new voltage, 870 simulations were run using ingestion times starting at 30 and end-
ing at 900 s. The result of these runs can be seen in Figure 3.22.

The red line in Figure 3.22.A and Figure 3.22.B were found using the second derivative
of each blue line (the intake time vs. the time in the bloodstream) in Figure 3.22.A, since
there are two clear visible regions.
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Figure 3.22: Result of 26100 simulation (870 intervals time 30 control signals ) in order
to find the saturation limit of the left tank for a series of different pump1 settings.

The points were fitted using a seven order polynomial function, as represented in
Figure 3.23 and described in Table C.1, appendix C.

Figure 3.23: Fitting of the maximum intake without saturation of the left tank for each
control percentage.

Using the equations presented in Table C.1, in appendix C, each percentage input can
be used to verify if the current intake time is within the limits. Also, each intake time
input can be compared with the maximum intake time allowed for the given percentage.

In either case, if the values are not within the limits, then the pop-up window will
appear (Figure C.1.(a) in appendix C). The pop-up warns the user that a saturation is
going to occur and offers a chance to auto-adjust the value.
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The right most side of the configuration panel (Figure 3.21) provides the user with
a option to choose how much time the drugs stay in the bloodstream, within a range
starting at 622 s (30 s ingestion with a 2 V control voltage for pump1) and 2813 s (900 s
ingestion with a 2 V control voltage for pump1).

Each curve of Figure 3.19.(a) between the green and red lines represents a curve in
Figure 3.24 (the red curve corresponds to a 401 pump flow, the first percentage available
in the option box). Using these curves, is possible to display to the user only the correct
range of percentages for pump1 for each input in the time in bloodstream form.
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Figure 3.24: Curves representing the relation between ingestion time and time in blood-
stream.

To find the relation between time in the bloodstream and the intake time for each of
pump1 percentages, each curve was fitted using a third order equation and is only used in
the correspondent time intervals. The time intervals and fitting coefficients can be found
in Table C.2, appendix C.

Using the parameters from Table C.2 in appendix C, it is possible to automatically
calculate the intake duration for each pair time in bloodstream and the pump1 percentage
settings chosen.

A platform for simulate the intake of paracetamol (12 mg/kg) either in solution or in
table was also developed and can be seen in Figure 3.25 as a screenshot of the platform.
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Figure 3.25: Web-based platform to simulate the ingestion of paracetamol.

3.3.2 Remote lab platform

After the platform for simulation was built and tested, the next step was to build the
online interface that allows a user to simulate remotely an ingestion using the three-tank
lab system. The platform to perform the online experiment can be seen in Figure 3.26.

Figure 3.26: Screenshot of the remote platform for online experimentation.

The network component of the platform (communication with the data acquisition
and actuator equipment and a first version of the online platform) was done in conjunc-
tion with the informatics engineering MSc. students Joaquim Leitão and Vitor Sousa.

In addition to the graphical representation of the water tanks level and its history,
a live web-cam feed is also included, in order to compare the sensor data with the real
water tanks level.
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When the page is loaded, there is an initial setup to stabilize the water level in the
tanks. After that ,the ”Simulate ingestion” button is unlocked, and the user can simulate
a single drug ingestion that happens 10 s after the button is pressed. It causes the value
of pump1 control voltage to change from 1.3 to 4 V for 35 s (ingestion period).

Also, the first time the user pushes the button establishes the centre tank threshold.

Figure 3.27: Snapshot from the webcam feed.

Figure 3.27 shows a snapshot from the webcam feed.

The valve between the left and the centre tank is open 75% and the exit valve from
the centre tank is only open 25%.

It can also be seen that the centre tank is not coupled to the right tank, since the
valve between both tanks is closed, isolating the right tank. The exit valve of the right
tank is completely open.

The platform was successfully used at exp.at’15 conference, where an ingestion was
simulated remotely. In Figure 3.28 presents a screenshot of two consecutive ingestions.

Figure 3.28: Screenshot showing the result of two consecutive ingestions.
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3.3.3 Plot comparison and analysis

Both platforms provide similar responses when subjected to an ingestion of a drug.
Their shape are very similar, providing a good indication that the simulated behaviour is
a suitable alternative when the remote platform is unavailable, and that both controllers
are working as expected. Also, the obtained results can be reshaped and converted into
an approximation of a real drug ingestion, e.g Paracetamol.

The major difference between both platforms are the base levels and the right tank
level behaviour.

Since the base level for the left and centre tanks are very dependent on the valve
position, a small change in its angle produce a much different outcome on their levels.
Without a smart controller for pump1 or computer controlled valves, it can be sometimes
difficult to replicate the experiments. These differences can cause different thresholds to
be set with every experiment and influence the time window that allows for the perturba-
tion to be passed upon the right tank, meaning that the time where the blue line in Figure
3.28 is above the threshold maybe very small, producing smaller quantities of water to be
pumped into the right tank.

When talking about the right tank water level, small discrepancies between simulation
using the computer and simulation using the three-tank process can occur. A possible
explanation for these behaviours is the combination between a noisy signal (making it
harder to find the peak in the centre tank), a high centre tank threshold (resulting in
small quantities of water to be transferred to the right tank when an ingestion occurs)
and/or an incorrect base level (causing either the left tank level to saturate similarly to
Figure 3.19.(a)).

In Figure 3.28, when analysing the yellow line it can be seen the effects of the noisy
data. The right tank level only starts to increase some time after the peak is past, an in-
dication that the algorithm only found the downward slope in a region far from the peak.
The downward slope is found by an algorithm that compares all 4 previous points to the
current value and checks if all of them are higher than the current value (this comparison
on starts after the ingestion peak is found). If the noisy signal produces a spike in any
of these previous 4 points, then the pump2 control signal is not increased, and, therefore,
the level of the right tank is not changed.

The online platform worked as intended, being tested from a remote location without
any communication problems and allowed several ingestions to be performed.
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Chapter 4

Modelling the anaesthetic state
using real data

In this chapter a model that relates physiological input variables with the bi-spectral
index was developed.

Unfortunately, the system used to compute BIS is prune to some interferences. In our
study, the datasets have large intervals of time without data for the BIS, probably from
electrical interference when using an electrical scalpel or a low signal quality.

The following sections describe the steps taken and the conclusions obtained in the
modelling of the anaesthetic state from real data. It was tried to use state-of-the-art
variables (measures) returned by the surgery room instrumentation that are less prone to
interferences.

4.1 Datasets

The datasets used in this thesis were obtained in a previous work [56]. These datasets
are made up of several physiological measures recorded during seven different surgical
procedures. For five of those seven surgeries there are informations about sex, age, type
of procedure and a timeline describing events that occurred.

4.1.1 Variables (measures)

From the list of 46 measures, only 21 plus the BIS are used in this context. The 21
parameters are recorded by the anaesthesia station Dräger Fabius Tiro, while the BIS is
calculated by the sensor BIS QUATRO from Aspect Medical Systems, Inc.

Table 4.1 describes the measures recorded by the anaesthesia station mentioned above.
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Table 4.1: Measures recorded by the anaesthesia station Dräger Fabius Tiro.

HR Heart rate SpO2
Pulse oxygen

PLS Pulse
saturation

etCO2
Dioxide carbon final

iCO2
Dioxide carbon

PIP
Positive inspiration

expiration pressure inspiration pressure

RRc Respiration rate PEEP
Positive expiration

MAP
Mean arterial

pressure pressure

MVe Minute ventilation TVe Total ventilation RRv Respiration rate

NBPS
Systolic arterial

NBPD
Diastolic arterial

NBPM
Mean arterial

pressure pressure pressure

iO2 Oxygen inspiration etO2
Final oxygen

etSEV
Final sevoflurane

expiration pressure expiration pressure

iSEV
Final sevoflurane

etN2O
Final nitrogen

iN2O
Final nitrogen

inspiration pressure expiration pressure inspiration pressure

4.1.2 Drugs and intervals

To better analyse each one of the datasets, when information was available, a three
stage time splitting was implemented, based on annotations taken during the surgery. The
three sub-parts include data related to the conscience falling, anaesthesia maintenance and
conscience recovering.

Statements similar to ’Start of surgery’ or ’Start’ were used to mark the change from
a conscience falling to an anaesthesia maintenance state, while statements in line with
’End of surgery’ or ’End’ were used to mark the change from an anaesthesia maintenance
to a conscience recovering state.

For the datasets patient8 and patient9, no information was available.

Based on all the notes available, approximately ten different drugs were used. They
were: Atropine, Cetorolac, Cisatracurium, Droperidol, Fentanil, Metilprednisolona, On-
dansetron, Rocuronium, Sevoflurane and Tiopental. In appendix D, a list of effects and
usage for each drug can be found, while appendix E a description about the relation be-
tween drugs and the datasets is provided.

Since the quantity of information in how or why those drugs were administered is very
limited, the influence of drugs is discarded.1

Table 4.2 contains the different intervals found during the analysis of the procedure
notes.

1Except for Sevoflurane, since the administration can be measured by two of the recorded measures
(etSEV and iSEV).
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Table 4.2: Periods during surgery related to the conscience falling, anaesthesia mainte-
nance and conscience recovering. Each time is in minutes and is relative to the beginning
of the surgery.

