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Information visualization is still evolving alongside the incredible 
technological advances of the past decades as we can now use computers 
to process exceptionally large datasets easily and represent them through 
animated and interactive visualizations. The development of this field has 
been largely dependent on its work with other fields by finding new ways to 
visualize data and finding meaningful patterns of information. One of these 
fields is artificial intelligence, which often turns to nature for inspiration in 
problem-solving and devises tools such as the genetic algorithm, a search 
heuristic which simulates natural selection in order to find and optimize 
solutions to particular problems.

In this dissertation we covered some of the most important developments 
from the fields of information visualization and genetic algorithms, and 
detail the process of the creation of a new visualization tool. This takes the 
form of a functional prototype which can process the data acquired from 
a genetic algorithm and, using visualization techniques which had not 
been applied to this particular field before, is able to effectively represent 
meaningful patterns in the data which lead to significant conclusions.

Abstract

Adaptive visualization, emergence in visualization, information 
visualization, natural selection, sexual selection.
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Introduction
Chapter 1

Information visualizations were created and have continued to evolve 
due to the necessity to communicate through images since this allows for 
visual representations of various amounts of information, as well as of the 
connections between these various elements, and generally convey these in a 
simple, comprehensible visualization.

“Graphic representation constitutes one of the basic sign-systems conceived by 
the human mind for the purpose of storing, understanding, and communicating 
essential information. As a "language" for the eye, graphics benefits from the ubiq-
uitous properties of visual perception.”

– Jacques Bertin, 1967, Semiology of Graphics [1], p.2

Proper visualizations can be very effective in both storing data and making 
it simple to search through for meaningful information, which can be 
interpreted from emerging patterns or even specific values, elements 
or even relationships that become easier to understand or follow when 
properly represented. Information design is not an exact science, but certain 
theoretical principles have been established over the years by people who 
have excelled in the field, such as Jacques Bertin [1] and Edward Tufte [2], who 
have defined some of the most basic and more complex rules for properly 
encoding and organizing information through the study and understanding 
of cognitive and visual perception. These principles have also been evolving 
over the years alongside the visualizations themselves, as both of these have 
dramatically changed through the advent of new technologies, and continue 
to change and evolve even now.
 
The fast processing of computer has allowed us to extend beyond static 
images, as their ability to generate multiple images in spans of time shorter 
than a second has allowed us to create interactive and dynamic displays. 
These computational processes have become an almost essential tool in 
analyzing the incredibly large amounts of data from the digital databases 
which are constantly being created and expanding. It is in our interest, as 
both designers and researchers, to make use of these tools in order to provide 
proper visualizations that can induce useful insights into this collected 
information, as otherwise any conclusions would have to be drawn from 
the purely textual and numerical data which would make the process a 
lot slower an ineffective. Dynamic visualizations have shown to be very 
effective and have a lot of potential as they introduce elements animation 
and interaction. Animations on their own add a whole new dimension to 
the visualization (usually representing time), which otherwise would have 
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to be represented using one of the planar coordinates or multiple iterations 
of the visualization. Interaction allows for the user to directly change the 
visualization on the spot, though this is restricted to the options that were 
programmed. These functions can be used to explore the data in various 
ways, such as changing the level of detail, which includes zooming in and 
out or even controlling the quantity of information on the screen, changing 
the visual aspects, such as the colors and shapes used or even the structure 
of the visualization itself, and even navigation functions which let the user 
view sets of information which might be too large to be displayed at once. 
However, there are still constantly new approaches being taken to tackle 
dynamic visualizations, both on how to represent dynamic data, and on the 
interactive tools themselves.

Our objective stands on understanding and using these new tools to build 
new ones which can be used to help visualize and understand large amounts 
of data, although this is a very broad description. Representing data properly 
relies heavily on both the type of data itself and its background, since 
the visualization must be built within this context or it could easily be 
misinterpreted, and because of this our intentions are to focus on a particular 
area rather than building a tool which could represent a much wider range 
of datasets. We focused on data collected from genetic algorithms, which 
are, in essence, a tool from the field of artificial intelligence used for finding 
and optimizing solutions to certain problems. Like many other modern tools, 
genetic algorithms were inspired in nature, more particularly in the process 
of natural selection where the fittest living beings are more likely to survive, 
breed and pass on their genes.

These algorithms use an iterative process which involves evaluating and 
recombining solutions in order to possibly obtain better ones and there are a 
number of variable parameters that influence the outcome and these must 
be carefully adjusted depending on the problem itself. This process can be 
run for hundreds or even over thousands of cycles in order to reach one of the 
best possible or most optimal solutions, and these final outputs are usually 
the most important parts of the data, however our objective isn’t to display 
or analyze the best results but rather the process which lead to them. As it 
follows, we intend on building and developing an interactive visualization 
tool (a computer application) which can receive data obtained from genetic 
algorithms which details their solution searching process, and then properly 
represent it on screen in a way which is easy to understand and to interpret. 
Visualizing all the cycles and alterations that take place between each one 
is a task best suited for an interactive application because it should allow 
users to efficiently search through the data intuitively and provide simple 
functions which gives them more control over the visualization such as data 
filters.

Despite our focus on constructing a tool to visualize datasets of a specific 
nature, this project encompasses a variety of fields which all have 
contributed to its creation and development, which are described in the 
state of the art. The state of the art includes: a brief history of information 
visualization describing some of the more important and varied works and 
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achievements in the field; an analysis on proper and effective representation 
of information; a basic understanding of the visualization structures and 
representation techniques which we will be approaching; the history, 
purpose and behavior description of a genetic algorithm, which provides 
the context necessary to understand both the nature and significance of 
the data and resulting visualizations. The chapters that follow the state 
of the art entail: a detailing of the project’s objectives and the work plan 
followed throughout the development, along with the chosen methodologies; 
a description of all the preparatory work accomplished prior to the 
development of the application and includes a project created for a contest 
held by the Massachusetts Institute of Technology; the development process 
of this dissertation’s project which describe all of the implemented functions, 
the resulting visualizations, and an overview of the results, along with our 
conclusions.
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Brief history of information visualization

State of the art
Chapter 2

Information visualization has been developed through countless 
contributions, both theoretical and practical. In this chapter will 
cover some of the most important and significant creations in order to 
understand the evolution alongside the technological progress of the past 
centuries and its reach into other fields of investigation.

The idea of making maps and tabular presentations can be dated as far 
as the 200 BC [3], when it was used by Egypt for astrology and navigation. 
This anonymous tenth century graph (Fig. 2.1) is one of the earliest 
known graphical depictions of quantitative information with multiple 
variables, by representing the position of the sun, moon and planets 
throughout the year. However, it wasn’t until the seventeenth century 
that the representation of quantitative information on a two-dimensional 
plane would really start to develop. During the seventeenth century, 
some of the most prominent problems were the physical measurement 
of time, space and distance, mostly concerning areas such a astronomy, 
map creation, navigation and territorial expansion. It was also a century 
that witnessed the development a lot of theoretical work related to 
geometry and coordinate systems, error measurement and estimations, 
probability, demog raphy, and statistics as a whole. One of such examples 
was Christopher Scheiner’s Sunspots (Fig. 2.2), which depicted changes in 
sunspots over time while using an idea which Edward Tufte much later 
called “small multiples” [2], where various iterations of the visualization 
are shown in order to represent changes over time. The century gave way 
to the beginnings of visual thinking, in which people looked to make sense 
of real and interest ing data by representing it visually in order to be able to 
interpret significant insights.

New graphic forms started appearing with the eighteenth century, as 
abstract graphs and graphs of functions became more prevalent and 
new data repre sentations were invented. The interest also turned to the 
collection of data from areas such as politics and the economy which also 
shifted the handling how this information should be communicated, 
leading to a search for novel visual forms of representation. Cartography 
began exploring the thematic mapping of geological, economic and 
medical data.
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Fig. 2.1 Heavenly Bodies (Unknown author)
Graph from the tenth century showing the changes in the positions of the 
sun, moon and planets over the course of a year.

