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Abstract 

Geographic information enables retailers to make informed decisions. Visualizing 
geographic and demographic relationships, supports market analysis, site selection, 
merchandising, distribution, delivery, among others. This thesis presents a visualization 
system to explore sales records from the major retailer in Portugal, in a geographic context, 
which integrates administrative and demographic information. 

We improve upon previous implementations by combining: First the flexibility and 
scalability of  OpenCL kernels, used to process the original dataset in real visualization time, 
eliminating the necessity for preprocessing and second the use of  modern rendering 
methodologies, through the OpenGL API, to produce a high detailed and information rich 
visualization. 

Our results leave no doubt to the advantages of  parallel processing, even in low end GPUs, 
and to the flexibility and visual quality attainable when researchers take the extra step of  
researching and implementing adequate rendering techniques for the programmable graphic 
pipeline. 
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Resumo 

Informação geográfica permite que as decisões comerciais relativamente ao mercado de 
retalho sejam feitas de forma informada. A visualização de relações demográficas, apoia a 
análise de mercado, a escolha de localizações, comercialização, distribuição, entregas, entre 
outras. Esta Tese apresenta um sistema de visualização de informação para esplorar os 
registos de vendas do maior retalhista em Portugal, num contexto geográfico, que integra 
também informação demográfica e administrativa. 

Este trabalho apresenta melhorias sobre outras implementações por combinar: Primeiro a 
flexibilidade e escalabilidade dos Kernels de OpenCL, usados para processar os dados 
originais em tempo de visualização eliminando a necessidade de um pré-processamento, e 
segundo, o uso de metodologias de renderização modernas, através da API OpenGL, para 
produzir uma ferramenta de visualização de elevada qualidade gráfica e rica em informação. 

Os nossos resultados não deixam dúvidas sobre as vantagens do processamento paralelo, 
mesmo em GPUs de baixa gama, nem sobre a flexibilidade e qualidade visual que os 
investigadores são capazes de alcançar, ao aplicar tempo na pesquisa e implementação de 
técnicas apropriadas de rendering que façam uso do pipeline programável dos chips gráficos. 

Keywords 

Anti-aliasing, Base de Dados, Big Data, GIS, GLSL, GPGPU, GPU, Mapa de Calor, 
OpenCL, Shaders, Visualização de Informação 
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1. Introduction 

This document presents the work done and results obtained in the scope of  a Master Thesis 
on the subject Visualization of  Big Data. Thesis advisor were Professor Pedro Cruz and 
Professor Penousal Machado, both from the Department of  Informatics Engineering of  the 
University of  Coimbra. This work is part of  a research project from Instituto Pedro Nunes 
(IPN) partnering with Sonae SA, in the field of  Information Visualization. 

This chapter is divided in four chapters. The first describes in more detail the research 
project in which this Thesis was framed, the second introduces aspects common to data 
visualization projects that we wish to solve with a different approach and the motivation for 
that approach, the third chapter describes planning and how that plan evolved over the two 
semesters, and finally, the fourth chapter describes the structure of  this document. 

1.1. Context 

The work described in this document was framed in a research project involving a 
partnership between IPN and Sonae SA. 

Sonae SA, is the main retailer in Portugal, with an annual revenue of  €5.718 billion and over 
700 stores. The main objectives of  the project are to analyze and explore data sets with sales 
records form Sonae stores, in order to plan and implement visualization tools to find or 
highlight patterns and/or relevant information both unknown or as to confirm predictions. 

The team responsible for carrying out the project is led by teachers Penousal Machado 
(Scientific Director) and Professor Pedro Cruz (Project Manager), and consists of  three 
elements, two students of  PhD and one of  Masters degree in which I am included. 

Responsibilities within the team are equivalent, in respect to knowledge of  everything that 
concerns to the project, its status and its objectives. Each team member has to be on pair 
with each others latest developments, so that everyone can contribute in the discussion of  
problems and solutions regarding the overall of  the project. 

In terms of  the actual implementation the visualization tools, each member was responsible 
for the planning and implementation of  a different visualization application. Yet, as before, 
members kept track of  each other work closely in order to discuss, criticize, and contribute 
to the other members implementation, both daily and in the weekly meetings. This way the 
team was able to develop multiple applications at the same time in a reasonable time frame 
and at the same time make the best of  each one’s skills and experience. 

This document refers only to the work done by me, and from this, is restricted to the 
necessary tasks directly related to the visualization tool implemented by myself  . 
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1.2. Motivation 

Data visualization is everywhere, particularly in every scientific research area. From Bar 
charts to complex visualization models, researchers have developed numerous and 
innovative ways of  exploring data sets, highlight patterns, present experiment results, among 
others.   The works of  Wong (1994) and Chen (2007) are both extensive and complete in 
terms of  examples, and their description, of  visualization models. 

Usually, when performing visual exploratory analysis of  very large, multivariate data sets, 
researchers either choose from few of  the suitable visualization models, Parallel Coordinates 
Plot for instance, or, recur to some sort of  preprocessing in order to reduce the volume or 
complexity of  the visual information, adapting it to the more common visualization models. 
These preprocessing operations/transformations occur prior to the data being inputed into 
the visualization. In other cases, like with Liu (2013) and his innovative solution to compact 
data into data cubes prior to the visualization, preprocessing is a consequence of  the 
solutions researchers came up with to make their data immediately available on request in 
the final visualization tool. While there is no dispute to the advantages of  preprocessing, in 
many cases it carries along a high processing time cost and one obvious direct disadvantage, 
the inability to immediately input and explore new data with the visualization tool, without 
first running it through all the preprocessing steps. 

Until recently, researchers had to have access to computer clusters, or large amounts of  time, 
when to perform massive computation tasks. In the last decade Graphic Processing Units 
(GPUs) have followed a steep rise in all the critical features that enable for faster operations 
performed over increasingly larger data sets, as we can see in Figure 1. GPU available 
memory has also increased significantly, to the point where its quite usual to have personal 
computers with at least the same amount of  GPU memory as of  System RAM. 

Figure 1 - Changes in Key GPU Properties over Time (source: GPU 
Gems 2, 2005)

���
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The parallel capabilities of  even the low end of  currently available Integrated Graphic 
processing units, Intel Iris 5200 for instance, has at least 40 Compute Units, capable of  
running up to 7 simultaneous threads each (280 total) and up to a total of  8960 concurrent 
work-items. More than enough reasons for developers, on any computing demanding 
implementation, to consider what can or cannot be parallelized. Not long ago, numbers like 
these were only seen in very large computer clusters. Additionally each manufacturer is 
constantly changing and evolving the GPUs architectures to boots Single Instructing 
Multiple Data (SIMD) operations, designing and specialized floating point units (FPU) for 
different kinds of  operations (simultaneous floating point multiplications, integer operations 
or even transcendental math functions). 

These facts have not gone by unnoticed by researchers, in fact, the number of  Research 
projects matching a search for the keyword “GPU”, performed on Google Scholar, has seen 
an almost exponential rise since the year 2000, refer to Figure 2. Owens (2008) shows some 
good examples of  researchers usage of  GPUs and also which problems are more suited to 
be solved using GPUs over CPUs. Yet we feel that there are two main groups of  GPU usage 
by researchers, usually tied to the researchers experience and field of  work. The first group 
is heavily focused on the processing capabilities, making the best of  those GPUs capabilities 
to perform massive computations over very large data sets, collect the results and visualize 
them using the more simple visualization models (line graphs, bar charts, etc). And the 
second group that usually have their data preprocessed with the more common CPU 
applications and scripts, but make use of  the GPU to materialize high visual quality, 
performant and innovative visualization models. 

The main focus of  this Thesis is to go one step further down this trend, by developing an 
application that is both capable of  using GPU computing to process the data, transforming 
it accordingly to the chosen visualization model, and at the same time render that 
visualization model at interactive frame rates and with high quality graphics. 

To accomplish this we will explore different techniques and suggested best practices in order 
to make the most of  the Single Program Multiple Data (SPMD) GPU programming model, 

Figure 2 - Number of  research projects matching the 
keyword GPU over the years.
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as shown in the multiple works presented in GPU Gems 2 (2005) and in the work of  Owens 
(2008); plan and develop the application following a “GPU to GPU” structure which keeps 
all the relevant application data in video memory and minimizes data transfers to and from 
the CPU to the minimum possible, as the work of  Gregg (2011) shows to be a crucial aspect 
for performance; and finally, we will explore, adapt existing and/or “design our own” 
rendering techniques, similar to those employed in video games industry, of  which GPU 
Gems 2 (2005) and GPU Gems 3 (2007) shows multiple examples in a compilation of  works 
from different authors of  both of  the academic and industry worls, in order to produce a 
high quality, interactive data visualization, approaching the quality and detail usually only 
achievable through the use of  vector graphics APIs. 

1.3. Objectives 

The work presented in this document spanned roughly two semesters, during which the 
objectives we established at start, regarding the visualization model implementation, and the 
outlined plan for additional models, were forcefully altered and continuously adapted. 

Initially we received a Sales data set, containing 2 Years of  Sales records from over 700 super 
and hypermarkets, the data set was accompanied by a group of  relational tables with lists of  
Products, hierarchy between products, Store names and groups, among others. The data was 
all in comma separated value (CSV) files. The data set was ≈278Gb in size and contained 
around 2.8 billion sales records. 

Additionally, we expected to receive a related Stocks dataset within a time frame that would 
allow us to implement a visualization model that would include data from both Sales and 
Stocks. 

As such, our plan for the first semester included: 

- researching methods to make the dataset accessible both locally and remotely; 

- create scripts that would support other researchers analysis on this data; 

- and research adequate techniques, plan and implement a data visualization application, 
using the Sales dataset, that tests the feasibility and value of  this Thesis objectives of  
processing and visualizing data in realtime using the parallel processing features of  
modern GPUs. 

Considering this plan, the objectives we initially set for the first visualization application to 
implement were the following: 

- Study the OpenGL programming model in order to understand how it can be used to 
perform general purpose programming. 

- Search other researcher’s similar work and research adequate techniques to perform the 
required computational and visualization tasks. 
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- Implement a prototype application using the researched techniques in order to 
demonstrate the feasibility of  the idea and evaluate the applicability of  the used 
techniques. 

This would allow us to build the necessary background and implement a set of  initial tools 
that would enable us to quickly import and analyze the Stocks dataset, upon receiving it 
during the second semester, research of  devise an adequate visualization model that would 
encompass both datasets (Sales and Stocks), and implement that visualization model in an 
interactive application using the techniques researched and experimented with during the 
prototype implementation. 

Unfortunately the Stocks dataset arrival was continuously postponed until near the end of  
the second semester, and although it contains an extremely large amount of  information, it 
spans a different time frame from the one of  the Sales dataset, removing the possibility of  
relating each’s information over time. 

As the Stocks dataset arrival was being postponed we were forced to revise our initial plan, 
we wanted to keep the implementation process uninterrupted, maintain an open door for 
the uncertain arrival (at that time) or a related Stocks dataset, and guarantee that either way a 
complete and rich, both visually and feature wise, information visualization application 
would be implemented and analyzed by the end of  the second semester. We didn’t want to 
put aside the possibility of  exploring an additional dataset but we had to devise a plan 
flexible enough to guarantee that the research project and this Thesis objectives could be 
met. 

Our revised plan would consist in: 

- Reimplement our initial scene engine developed for our prototype in order to reflect what 
we learned from the prototype experiment. 

- Move the data processing steps from the OpenGL graphical API to the more flexible, 
general purpose programming model, of  the OpenCL API. Add additional tracking of  
Client data. Implement interoperability between OpenCL and OpenGL. 

- Research, devise and implement rendering techniques that enhance the visualization both 
in terms of  detail and appearance, improving the amount of  perceived information 
relatively to the prototype version. In effect giving the application a more cared and 
polished aspect, as expected from an application intended to be distributed to users. 

- Iteratively research, plan and implement additional features for the application that 
improve it either in terms of  functionality or in terms of  additional, more detailed, 
alternative or related information. 

As we mentioned before the Stocks dataset arrived at a time that it wouldn’t be feasible to 
implement a new visualization application and finish it until the end of  the semester, and 
consequently, following the plan of  iteratively adding more features, the objectives 
established for our visualization application also changed, and were added upon during the 
course of  the second semester. 
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By the end of  the second semester, the established objectives and features for our data 
visualization application were: 

- Present a visualization of  the Sales data records using a geographical heatmap 
visualization model relative to both the Stores locations and the Clients residence’s Postal 
Codes locations; 

- Use the OpenCL API to implement the data processing steps of  the visualization model; 

- Keep track and display geographic information, of  at least one additional computed 
variable, besides the accumulated heat values typical of  heatmap visualization models; 

- Introduce additional Administrative and Demographic data into the visualization; 

- Use rendering techniques to enhance the visual experience and blend the different types 
of  information, without compromising the visualization model; 

- Provide a user interface that enables the user to perform every action and make use of  
every feature available within the application; 

- Implement reporting mechanisms such as screen capture and video recording; 

- Implement functionalities that enable the user to filter sales records of  specific Stores; 

- Implement a offline data source feature. Allowing the visualization of  Sales records data 
files, previously exported from the database and placed within the application file 
structure. 

1.3.1. Requirements 

Our defined requirements that the application must fulfill apply to the hardware of  a 
MacBook Pro Late 2013, or hardware of  similar performance. More specifically a 2.4GHz 
dual-core Intel Core i5 processor, 8GB of  1600MHz DDR3L onboard memory, Intel Iris 
5100 integrated GPU and 256Gb SSD drive. In terms of  GPU processing power, as GPU 
hierarchical chart from the famous hardware reviewer Tom’s Hardware (2015) shows, this 
GPU is on the lower end of  the spectrum. 

For us this represents an opportunity to show how the advantages of  using the GPU parallel 
processing capabilities apply to all modern GPUs  and not just the most performant. 1

Our requirements are the following: 

- A loading time below one minute; 

- A waiting time before a data visualization starts below 10 seconds; 

- An average frame rate of  at least 10 frames per second while visualizing data; 

- Compatible with at least two operating systems from different developers; 

 OpenGL 4.1+ compatible1
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- Compatible with recent GPUs from all three major vendors, ATI, Nvidia and Intel; 

1.4. APIs and Third Party Software 

Planning the application involves not only the envisions of  the applications’ features and 
behavior but also considers the choices of  technologies available with which to implement 
that application, and also the choice of  third party software that may shorten the 
implementation time or support the application in any way. 

For our implementation a database was the most efficient solution to feed data remotely to 
the application. Not just because of  the gain in performance when using a database to query 
data but also due to the large size of  the dataset which makes any option where the data is 
packed and distributed with the application, impractical. 

1.4.1. Database 

MySQL is a very popular database that has proven it self  over the years, it is also one of  the 
best suited to handle large quantities of  data and shows great performance in a read 
intensive, single node, environments, when compared to its competitors, according to the 
works of  Tudorica (2011) and Rabl (2012) which test and compare several of  the most used 
databases. The referenced authors also confirm the suggestions presented in the MySQL 
documentation regarding database engine choice, pointing to InnoDB as the one that 
presents better performance when handling vary large tables. 

For our database implementation we opted for MySQL due to its almost incomparable 
maturity in terms of  development, 20 years, and for its performance results presented by the 
Works of  Tudorica (2011) and Rabl (2012). 

1.4.2. GPU API 

Although our application is implemented from scratch, it relies on drivers to manipulate 
states and exchange data with the GPU. The available APIs, that provide these 
functionalities, vary with the chosen Operating System, the available hardware and even the 
Software Development Kit (SDK) used to implement the application (Java SDK, Windows 
SDK, etc.). 

Choosing which API to use was quite straight forward, and we will take you through the 
same thought process we did. First try to keep in mind the different Graphics/Computing 
APIs available: DirectX, Cocoa, Metal, OpenGL/OpenCL, Cuda and Mantle. Then, if  we 
start crossing out APIs that have characteristics we don’t want, for instance Operating 
System specific (DirectX, Cocoa and Metal) and Hardware Manufacturer specific (Cuda and 
Mantle), we are left out with only one option, OpenGL/OpenCL. 

So when you think about it, there really wasn’t much of  a choice. And its quite surprising in 
a way, that after so many years of  GPU and related software development, developers who 
seek to use a cross platform and cross hardware solution, have to rely on the existence of  
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the Khronos Group and it’s continuing work, revising the standards and improving the 
OpenGL/OpenCL APIs, keeping them on par with the released hardware features. 
Fortunately there is no end in sight for the Group, and developing of  a successor API for 
OpenGL, Vulkan, is already underway. 

1.5. Document Outline 

The remainder of  this document is structured as follows: 

- Review of  similar work from other researchers upon which we hope to improve; 

- Description of  the data sets we used in our visualizations, both the ones provided by 
Sonae SA and others gathered by us; 

- A brief  introduction to the OpenGL and the OpenCL APIs, highlighting the most 
relevant aspect regarding our work; 

- Detail the most relevant implementation steps towards realizing our visualization 
application; 

- Present and review the results of  our implemented solutions; 

- Discuss and draw conclusions on the achieved results; 

- Present ideas for future work; 
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2. State of  the Art 

In this chapter we will present, analyze and compare a set of  selected works from other 
researchers that were the most similar we could find to our own work, and from which we 
wish to improve upon. 

2.1. Scheepens “GPU - Based track visualization of  multivariate moving 
object data” 

Scheepens (2010) thesis is a great example of  a similar work that involves both data 
processing and transformation to suit a chosen visualization model and implementation of  
that model while doing all those computations in the same application and keeping all the 
relevant data in the Video Memory. 

Scheepens improved upon Willems (2009) work on “Visualization of  Vessel Movements”. 
The data set they used contains information of  vessel movement around the Dutch coast, 
vessels have a set of  characteristics and for each there is a list of  points containing its 
movement information, namely Position, Velocity and Time. 

The visualization of  the vessels tracks over time is done by rasterizing them into density 
fields as lines with a chosen width (kernel radius), the coloring of  each line is done through a 
devised formula that takes into consideration a gaussian distribution, the previous 
mentioned kernel radius but also different properties (eg. Time, Velocity), specific to each of  
the track segments, in such a way that increases the perception on how that same properties 
varies over the length of  the line. For instance a vessel track can appear thinner at its 
departure location and increase over the length of  the trip giving an immediate sense of  
direction to a human observer. The rasterized tracks are then blended together filling the 
density field. Refer to Figure 3 for examples of  vessel movements rendered by Scheepens 
application. 

