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Abstract 

The increase of population ageing and sedentary lifestyle of today's society leads 

to a greater demand for hospital services, which are unable to efficiently balance the 

demand with the supply [1]. This problem led to the development of automatic systems 

able to collect vital information from subjects on a daily basis, and through these, evaluate 

possible pathologies without the need for patients to request hospital services, thus, 

leading to a relief in demand and cost of medical consultations. These automatic systems 

are called tele-monitoring systems, which are integrated with biosensors to acquire bio-

signals and computational algorithms to process them. These algorithms are 

mathematical methodologies which provide the necessary intelligence to the system in 

order to detect diseases and physiological information about a given subject. However, 

due to the ambulatory nature of such systems, the acquisition of bio-signals is exposed 

to numerous sources of noise, leading to the signals contamination. Noise can lead to 

wrong event algorithm behavior, therefore, in order to prevent pathological false 

detections it is essential to make the detection of contaminated periods. The focus of 

this thesis is noise detection in bio-signals, particularly in Phonocardiogram (PCG) and 

Electrocardiogram (ECG). 

The noise detection methodology in the PCG context is characterized by being 

a real-time and multi-channel process. It can be divided into two phases: a first phase 

consists in searching a clean heart sound (HS) reference; the second phase compares 

this reference with the remaining test windows and evaluates the presence of noise 

based on the spectral similarity and the ratio of the total amount of high frequency 

components, between the reference and test windows. In healthy signals the algorithm 

achieved a sensitivity and specificity of 91.24% and 90.88%, respectively. In pathological 

signals it reached a specificity of 91.68%. Its computational cost is 0.17s per minute of 

PCG signal at 4000Hz. It was also compared on the same testing dataset with the 

methodologies that presented the highest precision rates in literature, namely the 

Modulation Filtering algorithm [2] and the Periodicity Based algorithm [3]. Additionally 

to the better results presented by our algorithm, it was also more computationally 

efficient than the compared methodologies. 
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The ECG noise detection methodology uses the Principal Component Analysis 

(PCA) approximation error of each heartbeat and the presence of high frequency 

components to evaluate the presence of noise in 4s periods in signals lasting at least 5 

minutes. In the testing dataset it achieved 94.08% and 89.88% of sensitivity and specificity, 

respectively, at critical SNR levels. Its computational cost is 0.14s per 5 minutes of ECG 

sampled at 250 Hz. The highest documented precision in literature is 96.63% and 94.74% 

of sensitivity and specificity, respectively, using an algorithm based on Empirical Mode 

Decomposition (EMD) [4]. However, the authors only considered noise corruption in 

the cases where the R-peaks were not recognizable, suggesting that the presented 

precision is only valid for high degrees of noise. Additionally, our algorithm takes less 

time to compute five minutes of ECG than the EMD algorithm takes to compute five 

seconds. 

Given the results, we believe that the developed methodologies fulfil the 

proposed goals with high precision levels and low computational costs. It would be 

interesting to see how the algorithms behave in real situations and uncontrolled 

environments in order to assess its real use in tele-monitoring systems. 
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Resumo 

O envelhecimento da população e o estilo de vida sedentário da sociedade atual 

resulta numa maior procura de serviços hospitalares, serviços esses incapazes de 

balancear eficazmente a procura com a oferta [1]. Este problema levou a desenvolver 

sistemas automáticos capazes de recolher informações vitais no dia-a-dia dos pacientes, 

e através destas avaliar possíveis patologias, sem que os pacientes se deslocassem aos 

serviços hospitalares, levando assim a um alívio na procura e custo de consultas médicas. 

Estes sistemas automáticos são denominados de sistemas de tele-monitorização, onde 

algoritmos computacionais são integrados em sistemas compostos por biossensores. 

Estes algoritmos são metodologias matemáticas que dão ao sistema a inteligência 

necessária para conseguir detetar patologias e informações fisiológicas sobre um 

determinado sujeito. Porém, devido à natureza ambulatória destes sistemas, a aquisição 

de bio sinais está sujeita a inúmeras fontes de ruído, levando à contaminação dos sinais. 

A distorção dos sinais devido ao ruído pode levar os algoritmos de deteção de patologias 

a detetar características patológicas quando elas não estão presentes, ou vice-versa. Por 

isso é imprescindível que se faça a deteção dos períodos que estão contaminados, de 

forma a não resultar em falsas deteções patológicas. Esta tese foca-se no âmbito da 

deteção de ruído em bio sinais, nomeadamente, em Fonocardiograma (PCG) e 

Eletrocardiograma (ECG). 

A metodologia de deteção de ruído em PCG caracteriza-se por ser em tempo 

real e multicanal. Pode ser dividida em 2 fases: uma primeira onde se procura uma 

referência limpa de som cardíaco (HS); e uma segunda onde se compara essa referência 

com as restantes janelas de teste e se avalia a presença de ruído com base na semelhança 

espectral e a razão da soma dos componentes de altas frequências entre a referência e 

as janelas de teste. A metodologia atingiu uma sensibilidade e especificidade de 91.24% 

e 90.88%, respetivamente, em sinais saudáveis. Em sinais patológicos atingiu uma 

especificidade de 91.68%. O seu custo computacional é de 0.17s por minuto de sinal 

PCG a 4000Hz. A nossa abordagem foi também comparada com as metodologias que 

apresentam a maior precisão na literatura, nomeadamente o algoritmo Modulation 

Filtering [2] e o algoritmo Periodicity Based [3]. Para além de melhores resultados, a 

nossa metodologia também apresentou uma maior eficiência computacional. 
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A metodologia de deteção de ruído em ECG utiliza o erro de aproximação por 

Principal Component Analysis (PCA) de cada batimento cardíaco e a presença de 

componentes de altas frequências para avaliar a presença de ruído em períodos de 4s 

em sinais com duração de pelo menos 5 minutos. No dataset de teste atingiu 94.08% e 

89.88% de sensibilidade e especificidade, respetivamente. O seu custo computacional é 

de 0.14s por 5 minutos de ECG a 250 Hz. A maior precisão documentada na literatura 

é de 96.63% e 94.74% de sensibilidade e especificidade, respetivamente, recorrendo a 

um algoritmo baseado na Empirical Mode Decomposition (EMD) [4]. Porém, os autores 

apenas consideram contaminação por ruído nos casos onde os picos R não são 

reconhecíveis, sugerindo que a precisão documentada é apenas válida para altos níveis 

de ruído. Para além disso, o nosso algoritmo leva menos tempo a processar 5 minutos 

de ECG do que o algoritmo baseado em EMD leva a processar 5 segundos. 

Dados os resultados, consideramos que as metodologias desenvolvidas cumprem 

os objetivos, com altos valores de precisão e baixos custos computacionais. Seria 

interessante ver como os algoritmos se comportam em situação real e em ambiente sem 

controlo para poder avaliar o seu verdadeiro uso em sistemas de tele-monitorização. 
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Chapter 1 – Motivation and Objectives 

  

Cardiovascular diseases are the main cause of decease in Europe, being 

responsible for 46% of the total mortality [5] and is estimated that costs €196 billion 

per year to the EU economy [6]. Due to the increasingly population ageing, these costs 

are predicted to grow, if no new strategies are adopted. 

One of the strategies used to control the high demand of hospital services and 

decrease the overall costs is the consideration of Telemedicine systems [7], where the 

main objective is to move from a system centered in the Hospital to a system centered 

on the Patient. Therefore, quality service is offered at a lower cost, where the access to 

the specialized services is decentralized and the investment is made on a preventive clinic 

rather than a curative clinic, with a higher participation from the patient. 

The work developed in this thesis is in the context of one of the Telemedicine 

areas, the Tele monitoring, where devices, like vests or beds with integrated sensors are 

used to acquire bio-signals (e.g. electrocardiogram (ECG), phonocardiogram (PCG) or 

Respiratory Lung Sounds (RLS)). Computational algorithms are then used to process 

and analyze various physiological features and/or pathologies [8]. These apparatus are 

also known as Personal Telehealth Systems, or just pHealth systems. However, due to 

the ambulatory nature of such signal acquisition, it is expected that noise sources will 

affect signals, changing the original information. The presence of noise artifacts is a 

serious problem when the assessment of some pathologies is performed, since it may 

distort the signal in a way that either hides, or mimics pathologic characteristics, leading 

to misdiagnosis [9]. Therefore, a methodology that differentiates the signal from noise 

artifacts is required, to prevent erroneous decisions when it comes to diagnosis. 
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The purpose of this work is therefore to develop noise detection algorithms for 

the PCG and ECG signals. The particular choice of PCG and ECG signals is based on the 

high mortality rate caused by cardiovascular diseases, thus so, being natural candidates 

to integrate in tele monitoring systems. A low computational cost is sought in order to 

make the algorithms feasible to be integrated in pHealth systems. The noise-

contaminated periods identified by the algorithms are then excluded from further 

analysis, thus avoiding misdetection of pathologies. A noise detection strategy was 

chosen in favor of a noise reduction/reconstruction one because there is a great amount 

of available signal in the tele-monitoring context. Additionally, the noise reduction 

approach may distort the original signal due to the filtering processes, hiding some 

important features for diagnosis. 
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Chapter 2 – Background Concepts and State of 

the Art 

2.1 Cardiac anatomy and physiology 

The heart is responsible for pumping the blood through the entire body, 

generating the driving force required for this vital task. It is divided in two sections, left 

and right, separated by the septum, each side composed by an atrium and a ventricle 

(see Figure 2.1). The right atrium receives the deoxygenated blood from the body and 

pumps it to the right ventricle, which in turn pumps it to the lungs for oxygenation. The 

arterial blood enters in the left atrium by the pulmonary veins, which passes it to the left 

ventricle, which in turn pumps it to the entire body again. The atrioventricular valves 

separate the atria and ventricles, namely the tricuspid valve on the right side and the 

mitral valve on the left side. There is also the pulmonary valve that separates the right 

ventricle and the pulmonary artery, and the aortic valve, that borders between the left 

ventricle and aortic artery, collectively known as semilunar valves. 

 

Figure 2.1 – Basic anatomy of the heart (extracted from [10]).    
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The valves are responsible for directing the blood flow, not allowing an inversion 

in blood circulation. The valves are formed by strong fibrous cords, named chordae 

tendineae, which are connected to the cardiac epithelium. Depending on the pressure 

profile existing on the different chambers, the valves will or will not allow the blood 

flow. 

The driving force is generated due the chambers contraction, which is regulated 

by electrical impulses sent by the autonomous nervous system to the heart. The 

electrical activity of the heart results in action potentials conducted by a specialized 

nervous tissue and the cardiac muscle. The Electrocardiogram (ECG) measures the heart 

electrical activity. A normal heartbeat is initiated in the sinoatrial (SA) node, which 

receives an electrical stimulus from the autonomous nervous system to start a new 

cardiac cycle. This stimulus is forwarded to the atrial muscle, which results in a 

depolarization wave through the walls resulting in an atrial contraction, and to the 

atrioventricular (AV) node. The AV node is the only transmission pathway from the SA 

node to the ventricles in a healthy heart (see Figure 2.2). The only purpose of this AV 

node is to delay the impulse conduction to the ventricles, giving enough time to the atria 

to complete its contraction. After the atrial contraction, the electrical impulse is 

conducted through the septum by the bundle of His which branches in right bundle branch 

and left bundle branch ending in the Purkinje fibers, which are responsible for the 

transmission of the electrical impulse to the ventricular muscle. When the ventricular 

muscle is stimulated, the depolarization wave travels from the endocardium to the 

epicardium, resulting in a ventricular contraction and in the consequent blood ejection 

to the arteries.   
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Figure 2.2 – Cardiac nervous tissue (extracted from http://saintlukeshealthsystem.org). 