Fig. 2.2 Sunspots (Christopher Scheiner, 1626)
A graph showing the changes in sunspots over time. It’s one of the earliest 
known implementations of the concept of “small multiples”.
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Fig. 2.3 Pyrometrie (Johann Lambert, 1779)
Chart is taken from the series Pyrometrie which depicts the 
periodic variation of the soil temperature in relation to depth. 

Johann Lambert (1728–1777), a Swiss-German scientist and mathematician, 
along with William Playfair (1759–1823), a Scottish political economist, are 
considered to be two of the great inventors of modern graphical design. 
Lambert’s background in mathematics allowed for a clearer approach to 
abstract problems of graphical design, which was apparent in his work 
such as some of his experiments with heat shown in Pyrometrie (Fig. 2.3), 
published in 1779. Meanwhile, Playfair became the creator of most of the 
graphical forms used today, as he popularized some of the most fundamental 
forms of statistical graphs (such as the bar graph and the pie chart). Playfair 
considered graphics to be preferable to tables as they allow for better 
comparisons between the data values and different information.

Abstracting the map coordinates and moving away from geography was a 
big step taken by great creators of the eighteenth century, such as Playfair 
and Lambert, but even then they were using analogies to the physical world 
as a base. With the evolution of their work, graphical design moved away 
from these analogies and became no longer dependent on them. 
Data did not have to be tied to geographic or time coordinates and could be 
placed in relationship to other variables. Playfair’s Commercial and Political 
Atlas released in 1786 was the first publication to contain statistical charts 
but no maps, and it included sets of time-series charts depicting different 
kinds of information, such relations between exports and imports between 
countries (Fig. 2.4), as well as one the first simulaneous use of a bar chart and 
a line chart with economical data which simultaneously represented three 
different time-series (Fig. 2.5).
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Fig. 2.4 Exports and Imports to and from Denmark & Norway from 1700 
to 1780 (William Playfair, 1786)
A time-series chart that uses the area between the lines representing 
exports and imports to quantify how favorable or not the balance is 
towards England.

Fig. 2.5 Chart, Shewing at One View The Price of The Quarter of Wheat, & Wages of Labour by 
the Week, from The Year 1565 to 1821 (William Playfair, 1821)
This chart represents three parallel time-series: prices of wheat for 250 years, wages of good 
mechanics and the reigns of British kings and queens. Through this chart Playfair intended 
to demonstrate that wheat had never been so cheap as it was at that time, in proportion to 
mechanical labor.
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The first half of the nineteenth century marked the beginning of modern 
graphics. The number of statistical graphics grew immensely and was 
accompanied by a great amount of new visual representations of data, 
such as line and bar graphs, pie charts, histograms, time-series plots and 
scatter plots. Thematic cartography also kept evolving, advancing from 
single maps to the creation of comprehensive atlases that featured many 
types of information. One of such creations that stood out were a series of 
maps created by André-Michel Guerry (Fig. 2.6), portraying various statistics 
throughout the various regions of France. 

Fig. 2.6 Donations aux pauvres (André-Michel Guerry, 1833)
Map from a series, containing a data table showing the frequency of donations to the 
poor per number of residents using gradation of shading, where darker shades represents 
the lower values. It is divided into the eighty-six administrative departments of France, 
numbered with the growing order of the donations.



17

Fig. 2.7 Numero Absoluto dei Nati Vivi Maschi e loro superstiti classificati per eta secondo i 
risultati dei Censimenti in Svezia 1750-1875 (Luigi Perozzo, 1880)
Three-dimentional surface plot of population data from Sweden between 1750–1875, shown 
using the corresponding year and age group.

The second half of the century was ready for the next step in information 
visualizations, as the growing importance of information was now being 
recognized by diverse areas like commerce, industrialization, social plan-
ning and transportation. Representations that had already been used earlier 
in mapping contexts, such as three-dimensional surfaces (Fig. 2.7), were now 
being used to establish relations beyond that of two variables in an attempt 
to solve more varied and complex problems, such as John Snow’s map of the  
cholera outbreak in London (Fig. 2.8) which was used to determine the source 
of this disease, and Florence Nightingale’s chart (Fig. 2.9) which was used to 
bring attention to the extremely poor soldier health conditions, who were 
dying mainly of preventable diseases.
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Fig. 2.8 Cholera Deaths in Central London
(John Snow, 1854) 
Dot map that proved invaluable in the 
discovery of the cause of the cholera 
outbreak in central London, found to be the 
drinking water from the Broad Street water 
pump. Deaths are represented as short 
segments and the water pumps are shown 
as dots.

Fig. 2.9 Diagram of the Causes of Mortality in the Army in the East (Florence Nightingale, 1857)
This visualization was the earliest polar area chart, with the purpose of rallying for better 
and more sanitary treatment of soldiers in the battlefield. Deaths from preventable diseases 
are represented in blue, deaths from wounds in red, and deaths from other causes are in 
black. The chart proved to be a solid argument on how many more soldiers died from poor 
medical conditions rather than by the hands of the enemy.
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Charles Joseph Minard (1781-1870) was highly regarded due to his graphical 
methods and creations in engineering and statistics. Minard developed in-
novative visual representations like the use of divided circle diagrams and 
flow lines on maps, and his flow map of Napoleon’s Russian campaign of 
1812 (Fig. 2.10) was considered to be one of the “best graphic ever produced” 
by Edward Tufte [2], who also shows that the map exemplifies many of the 
fundamental principles of analytical design [4].

In opposition to the graphic visualization advancements and copious 
inventions of the previous century, the beginning of the twentieth century 
was characterized as a period of dormancy, with few graphical innovations. 
However, this was also a period of popularization, where graphics and their 
past developments became mainstream. A notable creation of this period 
was Henry Beck’s redesign of London’s Underground (Fig. 2.11), who used his 
engeneering background to come up with the idea of simplifying the map 
into something closer to an electrical schemetic. 

Towards the middle of the century, the field of data visualization witnessed 
significant developments such as John Tukey’s paper – The Future of Data 
Analysis (1962) [5] – which recognized the importance of data analysis in the 
field of statistics and differentiated it from mathematical statistics. Another 
large contribution to the field was made by Jacques Bertin (1918–2010), who 
organized visual and perceptual graphical elements in accordance to their 
relations with the data in his book – Semiologie Graphique (1967) (which was 
later published in English [1]).

Fig. 2.10 Figurative Map of the successive losses in men of the French Army in the Russian 
Campaign 1812-1813 (Charles Joseph Minard, 1869)
This chart illustrates Napoleon’s Russian campaign of 1812, and displays a great variety of 
information simultaneously. The thickness tan flow-line represents the size of the Grand 
Army as they progress from the left, starting on the Polish-Russian border, to the right, with 
Moscow as their destination. The dark flow-line represents Napoleon’s retreat, once again 
with the thickness representing his army’s decreasing size. This flow-line is also linked to a 
temperature scale below with the respective dates.
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Fig. 2.12 Chernoff’s faces (Herman Chernoff, 1973)
The image shows one of the groups of faces 
that were created by Herman Chernoff. 
They used to represent multivariate data by 
representing the values using the various 
facial features like the eyes, nose, mouth, 
eyebrows and the head shape, creating 
figurative facial expressions.

Fig. 2.11 London Underground Map 
(Harry Beck, 1931)
Harry Beck’s redesign of London’s 
Underground simplified the map of 
the stations into that of an electrical 
circuit diagram. Though it distorted the 
geographical positions, it also facilitated 
the perception of the passenger’s desired 
stations, as they would not require 
the exact positions when using the 
underground.

The creation of FORTRAN (1957), the first high-level programming language, 
marked the beginning of the development of computer programs that 
could process statistical data and construct graphic visualizations. Herman 
Chernoff took advantage of these rising technologies to represent data 
creatively by generating faces from inputed data (Fig. 2.12), which had later 
applications such as Eugene Turner’s map that represented the quality of life 
in Los Angeles (Fig. 2.13).