Figure 3 - Example of  Scheepens application renderings. Quoting his legend for this 
figure, “A selection of  density maps of  vessel movements around the Dutch coast with a 
cell size of  250 meter and a kernel size of  250 meter (A), 1 kilometer (B) and 3 kilometer 
(C)”
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One of  Scheepens main goals was to improve upon Willems work in terms of  performance, 
to do this he implemented the entire density field calculation to the GPU using a Graphics 
API, namely OpenGL, shaping its mechanisms and features to perform general purpose 
computations and not a GPGPU based implementation as he names it during the 
document. Scheepens clever implementation consisted in drawing the track segments 
individually, setting the vertices up in a Vertex Buffer Object (VBO) mapping data to vertex 
properties. Those draw calls were issued into a Shader Program consisting of  Vertex Shader 
(VS), Geometry Shader (GS) and Fragment Shader (FS). The VS was used to copy data into 
the correct vertex properties according to the actual render configurations. The updated 
vertices were then fed into the GS which played a main role in first filtering vertices to avoid 
unnecessary calculations, and then generating the geometry of  each line segment as a 
bounding box (rectangle), which was in turn fed forward into the hardware’s triangle setup 
and then rasterizer stages to produce and feed the fragments for the line segment into the 
FS. The FS was then responsible to calculate the density contribution for each fragment 
according to a kernel (shader), coloring the segments as described in the last paragraph. The 
draw output is saved in Frame Buffer Object (FBO) for later usage. Refer to Figure 4 for a 
visual representation of  the density field rasterization process implemented by Scheepens. 

The drawing and calculation of  the final density field used in the visualization is quite 
versatile in terms of  configurable options. Multiple filtered density fields with different sets 
of  configurations can be blended into the final one with varying operators, which allows for 
different levels of  detail, highlight of  certain features and exploration of  different kind of  
events. The final density map is made of  32 bit floating point values of  the density 
calculated previously. Each pixel relates to a “cell” which represents a patch of  real world 
space of  varying configurable sizes. 

The final rendering to the Screen Buffer may be derived of  one or multiple density fields. To 
deal with multiple fields Scheepens introduced visualization operators in order to highlight 

Figure 4 - Scheepens process for drawing a segment of  a vessel tracks onto the density 
field FBO (source: Scheepens 2010 Thesis).
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data from each of  those different fields. For each field, and prior to the operators, color is 
mapped from the density values through a transfer function. Color maps can be exchanged 
and Scheepens experiments with continuous and discrete ones. As each pixel in the screen 
hardly ever matches one pixel in the density fields FBOs, due to projection and camera 
movement, Scheepens relied on cubic interpolation over the hardware bilinear interpolation 
to improve visual quality and smoothness, avoiding the discontinuities and jagged edges 
produced with bilinear interpolation. 

Scheepens did an impressive job not just in increasing performance over the previous work 
by a factor of  3000x, but also in being able to validate his visualization tool by producing 
almost indistinguishable renderings from the ones previously obtained by Willems. 

2.2. Buschmann “Hardware-accelerated attribute mapping for 
interactive visualization of  complex 3D trajectories” 

Buschmann’s work is another great example of  the advantages of  moving computations 
from the CPU to the GPU. His work is very similar to Scheepens in which both of  them are 
creating visualization tools to allow a human user to explore trajectories of  moving objects 
over real world space. Also their approaches in terms of  implementation contain many 
similarities, even if  their final visualization models are quite different. One of  the reasons 
for this is that Scheepens movement trajectories are projected into a 2D plane and 
Buschmann's are in 3D space. 

Buschmann’s work focus on the visualization of  aircraft movement trajectories. Their data 
set, collected near the vicinity of  an airport, contains the trajectories for each aircraft in the 
form of  poly-lines where each poly-line is a sub-set of  consecutive points,  each containing 

Figure 5 - Renderings with different style and mapping configurations, made with 
Buschmann visualization tool. (source: Buschmann Jan 2014).
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several varying and static (relative to each trajectory) attributes including position of  the 
aircraft, velocity, flight ID, etc. 

His approach in terms of  visualization model consisted in rendering the trajectories in a 3D 
space either as tubes or as a sequence of  spheres, from which the user may choose from. 
Additionally, Buschmann used both coloring and texturing of  the generated geometry as 
means to represent additional attributes, such as speed varying along the trajectory. The user 
is able to change which attribute is mapped the color or texture on a per trajectory basis. 
Refer to Figure 5 for examples of  the different styles and attribute mappings. Attributes can 
be mapped not just to the coloring and a choice of  texture, but also to properties both of  
the texture, like texture stretching and torsion, but also to properties that affect the 
generated geometry, like for instance radius of  tubes and spheres. 

To accomplish this, Buschmann approach starts off  by moving the data as raw (after 
preprocessing) to the video memory and then process it and render it using solely a 
Graphics API. First a Vertex Shader (VS) performs the mapping of  attributes to vertex 
properties, according to the list of  configurations structures uploaded to the GPU as a 
Uniform array. Vertices attributes and rendering configurations are then fed to a Geometry 
Shader (GS) that is responsible to generate the appropriate geometry, respecting visual 
configurations like the radius of  generated spheres and tubes and correct assignment of  
texture coordinates. The generated geometry is then rasterized and the generated fragments 
later processed by a Fragment Shader which is responsible for coloring the geometry, again 
according to the visual configurations set for that fragment, such as texture fetch, color 
mapping, etc. 

Buschmann’s work show interesting usage of  vertex attributes to map data, and the 
solutions he implemented to overcome performance issues give a great insight onto the 
similar limitations we might face. 

2.4. Resume and comparison 

Both the works we presented share great similarity with our objectives. Even if  our work 
does not involve moving objects we do have to represent a time series with a geographic 
component, as both Scheepens and  Buschmann did. 

We can see by each’s description of  their implementations that both solutions, in a 
minimalist view, consisted in moving the computations being performed on the CPU to the 
GPU. They both had to study the OpenGL programing model and architecture in order to 
choose the best structures to transport their data onto and through the graphical pipeline, 
also they had to analyze their algorithms and equations into devising a way to parallelize the 
necessary computations. 

We seek to follow a similar implementation process, studying the best solutions and 
structures to handle our data, how to implement them and how to process them. 

Regarding the results presented by each of  them, we see, very common to this research 
works, the performance comparison between past and current solutions, with tremendous 
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gains undoubtedly. And this is crucial for our work as well, but not just, we wish to devise a 
good implementation performance wise but not just to have a “fast” application. We wish to 
realize an animated visual representation of  the data, and whatever performance leftover we 
might have we will use to enhance the quality and interactivity of  the visualization. 

Scheepens solutions of  discretized color maps and ways explored to blend more than one 
layer of  information, as Buschmann geometry shader usage to generate the geometry of  the 
flight paths, are techniques we intend to explore in our application. 

We intend to explore Scheepens and Buschmann ideas during our implementations but not 
just, we will delve into the world of  rendering techniques from numerous authors,  of  which 
the referenced compilation GPU Gems 2 (2005) and GPU Gems 3 (2007) provide a great 
resource, into picking the most adequate to the problems we face. 

Regarding Scheepens and Buschmann explored techniques and technologies, we intend to 
go a bit further, exploring the OpenCL API as a complementary tool for information 
visualization applications. 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3. Data Sources 

In this Chapter we first describe the Sales Dataset in more detail, and later we describe 
complementary data gathered from multiple sources, that we used either to complement the 
data present in the Sales Dataset or that we used to improve the final visualization model, 
both in visual quality and in displayed information. 

3.1. Sales Dataset 

The Sales Dataset, which is the main focus of  this Thesis and the dataset we intend to 
visualize with our visualization model, is composed of  24 moths of  sales records from 
Sonae’s chain of  retail stores. It has a total of  around 2.8 x 109 sales records (lines). Each 
record contains the Date of  the purchase, to the second, the Store Id, the Product Id, the 
Customer Postal Code (7 digits), the Customer Client Card Id, the value of  the sale, the 
purchased Product quantity and the Discount applied to the sale. 

Additional information regarding the relationship between Brands and Stores, and Product 
hierarchy, was provided along side the sales records. This database tables also provided 
additional description fields for Stores and Products. 

Our first analysis of  the data revealed that there was a total of  729 named Stores (through 
the Store description table), but only 465 were referenced in the Sales records, additionally 
we found 6,579,711 of  unique Client Card Ids in the Sales records. 

The data was provided to us in the form of  several zipped Comma Separated Values files, 
that when unpacked occupied roughly 278Gb of  disk space. More detail about the data 
format and how we imported it into a database can be found in the Implementation 
Chapter. 

3.2 Complementary data gathered 

After our first analysis of  the sales data reveled that we would have to gather additional 
complementary information in order to implement a visualization model that represents the 
sales data, which is in its essence a time series, and at the same time allow for more abstract 
and at the same time extremely important in the world of  business, questions like “What are 
the areas covered by the chain of  retail stores?”, or “Are there meaningful clusters of  
customers traveling far to make their purchases?”, or even “How are sales distributed in 
relation to the population density?”. 

In this chapter we describe the additional data we collected, their sources and its relationship 
to the sales data. First we describe how we gathered GPS coordinates for the Stores 
locations and for the Customers Postal Codes, then we describe how we used Open Source 
Open Street Maps to filter all the necessary shapes to allow for geographic visual 
representations, and finally we briefly describe some additional demographic geo-referenced 
data we collected. 
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3.2.1. Stores Location Data 

Retrieving Stores geographic coordinates involved an exhaustive search through the multiple 
Brands Web Sites, scanning their source files and JSON data to collect any data table 
containing Stores identification, Addresses and GPS coordinates. This set of  data 
downloaded from the Brands Web Sites will be referred to as BWS from this point on, to 
avoid confusion with our Sales Dataset and facilitate writing. 

The search produced multiple data tables of  different structures, with similar information. 
Unfortunately there was no relation between Store Ids on those tables and those of  our 
Data Set and also, Store Brand names weren’t a perfect match to those in our dataset. For 
instance a Brand like “Modelo” is referred to as “MDL” in our Data Set, but in this data, it 
could be referred to as “Modelo”, or as “Continente Modelo” or even “Modelo Cnt”. This 
created a problem for us because Stores to which we couldn’t find GPS coordinates would 
have to be left out of  the visualization, that would consequently be an incomplete picture of  
the actual covered area. 

To solve this problem a small Client > Server application was created, using Web 
Technologies, that allows a user (or group of  users) to quickly match our known Stores from 
the Sales Dataset with the ones in the BWS. Web Technologies, namely HTML, Javascript, 
JSON (data transfers) and PHP (server side), were chosen, to build all the small support 
applications that required a User Interface and User interaction, due to the following 
reasons. On the server side, modern HTTP servers are very easy to setup, particularly for 
development processes, and also very easy to setup with our already present Database 
server,. The simple structure of  web services allow us to manipulate and query our database 
with short implementation times. On the client side the versatility, interface oriented and 
HTTP Request API tools allow us to build simple dynamic interfaces in minutes. 

Implementation began by creating a pair of  tables in the database to keep track of  matched 
and unmatched Stores, refer to Figure 6 for a visual description of  this application structure. 
Then, an automated script was implemented to initialize the Unmatched Stores table with all 
the Stores present in our Sales Dataset, while at the same time performing a first matching 
attempt with the Stores in the BWS tables. This first matching sweep accepted only exact 
string match between Store names, for certainty, but matched only a few percent of  the 
batch. 
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When implementing the Client User Interface and the corresponding Server side web 
services, a couple of  requirements were taken into consideration. First and most important 
the implementation time had to be as short as possible and second, the application interface 
would have to somehow help the user make that necessary correct decision in the smallest 
amount of  time possible. To achieve this, refer to Figure 6 again as it contains a screenshot 
of  the actual user interface, when the user opens the web application (through any web 
browser) the server picks one of  the still unmatched stores, calculates the Levenshtein 
distance, as in Levenshtein (1966), between the name of  the picked store and all the store 
names in the BWS, picks the five most similar, and then sends them to the Client, ordered 
by descending similarity. On the client side the Store name to be matched is displayed at the 
top and then the ordered similar Store names are displayed one by one with a simple “pick” 
button for each of  them. As the user picks the correct name, usually the first, the client send 
the information regarding the picked name to the Server where, a web service implemented 
to that effect, saves the match between Store names in the Matched Store database and 
updates the Unmatched Stores table with the new matching information so that this store is 
not shown to the user again. At this point the cycle starts over, the Client immediately 
receives the next store to be matched and the corresponding matching list. 

The process described above was successful in matching most of  the Store names but 
unfortunately not all. Some Store names were simply too unique and unrelated with the ones 
from the BWS tables. To handle these ones, an additional step was introduced using the 
Google Maps Widget. The application picks GPS coordinates from the set of  Stores in the 
Brands Downloaded Tables, that were until that point unmatched and, by user request 
moves the Map Widget location between those GPS coordinates, refer to Figure 7 for a 
screenshot of  a matching example using this extra step. The user would then cycle through 

Figure 6 - Simplified structure of  the application and scripts implemented to match 
Stores present in our Sales Dataset with the Store data gathered by analysis of  the source 
and JSON data files of  Sonae Group’s Brands individual Web Sites.
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the still unmatched Stores names (on the bottom of  the interface) and the different Map 
Widget locations to determine and match the correct Stores and Locations. 

This sequence of  processes and steps allowed us to match 100% of  the Stores referenced in 
the 2 years of  our Sales Dataset with the geolocation data on the BWS tables. 

3.2.2. Clients Postal Codes Location Data 

As mentioned in Chapter 3.1, sales records are accompanied by the Postal Code of  the 
Address registered with the Client Card Account of  each Customer. This provides accurate 
information relative to the residence location of  who made which purchase and where. To 
use this information in our visualization, like with the Stores, we needed to convert the 
Postal Codes to GPS coordinates. The Sales Dataset contains around 180,000 unique Postal 
Codes, which made it imperative that the task of  identifying GPS coordinates for each of  
them would be automated or in someway automatic. 

It is important to mention at this point that the privacy of  each client was respected, for a 
better understanding of  how refer to Chapter 5.3, which describes usage for this data. 

Portuguese Postal Codes contain 7 numbers, divided into two groups separated by a hyphen, 
and are extremely accurate, up to the door number. But despite that fact there is no free and 
efficient web service or API available online to convert large numbers of  Postal Codes to 
GPS coordinates, with that same accuracy. 

During our search we found some Web Sites, including the National Postal Service for 
Portugal, that provided the conversion service through Web Forms, which would be difficult 
to automate with a script and at the same time would violate the sites EULAs. 

The Google Maps Geocoding service, the API we used in our implementation, provides 
geocoding to GPS coordinates using the 7 digit Postal Code, but fails to identify around 5% 

Figure 7 - Screenshot of  the additional geo-referencing step interface, created to help 
match GPS coordinates with Stores.
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of  the Postal Codes. To complement the Postal Code’s information we used the full Postal 
Code Table for Portugal, retrieved from Portugal’s National Postal Service Company, to 
complement the information with City Name and Province Name, increasing Google’s 
identification success rate. 

Other advantages favoring the Google API are its mature state of  development, is free of  
charge within a set of  limitations and our previous experience with it made the development 
more swift. As disadvantages, that affected how we modeled the application, the Geocoding 
service has a daily limit of  2,500 requests per user and also a instantaneous limit of  10 
requests per second. If  we chose to automate the task using a single machine, running 24/7, 
it would take around 60 days to complete the task, which was not compatible with our 
requirements. 

To solve this problem, instead of  centralizing the task, we created a Web Service to which 
different users can connect at the same time, using any Web Browser compatible with 
Javascript. By leaving the Web Service’s page open on their browser, users will be allowing a 
script to execute on their computer that will process the geocoding requests to the Google 
Maps API from the users computer, until it reaches the 2,500 daily limit for this user, which 
takes around 5 minutes. 

The structure of  the implemented application was very similar to the one implemented to 
match Store names, described in the last chapter. Two control tables were created, one with 
all the Postal Codes that need corresponding GPS coordinates, and the other to save the 
complete information for later use, refer to Figure 8 for a more detailed description. 

The progress of  the full task is still managed on the Server side, but the server relies on the 
connecting clients to perform the geocoding requests. As each Client connects, it sends a 
request to the Server for the next Postal Code that needs identifying, the Server queries the 
notfound_cps table for Postal Codes (CP1 and CP2) that don't exist in the cps_coords table, 
and also that no other Client is currently processing. The Server updates the selected Postal 
Code's “Requested DateTime” to keep track of  timeouts and returns the Postal Code 
information to the Client. The Client receives the Postal Code, City Name, and Province 
Name from the Server, assembles the geocoding request using the three fields merged into a 
String as Query and sends it to the Google Maps API. Upon receiving a response, the Client 
forwards the relevant information to the Server, where it will be saved in the cps_coords 
table in case of  success. 

Upon completing the each geocoding request, the Client process analyses a set of  local 
variables to control the time between the processing of  each Postal Code, making sure it 

Figure 8 - Control tables created to keep track of  the Geocoding process.
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sleeps whenever necessary to respect Google Maps daily and immediate request limits 
mentioned above. 

Using this implementation, five voluntary users were able to help complete the task in 
approximately 15 days. 

3.2.3. Shapes of  OpenStreetMaps 

Until now we have described how we added additional geographic information to the sales 
data, but still, using that information in a visualization model without contextualization has 
little to no meaning. 

To provide that contextualization we collected administrative areas boundary data of  
different levels, Country, Municipality (Concelho in Portuguese) and Civil Parish (Freguesia 
in Portuguese). We used Open Street Maps (OSM) dowloaded data  as the source of  that 2

information. Open Street Maps is a non-profit foundation compiling geo-spatial data from 
multiple sources and providing free access to it, aiming to support research and 
development. 

Several applications exist to access, visualize, filter and export OSM data, we used two in our 
project. One was GIS Explorer (by  BMT Cordah) which provides a GUI and is ideal to 
visualize the data while at the same time filter by any of  the multiple different attributes, it 
also provides multiple forms of  exporting selected data. The second was a command line 
tool named OSMOSIS, implemented in Java and with an accessible API, which made it ideal 
access the OSM data from our own Java applications. Both these applications were chosen 
not only because of  their features but also due to being available free of  charge. 

