
 

Visualization Techniques
for Big Data

Hugo Dinis Pereirinha da Silva Amaro
hamaro@student.dei.uc.pt

Juri:
Bernardete Ribeiro

Masters Degree in Informatics Engineering

Luis Filipe Vieira Cordeiro

Date: 2 Setember 2015

Visualization Techniques for Big Data - Final Report

 ii

Visualization Techniques for Big Data - Final Report

Abstract

Geographic information enables retailers to make informed decisions. Visualizing
geographic and demographic relationships, supports market analysis, site selection,
merchandising, distribution, delivery, among others. This thesis presents a visualization
system to explore sales records from the major retailer in Portugal, in a geographic context,
which integrates administrative and demographic information.

We improve upon previous implementations by combining: First the flexibility and
scalability of OpenCL kernels, used to process the original dataset in real visualization time,
eliminating the necessity for preprocessing and second the use of modern rendering
methodologies, through the OpenGL API, to produce a high detailed and information rich
visualization.

Our results leave no doubt to the advantages of parallel processing, even in low end GPUs,
and to the flexibility and visual quality attainable when researchers take the extra step of
researching and implementing adequate rendering techniques for the programmable graphic
pipeline.

Keywords

Anti-aliasing, Big Data, Database, GIS, GLSL, GPGPU, GPU, Heatmap, OpenCL, Shaders,
Visualization

 iii

Visualization Techniques for Big Data - Final Report

 iv

Visualization Techniques for Big Data - Final Report

Resumo

Informação geográfica permite que as decisões comerciais relativamente ao mercado de
retalho sejam feitas de forma informada. A visualização de relações demográficas, apoia a
análise de mercado, a escolha de localizações, comercialização, distribuição, entregas, entre
outras. Esta Tese apresenta um sistema de visualização de informação para esplorar os
registos de vendas do maior retalhista em Portugal, num contexto geográfico, que integra
também informação demográfica e administrativa.

Este trabalho apresenta melhorias sobre outras implementações por combinar: Primeiro a
flexibilidade e escalabilidade dos Kernels de OpenCL, usados para processar os dados
originais em tempo de visualização eliminando a necessidade de um pré-processamento, e
segundo, o uso de metodologias de renderização modernas, através da API OpenGL, para
produzir uma ferramenta de visualização de elevada qualidade gráfica e rica em informação.

Os nossos resultados não deixam dúvidas sobre as vantagens do processamento paralelo,
mesmo em GPUs de baixa gama, nem sobre a flexibilidade e qualidade visual que os
investigadores são capazes de alcançar, ao aplicar tempo na pesquisa e implementação de
técnicas apropriadas de rendering que façam uso do pipeline programável dos chips gráficos.

Keywords

Anti-aliasing, Base de Dados, Big Data, GIS, GLSL, GPGPU, GPU, Mapa de Calor,
OpenCL, Shaders, Visualização de Informação

 v

Visualization Techniques for Big Data - Final Report

 vi

Visualization Techniques for Big Data - Final Report

Index
1. Introduction 1 ...

1.1. Context 1 ...

1.2. Motivation 2 ..

1.3. Objectives 4 ...

1.3.1. Requirements 6 ..

1.4. APIs and Third Party Software 7 ...

1.4.1. Database 7

1.4.2. GPU API 7 ..

1.5. Document Outline 8 ..

2. State of the Art 9 ...

2.1. Scheepens “GPU - Based track visualization of multivariate moving object data” 9

2.2. Buschmann “Hardware-accelerated attribute mapping for interactive visualization of complex
3D trajectories” 11 ...

2.4. Resume and comparison 12 ..

3. Data Sources 15 ...

3.1. Sales Dataset 15 ..

3.2 Complementary data gathered 15 ...

3.2.1. Stores Location Data 16 ...

3.2.2. Clients Postal Codes Location Data 18 ...

3.2.3. Shapes of OpenStreetMaps 20 ...

3.2.4. Demographic Data 20 ..

4. Programming models overview 23 ...

4.1. OpenGL 23 ...

4.2. OpenCL 26 ..

4.2.1. Architecture 26 ..

4.2.2. OpenCL C 29 ..

4.2.3. OpenCL/OpenGL interoperability 30 ..

5. Implementation 31 ..

5.1. Database and Data Stream 33 ..

5.1.1. Database Configuration and Structure 33 ...

5.1.3. File system day exports 36 ...

5.2. Projections 36 ...

5.2.1. Geo-Projection 36 ...

 vii

Visualization Techniques for Big Data - Final Report

5.2.2. Projection Matrix 37 ...

5.2.3. Un-project 39 ...

5.3. Geographic Heatmap Concept and First Approach 40 ...

5.4. Pixel Heatmap - Graphics API 44 ...

5.5. Pixel Heatmap - OpenCL API 47 ..

5.5.1. Optimization of kernel execution 52 ...

5.6. Coloring Geographic Heatmaps 53 ...

5.6.1. Color and perception 54 ..

5.6.2. Anti-aliasing 56 ..

5.7. Displaying Administrative and Demographic Information 59 ...

5.7.1. Administrative Shapes and Boundaries 59 ..

5.7.2. Mouse Over Location Identification 60 ..

5.7.3. Displaying Demographic Data 61 ..

5.8. Miscellaneous Features 64 ...

5.8.1. Filtering Stores 64 ...

5.8.2. Screen Capture and Video Recording 64 ..

5.8.3. User Interface 65 ...

6. Results 67 ..

6.1. Anti-aliasing and Geographic Heatmap Coloring 67 ...

6.1.1. Performance Considerations 71 ...

6.2. Identification and Confirmation of Events 71 ..

6.2.1. Distant Clients 72 ..

6.2.2. Store Opening 73 ..

6.3. Demographic Visualization Modes 76 ..

6.3.1. StarsShader 77 ...

6.3.2. Choropleth Maps Comparison 79 ..

6.3.3. Performance Considerations 82 ...

6.4. Sales and Sales over Quantity 83 ..

7. Discussion and conclusions 85 ..

7.1. Future Work 85 ...

7.1.2. Application improvements 86 ...

7.1.3. Alternative directions 86 ..

References 89..

 viii

Visualization Techniques for Big Data - Final Report

List of Figures

Figure 1 - Changes in Key GPU Properties over Time (GPU Gems 2 [2])

Figure 2 - Number of research projects matching the keyword GPU over the years.

Figure 3 - Example of Scheepens application renderings. Quoting his legend for this figure, “A selection of
density maps of vessel movements around the Dutch coast with a cell size of 250 meter and a kernel size of
250 meter (A), 1 kilometer (B) and 3 kilometer (C)”

Figure 4 - Scheepens process for drawing a segment of a vessel tracks onto the density field FBO (source:
Scheepens 2010 Thesis).

Figure 5 - Renderings with different style and mapping configurations, made with Buschmann visualization
tool. (source: Buschmann Jan 2014).

Figure 6 - Simplified structure of the application and scripts implemented to match Stores present in our Sales
Dataset with the Store data gathered by analysis of the source and JSON data files of Sonae Group’s Brands
individual Web Sites.

Figure 7 - Screenshot of the additional geo-referencing step interface, created to help match GPS coordinates
with Stores.

Figure 8 - Control tables created to keep track of the Geocoding process.

Figure 9 - INE data selection and export interface.

Figure 10 - Diagram of the most important stages in the OpenGL 4.0+ pipeline.

Figure 11 - Simplified rendering pipeline model, with vertex and fragment shader stages.

Figure 12 - Simplified rendering pipeline model, with vertex, geometry and fragment shader stages.

Figure 13 - Simplified Mapping of OpenCL onto a GPU device (source [AMD 22]).

Figure 14 - Example of usage of “dummy” threads in the queueing of OpenCL kernels to optimize execution.

Figure 15 - Minimalist view of the steps relevant to the creation, management and drawing of the information
visualization model components. On the left the thread responsible for Database connection, Data Files
reading and parsing/streaming the data to Thread2. On the right the thread responsible for uploading new data
to video memory, execute operations kernel programs, draw the correct information to pre-buffers (FBOs) and
finally draw the information as layers onto the Screen Buffer. Notice that the main cycle presented in Thread2
is our per frame cycle, which we will refer to as Render Cycle also.

Figure 16 - Distribution of records in the database, one Database table per Day.

Figure 17 - Projecting From GPS coordinates to Screen Space

Figure 18 - Model View Projection Matrix transformation to Clipping Space and Clipping Space Projection
onto the 2D Screen Space

Figure 19 - Un-projection resultant line segment, still in Projection Space.

 ix

Visualization Techniques for Big Data - Final Report

Figure 20 - Two different rendering types of geographic heatmaps. On the left discretized units, on the right
continuous coloring.

Figure 21 - Description of the Draw Pass used to render the geographic heatmap. A Geometry Shader
generates Quad geometry, one Quad per Store location. Quad sizes vary according to the accumulated value
for the Store fetched from the Heatmap Texture. The fragment shader colors each Quad according to the 2D
Gaussian Function, centered at texture coordinates (0.5, 0.5) and with an amplitude value fetched from the
Heatmap Texture.

Figure 22 - On the left our first color mapping Texture for the values calculated during the Quad generation
process, on the right our first rendering result.

Figure 23 - HeatTexture structure. Real colors were inverted.

Figure 24 - Abstract representation of how Sales Vertices are positioned above the corresponding Store’s pixel,
in order to be added to the HeatTexture during the blending process. Blending configuration for the addition is
described in Source 3.

Figure 25 - Data structures defined to use with our OpenCL Kernels.

Figure 26 - Structure of the buffers used to upload Sales data to the Video Memory. This buffers will be input
arguments of the AddKernel.

Figure 27 - Example of how parallel reduction works in the GetTextureMaxKernel. In this example the Black
squares in Step 7 represent the final values returned by the Kernel execution that must be still iterated in the
CPU to determine the actual maximum value.

Figure 28 - Aliasing introduced by discretizing the colorspace.

Figure 29 - Application rendering layers.

Figure 30 - Discrete color spaces used to color the Geographic Heatmaps when rendered to the Screen Buffer.
The top is used when only one heatmap is rendered and the bottom is used when two heatmaps are rendered
at the same time.

Figure 31 - The split-complementary color scheme we picked to color the heatmaps when visualized
simultaneous.

Figure 32 - Anti-aliasing of plateaus and a border line delimiting the different ranges.

Figure 33 - Illustration of the Edge interpolation algorithm.

Figure 34 - Shortest Distance from point to line illustration [16].

Figure 35 - Variation of color and the color’s alpha value near the interpolated edge in order to render the anti-
aliased line.

Figure 36 - Variation of color and the color’s alpha value near the interpolated edge in order to render the anti-
aliased line. Notice the purple color in the center, result of the blending configuration.

Figure 37 - On the left the Triangulated Country Shape rendered in grey color. On the right, many Civil
Parishes (freguesias) on the Lisbon area rendered with different shades of grey denoting their different
populations.

 x

Visualization Techniques for Big Data - Final Report

Figure 38 - The line generation process implemented through a Geometry Shader. Notice how the line
segments caps are shaped to close the corners when connected to another line segment, this is only possible
because the Geometry Shader has the information regarding the adjacent segments.

Figure 39 - On the left a plot of the mathematical equation used to color the Quads in the Fragment Shader of
the StarsShader Program. On the right the rendering result using that equation.

Figure 40 - Both left and right contain the same exact area representing the same exact values. On the left the
GreyShader was used and on the right the ChoroplethShader.

Figure 41 - Aliased line on the left, magnified. On the right an antialiased line obtained with our implemented
algorithm, also magnified.

Figure 42 - Comparison between vertical curves. On the left a smooth line rendered by our application, and on
the right a smooth line rasterized with Adobe Photoshop.

Figure 43 - Comparison between smooth horizontal curves. On the bottom a smooth line rendered by our
application, and on top a smooth line rasterized with Adobe Photoshop.

Figure 44 - Comparison between almost straight curves. On the left a smooth line rendered by our application,
and on the right a smooth line rasterized with Adobe Photoshop.

Figure 45 - Comparison between tight curves. On the left a smooth line rendered by our application, and on
the right a smooth line rasterized with Adobe Photoshop.

Figure 46 - Client Geographic Heatmap drawn with plateau transparency and anti-aliased lines. The shaded
shapes seen through the heatmap are the Civil Parishes colored according to their populations (not
normalized).

Figure 47 - Both Stores and Clients Geographic Heatmaps overlaid.

Figure 48 - Examples of screen captures depicting Clients who have to travel far to purchase their products.
On top an overview of the Southern area of Portugal. Below is the Geographic area around the City Viseu.

Figure 49 - Picture displaying Sales distribution near the days peak, the day before a new Store opens in the
center of the red circle.

Figure 50 - Picture displaying Sales distribution near the days peak, the day a new Store opened (middle left
yellow bubble).

Figure 51 - Stores heatmap the day before (top) and the opening day of the new Store (bottom).

Figure 52 - Clients heatmap resultant of filtering out all other Stores except for the new one. On the bottom an
overview of the whole south half of the Country, and on top a more local visualization, spanning the country’s
width.

Figure 53 - Porto City area map with an overlay of the StarsShader result map, with increased contrast,
brightness and transparency, over the choropleth Population map colored with shades of grey. The Green,
Yellow and Red circles represent Good, Median and Bad correlation points. Only the most relevant were
highlighted.

Figure 54 - Lisbon City area map with an overlay of the StarsShader result map, with increased contrast,
brightness and transparency, over the choropleth Population map colored with shades of grey. The Green,

 xi

Visualization Techniques for Big Data - Final Report

Yellow and Red circles represent Good, Median and Bad correlation points. Only the most relevant were
highlighted.

Figure 55 - Comparison between greyscale coloring (top) and procedural texture generation methods when
representing Population of Civil Parishes in the Lisbon area.

Figure 56 - Low populated areas are indistinguishable from each other using the Procedural Texture
Generation method to color the Choropleth map.

Figure 57 - Visual confusion of the Procedural implementation (bottom) when compared with the more
appealing greyscale coloring (top).

Figure 58 - Zoomed out comparison of the greyscale and procedural implementations of the Choropleth map.

Figure 59 - Visual representation of the Sale Value over Quantity variable’s distribution over the northern part
of the Country.

Figure 60 - Visual representation of the Sale Value over Quantity variable’s distribution over the southern part
of the Country.

 xii

Visualization Techniques for Big Data - Final Report

List of Tables

Table 1 - Measurement of the impact our geographic heatmap coloring and anti-aliasing algorithms, had on
performance. Values are in Frames Per Second, the bigger the better.

Table 2 - Performance results for each of the different demographic visualization modes. Values are in Frames
Per Second, the bigger the better.

 xiii

Visualization Techniques for Big Data - Final Report

 xiv

Visualization Techniques for Big Data - Final Report

Acronyms

IPN - Instituto Pedro Nunes

GIS - Geographic Information System

SP - Shader Program

FS - Fragment Shader

VS - Vertex Shader

GS - Geometry Shader

GLSL - OpenGL Shading Language

SPMD - Single Program Multiple Data

CPU - Central Processing Unit

GPU - Graphical Processing Unit

RAM - Random Access Memory

VBO - Vertex Buffer Object

VAO - Vertex Array Object

FBO - Frame Buffer Object

API - Application Programming Interface

MVP - Model View Projection Matrix

FOV - Field Of View

 xv

Visualization Techniques for Big Data - Final Report

1. Introduction

This document presents the work done and results obtained in the scope of a Master Thesis
on the subject Visualization of Big Data. Thesis advisor were Professor Pedro Cruz and
Professor Penousal Machado, both from the Department of Informatics Engineering of the
University of Coimbra. This work is part of a research project from Instituto Pedro Nunes
(IPN) partnering with Sonae SA, in the field of Information Visualization.

This chapter is divided in four chapters. The first describes in more detail the research
project in which this Thesis was framed, the second introduces aspects common to data
visualization projects that we wish to solve with a different approach and the motivation for
that approach, the third chapter describes planning and how that plan evolved over the two
semesters, and finally, the fourth chapter describes the structure of this document.

1.1. Context

The work described in this document was framed in a research project involving a
partnership between IPN and Sonae SA.

Sonae SA, is the main retailer in Portugal, with an annual revenue of €5.718 billion and over
700 stores. The main objectives of the project are to analyze and explore data sets with sales
records form Sonae stores, in order to plan and implement visualization tools to find or
highlight patterns and/or relevant information both unknown or as to confirm predictions.

The team responsible for carrying out the project is led by teachers Penousal Machado
(Scientific Director) and Professor Pedro Cruz (Project Manager), and consists of three
elements, two students of PhD and one of Masters degree in which I am included.

Responsibilities within the team are equivalent, in respect to knowledge of everything that
concerns to the project, its status and its objectives. Each team member has to be on pair
with each others latest developments, so that everyone can contribute in the discussion of
problems and solutions regarding the overall of the project.

In terms of the actual implementation the visualization tools, each member was responsible
for the planning and implementation of a different visualization application. Yet, as before,
members kept track of each other work closely in order to discuss, criticize, and contribute
to the other members implementation, both daily and in the weekly meetings. This way the
team was able to develop multiple applications at the same time in a reasonable time frame
and at the same time make the best of each one’s skills and experience.

This document refers only to the work done by me, and from this, is restricted to the
necessary tasks directly related to the visualization tool implemented by myself .

 1

Visualization Techniques for Big Data - Final Report

1.2. Motivation

Data visualization is everywhere, particularly in every scientific research area. From Bar
charts to complex visualization models, researchers have developed numerous and
innovative ways of exploring data sets, highlight patterns, present experiment results, among
others. The works of Wong (1994) and Chen (2007) are both extensive and complete in
terms of examples, and their description, of visualization models.

Usually, when performing visual exploratory analysis of very large, multivariate data sets,
researchers either choose from few of the suitable visualization models, Parallel Coordinates
Plot for instance, or, recur to some sort of preprocessing in order to reduce the volume or
complexity of the visual information, adapting it to the more common visualization models.
These preprocessing operations/transformations occur prior to the data being inputed into
the visualization. In other cases, like with Liu (2013) and his innovative solution to compact
data into data cubes prior to the visualization, preprocessing is a consequence of the
solutions researchers came up with to make their data immediately available on request in
the final visualization tool. While there is no dispute to the advantages of preprocessing, in
many cases it carries along a high processing time cost and one obvious direct disadvantage,
the inability to immediately input and explore new data with the visualization tool, without
first running it through all the preprocessing steps.

Until recently, researchers had to have access to computer clusters, or large amounts of time,
when to perform massive computation tasks. In the last decade Graphic Processing Units
(GPUs) have followed a steep rise in all the critical features that enable for faster operations
performed over increasingly larger data sets, as we can see in Figure 1. GPU available
memory has also increased significantly, to the point where its quite usual to have personal
computers with at least the same amount of GPU memory as of System RAM.

Figure 1 - Changes in Key GPU Properties over Time (source: GPU
Gems 2, 2005)

���

 2

Visualization Techniques for Big Data - Final Report

The parallel capabilities of even the low end of currently available Integrated Graphic
processing units, Intel Iris 5200 for instance, has at least 40 Compute Units, capable of
running up to 7 simultaneous threads each (280 total) and up to a total of 8960 concurrent
work-items. More than enough reasons for developers, on any computing demanding
implementation, to consider what can or cannot be parallelized. Not long ago, numbers like
these were only seen in very large computer clusters. Additionally each manufacturer is
constantly changing and evolving the GPUs architectures to boots Single Instructing
Multiple Data (SIMD) operations, designing and specialized floating point units (FPU) for
different kinds of operations (simultaneous floating point multiplications, integer operations
or even transcendental math functions).

These facts have not gone by unnoticed by researchers, in fact, the number of Research
projects matching a search for the keyword “GPU”, performed on Google Scholar, has seen
an almost exponential rise since the year 2000, refer to Figure 2. Owens (2008) shows some
good examples of researchers usage of GPUs and also which problems are more suited to
be solved using GPUs over CPUs. Yet we feel that there are two main groups of GPU usage
by researchers, usually tied to the researchers experience and field of work. The first group
is heavily focused on the processing capabilities, making the best of those GPUs capabilities
to perform massive computations over very large data sets, collect the results and visualize
them using the more simple visualization models (line graphs, bar charts, etc). And the
second group that usually have their data preprocessed with the more common CPU
applications and scripts, but make use of the GPU to materialize high visual quality,
performant and innovative visualization models.