Data set
Conscience Anaesthesia Conscience

falling maintenance recovering

Patient3 12 - 51 52 - 409 410 - 420

Patient4 04 - 22 23 - 68 69 - 81

Patient5 22 - 54 55 - 133 134 - 140

Patient7 06 - 25 26 - 85 86 - 89

Patient10 00 - 19 20 - 95 96 - 106

4.1.3 Missing data and imputation

The first analysis performed on the datasets was to assess their quality. One metric
that can be used to study each measure is the amount of data that is missing for each
dataset. If a measurement has to many missing values, it should not be further used since
conclusions drawn from such measurement (even after imputation) may not represent the
truth.

Table 4.3 provides the values in percentage of the missing values for each measure
for each data set. The green colour represents values between 0% and less than 15%,

yellow colour represents values from 15% and less than 75% and the values with colour

red between 75% and 100%.

The next question is what percentage of missing data should be the limit between
reasonable missing values and excessive quality loss. The problem in defining this limit
resides on the high values of missing values for the BIS, with the highest being 52% and
the lowest 28%, with an average of 38%. If the highest of the values mentioned before is
taken, then only three measures were to be excluded from all datasets, while using lower
values entails removing complete datasets.

Taking in account the low number of datasets available for analysis, the only excluded
measures were the systolic, diastolic and mean arterial pressures (NBPS, NBPD, NBPM),
with an average of 80% of missing values for each dataset.

The same analysis can be extended to each interval. To compare the results from each
segment, table 4.4 consists of the averages for each interval. The green colour represents

values between 0% and less than 15%, yellow colour represents values from 15% and less

than 75% and the values with colour red between 75% and 100%.
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Table 4.3: Missing value percentages for each measure for each dataset.

Variable Patient3 Patient4 Patient5 Patient7 Patient8 Patient9 Patient10

HR 0% 0% 5% 1% 1% 2% 1%

SpO2 2% 0% 13% 2% 1% 2% 2%

PLS 2% 0% 13% 2% 1% 2% 2%

etCO2 0% 0% 3% 1% 0% 2% 0%

iCO2 0% 0% 3% 1% 0% 2% 0%

RRc 6% 15% 20% 16% 6% 12% 16%

PIP 0% 0% 3% 1% 0% 2% 0%

PEEP 2% 9% 12% 15% 3% 5% 3%

MAP 0% 0% 3% 1% 0% 2% 0%

MVe 0% 0% 3% 1% 0% 2% 0%

TVe 0% 0% 3% 1% 0% 2% 0%

RRv 5% 16% 19% 13% 6% 15% 14%

NBPS 80% 78% 81% 80% 81% 80% 80%

NBPD 80% 78% 81% 80% 81% 80% 80%

NBPM 80% 78% 81% 80% 81% 80% 80%

iO2 0% 0% 3% 1% 0% 2% 0%

etO2 0% 0% 3% 0% 0% 2% 0%

etSEV 0% 0% 3% 0% 0% 2% 0%

iSEV 0% 0% 3% 0% 0% 2% 0%

etN2O 0% 0% 3% 0% 0% 2% 0%

iN2O 0% 0% 3% 0% 0% 0% 0%

BIS 28% 30% 43% 41% 52% 32% 38%

When reviewing Table 4.4, the percentages of missing data per measure are very simi-
lar among all the intervals, with the exception of measures in the conscience falling phase.
However, this phase is not crucial to this research, since maintaining a stable value of the
BIS during surgery is the mentioned benefit of using the BIS.

For the retained measures, some type of data imputation was needed if further analysis
was to be conducted on them. Based on the supported past thesis [56] and the assumption
that during anaesthesia the rate of change of each measure should be very low, a linear
interpolation was chosen as the data imputation method.

Linear interpolation, equation 4.1, uses two consecutive points ((x0,y0) and (x1,y1)) to
derive a straight line between them and subsequently use it in order to get the values in
missing (x,y).

y(t) = y0 + (x− x0) ∗ y1 − y0

x1 − x0

(4.1)
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Table 4.4: Missing value average percentages for each measure for each interval.

Variable
Full Conscience Anaesthesia Conscience

duration falling maintenance rising

HR 1% 1% 0% 0%

SpO2 3% 4% 2% 0%

PLS 3% 4% 2% 0%

etCO2 1% 0% 0% 0%

iCO2 1% 0% 0% 0%

RRc 13% 40% 0% 0%

PIP 1% 0% 0% 0%

PEEP 7% 12% 1% 2%

MAP 1% 0% 0% 0%

MVe 1% 0% 0% 0%

TVe 1% 0% 0% 0%

RRv 13% 36% 0% 0%

NBPS 80% 79% 79% 79%

NBPD 80% 79% 79% 79%

NBPM 80% 79% 79% 79%

iO2 1% 0% 0% 0%

etO2 1% 0% 0% 0%

etSEV 1% 0% 0% 0%

iSEV 1% 0% 0% 0%

etN2O 1% 0% 0% 0%

iN2O 0% 0% 0% 0%

BIS 38% 26% 38% 13%

More complex data imputation methods could have been used, but taking in account
the considerations made above using this method should be enough at this stage of the
analysis. The method described was applied using a Python script and the results can
be seen in Figures 4.1 and 4.2. Two Python libraries were used, matplotlib for plotting
the results (http://matplotlib.org) and scipy to perform the correlation described in
subsection 4.2.1 (http://www.scipy.org).

41

http://matplotlib.org
http://www.scipy.org


Figure 4.1: The BIS before (a) and after (b) the imputation. Data from patient10 dataset.

Figure 4.2: The BIS before (blue) and after (green) the imputation. Data from patient10
dataset.

In Figure 4.1.(a), it can be seen the effects of missing values. For some periods of
time, for example from 20 to around 45 min (from the beginning of surgery), there is a
jump from a certain percentage to zero, leaving a big window without any information
about the BIS. By using linear interpolation, a more smooth representation of the data
can be established in order to get a better picture of the anaesthesia evolution. Figure
4.2 compares the original data with the imputed data by overlaying the two datasets.
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In Figure 4.3 a difference in missing data intervals can be seen. While the BIS has
41 points missing, the HR only have one. During the interval between 20 and 45 min,
there is no value for the BIS and it had to be imputed. However, during this period
it can be seen in Figure 4.3.(b) that the HR had some variation. When analysing this
time window, it shows that the value for the BIS is decreasing linearly while, in this case,
the HR is having changes, possibly affecting the correlation values for this period window.

Given that all datasets available have a moderate level of missing data for the BIS,
there is no real solution to this problem.

Figure 4.3: BIS vs time (a) and HR vs time (b). Data from patient10 dataset.

4.2 Dataset Analysis

4.2.1 Correlations with BIS - Global and by intervals

After discarding measures with low amount of information and imputing values for
the remaining2, a Pearson correlation test between all measures and the BIS was made,
in order to select the measures that best meet the requirements to establish a predictor
for the BIS.

First, all the selected measures were correlated with the BIS for the entire duration of
each data set. If the correlation value between a measure and the BIS was higher than or
equal to 0.5 or less than or equal to -0.5, the measures were deemed correlated (appendix F
includes the correlation tables for each data set; rule 4.1 is a more comprehensive overview
of the rule mentioned). The same was performed using the intervals described in Table
4.2.

2Although the correlations should have been done with the raw datasets, their results from these
correlation were all zero. Instead of stop the search for any relation, it was decided to perform the
correlation after imputing the missing values.
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Rule 4.1 Rules to consider if a measure is or is not correlated to the BIS

if -0.5 ≤ Correlation between a measure and the BIS ≥ 0.5 then
Measure is correlated in this dataset (1)

else
Measure is not correlated in this dataset (0)

end if

Table 4.5 is constructed by applying rule 4.1 on the four different time intervals on all
the available datasets. The red colour represents values between 0% and less than 25%,
orange colour represents values from 25% and less than 50%, yellow colour represents
values from 50% and less than 75 percent and the values with colour green between 75%
and 100%.

Table 4.5: Correlation between measures and the BIS in different time intervals.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling maintenance rising

HR 29% 40% 0% 60%

SpO2 29% 20% 0% 40%

PLS 29% 40% 0% 60%

etCO2 71% 40% 20% 40%

iCO2 0% 0% 0% 20%

RRc 86% 20% 0% 60%

PIP 71% 60% 0% 40%

PEEP 86% 40% 0% 40%

MAP 71% 80% 20% 20%

MVe 100% 60% 20% 60%

TVe 100% 40% 20% 40%

RRv 57% 20% 0% 40%

iO2 71% 20% 20% 80%

etO2 57% 0% 20% 60%

etSEV 71% 20% 40% 80%

iSEV 71% 20% 40% 80%

etN2O 0% 0% 20% 20%

iN2O 0% 0% 20% 20%

Each measure of each dataset returns a binary value. All binary values from each
dataset are summed and the sum is divided by the number of datasets. This operation
gives for each measure the percentage of occurrence in all dataset.

For example, the MVe measure is correlated with the BIS in all datasets (7 out of 7)
when considering the full duration interval, but is correlated in 60% of the datasets (3
out of 5) when considering the conscience falling interval.
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Again, the need to define a threshold emerges. When analysing the anaesthesia main-
tenance column in Table 4.5, the highest correlation value is 40% (etSEV and iSEV) while
most values are either 0, 20 or higher than 40%.