The twentieth century continued to witness many innovations in various 
areas during its last quarter. Technological developments such as increased 
com puter processing speed and memory capacity allowed for the processing 
of large amounts of data and the creation of high-density visualizations. 
These advancements extended to dynamic visualizations and the 
development of new interaction paradigms, furthering the possibilities for 
and efficiency of direct and instantaneous manipulation of the data and 
graphic proprieties.
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Fig. 2.13 Life in Los Angeles (Eugene Turner, 1977)
This is an application of Chernoff's faces representing the 
affluence, unemployment rate, urban stress and percentage 
of white population in Los Angeles by mapping these to 
facial features. The the expressive facial features are also 
representative of whether the influence of the values on 
the quality of life is positive or negative so that they can be 
conveyed through the appropriate emotions. For example, 
low unemployment rate is a positive aspect and will create 
a smiling face.

Fig. 2.14 New York City’s Weather for 1980 (New York Times, January 11th, 1981)
This visualization represents the temperature,  precipitation, and relative humidity 
throughout 1980 in New York City, as well as a long run average and a forecast of the 
expected change ovr the year. It is an example of a successful attempt at representing a 
large collection of data (1,888 values) in a way that is easily understood, and tells a story. 
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Fig. 2.15 Just Landed (Jer Thorp, 2009)
This visualization predicts and portrays a series of flights with only information gathered 
from the social network Twitter, mapping people that twitted the phrase “Just landed in” 
on a geographical map by using the poster’s home location to create the origin point and 
reading the message itself to find the destination.

The end of the century also accommodated the popularization of data 
graphics by the mainstream media, such as newspapers (Fig. 2.14), as well 
as allowing the average public to more easily access existing data. The 
Internet was one of the major contributors in this aspect as it changed how 
the world communicated, so it had a natural influence over the field of data 
visualization, especially with it’s popularization in the 1990’s.

Social networking became exceedingly popular in the twenty-first century, 
and with the ability to access the data of these services came the creation 
of visualizations that would reflect these massive networks of information 
from people all around the world, such as Just Landed, a project created by Jer 
Thorp using data gathered from the social network Twitter (Fig. 2.15), drawing 
connections between people’s home locations and the origin of their tweets 
which contained the phrase “just landed”.
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Most notably with the turn of the century was how the new techonologies 
found its way into the common person’s everyday life, which meant most 
people now had access to the large databases found online as well as 
software tools which were becoming more mainstream and easy to use. 
This lead to the emergence of many kinds of visualizations representing a 
multitude of varied subjects, from science (Fig. 2.16) to religion (Fig. 2.17), the 
mainstream media (Fig. 2.18), literature (Fig. 2.19), diseases (Fig. 2.20) and even 
proteins (Fig. 2.21) or attempts to map the internet itself (Fig. 2.22).

Fig. 2.16 Visualizing Information Flow in Science (Moritz Stefaner, 2009)
Also known as the Eigenfactor project, it is composed of set of four visualizations, each with 
a different structure – radial diagram, map, flow diagram and treemap – representing a 
calculated factor of importance for individual journals, as well as the in and out citation 
flows. There are four categories of scientific journals: medical, natural, formal and social 
sciences. The images above show the radial diagram and tremap.
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Fig. 2.17 Similar Diversity (Philipp Steinweber, Andreas Koller, 2007)
An arc visualization showing the similarities and differences between the 
holy books of various religions – Christianity, Islam, Hinduism, Buddhism,  
and Judaism.
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Fig. 2.18 Overnewsed but uninformed  (Stefan Brautigam, 2008)
A network comparing various news media outlets (newspaper, television, radio and internet) 
through different countries, which are simply sorted by rating and then connected in order to 
visually represent the fluctuations between the media most used in each country.
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Fig. 2.19 Graphical Visualization of Textual Similarities (Jürgen Späth, Magnus Rembold, 2006)
This visualization uses a combination of scaling circles with a polar chart to represent the 
thematic links between nineteen essays found in the book Total Interaction: Theory and 
Practice of a New Paradigm for the Design Disciplines (2004).

Fig. 2.20 Diseasome (Linkfluence ,2009)
An interactive map of the human-disease 
network, consituted by 903 genes, 
represented by white nodes, and 516 
diseases, represented by the remaining 
colored nodes, divided across 22 categories. 
Clustering is made more evident throught 
the use of colored borders, which emphasises 
the genes and diseases with more 
correlations between each other.
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Fig. 2.21 Minimum Spanning Protein 
Homology Tree
(Alex Adai, Edward Marcotte, 2002)
A high-density visualization of a 
protein-homology map composed of 
over 300,000 proteins. Edges are red if 
connecting two proteins of the same 
species, red if they are different, or a 
color based on the layout hierarchy if it’s 
unknown. Proteins have specific colors 
based on a classification system determined 
by their genetic lineages.

Fig. 2.22 Opte Project (Barrett Lyon, 2003)
The Opte Project was an attempt to create 
a visual representation of the internet. 
The image shows a high-density network 
representing the internet map from 
November 23 2003, with over 5 million links 
from various IP addresses. It can be used to 
visualize the overall growth of the Internet, 
as well as how specific areas change over 
time.



28

Jacques Bertin was a French cartographer and theorist, known for his 
monumental work in the field of information visualization. His book entitled 
Semiologie Graphique (Semiology of Graphics) [1], released in 1967, was composed 
of the most complete and elaborate studies on the theory of information 
visualization and was one of the most far-reaching efforts to provide a 
theoretical foundation to the field.

Bertin’s work presented a new direction in the primarily subjective field of 
graphic representation and information design where he attempts to summa-
rize the principles of graphical communication into simple logical rules that 
help both restructure the available data and find the best way to represent it 
visually so that it can easily be understood. The understanding of his work 
proves to be an essential stepping stone in the creation of any information 
visualization as his methods allow for a simple understanding of the basic 
elements that make up a visualization and dictate the working relationships 
with the various types of data we wish to represent.

“Graphics owes its special significance to its double function as a storage 
mechanism and a research instrument. A rational and efficient tool when the 
proprieties of visual perception are completely utilized, graphics is one of the 
major “languages” applicable to information processing.”

– Jacques Bertin, 1967, Semiology of Graphics [1], p.2

Bertin identifies the graphic system of a visualization as being made up of two 
parts: the content and the container. The content consists of all the information 
that will be represented, while the container represents the proprieties of the 
representations, namely the graphic system.

The process of creating a visualization starts with the organization of the 
content, which requires the analysis and categorization of all the information 
available. As Bertin states, the first step in analysis the information is identify-
ing the invariant, which is the main idea which will be transmitted through 
the components. These components are the variational concepts which need to 
be identified through the data. The next step is establishing the elements or cat-
egories, the identifiable parts of component, as well as determining the length, 
which will define the number of elements in a component.

The visual representation of the elements requires marks that in order to be 
visible must reflect light which is different from paper, such as ink or, in a more 
modern context, the pixels of a screen. These marks can vary in position and in 
the way they are used, to which Bertin [1] assigns the name of implantation. On 
a plain, the marks can be defined as points, lines or areas. The visual proprie-
ties of the marks are named visual variables and a mark can express a cor-
respondence between the two planar dimensions through its position. When 
fixed at a certain point, a mark can also vary in size, shape, orientation, color 
and texture. These are the visual variables established by Bertin at the time, 
although there have some proposed additions throughout the years (Fig. 2.23).

Semiology of graphics
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Fig. 2.23 This chart, created by Isabel Meirelles [6], presents Bertin’s system of perceptual 
variables, with the smaller chart on the right indicating the appropriateness of each vari-
able to its level of organization. The bottom-right chart is a more recent expansion that 
includes other variables that have been added over time; in this chart the lighter grey signi-
fies “marginally effective”. The chart also includes clarity, a new visual variable introduced 
by Alan MacEachren [7], which consists of three listed variables: crispness, resolution and 
transparency.
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Certain variables are more appropriate to represent certain components 
which depends on the level of organization of each component, determined 
by the analysis of the relationships between each of them. The first level is 
named qualitative or nominal, but it’s divided into two sub-levels of organiza-
tion. One is the associative level which consists in grouping similar elements, 
which are better represented through color, texture, shape and orientation. 
However, size and values are dissociative and can break uniformization. The 
other level is selective, based on the differentiation of the elements. Differen-
tiating can be represented through value, size, texture and color, but shape 
and orientation (when represented using an area) are not easily percepted. 
A variable is ordered when the represented components have a single and 
universal order. Texture, value and size are variables with a perceptible order, 
but color, shape and orientation are not ordered. Finally, the quantitative level 
is used to describe components that have countable units. Only variations in 
size are appropriate to represent relationships on this level adequately.