The main focus of this Thesis is to go one step further down this trend, by developing an
application that is both capable of using GPU computing to process the data, transforming
it accordingly to the chosen visualization model, and at the same time render that
visualization model at interactive frame rates and with high quality graphics.

To accomplish this we will explore different techniques and suggested best practices in order
to make the most of the Single Program Multiple Data (SPMD) GPU programming model,

Figure 2 - Number of research projects matching the
keyword GPU over the years.

 3

Visualization Techniques for Big Data - Final Report

as shown in the multiple works presented in GPU Gems 2 (2005) and in the work of Owens
(2008); plan and develop the application following a “GPU to GPU” structure which keeps
all the relevant application data in video memory and minimizes data transfers to and from
the CPU to the minimum possible, as the work of Gregg (2011) shows to be a crucial aspect
for performance; and finally, we will explore, adapt existing and/or “design our own”
rendering techniques, similar to those employed in video games industry, of which GPU
Gems 2 (2005) and GPU Gems 3 (2007) shows multiple examples in a compilation of works
from different authors of both of the academic and industry worls, in order to produce a
high quality, interactive data visualization, approaching the quality and detail usually only
achievable through the use of vector graphics APIs.

1.3. Objectives

The work presented in this document spanned roughly two semesters, during which the
objectives we established at start, regarding the visualization model implementation, and the
outlined plan for additional models, were forcefully altered and continuously adapted.

Initially we received a Sales data set, containing 2 Years of Sales records from over 700 super
and hypermarkets, the data set was accompanied by a group of relational tables with lists of
Products, hierarchy between products, Store names and groups, among others. The data was
all in comma separated value (CSV) files. The data set was ≈278Gb in size and contained
around 2.8 billion sales records.

Additionally, we expected to receive a related Stocks dataset within a time frame that would
allow us to implement a visualization model that would include data from both Sales and
Stocks.

As such, our plan for the first semester included:

- researching methods to make the dataset accessible both locally and remotely;

- create scripts that would support other researchers analysis on this data;

- and research adequate techniques, plan and implement a data visualization application,
using the Sales dataset, that tests the feasibility and value of this Thesis objectives of
processing and visualizing data in realtime using the parallel processing features of
modern GPUs.

Considering this plan, the objectives we initially set for the first visualization application to
implement were the following:

- Study the OpenGL programming model in order to understand how it can be used to
perform general purpose programming.

- Search other researcher’s similar work and research adequate techniques to perform the
required computational and visualization tasks.

 4

Visualization Techniques for Big Data - Final Report

- Implement a prototype application using the researched techniques in order to
demonstrate the feasibility of the idea and evaluate the applicability of the used
techniques.

This would allow us to build the necessary background and implement a set of initial tools
that would enable us to quickly import and analyze the Stocks dataset, upon receiving it
during the second semester, research of devise an adequate visualization model that would
encompass both datasets (Sales and Stocks), and implement that visualization model in an
interactive application using the techniques researched and experimented with during the
prototype implementation.

Unfortunately the Stocks dataset arrival was continuously postponed until near the end of
the second semester, and although it contains an extremely large amount of information, it
spans a different time frame from the one of the Sales dataset, removing the possibility of
relating each’s information over time.

As the Stocks dataset arrival was being postponed we were forced to revise our initial plan,
we wanted to keep the implementation process uninterrupted, maintain an open door for
the uncertain arrival (at that time) or a related Stocks dataset, and guarantee that either way a
complete and rich, both visually and feature wise, information visualization application
would be implemented and analyzed by the end of the second semester. We didn’t want to
put aside the possibility of exploring an additional dataset but we had to devise a plan
flexible enough to guarantee that the research project and this Thesis objectives could be
met.

Our revised plan would consist in:

- Reimplement our initial scene engine developed for our prototype in order to reflect what
we learned from the prototype experiment.

- Move the data processing steps from the OpenGL graphical API to the more flexible,
general purpose programming model, of the OpenCL API. Add additional tracking of
Client data. Implement interoperability between OpenCL and OpenGL.

- Research, devise and implement rendering techniques that enhance the visualization both
in terms of detail and appearance, improving the amount of perceived information
relatively to the prototype version. In effect giving the application a more cared and
polished aspect, as expected from an application intended to be distributed to users.

- Iteratively research, plan and implement additional features for the application that
improve it either in terms of functionality or in terms of additional, more detailed,
alternative or related information.

As we mentioned before the Stocks dataset arrived at a time that it wouldn’t be feasible to
implement a new visualization application and finish it until the end of the semester, and
consequently, following the plan of iteratively adding more features, the objectives
established for our visualization application also changed, and were added upon during the
course of the second semester.

 5

Visualization Techniques for Big Data - Final Report

By the end of the second semester, the established objectives and features for our data
visualization application were:

- Present a visualization of the Sales data records using a geographical heatmap
visualization model relative to both the Stores locations and the Clients residence’s Postal
Codes locations;

- Use the OpenCL API to implement the data processing steps of the visualization model;

- Keep track and display geographic information, of at least one additional computed
variable, besides the accumulated heat values typical of heatmap visualization models;

- Introduce additional Administrative and Demographic data into the visualization;

- Use rendering techniques to enhance the visual experience and blend the different types
of information, without compromising the visualization model;

- Provide a user interface that enables the user to perform every action and make use of
every feature available within the application;

- Implement reporting mechanisms such as screen capture and video recording;

- Implement functionalities that enable the user to filter sales records of specific Stores;

- Implement a offline data source feature. Allowing the visualization of Sales records data
files, previously exported from the database and placed within the application file
structure.

1.3.1. Requirements

Our defined requirements that the application must fulfill apply to the hardware of a
MacBook Pro Late 2013, or hardware of similar performance. More specifically a 2.4GHz
dual-core Intel Core i5 processor, 8GB of 1600MHz DDR3L onboard memory, Intel Iris
5100 integrated GPU and 256Gb SSD drive. In terms of GPU processing power, as GPU
hierarchical chart from the famous hardware reviewer Tom’s Hardware (2015) shows, this
GPU is on the lower end of the spectrum.

For us this represents an opportunity to show how the advantages of using the GPU parallel
processing capabilities apply to all modern GPUs and not just the most performant. 1

Our requirements are the following:

- A loading time below one minute;

- A waiting time before a data visualization starts below 10 seconds;

- An average frame rate of at least 10 frames per second while visualizing data;

- Compatible with at least two operating systems from different developers;

 OpenGL 4.1+ compatible1

 6

Visualization Techniques for Big Data - Final Report

- Compatible with recent GPUs from all three major vendors, ATI, Nvidia and Intel;

1.4. APIs and Third Party Software

Planning the application involves not only the envisions of the applications’ features and
behavior but also considers the choices of technologies available with which to implement
that application, and also the choice of third party software that may shorten the
implementation time or support the application in any way.

For our implementation a database was the most efficient solution to feed data remotely to
the application. Not just because of the gain in performance when using a database to query
data but also due to the large size of the dataset which makes any option where the data is
packed and distributed with the application, impractical.

1.4.1. Database

MySQL is a very popular database that has proven it self over the years, it is also one of the
best suited to handle large quantities of data and shows great performance in a read
intensive, single node, environments, when compared to its competitors, according to the
works of Tudorica (2011) and Rabl (2012) which test and compare several of the most used
databases. The referenced authors also confirm the suggestions presented in the MySQL
documentation regarding database engine choice, pointing to InnoDB as the one that
presents better performance when handling vary large tables.

For our database implementation we opted for MySQL due to its almost incomparable
maturity in terms of development, 20 years, and for its performance results presented by the
Works of Tudorica (2011) and Rabl (2012).

1.4.2. GPU API

Although our application is implemented from scratch, it relies on drivers to manipulate
states and exchange data with the GPU. The available APIs, that provide these
functionalities, vary with the chosen Operating System, the available hardware and even the
Software Development Kit (SDK) used to implement the application (Java SDK, Windows
SDK, etc.).

Choosing which API to use was quite straight forward, and we will take you through the
same thought process we did. First try to keep in mind the different Graphics/Computing
APIs available: DirectX, Cocoa, Metal, OpenGL/OpenCL, Cuda and Mantle. Then, if we
start crossing out APIs that have characteristics we don’t want, for instance Operating
System specific (DirectX, Cocoa and Metal) and Hardware Manufacturer specific (Cuda and
Mantle), we are left out with only one option, OpenGL/OpenCL.

So when you think about it, there really wasn’t much of a choice. And its quite surprising in
a way, that after so many years of GPU and related software development, developers who
seek to use a cross platform and cross hardware solution, have to rely on the existence of

 7

Visualization Techniques for Big Data - Final Report

the Khronos Group and it’s continuing work, revising the standards and improving the
OpenGL/OpenCL APIs, keeping them on par with the released hardware features.
Fortunately there is no end in sight for the Group, and developing of a successor API for
OpenGL, Vulkan, is already underway.

1.5. Document Outline

The remainder of this document is structured as follows:

- Review of similar work from other researchers upon which we hope to improve;

- Description of the data sets we used in our visualizations, both the ones provided by
Sonae SA and others gathered by us;

- A brief introduction to the OpenGL and the OpenCL APIs, highlighting the most
relevant aspect regarding our work;

- Detail the most relevant implementation steps towards realizing our visualization
application;

- Present and review the results of our implemented solutions;

- Discuss and draw conclusions on the achieved results;

- Present ideas for future work;

 8

Visualization Techniques for Big Data - Final Report

2. State of the Art

In this chapter we will present, analyze and compare a set of selected works from other
researchers that were the most similar we could find to our own work, and from which we
wish to improve upon.

2.1. Scheepens “GPU - Based track visualization of multivariate moving
object data”

Scheepens (2010) thesis is a great example of a similar work that involves both data
processing and transformation to suit a chosen visualization model and implementation of
that model while doing all those computations in the same application and keeping all the
relevant data in the Video Memory.

Scheepens improved upon Willems (2009) work on “Visualization of Vessel Movements”.
The data set they used contains information of vessel movement around the Dutch coast,
vessels have a set of characteristics and for each there is a list of points containing its
movement information, namely Position, Velocity and Time.

The visualization of the vessels tracks over time is done by rasterizing them into density
fields as lines with a chosen width (kernel radius), the coloring of each line is done through a
devised formula that takes into consideration a gaussian distribution, the previous
mentioned kernel radius but also different properties (eg. Time, Velocity), specific to each of
the track segments, in such a way that increases the perception on how that same properties
varies over the length of the line. For instance a vessel track can appear thinner at its
departure location and increase over the length of the trip giving an immediate sense of
direction to a human observer. The rasterized tracks are then blended together filling the
density field. Refer to Figure 3 for examples of vessel movements rendered by Scheepens
application.

Figure 3 - Example of Scheepens application renderings. Quoting his legend for this
figure, “A selection of density maps of vessel movements around the Dutch coast with a
cell size of 250 meter and a kernel size of 250 meter (A), 1 kilometer (B) and 3 kilometer
(C)”

 9

Visualization Techniques for Big Data - Final Report

One of Scheepens main goals was to improve upon Willems work in terms of performance,
to do this he implemented the entire density field calculation to the GPU using a Graphics
API, namely OpenGL, shaping its mechanisms and features to perform general purpose
computations and not a GPGPU based implementation as he names it during the
document. Scheepens clever implementation consisted in drawing the track segments
individually, setting the vertices up in a Vertex Buffer Object (VBO) mapping data to vertex
properties. Those draw calls were issued into a Shader Program consisting of Vertex Shader
(VS), Geometry Shader (GS) and Fragment Shader (FS). The VS was used to copy data into
the correct vertex properties according to the actual render configurations. The updated
vertices were then fed into the GS which played a main role in first filtering vertices to avoid
unnecessary calculations, and then generating the geometry of each line segment as a
bounding box (rectangle), which was in turn fed forward into the hardware’s triangle setup
and then rasterizer stages to produce and feed the fragments for the line segment into the
FS. The FS was then responsible to calculate the density contribution for each fragment
according to a kernel (shader), coloring the segments as described in the last paragraph. The
draw output is saved in Frame Buffer Object (FBO) for later usage. Refer to Figure 4 for a
visual representation of the density field rasterization process implemented by Scheepens.

The drawing and calculation of the final density field used in the visualization is quite
versatile in terms of configurable options. Multiple filtered density fields with different sets
of configurations can be blended into the final one with varying operators, which allows for
different levels of detail, highlight of certain features and exploration of different kind of
events. The final density map is made of 32 bit floating point values of the density
calculated previously. Each pixel relates to a “cell” which represents a patch of real world
space of varying configurable sizes.

The final rendering to the Screen Buffer may be derived of one or multiple density fields. To
deal with multiple fields Scheepens introduced visualization operators in order to highlight

Figure 4 - Scheepens process for drawing a segment of a vessel tracks onto the density
field FBO (source: Scheepens 2010 Thesis).

 10

Visualization Techniques for Big Data - Final Report

data from each of those different fields. For each field, and prior to the operators, color is
mapped from the density values through a transfer function. Color maps can be exchanged
and Scheepens experiments with continuous and discrete ones. As each pixel in the screen
hardly ever matches one pixel in the density fields FBOs, due to projection and camera
movement, Scheepens relied on cubic interpolation over the hardware bilinear interpolation
to improve visual quality and smoothness, avoiding the discontinuities and jagged edges
produced with bilinear interpolation.

Scheepens did an impressive job not just in increasing performance over the previous work
by a factor of 3000x, but also in being able to validate his visualization tool by producing
almost indistinguishable renderings from the ones previously obtained by Willems.

2.2. Buschmann “Hardware-accelerated attribute mapping for
interactive visualization of complex 3D trajectories”

Buschmann’s work is another great example of the advantages of moving computations
from the CPU to the GPU. His work is very similar to Scheepens in which both of them are
creating visualization tools to allow a human user to explore trajectories of moving objects
over real world space. Also their approaches in terms of implementation contain many
similarities, even if their final visualization models are quite different. One of the reasons
for this is that Scheepens movement trajectories are projected into a 2D plane and
Buschmann's are in 3D space.

Buschmann’s work focus on the visualization of aircraft movement trajectories. Their data
set, collected near the vicinity of an airport, contains the trajectories for each aircraft in the
form of poly-lines where each poly-line is a sub-set of consecutive points, each containing

Figure 5 - Renderings with different style and mapping configurations, made with
Buschmann visualization tool. (source: Buschmann Jan 2014).

 11

Visualization Techniques for Big Data - Final Report

several varying and static (relative to each trajectory) attributes including position of the
aircraft, velocity, flight ID, etc.

His approach in terms of visualization model consisted in rendering the trajectories in a 3D
space either as tubes or as a sequence of spheres, from which the user may choose from.
Additionally, Buschmann used both coloring and texturing of the generated geometry as
means to represent additional attributes, such as speed varying along the trajectory. The user
is able to change which attribute is mapped the color or texture on a per trajectory basis.
Refer to Figure 5 for examples of the different styles and attribute mappings. Attributes can
be mapped not just to the coloring and a choice of texture, but also to properties both of
the texture, like texture stretching and torsion, but also to properties that affect the
generated geometry, like for instance radius of tubes and spheres.

To accomplish this, Buschmann approach starts off by moving the data as raw (after
preprocessing) to the video memory and then process it and render it using solely a
Graphics API. First a Vertex Shader (VS) performs the mapping of attributes to vertex
properties, according to the list of configurations structures uploaded to the GPU as a
Uniform array. Vertices attributes and rendering configurations are then fed to a Geometry
Shader (GS) that is responsible to generate the appropriate geometry, respecting visual
configurations like the radius of generated spheres and tubes and correct assignment of
texture coordinates. The generated geometry is then rasterized and the generated fragments
later processed by a Fragment Shader which is responsible for coloring the geometry, again
according to the visual configurations set for that fragment, such as texture fetch, color
mapping, etc.

Buschmann’s work show interesting usage of vertex attributes to map data, and the
solutions he implemented to overcome performance issues give a great insight onto the
similar limitations we might face.

2.4. Resume and comparison

Both the works we presented share great similarity with our objectives. Even if our work
does not involve moving objects we do have to represent a time series with a geographic
component, as both Scheepens and Buschmann did.

We can see by each’s description of their implementations that both solutions, in a
minimalist view, consisted in moving the computations being performed on the CPU to the
GPU. They both had to study the OpenGL programing model and architecture in order to
choose the best structures to transport their data onto and through the graphical pipeline,
also they had to analyze their algorithms and equations into devising a way to parallelize the
necessary computations.

We seek to follow a similar implementation process, studying the best solutions and
structures to handle our data, how to implement them and how to process them.

Regarding the results presented by each of them, we see, very common to this research
works, the performance comparison between past and current solutions, with tremendous

 12

Visualization Techniques for Big Data - Final Report

gains undoubtedly. And this is crucial for our work as well, but not just, we wish to devise a
good implementation performance wise but not just to have a “fast” application. We wish to
realize an animated visual representation of the data, and whatever performance leftover we
might have we will use to enhance the quality and interactivity of the visualization.

Scheepens solutions of discretized color maps and ways explored to blend more than one
layer of information, as Buschmann geometry shader usage to generate the geometry of the
flight paths, are techniques we intend to explore in our application.

We intend to explore Scheepens and Buschmann ideas during our implementations but not
just, we will delve into the world of rendering techniques from numerous authors, of which
the referenced compilation GPU Gems 2 (2005) and GPU Gems 3 (2007) provide a great
resource, into picking the most adequate to the problems we face.

Regarding Scheepens and Buschmann explored techniques and technologies, we intend to
go a bit further, exploring the OpenCL API as a complementary tool for information
visualization applications. 

 13

Visualization Techniques for Big Data - Final Report

 14

Visualization Techniques for Big Data - Final Report

3. Data Sources

In this Chapter we first describe the Sales Dataset in more detail, and later we describe
complementary data gathered from multiple sources, that we used either to complement the
data present in the Sales Dataset or that we used to improve the final visualization model,
both in visual quality and in displayed information.

3.1. Sales Dataset

The Sales Dataset, which is the main focus of this Thesis and the dataset we intend to
visualize with our visualization model, is composed of 24 moths of sales records from
Sonae’s chain of retail stores. It has a total of around 2.8 x 109 sales records (lines). Each
record contains the Date of the purchase, to the second, the Store Id, the Product Id, the
Customer Postal Code (7 digits), the Customer Client Card Id, the value of the sale, the
purchased Product quantity and the Discount applied to the sale.

Additional information regarding the relationship between Brands and Stores, and Product
hierarchy, was provided along side the sales records. This database tables also provided
additional description fields for Stores and Products.

Our first analysis of the data revealed that there was a total of 729 named Stores (through
the Store description table), but only 465 were referenced in the Sales records, additionally
we found 6,579,711 of unique Client Card Ids in the Sales records.

The data was provided to us in the form of several zipped Comma Separated Values files,
that when unpacked occupied roughly 278Gb of disk space. More detail about the data
format and how we imported it into a database can be found in the Implementation
Chapter.

3.2 Complementary data gathered

After our first analysis of the sales data reveled that we would have to gather additional
complementary information in order to implement a visualization model that represents the
sales data, which is in its essence a time series, and at the same time allow for more abstract
and at the same time extremely important in the world of business, questions like “What are
the areas covered by the chain of retail stores?”, or “Are there meaningful clusters of
customers traveling far to make their purchases?”, or even “How are sales distributed in
relation to the population density?”.

In this chapter we describe the additional data we collected, their sources and its relationship
to the sales data. First we describe how we gathered GPS coordinates for the Stores
locations and for the Customers Postal Codes, then we describe how we used Open Source
Open Street Maps to filter all the necessary shapes to allow for geographic visual
representations, and finally we briefly describe some additional demographic geo-referenced
data we collected.

 15

Visualization Techniques for Big Data - Final Report

3.2.1. Stores Location Data

Retrieving Stores geographic coordinates involved an exhaustive search through the multiple
Brands Web Sites, scanning their source files and JSON data to collect any data table
containing Stores identification, Addresses and GPS coordinates. This set of data
downloaded from the Brands Web Sites will be referred to as BWS from this point on, to
avoid confusion with our Sales Dataset and facilitate writing.