Taking this in account, the threshold established was equal or higher than 40% in
order to include at least one measure in the anaesthesia maintenance interval. When
studying the effects of sevoflurane (appendix D), one can argue that the value for the BIS
is correlated to the expired and inspired pressure of sevoflurane since it used to maintain
the general anaesthesia during surgery.

Using the threshold of 40%, Table 4.6 contains the measures that are taken as corre-
lated with the BIS for each interval.

Table 4.6: Variables that are 40% or higher percent correlated with the BIS.

Full duration
etCO2, RRc, PIP, PEEP, MAP, MVe, TVe,

RRv, iO2, etO2, etSEV, iSEV

Conscience falling PIP, PEEP, MAP, MVe, TVe

Anaesthesia maintenance etSEV, iSEV

Conscience rising
HR, SpO2, PLS, etCO2, RRc, PIP, PEEP, MVe, TVe,

RRv, iO2, etO2, etSEV, iSEV

There is not a single measure that is common in all 4 intervals, being the most frequent
measures appearing the PIP, PEEP, MAP, MVe, TVe, etSEV and iSEV, present in 3 out
of 4 intervals.

4.2.2 Correlation between the selected measures

Having established what measures are correlated for each interval, the following step
is to ascertain the correlations between themselves. If two measures are highly correlated,
one can be discarded since the is not a high gain in information.

For example, when considering the full duration interval there is a high number of
measures that are correlated with the BIS, twelve to be precise. Out of this 12, there are
measures that appear in pairs (for example iO2, etO2) and therefore are correlated.

Tables in appendix G provide a correlation per interval of the measures in study using
rule 4.1. The following tables only show a reduced view about the number of cross-
correlations.

Table 4.7 refers to the correlation between measures using the full duration of the
procedure, while Table G.1 in appendix G represents the values for the correlations.
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Table 4.7: Number of measures correlated with each measure for the full duration of the
procedure.

etCO2 RRc PIP PEEP MAP MVe TVe RRv iO2 etO2 etSEV iSEV
9 10 8 8 9 11 10 3 5 6 10 10

The measure that is most independent, i.e that has fewer measures correlated with, is
the RRv, while the most dependent is the MVe, having a correlation with all the measures.

Based in this results, three different actions can be taken: select the MVe as the only
measure to establish a relation with the BIS; select a number of measures that are the
most correlated; or select a number of measures that are the least correlated to form the
relation with the BIS.

The first proposal (using only one measure to establish a relation) is to some degree
ill-advised. By using only one measure, the prediction of the BIS is very susceptible to
interferences or errors that occur during surgery, even if in all datasets the MVe is well
correlated with the BIS.

To minimize the number of errors influencing the prediction of the BIS, a higher
number of measures can be used. By using a higher number of measures, the dependence
of the prediction of each individual measure is lower. The challenge then is to establish
how to select the best measures: on the one hand, the selection of the measures with
the highest number of correlations (proposal two), on the other hand, the selection of the
measures with the lowest number of correlations (proposal three).

If the measures with the highest number of correlation are selected (proposal two),
they can be combined to supplant the non-correlated measures between them. For ex-
ample, one can select MVe, TVe and RRc. As mentioned before, the MVe is correlated
with all the measures so it should be included in this line of though. Inspecting the
TVe, the only uncorrelated measures is the RRv, but the RRv is one of the most un-
correlated measures. So instead of including the RRv, the RRc is chosen, since is one
of the measures that is most correlated with the remainder and is correlated with the RRv.

Taking now the option that considers the lowest number of correlations (proposal
three), the same principle of supplanting the measures missing applies. The measure to
be selected is the one that least correlates with the rest of the candidates, in this case the
RRv. This measures does not correlate with the following: PIP, PEEP ,MAP, TVe, iO2,
etO2, etSEV, iSEV. RRv only correlates with two out of the other eleven candidates.

From the list of non correlating measures with RRv, iO2 is the next measure with the
lowest number of cross correlations. The measure that are not correlated with iO2 are:
PIP, PEEP, MAP.

Out of this three, the PIP and the PEEP both have the same number of correlated
measures (eight) and both correlate with the MAP (which has nine correlated values).
However the PIP has a higher correlation value with MAP, having the potential for a
better choice than the PEEP.
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In short, in order to avoid complexity and still have enough measures to be used in
estimating a value for the BIS, two different path can be followed. The first is selecting
the measures that are most correlated with the others, in this case the MVe, TVe and
RRc. The second option is the opposite, the selected measures are those that have the
lowest number of correlated measures, in this case the RRv, iO2 and PIP.

The next step was to analyse the correlations within the three considered intervals.
Tables 4.8, 4.9 and 4.10 show the number of correlated measures for each measure for
each interval.

Table 4.8: Number of measures correlated with each measure for the conscience falling
interval.

PIP PEEP MAP MVe TVe
1 3 4 3 3

Table 4.9: Number of measures correlated with each measure for the anaesthesia mainte-
nance interval.

etSEV iSEV
1 1

Table 4.10: Number of measures correlated with each measure for the conscience rising
interval.

HR SpO2 PLS etCO2 RRc PIP PEEP MVe TVe RRv iO2

2 0 2 2 1 2 1 2 1 0 0
etO2 etSEV iSEV

1 1 1

For the conscience falling, since there are only four measures, all can be used in finding
a connection with the BIS. In appendix G, table ?? shows the correlation values between
all the measures included in this interval.

The same applies for the anaesthesia maintenance interval, since there is are only two
measures that are correlated with each other. Table G.3 in appendix G shows the corre-
lation between themselves.

The last interval is different than the rest (Table G.4 in appendix G). There are mul-
tiple measures that are uncorrelated among them. For this interval, the measures chosen
should be the ones that are not correlated with any other plus, a selection of the corre-
lated measures. Accordingly, the measures for this interval are: SpO2, RRv, iO2 (zero
correlation with the rest of the measures), PLS (between HR, PLS and PIP, PLS has the
highest correlations), etCO2 (correlates with RRc and etO2), MVe (correlates with PEEP
and TVe), either etSEV or iSEV (they are correlated between them only).

Table 4.11 is a list of the measures that are potential candidates to have a relation
with the BIS using correlation tests for each interval.
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Table 4.11: Variables that are selected as potential candidates to have a relation with the
BIS.

Full duration
MVe, TVe, RRc or

RRv, iO2 and PIP

Conscience falling PIP, PEEP, MAP, MVe, TVe

Anaesthesia maintenance etSEV or iSEV

Conscience rising
SpO2, PLS, etCO2, MVe, RRv, iO2,

etSEV or iSEV

4.3 Model development

To develop a model that can relate the variables found in Table 4.11, two different
modelling strategies were used: a multivariable and a multivariate. This two models are
used in medicine for data description and inference [73].

A multivariable model, also known as multiple linear regression, can be thought of as
a model in which multiple variables are used to predict an outcome [74]. The equation
representing this model is equation 4.2,

y = α + x1β1 + x2β2 + . . .+ xiβi (4.2)

where y is the continuous variable to be predicted, x1, . . . , xi are multiple predictors,
β1, . . . , βi the coefficients for the multiple predictors and α a constant.

A multivariate model, by contrast, refers to the modelling of data that are often
derived from longitudinal studies, where an outcome is measured for the same individual
at multiple time points (repeated measures, in this case the BIS values throughout the
surgery) [74]. The equation representing this model is equation 4.3,

Yn×p = Xn×(k+1)Bn×(k+1) (4.3)

where Y is the continuous variable to be predicted, X is a matrix with the multiple
predictors and B the matrix coefficients for this predictors.

This type of model is normally used with multiple outcomes for the dependent variable
Y , but since for each patient it is only available one outcome, the model was developed
with only one possible outcome.

In theory, a multivariate model should have a better performance than a multivariable
model since it assumes that the values for the predictors are taken in different time
intervals for the same individual.
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4.3.1 Variables used

Based on table 4.11, the variables used to build the models were the MVe, the TVe,
the RRc and the iSev.

For each dataset, only the values when the BIS was different of 0% were used. Figure
4.4 represents the scatter plot for each variable against the BIS from all datasets.

Figure 4.4: Scatter plots for the variables versus the BIS.

In each of the variables scatter plots, it is visible the presence of clusters of points.
The existence of these clusters is not ideal, since it represents that for multiple values of
the BIS the value of the predictor is the same and vice-versa. An ideal situation would
have been a linear3 distribution of the predictors.

Although individually the variables would not be ideal for the development of a model,
using a combination of them could produce a better result.

These higher dimension models were developed using the mvregress function in MAT-
LAB for the multivariate models and the LinearModel.fit function for the multivariable
models.

4.3.2 Model development

For each dataset, a multivariate model and a multivariable model were developed. The
root mean square error (RMSE) between the BIS and the prediction was calculated as a
performance indicator.

3Or non-linear if non-linear models were to be developed
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Table 4.12 is the RMSE values for each model for each dataset.

Table 4.12: RMSE value for each model for each dataset.