We used both these applications to export the boundary data into several “poly” files, one 
per administrative zone, containing the boundary shape (or shapes) as a set of  polygons in a 
GPS coordinate reference. 

We implemented Poly file parsing in Java, a GNU licensed file format , to enable our 3

applications to use the boundary exported data. 

3.2.4. Demographic Data 

One of  the final features we experimented with and implemented in our visualization model 
was the ability to overlay additional demographics information with the sales coverage areas 
(or Heat Spots; or even Heat Zones). Crossing these two types of  information might 
provide invaluable information to the business decision making process, as the work of  Pol 
(1997) , by providing additional information about the social and economic characteristics 
of  both the covered and not covered areas. 

 http://download.geofabrik.de/europe/portugal.html2

 https://www.cs.cmu.edu/~quake/triangle.poly.html or http://people.sc.fsu.edu/~jburkardt/data/3

poly/poly.html
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We experimented with different styles of  visualizing the demographics information, in an 
attempt to determine which style provided the best aesthetics and at the same time accurate 
and readable information, when blended with the sales coverage areas. The different styles 
and their different implementations are described in detail in Chapter 5.7. 

In terms of  the demographics data, for one of  the experiments we build a tailored dataset 
of  points in geo-space, that aggregated building locations extracted from the Open Street 
Map’s data and the GPS coordinates for the Clients Postal Codes, in an attempt that the 
visual representation of  those points would be a relatively accurate representation of  the 
Countries population. 

For all the other demographics representations we attempted a more general and extendable 
approach. Instead of  building tailored datasets with specific rendering styles in mind, we 
chose a credible statistics institute, the National Statistics Institute for Portugal (INE), as a 
source of  accurate data, particularly because their Web Site allows users to browse and 
export datasets related to several demographics variables, refer to Figure 9 for a screenshot 
of  the Web Site data selection user interface. We then implemented adequate scripts to parse 
the default format of  files exported through the web site, for datasets containing 
distributions of  a single variable (per dataset) over the Municipality or Civil Parish levels of  
administrative zones. This would enable us to add additional demographic variables easily in 
future. For the experiments described in this document we used two different demographic 
datasets from INE, one with the Total Population per Civil Parish and the second the 
Purchase Power per Municipality. 

The Total Population variable is self  explanatory and for the Purchase Power a detailed 
description of  its formula can be found in an extensive analysis on the subject, INE (2000). 
We didn’t dwell much into to it as the variable for us represents only a relative reference of  
the differences in purchasing power across the country. 

Figure 9 - INE data selection and export interface.
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4. Programming models overview 

Our implementation focus heavily on small programs that make the best of  the parallelism 
exposed by both the OpenGL and OpenCL APIs. We wont go into every small 
implementation detail on the Implementation Chapter, for we would risk confusing the 
readers on what is relevant or not in our implementations when compared to others. So in 
order to make any implicit introduced development step, during the description of  the 
implementation of  features, more explicit, we first would like to make a small introduction 
to the modern  OpenGL and OpenCL programming models. Detailing their configuration 4

steps, creation of  data structures, binding of  data to GPU registers and finally execution. 

We hope that this information, combined with the features implementation description, 
gives the reader a strong understanding of  the work, left out of  this document, behind each 
feature. 

4.1. OpenGL 

First, and most importantly, OpenGL is a rendering API, and as such it’s rendering pipeline 
was designed and optimized to create a 2D raster representation from geometry data 
describing a 3D scene. In other words, any sort of  GPGPU programming using the 
OpenGL API requires deep understanding and knowledge about each of  the rendering 
pipeline stages and the available OpenGL data structures in order to devise an 
implementation that will result in the actual succession of  mathematical operations and 
other transformations that are required. 

Over time, the OpenGL API, as others APIs as well , evolved into reducing the process, or 5

sequence of  commands, one has to issue on the CPU in order to traverse the rendering 
pipeline with some input data. Nowadays the process is as follows: 

- Create shader programs; 

- Create and configure buffers; 

- Load data into buffers; 

- Connect (Bind) data locations with shader variables; 

- Render (Draw Call); 

When the draw call is issued, depending on the configuration of  flags on the GPU registers 
and the structure of  the Shader Program, the data contained in the loaded and binded 
buffers will traverse a particular path on the GPU pipeline. The result of  a draw call has to 

 Modern OpenGL usually refers to the post OpenGL 3.1 version, where the “old” fixed pipeline 4

functions were removed and developers are forced to use only shaders. Other authors also like 
to consider the Modern OpenGL as the post 3.2 version, where geometry shaders were 
introduced.

 See the motivation behind the implementation of Mantle, Metal and Vulkan.5
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be saved somewhere, usually the Screen Buffer, but this also is configurable by the user, 
enabling more control over the data flow, as we will show later. 

Shader is a computer program which purpose is to produce shading, the production of  
appropriate levels of  color within an image. In computer graphics this process involves 
several steps, and consequently several types of  shaders. And its important to understand 
the different types, as for each, data is inputed in a particular way (or ways), different native 
functions are available, the number of  times they execute are dependent on different factors 
and finally each outputs different data. Synthesizing the characteristics of  the shader 
program types we use, we have: 

- Vertex Shader (VS): it executes once for each vertex, independently of  the primitive type 
(points, lines, triangles, among several others). It has access to the vertex data structure, 
which is configurable, and outputs a similar (or not) data structure per vertex (output 
structure also configurable). In typical rendering scenarios this is where projection of  
vertices is computed. The vertex shader has limitations regarding data structures and built 
in functions. Can output directly through Transform Feedback (TF) into a buffer, refer to 
Figure 10. 

- Geometry Shader (GS): it executes once per primitive. This is arguably the most flexible 
shader type as it enables access to textures and gives the developer the ability of  
specifying the primitive type of  primitive that each execution will have access too. 
Primitives can be points, lines, lines_adjacency, triangles or triangles_adjacency. Usually is 
used for generating geometry from the input data. It outputs (also configurable) points, 
line_strip or triangle_strip. The GS, like the VS, can output data directly through TF. 

- Fragment Shader (FS): it executes once per generated fragment. It receives some built in 
computed variables, related to the fragment, such as the coordinates in windows space, if  
its front facing and it position relative to the pixels center. Additionally it receives 
interpolated values, and their derivatives (through built in functions), of  the vertex 
geometry information that generated the fragment. The FS outputs a Color vec4(r,g,b,a), 

Figure 10 - Diagram of  the most important stages in the OpenGL 4.0+ pipeline.
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and, if  not overwritten by the shader execution, it also automatically computes and 
outputs the fragment depth and a sampling mask for multisampling. 

A Shader Program (SP) consists in one or more shaders which together form a valid 
structure in conjunction with the pipeline, defining a path in the pipeline from input to 
output. In other words, an SP cannot consist in two FSs, as there is no path in the pipeline 
where data can be inputted directly and, more importantly, no path from one Fragment 
Shader to another. So Shader Programs can consist of  VS>TF, VS>GS>TF, VS>GS>FS, 
among others, as long as they form a valid configuration. 

Figure 11 shows how the most basic pipeline configuration processes vertices data into a 2D 
raster image. And below in Figure 12 we can see a slightly different pipeline “path”, this time 
including the Geometry shader stage. (shaders) 

Besides the binded buffers of  vertices data that inputed to the Vertex Shader, and the 
Texture objects we mentioned so far, OpenGL provides a special variable qualifier 
“uniform”, named this way because uniform values don’t change from one shader execution 
to the next within the same render call. Uniforms act like shader parameters that are easily 
manipulated in CPU code between render calls. Uniforms, for instance, help specify 
parameters defining different shader behaviors without the necessity of  a different shader 
for each behaviors. Textures for instance are Uniforms. 

Figure 11 - Simplified rendering pipeline model, with vertex and fragment shader stages.

Figure 12 - Simplified rendering pipeline model, with vertex, geometry and fragment 
shader stages.
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4.2. OpenCL 

OpenCL, like OpenGl, OpenAl and others, is an open standard maintained by the non-
profit technology consortium Khronos Group. OpenCL is a GPGPU framework, and 
allows for writing programs that execute across heterogeneous platforms consisting of  
different types of  processors (CPU, GPUs, among others). In this document we will focus 
only on GPUs.  

OpenCL provides a top-level abstraction for low-level hardware routines, that allows 
developers to make the best of  modern GPU hardware architectures, to run massively-
parallelized programs, usually name as OpenCL Kernels. A Kernel is a program that is 
tailored to execute multiple times in parallel to complete a job . 6

4.2.1. Architecture 

OpenCL architecture is structured in what we might call levels, and we will give a brief  
description of  each, as to understanding each and its relation to the others, helps understand 
how to setup execution of  Kernels (more on this later), and how that execution is 
performed in the GPU. The levels are as follows: 

- Compute Device (CD): a compute device is for all effects and purposes an individual 
processing unit, for instance the CPU is a CD and also, the GPU is a CD. A Kernel job 
can be distributed over several devices. 

- Compute Unit (CU) (also called Execution Units (EU)): A CD has one or more CUs and 
contains one or more (usually more) processing elements. Processing elements in each 
CU share part of  the hardware’s memory and computational units. 

- Processing Elements (PE): The processing elements are the lowest differentiable 
processing level, effectively where each kernel execution happens. 

Note the vague description for Processing Elements, for these the documentation found on 
the internet can get a bit misleading sometimes and confusing. Particularly because the 
specific definition of  what a Compute Unit is, varies from vendor to vendor. On Intel for 
instance, CUs, or EUs are Simultaneous Multi-Threading (SMT) compute processors that 
drive multiple issue Single Instruction Multiple Data Arithmetic Logic Units pipelined for 
high throughput floating point and integer compute. In numbers, for the 7.5 generation of  
processors, each EU has 7 SMT processors, and a pair of  SIMD FPUs . Each FPU is 7

capable of  SIMD execute up to four 32-bit floating point (or integer) operations, or SIMD 
execute up to eight 16-bit integer operations. The SIMD-Width, calculated from the number 
of  operations that one FPU will be able to execute simultaneously, for instance 4 32-bit 
operations equals a SIMD-4, is defined by the compiler and relative to the kernel being 

 A job in OpenCL, refers to the total work to be performed by a kernel when enqueued for 6

execution. The job size is in effect the number of independent work-items that will have to 
execute in total, to complete the designated task.

 Although called FPUs they perform float and integer operations.7
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executed, will ultimately set the number of  kernel instances that can run concurrently.  For 
instance for a SIMD-16 compile of  a kernel, it is possible for SIMD-16 x 7 threads = 112 
kernel instances to be executing concurrently on a single CU (or EU). 

Fortunately for developers, OpenCL API provides abstraction from this vendor specific 
differences in hardware architectures. OpenCL works with the concept of  job dimensions, a 
one dimensional job of  1000 items means that, to execute the job, there will be 1000 kernel 
executions. One can relate job dimensions to dimensions in an array, picture a two 
dimensional array (100x100) for which we need a kernel that at each execution substitutes 
one value of  the array for it power of  two. We could issue this job with OpenCL as a 1-D 
job of  size 100x100=10000 or we could issue a 2-D job of  size 100x100, the later being the 
more advisable. The job dimensions will then be used to distribute the individual executions 
as Work-Items, refer to Figure 13, into Work-Groups. The grouping of  individual work-
items is constrained by the hardware characteristics but also by each individual kernel’s 
requirements, both in terms of  processing and memory. Like we’ve seen before, a kernel 
that only performs 16-bit integer operations might be able to execute more times 
concurrently on certain hardware. 

OpenCL provides methods to query each device for their characteristics, for instance the 
maximum number of  compute units or the maximum number of  work-items per work-
group, and also to perform queries relative to each’s kernel compiled code, for instance the 
kernel group work size and the kernel preferred work-group size multiple. Developers don’t 
really have to work with this information to simply execute a kernel, but they are crucial 
when it comes to optimizing that execution. 

Figure 13 - Simplified Mapping of  OpenCL onto a GPU device (source AMD 2013).
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Like we see in Figure 13 (bottom), maximum occupancy of  a device occurs when every 
possible work-item is occupied , and also when every CU is also occupied. When the 8

developer want’s to issue a job using a kernel, it must specify the jobs dimensions and the 
global size on each of  those dimensions, for example purposes lets say a 1D 100 item job 
(follow the visual description of  the example in Figure 14), and then he might specify 
himself  a local size (work-group size), of  which the global size must be a multiple, or he might 
let the API pick a local size for him. And lets consider also that for this kernel, he has a 
maximum work-group size of  7 and also the CD has 4 compute units available. The best 
work size, which the API itself  would probably pick, would be 5, and 5x20=100, so we will 
need 20 work-groups of  5 work-items each. As the device as 4 CUs, 20/4=5, means the 
device will run the same kernel 5 times, using all compute units, each compute unit with 5 of  
the 7 possible threads busy, ≈72% occupancy. A very bad occupancy rate one might say. 

Optimizing the example above could be done by finding the next multiple of  7 that contains 
the job's global size, which would be 105, and also introducing a condition on the kernel 
code that confirms its position inside the “original” global size (100), or else it does not do 
nothing. By setting the global size to 105, the API would be “able” to pick 7 as the work-
group size, and thus as 105/7=15 a total of  15 work-groups. As in the example there were 4 
compute units, 15/4=3.75, meaning a total of  4 executions, 3 of  which would have 100% 
occupancy and the last only 75%. Still much better than the previous solution, and as 25% 
free, equals a whole compute unit, the developer could issue another kernel at the same time 
that would execute simultaneously. 

Other optimizations exist, all dependent of  the developers knowledge of  how the OpenCL 
framework works and also the capabilities, functionalities and optimizations hardware 

Figure 14 - Example of  usage of  “dummy” threads in the queueing of  OpenCL kernels 
to optimize execution.

 Remember that different kernels might allow for different amount of work-items per work-group.8
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implementations, in general, have. In Chapter 5.5, where we describe our OpenCL 
implementation we present a different method of  optimization for concurrent memory 
accesses from work-items. 

4.2.2. OpenCL C 

We mentioned before how the number of  work-items per work-group is dependent not just 
on the device characteristics but also the kernel. The type of  operations the kernel executes 
influence this, but also the local and private memory each kernel execution requires. 

Memory hierarchy in OpenCL is divided in four-levels: 

- Global memory: shared by all work-items, slowest; 

- Read-only memory: smaller, faster, writable by the host CPU but not the work-items; 

- Local memory: shared by the work-items of  a work-group; 

- Per-element private memory (registers). 

The programming language used in kernels is called OpenCL C and is based on C99. 
Memory buffers kernels have access to reside in specific levels of  the memory hierarchy, and 
pointers to those buffer are annotated, in the kernel codes arguments and variable 
definitions, with the region qualifiers __global, __local, __constant, and __private, reflecting the 
levels described above. 

OpenCL C was extended to facilitate the use of  parallelism with vector types and 
operations, synchronization, and functions to work with work-items and work-groups. We 
will briefly describe the most important ones, which are crucial for work-items and job 
synchronization. 

Unarguably the most important for parallelization of  tasks, in our opinion, is the 
get_global_id(int dimension) function, which lets each kernel execution to know its index in the 
job. An analogy with CPU code is the iterator variable in a for loop, that is incremented at 
every loop and used inside the for block to manipulate the correct data. The dimension 
argument in the function refers to the dimension for which we want the global id of  this 
work item. 

Work-items can be synchronized by introducing “locations” in the code that every work 
item has to reach before any of  them can go past it. This is done with the barrier function 
which takes as argument one of  two constants (CLK_LOCAL_MEM_FENCE, 
CLK_GLOBAL_MEM_FENCE), which specify if  the barrier is local or global. This can 
useful for instance when work-items, for example, write to a buffer and then want to read 
from it, making sure every work item has finished writing. 

Its important to notice while OpenCL allows for conditional divergence between work-
items, it should be avoided when possible, for optimization reasons. Divergence between 
work-items in GPU hardware is usually resolved by having work-items follow both possible 
paths, due to the optimizations introduced in thread managers for high throughput 
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streaming of  threads, as suggested by multiple introductory documents to the OpenCL 
programming model, for example the work of  Tompson (2012) provides a good insight on 
the topic. 

As we mentioned before, local memory is shared between work-items, this, depending on 
the Device available memory per compute unit and the memory each work-item will require, 
influence the number of  work-items that can run concurrently on each compute unit. 
OpenCL provides built in functions to help manage work-items access to this local memory, 
namely functions like get_local_size(int dimension) and get_local_id(int dimension), the former give 
the number of  work-items in the work-group per dimension, and the later the position of  
this work-item in the local dimensions. 

In Chapter 5.5 we will show examples of  these functions usage. 

4.2.3. OpenCL/OpenGL interoperability 

A crucial feature for our application’s performance is the interoperability between OpenCL 
and OpenGL, by sharing buffer and textures. 

Without the ability to create and/or manipulate data in OpenCL and then use it immediately, 
data would have to be copied to the CPU after the OpenCL operations and then uploaded 
back to video memory, onto OpenGL buffers. This operation is performed over the PCI 
Bus and not fast enough to be a per frame operation, not just in speed but in latency. 
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5. Implementation 

This chapter presents detailed descriptions of  each of  our implementation steps towards the 
realization of  a multi feature data visualization application and its graphical user interface. 
Bear in mind that some of  the implementations steps described were merely experiments, 
performed for different reasons, either to test the feasibility of  an idea or to test if  a 
different technique presents better results. 

We attempted to organize this chapter by aggregating implementations regarding the same 
or similar features, and at the same time keep the order as approximate as possible to the 
chronological order by which each of  the features were implemented. 

First, in chapter 5.1 we detail our database structure, data import scripts and any other step 
taken towards making the Sales Dataset accessible to our application. In chapter 5.2 we 
address the map projection we used to project all our spatial information in GPS 
coordinates onto a 2D plane in a 3D space, and then onto the 2D space of  the computer 
screen. 

We then enter the actual implementation of  the visualization model. Starting with the 
implemented approach to create the geographic heat zones on chapter 5.3, and then in 
chapters we 5.4 and 5.5 our two different implementations of  the accumulation of  values 
per heatmap item, using the Graphics API and the OpenCL API respectively. Past the 
computational processes we enter the implementation of  the more visual elements, starting 
with the actual coloring of  the geographic heatmap when drawn onto the Screen Buffer in 
chapter 5.6 

In chapter 5.7 we describe the different methods we implemented to display the 
administrative and demographic information, and finally in chapter 5.8 we briefly describe 
other additional features implemented. 