The search produced multiple data tables of different structures, with similar information.
Unfortunately there was no relation between Store Ids on those tables and those of our
Data Set and also, Store Brand names weren’t a perfect match to those in our dataset. For
instance a Brand like “Modelo” is referred to as “MDL” in our Data Set, but in this data, it
could be referred to as “Modelo”, or as “Continente Modelo” or even “Modelo Cnt”. This
created a problem for us because Stores to which we couldn’t find GPS coordinates would
have to be left out of the visualization, that would consequently be an incomplete picture of
the actual covered area.

To solve this problem a small Client > Server application was created, using Web
Technologies, that allows a user (or group of users) to quickly match our known Stores from
the Sales Dataset with the ones in the BWS. Web Technologies, namely HTML, Javascript,
JSON (data transfers) and PHP (server side), were chosen, to build all the small support
applications that required a User Interface and User interaction, due to the following
reasons. On the server side, modern HTTP servers are very easy to setup, particularly for
development processes, and also very easy to setup with our already present Database
server,. The simple structure of web services allow us to manipulate and query our database
with short implementation times. On the client side the versatility, interface oriented and
HTTP Request API tools allow us to build simple dynamic interfaces in minutes.

Implementation began by creating a pair of tables in the database to keep track of matched
and unmatched Stores, refer to Figure 6 for a visual description of this application structure.
Then, an automated script was implemented to initialize the Unmatched Stores table with all
the Stores present in our Sales Dataset, while at the same time performing a first matching
attempt with the Stores in the BWS tables. This first matching sweep accepted only exact
string match between Store names, for certainty, but matched only a few percent of the
batch.

 16

Visualization Techniques for Big Data - Final Report

When implementing the Client User Interface and the corresponding Server side web
services, a couple of requirements were taken into consideration. First and most important
the implementation time had to be as short as possible and second, the application interface
would have to somehow help the user make that necessary correct decision in the smallest
amount of time possible. To achieve this, refer to Figure 6 again as it contains a screenshot
of the actual user interface, when the user opens the web application (through any web
browser) the server picks one of the still unmatched stores, calculates the Levenshtein
distance, as in Levenshtein (1966), between the name of the picked store and all the store
names in the BWS, picks the five most similar, and then sends them to the Client, ordered
by descending similarity. On the client side the Store name to be matched is displayed at the
top and then the ordered similar Store names are displayed one by one with a simple “pick”
button for each of them. As the user picks the correct name, usually the first, the client send
the information regarding the picked name to the Server where, a web service implemented
to that effect, saves the match between Store names in the Matched Store database and
updates the Unmatched Stores table with the new matching information so that this store is
not shown to the user again. At this point the cycle starts over, the Client immediately
receives the next store to be matched and the corresponding matching list.

The process described above was successful in matching most of the Store names but
unfortunately not all. Some Store names were simply too unique and unrelated with the ones
from the BWS tables. To handle these ones, an additional step was introduced using the
Google Maps Widget. The application picks GPS coordinates from the set of Stores in the
Brands Downloaded Tables, that were until that point unmatched and, by user request
moves the Map Widget location between those GPS coordinates, refer to Figure 7 for a
screenshot of a matching example using this extra step. The user would then cycle through

Figure 6 - Simplified structure of the application and scripts implemented to match
Stores present in our Sales Dataset with the Store data gathered by analysis of the source
and JSON data files of Sonae Group’s Brands individual Web Sites.

 17

Visualization Techniques for Big Data - Final Report

the still unmatched Stores names (on the bottom of the interface) and the different Map
Widget locations to determine and match the correct Stores and Locations.

This sequence of processes and steps allowed us to match 100% of the Stores referenced in
the 2 years of our Sales Dataset with the geolocation data on the BWS tables.

3.2.2. Clients Postal Codes Location Data

As mentioned in Chapter 3.1, sales records are accompanied by the Postal Code of the
Address registered with the Client Card Account of each Customer. This provides accurate
information relative to the residence location of who made which purchase and where. To
use this information in our visualization, like with the Stores, we needed to convert the
Postal Codes to GPS coordinates. The Sales Dataset contains around 180,000 unique Postal
Codes, which made it imperative that the task of identifying GPS coordinates for each of
them would be automated or in someway automatic.

It is important to mention at this point that the privacy of each client was respected, for a
better understanding of how refer to Chapter 5.3, which describes usage for this data.

Portuguese Postal Codes contain 7 numbers, divided into two groups separated by a hyphen,
and are extremely accurate, up to the door number. But despite that fact there is no free and
efficient web service or API available online to convert large numbers of Postal Codes to
GPS coordinates, with that same accuracy.

During our search we found some Web Sites, including the National Postal Service for
Portugal, that provided the conversion service through Web Forms, which would be difficult
to automate with a script and at the same time would violate the sites EULAs.

The Google Maps Geocoding service, the API we used in our implementation, provides
geocoding to GPS coordinates using the 7 digit Postal Code, but fails to identify around 5%

Figure 7 - Screenshot of the additional geo-referencing step interface, created to help
match GPS coordinates with Stores.

 18

Visualization Techniques for Big Data - Final Report

of the Postal Codes. To complement the Postal Code’s information we used the full Postal
Code Table for Portugal, retrieved from Portugal’s National Postal Service Company, to
complement the information with City Name and Province Name, increasing Google’s
identification success rate.

Other advantages favoring the Google API are its mature state of development, is free of
charge within a set of limitations and our previous experience with it made the development
more swift. As disadvantages, that affected how we modeled the application, the Geocoding
service has a daily limit of 2,500 requests per user and also a instantaneous limit of 10
requests per second. If we chose to automate the task using a single machine, running 24/7,
it would take around 60 days to complete the task, which was not compatible with our
requirements.

To solve this problem, instead of centralizing the task, we created a Web Service to which
different users can connect at the same time, using any Web Browser compatible with
Javascript. By leaving the Web Service’s page open on their browser, users will be allowing a
script to execute on their computer that will process the geocoding requests to the Google
Maps API from the users computer, until it reaches the 2,500 daily limit for this user, which
takes around 5 minutes.

The structure of the implemented application was very similar to the one implemented to
match Store names, described in the last chapter. Two control tables were created, one with
all the Postal Codes that need corresponding GPS coordinates, and the other to save the
complete information for later use, refer to Figure 8 for a more detailed description.

The progress of the full task is still managed on the Server side, but the server relies on the
connecting clients to perform the geocoding requests. As each Client connects, it sends a
request to the Server for the next Postal Code that needs identifying, the Server queries the
notfound_cps table for Postal Codes (CP1 and CP2) that don't exist in the cps_coords table,
and also that no other Client is currently processing. The Server updates the selected Postal
Code's “Requested DateTime” to keep track of timeouts and returns the Postal Code
information to the Client. The Client receives the Postal Code, City Name, and Province
Name from the Server, assembles the geocoding request using the three fields merged into a
String as Query and sends it to the Google Maps API. Upon receiving a response, the Client
forwards the relevant information to the Server, where it will be saved in the cps_coords
table in case of success.

Upon completing the each geocoding request, the Client process analyses a set of local
variables to control the time between the processing of each Postal Code, making sure it

Figure 8 - Control tables created to keep track of the Geocoding process.

 19

Visualization Techniques for Big Data - Final Report

sleeps whenever necessary to respect Google Maps daily and immediate request limits
mentioned above.

Using this implementation, five voluntary users were able to help complete the task in
approximately 15 days.

3.2.3. Shapes of OpenStreetMaps

Until now we have described how we added additional geographic information to the sales
data, but still, using that information in a visualization model without contextualization has
little to no meaning.

To provide that contextualization we collected administrative areas boundary data of
different levels, Country, Municipality (Concelho in Portuguese) and Civil Parish (Freguesia
in Portuguese). We used Open Street Maps (OSM) dowloaded data as the source of that 2

information. Open Street Maps is a non-profit foundation compiling geo-spatial data from
multiple sources and providing free access to it, aiming to support research and
development.

Several applications exist to access, visualize, filter and export OSM data, we used two in our
project. One was GIS Explorer (by BMT Cordah) which provides a GUI and is ideal to
visualize the data while at the same time filter by any of the multiple different attributes, it
also provides multiple forms of exporting selected data. The second was a command line
tool named OSMOSIS, implemented in Java and with an accessible API, which made it ideal
access the OSM data from our own Java applications. Both these applications were chosen
not only because of their features but also due to being available free of charge.

We used both these applications to export the boundary data into several “poly” files, one
per administrative zone, containing the boundary shape (or shapes) as a set of polygons in a
GPS coordinate reference.

We implemented Poly file parsing in Java, a GNU licensed file format , to enable our 3

applications to use the boundary exported data.

3.2.4. Demographic Data

One of the final features we experimented with and implemented in our visualization model
was the ability to overlay additional demographics information with the sales coverage areas
(or Heat Spots; or even Heat Zones). Crossing these two types of information might
provide invaluable information to the business decision making process, as the work of Pol
(1997) , by providing additional information about the social and economic characteristics
of both the covered and not covered areas.

 http://download.geofabrik.de/europe/portugal.html2

 https://www.cs.cmu.edu/~quake/triangle.poly.html or http://people.sc.fsu.edu/~jburkardt/data/3

poly/poly.html

 20

Visualization Techniques for Big Data - Final Report

We experimented with different styles of visualizing the demographics information, in an
attempt to determine which style provided the best aesthetics and at the same time accurate
and readable information, when blended with the sales coverage areas. The different styles
and their different implementations are described in detail in Chapter 5.7.

In terms of the demographics data, for one of the experiments we build a tailored dataset
of points in geo-space, that aggregated building locations extracted from the Open Street
Map’s data and the GPS coordinates for the Clients Postal Codes, in an attempt that the
visual representation of those points would be a relatively accurate representation of the
Countries population.

For all the other demographics representations we attempted a more general and extendable
approach. Instead of building tailored datasets with specific rendering styles in mind, we
chose a credible statistics institute, the National Statistics Institute for Portugal (INE), as a
source of accurate data, particularly because their Web Site allows users to browse and
export datasets related to several demographics variables, refer to Figure 9 for a screenshot
of the Web Site data selection user interface. We then implemented adequate scripts to parse
the default format of files exported through the web site, for datasets containing
distributions of a single variable (per dataset) over the Municipality or Civil Parish levels of
administrative zones. This would enable us to add additional demographic variables easily in
future. For the experiments described in this document we used two different demographic
datasets from INE, one with the Total Population per Civil Parish and the second the
Purchase Power per Municipality.

The Total Population variable is self explanatory and for the Purchase Power a detailed
description of its formula can be found in an extensive analysis on the subject, INE (2000).
We didn’t dwell much into to it as the variable for us represents only a relative reference of
the differences in purchasing power across the country. 

Figure 9 - INE data selection and export interface.

 21

Visualization Techniques for Big Data - Final Report

 22

Visualization Techniques for Big Data - Final Report

4. Programming models overview

Our implementation focus heavily on small programs that make the best of the parallelism
exposed by both the OpenGL and OpenCL APIs. We wont go into every small
implementation detail on the Implementation Chapter, for we would risk confusing the
readers on what is relevant or not in our implementations when compared to others. So in
order to make any implicit introduced development step, during the description of the
implementation of features, more explicit, we first would like to make a small introduction
to the modern OpenGL and OpenCL programming models. Detailing their configuration 4

steps, creation of data structures, binding of data to GPU registers and finally execution.

We hope that this information, combined with the features implementation description,
gives the reader a strong understanding of the work, left out of this document, behind each
feature.

4.1. OpenGL

First, and most importantly, OpenGL is a rendering API, and as such it’s rendering pipeline
was designed and optimized to create a 2D raster representation from geometry data
describing a 3D scene. In other words, any sort of GPGPU programming using the
OpenGL API requires deep understanding and knowledge about each of the rendering
pipeline stages and the available OpenGL data structures in order to devise an
implementation that will result in the actual succession of mathematical operations and
other transformations that are required.

Over time, the OpenGL API, as others APIs as well , evolved into reducing the process, or 5

sequence of commands, one has to issue on the CPU in order to traverse the rendering
pipeline with some input data. Nowadays the process is as follows:

- Create shader programs;

- Create and configure buffers;

- Load data into buffers;

- Connect (Bind) data locations with shader variables;

- Render (Draw Call);

When the draw call is issued, depending on the configuration of flags on the GPU registers
and the structure of the Shader Program, the data contained in the loaded and binded
buffers will traverse a particular path on the GPU pipeline. The result of a draw call has to

 Modern OpenGL usually refers to the post OpenGL 3.1 version, where the “old” fixed pipeline 4

functions were removed and developers are forced to use only shaders. Other authors also like
to consider the Modern OpenGL as the post 3.2 version, where geometry shaders were
introduced.

 See the motivation behind the implementation of Mantle, Metal and Vulkan.5

 23

Visualization Techniques for Big Data - Final Report

be saved somewhere, usually the Screen Buffer, but this also is configurable by the user,
enabling more control over the data flow, as we will show later.

Shader is a computer program which purpose is to produce shading, the production of
appropriate levels of color within an image. In computer graphics this process involves
several steps, and consequently several types of shaders. And its important to understand
the different types, as for each, data is inputed in a particular way (or ways), different native
functions are available, the number of times they execute are dependent on different factors
and finally each outputs different data. Synthesizing the characteristics of the shader
program types we use, we have:

- Vertex Shader (VS): it executes once for each vertex, independently of the primitive type
(points, lines, triangles, among several others). It has access to the vertex data structure,
which is configurable, and outputs a similar (or not) data structure per vertex (output
structure also configurable). In typical rendering scenarios this is where projection of
vertices is computed. The vertex shader has limitations regarding data structures and built
in functions. Can output directly through Transform Feedback (TF) into a buffer, refer to
Figure 10.

- Geometry Shader (GS): it executes once per primitive. This is arguably the most flexible
shader type as it enables access to textures and gives the developer the ability of
specifying the primitive type of primitive that each execution will have access too.
Primitives can be points, lines, lines_adjacency, triangles or triangles_adjacency. Usually is
used for generating geometry from the input data. It outputs (also configurable) points,
line_strip or triangle_strip. The GS, like the VS, can output data directly through TF.

- Fragment Shader (FS): it executes once per generated fragment. It receives some built in
computed variables, related to the fragment, such as the coordinates in windows space, if
its front facing and it position relative to the pixels center. Additionally it receives
interpolated values, and their derivatives (through built in functions), of the vertex
geometry information that generated the fragment. The FS outputs a Color vec4(r,g,b,a),

Figure 10 - Diagram of the most important stages in the OpenGL 4.0+ pipeline.

 24

Visualization Techniques for Big Data - Final Report

and, if not overwritten by the shader execution, it also automatically computes and
outputs the fragment depth and a sampling mask for multisampling.

A Shader Program (SP) consists in one or more shaders which together form a valid
structure in conjunction with the pipeline, defining a path in the pipeline from input to
output. In other words, an SP cannot consist in two FSs, as there is no path in the pipeline
where data can be inputted directly and, more importantly, no path from one Fragment
Shader to another. So Shader Programs can consist of VS>TF, VS>GS>TF, VS>GS>FS,
among others, as long as they form a valid configuration.

Figure 11 shows how the most basic pipeline configuration processes vertices data into a 2D
raster image. And below in Figure 12 we can see a slightly different pipeline “path”, this time
including the Geometry shader stage. (shaders)

Besides the binded buffers of vertices data that inputed to the Vertex Shader, and the
Texture objects we mentioned so far, OpenGL provides a special variable qualifier
“uniform”, named this way because uniform values don’t change from one shader execution
to the next within the same render call. Uniforms act like shader parameters that are easily
manipulated in CPU code between render calls. Uniforms, for instance, help specify
parameters defining different shader behaviors without the necessity of a different shader
for each behaviors. Textures for instance are Uniforms.

Figure 11 - Simplified rendering pipeline model, with vertex and fragment shader stages.

Figure 12 - Simplified rendering pipeline model, with vertex, geometry and fragment
shader stages.

 25

Visualization Techniques for Big Data - Final Report

4.2. OpenCL

OpenCL, like OpenGl, OpenAl and others, is an open standard maintained by the non-
profit technology consortium Khronos Group. OpenCL is a GPGPU framework, and
allows for writing programs that execute across heterogeneous platforms consisting of
different types of processors (CPU, GPUs, among others). In this document we will focus
only on GPUs.

OpenCL provides a top-level abstraction for low-level hardware routines, that allows
developers to make the best of modern GPU hardware architectures, to run massively-
parallelized programs, usually name as OpenCL Kernels. A Kernel is a program that is
tailored to execute multiple times in parallel to complete a job . 6

4.2.1. Architecture

OpenCL architecture is structured in what we might call levels, and we will give a brief
description of each, as to understanding each and its relation to the others, helps understand
how to setup execution of Kernels (more on this later), and how that execution is
performed in the GPU. The levels are as follows:

- Compute Device (CD): a compute device is for all effects and purposes an individual
processing unit, for instance the CPU is a CD and also, the GPU is a CD. A Kernel job
can be distributed over several devices.

- Compute Unit (CU) (also called Execution Units (EU)): A CD has one or more CUs and
contains one or more (usually more) processing elements. Processing elements in each
CU share part of the hardware’s memory and computational units.

- Processing Elements (PE): The processing elements are the lowest differentiable
processing level, effectively where each kernel execution happens.

Note the vague description for Processing Elements, for these the documentation found on
the internet can get a bit misleading sometimes and confusing. Particularly because the
specific definition of what a Compute Unit is, varies from vendor to vendor. On Intel for
instance, CUs, or EUs are Simultaneous Multi-Threading (SMT) compute processors that
drive multiple issue Single Instruction Multiple Data Arithmetic Logic Units pipelined for
high throughput floating point and integer compute. In numbers, for the 7.5 generation of
processors, each EU has 7 SMT processors, and a pair of SIMD FPUs . Each FPU is 7

capable of SIMD execute up to four 32-bit floating point (or integer) operations, or SIMD
execute up to eight 16-bit integer operations. The SIMD-Width, calculated from the number
of operations that one FPU will be able to execute simultaneously, for instance 4 32-bit
operations equals a SIMD-4, is defined by the compiler and relative to the kernel being

 A job in OpenCL, refers to the total work to be performed by a kernel when enqueued for 6

execution. The job size is in effect the number of independent work-items that will have to
execute in total, to complete the designated task.

 Although called FPUs they perform float and integer operations.7

 26

Visualization Techniques for Big Data - Final Report

executed, will ultimately set the number of kernel instances that can run concurrently. For
instance for a SIMD-16 compile of a kernel, it is possible for SIMD-16 x 7 threads = 112
kernel instances to be executing concurrently on a single CU (or EU).

Fortunately for developers, OpenCL API provides abstraction from this vendor specific
differences in hardware architectures. OpenCL works with the concept of job dimensions, a
one dimensional job of 1000 items means that, to execute the job, there will be 1000 kernel
executions. One can relate job dimensions to dimensions in an array, picture a two
dimensional array (100x100) for which we need a kernel that at each execution substitutes
one value of the array for it power of two. We could issue this job with OpenCL as a 1-D
job of size 100x100=10000 or we could issue a 2-D job of size 100x100, the later being the
more advisable. The job dimensions will then be used to distribute the individual executions
as Work-Items, refer to Figure 13, into Work-Groups. The grouping of individual work-
items is constrained by the hardware characteristics but also by each individual kernel’s
requirements, both in terms of processing and memory. Like we’ve seen before, a kernel
that only performs 16-bit integer operations might be able to execute more times
concurrently on certain hardware.

OpenCL provides methods to query each device for their characteristics, for instance the
maximum number of compute units or the maximum number of work-items per work-
group, and also to perform queries relative to each’s kernel compiled code, for instance the
kernel group work size and the kernel preferred work-group size multiple. Developers don’t
really have to work with this information to simply execute a kernel, but they are crucial
when it comes to optimizing that execution.

Figure 13 - Simplified Mapping of OpenCL onto a GPU device (source AMD 2013).