2.2 The cardiac cycle and origin of the heart sounds (HS) 

The heart cycle is regulated by the electrical activity of the heart, regulating the 

contraction of the atria and ventricles. It comprises two phases, systole and diastole. 

Systole begins with the ventricular contraction, which increases the pressure inside the 

ventricular lumen. Rapidly, the pressure inside the ventricles exceeds the atrial pressure, 

resulting in the closure of the AV valves, originating the first heart sounds (HS), named 

S1. After the closure of the AV valves, an isovolumetric contraction happens until the 

ventricular pressure exceeds the pressure existing on the output arteries of the heart. 

When the ventricular pressure is superior to the arteries pressure, the semilunar valves 

open resulting in the blood ejection into the pulmonary and aortic arteries. The systole 

ends when the pressure of the output arteries exceeds the ventricular pressure, 

resulting in the closure of the semilunar valves and giving rise to the second HS, known 

as S2. The closure of the valves ends the blood ejection into the arteries. 

After the closure of the semilunar valves an isovolumetric relaxation occurs, 

lowering the ventricular pressure. When the pressure inside the ventricles is lower than 

in the atria, the AV valves open, allowing the entrance of blood to the ventricular lumen. 

After that, an atria contraction happens, named atrial systole, which causes the remaining 

blood present in the atria to enter into the ventricles. This phase of ventricular 

http://saintlukeshealthsystem.org/
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relaxation and filling, is named diastole. The process is repeated with the beginning of a 

new systole. 

 

Figure 2.3 – Main events in the cardiac cycle, and corresponding volume and pressure 

profiles (extracted from [11]). 

2.2.1 Phonocardiogram (PCG) 

The phonocardiogram is a graphical representation of the HSs. This plot of the 

sound waves allows the investigation of a wider extent of features than the auscultation 

itself, thus being a highly efficient tool for diagnosis of some cardiac pathologies [12]. 

The phonocardiogram is recorded using microphones, which can be later represented 

and processed.  In Figure 2.4 is shown an example of a PCG segment in the temporal 

and frequency domain. 
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Figure 2.4 – Typical sound wave and spectrogram of a PCG signal. 

2.2.2 Heart sound physiology 

The HSs existing in the cardiac cycle are originated by the closure of the valves, 

blood flow and vibrations of the heart muscle. Typically, there are four HSs in a cardiac 

cycle. The first, S1, is clearly audible in the apical zone and in the fourth intercostal space 

in the left side of the sternum. It is characterized by a large amplitude and time duration 

when compared to the remaining HSs, having an average duration of 100-200ms. 

Observing the spectral distributions of S1, it is possible to identify two prominent 

frequency components in the 10-200Hz range. Although it is not consensual, the 

evidence points that these two frequency components are due to the mitral and tricuspid 

valve closure [11]. The properties of S1 are of great importance in the assessment of 

cardiac pathologies. They reflect the functioning of the AV valves and the force of the 

myocardium contraction. Another important characteristic of this HS is the temporal 

delay between the closure of the tricuspid and mitral valve, which lasts in average 20-

30ms in a normal heart. If this time delay is much higher than normal, then is a strong 

indicator of heart disease [11]. 

The second HS (S2) occurs in the beginning of diastole, and corresponds to the 

closure of the semilunar valves. It is audible in the second and third intercostal space on 

the left side of the sternum, and presents two main frequency components, which are 

associated with the aortic and pulmonary arteries closure. Higher frequency 
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components can be identified in the S2 spectrum, when comparing to S1. The second 

HS also presents a temporal delay between the closures of the two semilunar valves, but 

in this case, this delay is of greater duration. This is due to a higher pressure in the aortic 

artery comparing to the existing one in the pulmonary artery, causing the aortic valve 

to close before the pulmonary valve. The closing of the aortic and pulmonary valves are 

two events typically heard during auscultation. The time delay between these two events 

varies depending on the respiratory movements. In expiration, the duration of the delay 

is less than 30ms, whereas in inspiration this delay is of greater duration being clearly 

noticeable. The amplitude of the two components of S2 and the duration of the delay 

between them, are valuable information for cardiac disease diagnosis [13].  

The third HS (S3) is usually referred as gallop sound, such as the fourth HS (S4). 

Both are low intensity and low frequency sounds, normally not audible in adults and 

occur in the beginning and end of diastole, respectively. S3 has its origin in the vibrations 

of the ventricular walls caused by the rapid inflow of blood into the ventricles. Its audition 

is a sign of pathology, but is natural in children and young adults. In patients with mitral 

regurgitation, the S3 is normally audible but don’t imply necessarily systolic dysfunction 

or high ventricular pressure. In patients with aortic stenosis, S3 is less frequent [11]. 

S4 is caused by the ventricular walls distension when atria contraction happens. 

Normally is not noticeable, but when it is, it is sign of reduced distensibility in one or 

the two ventricles. The low ventricular distensibility causes the ventricular walls to make 

abrupt movements when the atria contraction occurs, originating vibrations, which 

produces the S4. 

Certain HSs or heart features may be more perceptive in some areas of the 

chest, therefore there are multiple auscultation sites, which are depicted in Figure 2.5. 
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Figure 2.5 – Auscultation sites (extracted from [11]). 

2.2.3 Pathological sounds 

There are two main types of pathologies associated with valvular diseases and 

detected in cardiac auscultation: the cardiac stenosis and cardiac insufficiency. The 

stenosis is characterized by damage in the heart valves: where these valves lack the ability 

to fully open. The blood is thereby forced to pass through the small opening at a higher 

speed, causing a turbulent regime, and producing a sound. The valvular insufficiency or 

regurgitation is characterized by the back flow of the blood, due to the incomplete 

closure of the valves. Depending on the location of the heart valve deficiency, the 

stenosis or insufficiency may be mitral, tricuspid, pulmonary or aortic.  

The sounds associated with pathologies are called cardiac murmurs and are 

originated by vibrations caused by turbulent blood flow in the cardiac structure. They 

are normally noticeable in children and after physical exercise, without being correlated 

with disease [11]. However, except for those cases, their presence may indicate stenosis 

or insufficiency in the aortic, pulmonary or mitral valves. Information about the occurring 

time and site they occur have great diagnosis value in cardiac diseases [11]. In addition 

to the cardiac murmurs, the S3 and S4 may also be associated with pathologies as 

mentioned before. 
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Finally, innocent murmurs can also be heard not being however associated with 

disease. Usually, they are cause by a high cardiac debit or by the reduction of the blood 

viscosity. 

2.2.4 Noise sources in PCG 

Noise sources affecting PCG may have an external or internal origin. External 

noise, or ambient, comprises any sounds which are produced in the environment where 

the acquisition takes place, such as music, people talking in the background, a door 

closing, and so on. The noise with an internal origin is all the noise produced inside the 

subject’s body, such as speech, deep breathing, laughing and others. Typically, noise 

artifacts are characterized by the presence of higher frequency components in the 

spectrum than the existing ones in the clean PCG spectrum (see Figure 2.6, Figure 

2.7 and Figure 2.8). 

 

Figure 2.6 – Spectrogram of a PCG signal contaminated by periods of physiological noise. ‘B’, 

‘SW’ and ‘M’ corresponds to the artefacts originated by deep breathing, swallowing and body 

movement, respectively. 



Chapter 2 – Background Concepts and State of the Art 
 

11 

 

 

 

Figure 2.7 – Spectrogram of a PCG signal contaminated by periods of vocal noise. ‘S’, ‘C’ and 

‘L’ and ‘O’ corresponds to the artefacts originated by speech, cough, laugh and other types, 

respectively. 

 

Figure 2.8 – Spectrogram of a PCG signal contaminated by periods of ambient noise. ‘D’, 

‘OD’ and ‘MU’ and ‘P’ corresponds to the artefacts originated by door closing, object drop, music and 

phone ringing, respectively. 

2.2.5 Noise treatment in PCG 

Some strategies were already proposed to detect noise-contaminated periods in 

PCG signals.  
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In [2], a framing of the signal is performed in three seconds windows, followed 

by an evaluation of the stationarity in each window. This algorithm assumes the presence 

of two components in PCG signals: a stationary and periodic component related with 

respiratory sounds; and the quasi-stationary component related to HSs. The main goal 

of the algorithm is the detection of interferences in the stationary component of the 

signal, caused by transient noise sources. This is done by computing the short-time 

Fourier transform (STFT), followed by filtering the temporal trajectories of each 

frequency bin using a low-pass linear phase filter with a cut-off frequency of 1Hz, this 

operation is coined as modulation filtering. Then, power ratios of differently sized sub 

windows are extracted from the filtered temporal trajectories of each 3 second window. 

Finally, classification of noise is done using a Support Vector Machine (SVM) classifier. 

In [3] a bi-phase algorithm is presented. The first phase consist in the search for 

a clean HS window that will be used as a template. In the second phase the found 

template window will be compared with the remaining windows. The selection of the 

reference window is based on periodicity signatures within a 4s window. The second 

phase compares the spectral similarity and the maximum energy ratio between the 

reference window and the remaining test windows to assess about the noise 

contamination in the HS clips.  

In [14] noisy periods are detected by feeding single layer perceptrons, which 

were previously trained with clean and noisy data, with the wavelet coefficients of half 

second windows of PCG. In another study [15], different heart cycles are segmented 

resorting to an ECG gating. Afterwards, the mean correlation of the Spectral Power 

Distributions of the different cycles is obtained in order to ascertain about the presence 

of noise in a given PCG containing 10 heart.  

In [16] is also presented a methodology that uses the ECG gating to segment the 

different heart cycles, but in this case, each heart cycle is divided in systole and diastole. 

Each systole period is divided in two different segments the variance of each one is 

computed. If the variance of one segment is superior to a given threshold, then, that 

segment is classified as contaminated. Next, the systoles are divided in more segments 

and if the standard deviation of each segment is lower than a given threshold, then that 
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segments is considered noise free. Finally, the correlations between the systoles are 

computed, and the ones with a higher correlation than 0.7 are considered noise free. 

The same methodology is used in the diastole segments. 

In addition to the above described methodologies in noise detection periods to 

be posteriorly discarded, other noise reduction/cancelation methods have been 

developed, namely in [17][18][19].  

In [17] a speech enhancement method, based on the spectral domain minimum-

mean squared error (MMSE) estimation, is used to infer about presence of noise. In [18] 

an extra microphone is used to record only interferences produced by external noise 

sources, in order to perform noise subtraction to the signal containing the HSs. In [19] 

the PCG is filtered in a defined band frequency in order to enhance the HS and reduce 

the noise influence in the signal. 