To help visualize where in the structure of  the application each implemented feature fits, we 
included Figure 15, in the next page, that provides an overview of  the most relevant 
elements implemented, and which are described during this Implementation chapter. We 
chose a flow diagram to include and give a sense of  the actual cycle happening at each 
frame. 
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Figure 15 - Minimalist view of  the steps relevant to the creation, management and 
drawing of  the information visualization model components. On the left the thread 
responsible for Database connection, Data Files reading and parsing/streaming the data 
to Thread2. On the right the thread responsible for uploading new data to video memory, 
execute operations kernel programs, draw the correct information to pre-buffers (FBOs) 
and finally draw the information as layers onto the Screen Buffer. Notice that the main 
cycle presented in Thread2 is our per frame cycle, which we will refer to as Render Cycle 
also.
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5.1. Database and Data Stream 

Providing the data to the application at high data transfer rates and with short delaying times 
is dependent of  multiple factors. For instance the data base configuration, its structure, but 
also the application’s implementation it self, as to receive data at high data rates, one has to 
parse it also at high rates. 

5.1.1. Database Configuration and Structure 

For our MySQL implementation we opted for innoDB as our database storage engine, our 
choice was based on Oracle’s MySQL documentation, Oracle 2015 (Storage Engines),  and 
on the work of  other researchers regarding database comparison as the ones of  Tudorica 
(2011) and Rabl (2012). Based on these documents, not only does innoDB present better 
performance results, when compared to other engines, on read intensive operations, it also 
has features that make it a reliable database engine. Such features include Transactions, row 
level Locking granularity and is full ACID compliant (Atomicity, Consistency, Isolation, 
Durability), among others. 

We also relied on suggestions from the authors mentioned above, and the documents from 
Oracle’s MySQL documentation regarding innoDB configuration, Oracle 2015 (InnoDB 
Configuration), and innoDB configuration optimization, Oracle 2015 (Optimizing 
InnoDB),, to balance our cache and read-ahead settings into using the 8Gb of  RAM 
available in our database server, increased the number of  maximum threads to make the best 
of  our 8 core database server CPU and set the engine to save one individual table per file. 
Our first tests indicated these were enough to achieve the data transfer rates we needed 
while reading data, around 15Mb per second over Local Area Network (LAN). 

In order to devise a structure for our database we had to take into consideration the 
posterior analysis we wanted to perform on it. In other words, due to the number of  records 
present in our data set, we had to devise a structure to hold our data that would not only 
divide the data into smaller chunks in order to boost query performance but at the same 
time not divide past a point that would demand for increasingly complex queries in order to 
perform analysis and comparisons between significant groups (e.g. comparisons with data 
grouped by Hour). 

Grouping the data in time, considering the data regards sales, seemed to make more sense 
that grouping by any other Variable. Not only would it allow for grouping into smaller 
chunks than with other Variables, but also would maintain most of  the structure of  the 
original data while at the same time still allow for analysis performed with data grouped by 
other variables. Dividing the data by Day, refer to Figure 16, also allowed to drop the 
variable Date since its value became implicit for each of  the different tables, removing the 
necessity for its indexation. At the same time, enabling the MySQL option to save one table 
per file ensured that parallel access to multiple days would not block due to concurrency. 
This produced tables with around 3.8 million records each. 
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The data import step was actually divided into two separate steps for performance purposes, 
around 6 hours per month instead of  over a day. The first step was to perform a direct 
import of  the data in the files without parsing data types, and the second step copied the 
data from the imported data onto a new table with correct data types, performing the 
conversion during the copy process. In Sources 1 and 2 below we present the queries used 
to perform those tasks. 

Figure 16 - Distribution of  records in the database, one Database table per Day.
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First import table creation query

CREATE TABLE `pur201401` ( 
`TIME_KEY` varchar(30) DEFAULT NULL, 
`LOCATION_CD` varchar(5) DEFAULT NULL, 
`LOCATION_DSC` varchar(30) DEFAULT NULL, 
`SKU` varchar(20) DEFAULT NULL, 
`TRANSACTION_HOUR_KEY` varchar(30) DEFAULT NULL, 
`POST_CD` varchar(10) DEFAULT NULL, 
`CUSTOMER_ACCOUNT_KEY` varchar(30) DEFAULT NULL, 
`NET_SLS_AMT_EUR` varchar(10) DEFAULT NULL, 
`QTY` varchar(10) DEFAULT NULL, 
`PROD_DSCNT_ISSUED_AMT_EUR` varchar(10) DEFAULT NULL 
) ENGINE=innodb DEFAULT CHARSET=latin1;

Import from file query

LOAD DATA INFILE '/home/sonae/datafile.csv' into table pur201401 
FIELDS TERMINATED BY ';' ENCLOSED BY '"' 
LINES TERMINATED BY '\r\n' 
IGNORE 1 LINES;

Source 1 - Table creation query for the first table where imported data is stored, on top. 
In the bottom the import query.
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5.1.2. Data Stream Parsing 

In the application side, we use an independent thread to query, receive and parse the data. 
We chose to implement a separate thread to minimize the impact in the visualization’s 
performance, of  the process of  receiving the data and saving it into CPU memory. 

Both threads are synchronized and exchange data. The visualization thread continuously 
provides and switch a buffer to the parsing thread on which it saves the received 
information. The visualization thread is then responsible for uploading the values to the 
GPU memory where they will be processed. 

The Data Stream Parsing thread is also responsible for gathering data about clients and 
stores from the database and supply it to the visualization thread. 

The passage of  time, with which the parsing thread throttles the stream, is supplied by the 
visualization thread for consistency purposes. 

Correct data types table creation query

CREATE TABLE `dia20140427` ( 
  `TIME_KEY` date DEFAULT NULL, 
  `LOCATION_CD` int(11) DEFAULT NULL, 
  `SKU` varchar(20) DEFAULT NULL, 
  `TRANSACTION_HOUR_KEY` time DEFAULT NULL, 
  `POST_CD` varchar(10) DEFAULT NULL, 
  `CUSTOMER_ACCOUNT_KEY` varchar(30) DEFAULT NULL, 
  `NET_SLS_AMT_EUR` float DEFAULT '0', 
  `QTY` float DEFAULT '0', 
  `PROD_DSCNT_ISSUED_AMT_EUR` float DEFAULT '0', 
  KEY `location_cd_dia20140427` (`LOCATION_CD`), 
  KEY `location_cd_hora_dia20140427` 
(`LOCATION_CD`,`TRANSACTION_HOUR_KEY`), 
  KEY `hora_compra_dia20140427` (`TRANSACTION_HOUR_KEY`), 
  KEY `sku_compra_dia20140427` (`SKU`) 
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Copy and parse data types query

INSERT INTO parsed201401 (TIME_KEY, LOCATION_CD, LOCATION_DSC, 
SKU, TRANSACTION_HOUR_KEY, POST_CD, CUSTOMER_ACCOUNT_KEY, 
NET_SLS_AMT_EUR, QTY, PROD_DSCNT_ISSUED_AMT_EUR) 
SELECT TIME_KEY, LOCATION_CD, LOCATION_DSC, SKU, 
TRANSACTION_HOUR_KEY, POST_CD, CUSTOMER_ACCOUNT_KEY, 
CAST(REPLACE(NET_SLS_AMT_EUR, ',', '.') AS DECIMAL(20,4)), 
CAST(REPLACE(QTY, ',', '.') AS DECIMAL(20,4)), 
CAST(REPLACE(PROD_DSCNT_ISSUED_AMT_EUR, ',', '.') AS DECIMAL(20,4)) 
FROM pur201401;

Source 2 - Table creation query for the table where the copied data with correct data 
types will be saved, on top. In the bottom the query that copies the data and casts correct 
data types.
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5.1.3. File system day exports 

To eliminate the mandatory network access to the database, source of  the visualized data, 
we devised a simple way of  using a file reader stream as a simulated database stream, 
allowing us to export data files (CSV format) relative to days, pack them along side the 
application in a Folder, inside the application file structure, specific for that purpose. 

Using the SSD of  our test case hardware, the file solution is performant enough, even 
considering the additional resources used, that the network solution. 

5.2. Projections 

Has we have seen so far, all our spatial data comes from real word locations in geographical 
space, more exactly GPS coordinates. GPS coordinates map points on the surface of  a 
sphere through two angles, latitude and longitude. To create a visualization using this 
geographical information we have to transform the data points, first onto a 2D plane in a 
3D space using a Map Projection, and finally onto the 2D pixel space of  the screen, as 
Figure 17 depicts. 

5.2.1. Geo-Projection 

There are several different map projections to choose from, too many to reference here. No 
map projection is ideal, each map projection preserves a different property but consequently 
others are distorted. Map projections fall in one of  the different categories, either preserving 
direction, shape, area, distance or shortest route. 

Figure 17 - Projecting From GPS coordinates to Screen Space
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Considering that our final use for the shapes and points is a Data Visualization application, 
and one that will also perform blending of  circular areas on top of  the geographic 
information, we opted for the Mercator Projection, as seen in Feeman (2002, chapter 9), as it 
preserves angles and shapes. Unfortunately the Mercator Projection does not preserve areas, 
areas get distorted the most the furthest away from the equator. This effect is most noticed 
in maps showing huge areas or even the entire world. When used to visualize a small area 
like Portugal, the relative distortion is almost negligible. 

The Mercator projection if  given by Equation 1 and 2, where λ  is the longitude and ø the 
latitude. λo is an arbitrary longitude where to center the x origin. 

5.2.2. Projection Matrix 

Computer screens are flat, 2D surfaces. In OpenGL, the actual 3D space rendered to the 
screen, ranges in all 3 axis (x, y, z) from -1 to 1, in other words, a cube of  2 unites in size 
centered at the origin (Clipping Space). Everything that falls outside this cube is discarded 
(clipped). Everything that falls inside the cube is projected onto a 2D rectangle equally 
ranging from -1 to 1 in both x and y axis, which represents the screen space (more accurately 
the Viewport Space). 

Yet, usually application’s 3D space does not fall in the range -1 to 1, and many times the 
application Point Of  View (POV) is not fixed, like with a real world camera it can move and 
rotate. Even objects in this 3D space can rotate or move independently of  each other, 
defining its own Space where its vertices reside. 

(1)

(2)

 

 

Figure 18 - Model View Projection Matrix transformation to Clipping Space and Clipping 
Space Projection onto the 2D Screen Space
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This series of  projections, from Model Space to World Space, then to Camera Space and 
finally to the Clipping Space, is usually called Model View Projection (MVP), refer to Figure 
18 for a visual overview. Projection onto each of  these Spaces is done by multiplying vertex 
coordinates (x,y,z,1) with a [4x4] matrix that defines the scaling, rotation and translation 
transformation that project the vertex onto that Space. 

In our implementation all points that originated from geographical data share an identical 
Model Matrix. Identical and not “the same” because our implementation allows for 
manipulation of  an individual Mesh’s Model Matrix (Mesh as in a group of  vertices all 
hierarchical descendants of  the same object). In our implementation Model Matrices were 
used for Scaling and Translating purposes. 

Regarding the View Matrix, as our application is essentially a 2D Visualization the virtual 
camera never performs rotations or tilts, instead we used the View Matrix to pan and zoom 
the visualization, essentially Translation. 

Last, the Projection Matrix, which defines the shape and size of  the actual viewable space, is 
where we one might consider we chose oddly. Being essentially a 2D Visualization there is 
no reason to opt for other than an orthogonal projection, yet, considering there was no 
advantage over a perspective projection, regarding our application, we opted to leave a door 
open, building our implementation around a perspective projection, allowing for any future 
feature that might take advantage from it. We used a perspective projection while rendering 
all objects except for the ones composing the User Interface, for which we used an 
orthogonal projection. An orthogonal projection while designing the User Interface allows 
for precise positioning of  elements relative to the Viewport Dimensions. 

The detailed description of  how to calculate each of  these projection matrices is given by 
Ho (2015). Equations 3 and 4 are the equations we used in our implementation, where n is 
the near plane distance, f the far plane distance and r, l, t, and b the rightmost , leftmost, 
topmost and bottommost coordinates respectively. 

Perspective Matrix =

(3)
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Example implementations can be found all over the internet, as these equations have been in 
use since development of  3D computer graphics started. The most significant source of  
such and other very useful implementations, as we will see later, is the GLUT source code, 
as seen in GluProject (2015), used as support library back when OpenGL fixed pipeline was 
still in use. 

5.2.3. Un-project 

Un-projection , as suggested by the name, is the act of  performing projection from the 2D 9

Screen (our projecting target surface when rendering) to the 3D world (which we projected 
from). This is useful to convert a specific coordinate in Screen Space, the mouse position for 
instance, to World Space, allowing for mouse input interaction with the rendered objects. 
Still un-projection is just one of  the steps as we will see in Chapter 5.8.3 where the User 
Interface implementation is described. 

The un-project step it self  is not a direct point to world coordinates direct transformation 
either. Screen Space is defined in 2D, consequently excluding any depth information 
necessary for the complete un-projection. To circumvent this issue we use the knowledge of  
both the near and far planes from the Clipping Space as two known depths, giving us two 
points that when un-projected define a line segment that transverses the 3D World space, 
refer to Figure 19. This segment is usually called a Ray, and can be used to test for geometry 
interceptions, more on this later in Chapter 5.8.3. 

Orthogonal Matrix =

(4)
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�
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Figure 19 - Un-projection resultant line segment, still in Projection Space.

 Un-projection, to differentiate from the inverse of a projection, a term used in the Glut 9

implementation.

  39



Visualization Techniques for Big Data - Final Report

To un-project each of  the points we first set the z coordinate of  each of  the points to the 
corresponding z values of  the near and far clipping planes, -1 to the near plane and 1 to the 
far plane. Then we calculate the inverse of  the MVP Matrix (iMVP) and transform both 
points using  the iMVP. Finally we multiply each of  the x, y and z components of  both 
points by the multiplicative inverse of  the each’s w component. 

5.3. Geographic Heatmap Concept and First Approach 

A Heatmap, or Pixel Heatmap to differentiate from other types of  heatmaps, is a graphical 
representation of  data where values of  individual items are represented as color, in a one or 
two dimensional space usually discretized by item. This concept in computer graphics is 
equivalent to the representation of  individual values with the color of  each pixel of  a 2D 
texture. 

In a Geographic Heatmap, the 2D space of  the texture is mapped to real world space, 
usually in one of  two ways. The first is by discretizing the space, defining a minimum unit 
(squared usually) and paint the geographic space, square by square, according to the values 
inside each square. Almost like overlaying a pixel heatmap on top of  the geographic space, 
refer to Figure 20 left. And the second consists in coloring the map continuously in world 
space, using the registered values as centroids of  heat zones that spread outwards according 
to a specific mathematical function, usually Gaussian, refer to Figure 20 right. 

Figure 20 - Two different rendering types of  geographic heatmaps. On the left 
discretized units, on the right continuous coloring.
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Considering that our Sales data does not relate to the geographic space itself  but to 
individual Stores, it would made no sense do discretize the space and represent different 
accumulated sales through squared areas on the map, as each squared zone value would have 
to still be interpolated from the Store sales and locations. Instead, in this first approach, we 
chose the Stores as our discretized abstract units, calculating the heat value and its decay per 
Store from the Sales happening in that Store. In other words we used the Store locations as 
our Heat Centroids and distribute the Heat Value of  each Store continuously, in the 
geographic space around the Store using a 2D Gaussian function. The Heat Value was used 
both for the Amplitude and Spread of  the Gaussian distribution. See Equation 5 for the 2D 
Gaussian function, where A is the amplitude, σ  the spread of  the blob in the x and y 
dimensions and notice its centered at coordinates (0.5,0.5). 

The reasoning for this approach is that, in terms of  coloring this conforms with the usual 
approach, differentiating zones of  greater accumulation through the use of  color, and in 
terms of  the size of  the affected heat area, we emulate the idea that usually Stores with 
greater sales values service bigger areas, and consequently present a visual approximation of  
the serviced areas. 

If  we were to implement the rendering of  the geographic heatmap by going through each 
pixel of  the area being visualized we would have to, not only perform calculations for pixels 
outside the influence area of  any Centroid (empty pixels), but also, for each pixel we would 
need to calculate distances to each of  the centroids to determine its contribution to that 
location. 

Instead, our implementation takes advantage of  the fact that Store locations are distinct 
from each other. By defining a bottom threshold for the 2D Gaussian function beyond 
which its values are ignored (equal zero), we can calculate the size of  the area each Centroid 
will affect. With that information we can map triangles to cover those areas and limit the 
rasterization to the surface of  those triangles, therefore minimizing the number of  
processed pixels. Regarding the dispersion, σ in Equation 5, we chose a value of  0.1443, to 
scale the dispersion of  values to the Texture Coordinates Space. See Equation 6 for the 
adapted 2D Gaussian function. 

To implement this using the OpenGL API we created a three shader pass with a Vertex 
Shader (VS) to perform vertex projection transformations, a Geometry Shader (GS) to 
generate the triangles that cover the heat areas and a Fragment Shader (FS) to color those 
triangles. Refer to Figure 21 for an overview of  the full process. From this point forward we 
will refer to this Shader Program (VS + GS + FS) GeoGauss Program. 

(5)( ( ))

{
z=exp(-(24*x2 + 24*y2))  ,exp(-(24*x2 + 24*y2))≥0.01 (6)
z=0 ,exp(-(24*x2 + 24*y2))<0.01
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To achieve this we first stored our Store location information using a Vertex Array Object 
(VAO), where each vertex structure is composed of  a Position followed by 
TextureCoordinates. The Position is the Store location coordinates after the Mercator 
Projection and the TextureCoordinates are used to map each Store to a unique (one per 
Store) position inside a Texture. The Heat value of  each Store is stored in the color 
information of  that Texture(s), not the vertex structure. On chapter 5.4 we provide 
additional justification for this choice of  vertex structure. All this information stored using 
the VAO is constant and once uploaded to the Video Memory once, it is never uploaded 
again. Also the vertex elements are Indexed, Draw calls are made referencing the index 
buffer and as GL_POINTS, to conform with our implemented GS input output settings. 
The indexing allows us to filter stores during the draw calls without changing the VAO 
information, by defining and using different index buffers. 