The use of planar dimensions is called imposition, in which Bertin distin-
guishes four groups which are defined by the representation of the elements 
on the plain: Diagrams are made up of the correspondence between all 
the divisions of a component with all the divisions of another, where each 
component is mapped to an axis of the plain. Networks establish relation-
ships between all the divisions of the same component. Maps are the same 
as networks, but their elements are presented in geographical order. Symbols 
do not establish correspondences within the representation, but instead they 
create relationships between the marks and the reader himself. Their mean-
ings are dependent on the cultural context and knowledge of the person. Dia-
grams and networks can have different types of imposition based on how the 
variables are inscribed onto the plain. The imposition can be linear, circular, 
orthogonal or polar.
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The efficiency of statistical graphics is determined by their communication of 
complex ideas with clarity and precision. The representation of information 
should follow certain principles in order to guarantee graphical excellence 
such as encouraging comparisons between the data, avoiding distorting the 
data or any manipulations that serve only to favor the aesthetics, represent-
ing several levels of detail (such as an overview and a close-up detailed view), 
and integrating the statistical and verbal descriptions of the data with the 
visual display.

“Graphical excellence is that which gives to the viewer the greatest number of 
ideas in the shortest time with the least ink in the smallest space.”

– Edward Tufte, 2001. The Visual Display of Quantitive Information [2], p. 51

Graphics have the power to communicate great amounts and complex infor-
mation, but the inappropriate representation of the data for the purpose of 
simply decorating some numbers can only guarantee mediocre graphics.

Edward Tufte heavily criticizes inaccuracies in graphics, holding graphic 
designers on the same level of integrity of a writer who should not alter the 
graphical aspect or even the data itself so that these fit into their “aestheti-
cally pleasing” graphic representation. He lists some principles that should 
be followed in order to retain graphical integrity such as not quoting data out 
of context, using clear and detailed labels to avoid misinterpretations from 
graphical ambiguity or distortion, and representing numbers directly propor-
tional to the numerical quantities represented. He also suggests the calcula-
tion of a graph’s lie factor, which represents the ratio between the size of the 
impact in the graphic be the size of the impact in the data, and if this ratio is 
above 1, then the visualization is exaggerating the representation (Fig. 2.24).

In order to assure graphical competence the art must work side-by-side with 
the substantive and quantitative expertise, as statistical integrity must not 
be sacrificed for aesthetics, though this also does not mean that accuracy de-
mands an ugly graphic. It is by upholding proper standards and through the 
cooperation of both sides that one can achieve true graphical excellence.

Graphic efficiency

Fig. 2.24 This chart from the Russian 
journal Pravda is a simple but clear 
example where the direction is clear, 
but the magnitude of the numbers is 
clearly incorrect, as their representations 
do not accurately reflect the increasing 
proportions of the quantities.
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Tufte also asserts a few more principles regarding good graphical 
representations, such as the maximization of the data-ink ratio – the 
proportion of the graphic which contains and transmits actual information –, 
the avoidance of chartjunk – excessive and unnecessary graphical elements, 
like heavy grids and moiré vibration – and the maximization of data density, 
within reason – high-density graphs can portray a lot of information at once, 
but legibility should not be sacrificed.

Aside from graphical representations, it is also necessary to have a basic 
understanding of certain principles about visual perception in order to 
properly display information. Most of these principles can appear as basic 
notions, as they tend to be natural reactions even when looking at a simple 
chart, for example, how we group objects based on them being the same 
color. However, it is possible misjudge the importance of a visual propriety 
over another, or to simply have certain elements lead to misinterpretations. 
One series of principles that describe these perception phenomenons is called 
the Gestalt laws.

The Gestalt laws describe the way on how we detect patterns and how 
they can be used to effectively enhance perceptual inferences and problem 
solving, as stated by Isabel Meirelles in Design for Information [6]. The 
laws are simple principles that allow for the visualization to become more 
coherent and patterns to be more easily perceptible. These principles are 
defined as proximity, similarity, common fate, good continuation, closure, 
and segregation between figure and ground. Proximity describes the 
tendency to perceptually group elements that are closer together. This 
also applies in abstract domains, as graphical proximity corresponds to 
conceptual proximity. Similarity serves mainly for categorical association, 
as it describes the tendency to group visual elements with similar 
characteristics that don’t relate to location, such as color and shape. 
Common fate is the tendency to group elements with similar directions, or 
more specifically, moving in the same direction. Good continuation is the use 
of uninterrupted and smooth elements or lines that are straight or smoothly 
curved in order for representations and, more specifically, the relationships 
to be easier to read and interpret. Closure describes our interpretation of 
closed elements as a whole which defines boundaries or a shape, applying 
even to separate units where our mind can fill in small gaps and close the 
visual element. The segregation between figure and ground principle describes 
the process of organizing the visual elements by selecting some elements as 
figures and the rest as ground.
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Information visualization is a very broad and extensive subject and a 
detailed analysis of every type of possible method for data representation is 
outside the scope of this dissertation. Instead we will focus on the structures 
which we created for the project, the main of these being relational 
structures. The focus of relational structures, also known as networks, lies 
within the patterns of the connections between its elements, not within the 
elements themselves, in other words, it’s the analysis of the relationships in 
these interconnected systems that lets us perceive new types of information 
and conclusion from these interdependencies.

Manuel Lima asserts in Visual Complexity: Mapping Patterns of Information 
[8] that the purpose of network visualization is driven by five key functions: 
document – portray and save new structures; clarify – make information 
more understandable so it becomes easier to process and communicate; 
reveal – find hidden patterns and relationships; expand – set the stage for 
further exploration, and creating an initial outline for future evolution;
abstract – represent intangible and metaphorical concepts. Bertin defines a 
network as “when correspondences on a plane can be established among all the 
elements of the same component” (Semiology of Graphics, p.269 [1]). A net-
work can be characterized as a system that’s been simplified into an abstract 
structure composed of edges and vertices, respectively named nodes and 
links, which can also be labeled with additional information. The elements 
can be placed on the plane before figuring out their arrangement, and this 
arrangement should be in a way that produces the minimum number of in-
tersections in order to create and efficient graphic. Leonhard Euler (1707–1783) 
was one of the first to use networks alongside graph theory and mathematics 
when solving problems, which was a puzzle involving the city of Königsberg, 
nowadays Kaliningrad, the former capital of East Prussia, that asked if it was 
possible to cross all of its seven bridges without crossing the same bridge 
twice. In 1736, Euler proved that the path didn’t exist by converting it into a 
graph and analyzing the nodes and links, identifying the conditions of what 
was to be called an Eulerian path – a trail that passes through each node only 
once.

If all the nodes in a network are of one type, it is called one-mode or unimod-
al, otherwise the network will be called multimodal. There are also networks 
that consist of two sets of nodes that only share links between sets, and not 
between each other, in which case they are named bipartie or two-mode. The 
attributes of links can describe the direction of the interaction – directed or 
undirected – and the weight of the connection – weighted or unweighted.
Directed links, also known as asymmetrical edges, have a known origin and 
destination, making it possible to establish a direction, while undirected 
links, or symmetrical edges, refer to mutual connections and have no origin 
or destination attributes. Weighted links represent additional information 
about a connection, such as its strength. Unweighted links only present 
whether a connection exists or not. The number of connections of a node 
is named degree, and in directed networks we can distinguish the number 
of links destined to that node as in degree from the number of connections 

Relational structures



34

originated from that node called out degree. The analysis of the degree in 
each of the nodes in a network can help determine certain proprieties, such 
as centrality.