2.3 The cardiac cycle and the electrocardiogram (ECG) 

The ECG consists in the recording of the action potentials in the heart. The 

depolarization and repolarization waves are measured using a galvanometer, which is an 

instrument that measures current. The type of wave, direction and intensity, determines 

the ECG profile. A depolarization wave approaching the positive electrode will produce 

a positive voltage, while moving away produces a negative voltage. The registered 

amplitude is directly proportional to the muscle mass where the wave was produced. 

For this reason, the waves originated in the ventricles present a higher amplitude due to 

its higher muscle mass. Depending on the sensors location, it is possible to obtain 

different perspectives from heart electrical activity. The different sensors configurations 

are known as leads. 
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2.3.1 ECG origin 

Usually, there are four main waves registered in an ECG, each from a different 

cardiac occurrence:  

Figure 2.9 – Polarization waves of the cardiac events (extracted from [20]). 

The depolarization waves do not travel in a straight line like depicted in Figure 

2.9, instead they spread in all possible directions from the source point. However, the 

vector sum of the wave results in a unique vector with the average direction and 

intensity, named force vector. In Figure 2.9 it is depicted the frontal plane of the heart, 

where the angles represent the different electrical axis for action potential measure. In 

this plane, six different perspectives, or leads, are used to measurement: the standard 

limb leads (I, II, e III, with the electrical axis situated in 0º, 60º, and 120º, respectively) 

and the augmented limb leads (aVR, aVL, and aVF, with the electrical axis situated in -

150º, -30º, and 90º, respectively), in their whole named limb leads. These six leads can 

also be represented in the Einthoven triangle depicted in Figure 2.10.  

1. Depolarization wave corresponding 

to the atrial contraction. 

2. Depolarization wave from the 

septum. 

3. Depolarization wave from the 

ventricular muscle tissue. 

4. Repolarization wave from the 

ventricular muscle tissue. 
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Figure 2.10 – Einthoven triangle (extracted from [21]). 

In the atrial depolarization the force vector has an electrical axis close to the 60º, 

where the lead II axis is situated, so it is expected a positive voltage in the lead II, at this 

positive deflection is called P wave. In lead III this deflection is almost unnoticeable 

because the axis of this lead is almost perpendicular to the wave direction. 

 

Figure 2.11 – ECG formation, Part1 (extracted from [22]). 

The next depolarization wave is the one that occurs from the septum, with its 

electrical axis near the 150º. As this wave is nearly perpendicular to the lead II axis, its 
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influence in the respective ECG is diminished, presenting a small negative deflection, 

since the projection of the force vector in the lead II axis is in the opposite way. In lead 

I the influence of this depolarization is more noticeable, since the wave and lead direction 

are close to each other, but of opposite ways, which reflects in a negative deflection. To 

this negative deflection caused by the septum depolarization is given the name of Q 

wave. 

 

Figure 2.12 – ECG formation, Part2 (extracted from [22]). 

Next, the depolarization wave travels through the apical zone with an axis close 

to 60º, reflecting a positive deflection in the three standard limb leads called R wave. 

The depolarization continues from the endocardium of the left ventricle to the 

epicardium. Since the wave projection in the late stage of ventricular depolarization is 

contrary to the lead III axis, there will be a negative deflection in voltage known as S 

wave. In the end of the heart cycle occurs the ventricular repolarization, causing the T 

wave. 

In addition to the limb leads, there are more 6 leads which ‘look’ at the heart in 

the transverse or horizontal plane in different perspectives, called V leads, presented in 

Figure 2.13. The respective representations in the ECG depend on the electrical axis 
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of each wave and on lead in the horizontal plane. The same principles of ECG formation 

in the limb leads apply to the V leads. 

 

Figure 2.13 – The unipolar chest leads, or V leads (extracted from http://cvphysiology.com). 

 

A normal 12-lead ECG presents the following form. 

 

Figure 2.14 – A normal 12-lead ECG (extracted from http: // pathology.wum.edu.pl). 

http://cvphysiology.com/
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2.3.2 Typical ECG of one heart cycle 

 

Figure 2.15 – The QRS Complex (extracted from http://studyblue.com). 

 P Wave: Wave resulted from the atrial depolarization. Its absence may 

indicate a cardiac anomaly such as atrial fibrillation, while abnormally 

large amplitude may indicate a greater amount of atrial muscle than 

normal [20]. 

 QRS Complex: Complex formed by the Q, R and S waves. As it is the 

result of the ventricular depolarization, a greater mass is involved, 

resulting in a greater amplitude. Abnormalities in this complex may 

indicate severe anomalies [20].  

 T Wave: Wave resulted from the ventricular repolarization. Inversion 

of the T wave with respect to the QRS complex and abnormal variations 

in amplitude, frequency and symmetry of the waveform in some leads are 

considered indicators of certain pathologies [20]. 

http://studyblue.com/
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Figure 2.16 – Spectral distribution of the different ECG waves. 

2.3.3 Noise sources in ECG 

 There are three main noise sources in an ECG (see Figure 2.17): 

 Electrode Motion (EM). 

 Muscle Artifact (MA). 

 Baseline Wondering (BW). 

 

Figure 2.17 – The main noise types influence on the same ECG segment. 
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The EM noise is originated from the movement of the electrodes attached on 

the body and is caused by body position changes, that leads to electrode-skin impedance 

variations. This type of noise is considered the most troublesome since its frequency 

spectrum overlaps with the spectrum of the QRS. Its presence may mimic some ectopic 

beats and is difficult to be removed comparing to the other noise types [23],[24]. 

Muscle noise (MA) is caused by action potentials created by the muscles 

surrounding the heart, with overlapping frequency components with the ECG signal. 

This noise has also frequency components superior to the ones found in the clean ECG 

[23],[24],[25]. 

The BW noise is characterized by oscillations of the ECG baseline, which are 

usually caused by chest movements produced during breathing. It is characterized by low 

frequencies, in the range of 0.1-1Hz [23],[24],[25]. 

 

Figure 2.18 – Spectral distribution of main noise types found in an ECG. 
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Figure 2.19 – Magnitude of the spectral distribution of the signals contaminated with the 

different noise types comparing to the clean ECG. 

2.3.4 Noise treatment in ECG 

One of the strategies used to control the impact of artifacts consists in the 

removal of noise periods when these are detected [4], [26]–[31].  

In [31], before the separation of sources, the neguentropy (a gaussianity 

measure), is used to evaluate the presence of noisy segments.  

In [30], a morphological filtering is performed in order to extract the EMG from 

the signals. As the influence of the QRS complexes is still present in the extracted vector, 

a suppression of these peaks is performed by reducing the magnitude by one-tenth on 

the corresponding periods. Finally, the detection of EMG noise presence is computed by 

thresholding the result of the moving variance on the EMG extracted and QRS 

suppressed vector. In [28] the use of accelerometers is explored in order to detect 

movement artifacts caused by corporal position changes.  

In [4], noise detection is performed by extracting statistical metrics, namely the 

mean, variance and entropy, from the first Intrinsic Mode Function (IMF) obtained using 

the Empirical Mode Decomposition (EMD).  
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In [29], statistical properties are explored using the Laplacian model of the ECG 

signal. In [27], the Root Mean Square (RMS) error is calculated between the original 

signal and the approximation resulted from the reconstruction by Principal Component 

Analysis (PCA).  

In [26], a set of detectors, each one being specific to a given type of noise, is 

explored. The signal overall quality is weighted by the effects of each type interference. 

Another strategy is the reduction/cancelation of noise in the ECG rather than 

discarding the noisy periods [24], [31]–[33]. In [31], the Independent Component 

Analysis (ICA) is used to separate the clean ECG signal from the noise sources. In [24], 

denoising of ECG is performed resorting to a notch filter, and also to Wavelet and 

Empirical Mode Decomposition (EMD) methods. In [32], adaptive filtering is used for 

noise cancellation. In [33], a reduction of noise is performed by smoothing the signal 

with a Savitzky-Golay filter. 
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Chapter 3 – Noise Detection in PCG signals 

In this chapter we are going to describe our low-complex and real-time 

processing methodology in noise detection periods for posterior removal.  

3.1 Data acquisition 

Multi-channel acquisitions occurred in two distinct populations, using different 

sensors and protocols. A detailed description is presented in the following subsections. 

3.1.1 Healthy dataset 

The PCG signals were acquired in a group of 23 healthy young subjects, that 

agreed with data acquisition and processing under anonymous conditions. There is a 

total of 370 minutes of PCG signals available for analysis. In order to evaluate the 

detection capabilities of the algorithm, subjects had to follow a defined protocol involving 

the deliberate/intentional production of noise during acquisitions. Three types of noise 

were induced along the signals: ambient, physiological and vocal noise (see Figure 3.1). 

For each subject we repeated two times the acquisition of one continuous signal for 

each noise type, leading to the recording of a total of six PCGs per subject.  

 

Figure 3.1 – Acquisition protocol, a) corresponds to the signal corrupted with ambient noise, 

b) signals with the addition of physiological noise, and c) corresponds to signals induced with vocal 

noise. In some acquisitions clean and noisy segments lasted for 20s, in others they lasted 10s.  
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 The PCG signals were recorded using the data logger Sensatron (Philips, 

Eindhoven, Netherlands) with a sampling frequency of 4000Hz. The two microphones 

were placed in the pulmonary and mitral auscultation sites, as presented in Figure 3.2. 

 

Figure 3.2 – Experimental setup. The arrows 1 and 2 are pointing to the microphones 

placed at the pulmonary and mitral auscultation sites, respectively. 

3.1.2 Pathological dataset 

 These signals were acquired at the Coimbra University Hospital (HUC) from 

only subjects with heart conditions. The dataset comprises of 8 signals acquired in 8 

subjects, accumulating 12 minutes of PCG signals. The signals were acquired in an 

uncontrolled hospital environment where noise is mainly originated due to abrasion of 

the stethoscopes with the skin and external voices. Data were acquired recurring to 

digital stethoscopes Meditron and by considering a sampling frequency of 2000 Hz. The 

stethoscopes were placed at the tricuspid and pulmonary auscultation sites. 

3.2 Methods 

Two main goals were envisaged for the development of the algorithm. In first 

place, it should be accurate and in second place it should be computationally efficient 

and process data in real-time, enabling integration in tele-monitoring systems. A diagram 

that generally depicts the algorithm is presented in Figure 3.3. 
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Figure 3.3 – Diagram of the multi-channel approach (MCA) noise detection algorithm in 

PCG. 

The proposed algorithm can be divided in two phases: in the first phase there is 

a search for a noise free window to be used as a template of a clean HS epoch; the 

second phase uses the template as a reference window to compare with the test 

windows, and assess about the presence of noise. The features chosen to compare test 

and reference windows were based on spectral differences and greater amounts of high 

frequency components in the contaminated segments (see Figure 2.6, Figure 2.7, and 

Figure 2.8). 
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3.2.1 Phase I 

In the first phase, the two PCGs from both channels, are windowed in 4s frames 

with an overlap of 70%. In each 4s window the two channels are summed and the 

resulting mean is subtracted to the signal. 