Dataset Multivariate RMSE (%) Multivariable RMSE (%)

Patient3 8.87 6.44

Patient4 23.93 12.00

Patient5 24.23 9.27

Patient7 18.71 9.25

Patient8 25.66 12.44

Patient9 37.09 10.99

Patient10 36.59 9.35

An interesting result can be seen when analysing the results obtained for the RMSE
values: the RMSE values for the predictions done using a multivariate model are higher
than those obtained by using a multivariable model. The expected outcomes were lower
RMSE values when using a multivariate model, since it takes into account that the pre-
dictions are for the same individual taken at a different times.

In Figure 4.5 it can be seen, for patient3 dataset, the prediction for the BIS using the
two different models.

Figure 4.5: The BIS and predictions it using the two different models. (patient3 dataset)

During the anaesthesia maintenance interval, the value for the BIS and the predictions
are similar. Since this is also the interval of most interest, for the datasets containing
the information about the intervals two new multivariable and multivariate models were
developed. Table 4.13 is the RMSE values for each model for each dataset.
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Table 4.13: RMSE value for each model for each dataset in the anaesthesia maintenance
interval.

Dataset Multivariate RMSE (%) Multivariable RMSE (%)

Patient3 5.68 5.14

Patient4 6.22 4.91

Patient5 4.01 3.78

Patient7 6.85 2.05

Patient10 9.94 6.21

When the models are developed and tested using only data from the anaesthesia main-
tenance interval, the RMSE values are lower for both models when comparing with the
full dataset. In each of the five datasets used, the values for the RMSE in both models
are lower than 10%, being the averages 6.83 and 4.39% for the multivariate and the mul-
tivariable model respectively.

In Figure 4.6 it can be seen, for patient3 dataset, the prediction for the BIS in the
anaesthesia maintenance interval using the two different models.

Figure 4.6: The BIS and predictions using the two different models for the anaesthesia
maintenance interval. (patient3 dataset)

In Table 4.14 the values for the coefficients of each model are presented.
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Table 4.14: Models coefficients

Dataset
Multivariate model Multivariable model

B1 B2 B3 B4 α β1 β2 β3 β4

patient3 14.168 -0.162 1.752 12.012 16.364 13.540 -0.136 2.021 13.435

patient4 9.199 -0.084 1.743 -7.347 85.630 -4.523 0.018 -1.988 3.050

patient5 27.137 -0.205 -1.012 -19.792 111.731 14.848 -0.227 -2.194 -16.459

patient7 -49.201 1.040 -8.306 0 69.933 -7.007 0.085 -1.168 0

patient10 -9.181 0.164 4.768 -13.449 48.010 -6.789 0.096 2.331 -10.794

4.3.3 Validation

Since there are two datasets (patient8 and patient9 datasets) out of the seven that are
not divided by intervals, they can be used to asses the performance of each of the models
in new data.

Although there are no notes for theses two datasets, from the analysis of their curves
an interval for each dataset can be determine. The following Tables 4.15 and 4.16 contain
the RMSE values for each model developed from the other datasets.

Table 4.15: RMSE for dataset patient8 using the models from the other datasets.

Dataset
No interval Interval (Elapsed time <65 min)

Multivariate RMSE(%) Multivariable RMSE (%) Multivariate RMSE (%) Multivariable RMSE (%)

patient3 29.09 19.08 11.10 25.94

patient4 31.32 14.80 11.25 7.65

patient5 42.03 31.37 34.62 38.51

patient7 28.99 25.93 9.23 33.87

patient10 40.50 33.93 44.23 43.47

Means 34.39 21.42 21.93 29.89
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Table 4.16: RMSE for dataset patient9 using the models from the other datasets.

Dataset
No interval Interval (Elapsed time <25 min)

Multivariate RMSE(%) Multivariable RMSE(%) Multivariate RMSE(%) Multivariable RMSE(%)

patient3 39.67 28.17 16.85 34.63

patient4 40.61 13.90 17.29 17.09

patient5 54.86 44.53 44.12 49.27

patient7 38.20 36.20 13.14 44.21

patient10 54.48 43.64 51.21 50.48

Means 39.56 33.29 28.52 39.14

4.4 Discussion

Figure 4.7 is the plot of the BIS predictions for patient8 and patient9 datasets made
by the models developed using patient7 dataset.

Figure 4.7: Patient7 dataset model validation.

As mentioned before, the predictions made using the multivariable model should be
closer in value to the BIS than predictions made by the multivariate model, since their
RMSE values are lower.
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But when analysing figure 4.7, this seems not to be the case. The green line (rep-
resenting the prediction made using the multivariable model), for the values between 0
and 65 min of elapsed time, have a much higher value than the prediction made by the
multivariate model (red line). The usage of an time interval arises from this fact, since
this situation occurs in almost all the datasets.

When comparing the values for the RMSE inside the time interval, it can be seen that
generally the multivariate models have a lower error values. This could be due to the α
value of the multivariable model for each dataset. The lowest value for α is 16 while the
highest is 111, with a standard deviation of this value is 36.33. This big range of value
for alpha make each model very dataset dependent.

For the multivariate models, the datasets patient3, patient4 and patient7 had low
values for the RMSE when an time interval was considered, with the best result being the
model developed from patient7 dataset when comparing with patient 8 dataset.

A possible reason for the values of patient9 dataset RMSEs being higher than the val-
ues of patient8 RMSE could be the number of points (28 points) to predict and compare.

The BIS has a range of 0 to 100% with a value below 60% being associated with
a low probability of response to commands by a patient under anaesthesia [75]. When
analysing the values of the RMSE, their averages have a high value (above 20%), repre-
senting a third of the scale between 0 to 60%. Therefore, these models do not represent
good enough predictors of the BIS if used in a clinical environment.

Although they do not predict the BIS with a good enough performance, they show
that a relation with the BIS can be obtained.
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Chapter 5

Conclusions and future work

The intent of this thesis was to develop physiological models using two different ap-
proaches, a computational and a hybrid.

Due to the available resources and the state of the art, the following models were
initially considered: use of a database developed last year to try to find knowledge re-
garding liver injuries; use a three-tank control process to remotely simulate the ingestion,
propagation and excretion of a drug; and use datasets from surgeries to find a relation
between the BIS and other physiological variables.

Out of this three main objectives initially considered, the liver modelling was dropped
once it was not possible to build a problem description and safely access the platform.
From the both meetings that were conducted with physicians from Internal Medicine A
of the CHUC, an interest from both parties was clear but scheduling and communication
difficulties prevented a clear understanding of the problems and what it would have been
interesting to look for in the database.

The next sections contain some conclusions and future work for each of the models
developed.

5.1 Hybrid Model

Two different web apps were developed that allow a user to either use the online ex-
periment or use an offline simulation, being the platforms compared to a real life scenario
of ingesting a 12 mg/kg tablet of paracetamol.

Although a remote simulation of a drug ingestion can be performed, the platform has
some limitations, that can be considered for future work.

An improvement to be done is to give the user more configuration options, in pair with
the options offered in the simulated ingestion. At this stage, the user can only decide when
to simulate and has no control of the duration and pump flow variation. Also a field to
display the threshold value in order to assess if it is high or low, and the corresponding
option to increase and decrease accordingly are advised.
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Both the left and centre tanks could have a controller for the base level. Every time
the experiment is carried out, there are two valves that have to be set, and since there
is no electronically controlled valves there is a margin of error when setting the angles of
the valves.

Since the base level is only controlled by a constant flow, any change in the valve
angle is not corrected or taken into account, causing the experiment to be very hard to
replicate. In order to correct this problem, a water level based controller for pump1 or
electronically controlled valves would be need.

To improve the model, the outflow valve in the left tank should be partially open to
model the metabolic losses and the quantity of drug that is not absorbed by the blood-
stream. The angle of this valve can be determined if a drug bioavailability percentage is
known.

The offline platform allows a better control of the parameters. There are some limita-
tion with this platform, mainly the tendency to consume a large amount of RAM if the
web browser tab is not closed.

Another feature that should be implemented is an integration of experimental proto-
cols and reporting it in the platform, similar with what is done in [51], where students
can consult different experimental protocols to be accomplished using the remote lab and
upload reports with their findings.

In conclusion, although there are some improvements to be done to the platform and
the tank architecture imposes some limitations when building an equivalent model for
the process in study, an equivalent model based on a three-tank process for an ingestion,
propagation and excretion of a drug was developed and, more specifically, the ingestion of
a 12 mg/kg tablet of Paracetamol can be remotely simulated using the equivalent model
developed. The usage of this platform as a teaching aid, especially in the biomedical field,
provides a visual stimulus and a practical example of the implementation of equivalent
models when studying physiological systems.

Also the usage of the three-tank process in a two plus one configuration, simulating a
physiological process is, to the best of the author knowledge, a new approach for this sys-
tem and demonstrates the versatility of reusing control systems in modelling physiological
systems.

5.2 Anaesthesia Model

The main objective of this model was to establish a relation between some measured
physiological variables and the BIS. Two different type of models were used: a multivari-
ate and a multivariable.

The analysis conducted has the assumption that the values during the intervals that
were not registered did not change in a drastic manner. The data acquisition of one sam-
ple per minute can also hide any fast change in patient status or any indicator. Also, the
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available datasets did not have information about abnormal events.

From 10 different obtained models (2 per each of the 5 dataset that were divided by
intervals), the multivariate models had a lower root mean square error when comparing
with the multivariable models in the validation datasets patient8 and patient9.