After the vertices projection transformations in the VS stage, as described in chapter 5.2.2, 
they are outputted to the GS stage. The GS executes once for each vertex, first the Heat 
value is fetched from the Heat Texture using the vertex Texture Coordinates, and used to 

Figure 21 - Description of  the Draw Pass used to render the geographic heatmap. A 
Geometry Shader generates Quad geometry, one Quad per Store location. Quad sizes 
vary according to the accumulated value for the Store fetched from the Heatmap Texture. 
The fragment shader colors each Quad according to the 2D Gaussian Function, centered 
at texture coordinates (0.5, 0.5) and with an amplitude value fetched from the Heatmap 
Texture.
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determine the size of  the Quad (2 triangles forming a square) that must be generated, 
according to Equation 7, where value is the value for this Store and maxValue the maximum 
value between Stores. The GS generates and outputs 2 triangles per Store, but only if  this 2 
triangles are not completely outside the current FOV, to avoid unnecessary processing. The 
outputted triangle primitives  will then enter the Rasterization stage where the rasterization 
process generates fragments to be processed, per-fragment, in the FS stage. 

The vertices that compose the triangles were given positions by the GS, but also 
TextureCoordiantes. The FS is then responsible to calculate the 2D gaussian value for each 
fragment using Equation 6, with the TextureCoordinates(s,t) as (x,y), assigning the result 
value to the red component of  the fragment color. 

The Quads generated by the GS are drawn one after the other, many times overlapping each 
other. We want the value distributions of  each Quad to add to each other and to do this 
easily we use the GL_BLEND functionality of  OpenGL with the necessary settings 
presented in Source 3. 

The target of  this render pass is a Framebuffer Object (FBO), effectively a Texture, that will 
later be drawn to the Screenbuffer overlaying the Map Layer (more on that later). This 
allows us to quickly switch the FS that maps the calculated values to real colors on the 
Screen. Our first implemented FS for this job used the normalized values to pick a color 
from a color map Texture, refer to Figure 22 left, on the right the first rendering result we 
obtained. 

(7)

�

Setup GL_BLEND

glEnable(GL_BLEND);	  
glBlendFunc(GL_ONE,	  GL_ONE);	  
glBlendEquation(GL_FUNC_ADD);

Source 3 - On top, the GL_BLEND configuration for geographic heatmap drawn, 
blending the quads with each other by adding values. On the bottom the resulting color 
blend equation.
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5.4. Pixel Heatmap - Graphics API 

In the previous chapter we mentioned the Heatmap Texture a couple of  times, without 
going into much detail about what it is, how it is calculated and why we used it. We chose to 
separate its description into more than one chapter because of  how relevant this feature is to 
the whole visualization model and because we implemented its calculation using two quite 
different methods, which could cause some confusion. 

We could have added additional attributes to the vertex structure to store the Heatmap 
accumulation values, but manipulating that information and being able to loop it over and 
over through the Graphics Pipeline while minimizing data transfers between the CPU and 
GPU would require additional calculations on both parts. On the GPU end we could use the 
Transform Feedback feature to perform Vertex Buffer Object (VBO) to VBO operations, 
still, as the resulting VBO would be used in the next Draw cycle and therefore effectively 
replacing the first one, every Store would have to be processed each time to avoid “losing” 
Stores between cycles, but also no more than one time, as having the same Store two times 
with different accumulation values would make no sense. That would require additional 
calculations to be performed on the CPU side as well, recreating and scanning the Store 
array between each Render Cycle. 

Textures on the other hand are quite versatile. They are accessible in both the Geometry and 
Fragment shader stages, their inner datatype can be chosen to fit the intended purpose and 
they can also be bounded as Render Targets, through the Framebuffer Object (FBO) 
functionality. 

So, this provides an easy way to save the accumulated values when the texture is the render 
target and use them as input during the GeoGauss Program.  The Texture has to be big 
enough to fit the Stores, we use the square root of  the number of  stores to determine the 
appropriate minimum number of  cols and rows of  pixels needed in the Texture. For 
instance for 702 stores, the square root is approximately 26.5, the Texture size would be 
27x26. Refer to Figure 23 for a visual description using the stores heatmap texture as 
example. 

Figure 22 - On the left our first color mapping Texture for the values calculated during 
the Quad generation process, on the right our first rendering result.

�
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Now we are just left with the “how to” manipulate the values inside the texture, add to them 
as new value arrive from the database and perform a continuous small decay of  the all the 
value over time. To achieve this we first, when the application loads, fill in an Array of  
custom tailored Vertices, one for each Store, with their positions mapped onto the Texture 
Space, in a way that each Store lays on top of  one unique Texture pixel. When the CPU 
receives Sales values from the database stream, it Clones the Vertex corresponding to the 
Store where the Sale occurred, sets the value of  the Sale in the red component of  the Vertex 
color, and then adds that Vertex information to a Vertex Buffer Object (VBO). There are 
two VBOs for this process, used as a double buffer, whenever a new render cycle starts, or 
the VBO is full (never happened), VBOs are switched. If  several Sales are present for the 
same Store, there will be one Vertex per Sale for that Store, which will not cause a problem 
and the addition is shifted to the GPU as we will see. When the VBOs are switched, the 
“full” VBO is uploaded to Video Memory and is CPU memory cleared when finished. 

To render, and effectively add, each of  these Vertices, that represent values that correspond 
to Sales in Stores, we implemented a simple Shader Program, that we will call HeatmapAdd 
Program, constituted of  a Vertex Shader that passes Vertices directly forward in the graphics 
pipeline, without any transformation, and a Fragment Shader that simply outputs the Vertex 
Color. Figure 24 presents an abstract representation of  the blending process onto the 
heatmap texture. The mechanisms and properties that are responsible for the correct 
addition of  the Values are external to the Shaders themselves, one is the positioning of  the 
vertices “above” the specific pixel of  the corresponding Store, in the center of  the pixel to 
be more exact, also the transparency of  the vertices allowing for blending calculations, 
drawing the Sales vertices as GL_POINTS 1 pixel in size, and choosing the correct 
GL_BLEND equation and function. The blending configuration used to add the values is 
the same present in Source 3. 

Figure 23 - HeatTexture structure. Real colors were inverted.
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Another majorly important step in the heatmap process is the Decay step, where instead of  
adding to the Texture we will subtract a value, decaying the current values in each store 
linearly in time. We achieve this by performing a draw pass, where we draw a single colored 
transparent Quad (2 Triangles) covering the whole Texture, using the exact shader program 
as on the Add step but with different GL_BLEND configurations, see Source 4 for the 
detailed equations, that will in effect configure the blending process to subtract a value 
specified as the color of  the Quad to the value of  the destination Texture. 

These two successive steps run in a cycle, starting with the upload to the Video Memory of  
values retrieved form the database stream relative to Sales in Stores, executing the Add step 
that add the newly uploaded values to the HeatTexture, execute the Decay step to linearly 
reduce the accumulated values in order to provide a heatmap relative to a time span (45 
minutes), at this point the texture is ready to be used in the render of  the Geographic 
Heatmap described in chapter 5.3. When all other rendering and update processes of  the 
application render cycle are done this process starts again. 

Figure 24 - Abstract representation of  how Sales Vertices are positioned above the 
corresponding Store’s pixel, in order to be added to the HeatTexture during the blending 
process. Blending configuration for the addition is described in Source 3.

Setup GL_BLEND

glEnable(GL_BLEND);	  
glBlendFuncSeparate(GL_ONE,	  GL_ONE,	  GL_ZERO,	  GL_ONE);	  
glBlendEquationSeparate(GL_FUNC_REVERSE_SUBTRACT,	  GL_FUNC_ADD);

Source 4 - On top, the GL_BLEND configuration for Decay step on the Heatmap 
Texture calculation. On the bottom the resulting color blend equations, notice alpha will 
remain untouched and the destination components (dR,dG,dB) will be subtracted by a 
value specified by us in the source color components (sR,dG,dB).
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5.5. Pixel Heatmap - OpenCL API 

The implementation presented in the last chapter, although functional and performant, 
presented some limitations and disadvantages which lead us to research and experiment with 
different methodologies. 

One disadvantage that affects performance is related to the necessity of  uploading vertex 
positions and color information, eight floating point values in total, for each and every Sale, 
and while this could be improved by customizing the Vertex structure, we would always 
need to upload more floating points than Sales, introducing a quite large overhead. 

In terms of  limitations, relying on the blending process to perform our mathematical 
operations, limits the amount of  information we are able to retrieve in real time. Having 
more general purpose framework, allows for easy implementation of  more complex 
calculations opening up the possibility of  calculating average values, standard deviations, etc. 

After studying the OpenCL API, introduced in chapter 4.2, realizing its flexibility and how it 
would allow us to break free of  the limitations presented by the previous implementation, 
we decided to include additional features for this implementation to demonstrate exactly 
that. First we added a second heatmap (Texture) for the Clients’ Postal Codes, and we 
introduced an additional value being calculated over time, along side the heat value, 
consisting in the Total Value of  Sales over the Total Quantity. Introducing an additional, 
bigger (as we will show) heatmap shows how the reduction of  the overhead and OpenCL 
memory optimization features allow us to increase the information being displayed, and 
adding the Sales/Quantity value not only provides insightful information about Value paid 
per Quantity across the Country, but at the same time demonstrate how the flexibility of  
OpenCL allow us to perform this and other calculations, if  necessary, in real time with a 
small performance impact. 

When implementing the Heatmap using OpenCL, we didn’t want to touch the Geographic 
Heatmap Rendering (Ch. 5.3), as Textures were still the most adequate data structure to 
communicate the Heat Values to the rendering processes done using the Graphics API. 
Fortunately OpenGL/OpenCL APIs provide methods to share data structures between 
them, allowing us to handle all the operations related to the Heat Values with OpenCL 
Kernels and render the HeatTexture also using OpenCL, making the switching between 
implementations seamless. 

To accommodate the Heat Values, for Stores and now for Client Postal Codes also, we 
created two arrays of  32 bit floating point values, with three values per Item, refer to Figure 
25. The first value is directly equivalent to the valued saved in each pixel on the previous 
implementation (Ch. 5.4), decaying over time, and the second and third values contain the 
Total Paid Amount and Total Quantity of  Products respectively. These buffers will never be 
manipulated by the CPU directly. 
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We defined two pairs of  additional buffers, each pair consists of  a integer buffer and a float 
buffer. The integer buffer keeps indexes for Store and Postal Code locations (indexes) in the 
CLBufferStores and the CLBufferClients respectively. The float buffer contains the values 
of  “Sales Values” and Quantities directly related to the indexes in the indexes buffer. As we 
can see in Figure 26 we only need to upload four values per Sale. 

These buffers are created with the flag CL_MEM_ALLOC_HOST_PTR, so that the 
memory allocation of  the buffer (CPU memory) is done by OpenCL, which ensures the 
correct alignment of  the memory blocks that provide the best performance with OpenCL, 
and at the same time, this alignment enables real memory sharing on computers where GPU 
memory is shared with CPU, or best possible data transfer rate over PCI bus on computers 
with discrete GPUs. Manipulation of  these buffers must be done with care, following lock 
and release rules similar to those used for shared variables in multithread environments. 

We defined several Kernels to manipulate these buffers, performing the necessary 
calculations, namely a AddKernel, DecayKernel, PrintOutKernel and finally the 
GetTextureMaxKernel. Their names might point to their purpose but its important to 
understand how and when we use them. 

Like in the previous implementation, all kernels execute at least once every render cycle, in 
other words, each Frame. As a new render cycle starts the UploadVals buffer pairs are 
exchanged (double buffering), the pair that was receiving input values before is unmapped 
(released/ synchronized to Video Memory) and the other one is mapped to take its place. 

First in the Kernel execution sequence is the AddKernel, as we can see by following the 
source code in Source 5, the AddKernel performs three additions for both the 

Figure 25 - Data structures defined to use with our OpenCL Kernels.

Figure 26 - Structure of  the buffers used to upload Sales data to the Video Memory. 
These buffers will be input arguments of  the AddKernel.
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CLBufferClients and the CLBufferStores buffers, adding the Sale price value in the first two 
and the quantity in the third. The Sale price is added twice, once to keep track of  the Total 
Amount Paid and the other is the usual heatmap value subject to linear decay over time. 

Next the Decay kernel is executed, once for both the CLBufferClients and the 
CLBufferStores buffers. This Kernel’s simple task is to subtract a fraction, relative to the 
elapsed time, of  the first of  every three values. See Source 6 for the source code of  this 
Kernel. 

As before, we feed the GeoGauss Program (Ch. 5.3) Textures containing values, mapped in 
pixels color components, to be represented in the Geographic Heatmap. Previously we had 
one Texture for the Sales Heatmap, now we have an additional one for the Client Postal 
Code locations. The size of  both Textures is calculated as described in Chapter 5.4. Each of  
the Textures is generated through the execution of  PrintOutKernel, but only if  needed, if  

AddKernel
__kernel	  void	  add(__global	  float*	  inValues,	  __global	  int*	  inIndexes,__global	  float*	  CLBufferClients,__global	  
float*	  CLBufferStores,	  const	  int	  size_in)	  
{	  
	  	  	  	  	  
	  	  	  	  int	  global_index	  =	  get_global_id(0)*2;	  
	  	  	  	  int	  a	  =	  0;	  
	  	  	  	  if(global_index<size_in*2	  &&	  a<1){	  
	  	  	  	  	  	  	  	  	  //addition	  of	  values	  per	  Postal	  Code	  
	   	  atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3]),	  inValues[global_index]);	  
	  	  	  	  	  	  	  	  	  atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3+1]),	  inValues[global_index]);	  
	  	  	  	  	  	  	  	  	  atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3+2]),	  inValues[global_index+1]);	  

	  	  	  	  	  	  	  	  	  //addition	  of	  values	  per	  Store	  
	  	  	  	  	  	  	  	  	  atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3]),	  inValues[global_index]);	  
	  	  	  	  	  	  	  	  	  atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3+1]),	  inValues[global_index+]);	  
	  	  	  	  	  	  	  	  	  atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3+2]),	  inValues[global_index+1]);	  
	  	  	  	  	  	  	  	  	  a++;	  
	  	  	  	  	  	  	  	  	  global_index++;	  
	  	  	  	  }	  
}

Source 5 - The AddKernel source code. The Kernel takes as arguments, in order, the 
UploadVals float buffer, the UploadVals integer buffer, the per Postal Code heatmap 
values, the per Store heatmap values and finally the number of  Sales being added in this 
execution.

DecayKernel
__kernel	  void	  decay(global	  float*	  currentvals,	  const	  float	  decayamount,	  const	  int	  length)	  
{	  
	  	  	  	  int	  global_index	  =	  get_global_id(0)*4*3;	  
	  	  	  	  int	  a	  =	  0;	  
	  	  	  	  while	  (global_index	  <	  length	  &&	  a<4)	  {	  
	  	  	  	  	   float	  currentValue	  =	  currentvals[global_index];	  
	  	  	  	  	   float	  newValue	  =	  currentValue-‐(currentValue*0.3333*decayamount);	  
	   currentvals[global_index]	  =	  newValue	  <0	  ?	  0	  :	  newValue;	  
	   a++;	  
	   global_index	  +=	  3;	  
	  	  	  	  }	  
	  	  	  	  	  
}

Source 6 - The DecayKernel source code. The Kernel takes as arguments, in order, the 
buffer to be subject to the “decay”, the time passed since last execution (deltaTime) and 
the size of  the buffer.
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the corresponding heatmap visualization is enabled in the User Interface (UI), more about 
that in Chapter 5.8.3 regarding UI options. 

The PrintOutKernel, see Source 7, sets Texture colors in batches of  8 pixels per Work Item, 
allowing for a more effective use of  the GPUs caching optimization features. It uses 
argument cols to determine the width of  the Texture to be printed and maxval to keep inside 
the Value buffer where it is reading values from. As we intend to display not just the usual 
heatmap value but also the Sales/Quantity, we use an integer argument (qual), to decide 
which value to “print”. The actual division, of  the Sales Total over the Total Quantity, is 
done in “realtime” each time the Texture is generated, as we can see also in Source 7. 

The Heatmap Textures generated at this step are configured as to have full 32 bit floating 
point values for each of  the color components, and as such values saved in them are neither 
normalized nor clamped in any way. The same goes for the Geographic Heatmap Textures 
generated after execution of  the GeoGauss Program (Ch. 5.3), a 2D gaussian distribution is 
performed without normalization or clamping of  values. For that reason, after the 
execution(s) of  the PrintOutKernel, we immediately execute the GeoGauss Program, using 
the generated Heatmap Textures as input. When the GeoGauss Program execution(s) 
finishes we perform a search for the maximum value on the Geographic Heatmap 
Texture(s), with which we will perform normalization later (see Chapter 5.6), using the 
GetTextureMaxKernel. 