𝑆𝑊 =  𝑠𝑊
𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 + 𝑠𝑊

𝑐ℎ𝑎𝑛𝑛𝑒𝑙2 3.1 

𝑆𝑊
𝑑 = 𝑆𝑊 − 𝑚𝑒𝑎𝑛(𝑆𝑊) 3.2 

In Equation 3.1, 𝒔𝑾
𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝟏 and 𝒔𝑾

𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝟐 correspond to each channel signal in 

each 4s window, and their summation is given by 𝑺𝑾. 𝑺𝑾
𝒅  in Equation 3.2 corresponds 

to the detrended 𝑺𝑾 signal in each window. To evaluate if a certain 4s window is a 

proper candidate to look for a 1s reference window, the algorithm looks for a high 

spectral similarity between different segments present in the window. So, we segment 

the 4s window in 4 segments, each with 1s and no overlap, 𝑪𝒌 (see Figure 3.4).  

 

Figure 3.4 – Example of a 4s window divided in 1s segments. 

Now, with the different segments separated, we can calculate the spectral 

similarity between them. This computation of spectral similarity was already used in [3] 

and [15]. To obtain the spectral distribution of each 1s segment, we recur to the 

0.5 1 1.5 2 2.5 3 3.5 4

-6000

-4000

-2000

0

2000

4000

6000

 S
w

d

Time (s)

C
3C

1
C

2
C

4



Chapter 3 – Noise Detection in PCG signals 
 

27 

 

 

Discrete Time Short-Time Fourier Transform (DTSTFT), Equation 3.3. The DTSTFT 

divides the signal in time intervals, and in each one performs the Discrete Fourier 

Transform (DFT). The final result is a matrix composed by the distribution of the 

frequency components in each temporal trajectory. 

𝐷𝑇𝑆𝑇𝐹𝑇[𝑚, 𝑘] =  ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]𝑒−2𝜋𝑖𝑘𝑛

𝑁−1

𝑛=1

 3.3 

 In Equation 3.3, 𝑫𝑻𝑺𝑻𝑭𝑻[𝒎, 𝒌] is the DTSTFT of the signal 𝒙 with 𝑵 samples, 

and 𝒘 is a window function. The 𝒌 variable corresponds to a specific frequency with a 

total of 𝑲 frequency trajectories, 𝒎 to a time trajectory with a total of 𝑴 trajectories, 

and 𝒏 to a sample of the signal. 

 We perform the DTSTFT of each 𝑪𝒌 using a Hanning window function with a 

span of 8ms and 50% of overlap between consecutive windows. The spectral distribution 

(𝑺𝑫𝒌) of 𝑪𝒌, given by Equation 3.4, is obtained by the summation of the 𝑫𝑻𝑺𝑻𝑭𝑻𝒌’s 

magnitude along the 𝑴 temporal trajectories and further calculation of the Root Mean 

Square (RMS) of that sum (see Figure 3.5). 

𝑆𝐷𝑘[𝑘] = √
1

𝑀
∑ (20𝑙𝑜𝑔10(|𝐷𝑇𝑆𝑇𝐹𝑇[𝑚, 𝑘] |))2

𝑀

𝑚=1

 3.4 

Recurring to the example of Figure 3.4, the spectral distributions of the 

different segments are illustrated in Figure 3.5. 
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Figure 3.5 – Spectral distribution of the different 1s segments present in the 4s window. In 

this case we have a spectral similarity of 0.9976. 

 To measure the spectral similarity between the different segments, the Pearson 

Correlation Coefficient, Equation 3.5, is computed for each pairwise 𝑺𝑫𝒌 combination. 

𝐶𝑜𝑟𝑟𝑋𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 3.5 

 In Equation 3.5, 𝒄𝒐𝒗 corresponds to the covariance of two variables, and 𝝈 the 

standard deviation. If the average correlation is greater than 0.995, than it is assumed 

that the 4s window is a proper candidate to find a clean reference window. If not, the 

algorithm analyses the next 4s window with 70% of overlap. The value of 0.995 for 

average correlation, was taken by using this methodology on the entire length of the 

training signals, and assessing the noise sensitivity it provided to us. This value was able 

to reach a noise sensitivity of 95%, in other words, it assures us a noise free 4s window 

with 95% of certainty. 

 Next, if the condition of the clean 4s window is met, there is a search of a 1s 

window to serve as a reference of a noise free window and compare it to the remaining 

1s windows of the signal. The 1s reference window, 𝑹𝑬𝑭, is the one with the lowest 

overall Teager-Kaiser Energy Operator (TKEO), Equation 3.8, present in the 4s window. 

Once the TKEO increases when high amplitude and frequency sounds are present, the 
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1s window with the lowest TKEO is going to correspond to the least probable window 

to contain noise artifacts. An example of a reference window is shown in Figure 3.6. 

𝑇𝐾𝐸𝑂[𝑛] =  𝑆𝑊
𝑑 [𝑛]2 + 𝑆𝑊

𝑑 [𝑛 − 1]𝑆𝑊
𝑑 [𝑛 + 1] 3.6 

𝑅𝐸𝐹𝑖𝑛𝑑𝑠 = 𝑛  𝑤ℎ𝑒𝑟𝑒:    𝑚𝑖𝑛 { ∑ 𝑇𝐾𝐸𝑂[𝑛]

𝑛+𝑓𝑠

𝑛=2

, … , ∑ 𝑇𝐾𝐸𝑂[𝑛]

𝐿𝑆−1

𝑛=𝐿𝑆−𝑓𝑠

 } 3.7 

𝑅𝐸𝐹 = 𝑆𝑊
𝑑 [𝑅𝐸𝐹𝑖𝑛𝑑𝑠] 

3.8 

 To conclude Phase I, the standard deviation of the reference window is calculated 

(see Equation 3.9). This value (𝑵𝑵𝑭𝒂𝒄𝒕𝒐𝒓) will be used as a normalization factor for the 

test windows. 

 

Figure 3.6 – An example of a reference window. 

3.2.2 Phase II 

In this second phase, we frame the PCG signal in 1s windows with 80% overlap, 

beginning at the end of the reference window. This 1s windows are the ones that are 

going to be assessed about the presence of noise artifacts, therefore, called test 

windows. In each test window the preprocessing is similar to the one performed in first 
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phase, namely a summation of the two channels and the respective detrend (see Equation 

3.1 and 3.2). After that, the test window and the reference window are normalized with 

the 𝑵𝑵𝑭𝒂𝒄𝒕𝒐𝒓 obtained in the first phase. This 𝑵𝑵𝑭𝒂𝒄𝒕𝒐𝒓 is updated if the standard 

deviation of the current test window is greater than the previous value. 

Finally, to ascertain about the presence of noise artifacts, two features are 

computed, using the reference and test windows: the spectral similarity (see Equation 

3.15), and the High Frequencies Power Spectral Density (HFPSD) ratio (𝑯𝑭𝒓𝒂𝒕𝒊𝒐) (see 

Equation 3.19). 

The 𝑯𝑭𝒓𝒂𝒕𝒊𝒐 corresponds to the ratio between the total amount of high 

frequency components (higher than 𝑭𝒄 Hz) in the reference and test window. The DFT 

(see Equation 3.16) is used to compute the Power Spectral Density (PSD) of a given 

window (see Equation 3.17).  

𝑅𝐸𝐹𝑛𝑜𝑟𝑚 =
𝑅𝐸𝐹

𝑁𝑁𝐹𝑎𝑐𝑡𝑜𝑟
 3.10 

𝑇𝐸𝑆𝑇 = (𝑠𝑡𝑒𝑠𝑡
𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 + 𝑠𝑡𝑒𝑠𝑡

𝑐ℎ𝑎𝑛𝑛𝑒𝑙2) − 𝑚𝑒𝑎𝑛(𝑠𝑡𝑒𝑠𝑡
𝑐ℎ𝑎𝑛𝑛𝑒𝑙1 + 𝑠𝑡𝑒𝑠𝑡

𝑐ℎ𝑎𝑛𝑛𝑒𝑙2) 3.11 

𝑇𝐸𝑆𝑇𝑛𝑜𝑟𝑚 =
𝑇𝐸𝑆𝑇

𝑁𝑁𝐹𝑎𝑐𝑡𝑜𝑟
  3.12 

𝑆𝐷𝑟𝑒𝑓[𝑘] = √
1

𝑀
∑ (20𝑙𝑜𝑔10(|𝑆𝑇𝐹𝑇𝑅𝐸𝐹𝑛𝑜𝑟𝑚[𝑚, 𝑘] |))2

𝑀

𝑚=1

 3.13 

𝑆𝐷𝑡𝑒𝑠𝑡[𝑘] = √
1

𝑀
∑ (20𝑙𝑜𝑔10(|𝑆𝑇𝐹𝑇𝑇𝐸𝑆𝑇𝑛𝑜𝑟𝑚[𝑚, 𝑘] |))2

𝑀

𝑚=1

 3.14 

𝑅 = 𝐶𝑜𝑟𝑟𝑆𝐷𝑡𝑒𝑠𝑡𝑆𝐷𝑟𝑒𝑓
 3.15 

𝑌𝑤[𝑘] = ∑ 𝑥[𝑛]𝑤[𝑛]𝑒−2𝜋𝑖𝑘𝑛

𝑁−1

𝑛=1

 3.16 
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Now, having the two features computed we apply a threshold technique to 

evaluate about the presence of noise contamination (see Condition 3.20). 

𝐼𝐹   𝑅 < 𝑅𝑡ℎ   𝑂𝑅   𝐻𝐹𝑟𝑎𝑡𝑖𝑜 > 𝐻𝐹𝑡ℎ    →   𝑁𝑜𝑖𝑠𝑒 𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 3.20 

 In Condition 3.20, 𝑹𝒕𝒉 corresponds to threshold of the spectral similarity 𝑹, and 

𝑯𝑭𝒕𝒉 to the threshold of  𝑯𝑭𝒓𝒂𝒕𝒊𝒐 feature. 

 

Figure 3.7 – Algorithm’s noise detection result, and the respective reference and features 

result. The set of parameters 𝑹𝒕𝒉, 𝑯𝑭𝒕𝒉 and 𝑭𝒄 were set to 0.92, 6.5 and 170, respectively. 
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𝐻𝐹𝑃𝑆𝐷𝑤 = ∑ 𝑃𝑆𝐷𝑤[𝑘]

𝐿
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 3.18 

𝐻𝐹𝑟𝑎𝑡𝑖𝑜 =
𝐻𝐹𝑃𝑆𝐷𝑤

𝑡𝑒𝑠𝑡

𝐻𝐹𝑃𝑆𝐷𝑤
𝑟𝑒𝑓

 3.19 
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3.3 Results 

3.3.1 Tuning phase 

To train the algorithm we used signals from six different subjects from the healthy 

dataset, which has a total of 35 signals, sampled at 4000Hz. The best parameter 

combination, namely 𝑹𝒕𝒉, 𝑯𝑭𝒕𝒉 and 𝑭𝒄, was found recurring to a Receiver Operating 

Characteristic (ROC) analysis. The optimal combination was given by the highest module 

of mean sensitivity and specificity on the training dataset. The best parameter 

combination correspond to a mean sensitivity and specificity of 95.31% and 93.76% (see 

Figure 3.8). The results for each subject and noise type are presented in Table 3.1. 

 

 

Figure 3.8 – ROC curves for the different parameter combinations in the training dataset.  
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Table 3.1 – Noise sensitivity (SS) and specificity (SP) for all the signals in training dataset. 