The error means were (for the multivariate model) 36.98% outside the intervals and
25.23% inside. Since the BIS has a range of 0% ( EEG silence) to 100% (awake) and a
value between 40 and 60% indicates an appropriated level for general anaesthesia [76],
those values are to high to be used with confidence in a clinical environment.

Although these models has some limitations, they show that a relation with the BIS
and other physiological variables can be obtained.

Future work should include the usage of better datasets and the accompaniment of a
physician in order to validate the candidate lists obtained (Table 4.11). Also the models
should be tested using more datasets and their prediction should be compared with real-
time BIS values.

57



58



References

[1] J. Kretschmer, T. Haunsberger, E. Drost, E. Koch, and K. Möller, “Simulating
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Figure 1-Example of a comprehensive physiologically based phar- 
rnacokinetic model flow scheme (15). Reprinted from the Annals of 
Biomedical Engineering with permission; copyright 1982, Pergamon 
Press, L td .  

pharmacokinetics contain little physiological basis and, 
hence, show no scalability from species to species. There- 
fore, to describe a highly toxic substance with classical 
pharmacokinetics, all experimentation must be performed 
on a particular species ( e . g . ,  humans). The ability to 
scale-up a model to humans based on experiments with 
smaller species (mice, rats, dogs, e t c . ) ,  could lead to the 
safer use of drugs. 

The limitations of the classical approach have led to the 
need for a physiologically based approach. The first use of 
physiological parameters in modeling appeared in the 
1930’s when Teorell (10) included mass balances on spe- 
cific tissues, with specific tissue volume and specific organ 
perfusion rates, In 1960, Bellman et al. (11) included 
capillary, interstitial, and cellular subcompartments in the 
modeling of drug distribution in organs. In this work, a 
perfused compartment with vascular, interstitial, and 
cellular spaces was solved analytically and applied to 
chemotherapy (11). In the late 1960’s, Bischoff and Brown 
proposed a model which adapted and extended these ideas 
to predict drug distribution in mammals (12). This ap- 
proach was later improved to describe time-dependent 
concentration profiles in various organs and interspecies 
scale-up. This physiologically based modeling technique 
has since been applied to numerous substances with much 
success. 

DEVELOPMENT OF A MODEL 

Compartmental analysis of a system requires a rational 
basis for selection of the size and number of compartments. 
In the classical pharmacokinetic approach, certain tissues 
of the body are lumped together to form one large cam- 
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Figure 2-Schematic representation of the uascular, interstitial, and 
intracellular spaces of an organ. The flux of the substance occurs across 
the dashed lines; the arrows represent the direction of blood flow. 

partment (such as a rapidly equilibrated compartment). 
The physical existence of such compartments does not 
realistically occur and is not easily visualized (13). In 
physiologically based pharmacokinetics, each compart- 
ment represents a particular organ or tissue and has ana- 
tomical significance. One approach in physiologically based 
pharmacokinetic modeling would be to model a whole body 
by performing mass balances on each organ and tissue. 
However, besides the cost of developing such an extensive 
model, such detailed distribution information is not re- 
quired for most substances. For example, certain sub- 
stances are known to accumulate primarily in a few organs 
[e .g . ,  cadmium accumulates primarily in the liver and 
kidneys (14)]. Other substances are specifically toxic to 
certain organs (e .g . ,  doxorubicin is a known cardiotoxin). 
Still other agents are desired to be toxic to a specific tissue 
(e .g . ,  anticancer agents to tumors) or are desired to accu- 
mulate in a target organ ( e .g . ,  general anesthetics in the 
nervous system). This information is applied with physi- 
ological (tissue volumes and blood flow rates), physico- 
chemical (binding, lipid solubility, ionization, etc.), and 
pharmacological (mechanism of transport, sites of action, 
e t c . )  knowledge of the substance in the body to simplify 
the model. 

In the development of a physiological model, a flow 
scheme is assumed with the desired organs describing the 
species anatomically. Figure 1 is an interpretation of the 
circulatory flow scheme of a rat used to describe zinc up- 
take (15). Each organ is represented by a compartment, 
and all compartments are interconnected through the 
circulatory system as in the body. The physiological basis 
is maintained in the enterohepatic system with the liver, 
gut, spleen, and pancreas interconnected anatomically. 
Also, the substance is tranferred from the liver to the gut 
lumen by the biliary system. The large number of organs 
incorporated in this flow scheme represents an attempt to 
develop a comprehensive model. 

Each compartment is considered to consist of three 
well-mixed phases (referred to as subcompartments): ( a )  
a vascular section through which the compartment (organ) 
is perfused with blood; ( b )  an interstitial space in the tissue 
which forms a matrix for the tissue cells; and (c) a cellular 
space consisting of the tissue cells that comprise the 
compartment (organ). This type of compartment is shown 
schematically in Fig. 2. Following injection, uia any route 
of administration, the uptake of the substance in the 
compartment occurs through influx with the afferent blood 
in the vascular subcompartment. Each subcompartment 
is considered to be a well-mixed phase; therefore, the ef- 
ferent blood has the same concentration as the vascular 

1104 / Journal of Pharmaceutical Sciences 
Vol. 72, No. 10. October 7983 

Figure A.3: Example of a physiologically based pharmacokinetic model flow scheme.
(Taken from [8])
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pharmacokinetics contain little physiological basis and, 
hence, show no scalability from species to species. There- 
fore, to describe a highly toxic substance with classical 
pharmacokinetics, all experimentation must be performed 
on a particular species ( e . g . ,  humans). The ability to 
scale-up a model to humans based on experiments with 
smaller species (mice, rats, dogs, e t c . ) ,  could lead to the 
safer use of drugs. 

The limitations of the classical approach have led to the 
need for a physiologically based approach. The first use of 
physiological parameters in modeling appeared in the 
1930’s when Teorell (10) included mass balances on spe- 
cific tissues, with specific tissue volume and specific organ 
perfusion rates, In 1960, Bellman et al. (11) included 
capillary, interstitial, and cellular subcompartments in the 
modeling of drug distribution in organs. In this work, a 
perfused compartment with vascular, interstitial, and 
cellular spaces was solved analytically and applied to 
chemotherapy (11). In the late 1960’s, Bischoff and Brown 
proposed a model which adapted and extended these ideas 
to predict drug distribution in mammals (12). This ap- 
proach was later improved to describe time-dependent 
concentration profiles in various organs and interspecies 
scale-up. This physiologically based modeling technique 
has since been applied to numerous substances with much 
success. 

DEVELOPMENT OF A MODEL 

Compartmental analysis of a system requires a rational 
basis for selection of the size and number of compartments. 
In the classical pharmacokinetic approach, certain tissues 
of the body are lumped together to form one large cam- 
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Figure 2-Schematic representation of the uascular, interstitial, and 
intracellular spaces of an organ. The flux of the substance occurs across 
the dashed lines; the arrows represent the direction of blood flow. 

partment (such as a rapidly equilibrated compartment). 
The physical existence of such compartments does not 
realistically occur and is not easily visualized (13). In 
physiologically based pharmacokinetics, each compart- 
ment represents a particular organ or tissue and has ana- 
tomical significance. One approach in physiologically based 
pharmacokinetic modeling would be to model a whole body 
by performing mass balances on each organ and tissue. 
However, besides the cost of developing such an extensive 
model, such detailed distribution information is not re- 
quired for most substances. For example, certain sub- 
stances are known to accumulate primarily in a few organs 
[e .g . ,  cadmium accumulates primarily in the liver and 
kidneys (14)]. Other substances are specifically toxic to 
certain organs (e .g . ,  doxorubicin is a known cardiotoxin). 
Still other agents are desired to be toxic to a specific tissue 
(e .g . ,  anticancer agents to tumors) or are desired to accu- 
mulate in a target organ ( e .g . ,  general anesthetics in the 
nervous system). This information is applied with physi- 
ological (tissue volumes and blood flow rates), physico- 
chemical (binding, lipid solubility, ionization, etc.), and 
pharmacological (mechanism of transport, sites of action, 
e t c . )  knowledge of the substance in the body to simplify 
the model. 

In the development of a physiological model, a flow 
scheme is assumed with the desired organs describing the 
species anatomically. Figure 1 is an interpretation of the 
circulatory flow scheme of a rat used to describe zinc up- 
take (15). Each organ is represented by a compartment, 
and all compartments are interconnected through the 
circulatory system as in the body. The physiological basis 
is maintained in the enterohepatic system with the liver, 
gut, spleen, and pancreas interconnected anatomically. 
Also, the substance is tranferred from the liver to the gut 
lumen by the biliary system. The large number of organs 
incorporated in this flow scheme represents an attempt to 
develop a comprehensive model. 