There are three main types of structures used to describe or represent 
networks: adjacency lists, adjacency matrices and node-link diagrams (Fig. 
2.25). An adjacency list is simply composed of a vertical list of all the nodes 
in a network, where each node is followed by a horizonal list of all it’s links. 
They are not used often due to being unmanageable and confusing when 
dealing with large networks. Adjacency matrices are comprised of a grid of 
nodes, where the cells simply represent whether or not a connection ex-
ists, usually through a two-color scheme, and they have the advantage of 
avoiding the overlapping information that can cause confusion in complex 
networks represented through node-link diagrams, though they are more 
visually constricted. Weighted networks require a more complex representa-
tion in order to display any additional information regarding the proprieties 
of the links. In node-link diagrams, nodes are usually represented through 
symbolic elements and lines are used to represent links, though lines can 
represent both nodes and links, and so can areas if the type of relationship is 
inclusive. The orientation of a link can be represented visually, with an arrow 
for example, but other components must be represented with visual vari-
ables. Node link diagrams are usually the most common since they allow for 
the most freedom. Some common node-link diagram network layouts are 
the linear, force directed and circular layouts. Linear layouts are where nodes 
are displayed on a line and links are usually represented with arcs, which, 
on their own, are usually more appropriate for representing less complex 
ideas. Force directed layouts use algorithms that simulate physical forces in 
order to position nodes, making it one of the better layouts for identifying 
clusters. Circular layouts have nodes organized in a circle, usually grouped 
by categories, while links are displayed inside the circle (Fig. 2.29).

However, there are many other types of networks as these can vary in a 
many aspects to create completely different visualizations. Regarding the 
data itself, the network can be classified differently depending on the distri-
bution of the relationships, as illustrated by Paul Baran in Fig. 2.26. A network 
is centralized if there is a “central node” that all other nodes connect to (a 
high degree), decentralized if there exist various “central nodes” with a large 
number of individual connections, or distributed when the degree value of 
the nodes is more or less constant throughout all of them. Networks may also 
vary through the aspects of representation itself, from the disposition of the 
nodes (which can be displayed in a line or a circle, or multiple lines or circles, 
or organized using forces, or other methods) to representation of the nodes 
and links (which can be done through simple or complex shapes or lines, 
which can then also vary in color, size). There exist an immense number of 
combinations and possibilities, and in this dissertation we included two lists 
which document various types of networks grouped by different parameters, 
one by Jacques Bertin (Fig. 2.27) showcasing some networks across different 
types of implementations, and another by Manuel Lima (Fig. 2.28) showing 
some of the possibilities between changing the position and representation 
of nodes and links.
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Fig. 2.26 Network Models 
(Paul Baran, 1964)
A simple representation 
of three types of networks 
based on the distribution of 
the  node-link relationships. 
From left to right, these 
models are named 
centralized, decentralized, 
and distributed.

Fig. 2.25 These three images show the same network being 
represented using different structures: an adjacency list 
(top left), an adjacency matrix (top right), and a node link 
diagram (bottom right).
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Fig. 2.27 This chart was created by Jaques Bertin [1], where he distinguishes the different 
types of network constructions across the various types of implantations.
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Fig. 2.28 Another chart that distinguishes various types of networks, based on both the 
representation and the organization of their nodes and links. It was created by Manuel Lima 
for his book, Visual Complexity [8].
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Fig. 2.29 LRI Co-authorship Network (Jean-Daniel Fekete, 2007)
This network represents the coauthorship of the papers written by the members of the 
Laboratoire de Recherche en Informatique, located in the Univerisity Paris-Sud. Similar 
papers are placed closer together which creates clusters, effectively dividing the data into 
visible groups.

The occlusion of the structures caused by the nodes and link crossings is a 
well-known problem, having been the target of new layout techniques and 
algorithms that aim to maximize the legibility of the graph, such as edge-
-bundling  (Fig. 2.30), where  the links of the network are bundled together 
in order to make their similarity and directions more perceptible –, or focus 
+ context – which is more commonly used in maps, where the amount of 
detail adapts to the scale (Fig. 2.31). Other strategies try to reduce the number 
of nodes using clustering, where nodes are grouped based on similarity, like 
categories (Fig. 2.29), or by adding filters to the data (which is also shown on 
Fig. 2.31), where the three buttons on the center-left allow to switch between 
types of data. These type of functions are very useful for displaying and help-
ing the user navigate through large datasets, even when they are not neces-
sarily networks.
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Fig. 2.30 Hierarchical Edge Bundles  (Danny Holten, 2006)
This visualization was generated using an edge bundling technique. This specific technique 
can be used on data sets containing both hierarchical and non-hierarchical data, and bun-
dles the links into more organic structures which are easier to interpret.

Fig. 2.31 Data Lens (Pedro Cruz, Senseable City Lab, 2012)
This is a map visualization of the bus activity throughout the bus stops in Singapore. The 
lens are an example of the interactive visualization techniques and algorithms that seek 
to make high-density visualizations more understandable, as a lot of data can overlap or 
simply not leave sufficient space for additional information to be readable. Their purpose is 
similar to that of a magnifying glass, amplifying areas which the user selects and filtering 
different kinds of information such as the bus number, number of passengers and the total 
fare payed by the passengers at any one bus stop.
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Fig. 2.32 The Poverty Red Thread (DensityDesign, Mario Porpora, 2008)
An example of a flow chart, where the nodes are positioned on opposite sides of the plane, 
and the links are represented with organic lines. It shows the poverty in Italy, organized the 
number of members in each family and by their location.
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Fig. 2.33 Website Traffic Map (James Spahr, 2003) 
This visualization was created using a software tool that  illustrates the navigation flow of 
a website. Instead of mapping simple straight lines between the pages, it represents all the 
traffic as moving in a clockwise direction.

Fig. 2.34 TextArc: Alice in Wonderland (W. Bradford Paley, 2009)
This elliptical implosion network was created by the tool TextArc. The visualization is inter-
active, highlighting word frequency and associations in Alice in Wonderland.
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Hierarchical structures are composed of ordered sets of data where elements 
are organized in relation to each other and to the whole system. They 
can be divided into two representations, though these may also exist 
simultaneously: stacked and nested schemes. In a stacked scheme the 
elements are arranged in a directional relationship, while the hierarchy is 
determined by their position in relation to each other. A nested scheme is 
constituted by elements grouped by containers, positioned according to their 
interdependency and subordination.

A tree is the most basic representation of an hierarchical structure, and it 
has been present in the history of visualization for over eight hundred years 
[9]. It is an undirected network with no closed loops where there is only one 
possible path to travel between any pair of nodes. As its name indicates, this 
strucutre resembles a tree, where there is a root node which can be connected 
to multiple other nodes by branches, and these nodes can then branch out to 
other nodes and so forth (Fig. 2.35). It can be drawn with any node as its root, 
though there is a specific node which is considered to be the origin point. The 
end-nodes (those without sub-branches) are called leaves.As a tree increases 
in relations, it can spread in all directions throughout the plane creating a 
circular tree (Fig. 2.36), although without proper ordering, the different stages 
of the tree might not be perceptible.

Hierarchical structures

Fig. 2.35 Monophyletic Family Tree of 
Organisms (Ernst Haeckel, 1866)
An early branching diagram representing 
three of the kingdoms of life: Plantae, 
Protista and Animalia.
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Fig. 2.36 (En)tangled Word Bank (Stefanie Posavec, Greg McInerny, 2009)
This is one of a series of diagrams representing the changes between the six editions of 
Charles Darwin’s The Origin of Species. The initial branches represent the chapters, that 
divide into subchapters, then into paragraphs, and finally into sentences. Blue represents 
sentences that made it into to the next edition, while orange represents deleted sentences.
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The creation of trees can also be a complex process, especially when 
dealing with large amounts of data, which mainly consists of identifying 
the position of the nodes. One way to calculate these positions can be done 
based on what stage each node is on (how many branches away it is from 
the root node) and how many neighbours they have in order for these 
and their branches to not overlap each other, as well as maintaining an 
identifiable hierarchy.