 27

Visualization Techniques for Big Data - Final Report

Like we see in Figure 13 (bottom), maximum occupancy of a device occurs when every
possible work-item is occupied , and also when every CU is also occupied. When the 8

developer want’s to issue a job using a kernel, it must specify the jobs dimensions and the
global size on each of those dimensions, for example purposes lets say a 1D 100 item job
(follow the visual description of the example in Figure 14), and then he might specify
himself a local size (work-group size), of which the global size must be a multiple, or he might
let the API pick a local size for him. And lets consider also that for this kernel, he has a
maximum work-group size of 7 and also the CD has 4 compute units available. The best
work size, which the API itself would probably pick, would be 5, and 5x20=100, so we will
need 20 work-groups of 5 work-items each. As the device as 4 CUs, 20/4=5, means the
device will run the same kernel 5 times, using all compute units, each compute unit with 5 of
the 7 possible threads busy, ≈72% occupancy. A very bad occupancy rate one might say.

Optimizing the example above could be done by finding the next multiple of 7 that contains
the job's global size, which would be 105, and also introducing a condition on the kernel
code that confirms its position inside the “original” global size (100), or else it does not do
nothing. By setting the global size to 105, the API would be “able” to pick 7 as the work-
group size, and thus as 105/7=15 a total of 15 work-groups. As in the example there were 4
compute units, 15/4=3.75, meaning a total of 4 executions, 3 of which would have 100%
occupancy and the last only 75%. Still much better than the previous solution, and as 25%
free, equals a whole compute unit, the developer could issue another kernel at the same time
that would execute simultaneously.

Other optimizations exist, all dependent of the developers knowledge of how the OpenCL
framework works and also the capabilities, functionalities and optimizations hardware

Figure 14 - Example of usage of “dummy” threads in the queueing of OpenCL kernels
to optimize execution.

 Remember that different kernels might allow for different amount of work-items per work-group.8

 28

Visualization Techniques for Big Data - Final Report

implementations, in general, have. In Chapter 5.5, where we describe our OpenCL
implementation we present a different method of optimization for concurrent memory
accesses from work-items.

4.2.2. OpenCL C

We mentioned before how the number of work-items per work-group is dependent not just
on the device characteristics but also the kernel. The type of operations the kernel executes
influence this, but also the local and private memory each kernel execution requires.

Memory hierarchy in OpenCL is divided in four-levels:

- Global memory: shared by all work-items, slowest;

- Read-only memory: smaller, faster, writable by the host CPU but not the work-items;

- Local memory: shared by the work-items of a work-group;

- Per-element private memory (registers).

The programming language used in kernels is called OpenCL C and is based on C99.
Memory buffers kernels have access to reside in specific levels of the memory hierarchy, and
pointers to those buffer are annotated, in the kernel codes arguments and variable
definitions, with the region qualifiers __global, __local, __constant, and __private, reflecting the
levels described above.

OpenCL C was extended to facilitate the use of parallelism with vector types and
operations, synchronization, and functions to work with work-items and work-groups. We
will briefly describe the most important ones, which are crucial for work-items and job
synchronization.

Unarguably the most important for parallelization of tasks, in our opinion, is the
get_global_id(int dimension) function, which lets each kernel execution to know its index in the
job. An analogy with CPU code is the iterator variable in a for loop, that is incremented at
every loop and used inside the for block to manipulate the correct data. The dimension
argument in the function refers to the dimension for which we want the global id of this
work item.

Work-items can be synchronized by introducing “locations” in the code that every work
item has to reach before any of them can go past it. This is done with the barrier function
which takes as argument one of two constants (CLK_LOCAL_MEM_FENCE,
CLK_GLOBAL_MEM_FENCE), which specify if the barrier is local or global. This can
useful for instance when work-items, for example, write to a buffer and then want to read
from it, making sure every work item has finished writing.

Its important to notice while OpenCL allows for conditional divergence between work-
items, it should be avoided when possible, for optimization reasons. Divergence between
work-items in GPU hardware is usually resolved by having work-items follow both possible
paths, due to the optimizations introduced in thread managers for high throughput

 29

Visualization Techniques for Big Data - Final Report

streaming of threads, as suggested by multiple introductory documents to the OpenCL
programming model, for example the work of Tompson (2012) provides a good insight on
the topic.

As we mentioned before, local memory is shared between work-items, this, depending on
the Device available memory per compute unit and the memory each work-item will require,
influence the number of work-items that can run concurrently on each compute unit.
OpenCL provides built in functions to help manage work-items access to this local memory,
namely functions like get_local_size(int dimension) and get_local_id(int dimension), the former give
the number of work-items in the work-group per dimension, and the later the position of
this work-item in the local dimensions.

In Chapter 5.5 we will show examples of these functions usage.

4.2.3. OpenCL/OpenGL interoperability

A crucial feature for our application’s performance is the interoperability between OpenCL
and OpenGL, by sharing buffer and textures.

Without the ability to create and/or manipulate data in OpenCL and then use it immediately,
data would have to be copied to the CPU after the OpenCL operations and then uploaded
back to video memory, onto OpenGL buffers. This operation is performed over the PCI
Bus and not fast enough to be a per frame operation, not just in speed but in latency.

 30

Visualization Techniques for Big Data - Final Report

5. Implementation

This chapter presents detailed descriptions of each of our implementation steps towards the
realization of a multi feature data visualization application and its graphical user interface.
Bear in mind that some of the implementations steps described were merely experiments,
performed for different reasons, either to test the feasibility of an idea or to test if a
different technique presents better results.

We attempted to organize this chapter by aggregating implementations regarding the same
or similar features, and at the same time keep the order as approximate as possible to the
chronological order by which each of the features were implemented.

First, in chapter 5.1 we detail our database structure, data import scripts and any other step
taken towards making the Sales Dataset accessible to our application. In chapter 5.2 we
address the map projection we used to project all our spatial information in GPS
coordinates onto a 2D plane in a 3D space, and then onto the 2D space of the computer
screen.

We then enter the actual implementation of the visualization model. Starting with the
implemented approach to create the geographic heat zones on chapter 5.3, and then in
chapters we 5.4 and 5.5 our two different implementations of the accumulation of values
per heatmap item, using the Graphics API and the OpenCL API respectively. Past the
computational processes we enter the implementation of the more visual elements, starting
with the actual coloring of the geographic heatmap when drawn onto the Screen Buffer in
chapter 5.6

In chapter 5.7 we describe the different methods we implemented to display the
administrative and demographic information, and finally in chapter 5.8 we briefly describe
other additional features implemented.

To help visualize where in the structure of the application each implemented feature fits, we
included Figure 15, in the next page, that provides an overview of the most relevant
elements implemented, and which are described during this Implementation chapter. We
chose a flow diagram to include and give a sense of the actual cycle happening at each
frame.

 31

Visualization Techniques for Big Data - Final Report

Figure 15 - Minimalist view of the steps relevant to the creation, management and
drawing of the information visualization model components. On the left the thread
responsible for Database connection, Data Files reading and parsing/streaming the data
to Thread2. On the right the thread responsible for uploading new data to video memory,
execute operations kernel programs, draw the correct information to pre-buffers (FBOs)
and finally draw the information as layers onto the Screen Buffer. Notice that the main
cycle presented in Thread2 is our per frame cycle, which we will refer to as Render Cycle
also.

 32

Visualization Techniques for Big Data - Final Report

5.1. Database and Data Stream

Providing the data to the application at high data transfer rates and with short delaying times
is dependent of multiple factors. For instance the data base configuration, its structure, but
also the application’s implementation it self, as to receive data at high data rates, one has to
parse it also at high rates.

5.1.1. Database Configuration and Structure

For our MySQL implementation we opted for innoDB as our database storage engine, our
choice was based on Oracle’s MySQL documentation, Oracle 2015 (Storage Engines), and
on the work of other researchers regarding database comparison as the ones of Tudorica
(2011) and Rabl (2012). Based on these documents, not only does innoDB present better
performance results, when compared to other engines, on read intensive operations, it also
has features that make it a reliable database engine. Such features include Transactions, row
level Locking granularity and is full ACID compliant (Atomicity, Consistency, Isolation,
Durability), among others.

We also relied on suggestions from the authors mentioned above, and the documents from
Oracle’s MySQL documentation regarding innoDB configuration, Oracle 2015 (InnoDB
Configuration), and innoDB configuration optimization, Oracle 2015 (Optimizing
InnoDB),, to balance our cache and read-ahead settings into using the 8Gb of RAM
available in our database server, increased the number of maximum threads to make the best
of our 8 core database server CPU and set the engine to save one individual table per file.
Our first tests indicated these were enough to achieve the data transfer rates we needed
while reading data, around 15Mb per second over Local Area Network (LAN).

In order to devise a structure for our database we had to take into consideration the
posterior analysis we wanted to perform on it. In other words, due to the number of records
present in our data set, we had to devise a structure to hold our data that would not only
divide the data into smaller chunks in order to boost query performance but at the same
time not divide past a point that would demand for increasingly complex queries in order to
perform analysis and comparisons between significant groups (e.g. comparisons with data
grouped by Hour).

Grouping the data in time, considering the data regards sales, seemed to make more sense
that grouping by any other Variable. Not only would it allow for grouping into smaller
chunks than with other Variables, but also would maintain most of the structure of the
original data while at the same time still allow for analysis performed with data grouped by
other variables. Dividing the data by Day, refer to Figure 16, also allowed to drop the
variable Date since its value became implicit for each of the different tables, removing the
necessity for its indexation. At the same time, enabling the MySQL option to save one table
per file ensured that parallel access to multiple days would not block due to concurrency.
This produced tables with around 3.8 million records each.

 33

Visualization Techniques for Big Data - Final Report

The data import step was actually divided into two separate steps for performance purposes,
around 6 hours per month instead of over a day. The first step was to perform a direct
import of the data in the files without parsing data types, and the second step copied the
data from the imported data onto a new table with correct data types, performing the
conversion during the copy process. In Sources 1 and 2 below we present the queries used
to perform those tasks.

Figure 16 - Distribution of records in the database, one Database table per Day.

�

May 2014

1
May
2014

2
May
2014

3
May
2014

30
May
2014

31
May
2014

…

First import table creation query

CREATE TABLE `pur201401` (
`TIME_KEY` varchar(30) DEFAULT NULL,
`LOCATION_CD` varchar(5) DEFAULT NULL,
`LOCATION_DSC` varchar(30) DEFAULT NULL,
`SKU` varchar(20) DEFAULT NULL,
`TRANSACTION_HOUR_KEY` varchar(30) DEFAULT NULL,
`POST_CD` varchar(10) DEFAULT NULL,
`CUSTOMER_ACCOUNT_KEY` varchar(30) DEFAULT NULL,
`NET_SLS_AMT_EUR` varchar(10) DEFAULT NULL,
`QTY` varchar(10) DEFAULT NULL,
`PROD_DSCNT_ISSUED_AMT_EUR` varchar(10) DEFAULT NULL
) ENGINE=innodb DEFAULT CHARSET=latin1;

Import from file query

LOAD DATA INFILE '/home/sonae/datafile.csv' into table pur201401
FIELDS TERMINATED BY ';' ENCLOSED BY '"'
LINES TERMINATED BY '\r\n'
IGNORE 1 LINES;

Source 1 - Table creation query for the first table where imported data is stored, on top.
In the bottom the import query.

 34

Visualization Techniques for Big Data - Final Report

5.1.2. Data Stream Parsing

In the application side, we use an independent thread to query, receive and parse the data.
We chose to implement a separate thread to minimize the impact in the visualization’s
performance, of the process of receiving the data and saving it into CPU memory.

Both threads are synchronized and exchange data. The visualization thread continuously
provides and switch a buffer to the parsing thread on which it saves the received
information. The visualization thread is then responsible for uploading the values to the
GPU memory where they will be processed.

The Data Stream Parsing thread is also responsible for gathering data about clients and
stores from the database and supply it to the visualization thread.

The passage of time, with which the parsing thread throttles the stream, is supplied by the
visualization thread for consistency purposes.

Correct data types table creation query

CREATE TABLE `dia20140427` (
 `TIME_KEY` date DEFAULT NULL,
 `LOCATION_CD` int(11) DEFAULT NULL,
 `SKU` varchar(20) DEFAULT NULL,
 `TRANSACTION_HOUR_KEY` time DEFAULT NULL,
 `POST_CD` varchar(10) DEFAULT NULL,
 `CUSTOMER_ACCOUNT_KEY` varchar(30) DEFAULT NULL,
 `NET_SLS_AMT_EUR` float DEFAULT '0',
 `QTY` float DEFAULT '0',
 `PROD_DSCNT_ISSUED_AMT_EUR` float DEFAULT '0',
 KEY `location_cd_dia20140427` (`LOCATION_CD`),
 KEY `location_cd_hora_dia20140427`
(`LOCATION_CD`,`TRANSACTION_HOUR_KEY`),
 KEY `hora_compra_dia20140427` (`TRANSACTION_HOUR_KEY`),
 KEY `sku_compra_dia20140427` (`SKU`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Copy and parse data types query

INSERT INTO parsed201401 (TIME_KEY, LOCATION_CD, LOCATION_DSC,
SKU, TRANSACTION_HOUR_KEY, POST_CD, CUSTOMER_ACCOUNT_KEY,
NET_SLS_AMT_EUR, QTY, PROD_DSCNT_ISSUED_AMT_EUR)
SELECT TIME_KEY, LOCATION_CD, LOCATION_DSC, SKU,
TRANSACTION_HOUR_KEY, POST_CD, CUSTOMER_ACCOUNT_KEY,
CAST(REPLACE(NET_SLS_AMT_EUR, ',', '.') AS DECIMAL(20,4)),
CAST(REPLACE(QTY, ',', '.') AS DECIMAL(20,4)),
CAST(REPLACE(PROD_DSCNT_ISSUED_AMT_EUR, ',', '.') AS DECIMAL(20,4))
FROM pur201401;

Source 2 - Table creation query for the table where the copied data with correct data
types will be saved, on top. In the bottom the query that copies the data and casts correct
data types.

 35

Visualization Techniques for Big Data - Final Report

5.1.3. File system day exports

To eliminate the mandatory network access to the database, source of the visualized data,
we devised a simple way of using a file reader stream as a simulated database stream,
allowing us to export data files (CSV format) relative to days, pack them along side the
application in a Folder, inside the application file structure, specific for that purpose.

Using the SSD of our test case hardware, the file solution is performant enough, even
considering the additional resources used, that the network solution.

5.2. Projections

Has we have seen so far, all our spatial data comes from real word locations in geographical
space, more exactly GPS coordinates. GPS coordinates map points on the surface of a
sphere through two angles, latitude and longitude. To create a visualization using this
geographical information we have to transform the data points, first onto a 2D plane in a
3D space using a Map Projection, and finally onto the 2D pixel space of the screen, as
Figure 17 depicts.

5.2.1. Geo-Projection

There are several different map projections to choose from, too many to reference here. No
map projection is ideal, each map projection preserves a different property but consequently
others are distorted. Map projections fall in one of the different categories, either preserving
direction, shape, area, distance or shortest route.

Figure 17 - Projecting From GPS coordinates to Screen Space

 36

Visualization Techniques for Big Data - Final Report

Considering that our final use for the shapes and points is a Data Visualization application,
and one that will also perform blending of circular areas on top of the geographic
information, we opted for the Mercator Projection, as seen in Feeman (2002, chapter 9), as it
preserves angles and shapes. Unfortunately the Mercator Projection does not preserve areas,
areas get distorted the most the furthest away from the equator. This effect is most noticed
in maps showing huge areas or even the entire world. When used to visualize a small area
like Portugal, the relative distortion is almost negligible.

The Mercator projection if given by Equation 1 and 2, where λ is the longitude and ø the
latitude. λo is an arbitrary longitude where to center the x origin.

5.2.2. Projection Matrix

Computer screens are flat, 2D surfaces. In OpenGL, the actual 3D space rendered to the
screen, ranges in all 3 axis (x, y, z) from -1 to 1, in other words, a cube of 2 unites in size
centered at the origin (Clipping Space). Everything that falls outside this cube is discarded
(clipped). Everything that falls inside the cube is projected onto a 2D rectangle equally
ranging from -1 to 1 in both x and y axis, which represents the screen space (more accurately
the Viewport Space).

Yet, usually application’s 3D space does not fall in the range -1 to 1, and many times the
application Point Of View (POV) is not fixed, like with a real world camera it can move and
rotate. Even objects in this 3D space can rotate or move independently of each other,
defining its own Space where its vertices reside.

(1)

(2)

Figure 18 - Model View Projection Matrix transformation to Clipping Space and Clipping
Space Projection onto the 2D Screen Space

 37

Visualization Techniques for Big Data - Final Report

This series of projections, from Model Space to World Space, then to Camera Space and
finally to the Clipping Space, is usually called Model View Projection (MVP), refer to Figure
18 for a visual overview. Projection onto each of these Spaces is done by multiplying vertex
coordinates (x,y,z,1) with a [4x4] matrix that defines the scaling, rotation and translation
transformation that project the vertex onto that Space.

In our implementation all points that originated from geographical data share an identical
Model Matrix. Identical and not “the same” because our implementation allows for
manipulation of an individual Mesh’s Model Matrix (Mesh as in a group of vertices all
hierarchical descendants of the same object). In our implementation Model Matrices were
used for Scaling and Translating purposes.

Regarding the View Matrix, as our application is essentially a 2D Visualization the virtual
camera never performs rotations or tilts, instead we used the View Matrix to pan and zoom
the visualization, essentially Translation.

Last, the Projection Matrix, which defines the shape and size of the actual viewable space, is
where we one might consider we chose oddly. Being essentially a 2D Visualization there is
no reason to opt for other than an orthogonal projection, yet, considering there was no
advantage over a perspective projection, regarding our application, we opted to leave a door
open, building our implementation around a perspective projection, allowing for any future
feature that might take advantage from it. We used a perspective projection while rendering
all objects except for the ones composing the User Interface, for which we used an
orthogonal projection. An orthogonal projection while designing the User Interface allows
for precise positioning of elements relative to the Viewport Dimensions.

The detailed description of how to calculate each of these projection matrices is given by
Ho (2015). Equations 3 and 4 are the equations we used in our implementation, where n is
the near plane distance, f the far plane distance and r, l, t, and b the rightmost , leftmost,
topmost and bottommost coordinates respectively.

Perspective Matrix =

(3)

��

�
�

��

��

��

�
�

��

��

 38

Visualization Techniques for Big Data - Final Report

Example implementations can be found all over the internet, as these equations have been in
use since development of 3D computer graphics started. The most significant source of
such and other very useful implementations, as we will see later, is the GLUT source code,
as seen in GluProject (2015), used as support library back when OpenGL fixed pipeline was
still in use.

5.2.3. Un-project

Un-projection , as suggested by the name, is the act of performing projection from the 2D 9

Screen (our projecting target surface when rendering) to the 3D world (which we projected
from). This is useful to convert a specific coordinate in Screen Space, the mouse position for
instance, to World Space, allowing for mouse input interaction with the rendered objects.
Still un-projection is just one of the steps as we will see in Chapter 5.8.3 where the User
Interface implementation is described.

The un-project step it self is not a direct point to world coordinates direct transformation
either. Screen Space is defined in 2D, consequently excluding any depth information
necessary for the complete un-projection. To circumvent this issue we use the knowledge of
both the near and far planes from the Clipping Space as two known depths, giving us two
points that when un-projected define a line segment that transverses the 3D World space,
refer to Figure 19. This segment is usually called a Ray, and can be used to test for geometry
interceptions, more on this later in Chapter 5.8.3.

Orthogonal Matrix =

(4)

��

��

��

��

��

��

��

�
�

Figure 19 - Un-projection resultant line segment, still in Projection Space.

 Un-projection, to differentiate from the inverse of a projection, a term used in the Glut 9

implementation.

 39

Visualization Techniques for Big Data - Final Report

To un-project each of the points we first set the z coordinate of each of the points to the
corresponding z values of the near and far clipping planes, -1 to the near plane and 1 to the
far plane. Then we calculate the inverse of the MVP Matrix (iMVP) and transform both
points using the iMVP. Finally we multiply each of the x, y and z components of both
points by the multiplicative inverse of the each’s w component.

5.3. Geographic Heatmap Concept and First Approach

A Heatmap, or Pixel Heatmap to differentiate from other types of heatmaps, is a graphical
representation of data where values of individual items are represented as color, in a one or
two dimensional space usually discretized by item. This concept in computer graphics is
equivalent to the representation of individual values with the color of each pixel of a 2D
texture.