    Noise Type 

ID Age 
BMI 

(Kg/m2) 
Run 

Ambient Physiological Vocal 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

1 35 28,01 
1 99,13 91,11 100,00 86,75 98,57 93,79 

2 97,82 96,17 87,92 89,85 99,94 91,79 

2 28 22,47 
1 97,86 99,12 90,90 89,44 99,93 97,54 

2 93,16 100,00 89,56 90,65 99,74 98,35 

3 33 25,11 
1 100,00 91,39 97,35 93,04 - - 

2 100,00 89,12 43,66 97,38 93,89 91,26 

4 30 16,65 
1 99,16 96,77 88,30 98,06 100,00 95,08 

2 99,00 98,84 90,05 100,00 100,00 99,76 

5 24 21,51 
1 99,45 96,48 98,22 71,40 99,68 95,73 

2 99,62 94,94 89,61 96,98 100,00 75,58 

6 28 22,91 
1 100,00 95,44 89,99 94,32 100,00 95,51 

2 100,00 97,40 93,74 96,05 99,63 96,50 

          

Average per Noise Type 98,77 95,57 88,27 91,99 99,22 93,72 

 It is important to refer that the framing methodology that was used, in the 

frontiers of noisy periods, is going to result in windows classified as noise where there 

are both noise and clean samples. The algorithm was trained to not count as false 

positives the clean samples present in a given window where both classes (clean and 

noisy) of HSs are present. This was made in order to explore the full capabilities of the 

algorithm on the noise detection. If we chose not to do this procedure, the lower 

specificity due to the false positives present in a window with contaminated samples, 

would result in an increase of the thresholds to compensate the low specificity and thus, 

affecting our noise sensitivity. To conclude, we are imposing to the training methodology 

that it is fine to classify a window as noise contaminated when this window has noise 

periods. The results presented in Table 3.1 and Figure 3.8 are computed by having 

this in account.  

 Although the algorithm has been trained to not count false positives in windows 

where both classes (noisy and clean) are present, in a real situation these false positives 

must be counted, as it discards clean periods, which might contain valuable information. 

If we count the false positives at the margins of the noise periods, we get a mean 
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specificity of 85.88%, a drop of 7.88%. Although the decrease in specificity is not critical, 

we have to take into account the entire length of the signal being analyzed. In the case 

of the training dataset, the signals have a considerable high duration, comparing to the 

assessment window duration, which results in a small drop of the specificity. However, 

if we had signals with half the duration, this effect would be much more prominent, as 

the false positives within a detected window would represent a higher percentage of the 

signal - which is the case of the testing healthy dataset, where the different tasks have 

only 10 seconds instead of 20 seconds of the training data. This problematic is shown 

Figure 3.9. 

 

Figure 3.9 – Noise detection on a contaminated period (door closing). 

 This problem consists in a resolution problem of the framing methodology. We 

could reduce the length of the analyzing 1s window, however it would result in a loss of 

robustness, as it would most probably result in a reference window without at least one 

HS cycle, and cause comparison problems between the reference and clean test 

windows.  

 To overcome this resolution problem, maintaining the 1s window, the following 

methodology is used. In each 1s window only the central 20% of the actual window 

(which is renewed in each frame with 80% of overlap) is going to be classified as a noisy 

or clean. A scheme that better describes this resolution narrowing is depicted in 

Appendix A.  
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 Recurring to the example of Figure 3.9 the result of the narrowing 

methodology, or high resolution approach, is depicted in the following figure. 

 

Figure 3.10 – Differences between the different detection techniques. 

The results on the training dataset for the high resolution approach were 83.08% 

and 95.72% of mean sensitivity and specificity, respectively. Although it resulted in a 

trade-off of sensitivity for specificity, it provides us a higher independency regarding to 

the signal duration. The decrease in sensitivity may be explained by the fact that some 

large blocks of noise were annotated as one entire noise period, which increases the 

count of false negatives due to the presence of small clean segments between the noisy 

periods, as confirmed visually. 

3.3.2  Testing phase 

3.3.2.1 Healthy dataset 

 The healthy testing dataset comprises of 17 subjects, accounting for a total of 51 

PCGs (six per subject) and has a total of 280 minutes of signal. The multi-channel 

approach was tested using the set of parameters found in the training phase. The noise 

sensitivity and specificity results for the testing dataset are presented in Table 3.2. 
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Table 3.2 – Noise sensitivity (SS) and specificity (SP) for all the signals in the healthy testing 

dataset. Each value of sensitivity and specificity, corresponds to mean value of the two runs for each 

subject and noisy type.  

ID Age 
BMI 

(Kg/m2) 
Sex 

Ambient Physiological Vocal 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

7 24 18,59 F 96,97 91,79 76,43 98,06 95,52 93,89 

8 24 25,01 M 97,52 94,77 77,42 93,11 98,58 94,46 

9 23 18,72 M 92,87 97,10 92,99 98,23 97,03 84,55 

10 24 19,59 M 94,33 95,73 97,63 93,06 98,43 90,57 

11 24 21,88 M 96,25 86,11 77,12 62,73 91,82 80,22 

12 24 21,88 M 94,07 95,24 54,68 98,90 89,12 81,25 

13 22 25,31 M 95,97 92,32 85,88 95,91 95,90 85,57 

14 25 21,89 M 93,17 92,54 93,98 88,55 95,58 88,27 

15 24 22,99 M 99,66 85,85 83,29 85,31 99,36 82,63 

16 19 21,47 M 91,98 96,35 83,29 97,82 95,05 91,90 

17 24 24,62 M 98,45 92,89 96,12 93,55 87,88 85,20 

18 24 21,55 M 94,11 90,24 94,81 92,48 89,37 95,96 

19 21 20,98 M 93,97 90,81 70,59 97,56 88,85 76,84 

20 22 23,30 M 97,90 92,32 92,85 93,86 97,68 88,10 

21 22 25,14 M 98,91 91,91 90,52 94,27 98,41 85,53 

22 24 22,79 M 98,05 94,81 85,38 90,06 95,88 85,31 

23 24 23,90 M 81,36 96,61 87,11 98,57 83,40 95,28 

          

Average per Noise type 95,03 92,79 84,71 92,47 93,99 87,38 

 

The multi-channel approach returns 91.24% and 90.88% of mean sensitivity and 

specificity, respectively. We also tested this dataset for the signals downsampled to 2000 

Hz, the results of the algorithm were 88.48% and 91.02% for mean sensitivity and 

specificity, respectively.  

The single channel approach (SCA) was also compared with other single-channel 

methods, namely the Periodicity-based (PB) algorithm [3] and the Modulation Filtering 

(MF) algorithm [2]. We have chosen these algorithms for comparison based on its 

documented high precision and code availability. The results are presented in Table 3.3 

and Table 3.4. 
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Table 3.3 – Results corresponding to the signals acquired in the Mitral auscultation site for the 

different single-channel algorithms, for each noise type. The Time row corresponds to the processing 

time in seconds, each algorithm takes to analyze one minute of PCG signal with a sampling frequency 

of 4000Hz. These results were computed using MATLAB version R2013b and a 4.00GHz Intel Core i7-

4790k processor. 

Mitral 
SCA MF PB 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

Ambient 93,64 94,00 84,92 52,46 97,10 89,13 

Physiological 79,69 91,81 75,32 56,74 75,45 83,74 

Vocal 86,22 92,56 96,26 47,28 86,54 75,09 

       

Average 86,51 92,79 85,50 52,16 86,36 82,65 

Time (s) 0,17 0,82 0,32 

 

 

 

Table 3.4 – Results corresponding to the signals acquired in the Pulmonary auscultation site 

for the different single-channel algorithms, for each noise type. 

Pulmonary 
SCA MF PB 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

Ambient 95,19 91,23 86,46 39,12 94,67 81,70 

Physiological 81,10 90,04 73,49 41,48 79,55 77,25 

Vocal 94,03 87,04 97,35 35,30 93,10 69,46 

       

Average 90,11 89,43 85,77 38,63 89,11 76,14 

 

3.3.2.2 Pathological dataset 

 We used the entire pathological dataset for test. The Multi-Channel Approach 

results are presented in the following table. 
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Table 3.5 – Results of sensitivity and specificity for each subject on the pathological dataset 

using the multi-channel approach algorithm. 

ID Age Sex BMI SS (%) SP (%) Condition 

1 82 M 23,8 97,09 70,67 
Cardiac Insufficiency Class 3; Ischemic 

Cardiopathy 

2 78 M 28,4 70,39 93,88 
Cardiac Insufficiency Class 1; Valvular 

disease; Coronary Disease 

3 69 M 28,7 70,86 95,31 
Cardiac Insufficiency Class 3; Mitral 

Insufficiency 

4 81 F 18,7 100,00 94,65 Cardiac Insufficiency 

5 71 M 30,9 50,00 96,08 
Cardiac Insufficiency Class 3; Coronary 

Disease; 

6 84 M 23,7 53,96 97,78 
Cardiac Insufficiency; Ventricular 

Dysrhythmia 

7 82 M 23,7 76,09 97,59 Submitted to Aortic Arch Surgery 

8 81 F 22,2 97,70 87,44 Cardiac Insufficiency Class 2; 

       

Average 77,01 91,68 

 

 Comparison of the SCA algorithm with the other single-channel algorithms is 

presented in Table 3.6. 

Table 3.6 – Results for each auscultation site, for the different single-channel algorithms in the 

pathological dataset. 

 Pulmonary Tricuspid 

 SS (%) SP (%) SS (%) SP (%) 

SCA 88,20 87,20 84,30 90,86 

PB 72,40 84,29 61,53 82,27 

MF 79,68 55,80 81,51 48,29 

 

3.4 Discussion 

Looking at the results in Table 3.3, Table 3.4 and Table 3.6, it can be seen 

that the SCA presents the highest mean sensitivity and specificity between all the 

analyzed algorithms, as also the least computational time. The reason lies in its simplicity, 

which provides the algorithm with robustness, generalization capabilities and low 
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processing times. The physiological noise was the most difficult to detect among all the 

tested algorithms, which can be due to the lower amplitudes and frequency components 

this noise type presents. 

A reason to justify the low specificity of the MF algorithm in the healthy and 

pathological testing dataset, is the use of a 3s window to assess the noise periods, causing 

a resolution problem. In the pathological dataset in addition to the resolution problem, 

the MF algorithm may also have false detections due to the pathological HS, as referred 

by the authors [2]. 

 The PB algorithm presents a high sensitivity, however a lower specificity in 

general, mainly due to resolution problems. The lower specificity in vocal noise, 

comparing to the specificity in the signals with ambient and physiological noise, is due to 

the differences in amplitude between the reference and the test windows, as some tasks, 

e.g. coughing, laughing, may increase the heart rate, and result in the increase of energy 

in the HS. As one of the features for noise classification in the PB algorithm is the energy 

ratio between reference and test windows, this increase in heart rate, and consequently 

its energy, may result in false detections. 

The different methodologies were tested in pathological signals in order to infer 

if the algorithms were sensitive to murmurs or other abnormal HSs. The high specificity 

of the MCA and SCA indicates that the two approaches are able to differentiate between 

pathological events from noisy periods. 