A method that can be used to position the nodes without previous 
calculations is by simulating forces in order to repel nodes that aren’t 
connected and allow the tree to reorganize itself. The process is an 
animation which can be more visually interesting than other options, but it 
may also be difficult to keep the branches from becoming “tangled” on very 
large trees. It is also possible to utilize a combination of both methods to 
achieve better results.

Trees can also be represented through more unconventional forms, such as 
treemaps. These represent the nodes and branches using rectangles instead of  
separate elements joined by lines. Each branch corresponds to a rectangle and  
its inside is divided into smaller rectangles representing the sub-branches, 
usually using size to represent the dimensions of the data (Fig. 2.37). 
Depending on how color and size are handled it might be easy to identify 
patterns among particularly large datasets.

Fig. 2.37 Newsmap (Marcos Weskamp, Dan Albritton, 2004)
A treemap that provides an overview of various online news stories. It is an attempt at 
visually revealing hidden patterns in the news media by exploring the relationships 
between the reported news.
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Temporal structures represent other elements in relation to temporal data, 
such as showing when events occured or the progression of the proprieties of 
various element during an interval of time.

Time is an abstract concept, but we have ways to represent it visually, or at 
least its passage, using graphical elements and techniques that allow us to 
interpret objects or values as they change from a temporal starting point to 
an end point, usually showing the various instances of that element through 
various intermediate steps.

One of the more common visual proprieties used to represent time is position, 
usually by mapping out the temporal values on one of the axis of the plane, 
and as the elements travel across that axis they represent their state for that 
corresponding point in time (Fig. 2.38). This is known as a timeline.

These structures are usually used to represent others with the added 
dimension of time, like spatio-temporal structures, which utilize information 
with both spatial and temporal elements, and as such, most of the 
visulizations that fall within the definition of these structures are the ones 
that show elements on maps changing over time (Fig. 2.39). To properly 
represent these kinds of changes on a map usually requires approaches such 
as animations, interactions or multiple iterations.

Temporal structures

Fig. 2.38 Humble Finance (Humble Software Development, 2010)
A simple interactive HTML5 data visualization tool which can be used to display any 
two-dimensional numerical datasets and allow the user to compare the two. The image 
shows it displaying historical stock data gathered from Google. On the bottom there is an 
interactible timeline which allows the user to pick a range of values to visualize above, as 
well as the ability to simply scroll through the displayed time. 
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Fig. 2.39 Traffic in Lisbon (Pedro Cruz, Penousal Machado, João Bicker, 2010)
An example of a spatial-temporal structure. This visualization of Lisbon’s traffic is animated 
and shows the traffic changes throughout a twenty-four hour period, which is actually com-
posed of vehicle data gathered during the month of October of 2009. Green and cyan colors 
represent faster vehicle average speeds, while yellows and red represent the more congested 
paths filled with slower vehicles.
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Representing data visually can be a complex task as we aim to make sense of 
all the information and induce useful insights through graphical elements, 
so we develop new methods to create and convey these visualizations. These 
methods look at how certain living beings interact in nature and convert 
these behaviors into simple rules which can be applied to the data itself 
and promote self-organization behaviors. Greg Judelman lists some rules by 
which organisms in mature ecosystems live and notes: “These properties can 
be mapped to visualization design in the context of the optimization of the 
cognitive potential of visualization users“ [10]. 

As we will be dealing with particularly large sets of data, knowledge of these 
methods can be useful in order to discover new relationships or organically 
organize data. It is because of our current technologies that it is possible to 
represent datasets with hundreds of thousands of individual values and by 
creating programs that follow simple rules between each one of these values. 
This way, it is possible to recognize a number of elements on screen and 
change their behavior based on their current conditions for every frame of 
the visualization, in other words, it is possible to program behaviors into the 
elements representing the data so that they react in relation to each other, 
their data or even other exterior elements. The computer’s processing speed 
and real-time animations have allowed us to explore a whole new dimen-
sion, past the representation of time.

The various elements that will shape the visualization can be programmed 
with behaviors which can vary in complexity, though even simple rules can 
generate complex behaviors. One of these elements that has a set of objec-
tives and acts autonomously in an environment which it can recognize is 
called an agent. A system will generally have multiple agents, and when 
these agents do not have a central coordinator and instead act autonomously, 
based on other agents in their neighborhood and environment, then this sys-
tem is called a decentralized multiagent system. We will be focusing on these 
types of systems, as they are inherently capable of self-organization and 
simulating collective behaviors which we can find in nature, such as in birds 
or ants. Through these collective behaviors it is possible to observe emergent 
phenomena, in other words, perceived complex actions that resulted from a 
group of agents not explicitly programmed to do so. 
According to Andrew Vande Moere [11], an average data agent must have 
certain characteristics:
Data Interpretation – An agent must be aware of the data it represents and 
detect changes made by user interaction or by the application’s timeline.
Local Perception – Each agent must be able to perceive their environment, and 
detect other agents in their neighborhood.
Local Communication – An agent should be able to trade information with 
other agents in its vicinity.
Negotiation – The ability to perform more complex trades with their neighbor-
ing agents, such as swapping position.

Nature-inspired methods for 
data organization
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Visual Presence Autonomy – An agent’s ability to change their own position and 
visual variables, as well as that of their neighboring agents, to some degree.
Historical Memory – The ability to store past values such as previous positions 
and data from other agents it has encountered.

We will analyze three types of behaviors possible in a self-organizing data 
visualization model, starting with particle animation. In a particle anima-
tion, each particle is an agent that follows a set of sequential behavior rules, 
and moves around in a virtual space using dynamic animation. The parti-
cles are subjected to “forces” which attract and repulse them and the rules 
determine what forces the particles are attracted to and whether they should 
speed up or slow down. Agents are randomly distributed at the start and 
move freely, reacting to the forces accordingly and creating emergent visual 
effects that convey meaningful information over time (Fig. 2.40). 

Another behavior is swarming, based on the mathematical simulation of flock-
ing birds. Craig Reynolds [12] modeled the movements of what he called boids 
(bird-objects), by creating a set of simple rules that dictate their movement. 
In this case, the agents are given limited vision and some communication 
capabilities, and they must follow the Reynold’s rules based on rel bird flock be-
haviors: avoid collisions, match the velocity of agents in the neighborhood, and 
stay close to the center of the flock. Other rules can eventually be added, such 
as an attraction to agents with similar data values and an opposite reaction to 
those with dissimilar data (Fig. 2.41).

Fig. 2.40 Particle animation applied to a dataset of the Intranet file usage in a company with 
about 7000 employees over the course of a year, where each agent represents a document 
stored on the Intranet file servers. The circles represent the different geographical units, 
while the ribbon and time stamps trace the three-dimensional trajectory of a particle. On 
the left, a Quark pattern as emerged, showing documents downloaded often by various dif-
ferent regions, creating erratic movements. The image on the right shows a Comet pattern, 
representing documents downloaded often by the same region, creating elliptical tracks.
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Fig. 2.41 An application of a swarm of boids showing one year of stock market quotes from 
around 500 companies. Each agent represents a company, and for each update they calcu-
lated and compared the relative difference in price with their previous update, reflecting 
the change in stock market quotes over time. The top image shows short-term clustering 
patterns, where individual agents are expulsed by the main flock on the left, and the right 
image shows subflocks with similar value changes appearing from the main flock. The bot-
tom image show long-term zoning patterns, with the image on the left shows the flock core 
and the image on the right the flock periphery. The line graphs on the bottom of the images 
convey the relative volatility of the stock quotes.
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Fig. 2.42 Game of Life (John Conway, 1970)
An example of a cellular automaton where cells have 
discrete states which can switch between being “alive” 
and “dead” based on the state of their surrounding cells. 
A simple set of rules creates emergent visually intriguing 
cell patterns. The image shows a pattern called Glider Gun, 
discovered by Bill Gosper, in which the top cells repeatedly 
move from left to right and generate patterns of cells that 
move diagonally to the bottom right.