In a Geographic Heatmap, the 2D space of the texture is mapped to real world space,
usually in one of two ways. The first is by discretizing the space, defining a minimum unit
(squared usually) and paint the geographic space, square by square, according to the values
inside each square. Almost like overlaying a pixel heatmap on top of the geographic space,
refer to Figure 20 left. And the second consists in coloring the map continuously in world
space, using the registered values as centroids of heat zones that spread outwards according
to a specific mathematical function, usually Gaussian, refer to Figure 20 right.

Figure 20 - Two different rendering types of geographic heatmaps. On the left
discretized units, on the right continuous coloring.

 40

Visualization Techniques for Big Data - Final Report

Considering that our Sales data does not relate to the geographic space itself but to
individual Stores, it would made no sense do discretize the space and represent different
accumulated sales through squared areas on the map, as each squared zone value would have
to still be interpolated from the Store sales and locations. Instead, in this first approach, we
chose the Stores as our discretized abstract units, calculating the heat value and its decay per
Store from the Sales happening in that Store. In other words we used the Store locations as
our Heat Centroids and distribute the Heat Value of each Store continuously, in the
geographic space around the Store using a 2D Gaussian function. The Heat Value was used
both for the Amplitude and Spread of the Gaussian distribution. See Equation 5 for the 2D
Gaussian function, where A is the amplitude, σ the spread of the blob in the x and y
dimensions and notice its centered at coordinates (0.5,0.5).

The reasoning for this approach is that, in terms of coloring this conforms with the usual
approach, differentiating zones of greater accumulation through the use of color, and in
terms of the size of the affected heat area, we emulate the idea that usually Stores with
greater sales values service bigger areas, and consequently present a visual approximation of
the serviced areas.

If we were to implement the rendering of the geographic heatmap by going through each
pixel of the area being visualized we would have to, not only perform calculations for pixels
outside the influence area of any Centroid (empty pixels), but also, for each pixel we would
need to calculate distances to each of the centroids to determine its contribution to that
location.

Instead, our implementation takes advantage of the fact that Store locations are distinct
from each other. By defining a bottom threshold for the 2D Gaussian function beyond
which its values are ignored (equal zero), we can calculate the size of the area each Centroid
will affect. With that information we can map triangles to cover those areas and limit the
rasterization to the surface of those triangles, therefore minimizing the number of
processed pixels. Regarding the dispersion, σ in Equation 5, we chose a value of 0.1443, to
scale the dispersion of values to the Texture Coordinates Space. See Equation 6 for the
adapted 2D Gaussian function.

To implement this using the OpenGL API we created a three shader pass with a Vertex
Shader (VS) to perform vertex projection transformations, a Geometry Shader (GS) to
generate the triangles that cover the heat areas and a Fragment Shader (FS) to color those
triangles. Refer to Figure 21 for an overview of the full process. From this point forward we
will refer to this Shader Program (VS + GS + FS) GeoGauss Program.

(5)(())

{
z=exp(-(24*x2 + 24*y2)) ,exp(-(24*x2 + 24*y2))≥0.01 (6)
z=0 ,exp(-(24*x2 + 24*y2))<0.01

 41

Visualization Techniques for Big Data - Final Report

To achieve this we first stored our Store location information using a Vertex Array Object
(VAO), where each vertex structure is composed of a Position followed by
TextureCoordinates. The Position is the Store location coordinates after the Mercator
Projection and the TextureCoordinates are used to map each Store to a unique (one per
Store) position inside a Texture. The Heat value of each Store is stored in the color
information of that Texture(s), not the vertex structure. On chapter 5.4 we provide
additional justification for this choice of vertex structure. All this information stored using
the VAO is constant and once uploaded to the Video Memory once, it is never uploaded
again. Also the vertex elements are Indexed, Draw calls are made referencing the index
buffer and as GL_POINTS, to conform with our implemented GS input output settings.
The indexing allows us to filter stores during the draw calls without changing the VAO
information, by defining and using different index buffers.

After the vertices projection transformations in the VS stage, as described in chapter 5.2.2,
they are outputted to the GS stage. The GS executes once for each vertex, first the Heat
value is fetched from the Heat Texture using the vertex Texture Coordinates, and used to

Figure 21 - Description of the Draw Pass used to render the geographic heatmap. A
Geometry Shader generates Quad geometry, one Quad per Store location. Quad sizes
vary according to the accumulated value for the Store fetched from the Heatmap Texture.
The fragment shader colors each Quad according to the 2D Gaussian Function, centered
at texture coordinates (0.5, 0.5) and with an amplitude value fetched from the Heatmap
Texture.

 42

Visualization Techniques for Big Data - Final Report

determine the size of the Quad (2 triangles forming a square) that must be generated,
according to Equation 7, where value is the value for this Store and maxValue the maximum
value between Stores. The GS generates and outputs 2 triangles per Store, but only if this 2
triangles are not completely outside the current FOV, to avoid unnecessary processing. The
outputted triangle primitives will then enter the Rasterization stage where the rasterization
process generates fragments to be processed, per-fragment, in the FS stage.

The vertices that compose the triangles were given positions by the GS, but also
TextureCoordiantes. The FS is then responsible to calculate the 2D gaussian value for each
fragment using Equation 6, with the TextureCoordinates(s,t) as (x,y), assigning the result
value to the red component of the fragment color.

The Quads generated by the GS are drawn one after the other, many times overlapping each
other. We want the value distributions of each Quad to add to each other and to do this
easily we use the GL_BLEND functionality of OpenGL with the necessary settings
presented in Source 3.

The target of this render pass is a Framebuffer Object (FBO), effectively a Texture, that will
later be drawn to the Screenbuffer overlaying the Map Layer (more on that later). This
allows us to quickly switch the FS that maps the calculated values to real colors on the
Screen. Our first implemented FS for this job used the normalized values to pick a color
from a color map Texture, refer to Figure 22 left, on the right the first rendering result we
obtained.

(7)

�

Setup GL_BLEND

glEnable(GL_BLEND);	
glBlendFunc(GL_ONE,	 GL_ONE);	
glBlendEquation(GL_FUNC_ADD);

Source 3 - On top, the GL_BLEND configuration for geographic heatmap drawn,
blending the quads with each other by adding values. On the bottom the resulting color
blend equation.

 43

Visualization Techniques for Big Data - Final Report

5.4. Pixel Heatmap - Graphics API

In the previous chapter we mentioned the Heatmap Texture a couple of times, without
going into much detail about what it is, how it is calculated and why we used it. We chose to
separate its description into more than one chapter because of how relevant this feature is to
the whole visualization model and because we implemented its calculation using two quite
different methods, which could cause some confusion.

We could have added additional attributes to the vertex structure to store the Heatmap
accumulation values, but manipulating that information and being able to loop it over and
over through the Graphics Pipeline while minimizing data transfers between the CPU and
GPU would require additional calculations on both parts. On the GPU end we could use the
Transform Feedback feature to perform Vertex Buffer Object (VBO) to VBO operations,
still, as the resulting VBO would be used in the next Draw cycle and therefore effectively
replacing the first one, every Store would have to be processed each time to avoid “losing”
Stores between cycles, but also no more than one time, as having the same Store two times
with different accumulation values would make no sense. That would require additional
calculations to be performed on the CPU side as well, recreating and scanning the Store
array between each Render Cycle.

Textures on the other hand are quite versatile. They are accessible in both the Geometry and
Fragment shader stages, their inner datatype can be chosen to fit the intended purpose and
they can also be bounded as Render Targets, through the Framebuffer Object (FBO)
functionality.

So, this provides an easy way to save the accumulated values when the texture is the render
target and use them as input during the GeoGauss Program. The Texture has to be big
enough to fit the Stores, we use the square root of the number of stores to determine the
appropriate minimum number of cols and rows of pixels needed in the Texture. For
instance for 702 stores, the square root is approximately 26.5, the Texture size would be
27x26. Refer to Figure 23 for a visual description using the stores heatmap texture as
example.

Figure 22 - On the left our first color mapping Texture for the values calculated during
the Quad generation process, on the right our first rendering result.

�

 44

Visualization Techniques for Big Data - Final Report

Now we are just left with the “how to” manipulate the values inside the texture, add to them
as new value arrive from the database and perform a continuous small decay of the all the
value over time. To achieve this we first, when the application loads, fill in an Array of
custom tailored Vertices, one for each Store, with their positions mapped onto the Texture
Space, in a way that each Store lays on top of one unique Texture pixel. When the CPU
receives Sales values from the database stream, it Clones the Vertex corresponding to the
Store where the Sale occurred, sets the value of the Sale in the red component of the Vertex
color, and then adds that Vertex information to a Vertex Buffer Object (VBO). There are
two VBOs for this process, used as a double buffer, whenever a new render cycle starts, or
the VBO is full (never happened), VBOs are switched. If several Sales are present for the
same Store, there will be one Vertex per Sale for that Store, which will not cause a problem
and the addition is shifted to the GPU as we will see. When the VBOs are switched, the
“full” VBO is uploaded to Video Memory and is CPU memory cleared when finished.

To render, and effectively add, each of these Vertices, that represent values that correspond
to Sales in Stores, we implemented a simple Shader Program, that we will call HeatmapAdd
Program, constituted of a Vertex Shader that passes Vertices directly forward in the graphics
pipeline, without any transformation, and a Fragment Shader that simply outputs the Vertex
Color. Figure 24 presents an abstract representation of the blending process onto the
heatmap texture. The mechanisms and properties that are responsible for the correct
addition of the Values are external to the Shaders themselves, one is the positioning of the
vertices “above” the specific pixel of the corresponding Store, in the center of the pixel to
be more exact, also the transparency of the vertices allowing for blending calculations,
drawing the Sales vertices as GL_POINTS 1 pixel in size, and choosing the correct
GL_BLEND equation and function. The blending configuration used to add the values is
the same present in Source 3.

Figure 23 - HeatTexture structure. Real colors were inverted.

 45

Visualization Techniques for Big Data - Final Report

Another majorly important step in the heatmap process is the Decay step, where instead of
adding to the Texture we will subtract a value, decaying the current values in each store
linearly in time. We achieve this by performing a draw pass, where we draw a single colored
transparent Quad (2 Triangles) covering the whole Texture, using the exact shader program
as on the Add step but with different GL_BLEND configurations, see Source 4 for the
detailed equations, that will in effect configure the blending process to subtract a value
specified as the color of the Quad to the value of the destination Texture.

These two successive steps run in a cycle, starting with the upload to the Video Memory of
values retrieved form the database stream relative to Sales in Stores, executing the Add step
that add the newly uploaded values to the HeatTexture, execute the Decay step to linearly
reduce the accumulated values in order to provide a heatmap relative to a time span (45
minutes), at this point the texture is ready to be used in the render of the Geographic
Heatmap described in chapter 5.3. When all other rendering and update processes of the
application render cycle are done this process starts again.

Figure 24 - Abstract representation of how Sales Vertices are positioned above the
corresponding Store’s pixel, in order to be added to the HeatTexture during the blending
process. Blending configuration for the addition is described in Source 3.

Setup GL_BLEND

glEnable(GL_BLEND);	
glBlendFuncSeparate(GL_ONE,	 GL_ONE,	 GL_ZERO,	 GL_ONE);	
glBlendEquationSeparate(GL_FUNC_REVERSE_SUBTRACT,	 GL_FUNC_ADD);

Source 4 - On top, the GL_BLEND configuration for Decay step on the Heatmap
Texture calculation. On the bottom the resulting color blend equations, notice alpha will
remain untouched and the destination components (dR,dG,dB) will be subtracted by a
value specified by us in the source color components (sR,dG,dB).

 46

Visualization Techniques for Big Data - Final Report

5.5. Pixel Heatmap - OpenCL API

The implementation presented in the last chapter, although functional and performant,
presented some limitations and disadvantages which lead us to research and experiment with
different methodologies.

One disadvantage that affects performance is related to the necessity of uploading vertex
positions and color information, eight floating point values in total, for each and every Sale,
and while this could be improved by customizing the Vertex structure, we would always
need to upload more floating points than Sales, introducing a quite large overhead.

In terms of limitations, relying on the blending process to perform our mathematical
operations, limits the amount of information we are able to retrieve in real time. Having
more general purpose framework, allows for easy implementation of more complex
calculations opening up the possibility of calculating average values, standard deviations, etc.

After studying the OpenCL API, introduced in chapter 4.2, realizing its flexibility and how it
would allow us to break free of the limitations presented by the previous implementation,
we decided to include additional features for this implementation to demonstrate exactly
that. First we added a second heatmap (Texture) for the Clients’ Postal Codes, and we
introduced an additional value being calculated over time, along side the heat value,
consisting in the Total Value of Sales over the Total Quantity. Introducing an additional,
bigger (as we will show) heatmap shows how the reduction of the overhead and OpenCL
memory optimization features allow us to increase the information being displayed, and
adding the Sales/Quantity value not only provides insightful information about Value paid
per Quantity across the Country, but at the same time demonstrate how the flexibility of
OpenCL allow us to perform this and other calculations, if necessary, in real time with a
small performance impact.

When implementing the Heatmap using OpenCL, we didn’t want to touch the Geographic
Heatmap Rendering (Ch. 5.3), as Textures were still the most adequate data structure to
communicate the Heat Values to the rendering processes done using the Graphics API.
Fortunately OpenGL/OpenCL APIs provide methods to share data structures between
them, allowing us to handle all the operations related to the Heat Values with OpenCL
Kernels and render the HeatTexture also using OpenCL, making the switching between
implementations seamless.

To accommodate the Heat Values, for Stores and now for Client Postal Codes also, we
created two arrays of 32 bit floating point values, with three values per Item, refer to Figure
25. The first value is directly equivalent to the valued saved in each pixel on the previous
implementation (Ch. 5.4), decaying over time, and the second and third values contain the
Total Paid Amount and Total Quantity of Products respectively. These buffers will never be
manipulated by the CPU directly.

 47

Visualization Techniques for Big Data - Final Report

We defined two pairs of additional buffers, each pair consists of a integer buffer and a float
buffer. The integer buffer keeps indexes for Store and Postal Code locations (indexes) in the
CLBufferStores and the CLBufferClients respectively. The float buffer contains the values
of “Sales Values” and Quantities directly related to the indexes in the indexes buffer. As we
can see in Figure 26 we only need to upload four values per Sale.

These buffers are created with the flag CL_MEM_ALLOC_HOST_PTR, so that the
memory allocation of the buffer (CPU memory) is done by OpenCL, which ensures the
correct alignment of the memory blocks that provide the best performance with OpenCL,
and at the same time, this alignment enables real memory sharing on computers where GPU
memory is shared with CPU, or best possible data transfer rate over PCI bus on computers
with discrete GPUs. Manipulation of these buffers must be done with care, following lock
and release rules similar to those used for shared variables in multithread environments.

We defined several Kernels to manipulate these buffers, performing the necessary
calculations, namely a AddKernel, DecayKernel, PrintOutKernel and finally the
GetTextureMaxKernel. Their names might point to their purpose but its important to
understand how and when we use them.

Like in the previous implementation, all kernels execute at least once every render cycle, in
other words, each Frame. As a new render cycle starts the UploadVals buffer pairs are
exchanged (double buffering), the pair that was receiving input values before is unmapped
(released/ synchronized to Video Memory) and the other one is mapped to take its place.

First in the Kernel execution sequence is the AddKernel, as we can see by following the
source code in Source 5, the AddKernel performs three additions for both the

Figure 25 - Data structures defined to use with our OpenCL Kernels.

Figure 26 - Structure of the buffers used to upload Sales data to the Video Memory.
These buffers will be input arguments of the AddKernel.

 48

Visualization Techniques for Big Data - Final Report

CLBufferClients and the CLBufferStores buffers, adding the Sale price value in the first two
and the quantity in the third. The Sale price is added twice, once to keep track of the Total
Amount Paid and the other is the usual heatmap value subject to linear decay over time.

Next the Decay kernel is executed, once for both the CLBufferClients and the
CLBufferStores buffers. This Kernel’s simple task is to subtract a fraction, relative to the
elapsed time, of the first of every three values. See Source 6 for the source code of this
Kernel.

As before, we feed the GeoGauss Program (Ch. 5.3) Textures containing values, mapped in
pixels color components, to be represented in the Geographic Heatmap. Previously we had
one Texture for the Sales Heatmap, now we have an additional one for the Client Postal
Code locations. The size of both Textures is calculated as described in Chapter 5.4. Each of
the Textures is generated through the execution of PrintOutKernel, but only if needed, if

AddKernel
__kernel	 void	 add(__global	 float*	 inValues,	 __global	 int*	 inIndexes,__global	 float*	 CLBufferClients,__global	
float*	 CLBufferStores,	 const	 int	 size_in)	
{	
	 	 	 	 	
	 	 	 	 int	 global_index	 =	 get_global_id(0)*2;	
	 	 	 	 int	 a	 =	 0;	
	 	 	 	 if(global_index<size_in*2	 &&	 a<1){	
	 	 	 	 	 	 	 	 	 //addition	 of	 values	 per	 Postal	 Code	
	 	 atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3]),	 inValues[global_index]);	
	 	 	 	 	 	 	 	 	 atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3+1]),	 inValues[global_index]);	
	 	 	 	 	 	 	 	 	 atomicFloatAdd(&(CLBufferClients[inIndexes[global_index]*3+2]),	 inValues[global_index+1]);	

	 	 	 	 	 	 	 	 	 //addition	 of	 values	 per	 Store	
	 	 	 	 	 	 	 	 	 atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3]),	 inValues[global_index]);	
	 	 	 	 	 	 	 	 	 atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3+1]),	 inValues[global_index+]);	
	 	 	 	 	 	 	 	 	 atomicFloatAdd(&(CLBufferStores[inIndexes[global_index+1]*3+2]),	 inValues[global_index+1]);	
	 	 	 	 	 	 	 	 	 a++;	
	 	 	 	 	 	 	 	 	 global_index++;	
	 	 	 	 }	
}

Source 5 - The AddKernel source code. The Kernel takes as arguments, in order, the
UploadVals float buffer, the UploadVals integer buffer, the per Postal Code heatmap
values, the per Store heatmap values and finally the number of Sales being added in this
execution.

DecayKernel
__kernel	 void	 decay(global	 float*	 currentvals,	 const	 float	 decayamount,	 const	 int	 length)	
{	
	 	 	 	 int	 global_index	 =	 get_global_id(0)*4*3;	
	 	 	 	 int	 a	 =	 0;	
	 	 	 	 while	 (global_index	 <	 length	 &&	 a<4)	 {	
	 	 	 	 	 float	 currentValue	 =	 currentvals[global_index];	
	 	 	 	 	 float	 newValue	 =	 currentValue-‐(currentValue*0.3333*decayamount);	
	 currentvals[global_index]	 =	 newValue	 <0	 ?	 0	 :	 newValue;	
	 a++;	
	 global_index	 +=	 3;	
	 	 	 	 }	
	 	 	 	 	
}

Source 6 - The DecayKernel source code. The Kernel takes as arguments, in order, the
buffer to be subject to the “decay”, the time passed since last execution (deltaTime) and
the size of the buffer.

 49

Visualization Techniques for Big Data - Final Report

the corresponding heatmap visualization is enabled in the User Interface (UI), more about
that in Chapter 5.8.3 regarding UI options.

The PrintOutKernel, see Source 7, sets Texture colors in batches of 8 pixels per Work Item,
allowing for a more effective use of the GPUs caching optimization features. It uses
argument cols to determine the width of the Texture to be printed and maxval to keep inside
the Value buffer where it is reading values from. As we intend to display not just the usual
heatmap value but also the Sales/Quantity, we use an integer argument (qual), to decide
which value to “print”. The actual division, of the Sales Total over the Total Quantity, is
done in “realtime” each time the Texture is generated, as we can see also in Source 7.

The Heatmap Textures generated at this step are configured as to have full 32 bit floating
point values for each of the color components, and as such values saved in them are neither
normalized nor clamped in any way. The same goes for the Geographic Heatmap Textures
generated after execution of the GeoGauss Program (Ch. 5.3), a 2D gaussian distribution is
performed without normalization or clamping of values. For that reason, after the
execution(s) of the PrintOutKernel, we immediately execute the GeoGauss Program, using
the generated Heatmap Textures as input. When the GeoGauss Program execution(s)
finishes we perform a search for the maximum value on the Geographic Heatmap
Texture(s), with which we will perform normalization later (see Chapter 5.6), using the
GetTextureMaxKernel.