The lower sensitivities in the pathological dataset compared to the ones in the 

healthy dataset is due to the lower number of noisy periods along the signals, and thus, 

not having a sufficient noise duration in each signal to infer with certainty about each 

algorithm’s ability to detect noise. Other factor that influences the lower sensitivity is 

that the acquisitions were made in a controlled and silent ambient, causing the 

involuntary noise periods to have a low amplitude.  

The results for the MCA and SCA prove the utility and efficacy of the developed 

methodology. However, in a multi-channel situation, one may ask why not apply the 

single-channel approach in each channel and join the final results, for a multi-channel 
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resolution. In fact, the sum of the different channels is expected to result in an 

amplification on the noise artifacts, as the noise sources will affect both channels. This 

can be seen by the slightest better results of the MCA (see Table 3.2) comparing the 

results of the SCA (see Table 3.3 and Table 3.4). Additionally, the computational time, 

is reduced to half by using the MCA, an important asset to implement in tele-monitoring 

systems.  

The pathological dataset was acquired using two stethoscopes, each handled by 

an individual subject, and the major noise source of this acquisitions was the abrasion 

between the skin and stethoscopes, resulting on the independency of noise presence 

between channels. Therefore, the usage of the SCA is a more suitable approach for this 

situation, as we can compare by the results of the MCA and SCA, in Table 3.5 and 

Table 3.6, respectively. 

3.5 Concluding remarks 

A fast and reliable algorithm has been developed, being suitable for integration in 

real-time in a multi or single-channel acquisition system. Future work may include:  

 Increasing the number of subjects of the healthy and pathological testing 

datasets in order to see the performance that the algorithm achieves in 

a dataset that better depicts the overall population, and the diversity of 

cardiovascular diseases; 

 Testing the methodology on signals that weren’t conditioned by any 

acquisition protocol or a controlled environment, to inspect about its 

performance in a real-life situation; 

 Assessment of the improvement in the detection of cardiac pathologies, 

after the noisy periods detected by the MCA have been discarded from 

further analysis.   
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Chapter 4 – Noise Detection in ECG signals 

In this chapter we will describe an algorithm developed to detect noise periods 

on single-lead ECG signals for quality evaluation. This algorithm had the finality to be 

integrated in the WELCOME (http://www.welcome-project.eu) vest, a tele-monitoring 

system, from the project of the same name. It was optimized to match the characteristics 

of the referred system, namely, ECG signals at a sampling frequency of 250Hz, and 5 

minutes of duration.  

4.1  Data 

We used the ECG signals available from Physionet (MIT-BIH Arrhythmia 

Database - http://physionet.org/physiobank/database/mitdb), and noise records from the 

MIT-BIH Noise Stress Database also from Physionet 

(http://physionet.org/physiobank/database/nstdb/), all with a sampling frequency of 

360Hz. The noise records were acquired in a way that the subject’s ECG signals were 

not visible. Three types of noise were derived from these records, the baseline 

wondering (BW), the electromyogram (EMG) artifact (MA), and the electrode motion 

artifact (EM) (see Figure 4.1).  

 

Figure 4.1 – Segments of the noise records from Physionet used to add noise to the signals 

at different SNR’s. EM corresponding to the electrode motion noise in the ‘em’ record of Physionet. MA 

corresponding to the muscle noise in the ‘ma’ record. And BW corresponding to the baseline 

wandering noise in the ‘bw’ record. 
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To add the noise to the ECG signals at different SNR’s, we used the ‘nst’ function 

from the WFDB Software Package also provided by Physionet 

(http://physionet.org/physiotools/wfdb.shtml), based on a peak to peak amplitude to 

compute the gains to apply to the noise records. 

 The MIT-BIH Arrhythmia Database possess a total of 46 signals of lead MLII, 40 

of V1, 4 of V2, 1 of V4, and 5 of V5, most of them with a high degree of arrhythmias 

prevalence. We only used the signals with a high quality, i.e., the signals with few natural 

noise periods. This selection was made to prevent the adverse effect of having noise 

periods left to annotate, and thus, affecting the algorithm’s specificity, and also with the 

objective of having a better insight about the algorithm capabilities on detecting different 

noise types at different SNR’s, which we computationally added. So, we ended up with 

a total of 25 signals of lead MLII (625 minutes), 21 of lead V1 (525 minutes), 4 of lead V2 

(100 minutes), and 5 of lead V5 (125 minutes).  

 With the chosen dataset, we divided it in two subsets, one for training, and 

another for test of the developed algorithm. We trained our algorithm on 6 different 

signals of lead MLII, namely the records 201, 205, 213, 217, 223 and 231, comprising in 

a total of 150 minutes. We have chosen these records due to its high quality signal and 

the presence of various types of arrhythmias, in order to determine the parameters that 

best discriminate the noise periods, keeping a low sensitivity to arrhythmia patterns. 

 The three noise types were added to the dataset at 6 different SNR levels, namely 

-6, 0, 6, 12, 18 and 24 dB, like depicted in Figure 4.2. 

To match the sampling frequency used in the WELCOME vest, all the signal were 

down sampled to 250 Hz recurring to the Piecewise Cubic Hermite Interpolating 

Polynomial (PCHIP). 

http://www.physionet.org/physiotools/wfdb.shtml
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Figure 4.2 – The effect that each noise type produces in a clean ECG segment at different 

SNRs. 
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4.2  Methods 

The focus of this algorithm is the detection of noise periods in multi-lead ECG 

signals, and depending on the amount and duration of the noise periods, evaluate about 

the signal quality. We choose to not implement a reduction noise strategy since the 

amount of available ECG signal is plenty, and the referred strategy might distort the 

original signal and lose valuable information. So we choose to adopt the strategy of 

removing the noisy periods as for PCG. A diagram that generally depicts the algorithm 

is shown in Figure 4.3. The algorithm was designed with the aim of high adaptation for 

different leads. The total noise detection method comprehend four main stages: 

 The preprocessing stage where the baseline shifts are removed and the 

signal is normalized.  

 An R-peak detection stage.  

 The stage where the two features, the approximation error by PCA and 

the result of a High Frequency Filtering used for classification are derived.  

 A final stage where the assessment of noise corruption is performed in 4 

seconds windows recurring to the main features.  

 

Figure 4.3 – Diagram of the noise detection algorithm in ECG. 
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4.2.1 Preprocessing 

The algorithm was optimized for 5 minutes segments of ECG signal, thus, each 

signal must last for at least 5 minutes. If the signal is longer than 5 minutes, the signal is 

windowed for that time. During each 5 minutes segment, it is removed the baseline drift 

from the signal recurring to a high-pass FIR filtering (see Equation 4.1), with a cut-off 

frequency of 0.5 Hz [25] and an order of 100. Then, that signal is normalized using his 

standard deviation. 

𝑆𝑑 = 𝑆[𝑛] ∗ 𝐵[𝑚]                  𝑛 = 1, … , 𝐿𝑆;     𝑚 = 1, … , 𝐿𝑏 + 1 4.1 

𝑆𝑛
𝑑 =

𝑆𝑑

𝜎𝑆𝑑
 4.2 

In Equation 4.1, 𝑺𝒅 is the result of the signal 𝑆 with a length of 𝑳𝑺 convoluted by 

the high-pass filter 𝑩 with an order of 𝑳𝒃, and 𝑺𝒏
𝒅 in Equation 4.2 is the detrended and 

normalized signal. 

4.2.2 R-peak detection 

In order to obtain the beat matrix to perform the approximation by PCA in the 

next stage, first we must segment the ECG according to each heartbeat. To do so, we 

use a R-peak detector based on the Pan & Tompkins Algorithm [34]. In order to detect 

the R-peaks, it is performed a band-pass filtering between 5 and 20 Hz (𝑺𝒇), then the 

energy (𝑬) of the signal is derived with the square of the first derivative (see Equation 

4.3). The energy is then smoothed by a moving average (MA) filter with a span of 2 

seconds (see Equation 4.4).  

𝐸[𝑛] = (𝑆𝑓[𝑛 + 1] − 𝑆𝑓[𝑛])2 ,               𝑛 = 1, … , 𝐿𝑆 − 1 4.3 

𝐸𝑠[𝑛] =
1

2𝑓𝑠
 ∑ 𝐸[𝑛]

𝑛+𝑓𝑠

𝑛−𝑓𝑠

,            𝑛 = 1 + 𝑓𝑠, … , 𝐿𝑆 − 𝑓𝑠 4.4 
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Figure 4.4 – Envelope computation of the ECG beats. 

The modification performed in this algorithm is in the threshold to assess the 

peaks locations, which is adaptive. The threshold is derived by the result of a moving 

average filter with a span of 2 seconds on the resulted energy vector. This modification 

is made to take in account the individuality of each subject and lead, and on the different 

possible beat amplitudes in the same signal, like depicted in Figure 4.5. 

 

Figure 4.5 – Different amplitude beats, and the threshold variation. 

 The peaks location on each energy peak envelope are going to be the first sample 

higher than the threshold. As the process of filtering causes a phase shift compared to 

the initial signal, the real peak locations are assessed by finding the absolute maximum 
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on the original signal around 150ms from the energy peaks locations. Then, there is a 

removal of the peaks corresponding to an RR interval less than 100ms.  

 The adaptability of the moving average threshold provides us a great sensibility 

in R-peaks on different types of signal. But, in the case of a lead-off period, the threshold, 

due to its characteristics, is automatically going to meet the zero energy baseline, and 

detect peaks where it is not supposed to detect. So, to prevent this effect, a minimum 

value threshold is needed, see Figure 4.6. 

 To compute the minimum threshold value, we first calculate the Zero-Crossing 

Rate (ZCR) in each 2 second window with 0% overlap, i.e., the rate at which the signal 

crosses the zero line. The goal is to find in which signal windows, beats are present or 

not. A lead-off window is expected to have a ZCR around or superior to 50 (due to the 

electromagnetic interference of 50Hz or 60 Hz). While a non-lead-off window is 

expected to have a ZCR inferior than 50. So, within the periods with a ZCR inferior 

than 40, we calculate the mean energy amplitude value of the corresponding periods, 

i.e., the periods with beats. The minimum threshold is then computed as in Equation 4.5. 

𝑡ℎ𝑚𝑖𝑛 = 𝐸𝑚𝑖𝑛 + 0.1(𝐴𝑚𝑒𝑎𝑛 − 𝐸𝑚𝑖𝑛) 4.5 

 In Equation 4.5, 𝒕𝒉𝒎𝒊𝒏 corresponds to minimum threshold value, 𝑬𝒎𝒊𝒏 to the 

minimum value on the energy vector 𝑬, and 𝑨𝒎𝒆𝒂𝒏 to the mean energy value of the 

periods with a ZCR inferior than 40. 
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Figure 4.6 – Plot of a lead-off period (1355s - 1361s). 

If the rate of beats per minute is less than 25, the whole 5 min are considered as 

non-quality signal. This because the physiological impossibility of this heart rate, indicates 

a disconnection of the electrodes from the skin. 

4.2.3 Root mean square error of the approximation by PCA 

The PCA will be performed on the beat matrix (𝑴), which consist in one beat 

per line. Each beat 𝑩𝒊 in 𝑴 is obtained from the adjacent R-peaks locations of the current 

R-peak location, 𝑹𝒊 (see Equation 4.6 and 4.7). As the lengths of each beat are different 

we must perform a resampling to equalize all the beat lengths in order to perform the 

PCA. The chosen length is 125 samples. All the beats in 𝑴 suffer a min-max 

normalization (see Figure 4.7). 