PrintOutKernel
__kernel	  void	  printout(__write_only	  image2d_t	  bmp,	  global	  float*	  currentvals,	  const	  int	  maxval,	  const	  int	  
cols,	  const	  int	  qual)	  
{	  
	  	  	  	  int	  idg	  =	  get_global_id(0)*8;	  
	  	  	  	  int	  x=0;	  int	  y=0;	  int	  a	  =	  0;	  

	  	  	  	  while	  (idg	  <	  maxval	  &&	  a<8)	  {	  
	  	  	  	  	  	  	  	  y	  =	  idg/cols;	  
	  	  	  	  	  	  	  	  x	  =	  idg%cols;	  

	  	  	  	  	  	  	  	  float	  valor	  =	  currentvals[idg*3];	  //usual	  heatmap	  value	  
	  	  	  	  	  	  	  	  if(qual==1){	  //change	  value	  to	  display	  
	  	  	  	  	  	  	  	  	  	  	  	  if(currentvals[idg*3+2]>0){	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  valor	  =	  currentvals[idg*3+1]/currentvals[idg*3+2];	  //calculate	  Sales/Quantity	  
	  	  	  	  	  	  	  	  	  	  	  	  }else{	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  valor=0;	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  }	  

	  	  	  	  	  	  	  	  float4	  val	  =	  (float4)(0.0f,	  0.0f,	  0.0f,	  0.0f);	  
	  	  	  	  	  	  	  	  if(valor>0){	  
	  	  	  	  	  	  	  	  	  	  	  	  float	  red	  =	  valor;	  
	  	  	  	  	  	  	  	  	  	  	  	  float	  blue	  =	  valor;	  
	  	  	  	  	   	  	  	  	  val	  =	  (float4)(red,	  0.0f,	  blue,	  min(red,blue));	  

	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  int2	  coords	  =	  (int2)(x,y);	  

	  	  	  	  	  	  	  	  write_imagef(bmp,	  coords,	  val);	  
	  	  	  	  	  	  	  	  a++;	  
	  	  	  	  	  	  	  	  idg	  +=	  1;	  
	  	  	  	  	  	  }	  
}

Source 7 - The PrintOutKernel source code. The Kernel takes as arguments, in order, the 
Texture where to save the values, the floating point buffer from where to read the values, 
the size of  the floating point buffer, the width of  the Texture in pixels and finally the 
choice of  value to be saved in the Texture.
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The GetTextureMaxKernel, see Source 8, uses a simple parallel reduction approach to make 
the most of  the GPU parallelization capabilities when searching the Texture Space for its 
maximum value. Bryan Catanzaro’s white paper, Catanzaro (2010) describes the 
implementation in great detail and provides comparative results with other methodologies, 
showing the performance advantages of  parallel reduction. 

First, each work item searches it’s assigned local space, a square of  localSearchSpaceSize pixels 
in side, and saves the maximum value found to local memory (scratch), Step 1 and 2 in Figure 
27. Then, in Step 3, the local memory space is divided by 2 rounding up on both dimensions 
giving us the offset vector (offsetX, offsetY). Then, only Work-items which indexes 
(IndexX, IndexY) fall in the NW quadrant, see Step 4, perform an additional search, 
comparing their own value (see dots in figure) with values in memory position derived from 
adding their Index vector with permutations of  the Offset vector (the arrows leaving the 
dots). During Step 4 the maximum values found by each of  the Work-items are saved in 
each’s position. Next, Steps 5 and 6 are in fact a repetition of  Steps 3 and 4, first the 
previous Offset vector is divided by two again (rounded up), delimiting the new search space 
and which Work-items do the search. 

GetTextureMaxKernel
__kernel	  void	  gettexturemax(__read_only	  image2d_t	  image1,	  __local	  float*	  scratch,	  __const	  int	  localSearchSpaceSize,	  __const	  
int	  texx,	  __const	  int	  texy,	  __global	  float*	  result)	  {	  

	  	  const	  sampler_t	  sampler	  =	  CLK_NORMALIZED_COORDS_FALSE	  |	  CLK_ADDRESS_CLAMP	  |	  CLK_FILTER_NEAREST;	  

	  	  int	  global_index_x	  =	  get_global_id(0)*localSearchSpaceSize;	  
	  	  int	  global_index_y	  =	  get_global_id(1)*localSearchSpaceSize;	  
	  	  float4	  pixel;	  
	  	  float	  accumulator	  =	  0;	  
	  	  //	  Loop	  sequentially	  over	  chunks	  of	  input	  vector	  
	  	  for	  (int	  xi=0;	  xi<localSearchSpaceSize;	  xi++){	  
	  	  	  	  for	  (int	  yi=0;	  yi<localSearchSpaceSize;	  yi++){	  
	  	  	  	  	  	  if(global_index_x<texx	  &&	  global_index_y<texy){	  
	  	  	  	  	  	  	  	  pixel	  =	  read_imagef(image1,	  sampler,	  (int2)(global_index_x,global_index_y));	  
	  	  	  	  	  	  	  	  accumulator	  =	  (accumulator	  >	  pixel.x)	  ?	  accumulator	  :	  pixel.x;	  
	  	  	  	  	  	  }	  
	  	  	  	  	  	  global_index_y++;	  
	  	  	  	  }	  
	  	  	  	  global_index_x++;	  
	  	  }	  

	  	  //	  Perform	  parallel	  reduction	  
	  	  int	  local_index_x	  =	  get_local_id(0);	  
	  	  int	  local_index_y	  =	  get_local_id(1);	  
	  	  scratch[local_index_y*get_local_size(0)	  +	  local_index_x]	  =	  accumulator;	  
	  	  barrier(CLK_LOCAL_MEM_FENCE);	  
	  	  int	  offsety	  =	  get_local_size(1)	  /	  2;	  
	  	  for(int	  offsetx	  =	  get_local_size(0)	  /	  2;	  offsetx	  >	  0;	  offsetx	  =	  offsetx	  /	  2,offsety	  =	  offsety	  /	  2)	  {	  
	  	  	  	  if	  (local_index_x	  <	  offsetx	  &&	  local_index_y	  <	  offsety)	  {	  
	  	  	  	  	  	  float	  other1	  =	  scratch[local_index_y*get_local_size(0)	  +	  local_index_x	  +	  offsetx];	  
	  	  	  	  	  	  float	  other2	  =	  scratch[(local_index_y	  +	  offsety)*get_local_size(0)	  +	  local_index_x];	  
	  	  	  	  	  	  float	  other3	  =	  scratch[(local_index_y	  +	  offsety)*get_local_size(0)	  +	  local_index_x	  +	  offsetx];	  
	  	  	  	  	  	  float	  mine	  =	  scratch[local_index_y*get_local_size(0)	  +	  local_index_x];	  
	  	  	  	  	  	  float	  max	  =	  (mine	  >	  other1)	  ?	  mine	  :	  other1;	  
	  	  	  	  	  	  max	  =	  (max	  >	  other2)	  ?	  max	  :	  other2;	  
	  	  	  	  	  	  max	  =	  (max	  >	  other3)	  ?	  max	  :	  other3;	  
	  	  	  	  	  	  scratch[local_index_y*get_local_size(0)	  +	  local_index_x]	  =	  max;	  
	  	  	  	  }	  
	  	  	  	  barrier(CLK_LOCAL_MEM_FENCE);	  
	  	  }	  
	  	  if	  (local_index_x	  ==	  0	  &&	  local_index_y	  ==	  0)	  {	  
	  	  	  	  result[get_group_id(1)*get_num_groups(0)+get_group_id(0)]	  =	  scratch[0];	  
	  	  }	  
}

Source 8 - The GetTextureMaxKernel source code. The Kernel takes as arguments, in 
order, the Texture from which we want to retrieve the maximum value, a temporary local 
memory buffer shared among Work-items, the initial search space dimension of  each 
Work Item, the width of  the Texture, the height of  the Texture and finally the floating 
point buffer where to save the results.

  51



Visualization Techniques for Big Data - Final Report

This method of  performing a maximum search is very effective, as Catanzaro (2010) work 
shows, yet, like he explain in his work, at each reduction step the SIMD occupancy for the 
next search is reduced by half, to a point where it becomes more effective, performance 
wise, to iterate through the final values using the CPU. The example in Figure 27 is just that, 
a figurative example of  the algorithm working. In the real implementation we adjusted by 
hand the best number of  reductions and consequently the size of  the Results buffer to be 
iterated by the CPU, in order to achieve the best balance. Also, these adjustments had to be 
done independently for the Stores Heatmap Texture and for the Postal Codes Heatmap 
Texture, due to their differences in size, 27x26 for Stores and 346x345 for Postal Codes. 

The calculated maximum value for each of  Geographic Heatmap Textures will be used to 
perform normalization of  each’s values during the mapping of  values to colors when 
rendering the textures to the actual Screen Buffer, as we will detail next. 

5.5.1. Optimization of  kernel execution 

Regarding the optimization of  kernel execution, we followed 2 different approaches, one for 
the AddKernel and another for all the reminding kernels. 

Kernels like the DecayKernel, the PrintOutKernel and the GetTextureMaxKernel, all act 
over a space that is static in size over time, and for which we know the size from start. As 
such we are able to use a process similar to the one exemplified in chapter 4.2 to determine 
the best global and local sizes when enqueueing each of  the kernels, as to make the best of  the 
GPU processing capabilities. All of  our kernels can only run after the previously has 
finished its work, as they operate on the same buffers, and as such, the process of  
determining the values was to query the API for the maximum permitted work group size 

Figure 27 - Example of  how parallel reduction works in the GetTextureMaxKernel. In 
this example the Black squares in Step 7 represent the final values returned by the Kernel 
execution that must be still iterated in the CPU to determine the actual maximum value.
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for each of  the kernels and use the next multiple of  that value, greater than the real global 
work dimensions, as our global size for the job and the maximum permitted work group size 
as our local size. Additionally, we fine tuned each kernel’s number of  operations performed 
per execution, controlled by variables inside each’s kernel code. 

Regarding the AddKernel, we also used the process described above to set the global size, yet, 
due to the nature of  the data being processed, the number of  items in each upload varies 
and, more importantly, sales registered on the same store and with the same client are usually 
in succession, as each of  the Client’s products are registered one after the other. Also, the 
number of  products per sale (and in succession) varies constantly. In terms of  the kernel 
operation, if  two work items have sale records regarding the same store and the same Client, 
one will have to wait for the other to perform its operation in order to gain access to the 
memory block being used, this escalates when increasingly more work items need to access 
the same memory block. 

To mitigate this problem we experimented with different numbers of  operations per work-
item (1, 3, 5, 10, 15), forcing the work-items to iterate over consecutive buffer elements. We 
hoped with this process to find a value more adequate than the others, yet our initial results 
showed an unquestionable increase when moving from 3 to 5, on a factor of  10x, but no 
increase what so ever, neither any advantage of  either of  the values 5, 10 and 15 over each 
other. The results we obtained greatly vary over the duration of  the visualization, in a way 
unrelated to the number of  uploaded sales (real global size), and varies also with data of  
different days, we believe the performance variance is related to the number of  consecutive 
sales with same store and client, yet we did not explore this further as the performance 
obtained while using a value of  5 or above is enough to meet our needs. 

We calculated time spent on kernel execution as the total time over the number of  items 
processed. The results obtained by values 5 and above varied from 859 nano seconds per 
item (std=260) to a peak of  159 nano seconds per item (std=27). The peak attained varied a 
few nano seconds for each of  the 3 best configurations. Theses averages were calculated 
from the time values obtained through the OpenCL API profiling tools, in batches of  200 
consecutive uploads at different times of  the day (animation time) and for data regarding 
different days. We collected the values at pre-programmed times in order to measure the 
execution over the exact same value sequences. 

5.6. Coloring Geographic Heatmaps 

So far, we only made a quick reference in Chapter 5.3 on how color mapping of  the values 
from the Geographic Heatmap Texture to the Screen Buffer is done. At that point we had 
implemented linear color mapping from the normalized value of  the Geographic Heatmap 
to a color mapping texture, presented in Figure 22 (left). 
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5.6.1. Color and perception 

Linear color mapping is vastly used in heatmap visualizations, and with the right choice of  
colors its able to highlight the different values effectively, as the work of  Ware (2012) 
describes. Yet, on animated “pixel” heatmaps, where items are discretized and consequently 
so are the boundaries of  each “zone”, this effectiveness is greater, when comparing with the 
results on animated heatmaps over continuous spaces (geographic heatmaps and similar) 
where fast variations create chaos and make the perceptibility of  “growing” and “shrinking” 
areas more difficult. Researchers sometimes chose to discretize the color space, like we saw 
with Scheepens (2010), creating plateaus of  values, similar to the plateaus between isolines. 

We implemented a similar coloring methodology for multiple reasons. First, even if  coloring 
by range reduces the precision in terms of  small differences between values, it improves the 
visual identification of  similar zones and their evolution with time. Second, as we have two 
Geographic Heatmaps that can be viewed one at a time or both at the same time, overlaid 
on top of  each other. Blending the linear colored heatmaps would introduce a new level of  
visual confusion. Third, and lastly, we also implemented methods for overlaying 
demographic information, Chapters 5.7 and 5.8, with one or both heatmaps at the same 
time. Controlling the number and what colors are overlaid is the only way for us to choose 
correct colors for the demographic layer in order to facilitate the reading of  information. 

Unfortunately, when coloring fragment by fragment, as we must when rendering using the 
GPU pipeline, discretizing the color space introduces aliasing, refer to Figure 28, that even if  
it doesn’t affect the visualization precision it does affect aesthetics, as Scheepens also shows. 

We implemented a Shader Program, named GeoHeatmapColoring Program, composed of  a 
Vertex and Fragment Shader, to render the values from the Geographic Heatmaps to the 
Screen Buffer by performing the correct color mapping. As we can see in Figure 29, our 
application renders information in layers onto the Screen Buffer, the GeoHeatmapColoring 
Program is used when rendering the two top layers.  

Figure 28 - Aliasing introduced by discretizing the colorspace.
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As we have two visualization modes for the geographic heatmaps, to show one or two 
heatmaps simultaneous, we implemented two different colors schemes also, one for each 
mode, refer to Figure 30. We used Uniform variables to instruct the Fragment Shader (FS) 
which color scheme to use. 

The colors we chose for each of  the heatmaps, when displaying both heatmaps 
simultaneously, were not picked randomly. We used a free Web application Paletton  to 10

construct a split-complementary color scheme, which is a variation of  the complementary 
color scheme, with three neutral pastel colors, refer to Figure 31 We then picked two of  the 
most complementary colors (on opposite sides of  the chromatic diagram), for Stores and 
Clients, Yellow and Blue respectively, and implemented a way to create the third. 

Figure 29 - Application rendering layers.

Figure 30 - Discrete color spaces used to color the Geographic Heatmaps when rendered 
to the Screen Buffer. The top is used when only one heatmap is rendered and the bottom 
is used when two heatmaps are rendered at the same time.

Figure 31 - The split-complementary color scheme we picked to color the heatmaps 
when visualized simultaneous.

 http://paletton.com10
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To create the third color of  the split-complementary color scheme, we implemented a 
tailored GL_BLEND configuration, see Source 9, that produces the mathematical function 
that having the picked Blue and Yellow colors as Source and Destination, returns the correct 
third color in the color scheme. Additionally it maintains the same color alpha value to 
integrate seamlessly with the other visualization elements. Refer to Figure 36 for the results 
produced by this configuration. 

The FS we implemented does more than just picking colors for fragments depending on 
which range the heatmap values fall in, it introduces transparency into the layers enabling 
visibility of  the information on bottom layers (Figure 29), and solves the aliasing introduced 
by the discretized color space as we will see next. 

5.6.2. Anti-aliasing 

To solve the aliasing problem we used a combination of  techniques to devise a method that 
scans the surrounding space of  each fragment in order to determine its proximity to the 
range’s “edge”, and mix colors of  different “plateaus” accordingly. Additionally, as we could 
calculate fragment distance to edges, we could also draw a line on the limits of  plateaus, 
allowing us to increase the inner plateau transparency without impacting the quick 
identification of  heat zones, refer to Figure 32 for an actual render using the described 
approach. 

To achieve this, that Figure 32 depicts, for each fragment we first determine the partial 
derivative of  the geographic heatmap texture space in x and y of  the Screen space, using 

Setup GL_BLEND

glEnable(GL_BLEND);	  
glBlendFuncSeparate(GL_ONE_MINUS_SRC_COLOR,	  GL_ONE_MINUS_DST_COLOR,	  GL_ONE,	  GL_ONE);	  
glBlendEquationSeparate(GL_MAX,	  GL_MAX);

Source 9 - GL_BLEND configuration used when rendering both Geographic Heatmaps 
at the same time.

Figure 32 - Anti-aliasing of  plateaus and a border line delimiting the different ranges.

�
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GLSL functions dFdx and dFdy. The resulting vector, lets us calculate the 
TextureCoordinates on the geographic heatmap texture space of  the surrounding pixels. We 
scan a maximum of  12 pixel neighbors, both at 2px and 1px (screen space) in distance, refer 
to Figure 33 for an illustration of  the process we are describing. First we scan the 4 furthest 
away pixels, 2px away from the current fragment in both x and y dimensions. If  this first 4 
scanned pixels are inside the same range of  values as the current fragment, then we stop our 
scanning of  surrounding pixels and color this fragment as completely inside the range of  
values (plateau). If  instead any of  the 4 scanned neighbors falls on a different range it means 
this fragment is near an edge, and as such we move on to scan the remaining 8 neighbors, 
stopping if  at one point we have found already 2 points in a different range and 2 points in 
the same range of  values as this fragment. If  when we finish scanning the neighbor pixels 
we have found these 2 points inside the range and 2 points outside the range, we use them in 
pairs ( Pair1(ouside1, inside1), Pair2(outside2, inside2) ) to interpolate points where the line 
segments intersect the threshold edge, ending up with 2 different points that lay on the edge. 
When we only have one point outside of  the range, we use that one in conjunction with one 
inside the range to interpolate a point on the edge, as before, and use 4 of  the neighbors 
inside the range to perform extrapolations and average these extrapolations in order to 
determine a second point on the edge. 

We then consider the edge as a line segment defined by the 2 calculated Points, and use that 
information to write the edge line equation in the vector form x = a + tn, where x is a 2D 
vector giving the two coordinate values of  any arbitrary point on the line, n is a 2D unit 
vector in the direction of  the line, a is a 2D vector giving two coordinate dimensions of  a 
particular point on the line, and t is a scalar, as the work of  Sunday (2001) shows. With the 
line in vector form we are able to calculate the Shortest Distance from the current fragment 
to the edge Line using Equation 8, where p is a 2D vector representing the Point position 
and the reminding variables are the same as in the description of  the vector form above. In 
Figure 34 we present a small illustration of  how the Equation works very helpful in 
understanding the formulation (source Wikipedia). 

Figure 33 - Illustration of  the Edge interpolation algorithm.
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Having determined if  the current fragment is or not near an edge, and if  it is, the distance to 
that edge, and also knowing that the distance is relative to screen space allows us to 
interpolate the correct color and the correct color’s alpha, according to the plots in Figure 
35, and according to the set Color scheme (Figure 30). We use GLSL functions mix and 
smothstep to perform this interpolation. 

As the interpolated edge is recalculated for each fragment being colored, the assumption of  
the edge as a straight line does not reflect onto the final rendering, as we can see in Figure 
36, where smooth curved lines appear. 

(8)
 

Figure 34 - Shortest Distance from point to line illustration (source Sunday (2001)).