Each compartment is considered to consist of three 
well-mixed phases (referred to as subcompartments): ( a )  
a vascular section through which the compartment (organ) 
is perfused with blood; ( b )  an interstitial space in the tissue 
which forms a matrix for the tissue cells; and (c) a cellular 
space consisting of the tissue cells that comprise the 
compartment (organ). This type of compartment is shown 
schematically in Fig. 2. Following injection, uia any route 
of administration, the uptake of the substance in the 
compartment occurs through influx with the afferent blood 
in the vascular subcompartment. Each subcompartment 
is considered to be a well-mixed phase; therefore, the ef- 
ferent blood has the same concentration as the vascular 
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Figure A.4: Representation of the vascular, interstitial and intracellular spaces of an
organ. The flux of the substance occurs across the dashed lines; the arrows represent the
direction of the blood flow. (Taken from [8])
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Fig. 2. Graph of a Bayesian network capturing the relationships between the

current MAAS score , previous MAAS score , blood pressure ,

heart rate , and required drug dose .

be given by the random variables , and ,

respectively, where

,

where denotes the set of positive scalars, and, for a given

function . Note that there are 12

distinct actions (primary action) given in the first part of the
conclusion of each rule in Table I in [1], and hence, we have

assigned a unique number to each distinct action. The graph

for this Bayesian network is given in Fig. 2. The current and

previous MAAS scores, blood pressure, and heart rate, which

constitute the inputs to the expert system and directly influence
the required drug dose, are observed and their corresponding

vertices are shaded in Fig. 2.

A potential problem associated with the Bayesian network

given in Fig. 2 is its inability to capture the uncertainty associ-

ated with the measurement of the MAAS scores. In particular,

in order to perform a meaningful inference, the exact values of

the current and previous MAAS scores should be known (ob-

served). However, as discussed earlier, the assessment process

is highly subjective, and the assessed scores can involve a high

degree of uncertainty. A closer examination of the current and

previous MAAS scores reveals that these random variables are

essentially hidden variables, that is, they are “driven” by other

factors. The MAAS score reflects the patient’s agitation and se-
dation level, which can be observed through facial expressions,

gross motor movement, guarding (i.e., a response in which the

patient withdraws from a potentially noxious stimulus), heart

rate and blood pressure stability, noncardiac sympathetic sta-

bility, and nonverbal pain scale. These observed factors can be

regarded as random variables taking on values from appropriate

sets. For example, machine learning techniques can be used to

classify photographs based on the patient’s facial expressions

into pain and non-pain classes, which in turn can be used to as-

sess pain intensity on a scale from 0 to 100 [28], [29]. Hence, a

more complete model for the probabilistic expert system should

include these observed random variables as well.

Let the random variables represent the cur-

rent objective assessment of the facial expression, gross

motor movement, guarding, heart rate and blood pres-

sure stability, noncardiac sympathetic stability, and non-

verbal pain scale, respectively, and let repre-

sent the previous objective assessment of these variables.

Moreover, let ,

Fig. 3. More general graph of a Bayesian network capturing the relationship

between the MAAS score and other observable factors; namely, current and

previous objective assessments of facial expression , gross motor move-

ment , guarding , heart rate and blood pressure stability ,

non-cardiac sympathetic stability , and non-verbal pain scale .

where 0, 1, and 2 denote, respectively, a relaxed face, gri-

macing and moaning face, and grimacing and crying face;

, where 0, 1, and 2 denote,

respectively, lying quietly, cautious movement, and restless

withdrawal; , where 0, 1,

and 2 denote, respectively, lying quietly, splinting and tense, and

rigid and stiff; , where 0, 1,

and 2 denote, respectively, stable, moderate change, and marked

change; , where 0, 1, and 2

denote, respectively, warm and dry skin, flushed and sweaty, and
pale and sweaty; and ,

where 0 and 10 denote, respectively, no pain and extreme pain.

The graph of the Bayesian network which includes these new

random variables is given in Fig. 3. Note that the current and

previous MAAS scores are no longer observed, and hence, are

not shaded. It is worth noting here that the graph represented

in Fig. 3 corresponds to a Bayesian network of a probabilistic

expert system and it is not aimed at modeling the interactions

between the variables involved in ICU sedation. The Bayesian

network capturing the actual interaction of these variables has

a different dependency structure, and hence, its corresponding

graph would be different from the graph given in Fig. 3.

The Bayesian network corresponding to the graph given

in Fig. 3 can be used to determine the proper drug dose

for ICU sedation. Specifically, the joint probability dis-

tribution , where

, and , can

be computed using the relationship given in (2); namely

(3)

Figure A.5: Graph of a Bayesian network capturing the relationship between the MAAS
current (M) and previous score (M’) and other observable factors; namely, current and
previous objective assessments of facial expression U1, U’1, gross motor movement U2, U’2,
guarding U3, U’3, heart rate and blood pressure stability U4, U’4, non-cardiac sympathetic
stability U5, U’5, non-verbal pain scale U6, U’6, blood pressure (B), heart rate H, and
required drug dose D. (Taken from [9])
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Appendix B

Centre tank flow coefficient
determination

In order to find C, ten discharges were made. An example of one of the discharges is
shown in Figure B.1.(a).(a). As mentioned, the valve was open at 25%.

The data acquired is expressed in Volts. To convert from a voltage to a water level, a
simple linear regression was performed using the initial level and final level with the first
and last voltage values.

(a) Raw data in Volts (a) and the conversion to
centimetres (b).

(b) Region used to determine C.

Figure B.1: Analog equivalent models of physiological systems.

The initial water level value for each of the 10 discharges are shown in Table B.1.
From the level versus time curve (Figure B.1.(a).(b)), a linear region was chosen in

order to find the value of C.
This region is found automatically by selecting all the values higher than 2 millimetres

and the lower than the maximum minus 2 millimetres.
The 2 millimetres margins were added in order to reduce the bottom instability in-

troduced by the output valve and to cut the values corresponding to the time it took
between starting the measurements and opening the valve.

Since equation 3.9 is a differential equation, a numerical integration method is required
to solve it. In this case, Euler’s method is enough, since the process in study has a slow
rate of change.
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Table B.1: Values for the flow coefficient and initial heights from ten centre tank discharges
with valveOutCT at 25% opening.

Centre Tank

Initial Height (cm) Flow Coefficient
47.0 0.1607
43.0 0.2097
44.1 0.2518
43.5 0.2052
44.5 0.1560
43.5 0.1452
41.0 0.1421
43.0 0.1900
42.0 0.1577
42.0 0.2257

∆T = 0.6833 (s)
∆C = 0.1844

H(n+ 1) = H(n) + ∆H(n)×∆t (B.1)

In equation B.1, n represents the discrete time variable and ∆t the time delta between
each pair of samples. Replacing equation 3.9 in B.1:

H(n+ 1) = H(n) +
Qin(n)− aC

√
2gH(n)

A
×∆t (B.2)

And finally resolving equation B.2 in order of the flow coefficient C and assuming that
Qin = 0:

C(n) = −(H(n+ 1)−H(n))A

∆t× a
√

2gH(n)
(B.3)

Table B.2 provides the values used for the remaining constants.

Table B.2: Constants to be used in equation (B.3).

Parameter Description Value
a Cross section area of the discharge pipe 0.5 cm2

A Cross section area of the tank 154 cm2

g Gravitational Acceleration 980.665 cm
s2

Since there are some spikes in the signal, a region between 0.68 and 0.72 seconds for
the time deltas was chosen.

Using the values selected within the time delta value region, the flow and flow coeffi-
cient were calculated.

In Figure B.3 in the flow coefficient plot, 2 different values are shown for the mean.
From around 200 seconds, there is a increase in the flow coefficient. This phenomena
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Figure B.2: Before and after spike removal in the time deltas and height difference data.

Figure B.3: Flow and flow coefficient representation.

could be the result of the perturbations to the flow introduced by the valve at low water
levels. This flow coefficient increase causes a subsequent increase in the coefficient mean.

The second mean (green line) was calculated using only the values for the flow coeffi-
cient that were below 200 seconds.

In Table B.3, the mean value for all runs are presented, as well as the final flow
coefficient value.

Figure B.4 is the comparison between two simulations using a different flow coefficient
and the raw data.
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Table B.3: Flow coefficient for a valve 25% opened.

Flow coefficient
0.1426
0.2112
0.2499
0.2036
0.1578
0.1463
0.1350
0.1899
0.1564
0.2218

∆C = 0.1814

Figure B.4: Simulation using run 10 mean and the final value for the flow coefficient.

The same experiment/procedure was applied to determine the flow coefficients of the
valve connecting the left and centre tank and the outflow valve in the right tank.

The flow coefficients used in this work are presented in Table B.4.

Table B.4: Flow coefficient used in this work.

CLC CoutCT CoutRT

0.4180 0.1814 0.6619
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Appendix C

Web-based simulation

(a) Screenshot of the generated warning. (b) Screenshot after simulating a saturated inges-
tion.

Figure C.1: Screenshots of the online simulation platform during a warning and a satu-
rated simulation.
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Table C.1: Fitting coefficients for the maximum intake without saturation of the left tank.

Fitted equation:
t = p1 × u7 + p2 × u6 + p3 × u5 + p4 × u4 + p5 × u3 + p6 × u2 + p7 × u+ p8

Coefficients Values
p1 -1.9698
p2 50.7943
p3 -557.4949
p4 3379.3
p5 -12237
p6 26539
p7 -32066
p8 16841
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Table C.2: Fitting coefficients and time intervals of each of first pump time in blood
stream to intake time mapping.