PrintOutKernel
__kernel	 void	 printout(__write_only	 image2d_t	 bmp,	 global	 float*	 currentvals,	 const	 int	 maxval,	 const	 int	
cols,	 const	 int	 qual)	
{	
	 	 	 	 int	 idg	 =	 get_global_id(0)*8;	
	 	 	 	 int	 x=0;	 int	 y=0;	 int	 a	 =	 0;	

	 	 	 	 while	 (idg	 <	 maxval	 &&	 a<8)	 {	
	 	 	 	 	 	 	 	 y	 =	 idg/cols;	
	 	 	 	 	 	 	 	 x	 =	 idg%cols;	

	 	 	 	 	 	 	 	 float	 valor	 =	 currentvals[idg*3];	 //usual	 heatmap	 value	
	 	 	 	 	 	 	 	 if(qual==1){	 //change	 value	 to	 display	
	 	 	 	 	 	 	 	 	 	 	 	 if(currentvals[idg*3+2]>0){	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 valor	 =	 currentvals[idg*3+1]/currentvals[idg*3+2];	 //calculate	 Sales/Quantity	
	 	 	 	 	 	 	 	 	 	 	 	 }else{	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 valor=0;	
	 	 	 	 	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 }	

	 	 	 	 	 	 	 	 float4	 val	 =	 (float4)(0.0f,	 0.0f,	 0.0f,	 0.0f);	
	 	 	 	 	 	 	 	 if(valor>0){	
	 	 	 	 	 	 	 	 	 	 	 	 float	 red	 =	 valor;	
	 	 	 	 	 	 	 	 	 	 	 	 float	 blue	 =	 valor;	
	 	 	 	 	 	 	 	 	 val	 =	 (float4)(red,	 0.0f,	 blue,	 min(red,blue));	

	 	 	 	 	 	 	 	 }	
	 	 	 	 	 	 	 	 int2	 coords	 =	 (int2)(x,y);	

	 	 	 	 	 	 	 	 write_imagef(bmp,	 coords,	 val);	
	 	 	 	 	 	 	 	 a++;	
	 	 	 	 	 	 	 	 idg	 +=	 1;	
	 	 	 	 	 	 }	
}

Source 7 - The PrintOutKernel source code. The Kernel takes as arguments, in order, the
Texture where to save the values, the floating point buffer from where to read the values,
the size of the floating point buffer, the width of the Texture in pixels and finally the
choice of value to be saved in the Texture.

 50

Visualization Techniques for Big Data - Final Report

The GetTextureMaxKernel, see Source 8, uses a simple parallel reduction approach to make
the most of the GPU parallelization capabilities when searching the Texture Space for its
maximum value. Bryan Catanzaro’s white paper, Catanzaro (2010) describes the
implementation in great detail and provides comparative results with other methodologies,
showing the performance advantages of parallel reduction.

First, each work item searches it’s assigned local space, a square of localSearchSpaceSize pixels
in side, and saves the maximum value found to local memory (scratch), Step 1 and 2 in Figure
27. Then, in Step 3, the local memory space is divided by 2 rounding up on both dimensions
giving us the offset vector (offsetX, offsetY). Then, only Work-items which indexes
(IndexX, IndexY) fall in the NW quadrant, see Step 4, perform an additional search,
comparing their own value (see dots in figure) with values in memory position derived from
adding their Index vector with permutations of the Offset vector (the arrows leaving the
dots). During Step 4 the maximum values found by each of the Work-items are saved in
each’s position. Next, Steps 5 and 6 are in fact a repetition of Steps 3 and 4, first the
previous Offset vector is divided by two again (rounded up), delimiting the new search space
and which Work-items do the search.

GetTextureMaxKernel
__kernel	 void	 gettexturemax(__read_only	 image2d_t	 image1,	 __local	 float*	 scratch,	 __const	 int	 localSearchSpaceSize,	 __const	
int	 texx,	 __const	 int	 texy,	 __global	 float*	 result)	 {	

	 	 const	 sampler_t	 sampler	 =	 CLK_NORMALIZED_COORDS_FALSE	 |	 CLK_ADDRESS_CLAMP	 |	 CLK_FILTER_NEAREST;	

	 	 int	 global_index_x	 =	 get_global_id(0)*localSearchSpaceSize;	
	 	 int	 global_index_y	 =	 get_global_id(1)*localSearchSpaceSize;	
	 	 float4	 pixel;	
	 	 float	 accumulator	 =	 0;	
	 	 //	 Loop	 sequentially	 over	 chunks	 of	 input	 vector	
	 	 for	 (int	 xi=0;	 xi<localSearchSpaceSize;	 xi++){	
	 	 	 	 for	 (int	 yi=0;	 yi<localSearchSpaceSize;	 yi++){	
	 	 	 	 	 	 if(global_index_x<texx	 &&	 global_index_y<texy){	
	 	 	 	 	 	 	 	 pixel	 =	 read_imagef(image1,	 sampler,	 (int2)(global_index_x,global_index_y));	
	 	 	 	 	 	 	 	 accumulator	 =	 (accumulator	 >	 pixel.x)	 ?	 accumulator	 :	 pixel.x;	
	 	 	 	 	 	 }	
	 	 	 	 	 	 global_index_y++;	
	 	 	 	 }	
	 	 	 	 global_index_x++;	
	 	 }	

	 	 //	 Perform	 parallel	 reduction	
	 	 int	 local_index_x	 =	 get_local_id(0);	
	 	 int	 local_index_y	 =	 get_local_id(1);	
	 	 scratch[local_index_y*get_local_size(0)	 +	 local_index_x]	 =	 accumulator;	
	 	 barrier(CLK_LOCAL_MEM_FENCE);	
	 	 int	 offsety	 =	 get_local_size(1)	 /	 2;	
	 	 for(int	 offsetx	 =	 get_local_size(0)	 /	 2;	 offsetx	 >	 0;	 offsetx	 =	 offsetx	 /	 2,offsety	 =	 offsety	 /	 2)	 {	
	 	 	 	 if	 (local_index_x	 <	 offsetx	 &&	 local_index_y	 <	 offsety)	 {	
	 	 	 	 	 	 float	 other1	 =	 scratch[local_index_y*get_local_size(0)	 +	 local_index_x	 +	 offsetx];	
	 	 	 	 	 	 float	 other2	 =	 scratch[(local_index_y	 +	 offsety)*get_local_size(0)	 +	 local_index_x];	
	 	 	 	 	 	 float	 other3	 =	 scratch[(local_index_y	 +	 offsety)*get_local_size(0)	 +	 local_index_x	 +	 offsetx];	
	 	 	 	 	 	 float	 mine	 =	 scratch[local_index_y*get_local_size(0)	 +	 local_index_x];	
	 	 	 	 	 	 float	 max	 =	 (mine	 >	 other1)	 ?	 mine	 :	 other1;	
	 	 	 	 	 	 max	 =	 (max	 >	 other2)	 ?	 max	 :	 other2;	
	 	 	 	 	 	 max	 =	 (max	 >	 other3)	 ?	 max	 :	 other3;	
	 	 	 	 	 	 scratch[local_index_y*get_local_size(0)	 +	 local_index_x]	 =	 max;	
	 	 	 	 }	
	 	 	 	 barrier(CLK_LOCAL_MEM_FENCE);	
	 	 }	
	 	 if	 (local_index_x	 ==	 0	 &&	 local_index_y	 ==	 0)	 {	
	 	 	 	 result[get_group_id(1)*get_num_groups(0)+get_group_id(0)]	 =	 scratch[0];	
	 	 }	
}

Source 8 - The GetTextureMaxKernel source code. The Kernel takes as arguments, in
order, the Texture from which we want to retrieve the maximum value, a temporary local
memory buffer shared among Work-items, the initial search space dimension of each
Work Item, the width of the Texture, the height of the Texture and finally the floating
point buffer where to save the results.

 51

Visualization Techniques for Big Data - Final Report

This method of performing a maximum search is very effective, as Catanzaro (2010) work
shows, yet, like he explain in his work, at each reduction step the SIMD occupancy for the
next search is reduced by half, to a point where it becomes more effective, performance
wise, to iterate through the final values using the CPU. The example in Figure 27 is just that,
a figurative example of the algorithm working. In the real implementation we adjusted by
hand the best number of reductions and consequently the size of the Results buffer to be
iterated by the CPU, in order to achieve the best balance. Also, these adjustments had to be
done independently for the Stores Heatmap Texture and for the Postal Codes Heatmap
Texture, due to their differences in size, 27x26 for Stores and 346x345 for Postal Codes.

The calculated maximum value for each of Geographic Heatmap Textures will be used to
perform normalization of each’s values during the mapping of values to colors when
rendering the textures to the actual Screen Buffer, as we will detail next.

5.5.1. Optimization of kernel execution

Regarding the optimization of kernel execution, we followed 2 different approaches, one for
the AddKernel and another for all the reminding kernels.

Kernels like the DecayKernel, the PrintOutKernel and the GetTextureMaxKernel, all act
over a space that is static in size over time, and for which we know the size from start. As
such we are able to use a process similar to the one exemplified in chapter 4.2 to determine
the best global and local sizes when enqueueing each of the kernels, as to make the best of the
GPU processing capabilities. All of our kernels can only run after the previously has
finished its work, as they operate on the same buffers, and as such, the process of
determining the values was to query the API for the maximum permitted work group size

Figure 27 - Example of how parallel reduction works in the GetTextureMaxKernel. In
this example the Black squares in Step 7 represent the final values returned by the Kernel
execution that must be still iterated in the CPU to determine the actual maximum value.

 52

Visualization Techniques for Big Data - Final Report

for each of the kernels and use the next multiple of that value, greater than the real global
work dimensions, as our global size for the job and the maximum permitted work group size
as our local size. Additionally, we fine tuned each kernel’s number of operations performed
per execution, controlled by variables inside each’s kernel code.

Regarding the AddKernel, we also used the process described above to set the global size, yet,
due to the nature of the data being processed, the number of items in each upload varies
and, more importantly, sales registered on the same store and with the same client are usually
in succession, as each of the Client’s products are registered one after the other. Also, the
number of products per sale (and in succession) varies constantly. In terms of the kernel
operation, if two work items have sale records regarding the same store and the same Client,
one will have to wait for the other to perform its operation in order to gain access to the
memory block being used, this escalates when increasingly more work items need to access
the same memory block.

To mitigate this problem we experimented with different numbers of operations per work-
item (1, 3, 5, 10, 15), forcing the work-items to iterate over consecutive buffer elements. We
hoped with this process to find a value more adequate than the others, yet our initial results
showed an unquestionable increase when moving from 3 to 5, on a factor of 10x, but no
increase what so ever, neither any advantage of either of the values 5, 10 and 15 over each
other. The results we obtained greatly vary over the duration of the visualization, in a way
unrelated to the number of uploaded sales (real global size), and varies also with data of
different days, we believe the performance variance is related to the number of consecutive
sales with same store and client, yet we did not explore this further as the performance
obtained while using a value of 5 or above is enough to meet our needs.

We calculated time spent on kernel execution as the total time over the number of items
processed. The results obtained by values 5 and above varied from 859 nano seconds per
item (std=260) to a peak of 159 nano seconds per item (std=27). The peak attained varied a
few nano seconds for each of the 3 best configurations. Theses averages were calculated
from the time values obtained through the OpenCL API profiling tools, in batches of 200
consecutive uploads at different times of the day (animation time) and for data regarding
different days. We collected the values at pre-programmed times in order to measure the
execution over the exact same value sequences.

5.6. Coloring Geographic Heatmaps

So far, we only made a quick reference in Chapter 5.3 on how color mapping of the values
from the Geographic Heatmap Texture to the Screen Buffer is done. At that point we had
implemented linear color mapping from the normalized value of the Geographic Heatmap
to a color mapping texture, presented in Figure 22 (left).

 53

Visualization Techniques for Big Data - Final Report

5.6.1. Color and perception

Linear color mapping is vastly used in heatmap visualizations, and with the right choice of
colors its able to highlight the different values effectively, as the work of Ware (2012)
describes. Yet, on animated “pixel” heatmaps, where items are discretized and consequently
so are the boundaries of each “zone”, this effectiveness is greater, when comparing with the
results on animated heatmaps over continuous spaces (geographic heatmaps and similar)
where fast variations create chaos and make the perceptibility of “growing” and “shrinking”
areas more difficult. Researchers sometimes chose to discretize the color space, like we saw
with Scheepens (2010), creating plateaus of values, similar to the plateaus between isolines.

We implemented a similar coloring methodology for multiple reasons. First, even if coloring
by range reduces the precision in terms of small differences between values, it improves the
visual identification of similar zones and their evolution with time. Second, as we have two
Geographic Heatmaps that can be viewed one at a time or both at the same time, overlaid
on top of each other. Blending the linear colored heatmaps would introduce a new level of
visual confusion. Third, and lastly, we also implemented methods for overlaying
demographic information, Chapters 5.7 and 5.8, with one or both heatmaps at the same
time. Controlling the number and what colors are overlaid is the only way for us to choose
correct colors for the demographic layer in order to facilitate the reading of information.

Unfortunately, when coloring fragment by fragment, as we must when rendering using the
GPU pipeline, discretizing the color space introduces aliasing, refer to Figure 28, that even if
it doesn’t affect the visualization precision it does affect aesthetics, as Scheepens also shows.

We implemented a Shader Program, named GeoHeatmapColoring Program, composed of a
Vertex and Fragment Shader, to render the values from the Geographic Heatmaps to the
Screen Buffer by performing the correct color mapping. As we can see in Figure 29, our
application renders information in layers onto the Screen Buffer, the GeoHeatmapColoring
Program is used when rendering the two top layers.

Figure 28 - Aliasing introduced by discretizing the colorspace.

 54

Visualization Techniques for Big Data - Final Report

As we have two visualization modes for the geographic heatmaps, to show one or two
heatmaps simultaneous, we implemented two different colors schemes also, one for each
mode, refer to Figure 30. We used Uniform variables to instruct the Fragment Shader (FS)
which color scheme to use.

The colors we chose for each of the heatmaps, when displaying both heatmaps
simultaneously, were not picked randomly. We used a free Web application Paletton to 10

construct a split-complementary color scheme, which is a variation of the complementary
color scheme, with three neutral pastel colors, refer to Figure 31 We then picked two of the
most complementary colors (on opposite sides of the chromatic diagram), for Stores and
Clients, Yellow and Blue respectively, and implemented a way to create the third.

Figure 29 - Application rendering layers.

Figure 30 - Discrete color spaces used to color the Geographic Heatmaps when rendered
to the Screen Buffer. The top is used when only one heatmap is rendered and the bottom
is used when two heatmaps are rendered at the same time.

Figure 31 - The split-complementary color scheme we picked to color the heatmaps
when visualized simultaneous.

 http://paletton.com10

 55

http://paletton.com

Visualization Techniques for Big Data - Final Report

To create the third color of the split-complementary color scheme, we implemented a
tailored GL_BLEND configuration, see Source 9, that produces the mathematical function
that having the picked Blue and Yellow colors as Source and Destination, returns the correct
third color in the color scheme. Additionally it maintains the same color alpha value to
integrate seamlessly with the other visualization elements. Refer to Figure 36 for the results
produced by this configuration.

The FS we implemented does more than just picking colors for fragments depending on
which range the heatmap values fall in, it introduces transparency into the layers enabling
visibility of the information on bottom layers (Figure 29), and solves the aliasing introduced
by the discretized color space as we will see next.

5.6.2. Anti-aliasing

To solve the aliasing problem we used a combination of techniques to devise a method that
scans the surrounding space of each fragment in order to determine its proximity to the
range’s “edge”, and mix colors of different “plateaus” accordingly. Additionally, as we could
calculate fragment distance to edges, we could also draw a line on the limits of plateaus,
allowing us to increase the inner plateau transparency without impacting the quick
identification of heat zones, refer to Figure 32 for an actual render using the described
approach.

To achieve this, that Figure 32 depicts, for each fragment we first determine the partial
derivative of the geographic heatmap texture space in x and y of the Screen space, using

Setup GL_BLEND

glEnable(GL_BLEND);	
glBlendFuncSeparate(GL_ONE_MINUS_SRC_COLOR,	 GL_ONE_MINUS_DST_COLOR,	 GL_ONE,	 GL_ONE);	
glBlendEquationSeparate(GL_MAX,	 GL_MAX);

Source 9 - GL_BLEND configuration used when rendering both Geographic Heatmaps
at the same time.

Figure 32 - Anti-aliasing of plateaus and a border line delimiting the different ranges.

�

 56

Visualization Techniques for Big Data - Final Report

GLSL functions dFdx and dFdy. The resulting vector, lets us calculate the
TextureCoordinates on the geographic heatmap texture space of the surrounding pixels. We
scan a maximum of 12 pixel neighbors, both at 2px and 1px (screen space) in distance, refer
to Figure 33 for an illustration of the process we are describing. First we scan the 4 furthest
away pixels, 2px away from the current fragment in both x and y dimensions. If this first 4
scanned pixels are inside the same range of values as the current fragment, then we stop our
scanning of surrounding pixels and color this fragment as completely inside the range of
values (plateau). If instead any of the 4 scanned neighbors falls on a different range it means
this fragment is near an edge, and as such we move on to scan the remaining 8 neighbors,
stopping if at one point we have found already 2 points in a different range and 2 points in
the same range of values as this fragment. If when we finish scanning the neighbor pixels
we have found these 2 points inside the range and 2 points outside the range, we use them in
pairs (Pair1(ouside1, inside1), Pair2(outside2, inside2)) to interpolate points where the line
segments intersect the threshold edge, ending up with 2 different points that lay on the edge.
When we only have one point outside of the range, we use that one in conjunction with one
inside the range to interpolate a point on the edge, as before, and use 4 of the neighbors
inside the range to perform extrapolations and average these extrapolations in order to
determine a second point on the edge.

We then consider the edge as a line segment defined by the 2 calculated Points, and use that
information to write the edge line equation in the vector form x = a + tn, where x is a 2D
vector giving the two coordinate values of any arbitrary point on the line, n is a 2D unit
vector in the direction of the line, a is a 2D vector giving two coordinate dimensions of a
particular point on the line, and t is a scalar, as the work of Sunday (2001) shows. With the
line in vector form we are able to calculate the Shortest Distance from the current fragment
to the edge Line using Equation 8, where p is a 2D vector representing the Point position
and the reminding variables are the same as in the description of the vector form above. In
Figure 34 we present a small illustration of how the Equation works very helpful in
understanding the formulation (source Wikipedia).

Figure 33 - Illustration of the Edge interpolation algorithm.

 57

Visualization Techniques for Big Data - Final Report

Having determined if the current fragment is or not near an edge, and if it is, the distance to
that edge, and also knowing that the distance is relative to screen space allows us to
interpolate the correct color and the correct color’s alpha, according to the plots in Figure
35, and according to the set Color scheme (Figure 30). We use GLSL functions mix and
smothstep to perform this interpolation.

As the interpolated edge is recalculated for each fragment being colored, the assumption of
the edge as a straight line does not reflect onto the final rendering, as we can see in Figure
36, where smooth curved lines appear.

(8)

Figure 34 - Shortest Distance from point to line illustration (source Sunday (2001)).

Figure 35 - Variation of color and the color’s alpha value near the interpolated edge in
order to render the anti-aliased line.

Figure 36 - Variation of color and the color’s alpha value near the interpolated edge in
order to render the anti-aliased line. Notice the purple color in the center, result of the
blending configuration.

 58

Visualization Techniques for Big Data - Final Report

5.7. Displaying Administrative and Demographic Information

In Chapters 3.2.3 and 3.2.4 we talked about how important it is to contextualize the
Geographic Heatmaps information within the actual locations being overlaid, and also
described the data we collected of both Administrative boundaries and Demographics to
achieve that. Here we briefly describe how we display that information to the User and
enable him to identify Administrative areas.

5.7.1. Administrative Shapes and Boundaries

First, regarding the Administrative Boundaries, from the whole country to the civil parishes
(freguesias), we use the collected contour points for each area to create polygons that we are
able to Triangulate using the Triangulation feature of the OpenGL API that uses the
Graphics Tessellator to perform the shape triangulation. With the shapes triangulated we are
able to draw any of the Administrative areas with any Shader Program to either color or
texture those areas, refer to Figure 37 for an example.