𝐵𝑖
𝑟𝑒𝑎𝑐ℎ = 𝑚𝑖𝑛 {

𝑅𝑖 − 𝑅𝑖−1

2
,
𝑅𝑖+1 − 𝑅𝑖

2
} 4.6 

𝐵𝑖 = 𝑆𝑛
𝑑[𝑘],    𝑘 = 𝑅𝑖 − 𝐵𝑖

𝑟𝑒𝑎𝑐ℎ, … , 𝑅𝑖 + 𝐵𝑖
𝑟𝑒𝑎𝑐ℎ 4.7 
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Figure 4.7 – Illustration of how the beat matrix 𝑀 is computed. 

Then we derive the eigenvalues and the eigenvectors of the covariance matrix of 

𝑴, and make the reconstruction of the beats matrix based only on the eigenvectors that 

provide at least 98% of the initial total variance. This value was found as the best to 

discriminate between noise and clean periods according to a ROC analysis.  

𝐴𝑝𝑝𝑟𝑜𝑥𝑀 = 𝑀𝑉𝑉𝑇 4.8 

In Equation 4.8, the matrix 𝑨𝒑𝒑𝒓𝒐𝒙𝑴 is the result of the reconstruction of 𝑴 

based only on the most significant eigenvectors, 𝑽. 𝑨𝒑𝒑𝒓𝒐𝒙𝑴 has the same size of 𝑴, 

with 𝑵 lines and 125 columns, corresponding to the number of beats and the beat 

lengths, respectively (see Figure 4.8). 

...
...

Interpolation and Min-
Max Normalization

Beat Matrix (M)
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𝑅𝑀𝑆𝑒𝑟𝑟[𝑖] = √∑ (𝐴𝑝𝑝𝑟𝑜𝑥𝑀[𝑖, 𝑗] − 𝑀[𝑖, 𝑗])2

𝑓𝑠/2

𝑗=1

,   𝑖 = 1, … , 𝑁;    𝑗 = 1, … , 𝑓𝑠/2 4.9 

In Equation 4.9, the vector 𝑹𝑴𝑺𝒆𝒓𝒓 is the root mean square error between the 

original beats and the approximation beats. This vector is one of the features used to 

assess the presence of noise in ECG segments, [27]. Finally, is smoothed with a MA filter. 

 

Figure 4.8 – Comparison between the approximation by PCA of a clean heartbeat and a 

noise corrupted one. 

4.2.4 High-pass FIR filtering 

The second feature to assess the presence of noise artifacts is the result of a 

high-pass FIR filter with a cut-off frequency (fc) of 90 Hz and an order of 100 (see 

Equation 4.1). The fc of 90 Hz was found as the best to discriminate between noise and 

clean periods according to a ROC analysis. Finally, this feature is smoothed with a MA 

filter. 

4.2.5 Noise assessment in 4s segments and thresholding 

The assessment of corrupted periods is done by windowing the whole length of 

the signal in 4 seconds chunks with 50% of overlap, and examine the two features in that 

periods. Before the windowing, the thresholds must be determined to evaluate what is, 

and what is not noise. These thresholds are not fixed to specific values, they change in 
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each analyzed signal. To set them, we must first look for noise free periods. The clean 

periods correspond to the 3 segments, each with 10 beats, with minimum 𝑹𝑴𝑺𝒆𝒓𝒓 and 

no overlap. The average 𝑹𝑴𝑺𝒆𝒓𝒓 of these segments is taken as our reference error for 

clean periods, 𝑹𝑬𝑭𝒆𝒓𝒓. The thresholds for the first feature are derived from this value 

as shown in Equation 4.10 and 4.11. 

𝑡ℎ1𝑒𝑟𝑟 = 𝑓1𝑒𝑟𝑟 ∙ 𝑅𝐸𝐹𝑒𝑟𝑟   4.10 

𝑡ℎ2𝑒𝑟𝑟 = 𝑅𝐸𝐹𝑒𝑟𝑟 + 𝑓2𝑒𝑟𝑟 ∙ (𝑡ℎ1𝑒𝑟𝑟 − 𝑅𝐸𝐹𝑒𝑟𝑟)   4.11 

In Equation 4.10 and 4.11, 𝒕𝒉𝟏𝒆𝒓𝒓 and 𝒕𝒉𝟐𝒆𝒓𝒓 correspond to the adaptive 

thresholds for the first feature, 𝑹𝑴𝑺𝒆𝒓𝒓. The 𝒇𝟏𝒆𝒓𝒓 and 𝒇𝟐𝒆𝒓𝒓 are constant values found 

in the training stage by ROC analysis and correspond to 2 and 0.5, respectively. To find 

the thresholds for the second feature, 𝑯𝑭𝑿, a similar methodology is taken. The same 

periods of time used to assess 𝑹𝑬𝑭𝒆𝒓𝒓 are used to calculate 𝑹𝑬𝑭𝑯𝑭, which is the mean 

value of 𝑯𝑭𝑿 on those periods. The thresholds for the second feature are derived from 

this value as shown in Equation 4.12 and 4.13. 

𝑡ℎ1𝐻𝐹 = 𝑓1𝐻𝐹 ∙ 𝑅𝐸𝐹𝐻𝐹                    4.12 

𝑡ℎ2𝐻𝐹 = 𝑅𝐸𝐹𝐻𝐹 + 𝑓2𝐻𝐹 ∙ (𝑡ℎ1𝐻𝐹 − 𝑅𝐸𝐹𝐻𝐹)               4.13 

The 𝒕𝒉𝟏𝑯𝑭 and 𝒕𝒉𝟐𝑯𝑭 correspond to the adaptive thresholds for the second 

feature, 𝑯𝑭𝑿. The 𝒇𝟏𝑯𝑭 and 𝒇𝟐𝑯𝑭 are constant values found in the training stage by 

ROC analysis and correspond to 1.115 and 0.6, respectively.  

The reason to choose the 𝑹𝑴𝑺𝒆𝒓𝒓 feature to look for clean periods lies in his 

highly sensitivity to noise. One might ask, why just not use this feature for classification 

if it is so noise sensitive. The reason is that it is also sensitive for uncommon heart beat 

types, which normally corresponds to abnormal heart beats and rhythms that we want 

to diagnose. On the other hand, the 𝑯𝑭𝑿 feature don´t discriminate between different 

heart beats or rhythm types, even if it hasn’t the noise sensitivity of the first. The 
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combination of the two features and multiple thresholds give the algorithm a more 

founded decision rule to assess whether a 4s segment signal is noise corrupted or not. 

Before the final decision rule (see Condition 4.14), in each 4s chunk is evaluated if there 

are beats detected by the R-peak detector, if not, the whole chunk is considered as non-

quality segment. 

𝐼𝐹   {  

 (max{𝐻𝐹𝑋
𝑤} > 𝑡ℎ1𝐻𝐹    AND   max{𝑅𝑀𝑆𝑒𝑟𝑟

𝑤 } > 𝑡ℎ2𝑒𝑟𝑟)    

OR 

 (max{𝑅𝑀𝑆𝑒𝑟𝑟
𝑤 } > 𝑡ℎ1𝑒𝑟𝑟   AND   max{𝐻𝐹𝑋

𝑤} > 𝑡ℎ2𝐻𝐹)         

} 

4.14 

In Condition 4.14, 𝐦𝐚𝐱{𝑯𝑭𝑿
𝒘} and 𝐦𝐚𝐱{𝑹𝑴𝑺𝒆𝒓𝒓

𝒘 } represent the maximum 

values on the 4s window of the first and second feature, respectively. If the condition is 

true, then the whole window is classified as noise corrupted. 

 

Figure 4.9 – Result of the noise classification performed in an ECG signal with one noise 

corrupted period. 
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4.3 Results 

All the results were computed using MATLAB version R2013b and a 4.00GHz 

Intel Core i7-4790k processor. To see the influence that different noise types have on a 

detection algorithm, we tested our R-peak detection algorithm on the contaminated 

signals, see Table 4.1.  

Table 4.1 – Results on the influence that different noise types have on the R-peak detector at 

different SNR levels. These results were computed on the MLII test data. The results on the clean signals 

were 99.39% and 99.64% of sensitivity (SS) and specificity (SP), respectively. The average computational 

time is 0.01s per minute of ECG signal. 

SNR 

(dB) 

EM MA BW 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

-6 36,17 27,41 36,82 34,20 88,86 51,19 

0 63,47 43,42 47,48 47,03 95,57 79,24 

6 91,28 67,26 63,40 60,70 98,31 92,38 

12 98,55 92,30 86,29 73,38 99,26 97,76 

18 99,31 98,98 96,90 84,33 99,38 99,34 

24 99,37 99,44 99,30 97,36 99,38 99,54 

To see the noise influence on an algorithm independent to the our noise 

detection algorithm, we tested the noise corrupted signals in another, more complex, 

R-peak detection algorithm, based on morphological transform to segment the different 

waves [35]. The result to sensitivity and specificity on the different noise contaminated 

signals are presented in Table 4.2.  

Table 4.2 – Results on the influence that different noise types have on the Morphological 

Transform R-peak detector at different SNR levels. These results were computed on the MLII test data. 

The results on the clean signals were 99.19% and 99.99% of sensitivity and specificity, respectively. The 

average computational time is 1.1s per minute of ECG signal. 

SNR 

(dB) 

EM MA BW 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

-6 39,31 28,56 37,85 42,31 96,27 89,89 

0 65,85 45,17 74,07 64,01 98,51 97,51 

6 89,65 67,79 94,60 79,67 99,11 99,47 

12 98,83 89,19 99,03 93,40 99,20 99,98 

18 99,22 99,17 99,17 99,71 99,19 99,99 

24 99,18 99,97 99,21 99,98 99,19 99,99 
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In the following table (Table 4.3), are presented the algorithm’s results of 

sensitivity and specificity on the testing data.  

Table 4.3 – Results of mean sensitivity and specificity on the testing data at different leads 

and SNR levels. 