Figure 35 - Variation of  color and the color’s alpha value near the interpolated edge in 
order to render the anti-aliased line.

Figure 36 - Variation of  color and the color’s alpha value near the interpolated edge in 
order to render the anti-aliased line. Notice the purple color in the center, result of  the 
blending configuration.
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5.7. Displaying Administrative and Demographic Information 

In Chapters 3.2.3 and 3.2.4 we talked about how important it is to contextualize the 
Geographic Heatmaps information within the actual locations being overlaid, and also 
described the data we collected of  both Administrative boundaries and Demographics to 
achieve that. Here we briefly describe how we display that information to the User and 
enable him to identify Administrative areas. 

5.7.1. Administrative Shapes and Boundaries 

First, regarding the Administrative Boundaries, from the whole country to the civil parishes 
(freguesias), we use the collected contour points for each area to create polygons that we are 
able to Triangulate using the Triangulation feature of  the OpenGL API that uses the 
Graphics Tessellator to perform the shape triangulation. With the shapes triangulated we are 
able to draw any of  the Administrative areas with any Shader Program to either color or 
texture those areas, refer to Figure 37 for an example. 

Additionally, still regarding the Civil Parishes shapes, we implemented a line drawing Shader 
Program, that we will call LineShader Program, composed of  a Vertex, Geometry and 

Figure 37 - On the left the Triangulated Country Shape rendered in grey color. On the 
right, many Civil Parishes (freguesias) on the Lisbon area rendered with different shades 
of  grey denoting their different populations.
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Fragment Shaders, that we use to render lines of  specified color and thickness. We use this 
Shader Program to draw Administrative areas outlines, both to differentiate different areas 
but also to highlight areas on Mouse Over. The Vertices composing each contour are drawn 
with GL_LINE_STRIP_ADJACENCY draw mode, so that for each line segment to be 
generated by the Geometry Shader it receives 4 Vertices, the one that precedes the start of  
the line segment, the one that determines the start of  the line segment, the one that 
determines the end of  the line segment and the one comes after the end of  the line 
segment. This is a usual approach to the generation of  lines using the GS, providing the 
necessary information on each execution of  the GS, to calculate the angles between each 
end of  the of  the line segments with other adjacent line segments and with that information 
create a seamless connection between segments on either ends. Refer to Figure 38 for a 
rough illustration of  the process. 

5.7.2. Mouse Over Location Identification 

We described in Chapter 5.2.3 how we perform un-projection from mouse coordinates in 
screen space to a Ray in World Space. We then use the calculated Ray do determine if  the 
Mouse Position hovers over any significant object in the Scene, in other words we test the 
Ray for collisions with the geometry being displayed (rendered) to the Screen. 

To perform collision detection with every Triangle being displayed is extremely expensive 
computational wise, as we render hundreds of  thousands of  triangles at each Render cycle. 
That sort of  collision detection would have to be performed in the GPU, and while several 
techniques exist for that approach, all of  them involve considerable computational resources 
of  both the GPU to perform the collision detection and the CPU while reading results from 
the GPU. 

Another approach, which we used and is also widely used on performance critical 
applications (Video Games), consists in calculating, at loading time, Bounding Boxes (6 
rectangles) for 3D objects and Bounding Rectangles facing the camera for 2D shapes, and 
calculate the collision detection of  the Ray against the Object’s delimiting rectangles. 

Figure 38 - The line generation process implemented through a Geometry Shader. Notice 
how the line segments caps are shaped to close the corners when connected to another 
line segment, this is only possible because the Geometry Shader has the information 
regarding the adjacent segments.
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Our implementation only contains 2D shapes, and as such each Object has a corresponding 
Bounding Rectangle, additionally every group of  Objects, the Civil Parishes Shapes for 
instance, have the same z value (height). So we first calculate the collision point of  the Ray 
with the plane where the shapes reside, obtaining a 2D coordinate, and then test the 
Bounding Rectangles to determine whether they contain the Collision Point or not. 
Additionally, to avoid having to test every single Bounding Rectangle (hundreds in the case 
of  Civil Parishes) for Collision, we implemented a Quadtree of  Bounding Rectangles to 
subdivide the World Space into smaller chunks at each Quadtree sub-level. The Quadtree, 
when queried with a Position, will test only the Bounding Rectangles contained in chunks of  
space which contain that given Position. With this approach we are able to perform 
Collision detection entirely on the CPU with residual impact on the global performance. 

The Mouse Over functionality is used both for the interaction with the User Interface and 
the identification of  Civil Parishes when hovering over the Country’s map, displaying both 
the Civil Parish Name and the highlight of  its boundaries for easier identification. 

In our implementation we opted to only display the locations Name on Mouse Over to 
avoid obstructing possibly important information on the heatmap(s). 

5.7.3. Displaying Demographic Data 

In Chapter 5.7.1 we described how we triangulate the administrative zones’ shapes so we can 
render their geometry with any applicable Shader Program. (Applicable because it would 
make no sense to render these triangles, properly ordered to render as GL_TRIANGLES, 
with the LineShader Program also described in 5.7.1.) The geometry information for each 
Civil Parish is kept in same Video Memory buffer, but we keep pointers to each of  the 
shapes position in that buffer so we can both draw them individually or all in one call. This 
approach, regarding Video Memory buffers, was used whenever there were many related 
objects which together, total thousands of  Vertices, the Civil Parishes Contours is another 
example. 

To display the Demographic data using the Civil Parishes and the Country geometry we 
implemented 3 different Shaders Programs, one for the Country’s geometry, named 
StarsShader, that while with some inaccuracy was an interesting visual and aesthetic 
experiment, and two for the Civil Parishes geometry, that consists in our approach for a 
more generic model able to represent any Demographic variable. The difference between 
these two lies in the coloring method, a comparison experiment, and we named them 
GreyShader and ChoroplethShader. 
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The StarsShader, uses the data relative to Building locations extracted from OpenStreetMaps 
and the Postal Code locations, described in 3.2.4, as representative approximation of  the 
Country’s Population and draws them with a slight distortion and halo effect similar to the 
visual effect produced when looking at a star in the night sky. Experiments of  rendering 
locations as dots produced aesthetic un-appealing results. To achieve this the StarShader is 
similar to the GeoGauss Program in that the Vertices are drawn as GL_POINTS and a 
geometry shader generates two triangles, composing a Quad, that are rasterized and then 
colored in the Fragment Shader (FS). The FS in the StarsShader uses the distance to the 
center of  the TextureCoordinates Space of  the Quad to calculate the appropriate color and 
transparency for each fragment according to the equation plotted in Figure 39 (left). On the 
right, also in Figure 39, we present a zoomed in screenshot of  the visual effect produced. 
Notice how particularly the halo is noticeable in both levels of  zoom.  

The GreyShader and the ChoroplethShader are both used to represent the same information 
by coloring each Civil Parish (freguesia) geometry differently, according to each Civil Parish 
“score” in a determined Demographic variable at a time. In our experiments we used both 
Population per Civil Parish and Population’s Purchase Power per Civil Parish. The difference 
between the two Shader Programs is that one, GreyShader, colors the Civil Parish geometry 
with shades of  grey, and the other, ChoroplethShader, uses a procedural texture generation 
algorithm to paint the geometry with orthogonal lines with varying distances as described in 
the work of  Tobler (1973) on choropleth maps. With smaller distances the generated 
textures appear darker and, with larger distances, brighter. 

The GreyShader implementation is straight forward, we use Uniforms (also in the 
ChoroplethShader) to configure the shader to render the correct darker or brighter tone. 
The VS transforms the vertices as usual using the MVP and the FS colors the fragments 
with the correct shade of  grey. The only particularity of  the implementation is the mapping 
of  the normalized values to represent (0 to 1) not linearly in the white to black range, but 

Figure 39 - On the left a plot of  the mathematical equation used to color the Quads in 
the Fragment Shader of  the StarsShader Program. On the right the rendering result using 
that equation.
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logarithmic to better fit the human perception of  the difference between of  shades which if  
logarithmic also, see Tobler (2973). Refer to Figure 40 (left) for an example render using this 
shader. 

The procedural generation of  the orthogonal lines in the ChoroplethShader FS uses a 
similar implementation to those of  procedural generation of  anti-aliased brick patterns, see 
Ebert (2003), without the offset every odd row and with bricks having a square shape. We 
use the mortar size to reduce the distance between lines, and consequently produce a darker 
texture as needed. Figure 40 right shows an example of  the effect achieved using this 
texturing procedure. 

In Figure 40 we can also notice the usage of  the line generation method described in 5.7.1. 
The thickness of  these lines varies when the User zooms the visualization in and out, in 
order to maintain the visibility of  Civil Parishes Boundaries without obstructing the color of  
texturing applied. The drawing of  Civil Parishes Boundaries also serves the double purpose 
of  covering the visible seams introduced by the optimization of  the shapes done outside of  
the application. 

Another important implementation step taken to improve the application’s performance, 
derived from the fact that the Administrative and Demographic information is static in time, 
was to, instead of  drawing all the Boundaries and Administrative information directly to the 
Screen Buffer every frame, we do a pre-render into a Texture as FBO, that is as large as the 
Screen Space, and then draw this Texture onto the Screen Buffer. We still have to draw the 
Texture onto the Screen Buffer at every frame, but the pre-render into the Texture, which 
actually needs to render all the described geometries, is only rendered whenever the Camera 
is panned or the Zoom factor changes, drastically improving performance. 

Figure 40 - Both left and right contain the same exact area representing the same exact 
values. On the left the GreyShader was used and on the right the ChoroplethShader.
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5.8. Miscellaneous Features 

In these Miscellaneous features we include not all, but the most relevant “small” features 
which help make the whole visualization application more complete. By referencing them as 
small of  miscellaneous we by no means intend to diminish their importance. 

5.8.1. Filtering Stores 

Giving the User the ability to filter Sales records from specific Stores in or out of  the 
visualization is a critical feature to support the analysis of  the data. We further detail and  
provide a practical example showing the importance of  this feature in Chapter 6.2.2, 
regarding Results. 

To implement this feature we use an Hashmap that gets populated as the User selects 
different Stores using the User Interface. The Hashmap starts empty, instead of  full, which 
is equivalent to the SHOW_ALL state. The Hashmap contents are checked in the CPU, and 
the actual filtering occurs as records are read from the data stream, Sale records are only 
accepted and read if  either the Hashmap is empty or the Store Id is contained in the 
Hashmap. 

The reasoning behind this approach is that when the User wants to analyze a group of  
Stores, it usually consists of  a small group or even only one Store, keeping the Hashmap 
with few items and consequently fast search times. The User is still allowed to filter in and 
out as many Stores as he needs, and this won’t have a great impact on the search times due 
to the number os Stores, but we sought to improve the overall performance wherever we 
can. 

5.8.2. Screen Capture and Video Recording 

Other important features in any application which’s purpose is to facilitate exploratory data 
analysis through information visualization, is the ability to save the commonly called Screen 
Shots, by capturing the contents of  the application’s window and write them to disk as 
Images, and also, the ability to record Movie Clips, capturing heatmap animation segments 
to be shared, presented or further analyzed without the necessity of  rerunning the 
application. 

To implement these features we use the OpenGL API function glReadPixels to copy the 
contents of  the Screen Buffer in Video Memory to a floating point buffer in CPU Memory.  
We then decode the color components for each pixel and write them to a PNG file on disk. 
Performing this process significantly impacts performance, this is particularly noticeable 
when recording a movie clip where we perform the memory copy every frame. 

With the purpose of  minimizing the performance impact and produce a good quality and 
high frame rate video we made alterations to how time is tracked. Usually animations and 
animation elapsed time is calculated using the time elapsed since last frame, usually called 
deltaTime. For instance, by multiplying the deltaTime by the animations minutes per second 
rate we know how much time the animation must advance at every frame. When the User 
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starts Video Recording, we change to another usual method of  handling elapsed time in 
similar applications, a fixed deltaTime, more precisely the application assumes at every frame 
that the elapsed time since the last frame was 1/30 of  a second. 

The disadvantage of  using a fixed deltaTime, in our application, is that as the application 
doesn't run at constant 30 frames per second, the animation will be slower than usual as the 
User views it in real time when the performance goes below the 30 fps, and faster than usual 
when performance is above the 30 fps. And while we can solve the speeding up of  the 
animation by switching from fixed deltaTime to the real deltaTime whenever the application 
is “ahead” and skipping saving to disk more frames than the specific frame every 1/30 of  a 
second. 

The main advantages of  using the fixed deltaTime are the reproducibility of  the same 
animations in any computer giving the same dataset, and the assurance of  a completely fluid, 
30 fps video with the correct minutes per second rate of  animation. 

The images used in this document were created using these features. Additionally every 
video we recorded to present alongside this document were also created using these features, 
but here with a small remark. In our recorded videos the User interface is visible, as we want 
to highlight the application it self  and not the data being visualized. In the final version of  
the application, to be used as an analysis tool, the interface’s menu bar and its children are 
never visible, as we render them to the Screen Buffer only after its contents have been 
copied to CPU memory. 

5.8.3. User Interface 

Noticeable through out Chapter 6, in the screen shots that display the complete application 
window, is the menu bar at the top. We chose to implement a simple menu bar inside the 
application window in an effort to avoid, as much as possible, the introduction of  obstacles 
that for being Operating System (OS) specific, difficult the portability of  the application 
between different platforms and operating systems. 

Our implementation of  the menu bar behaves much the same way as a usual menu bar, with 
mouse over interaction. And although it doesn't provide the same flexibility as the Mac OS 
or Windows OS menu bars, it enables us to easily create and link action listeners for clicking 
and toggling events. 
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6. Results 

In this Chapter we present the results obtained with the implemented features. Every 
performance results presented in this Chapter were obtained using a MacBook Pro Later 
2013. We chose this hardware as our test base for being in the lower range of  the currently 
available GPUs. It’s most relevant specs are the 2.4GHz dual-core Intel Core i5 processor, 
8GB of  1600MHz DDR3L onboard memory, Intel Iris 5100 integrated GPU and 256Gb 
SSD drive. 

Images presented in this chapter were obtained with our screen capture feature implemented 
within the application. We save the image data to the disk in PNG format with the best 
quality possible, yet, when visualizing the images produced, we feel that they still don't 
transmit the actual visual quality obtained when visualizing the actual application running 
and being displayed on a high pixel density screen, or retina. 

We start off  by analyzing our implemented solution for the aliasing problem introduced 
during the coloring of  the Geographic Heatmap. Later we test the implemented features as a 
whole, by using them in performing a small exploratory analysis and also visualize the 
impact of  a specific event, the opening of  a new Store. Finally we show the results obtained 
by switching to our second tracked variable, which displays the Total Value of  Sales over the 
Total Quantity of  Products, described in Chapter 5.5. 

6.1. Anti-aliasing and Geographic Heatmap Coloring 

In Chapter 5.6 we described how we color the heatmaps using a discrete color map, and how 
we implemented an anti-aliasing technique in order to remove the aliasing introduced by that 
color mapping approach. 

In Figure 41, we present two magnified images of  similar lines, so we can identify individual 
pixels, and we can clearly observe the difference between an aliased and an anti-aliased line. 
In the anti-aliased line notice how the color of  the line performs a harder transition when 
the line is straighter and a softer transition when the line starts to curve, as to produce a 
visually smoother line. 

Figure 41 - Aliased line on the left, magnified. On the right an antialiased line obtained 
with our implemented algorithm, also magnified.
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To help validate our anti-aliasing solution, we used Adobe Photoshop to draw anti-aliased 
lines, similar in shape to a group of  examples we picked for comparison. To use Photoshop 
to draw the anti-aliased lines, we first constructed a path using the Pen tool, and then we 
Stroke the path (raster) using a smooth 3px wide Brush. 

Figures 42, 43, 44 and 45 present the result obtained, putting side by side curves rendered by 
our application (colored backgrounds) and smooth lines rasterized by Photoshop. We 
present the images magnified so we can compare the how the blending of  colors is 
performed per pixel, as its distance to the “middle” of  the line increases. 

As we can observe by the results our algorithm performed as expected, creating similar color 
blending to smooth the line as the ones from Photoshop. In our opinion, the pairs in 
Figures 42, 43 and 44 are particularly similar and is only on the pair in Figure 45, the bottom 
part of  the line segment, that we find some discrepancy. 

The lines are continuous and form closed shapes. Any of  the small discrepancies, like the 
one in Figure 45, are too small to be noticeable and are minimized by the surrounding pixels 
correct blending and by constant changing of  the shapes with time. We consider them small 
discrepancies when considering that the lines rendered by our application are the result of  a 
combination of  the per pixel blending of  colors, which is based the pixel's distance to an 
also per pixel estimated straight line segment. 

Figure 42 - Comparison between vertical curves. On the left a smooth line rendered by 
our application, and on the right a smooth line rasterized with Adobe Photoshop.

Figure 43 - Comparison between smooth horizontal curves. On the bottom a smooth 
line rendered by our application, and on top a smooth line rasterized with Adobe 
Photoshop.
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In Figure 46 we present an unaltered screen capture performed with our application where 
we can see the transparent plateaus and the smooth anti-aliased lines resultant of  our 
heatmap coloring shader. In this example we have enabled only the Clients Geographic 
Heatmap, thus the presented colors for the plateaus. Notice how the lines help define the 
plateaus and the geographic areas they span over. Also, particularly in the bigger red area, 
notice how we can relate the higher value areas of  the heatmap with the high population in 
the Civil Parishes “underneath”, and how the curved red area almost seems to define a 
contour around those Civil Parishes. The identification of  these relations is possible only 
due to the balance of  the color transparency to achieve the correct blending, in conjunction 
with the plateaus borderline with helps the recognition of  shapes. 

Figure 44 - Comparison between almost straight curves. On the left a smooth line 
rendered by our application, and on the right a smooth line rasterized with Adobe 
Photoshop.

Figure 45 - Comparison between tight curves. On the left a smooth line rendered by our 
application, and on the right a smooth line rasterized with Adobe Photoshop.
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Concerning the visualization of  both heatmaps simultaneously, in Chapter 5.6.1 we 
described how we picked a split-complementary color scheme, handpicked, and devised a 
GL_BLEND configuration that when the two colors, chosen to color the Clients and Stores 
heatmaps, would overlap, the blending process would return the third color from that same 
color scheme. By observing Figure 47, and Figure 31 from Chapter 5.6.1 to freshen the 
memory, we see that the GL_BLEND configuration worked as expected. Also, the strong 
visual contrast typical of  split-complementary color schemes is also noticeable. We can 
precisely distinguish the Client heatmap, the Stores heatmap and the overlapping areas. 