Additionally, still regarding the Civil Parishes shapes, we implemented a line drawing Shader
Program, that we will call LineShader Program, composed of a Vertex, Geometry and

Figure 37 - On the left the Triangulated Country Shape rendered in grey color. On the
right, many Civil Parishes (freguesias) on the Lisbon area rendered with different shades
of grey denoting their different populations.

 59

Visualization Techniques for Big Data - Final Report

Fragment Shaders, that we use to render lines of specified color and thickness. We use this
Shader Program to draw Administrative areas outlines, both to differentiate different areas
but also to highlight areas on Mouse Over. The Vertices composing each contour are drawn
with GL_LINE_STRIP_ADJACENCY draw mode, so that for each line segment to be
generated by the Geometry Shader it receives 4 Vertices, the one that precedes the start of
the line segment, the one that determines the start of the line segment, the one that
determines the end of the line segment and the one comes after the end of the line
segment. This is a usual approach to the generation of lines using the GS, providing the
necessary information on each execution of the GS, to calculate the angles between each
end of the of the line segments with other adjacent line segments and with that information
create a seamless connection between segments on either ends. Refer to Figure 38 for a
rough illustration of the process.

5.7.2. Mouse Over Location Identification

We described in Chapter 5.2.3 how we perform un-projection from mouse coordinates in
screen space to a Ray in World Space. We then use the calculated Ray do determine if the
Mouse Position hovers over any significant object in the Scene, in other words we test the
Ray for collisions with the geometry being displayed (rendered) to the Screen.

To perform collision detection with every Triangle being displayed is extremely expensive
computational wise, as we render hundreds of thousands of triangles at each Render cycle.
That sort of collision detection would have to be performed in the GPU, and while several
techniques exist for that approach, all of them involve considerable computational resources
of both the GPU to perform the collision detection and the CPU while reading results from
the GPU.

Another approach, which we used and is also widely used on performance critical
applications (Video Games), consists in calculating, at loading time, Bounding Boxes (6
rectangles) for 3D objects and Bounding Rectangles facing the camera for 2D shapes, and
calculate the collision detection of the Ray against the Object’s delimiting rectangles.

Figure 38 - The line generation process implemented through a Geometry Shader. Notice
how the line segments caps are shaped to close the corners when connected to another
line segment, this is only possible because the Geometry Shader has the information
regarding the adjacent segments.

 60

Visualization Techniques for Big Data - Final Report

Our implementation only contains 2D shapes, and as such each Object has a corresponding
Bounding Rectangle, additionally every group of Objects, the Civil Parishes Shapes for
instance, have the same z value (height). So we first calculate the collision point of the Ray
with the plane where the shapes reside, obtaining a 2D coordinate, and then test the
Bounding Rectangles to determine whether they contain the Collision Point or not.
Additionally, to avoid having to test every single Bounding Rectangle (hundreds in the case
of Civil Parishes) for Collision, we implemented a Quadtree of Bounding Rectangles to
subdivide the World Space into smaller chunks at each Quadtree sub-level. The Quadtree,
when queried with a Position, will test only the Bounding Rectangles contained in chunks of
space which contain that given Position. With this approach we are able to perform
Collision detection entirely on the CPU with residual impact on the global performance.

The Mouse Over functionality is used both for the interaction with the User Interface and
the identification of Civil Parishes when hovering over the Country’s map, displaying both
the Civil Parish Name and the highlight of its boundaries for easier identification.

In our implementation we opted to only display the locations Name on Mouse Over to
avoid obstructing possibly important information on the heatmap(s).

5.7.3. Displaying Demographic Data

In Chapter 5.7.1 we described how we triangulate the administrative zones’ shapes so we can
render their geometry with any applicable Shader Program. (Applicable because it would
make no sense to render these triangles, properly ordered to render as GL_TRIANGLES,
with the LineShader Program also described in 5.7.1.) The geometry information for each
Civil Parish is kept in same Video Memory buffer, but we keep pointers to each of the
shapes position in that buffer so we can both draw them individually or all in one call. This
approach, regarding Video Memory buffers, was used whenever there were many related
objects which together, total thousands of Vertices, the Civil Parishes Contours is another
example.

To display the Demographic data using the Civil Parishes and the Country geometry we
implemented 3 different Shaders Programs, one for the Country’s geometry, named
StarsShader, that while with some inaccuracy was an interesting visual and aesthetic
experiment, and two for the Civil Parishes geometry, that consists in our approach for a
more generic model able to represent any Demographic variable. The difference between
these two lies in the coloring method, a comparison experiment, and we named them
GreyShader and ChoroplethShader.

 61

Visualization Techniques for Big Data - Final Report

The StarsShader, uses the data relative to Building locations extracted from OpenStreetMaps
and the Postal Code locations, described in 3.2.4, as representative approximation of the
Country’s Population and draws them with a slight distortion and halo effect similar to the
visual effect produced when looking at a star in the night sky. Experiments of rendering
locations as dots produced aesthetic un-appealing results. To achieve this the StarShader is
similar to the GeoGauss Program in that the Vertices are drawn as GL_POINTS and a
geometry shader generates two triangles, composing a Quad, that are rasterized and then
colored in the Fragment Shader (FS). The FS in the StarsShader uses the distance to the
center of the TextureCoordinates Space of the Quad to calculate the appropriate color and
transparency for each fragment according to the equation plotted in Figure 39 (left). On the
right, also in Figure 39, we present a zoomed in screenshot of the visual effect produced.
Notice how particularly the halo is noticeable in both levels of zoom.

The GreyShader and the ChoroplethShader are both used to represent the same information
by coloring each Civil Parish (freguesia) geometry differently, according to each Civil Parish
“score” in a determined Demographic variable at a time. In our experiments we used both
Population per Civil Parish and Population’s Purchase Power per Civil Parish. The difference
between the two Shader Programs is that one, GreyShader, colors the Civil Parish geometry
with shades of grey, and the other, ChoroplethShader, uses a procedural texture generation
algorithm to paint the geometry with orthogonal lines with varying distances as described in
the work of Tobler (1973) on choropleth maps. With smaller distances the generated
textures appear darker and, with larger distances, brighter.

The GreyShader implementation is straight forward, we use Uniforms (also in the
ChoroplethShader) to configure the shader to render the correct darker or brighter tone.
The VS transforms the vertices as usual using the MVP and the FS colors the fragments
with the correct shade of grey. The only particularity of the implementation is the mapping
of the normalized values to represent (0 to 1) not linearly in the white to black range, but

Figure 39 - On the left a plot of the mathematical equation used to color the Quads in
the Fragment Shader of the StarsShader Program. On the right the rendering result using
that equation.

 62

Visualization Techniques for Big Data - Final Report

logarithmic to better fit the human perception of the difference between of shades which if
logarithmic also, see Tobler (2973). Refer to Figure 40 (left) for an example render using this
shader.

The procedural generation of the orthogonal lines in the ChoroplethShader FS uses a
similar implementation to those of procedural generation of anti-aliased brick patterns, see
Ebert (2003), without the offset every odd row and with bricks having a square shape. We
use the mortar size to reduce the distance between lines, and consequently produce a darker
texture as needed. Figure 40 right shows an example of the effect achieved using this
texturing procedure.

In Figure 40 we can also notice the usage of the line generation method described in 5.7.1.
The thickness of these lines varies when the User zooms the visualization in and out, in
order to maintain the visibility of Civil Parishes Boundaries without obstructing the color of
texturing applied. The drawing of Civil Parishes Boundaries also serves the double purpose
of covering the visible seams introduced by the optimization of the shapes done outside of
the application.

Another important implementation step taken to improve the application’s performance,
derived from the fact that the Administrative and Demographic information is static in time,
was to, instead of drawing all the Boundaries and Administrative information directly to the
Screen Buffer every frame, we do a pre-render into a Texture as FBO, that is as large as the
Screen Space, and then draw this Texture onto the Screen Buffer. We still have to draw the
Texture onto the Screen Buffer at every frame, but the pre-render into the Texture, which
actually needs to render all the described geometries, is only rendered whenever the Camera
is panned or the Zoom factor changes, drastically improving performance.

Figure 40 - Both left and right contain the same exact area representing the same exact
values. On the left the GreyShader was used and on the right the ChoroplethShader.

 63

Visualization Techniques for Big Data - Final Report

5.8. Miscellaneous Features

In these Miscellaneous features we include not all, but the most relevant “small” features
which help make the whole visualization application more complete. By referencing them as
small of miscellaneous we by no means intend to diminish their importance.

5.8.1. Filtering Stores

Giving the User the ability to filter Sales records from specific Stores in or out of the
visualization is a critical feature to support the analysis of the data. We further detail and
provide a practical example showing the importance of this feature in Chapter 6.2.2,
regarding Results.

To implement this feature we use an Hashmap that gets populated as the User selects
different Stores using the User Interface. The Hashmap starts empty, instead of full, which
is equivalent to the SHOW_ALL state. The Hashmap contents are checked in the CPU, and
the actual filtering occurs as records are read from the data stream, Sale records are only
accepted and read if either the Hashmap is empty or the Store Id is contained in the
Hashmap.

The reasoning behind this approach is that when the User wants to analyze a group of
Stores, it usually consists of a small group or even only one Store, keeping the Hashmap
with few items and consequently fast search times. The User is still allowed to filter in and
out as many Stores as he needs, and this won’t have a great impact on the search times due
to the number os Stores, but we sought to improve the overall performance wherever we
can.

5.8.2. Screen Capture and Video Recording

Other important features in any application which’s purpose is to facilitate exploratory data
analysis through information visualization, is the ability to save the commonly called Screen
Shots, by capturing the contents of the application’s window and write them to disk as
Images, and also, the ability to record Movie Clips, capturing heatmap animation segments
to be shared, presented or further analyzed without the necessity of rerunning the
application.

To implement these features we use the OpenGL API function glReadPixels to copy the
contents of the Screen Buffer in Video Memory to a floating point buffer in CPU Memory.
We then decode the color components for each pixel and write them to a PNG file on disk.
Performing this process significantly impacts performance, this is particularly noticeable
when recording a movie clip where we perform the memory copy every frame.

With the purpose of minimizing the performance impact and produce a good quality and
high frame rate video we made alterations to how time is tracked. Usually animations and
animation elapsed time is calculated using the time elapsed since last frame, usually called
deltaTime. For instance, by multiplying the deltaTime by the animations minutes per second
rate we know how much time the animation must advance at every frame. When the User

 64

Visualization Techniques for Big Data - Final Report

starts Video Recording, we change to another usual method of handling elapsed time in
similar applications, a fixed deltaTime, more precisely the application assumes at every frame
that the elapsed time since the last frame was 1/30 of a second.

The disadvantage of using a fixed deltaTime, in our application, is that as the application
doesn't run at constant 30 frames per second, the animation will be slower than usual as the
User views it in real time when the performance goes below the 30 fps, and faster than usual
when performance is above the 30 fps. And while we can solve the speeding up of the
animation by switching from fixed deltaTime to the real deltaTime whenever the application
is “ahead” and skipping saving to disk more frames than the specific frame every 1/30 of a
second.

The main advantages of using the fixed deltaTime are the reproducibility of the same
animations in any computer giving the same dataset, and the assurance of a completely fluid,
30 fps video with the correct minutes per second rate of animation.

The images used in this document were created using these features. Additionally every
video we recorded to present alongside this document were also created using these features,
but here with a small remark. In our recorded videos the User interface is visible, as we want
to highlight the application it self and not the data being visualized. In the final version of
the application, to be used as an analysis tool, the interface’s menu bar and its children are
never visible, as we render them to the Screen Buffer only after its contents have been
copied to CPU memory.

5.8.3. User Interface

Noticeable through out Chapter 6, in the screen shots that display the complete application
window, is the menu bar at the top. We chose to implement a simple menu bar inside the
application window in an effort to avoid, as much as possible, the introduction of obstacles
that for being Operating System (OS) specific, difficult the portability of the application
between different platforms and operating systems.

Our implementation of the menu bar behaves much the same way as a usual menu bar, with
mouse over interaction. And although it doesn't provide the same flexibility as the Mac OS
or Windows OS menu bars, it enables us to easily create and link action listeners for clicking
and toggling events.

 65

Visualization Techniques for Big Data - Final Report

 66

Visualization Techniques for Big Data - Final Report

6. Results

In this Chapter we present the results obtained with the implemented features. Every
performance results presented in this Chapter were obtained using a MacBook Pro Later
2013. We chose this hardware as our test base for being in the lower range of the currently
available GPUs. It’s most relevant specs are the 2.4GHz dual-core Intel Core i5 processor,
8GB of 1600MHz DDR3L onboard memory, Intel Iris 5100 integrated GPU and 256Gb
SSD drive.

Images presented in this chapter were obtained with our screen capture feature implemented
within the application. We save the image data to the disk in PNG format with the best
quality possible, yet, when visualizing the images produced, we feel that they still don't
transmit the actual visual quality obtained when visualizing the actual application running
and being displayed on a high pixel density screen, or retina.

We start off by analyzing our implemented solution for the aliasing problem introduced
during the coloring of the Geographic Heatmap. Later we test the implemented features as a
whole, by using them in performing a small exploratory analysis and also visualize the
impact of a specific event, the opening of a new Store. Finally we show the results obtained
by switching to our second tracked variable, which displays the Total Value of Sales over the
Total Quantity of Products, described in Chapter 5.5.

6.1. Anti-aliasing and Geographic Heatmap Coloring

In Chapter 5.6 we described how we color the heatmaps using a discrete color map, and how
we implemented an anti-aliasing technique in order to remove the aliasing introduced by that
color mapping approach.

In Figure 41, we present two magnified images of similar lines, so we can identify individual
pixels, and we can clearly observe the difference between an aliased and an anti-aliased line.
In the anti-aliased line notice how the color of the line performs a harder transition when
the line is straighter and a softer transition when the line starts to curve, as to produce a
visually smoother line.

Figure 41 - Aliased line on the left, magnified. On the right an antialiased line obtained
with our implemented algorithm, also magnified.

 67

Visualization Techniques for Big Data - Final Report

To help validate our anti-aliasing solution, we used Adobe Photoshop to draw anti-aliased
lines, similar in shape to a group of examples we picked for comparison. To use Photoshop
to draw the anti-aliased lines, we first constructed a path using the Pen tool, and then we
Stroke the path (raster) using a smooth 3px wide Brush.

Figures 42, 43, 44 and 45 present the result obtained, putting side by side curves rendered by
our application (colored backgrounds) and smooth lines rasterized by Photoshop. We
present the images magnified so we can compare the how the blending of colors is
performed per pixel, as its distance to the “middle” of the line increases.

As we can observe by the results our algorithm performed as expected, creating similar color
blending to smooth the line as the ones from Photoshop. In our opinion, the pairs in
Figures 42, 43 and 44 are particularly similar and is only on the pair in Figure 45, the bottom
part of the line segment, that we find some discrepancy.

The lines are continuous and form closed shapes. Any of the small discrepancies, like the
one in Figure 45, are too small to be noticeable and are minimized by the surrounding pixels
correct blending and by constant changing of the shapes with time. We consider them small
discrepancies when considering that the lines rendered by our application are the result of a
combination of the per pixel blending of colors, which is based the pixel's distance to an
also per pixel estimated straight line segment.

Figure 42 - Comparison between vertical curves. On the left a smooth line rendered by
our application, and on the right a smooth line rasterized with Adobe Photoshop.

Figure 43 - Comparison between smooth horizontal curves. On the bottom a smooth
line rendered by our application, and on top a smooth line rasterized with Adobe
Photoshop.

 68

Visualization Techniques for Big Data - Final Report

In Figure 46 we present an unaltered screen capture performed with our application where
we can see the transparent plateaus and the smooth anti-aliased lines resultant of our
heatmap coloring shader. In this example we have enabled only the Clients Geographic
Heatmap, thus the presented colors for the plateaus. Notice how the lines help define the
plateaus and the geographic areas they span over. Also, particularly in the bigger red area,
notice how we can relate the higher value areas of the heatmap with the high population in
the Civil Parishes “underneath”, and how the curved red area almost seems to define a
contour around those Civil Parishes. The identification of these relations is possible only
due to the balance of the color transparency to achieve the correct blending, in conjunction
with the plateaus borderline with helps the recognition of shapes.

Figure 44 - Comparison between almost straight curves. On the left a smooth line
rendered by our application, and on the right a smooth line rasterized with Adobe
Photoshop.

Figure 45 - Comparison between tight curves. On the left a smooth line rendered by our
application, and on the right a smooth line rasterized with Adobe Photoshop.

 69

Visualization Techniques for Big Data - Final Report

Concerning the visualization of both heatmaps simultaneously, in Chapter 5.6.1 we
described how we picked a split-complementary color scheme, handpicked, and devised a
GL_BLEND configuration that when the two colors, chosen to color the Clients and Stores
heatmaps, would overlap, the blending process would return the third color from that same
color scheme. By observing Figure 47, and Figure 31 from Chapter 5.6.1 to freshen the
memory, we see that the GL_BLEND configuration worked as expected. Also, the strong
visual contrast typical of split-complementary color schemes is also noticeable. We can
precisely distinguish the Client heatmap, the Stores heatmap and the overlapping areas.

Figure 46 - Client Geographic Heatmap drawn with plateau transparency and anti-aliased
lines. The shaded shapes seen through the heatmap are the Civil Parishes colored
according to their populations (not normalized).

Figure 47 - Both Stores and Clients Geographic Heatmaps overlaid.

 70

Visualization Techniques for Big Data - Final Report

6.1.1. Performance Considerations

Another important aspect we have to take into consideration regarding this rendering
approach is its impact on performance. To test this we ran visualizations with fixed
deltaTime in our update and of the same set of Sales records, this way guaranteeing the
reproducibility of exactly the same animation. During each of the visualizations we
changed the Shader performing the coloring of the geographic heatmaps, and measured the
time spent per frame during a span of 2000 frames and calculated the average number of
frames per second.

As we can see in Table 1, with the Just Scan method being the one where there is no anti-
aliasing or even discretization of the color map, the performance impact on the average
frame rate, with our solution, is of approximately 1 frame per second.

Table 1 - Measurement of the impact our geographic heatmap coloring and anti-aliasing
algorithms, had on performance. Values are in Frames Per Second, the bigger the better.

6.2. Identification and Confirmation of Events

Although performing the actual visual exploration of the dataset is not the focus of this
Thesis, as we are developing an application that Users will use to perform that data
exploration, it is important to assure that the implemented features that we expect will help
in that task, effectively do so.

To test this we performed visual exploration of a handful of days, using the our application,
with the objective of identifying previously unknown relevant information and also to
visualize the effects of a known event.

Just Scan Anti-aliasing + Plateau Contours

Average STD Average STD

One Heatmap 18.162033 3.608996 17.277062 3.733841

Two Heatmaps 13.079525 2.782339 12.869658 2.887267

 71

Visualization Techniques for Big Data - Final Report

6.2.1. Distant Clients

During our exploratory analysis, even if short, we noticed a particular phenomena that
occurs every day in the least populated areas of the Country. We called this phenomena the
Distant Clients, as it consists in population of isolated areas that by having no other option
or by choice, travel considerable distances to purchase their products.

By visualizing both Stores and Clients heatmaps at the same time, refer to Figure 48, we can
clearly identify patches of Clients (in blue) without a Store nearby (yellow). Particularly in
the top image we can see how the Store “bubble” near the center (City Beja), overlaps
patches of the Client Heatmap (in purple) that are of sizes similar the to the ones found in
the isolated areas.

Figure 48 - Examples of screen captures depicting Clients who have to travel far to
purchase their products. On top an overview of the Southern area of Portugal. Below is
the Geographic area around the City Viseu.

 72

Visualization Techniques for Big Data - Final Report

Having the ability to view both heatmaps at the same time and have the areas where they
overlap highlighted made the phenomena “stand out”, supporting its identification.

6.2.2. Store Opening

As mentioned before, we also tested our application by using it to visualize the effects of a
known event, more precisely we chose the before and after the opening of a new Store.

In Figure 49 we can see that this southern least populated area of the country has few
Stores, yet we can see that are Clients still make the effort of traveling to purchase in the
available Stores. Particularly interesting also is that if we look closely at the population
shades “below” the heatmap for the whole area, we notice that the zone where the new
Store is opening is the darkest (more population) of all the zones that don’t have a Store
already. Pointing us to one of the probable reasons of why that location was chosen. And
showing how more similar locations can be identified by using the same process.