Fig. 2.43 This image shows a simple visualization of five-
hundred ants distributed across four classes, utilizing a 
two-dimensional synthetic dataset. Initially the ants are 
placed at random, but through the rules of cellular ants 
described previously they form clusters according to data 
similarity. Aside from the perceivable clusters of similar 
data, we can observe other emergent phenomena such as 
agents on the border of two clusters that also share similar 
parameters, highlighted by the black border areas.

The last nature-inspired self-organization method we will overview is the 
cellular ant method, which consists of two approaches: cellular automata and 
ant foraging. Cellular automata, originally proposed by Von Neumann, con-
sists of a grid with cells whose actions generally are dependent on the states 
of neighboring cells (Fig. 2.42). Ant foraging is an example of ant-based data 
mining, where the agents simulate ants and pick up data items and move 
around until they find similar data items, at which point there is a prob-
ability of dropping it in their vicinity; this originates visual data clusters. 
However, cellular ants don’t pick up data items, they represent the data items 
themselves and can decide whether to move around or to stop (Fig. 2.43).

Cellular ants follow five behavior rules [11]: surface tension (free movement 
until that agent has enough similar neighbors), edge repulsion (moves away 
from dissimilar neighbors), positional swapping (chooses random directions 
and swaps with neighbors if they meet the conditions), color determination 
(once the collection of ants is sufficiently ordered, colors are introduced where 
there are stable clusters), and shape size adaptation (each agent is able to map 
one of its data attributes onto its size by negotiating with its local neighbors).
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Fig. 2.44 An ecosystem of corporate politicians (Pedro Cruz, 2013)
This is a more recent example of an interactive visualization that employs these techniques, 
showing the relationships between the members of the Portuguese government and compa-
nies and other groups from 1975 to 2013. Companies are represented as circles and their size 
is proportional to the amount of politicians that held a position in that company, while the 
politicians are represented as small creatures whose color is based on their most recent politi-
cal party affiliation and with a body shape that changes based on the number of companies is 
has held a position in. The data serves as an ecosystem and each politician has a sequence of 
companies to visit, and as the politician agents enter the visualization through the top, they 
move around randomly through the companies, searching for companies in which they have 
held a position in, at which point they will circle around it and search for the next one. 

These nature-inspired techniques have been used mostly for generative 
art, creating fluid forms and organic flows [13]; however, as Andrew Vande 
Moere [11] has demonstrated, there is great potential in applying these data-
organization methods to the visualization of information. Not only do these 
methods contribute to the emergence of visual patterns that can convey 
meaningful information and induced useful insights, but the very nature of 
the animation that leads to these patterns serves as a way to develop interest 
in the viewer (Fig. 2.44), as well as functioning as a generally more efficient 
way to convey the information, as the viewer can observe the organization 
process as it happens and the patterns form.
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Evolution describes the process by which different species and living 
organisms have changed throughout time, usually involving their gradual 
adaptation to a new environment or changes to their current one.  It has long 
been the target of discussion in many fields, from science to religion and even 
philosophy, as humankind desires to explore and determine not only theirs 
but the history of that which surrounds them. 

Charles Darwin’s The Origin of Species [14] remains at the core of this 
concept as one of the first theories to be presented with a firm foundation 
in reasearch and evidence, and it was eventually embraced by the scientific 
community. Darwin’s theory describes natural selection, a process where 
populations keep favorable traits while discarding undesired characteristics 
through future generations, which comes as the result of competition 
between or within species where the most apt individuals have a higher 
survival rate, and thus are more likely to reproduce and pass on their genes 
which  cointain these advantageous traits for survival. While natural 
selection explains how species adapt to their surroundings, Darwin also had 
another theory regarding how the traits relating to the competition for the 
oposite sex evolve called sexual selection, which wasn’t as widely accepted. 
This theory refers specifically to the characteristics pertaining to the struggle 
to reproduce, where males need to eliminate their competition by either 
driving them away or killing them, while females tend to try and attract or 
excite agreeable partners [15]. This becomes quite apparent in birds, such as 
the peacock, where the vibrant plumage is used to attract mates and those 
with unfavorable colors and designs do not get to pass on their genes. 

The idea and subsequent studies of creating tools based on evolution which 
could be used for optimizing solutions for engineering problems started 
around the middle of the twentieth century. The concept was to evolve a 
population of candidate solutions by simulating genetic variations and 
natural selection. During this time, a few evolution-inspired algorithms 
were developed by researchers such as G.E.P. Box (1957), G.J. Friedman 
(1959), W.W Bledsoe (1961),  and H.J. Bremermann (1962), but it their work 
did not attract much attention. In 1965, a more successful technique was 
introduced by the German researcher Ingo Rechenberg which he called 
“evolution strategies”. These were used by Rechenberg to optimize solutions 
for aerodynamic wing design and their success lead to future developments 
which kept these strategies in use even in the present.

One of the more important actors in the development and popularization of 
genetic algorithms was John Holland, who had been studying the adaptation 
process in nature and how it could be used in programming, along with 
his students and colleges at the University of Michigan in the 1960s and 
1970s. Holland published a book in 1975 entitled Adaptation in Natural 
and Artificial Systems [16] which contained a lot of his work presented in a 
detailed and systematic  way in order to further establish the presence and 

Brief history of genetic 
algoritms
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possibilities of genetic algorithms, as well as present the newer concepts of 
simulating evolution and natural selection processes as a tool for solving 
problems through adaptive computer programs using selection, crossover 
and mutations. His work proved to be an innovation and he was the first to 
attempt to put computational evolution on a firm theoretical footing, which 
had served as the basis for almost all the subsequent work in the field of 
genetic algorithms [17]. By the early 1980’s, researchers had already become 
more interested in genetic algorithms and it’s applications exponentially 
grew alongside the technological upgrades and development of newer tools. 
Genetic algorithms were applied to a multitude of fields of study outside of 
pure mathematics as they can be used to solve various complex problems 
much faster than the human mind.

Genetic algorithms have been applied in several real life contexts. In 1994, 
Victor Johnston started development on a software that used genetic 
algorithms to evolve human faces through the input of a user which he 
called FacePrints [18]. This software was used as a study for human facial 
beauty by surveying users who would look at random faces displayed and 
rate them, and the software would close in on their perception of the most 
beautiful face. It was also put to a more practical use in law enforcement, 
being used as a substitute for sketch artists, helping witnesses describe and 
identify suspects (Fig. 2.45). FacePrints would combine a variety of faces in 
different ways and would adapt according to the responses, making it easier 
for most people which had a better time identifying whole faces rather than 
describing the details. 

Fig. 2.45 Preliminary results of Johnston’s FacePrints software showing how 
features are switched and altered in the attractiveness evolution of a face.
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In the field of electrical engineering, Edward Altshuler and Derek Linden 
(1997) created a genetic algorithm that would determine the design of a 
wire antenna based on certain pre-determined proprieties, which up to that 
point used to be a process that relied on experience and intuitive guesses 
[19] (Fig. 2.46). The application of genetic algorithms even extended to 

Fig. 2.46 An example of a wire antenna and 
it’s peculiar design which would have to fit 
the predetermined parameters in order to 
function correctly. The genetic algortimn 
could reach the most efficient designs much 
quicker than a human using trial and error.

Fig. 2.47 Some  examples of the variations 
of the aircraft’s wing design  which were 
created by the variation and manipulation 
of six variables.

aerodynamics, where Shigeru Obayashi, Daisuke Sasaki, Yukihiro Takeguchi, 
and Naoki Hirose developed an algorithm which would determine the shape 
and proprieties of a supersonic aircraft’s wings, taking into account the 
advantages and disadvantages of each propriety  and letting the program 
resolve which were the most overall advantageous tradeoffs [20] (Fig. 2.47).
While these examples show some real life applications of genetic algorithms, 
the field of evolutionary computation is still developing new approaches, 
including studies now focusing on the theory of sexual selection and how it 
could help produce new results through genetic programming [21] [22].
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Genetic algorithms simulate the process of natural selection in order to find 
a solution to a problem, usually relating to optimization and searches [23]. 
The problems solved by these algoritms may not have exact solutions, so they 
search for one which is as close as possible through recombinations. Random 
solutions are generated and then progressively evaluated and recombined 
to reach better results, until a certain criteria is met, at which point the 
proposed solution will be the one with the highest evalution up to that point.