Lead 
SNR 

(dB) 

EM MA BW 

SS (%) SP (%) SS (%) SP (%) SS (%) SP (%) 

MLII 

-6 99,06 88,32 99,54 89,25 99,84 88,59 

0 99,27 89,04 99,60 89,26 99,61 88,59 

6 99,47 89,92 99,58 89,19 96,07 88,98 

12 98,92 90,37 98,44 90,37 75,85 91,39 

18 89,47 91,96 94,79 91,60 48,13 94,46 

24 63,05 92,73 82,17 92,14 26,17 95,38 

V1 

-6 99,42 87,73 99,73 87,71 99,50 88,25 

0 99,51 88,88 99,74 88,25 99,61 88,91 

6 99,19 89,04 99,58 88,25 96,62 88,17 

12 94,95 89,33 98,49 89,89 89,82 89,38 

18 77,53 89,79 94,24 89,93 55,28 92,74 

24 38,69 91,63 76,49 91,15 34,92 95,40 

V2 

-6 97,40 88,77 97,83 88,49 97,54 86,43 

0 97,75 89,47 98,12 88,54 97,73 87,64 

6 97,85 89,92 98,00 87,82 98,03 89,73 

12 96,81 90,33 98,07 88,48 92,22 89,80 

18 89,48 92,27 95,08 90,39 56,41 95,27 

24 55,04 94,61 82,18 93,68 33,45 95,61 

V5 

-6 96,55 90,42 100,00 88,47 99,74 89,58 

0 98,61 90,33 100,00 88,47 98,86 89,88 

6 97,78 90,76 99,01 88,70 91,71 92,29 

12 89,96 92,59 96,34 90,38 67,26 94,34 

18 70,91 93,90 88,39 93,51 34,51 96,09 

24 33,09 95,25 60,19 95,75 10,14 96,10 

        

Total Average 86,66 90,72 93,98 89,99 74,96 91,38 

 

One big problem in trying to assess noise contaminated periods in an ECG signal 

is that the algorithm may also detect abnormal heartbeats or rhythms as noise, and 

misclassify certain periods that are of great value for diagnose. Thus so, is essential to 

do a false positive analysis on the algorithm, and assess if the false positives are correlated 

with abnormal heartbeats or rhythms. As the algorithm is dependent of the whole signal 

being analyzed (due mainly to the 𝑹𝑴𝑺𝒆𝒓𝒓 feature which takes 98% of information of 
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each signal) - and thus so, the algorithm’s response in the clean periods for the same 

ECG may vary on the different noise types and SNR levels imposed – this false detection 

rate is the mean value for all the signals at different SNR levels and noise types. As the 

abnormal heartbeats have different manifestations on different leads, we did a false 

positive analysis on each lead as shown in the tables in Appendix B.  

The only alarming result in the false positive analysis is the 78.87% detection rate 

on the supraventricular tachyarrhythmia rhythm in lead MLII. On the other hand, in the 

whole test dataset we only possess 14 seconds of this rhythm type in the clean periods, 

thus so, not having a sufficient statistical size to infer with certainty about the algorithm’s 

sensitivity on this rhythm type.  

4.4 Discussion 

As we can see by the results of the two R-peak detector algorithms, the precision 

of both are very similar on the clean signals, however, the Morphological Transform 

(MT) based R-peak detector shows a slight higher robustness to noise compared to 

ours. These noise robustness comes with a cost, as we can see by the computational 

times. The computational cost of the MT algorithm is 2 orders of magnitude higher than 

our R-peak detector. However, is important to refer that the MT algorithm is capable 

of processing in real-time and besides the R-peaks detection, it also segments the P and 

T waves, and the QRS complex.  

One may think that using an R-peak detector that fails at high degrees of noise 

on the segmentation of heartbeats is going to result in an adverse effect in the noise 

sensitivity of the 𝑹𝑴𝑺𝒆𝒓𝒓 feature. However, it has the opposite effect on the noise 

detection context, as a wrong segmentation is going to produce a segment that 

completely differs from a typical heartbeat segment. As the PCA takes what is more 

common, when taking 98% of the information, these segments that resulted from the 

wrong segmentation, are going to have high approximation error, due to the nonsense 

of the segmentation. 
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This analysis on the R-peak detectors was with the intention to see the noise 

influence at different SNR levels on a determined ECG detection algorithm. Based on 

the results of Table 4.1 and Table 4.2, we consider that the noise influence is only 

critical at [-6, 18] dB of SNR to the EM noise, [-6, 24] dB of to the MA noise, and [-6, 

12] dB to the BW noise. The BW noise is less critical at higher SNR levels because this 

noise influence is easily overcame with the detrend of the ECG signal, a feature that the 

majority of ECG processing algorithms possess, and thus, being less troublesome [25]. 

The overall results to all leads were 94.08% and 89.88% of sensitivity and specificity, 

respectively, in the range of the SNR levels we assumed critical, as presented in the 

following table. 

Table 4.4 – Results for each lead and noise type at critical SNR levels. 

 EM MA BW  Average per 

Lead  [-6, 18] dB [-6, 24] dB [-6, 12] dB  

 SS (%) SP (%) SS (%) SP (%) SS (%) SP (%)  SS (%) SP (%) 

MLII 97,24 89,92 95,69 90,30 92,84 89,39  95,26 89,87 

V1 94,12 88,95 94,71 89,20 96,39 88,68  95,07 88,94 

V2 95,86 90,15 94,88 89,57 96,38 88,40  95,71 89,37 

V5 90,76 91,60 90,66 90,88 89,39 91,52  90,27 91,33 

           

Average per 

Noise Type 
94,49 90,16 93,98 89,99 93,75 89,50 

 94,08 89,88 

 TOTAL 

The results in the table above show us a high sensitivity and specificity on noise 

detection, and also that the precision of the algorithm does not vary much in different 

leads, suggesting a good adaptability for the different leads, which we intended from the 

beginning.  

The highest precision documented in the literature is 96.63% and 94.74% of 

sensitivity and specificity, respectively, on the ECG noise detection context [4]. 

However, the authors only consider noise corruption in the periods where the R-peaks 

are not clearly recognizable, indicating that the documented precision is only 

correspondent for noise corrupted signals at very low SNR levels. The computational 

time of the referred algorithm is documented to be 0.2s per 5s of ECG signal at sampling 

frequency of 180Hz using MATLAB 2010a on 2.66GHz Intel Core2 processor. The 

computational time of our algorithm is 0.14s per 5 minute ECG signal with a sampling 
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frequency of 250 Hz, this using MATLAB version R2013b and a 4.00GHz Intel Core i7-

4790k processor. 

4.5 Concluding remarks 

The noise detection algorithm in ECG demonstrates a high precision and a fast 

performance, as well as a good adaptability for different leads and high specificity even 

in pathological signals. The results indicate that it is a suitable algorithm to integrate in a 

Tele-monitoring system. 

It was already integrated in the WELCOME vest to discard 5 minutes signals 

based on the amount of noise presence in the V2 lead, and also in the feature extraction 

server (processing cloud) to detect noise periods in all the 12 leads before the detection 

of Atrial Fibrillation is performed. We are waiting to see its performance in a real-life 

situation and its behavior in the leads that weren’t analyzed, after the testing of the vest.  
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Chapter 5 – Conclusion 

  

Our main objective was the noise detection in bio-signals, namely on PCG and 

ECG, recurring to fast and reliable noise detection algorithms.  

In the PCG context we developed a high precision multi-channel (MCA) 

algorithm capable of real-time processing, as a single-channel approach (SCA) of the 

same. In comparison with the methodologies with the highest precision rates 

documented in literature, our algorithm achieved the best results in the same testing 

dataset, as also the best computational times. The MCA is suitable for integration when 

the noise sources influence is simultaneously present in both channels. When the noise 

influence is independent in each channel, the best integration would be the SCA, 

although the MCA also achieves a good sensitivity, as we can see in the pathological 

signals results in Table 3.5 and Table 3.6.  

In the ECG context, the developed algorithm also presented high precision and 

computational performance. In the ECG noise detection context, this analysis on various 

leads, noise types, SNR levels, and false positive correlation with pathology, was the 

most diverse analysis comparing to the ones found in literature. However, the ECG 

algorithm is conditioned and optimized for the WELCOME project characteristics. It 

would be interesting to develop a more general alternative algorithm without these 

restraints, and hopefully capable to process in a real-time situation, which also explores 

a multi-channel methodology. As soon as the WELCOME vest becomes available, we 

could explore these new methodologies based on the 12-lead ECGs, as also assess the 

performance of the developed single-channel algorithm in leads that weren’t tested.  

 Considering the final result, we think that we met the proposed goals. In a next 

stage of the work, more bio-signals could be explored in the noise detection context, as 

the Respiratory Lung Sounds or the Electrical Impedance Tomography, which are also 

prone to noise contamination. 
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Appendix B 

In the following tables are presented the false positive rate on the different 

heartbeat and rhythms types, for each lead. 

 MLII 

Beat Type Detected Percentage (%) Total Number 

Normal 6,64 24551 

Left bundle branch block beat 8,27 1207 

Right bundle branch block beat 3,79 1125 

APC 7,71 819 

Aberrated APC 19,78 23 

Nodal premature beat 26,04 12 

PVC 9,14 1801 

Fusion of ventricular and normal beat 11,91 220 

Nodal escape beat 6,94 3 

Ventricular escape beat 0,00 1 

Paced beat 4,46 1196 

Non-conducted P-wave (blocked APC) 11,57 71 

 

Rhythm Type Detected Percentage (%) Total Time (s) 

Atrial fibrillation 5,91 4614 

Ventricular bigeminy 12,53 299 

Normal sinus rhythm 6,68 27664 

Nodal rhythm 28,03 13 

Paced rhythm 4,68 1494 

Pre-excitation 8,25 575 

Sinus bradycardia 5,25 1400 

Supraventricular tachyarrhythmia 78,87 14 

Ventricular trigeminy 7,82 457 

Ventricular tachycardia 41,86 5 

 

 

 



 
 

68 

 

 

 V1 

Beat Type Detected Percentage (%) Total Number 

Normal 7,05 18917 

Left bundle branch block beat 5,66 3430 

Right bundle branch block beat 7,77 1887 

APC 4,50 364 

Aberrated APC 8,58 68 

Nodal premature beat 0,00 1 

PVC 10,16 1936 

Fusion of ventricular and normal beat 24,81 249 

Atrial escape beat 3,89 10 

Nodal escape beat 8,47 99 

Ventricular escape beat 0,63 105 

Paced beat 7,69 2202 

Fusion of paced and normal beat 8,37 150 

Ventricular flutter wave 19,03 193 

Non-conducted P-wave (blocked APC) 7,57 94 

 

Rhythm Type Detected Percentage (%) Total Time (s) 

Atrial bigeminy 1,92 117 

Atrial fibrillation 3,43 2816 

Atrial flutter 3,70 420 

Ventricular bigeminy 11,01 1133 

2º heart block 23,94 520 

Idioventricular rhythm 1,09 157 

Normal sinus rhythm 7,24 22619 

Nodal rhythm 7,67 158 

Paced rhythm 7,76 2921 

Pre-excitation 6,28 604 

Supraventricular tachyarrhythmia 1,26 85 

Ventricular trigeminy 3,46 408 

Ventricular flutter 18,06 93 

Ventricular tachycardia 16,36 50 
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 V2 

Beat Type Detected Percentage (%) Total Number 

Normal 4,25 2049 

PVC 6,94 4 

Paced beat 6,04 1951 

Fusion of paced and normal beat 13,75 432 

Unclassifiable beat 0,00 3 

 

Rhythm Type Detected Percentage (%) Total Time (s) 

Normal sinus rhythm 5,12 2983 

Paced rhythm 6,50 2778 

 

 V5 

Beat Type Detected Percentage (%) Total Number 

Normal 3,77 3523 

APC 3,47 24 

Nodal premature beat 0,00 2 

PVC 7,30 35 

Fusion of ventricular and normal beat 0,00 2 

Paced beat 5,79 1961 

Fusion of paced and normal beat 19,22 427 

Unclassifiable beat 0,00 3 

 

Rhythm Type Detected Percentage (%) Total Time (s) 

Normal sinus rhythm 4,64 4929 

Paced rhythm 6,44 2780 

Supraventricular tachyarrhythmia 0,00 7 
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