When the Store opens, Figure 50, we can notice the appearance of additional client patches,
near the new Store's location, indicating that Clients might have shifted from stores of other
competing Brands to this new Store.

Figure 49 - Picture displaying Sales distribution near the days peak, the day before a new
Store opens in the center of the red circle.

 73

Visualization Techniques for Big Data - Final Report

Using just an overview of all the Sales is not enough to visualize the impact of the new
Store on the opening day. Isolating heatmaps and filtering Stores helps to view the real
affected areas.

In Figure 51 for instance, by visualizing only the Stores heatmap both the day before and the
day of the opening of the new Store, we can clearly view how the new Store affected the
balance between Stores in the area. The new Store takes a significant cut of the Sales at that
moment in time, lowering the overall sales in those stores. Notice that although it seems that
the lower image presents higher values, the value for each color as we can see in the legend
are quite different. If we carefully analyze the legend we notice that values in both days are
of the same magnitude approximately.

Figure 50 - Picture displaying Sales distribution near the days peak, the day a new Store
opened (middle left yellow bubble).

 74

Visualization Techniques for Big Data - Final Report

This can be confirmed additionally by observing both images in Figure 52, both the more
local (zoomed in) area around the Store (on the left) and the overview of the southern half
of the country. We used our filtering feature to visualize only information relative to Sales
occurring in the new Store, and by displaying only the Clients heatmap we can identify
exactly where the people buying at the Store live. And as we can observe, most of the Sales
are to Clients who reside nearby, which makes sense as the Store is intended to serve that
local area. Yet we can also identify Clients from more distant location who where at or
traveled to that location on that day.

Figure 51 - Stores heatmap the day before (top) and the opening day of the new Store
(bottom).

 75

Visualization Techniques for Big Data - Final Report

6.3. Demographic Visualization Modes

As described in Chapter 5.7.3 we implemented more than one way of displaying the
Demographic information. One of those implementations, StarsShader, is more of an
aesthetic experiment with the purpose of approximating the distribution of the real
population over the Country. And the other implementation, is a more generic and accurate
approach of displaying any demographic variable as choropleth maps either greyscale or
procedural textures.

Figure 52 - Clients heatmap resultant of filtering out all other Stores except for the new
one. On the bottom an overview of the whole south half of the Country, and on top a
more local visualization, spanning the country’s width.

 76

Visualization Techniques for Big Data - Final Report

We will first analyze the StarsShader results in terms of its accuracy to represent the most
significant higher density populated areas, and also how aesthetics match our expectations.
Later we compare the results of both methods used for coloring the choropleth maps, and
finally analyze the performance impact of each of the Demographic representations.

6.3.1. StarsShader

The extra step of rendering the points as Quads so we can make them appear “fuzzy”, also
randomly varying the generated Quads sizes, produces a more visual appealing image than
simply drawing them as black dots (disks). Yet, as visual appealing as it might be, it is crucial
to be used as a reliable tool, that the visual artifacts produced represent a good
approximation of the population for each geographic area, particularly in cities and towns.

We already knew, from initial experiments, that major cities are identifiable, as they tend to
have the larges concentration of building and also more Postal Codes per Square Km. To
analyze areas outside the major cites we used the choropleth maps generated for the
Demographic variable Population, which we know to have accurate data, and overlaid it over
the StarsShader results to see if we find correlation between the Points in it and the shades
of grey of the choropleth map.

We performed this analysis for the whole Country but only present here the most relevant
results from the Porto and Lisbon areas.

First, in Figure 53, we can observer that in the Porto metropolitan area, even if the
correlation from point density and the greyscale is not perfect, is a close approximation of
the areas where Population is most concentrated. Also, notice the three smaller green circles
on top, that highlight areas with different shades of grey denoting different population and
also a similar variation in the number of points and their density. On the negative side, we
can see that all the red circles denote areas where the number and density of Points is too
great when compared with the shades of grey of the same areas, and also, within the yellow
circles we can observe that the shade of grey is darker than in the surrounding areas but still,
the number and density of Points seem exaggerated for those area’s Populations.

 77

Visualization Techniques for Big Data - Final Report

In Figure 54 we present the same type of analysis but this time for the Lisbon area. The
three leftmost green circles, as in Porto area, represent the greater metropolitan areas, and as
such present good results, as we already expected. But, also on the positive side, the areas
within the reminding green circles presents small accumulation of dots in number and sizes
that seem to correctly relate with the corresponding shades of grey. One could even ask if
those points are not more accurate representations of where within the Civil Parishes
(freguesias) those people actually live, against the choropleth representation that shades the
whole Civil Parish shape with the same shade of grey.

Unfortunately, still in Figure 54, we can find not only the same types of uncorrelated
distributions of points over areas that in reality have small populations, see the Top two
yellow circles and the two smaller red circles, but also an additional type, where the shade of
grey appears to indicate more population than the one the points within it convene, see the
larger red circle.

Figure 53 - Porto City area map with an overlay of the StarsShader result map, with
increased contrast, brightness and transparency, over the choropleth Population map
colored with shades of grey. The Green, Yellow and Red circles represent Good, Median
and Bad correlation points. Only the most relevant were highlighted.

 78

Visualization Techniques for Big Data - Final Report

6.3.2. Choropleth Maps Comparison

Even if Choropleth Maps created with orthogonal lines varying in distance is something
back from the time of Plot Printers, due to the procedural texture generation performance
attainable now-a-days, we decided to implement it alongside the more usual greyscale
coloring methods to perform comparisons.

In Figure 55, representing Population of Civil Parishes in the Lisbon area, we can see that
both methods produce almost identical results, in terms of perceived information. If we
look closely at the more populated areas with numerous small Civil Parishes (in geographic
space), in the top map, we notice that we can identify multiple different shades of grey, and
if we analyze the exact same Civil Parishes in the Procedural version we notice that the
variation of distance between lines from civil parish to civil parish is also differentiable. Yet,
if we look closely at the right side of both maps, particularly the brighter areas, we will
notice in the greyscale implementation that some Civil Parishes have different Populations
than others, yet, we can see that in the Procedural version they are indistinguishable.

Figure 54 - Lisbon City area map with an overlay of the StarsShader result map, with
increased contrast, brightness and transparency, over the choropleth Population map
colored with shades of grey. The Green, Yellow and Red circles represent Good, Median
and Bad correlation points. Only the most relevant were highlighted.

 79

Visualization Techniques for Big Data - Final Report

This problem in differentiating areas with low values of the variable being represented is
more noticeable in the least populated areas, refer to Figure 56. This disadvantage, or
problem, can be an advantage if what we want is to highlight and differentiate only higher
values. Yet, as we will see, this is not the only problem affecting this implementation.

In Figure 57, representing Purchasing Power Score of the Population per Civil Parish, which
in contrast to the Population per Civil Parish, have very little variation from area to area, we
can see that the Procedural Texturing approach creates a confusing surface, due to the high
number of lines, with multiple different offsets and all with distances between lines in
similar ranges of the scale.

Figure 55 - Comparison between greyscale coloring (top) and procedural texture
generation methods when representing Population of Civil Parishes in the Lisbon area.

 80

Visualization Techniques for Big Data - Final Report

Not mentioned so far, but as we mentioned in the implementation of the GreyShader, the
greyscale we used to map the values (0-1) was logarithmic, as to give the Human User the
most correct relation between tones and values, possible. The work of Tobler (1973), which
motivated us to implement the Procedural version follows the same principle, and we can

Figure 56 - Low populated areas are indistinguishable from each other using the
Procedural Texture Generation method to color the Choropleth map.

Figure 57 - Visual confusion of the Procedural implementation (bottom) when compared
with the more appealing greyscale coloring (top).

 81

Visualization Techniques for Big Data - Final Report

confirm this by analyzing Figures 55 and 57, and observe how the perceived darkness or
brightness of the same areas in both implementations appears the same.

This effect is best observed in the zoomed out Country view presented in Figure 58, where
by zooming out and consequently pulling the procedural generated lines closer, we get
almost identical darkness and brightness tone areas.

Finally, as we can observe in many of the application’s screen captured images shown so far,
whenever the images depict any of the geographic heatmaps with the population per civil
parish represented in shades of grey underneath, it is possible to differentiate the
populations through the transparency of the heatmaps.

6.3.3. Performance Considerations

To compare the performance of the different Demographic implementation we devise a test
in wish the geographic heatmaps were disabled and no data was being inputed, as to
minimize the influence from other application components. Like before, each of the values
presented was calculated from measured times spent per frame during a span of 2000
frames.

Regarding the performance of each of the Demographic representation implementations,
we can see by the results presented in Table 2, that the differences between them are almost
negligible, and not perceptible by the User.

Figure 58 - Zoomed out comparison of the greyscale and procedural implementations of
the Choropleth map.

 82

Visualization Techniques for Big Data - Final Report

Table 2 - Performance results for each of the different demographic visualization modes.
Values are in Frames Per Second, the bigger the better.

6.4. Sales and Sales over Quantity

When the User selects the Sales over Quantity variable, to replace the default heatmap
visualization, the GL_BLEND function used to blend values of different clients and stores
is GL_MAX instead of the GL_ADD. We expected this to create a very dim value
representation when compared with the normal geographical heatmap, yet we expect that
due to normalization we are still able to differentiate zones where clients pay more, in
general, per unit of bought products.

Although we didn’t use this feature to perform any type of analysis, we present a couple of
screen captures of the obtained results, Figures 59 and 60. Figure 59 shows an overview of
the northern part of the Country, and Figure 60 of the southern part of the Country.

Stars Greyscale Procedural

Average STD Average STD Average STD

zoomed out 30.951275 4.360317 31.176904 3.590133 31.254867 3.617087

zoomed in 12.673956 0.976230 14.223831 1.490249 14.048597 1.539867

Figure 59 - Visual representation of the Sale Value over Quantity variable’s distribution
over the northern part of the Country.

 83

Visualization Techniques for Big Data - Final Report

Figure 60 - Visual representation of the Sale Value over Quantity variable’s distribution
over the southern part of the Country.

 84

Visualization Techniques for Big Data - Final Report

7. Discussion and conclusions

In this Thesis we presented different methods of how researchers can make use of the
available processing power in any nowadays laptop and desktop computers. By using the
OpenGL graphics pipeline to perform simple operations, or the more general purpose
programing model of OpenCL, that allows for high parallelization of programs and high
programming flexibility. Additionally we showed how using OpenCL/OpenGL
interoperability removes the necessity for additional data transfers from the GPU (OpenCL)
to the CPU and back again from the CPU to the GPU (OpenGL), for rendering purposes.

Choosing a lower end GPU as our test platform, the results we achieved with it, show how
this parallel processing power is widely spread across todays hardware, from tablets to
desktop computers.

Switching to the OpenCL API to perform the computing steps, allowed to add additional
information without impacting performance. Not only we were able to additionally track
values for Clients, more numerous than the Stores (709 to ≈180000), but we were also able
to track an additional variable, marginally more complex, the Sales Values or the Quantity of
Products for both Stores and Clients. Hoping that this demonstrates the referenced
flexibility of OpenCL.

We also implemented an anti-aliasing algorithm, that results show it’s working as expected , 11

with a negligible impact on performance. The purpose of the algorithm was to enhance the
visual quality of the representation and also improve the recognition of shapes. With it, we
attempted to demonstrate how researchers can use modern rendering APIs, OpenGL in our
case, to produce pixel perfect representation of elements, comparable to those produced by
more complex software development kits aimed at vector art representations.

Finally, we showed public and private, free of charge, services that enable anyone to gather
large and diverse geographical information, and then demonstrated methods of displaying it
using OpenGL, and integrate it with the geographical heatmap visualization model.

Regarding our implementation as a software product, we have fulfilled the defined objectives
and, as we seen in the results obtained, we were also able to meet the requirements set,
described in Chapter 1.3.1.

7.1. Future Work

During our implementation process, there were, at multiple points, too many different paths
of implementation and optimization for us to explore them all. Researchers present multiple
and diverse interesting techniques that we could had experimented with.

 In fact the results exceeded our expectations, as we expected more artifact or broken lines.11

 85

Visualization Techniques for Big Data - Final Report

Additionally, the work we done as a whole, and for some of the problems we encountered,
we formulated possible experiments that could constitute independent research projects on
their own.

7.1.2. Application improvements

Optimization is a very time demanding and complex process. The different components
where to perform optimization and the multiple ways there are to optimize them, make it a
“never ending” process. Developers have to balance and determine if further optimization is
worth the spending of resources. We followed a similar approach but still, we think a little
more time spent in optimization could further improve the Users experience, particularly in
regards the rendering of the Geographic Heatmaps FBOs, that is currently where the
application spends most of it’s processing time. We still experienced with a technique called
Instancing, replacing the geometry generation, but was left out as it did not improve the
results.

Further future work could also be done in introducing additional features to the application.
As an exploratory tool there are several additional features that could support that task, to
name a few:

- additional mouse over information, for instance isolating Stores heatmaps, view Stores
detailed information and others;

- additional visualization tools (charts and others) to complement the visual information of
the heatmap;

- more tracked statistical variables that provide different analysis, for instance a moving
average or static full day average views;

- high dpi printing feature, which was only partially implemented using a technique derived
from Multisampling;

- mechanisms that give the User more control over the animation flow;

- natively introduce additional, and relevant administrative variables;

Concerning the more overall objectives of the Research Project integrated, we also think it
would be of great interest, the exploration and implementation of visualization models that
encompass both Sales and Stocks records. Unfortunately we need additional data,
overlapping in time we the data we currently have, to make that possible.

7.1.3. Alternative directions

During the optimization of OpenCL kernels, particularly the AddKernel, the procedure we
followed in order to seek the best configuration, suggested us an alternative research project
that could yield interesting results.

 86

Visualization Techniques for Big Data - Final Report

The proposition consists in the exploration of evolutionary solutions to the problem of
optimizing OpenCL kernels executing continuously, or over undetermined amounts of time,
while processing undetermined quantities of highly variable data.

We suggest, that the evolved solutions be the ones who determine the appropriate
dimensions and sizes chosen when enqueueing the kernel execution, but also allow the
solutions to manipulate kernel properties and control variables that influence the kernel
execution, for instance the number of operations performed by each work item.

Additional we suggest that the evolutionary process should be used, not to evolve an
“individual” that will be later used in “live” execution of the kernel, but instead, we suggest
that the evolutionary process should run continuously along side the kernel execution, in
order to promote the continuously evolution and search for the best solutions at any giving
time and giving the varying kernel execution conditions.

 87

Visualization Techniques for Big Data - Final Report

 88

Visualization Techniques for Big Data - Final Report

References

[1] Nguyen, H. (2007). Gpu gems 3. Addison-Wesley Professional.

[2] Pharr, M., & Fernando, R. (2005). Gpu gems 2: programming techniques for high-
performance graphics and general-purpose computation. Addison-Wesley Professional.

[3] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips, J. C. (2008).
GPU computing. Proceedings of the IEEE, 96(5), 879-899.

[4] Gregg, C., & Hazelwood, K. (2011, April). Where is the data? Why you cannot debate
CPU vs. GPU performance without the answer. In Performance Analysis of Systems and
Software (ISPASS), 2011 IEEE International Symposium on (pp. 134-144). IEEE.

[5] Levenshtein, V. I. (1966, February). Binary codes capable of correcting deletions,
insertions, and reversals. In Soviet physics doklady (Vol. 10, No. 8, pp. 707-710).

[6] Pol, L. G., & Thomas, R. K. (1997). Demography for business decision making.
Greenwood Publishing Group. (Preface and Chapter 1)

[7] INE, D. G. D. C., & de Estudos Regionais, G. (2000). Estudo sobre o poder de compra
concelhio. Nucleo de Estudos Regionais da Direccao Regional do Centro, Coimbra.

[8] Feeman, T. G. (2002). Portraits of the earth: A mathematician looks at maps (Vol. 18).
American Mathematical Soc..

[9] Willems, N., Van De Wetering, H., & Van Wijk, J. J. (2009, June). Visualization of vessel
movements. In Computer Graphics Forum (Vol. 28, No. 3, pp. 959-966). Blackwell
Publishing Ltd.

[10] Scheepens, R. J. (2010). GPU-Based Track Visualization of Multivariate Moving Object
Data (Doctoral dissertation, Master’s thesis, Eindhoven University of Technology, Dept. of
Computer Science and Engineering, Visualization Group, Eindhoven, The Netherlands,
2010. http://www. win. tue. nl/visnet/wiki/doku. php).

[11] Buschmann, S., Trapp, M., Lühne, P., & Döllner, J. (2014). Hardware-accelerated
attribute mapping for interactive visualization of complex 3D trajectories. In Proc. of the
5th International Conference on Information Visualization Theory and Applications
(IVAPP 2014) (pp. 355-363).

[12] Maciejewski, R., Rudolph, S., Hafen, R., Abusalah, A. M., Yakout, M., Ouzzani, M., ... &
Ebert, D. S. (2010). A visual analytics approach to understanding spatiotemporal hotspots.
Visualization and Computer Graphics, IEEE Transactions on, 16(2), 205-220.

[13] Ho Ahn, S. (n.d.). OpenGL Projection Matrix. Retrieved August 19, 2015, from http://
www.songho.ca/opengl/gl_projectionmatrix.html

[14] GluProject and gluUnProject code. (n.d.). Retrieved August 20, 2015, from https://
www.opengl.org/wiki/GluProject_and_gluUnProject_code

 89

Visualization Techniques for Big Data - Final Report

[15] Catanzaro, B. (2010). Opencl optimization case study: Simple reductions. White Paper.

[16] Sunday, D. (2001). About Lines and Distance of a Point to a Line (2D & 3D).

[17] Tobler, Waldo R. "Choropleth maps without class intervals?." Geographical Analysis 5.3
(1973): 262-265.

[18] Ebert, D. S. (2003). Texturing & modeling: a procedural approach. Morgan Kaufmann.

[19] Tudorica, B. G., & Bucur, C. (2011, June). A comparison between several NoSQL
databases with comments and notes. In Roedunet International Conference (RoEduNet),
2011 10th (pp. 1-5). IEEE.

[20] Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H. A., &
Mankovskii, S. (2012). Solving big data challenges for enterprise application performance
management. Proceedings of the VLDB Endowment, 5(12), 1724-1735.

[21] Tompson, J., & Schlachter, K. (2012). An introduction to the opencl programming
model. Person Education.

[22] AMD Accelerated Parallel Processing OpenCL Programming Guide. (2013, November
1). Retrieved August 29, 2015, from http://developer.amd.com/wordpress/media/
2013/07/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide-
rev-2.7.pdf

[23] Angel, E., & Shreiner, D. (2011, August). Introduction to modern openGL
programming. In ACM SIGGRAPH 2011 Courses (p. 7). ACM.

24] Optimizing InnoDB Configuration Variables. Retrieved August 30, 2015, from https://
dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-configuration-variables.html

[25] InnoDB Configuration. Retrieved August 30, 2015, from https://dev.mysql.com/doc/
refman/5.7/en/innodb-configuration.html

[26] Alternative Storage Engines. Retrieved August 30, 2015, from https://dev.mysql.com/
doc/refman/5.7/en/storage-engines.html

[27] Graphics Card Performance Hierarchy Chart - Best Graphics Cards For The Money:
June 2015. (2015, June 22) . Retr ieved August 30, 2015, from http://
www.tomshardware.co.uk/gaming-graphics-card-review,review-32899-7.html

[28] Wong, P. C., & Bergeron, R. D. (1994, May). 30 Years of Multidimensional Multivariate
Visualization. In Scientific Visualization (pp. 3-33).

[29] Chen, C. H., Härdle, W. K., & Unwin, A. (2007). Handbook of data visualization.
Springer.

 90

Visualization Techniques for Big Data - Final Report

[30] Liu, Z., Jiang, B., & Heer, J. (2013, June). imMens: Real-time Visual Querying of Big
Data. In Computer Graphics Forum (Vol. 32, No. 3pt4, pp. 421-430). Blackwell Publishing
Ltd.

[31] Ware, C. (2012). Information visualization: perception for design. Elsevier.

 91