Fitted equation:
tIntake = p1 × t3Bloodstream + p2 × t2Bloodstream + p3 × tBloodstream + p4

Pump %
Lower Interval Higher Interval

p1 p2 p3 p4
(seconds) (seconds)

40 622 2813 10.4× 10−9 -1.94× 10−5 3.82× 10−2 10.53
42 752 2762 9.64× 10−9 -1.95× 10−5 3.73× 10−2 8.07
44 866 2717 9.03× 10−9 -1.96× 10−5 3.75× 10−2 6.03
46 957 2680 8.49× 10−9 -1.95× 10−5 3.71× 10−2 4.42
48 1058 2646 7.91× 10−9 -1.87× 10−5 3.56× 10−2 3.71
50 1141 2618 7.37× 10−9 -1.78× 10−5 3.39× 10−2 3.40
52 1216 2598 7.01× 10−9 -1.75× 10−5 3.32× 10−2 2.69
54 1286 2575 6.38× 10−9 -1.55× 10−5 2.95× 10−2 3.98
56 1351 2558 6.07× 10−9 -1.50× 10−5 2.85× 10−2 3.85
58 1412 2544 6.21× 10−9 -1.69× 10−5 3.21× 10−2 0.90
60 1469 2528 5.96× 10−9 -1.66× 10−5 3.15× 10−2 0.62
62 1522 2516 5.76× 10−9 -1.64× 10−5 3.12× 10−2 0.13
64 1573 2508 5.58× 10−9 -1.63× 10−5 3.10× 10−2 -0.30
66 1621 2498 5.41× 10−9 -1.61× 10−5 3.08× 10−2 -0.65
68 1667 2489 5.24× 10−9 -1.58× 10−5 3.03× 10−2 -0.85
70 1710 2483 6.57× 10−9 -2.47× 10−5 4.84× 10−2 -13.45
72 1751 2472 4.93× 10−9 -1.53× 10−5 2.99× 10−2 -1.11
74 1791 2465 4.80× 10−9 -1.51× 10−5 2.92× 10−2 -1.35
76 1829 2465 4.39× 10−9 -4.46× 10−5 9.08× 10−2 -44.38
78 1866 2457 4.56× 10−9 -1.47× 10−5 2.86× 10−2 -1.59
80 1901 2450 4.57× 10−9 -1.54× 10−5 3.00× 10−2 -2.91
82 1935 2445 4.32× 10−9 -1.42× 10−5 2.77× 10−2 -1.57
84 1968 2444 13.8× 10−9 -7.63× 10−5 16.2× 10−2 -48.23
86 1999 2435 4.45× 10−9 -1.60× 10−5 3.18× 10−2 -5.15
88 2030 2431 4.07× 10−9 -1.39× 10−5 2.74× 10−2 -2.20
90 2059 2429 4.29× 10−9 -1.58× 10−5 3.15× 10−2 -5.40
92 2088 2425 3.75× 10−9 -1.25× 10−5 2.43× 10−2 -0.29
94 2116 2426 8.31× 10−9 -54.6× 10−5 1.22 -891.40
96 2143 2422 9.29× 10−9 -61.6× 10−5 1.38 -1021.00
98 2169 2419 4.67× 10−9 -30.6× 10−5 68.8× 10−2 -502.20
100 2195 2415 1.92× 10−9 -0.13× 10−5 -0.11× 10−2 18.25
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Appendix D

Drug effect and cause

Fentanyl

Effect: Fentanyl is an opioid medication.

Usages: Fentanyl is used as part of anaesthesia to help prevent pain after surgery or
other medical procedure.

Droperidol

Effect: Reducing nausea and vomiting during surgeries and diagnostic procedures.

Usages: Droperidol is a tranquilizer. It is unknown exactly how droperidol works.

Thiopental

Effect: It works by depressing the central nervous system, causing mild sedation or
sleep.

Usages: Thiopental is a barbiturate. Causing drowsiness or sleep before surgery or
certain medical procedures. It is also used to stop seizures.

Cisatracurium

Effect: It works by blocking the effects of acetylcholine, a chemical involved in muscle
contraction. This relaxes muscles in the body before surgery or insertion of a breathing
tube.

Usages: Cisatracurium is a non depolarizing skeletal muscle relaxant. Providing
muscle relaxation during surgery, medically assisted breathing, or easier insertion of a
breathing tube.

Sevoflurane

Effect: It works by depressing activity in the central nervous system, which causes
loss of consciousness.

Usages: Sevoflurane is an anesthetic. Causing general anesthesia (loss of conscious-
ness) before and during surgery.
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Atropine

Effect: Atropine produces many effects in the body.
Usages: It is used during surgery to maintain proper heart function; during emer-

gencies involving the heart; and to treat certain heart disorders.

Rocuronium

Effect: Rocuronium is used to relax the muscles. It works by blocking the signals
between the nerves and the muscles.

Usages: Rocuronium is given before general anesthesia in preparing for surgery.
Rocuronium helps to keep the body still during surgery. It also relaxes the throat so
a breathing tube can be more easily inserted before the surgery.

Ondansetron

Effect: Ondansetron blocks the actions of chemicals in the body that can trigger
nausea and vomiting.

Usages: Ondansetron is used to prevent nausea and vomiting that may be caused by
surgery.

Ketorolac

Effect: Ketorolac is an NSAID. Exactly how it works is not known. It may block cer-
tain substances in the body that are linked to inflammation. NSAIDs treat the symptoms
of pain and inflammation.

Usages: The short-term (up to 5 days) treatment of moderately severe pain (usually
after surgery).

Methylprednisolone

Effect: Methylprednisolone is a steroid that prevents the release of substances in the
body that cause inflammation.

Usages: Methylprednisolone is used to treat many different inflammatory.

Propofol
Effect: Propofol (Diprivan) slows the activity of the brain and nervous system.

Usages: Propofol is used to help relax before and during general anaesthesia for
surgery or other medical procedures. It is also used in critically ill patients who require
a breathing tube connected to a ventilator (a machine that moves air in and out of the
lungs when a person cannot breathe on their own).
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Appendix E

Dataset and drug relation

Patient three: Fentanyl, droperidol, thiopental, cisatracurium, sevoflurane and
atropine.

Patient four: Fentanyl, droperidol, propofol, cisatracurium, sevoflurane and at-
ropine.

Patient five: Fentanyl, droperidol, rocuronium, sevoflurane and atropine.

Patient seven: Fentanyl, droperidol, propofol, cisatracurium, atropine, ondansetron,
ketorolac and methylprednisolone.

Patient ten: Fentanyl, propofol, sevoflurano and atropine.
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Appendix F

Correlation between the BIS with
the rest of the variables for each
dataset - Full duration and by
intervals

For each following table, the green colour represents correlated values, while red
represents uncorrelated values. For a variables to be considered correlated, the correlation
value has to be higher than 50%.
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Table F.1: Correlation between the BIS and patient three dataset.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling rising

HR 0 0 0 1

SpO2 1 1 0 0

PLS 0 0 0 1

etCO2 1 1 0 0

iCO2 0 0 0 0

RRc 1 1 0 1

PIP 0 0 0 0

PEEP 1 0 0 0

MAP 1 1 0 0

MVe 1 1 0 1

TVe 1 1 0 0

RRv 1 1 0 0

NBPS 0 1 0 0

NBPD 0 0 0 0

NBPM 0 1 0 0

iO2 0 0 0 0

etO2 0 0 0 0

etSEV 1 1 0 0

iSEV 1 1 0 0

etN2O 0 0 0 0

iN2O 0 0 0 0
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Table F.2: Correlation between the BIS and patient four dataset.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling rising

HR 1 1 0 1

SpO2 0 0 0 0

PLS 1 1 0 1

etCO2 1 1 1 0

iCO2 0 0 0 1

RRc 0 0 0 1

PIP 1 1 0 0

PEEP 1 1 0 0

MAP 1 1 0 0

MVe 1 1 0 0

TVe 1 1 0 0

RRv 1 0 0 1

NBPS 0 0 0 1

NBPD 0 0 0 1

NBPM 0 0 0 1

iO2 0 0 0 1

etO2 0 0 0 1

etSEV 1 0 0 1

iSEV 1 0 0 1

etN2O 0 0 1 1

iN2O 0 0 1 1
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Table F.3: Correlation between the BIS and patient five dataset.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling rising

HR 0 0 0 1

SpO2 1 0 0 1

PLS 0 0 0 1

etCO2 1 0 0 1

iCO2 0 0 0 0

RRc 1 0 0 1

PIP 1 1 0 1

PEEP 1 1 0 1

MAP 1 1 0 1

MVe 1 1 0 1

TVe 1 0 0 1

RRv 1 0 0 1

NBPS 0 0 0 1

NBPD 0 0 0 1

NBPM 0 0 0 1

iO2 1 0 0 1

etO2 1 0 0 1

etSEV 1 0 0 1

iSEV 1 0 0 1

etN2O 0 0 0 0

iN2O 0 0 0 0
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Table F.4: Correlation between the BIS and patient seven dataset.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling rising

HR 0 1 0 0

SpO2 0 0 0 0

PLS 0 1 0 0

etCO2 1 0 0 1

iCO2 0 0 0 0

RRc 1 0 0 0

PIP 1 0 0 0

PEEP 0 0 0 1

MAP 1 0 1 0

MVe 1 0 1 1

TVe &1 0 1 0

RRv 0 0 0 0

NBPS 0 1 0 0

NBPD 0 0 0 0

NBPM 0 0 0 0

iO2 1 1 1 1

etO2 1 0 1 0

etSEV 1 0 1 1

iSEV 1 0 1 1

etN2O 0 0 0 0

iN2O 0 0 0 0
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Table F.5: Correlation between the BIS and patient nine dataset.