Figure 46 - Client Geographic Heatmap drawn with plateau transparency and anti-aliased 
lines. The shaded shapes seen through the heatmap are the Civil Parishes colored 
according to their populations (not normalized).

Figure 47 - Both Stores and Clients Geographic Heatmaps overlaid.
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6.1.1. Performance Considerations 

Another important aspect we have to take into consideration regarding this rendering 
approach is its impact on performance. To test this we ran visualizations with fixed 
deltaTime in our update and of  the same set of  Sales records, this way guaranteeing the 
reproducibility of  exactly the same animation. During each of  the visualizations we  
changed the Shader performing the coloring of  the geographic heatmaps, and measured the 
time spent per frame during a span of  2000 frames and calculated the average number of  
frames per second. 

As we can see in Table 1, with the Just Scan method being the one where there is no anti-
aliasing or even discretization of  the color map, the performance impact on the average 
frame rate, with our solution, is of  approximately 1 frame per second. 

Table 1 - Measurement of  the impact our geographic heatmap coloring and anti-aliasing 
algorithms, had on performance. Values are in Frames Per Second, the bigger the better. 

6.2. Identification and Confirmation of  Events 

Although performing the actual visual exploration of  the dataset is not the focus of  this 
Thesis, as we are developing an application that Users will use to perform that data 
exploration, it is important to assure that the implemented features that we expect will help 
in that task, effectively do so. 

To test this we performed visual exploration of  a handful of  days, using the our application, 
with the objective of  identifying previously unknown relevant information and also to 
visualize the effects of  a known event. 

Just Scan Anti-aliasing + Plateau Contours

Average STD Average STD

One Heatmap 18.162033 3.608996 17.277062 3.733841

Two Heatmaps 13.079525 2.782339 12.869658 2.887267
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6.2.1. Distant Clients 

During our exploratory analysis, even if  short, we noticed a particular phenomena that 
occurs every day in the least populated areas of  the Country. We called this phenomena the 
Distant Clients, as it consists in population of  isolated areas that by having no other option 
or by choice, travel considerable distances to purchase their products. 

By visualizing both Stores and Clients heatmaps at the same time, refer to Figure 48, we can 
clearly identify patches of  Clients (in blue) without a Store nearby (yellow). Particularly in 
the top image we can see how the Store “bubble” near the center (City Beja), overlaps 
patches of  the Client Heatmap (in purple) that are of  sizes similar the to the ones found in 
the isolated areas. 

Figure 48 - Examples of  screen captures depicting Clients who have to travel far to 
purchase their products. On top an overview of  the Southern area of  Portugal. Below is 
the Geographic area around the City Viseu.
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Having the ability to view both heatmaps at the same time and have the areas where they 
overlap highlighted made the phenomena “stand out”, supporting its identification. 

6.2.2. Store Opening 

As mentioned before, we also tested our application by using it to visualize the effects of  a 
known event, more precisely we chose the before and after the opening of  a new Store. 

In Figure 49 we can see that this southern least populated area of  the country has few 
Stores, yet we can see that are Clients still make the effort of  traveling to purchase in the 
available Stores. Particularly interesting also is that if  we look closely at the population 
shades “below” the heatmap for the whole area, we notice that the zone where the new 
Store is opening is the darkest (more population) of  all the zones that don’t have a Store 
already. Pointing us to one of  the probable reasons of  why that location was chosen. And 
showing how more similar locations can be identified by using the same process. 

When the Store opens, Figure 50, we can notice the appearance of  additional client patches, 
near the new Store's location, indicating that Clients might have shifted from stores of  other 
competing Brands to this new Store. 

Figure 49 - Picture displaying Sales distribution near the days peak, the day before a new 
Store opens in the center of  the red circle.
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Using just an overview of  all the Sales is not enough to visualize the impact of  the new 
Store on the opening day. Isolating heatmaps and filtering Stores helps to view the real 
affected areas. 

In Figure 51 for instance, by visualizing only the Stores heatmap both the day before and the 
day of  the opening of  the new Store, we can clearly view how the new Store affected the 
balance between Stores in the area. The new Store takes a significant cut of  the Sales at that 
moment in time, lowering the overall sales in those stores. Notice that although it seems that 
the lower image presents higher values, the value for each color as we can see in the legend 
are quite different. If  we carefully analyze the legend we notice that values in both days are 
of  the same magnitude approximately. 

Figure 50 - Picture displaying Sales distribution near the days peak, the day a new Store 
opened (middle left yellow bubble).
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This can be confirmed additionally by observing both images in Figure 52, both the more 
local (zoomed in) area around the Store (on the left) and the overview of  the southern half  
of  the country. We used our filtering feature to visualize only information relative to Sales 
occurring in the new Store, and by displaying only the Clients heatmap we can identify 
exactly where the people buying at the Store live. And as we can observe, most of  the Sales 
are to Clients who reside nearby, which makes sense as the Store is intended to serve that 
local area. Yet we can also identify Clients from more distant location who where at or 
traveled to that location on that day. 

Figure 51 - Stores heatmap the day before (top) and the opening day of  the new Store 
(bottom).
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6.3. Demographic Visualization Modes 

As described in Chapter 5.7.3 we implemented more than one way of  displaying the 
Demographic information. One of  those implementations, StarsShader, is more of  an 
aesthetic experiment with the purpose of  approximating the distribution of  the real 
population over the Country. And the other implementation, is a more generic and accurate 
approach of  displaying any demographic variable as choropleth maps either greyscale or 
procedural textures. 

Figure 52 - Clients heatmap resultant of  filtering out all other Stores except for the new 
one. On the bottom an overview of  the whole south half  of  the Country, and on top a 
more local visualization, spanning the country’s width.
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We will first analyze the StarsShader results in terms of  its accuracy to represent the most 
significant higher density populated areas, and also how aesthetics match our expectations. 
Later we compare the results of  both methods used for coloring the choropleth maps, and 
finally analyze the performance impact of  each of  the Demographic representations. 

6.3.1. StarsShader 

The extra step of  rendering the points as Quads so we can make them appear “fuzzy”, also 
randomly varying the generated Quads sizes, produces a more visual appealing image than 
simply drawing them as black dots (disks). Yet, as visual appealing as it might be, it is crucial 
to be used as a reliable tool, that the visual artifacts produced represent a good 
approximation of  the population for each geographic area, particularly in cities and towns. 

We already knew, from initial experiments, that major cities are identifiable, as they tend to 
have the larges concentration of  building and also more Postal Codes per Square Km. To 
analyze areas outside the major cites we used the choropleth maps generated for the 
Demographic variable Population, which we know to have accurate data, and overlaid it over 
the StarsShader results to see if  we find correlation between the Points in it and the shades 
of  grey of  the choropleth map. 

We performed this analysis for the whole Country but only present here the most relevant 
results from the Porto and Lisbon areas. 

First, in Figure 53, we can observer that in the Porto metropolitan area, even if  the 
correlation from point density and the greyscale is not perfect, is a close approximation of  
the areas where Population is most concentrated. Also, notice the three smaller green circles 
on top, that highlight areas with different shades of  grey denoting different population and 
also a similar variation in the number of  points and their density. On the negative side, we 
can see that all the red circles denote areas where the number and density of  Points is too 
great when compared with the shades of  grey of  the same areas, and also, within the yellow 
circles we can observe that the shade of  grey is darker than in the surrounding areas but still, 
the number and density of  Points seem exaggerated for those area’s Populations. 
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In Figure 54 we present the same type of  analysis but this time for the Lisbon area. The 
three leftmost green circles, as in Porto area, represent the greater metropolitan areas, and as 
such present good results, as we already expected. But, also on the positive side, the areas 
within the reminding green circles presents small accumulation of  dots in number and sizes 
that seem to correctly relate with the corresponding shades of  grey. One could even ask if  
those points are not more accurate representations of  where within the Civil Parishes 
(freguesias) those people actually live, against the choropleth representation that shades the 
whole Civil Parish shape with the same shade of  grey. 

Unfortunately, still in Figure 54, we can find not only the same types of  uncorrelated 
distributions of  points over areas that in reality have small populations, see the Top two 
yellow circles and the two smaller red circles, but also an additional type, where the shade of  
grey appears to indicate more population than the one the points within it convene, see the 
larger red circle. 

Figure 53 - Porto City area map with an overlay of  the StarsShader result map, with 
increased contrast, brightness and transparency, over the choropleth Population map 
colored with shades of  grey. The Green, Yellow and Red circles represent Good, Median 
and Bad correlation points. Only the most relevant were highlighted.
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6.3.2. Choropleth Maps Comparison 

Even if  Choropleth Maps created with orthogonal lines varying in distance is something 
back from the time of  Plot Printers, due to the procedural texture generation performance 
attainable now-a-days, we decided to implement it alongside the more usual greyscale 
coloring methods to perform comparisons. 

In Figure 55, representing Population of  Civil Parishes in the Lisbon area, we can see that 
both methods produce almost identical results, in terms of  perceived information. If  we 
look closely at the more populated areas with numerous small Civil Parishes (in geographic 
space), in the top map, we notice that we can identify multiple different shades of  grey, and 
if  we analyze the exact same Civil Parishes in the Procedural version we notice that the 
variation of  distance between lines from civil parish to civil parish is also differentiable. Yet, 
if  we look closely at the right side of  both maps, particularly the brighter areas, we will 
notice in the greyscale implementation that some Civil Parishes have different Populations 
than others, yet, we can see that in the Procedural version they are indistinguishable. 

Figure 54 - Lisbon City area map with an overlay of  the StarsShader result map, with 
increased contrast, brightness and transparency, over the choropleth Population map 
colored with shades of  grey. The Green, Yellow and Red circles represent Good, Median 
and Bad correlation points. Only the most relevant were highlighted.
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This problem in differentiating areas with low values of  the variable being represented is 
more noticeable in the least populated areas, refer to Figure 56. This disadvantage, or 
problem, can be an advantage if  what we want is to highlight and differentiate only higher 
values. Yet, as we will see, this is not the only problem affecting this implementation. 

In Figure 57, representing Purchasing Power Score of  the Population per Civil Parish, which 
in contrast to the Population per Civil Parish, have very little variation from area to area, we 
can see that the Procedural Texturing approach creates a confusing surface, due to the high 
number of  lines, with multiple different offsets and all with distances between lines in 
similar ranges of  the scale. 

Figure 55 - Comparison between greyscale coloring (top) and procedural texture 
generation methods when representing Population of  Civil Parishes in the Lisbon area.

  80



Visualization Techniques for Big Data - Final Report

Not mentioned so far, but as we mentioned in the implementation of  the GreyShader, the 
greyscale we used to map the values (0-1) was logarithmic, as to give the Human User the 
most correct relation between tones and values, possible. The work of  Tobler (1973), which 
motivated us to implement the Procedural version follows the same principle, and we can 

Figure 56 - Low populated areas are indistinguishable from each other using the 
Procedural Texture Generation method to color the Choropleth map.

Figure 57 - Visual confusion of  the Procedural implementation (bottom) when compared 
with the more appealing greyscale coloring (top).
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confirm this by analyzing Figures 55 and 57, and observe how the perceived darkness or 
brightness of  the same areas in both implementations appears the same. 

This effect is best observed in the zoomed out Country view presented in Figure 58, where 
by zooming out and consequently pulling the procedural generated lines closer, we get 
almost identical darkness and brightness tone areas. 

Finally, as we can observe in many of  the application’s screen captured images shown so far, 
whenever the images depict any of  the geographic heatmaps with the population per civil 
parish represented in shades of  grey underneath, it is possible to differentiate the 
populations through the transparency of  the heatmaps. 

6.3.3. Performance Considerations 

To compare the performance of  the different Demographic implementation we devise a test 
in wish the geographic heatmaps were disabled and no data was being inputed, as to 
minimize the influence from other application components. Like before, each of  the values 
presented was calculated from measured times spent per frame during a span of  2000 
frames. 

Regarding the performance of  each of  the Demographic representation implementations, 
we can see by the results presented in Table 2, that the differences between them are almost 
negligible, and not perceptible by the User. 

Figure 58 - Zoomed out comparison of  the greyscale and procedural implementations of  
the Choropleth map.
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Table 2 - Performance results for each of  the different demographic visualization modes. 
Values are in Frames Per Second, the bigger the better. 

6.4. Sales and Sales over Quantity 

When the User selects the Sales over Quantity variable, to replace the default heatmap 
visualization, the GL_BLEND function used to blend values of  different clients and stores 
is GL_MAX instead of  the GL_ADD. We expected this to create a very dim value 
representation when compared with the normal geographical heatmap, yet we expect that 
due to normalization we are still able to differentiate zones where clients pay more, in 
general, per unit of  bought products. 

Although we didn’t use this feature to perform any type of  analysis, we present a couple of  
screen captures of  the obtained results, Figures 59 and 60. Figure 59 shows an overview of  
the northern part of  the Country, and Figure 60 of  the southern part of  the Country. 

Stars Greyscale Procedural

Average STD Average STD Average STD

zoomed out 30.951275 4.360317 31.176904 3.590133 31.254867 3.617087

zoomed in 12.673956 0.976230 14.223831 1.490249 14.048597 1.539867

Figure 59 - Visual representation of  the Sale Value over Quantity variable’s distribution 
over the northern part of  the Country.
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Figure 60 - Visual representation of  the Sale Value over Quantity variable’s distribution 
over the southern part of  the Country.
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7. Discussion and conclusions 

In this Thesis we presented different methods of  how researchers can make use of  the 
available processing power in any nowadays laptop and desktop computers. By using the 
OpenGL graphics pipeline to perform simple operations, or the more general purpose 
programing model of  OpenCL, that allows for high parallelization of  programs and high 
programming flexibility. Additionally we showed how using OpenCL/OpenGL 
interoperability removes the necessity for additional data transfers from the GPU (OpenCL) 
to the CPU and back again from the CPU to the GPU (OpenGL), for rendering purposes. 

Choosing a lower end GPU as our test platform, the results we achieved with it, show how 
this parallel processing power is widely spread across todays hardware, from tablets to 
desktop computers. 

Switching to the OpenCL API to perform the computing steps, allowed to add additional 
information without impacting performance. Not only we were able to additionally track 
values for Clients, more numerous than the Stores (709 to ≈180000), but we were also able 
to track an additional variable, marginally more complex, the Sales Values or the Quantity of  
Products for both Stores and Clients. Hoping that this demonstrates the referenced 
flexibility of  OpenCL. 

We also implemented an anti-aliasing algorithm, that results show it’s working as expected , 11

with a negligible impact on performance. The purpose of  the algorithm was to enhance the 
visual quality of  the representation and also improve the recognition of  shapes. With it, we 
attempted to demonstrate how researchers can use modern rendering APIs, OpenGL in our 
case, to produce pixel perfect representation of  elements, comparable to those produced by 
more complex software development kits aimed at vector art representations. 

Finally, we showed public and private, free of  charge, services that enable anyone to gather 
large and diverse geographical information, and then demonstrated methods of  displaying it 
using OpenGL, and integrate it with the geographical heatmap visualization model. 

Regarding our implementation as a software product, we have fulfilled the defined objectives 
and, as we seen in the results obtained, we were also able to meet the requirements set, 
described in Chapter 1.3.1. 

7.1. Future Work 

During our implementation process, there were, at multiple points, too many different paths 
of  implementation and optimization for us to explore them all. Researchers present multiple 
and diverse interesting techniques that we could had experimented with. 

 In fact the results exceeded our expectations, as we expected more artifact or broken lines.11
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Additionally, the work we done as a whole, and for some of  the problems we encountered, 
we formulated possible experiments that could constitute independent research projects on 
their own. 

7.1.2. Application improvements 

Optimization is a very time demanding and complex process. The different components 
where to perform optimization and the multiple ways there are to optimize them, make it a 
“never ending” process. Developers have to balance and determine if  further optimization is 
worth the spending of  resources. We followed a similar approach but still, we think a little 
more time spent in optimization could further improve the Users experience, particularly in 
regards the rendering of  the Geographic Heatmaps FBOs, that is currently where the 
application spends most of  it’s processing time. We still experienced with a technique called 
Instancing, replacing the geometry generation, but was left out as it did not improve the 
results. 

Further future work could also be done in introducing additional features to the application. 
As an exploratory tool there are several additional features that could support that task, to 
name a few: 

- additional mouse over information, for instance isolating Stores heatmaps, view Stores 
detailed information and others; 

- additional visualization tools (charts and others) to complement the visual information of  
the heatmap; 

- more tracked statistical variables that provide different analysis, for instance a moving 
average or static full day average views; 

- high dpi printing feature, which was only partially implemented using a technique derived 
from Multisampling; 

- mechanisms that give the User more control over the animation flow; 

- natively introduce additional, and relevant administrative variables; 

Concerning the more overall objectives of  the Research Project integrated, we also think it 
would be of  great interest, the exploration and implementation of  visualization models that 
encompass both Sales and Stocks records. Unfortunately we need additional data, 
overlapping in time we the data we currently have, to make that possible. 

7.1.3. Alternative directions 

During the optimization of  OpenCL kernels, particularly the AddKernel, the procedure we 
followed in order to seek the best configuration, suggested us an alternative research project 
that could yield interesting results. 
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The proposition consists in the exploration of  evolutionary solutions to the problem of  
optimizing OpenCL kernels executing continuously, or over undetermined amounts of  time, 
while processing undetermined quantities of  highly variable data. 

We suggest, that the evolved solutions be the ones who determine the appropriate 
dimensions and sizes chosen when enqueueing the kernel execution, but also allow the 
solutions to manipulate kernel properties and control variables that influence the kernel 
execution, for instance the number of  operations performed by each work item. 

Additional we suggest that the evolutionary process should be used, not to evolve an 
“individual” that will be later used in “live” execution of  the kernel, but instead, we suggest 
that the evolutionary process should run continuously along side the kernel execution, in 
order to promote the continuously evolution and search for the best solutions at any giving 
time and giving the varying kernel execution conditions. 
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