Variable Full

HR 1

SpO2 0

PLS 1

etCO2 0

iCO2 0

RRc 1

PIP 1

PEEP 1

MAP 1

MVe 1

TVe 1

RRv 0

NBPS 1

NBPD 0

NBPM 0

iO2 1

etO2 1

etSEV 0

iSEV 0

etN2O 0

iN2O 0
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Table F.6: Correlation between the BIS and patient nine dataset.

Variable Full

HR 0

SpO2 0

PLS 0

etCO2 0

iCO2 0

RRc 1

PIP 0

PEEP 1

MAP 0

MVe 1

TVe 1

RRv 1

NBPS 0

NBPD 0

NBPM 0

iO2 1

etO2 0

etSEV 0

iSEV 0

etN2O 0

iN2O 0
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Table F.7: Correlation between the BIS and patient ten dataset.

Variable
Full Conscience

Anaesthesia
Conscience

duration falling rising

HR 0 0 0 0

SpO2 0 0 0 1

PLS 0 0 0 0

etCO2 1 0 0 1

iCO2 0 0 0 0

RRc 1 0 0 0

PIP 1 1 0 1

PEEP 1 0 0 0

MAP 0 1 0 0

MVe 1 0 0 0

TVe 1 0 0 1

RRv 0 0 0 0

NBPS 1 0 0 1

NBPD 0 0 0 1

NBPM 1 1 0 1

iO2 1 0 0 1

etO2 1 0 0 1

etSEV 1 0 1 1

iSEV 1 0 1 1

etN2O 0 0 0 0

iN2O 0 0 0 0
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Appendix G

Correlation tables between each BIS
correlated variable and the others -
For each interval

For each following table, the green colour represents correlated values, while red
represents uncorrelated values.
For a variables to be considered correlated, the correlation value has to be higher than
50%.
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Table G.2: Correlation between each BIS correlated variable and the other, for the con-
science falling phase of the surgery.

PIP PEEP MAP MVe TVe
PIP 0.4098 0.5081 0.3144 0.2590
PEEP 0.4098 0.7057 0.6620 0.6410
MAP 0.5081 0.7057 0.8826 0.7802
MVe 0.3144 0.6620 0.8826 0.8954
TVe 0.2590 0.6410 0.7802 0.8954

Table G.3: Correlation between each BIS correlated variable and the other, for the anaes-
thesia falling phase of the surgery.

etSEV iSEV
etSEV 0.9491
iSEV 0.9491
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Abstract—Remote and virtual labs represent a very important 
support in engineering teaching and can be used to improve the 
students learning process, for example of Biomedical Engineering 
courses, on topics such as the identification of models and control 
systems. This paper describes the demonstration of an online 
experiment, supported by a three-tank lab system, to model, 
simulate and monitoring a physiological process as the system of 
ingestion and excretion of a drug. A Web platform is used to 
interact with the remote and virtual lab, where students can 
visualize and obtain data in real time from the remote system. 

Keywords—Online experimentation; remote and virtual labs; 
physiological processes; biomedical engineering 

I.  INTRODUCTION 

The understanding of physiological processes and their 
dynamics can represent a difficulty for students, which can be 
overcome by considering computer-based learning approaches 
with the support of online experimentation. Mathematical 
models have proven to be a valuable tool for the analysis and 
synthesis of physiological processes [1]. The use of 
experimental modules to represent its structure and function 
can contribute significantly to understand it and improve the 
learning process. 

Some physiological systems can be divided into subsystems 
and modelled by compartment models to represent the 
dynamics of the overall system. In this context, a laboratory 
system as the three-tank process has the necessary 
characteristics to be a simplified representation of, for example, 
a system of ingestion and excretion of a drug. 

The development of remote and virtual labs can represent a 
valuable support for student’s learning, enabling a wide access 
to the experiments and allowing the interaction in real time 
with the lab system to perform practical experiences, 
visualising and analysing the dynamic behaviour of the system 
[2]. Experiential learning focuses on individual learning plays a 
central role within science and technology curriculum at all 
levels of higher education [3]. Similarly to traditional 
laboratories, remote labs provide students with particular 
engineering experience and allow them to explore the systems 
and their real behaviours. 

Systems analysis systems is a very important topic in 
biomedical engineering because it is the basis to model, 
simulate and control different physiological processes [4]. 

This paper pretends to present the demonstration of an 
online experiment, designed to be accomplished in courses 
about computational models of physiological processes and 
algorithms for diagnosis and self-regulation of a Master Degree 
on Biomedical Engineering, in a blended learning context. 

II. THE PHYSIOLOGICAL PROCESS 

This work considers the modelling and simulation of a 
system of ingestion and excretion of a drug (Fig. 1). The drug 
is taken orally or in an intravenous way, at a rate u(t), goes to 
the intestines, where it reaches a quantity x1(t), and then it is 
absorbed by the bloodstream with a flow rate d1(t). The 
bloodstream, where the drug reaches a quantity x2(t), passes 
through the kidney (where it is assumed there is no absorption) 
with a flow rate d2(t) that expels the drug at a flow rate y(t), 
passing it into the urine. In this approach, for reasons of 
simplicity, other physiological actions are disregarded and the 
elimination of the drug by cellular metabolism is ignored [5]. 

In biomedical terminology, this physiological process can 
be represented by a multi-compartmental process. In this case, 
if it is assumed that the kidney is only one transition element, 
the process has two compartments. Being necessary to find a 
compartmental model of the process, an equivalent fluidic 
system can be developed, such as that shown in Fig. 2. 

Applying the fluidic systems principles, the mass balance 
of each compartment provides the differential equations for the 
mathematical model of the overall system. Assuming that x1(t) 
and x2(t) are the corresponding levels (quantities) and the 
fluidic resistances (R1 and R2) are given by: 

 !" = "
$%

   ,  !& = "
$'

 (1) 

the following equations are obtained: 

 

()%*+,
(+ = −!"."*/, + !".&*/, + 1*/,
()'*+,
(+ = !"."*/, − *!" + !&,.&*/,
2"*/, = !"[."*/, − .&*/,]

2&*/, = !&.&*/,
5*/, = 2&*/,

 (2) 
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Fig. 1. Diagram of the system of ingestion and excretion of a drug. 

 

Fig. 2. Fluidic system equivalent to the ingestion and excretion of a drug. 

This mathematical model of the ingestion and excretion of 
a drug can be used for different exercises and experiments as, 
for example, simulation of the dynamic behaviour of the 
system, analysis of the system’s sensibility to the values of 
different parameters and design of several types of controllers 
for a non-linear process. 

III. DEMONSTRATION 

This work intends to demonstrate the use of a remote and 
virtual lab that can be used in biomedical engineering courses. 
In this case, a three-tank system is considered to represent a 
physiological process, modelling a system of ingestion and 
excretion of a drug. 

Using a Web platform to interact with the remote and 
virtual lab, students can visualize and obtain data in real time 
from the remote system. In general terms, the remote 
experiment can be used for the following purposes: i) 
identification of the system model; ii) control of the nonlinear 
system. For the first case, it is possible to send a input signal, 
u(t), to the remote system and observe and record the resultant 
response of the system, y(t). For the second situation, the 
remote system can be controlled considering a local controller 
with parameters defined by the user or a remote controller 
interacting in real time with the lab system. 

In both cases, before interacting with the remote lab, the 
students can compare results obtained with a mathematical 
model simulation and with a virtual representation of the 
system. Fig. 3 shows the interfaces of the remote (Fig. 3a) and 
virtual (Fig. 3b) lab using the three-tank system. 

The three-tank lab system can also be considered for an 
improved model of the physiological process, where could be 
assumed that the kidney is also represented by a compartmental 
element being x3(t) the corresponding level (quantity). In this 
case, the mathematical model should be changed to include a 
third differential equation to represent the dynamic behaviour 
of the kidney. 

An experimental setup is used to remotely interact with the 
three-tank system, considering wired communications between 
the sensors and the micro-computer, acting as server and 
gateway.  

    

           (a)               (b) 

Fig. 3. Interface of the remote (a) and virtual (b) lab using a three-tank system 
for the online experiment. 

The users can observe the dynamic behaviour of the system 
through a Web camera. To administrate the access to the 
remote lab, a management system is provided by the platform, 
based on a first-come, first-served approach, with the 
establishment of a maximum threshold for individual usage 
time.  

A Moodle platform is also available with tutorial 
information, guidelines to carry out the experiments using the 
experimental setup and quizzes for self-assessment. 

IV. CONCLUSION 

This work aims to show how a remote and virtual lab can 
be used to enhance the learning process of students of 
Biomedical Engineering courses in topics as model 
identification and control systems. 

This demo is an example of online experimentation, where 
an experimental setup, comprising a three-tank system, is used 
for modelling and control physiological processes. The 
interaction trough a Web platform can be done using the 
remote system or a virtual representation. The developed 
experiments can be considered in different engineering courses. 
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