In order to explain in more detail we will use a simple problem that can be 
solved through a genetic algorithm as an example. This problem consists of 
finding a path between two points where a ball released on the starting point 
would reach the end point in the least amount of time (Fig. 2.48).

Genetic algorithms

Fig. 2.48 A path is drawn between the fixed 
starting and ending points which the ball 
will travel on.
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For this particular problem, the path will consist of eight points equally spaced 
apart on the horizontal axis, so each point only varies in their vertical position, 
reducing the sought-after solution to a set of eight numbers (Fig. 2.49).

Fig. 2.49 This illustrates a possible solution 
to the problem, depicting a curve consist-
ing of a start point and an ending point 
with eight intermidiate points in between, 
evenly spaced out on the horizontal axis 
and with varying heights.

Fig. 2.50 This group of graphs represents a part of a first generation of individuals, which 
were randomly generated. Their genotype is depicted under each graph: a set of numbers 
that correspond to the height of each point that makes up the path. 
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The algorithm is initialized by randomly generating a group of possible 
solutions, and each one of these is called an individual (or phenotype), while 
the group is referred to as a population. Each individual is characterized by 
a set of proprieties, its genotype, which in the context of this problem would 
consist of an array containing eight numbers, referring to the heights of each 
point in the path. This is known as the first generation and it is randomly 
generated (Fig. 2.50).

The next step consists of an evaluation of each individual as a possible 
solution, which is assigned as a numerical value known as fitness. There 
can be multiple ways to evaluate an individual but these will always be 
dependent on the problem trying to be solved and its goals. The evaluation 
of each proposed solution is done through a fitness function. In the case of 
the problem described so far, the fitness function is actually aware of the 
perfect curve between the two points, as there exists an actual mathematical 
solution for this, and the fitness of an individual is calculated by comparing it 
to the target curve (Fig. 2.51). 

After the evaluation, the population is then subjected to a process of 
selection where a group of individuals will be chosen to breed the next 
generation. This can be achieved through a variety of methods, some of 
the more well-known being tournament selection, truncation selection, 
and fitness proportionate selection. Selection isn’t restricted to one method, 
which means multiple can be used at once. Tournament selection consists of 
holding several tournaments, starting with randomly selecting a quantity of 
individuals from the population and then choosing the one with the highest 
fitness. Truncation selection does not use probability and simply orders the 
population by fitness and chooses a set percentage of the best individuals.
Fitness proportionate selection, also known as roulette-wheel selection, 
assigns a winning probability to each individual proportional to their fitness, 
meaning that the best individuals have a higher chance of winning but will 

Fig. 2.51 This image represents the target 
curve which each individuals curves would 
be compared to in order to determine their 
fitness.
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not always be selected, which can add variation to future populations and 
possibly lead to fitter solutions down the line. There is also elitism, which 
consists of copying the single best individual into the next generation.

The new generation will be created from the selected individuals which 
will be subjected to modifications caused by genetic operators, which 
involve transformations and recombinations of the genotypes to create 
new individuals. There are two genetic operators: mutations and crossovers.
Mutation alters one or more gene values of an individual’s genotype, 
replacing it with a different value which is usually random but within 
established limits (Fig. 2.52). This helps maintain genetic diversity which 
can prove indispensable in finding better solutions. Crossover involves the 
creation of a new individual through the recombination of others, usually 
involving two. A one-point crossover is one of the most simple types of 
recombination, in which two individual’s genotypes are split at a crossover 
point and then two of the resulting sections are switched, resulting in two 
children whose genotypes contain gene values from both parents (Fig. 2.53). In 
a two-point crossover there are two crossover points and the resulting middle 
section is switched two create the children. Whether or not to maintain 
the genotype’s length will depend on the problem trying to be solved, as 
crossovers can swap two differently sized groups of genes which happens 
when the crossover points do not match on both genotypes, this being more 
commonly known as the cut and splice approach. There are also other types 
of crossovers which can consist of switching various random gene values 
between both individudals to create new ones, instead of switching whole 
segments determined by crossover points. The end result of this stage is a 
new generation of new individuals which has mostly resulted from previous 
generations’ best individuals. 

The previous steps will be repeated in a cycle, where each successive 
generation will be subjected to the processes of evaluation, selection 
and recombinations, in order to create better individuals until a solution 
that is determined to be fit enough is found, or until a specific number of 
generations has been created. This solution is usually the most apt individual 
of the final generation, and if the algorithm was successful, then this 
inidividual should quality as the answer to the problem which the user was 
trying to solve.
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Fig. 2.52 A representation of a mutation affecting a single gene value in an individual geno-
type, represented in blue. The mutation randomized that value in order to introduce some 
variation which could not be achieved with only recombinations.

Fig.2.53 A one-point crossover between two individuals shown in the top two pictures, 
with a central crossover point which splits them in two equal parts. These two sections are 
switched, resulting in the two new individuals shown in the bottom two images. 
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Our main objective is to build a functional prototype capable of building, 
presenting and browsing visualizations capable of enabling the extraction 
of high-level knowledge. The prototype was developed in Processing (an 
open source programming language based on Java) and will be able to load, 
read and process external data files and then represent this information on 
the screen. The application is interactive, allowing for the user to control 
the information which is being displayed and manipulate the graphical 
elements to a certain degree, which are essential to maintaining the 
visualization easy to interpret when displaying very large quantities of data. 
These interactions include some basic functions such as viewing different 
levels of detail, which can mean switching between a simple view and one 
with more textual information on screen or simply the ability to control the 
zoom level, allowing the user to navigate the data, and adding switchable 
filters to the data to pick out the most relevant information for each scenario. 
The implementation of these is largely dependent on their usefulness 
regarding the choices made in the development process and they can 
be subjected to changes. While our focus is on producing a dynamic 
visualization which the user can interact with and visualize animated 
adaptations or transitions between the data, we also to implemented the 
ability to produce static data artifacts, though these are subjected to certain 
limitations such as not being able to show all of the information present in 
the dataset at once. However, these limitations can be controlled by the user, 
allowing him to decide the type of artifact to generate.

By focusing on a single type of data from a specific field of study, the 
visualization can be developed and better prepared as a tool to aid users 
in this field. The data which we are working with is a set of files contain 
information about various results from a genetic algorithm, all of which are 
different due to the stochastic properties of genetic algorithms, as well as 
some of the results having been created with different settings altogether. 

The objective of a data visualization is to assure that the data is represented 
in such a way that it can convey the meaningful patterns which can lead 
the viewer to draw useful insights and conclusions. Through some of 
the theoretical reasonings of Jacques Bertin and Edward Tufte which we 
examined in the state of the art, we established a set of simple rules which 
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served as a starting base for building these representations. It was necessary 
to represent various types of structures in order to represent different types 
of data with different relationships, including networks and trees. We also 
used nature-inspired techniques in order to achieve these emergent patterns 
of information, as they can be used to dynamically organize the data and 
achieve more visually organic results than through standard functions. 
The visualization shows off the relationships between the data and 
provides a clear picture which allows the viewer, or in this case the user, to 
understand the process that lead to each solution generated by the algorithm. 

For the creation of our project we followed Ben Fry’s methodology proposed 
in Visualizing Data [24] as a model, which helped us establish a plan of action 
for the development process. This methodology consists of seven stages:
Acquire – Obtaining the data that will be represented, which involves 
resolving issues regarding the location and accessibility of the data. 
Parse – Parsing the data is the process that organizes the data into defined 
categories that are appropriate and structured to fit into the project 
requirements.
Filter – A selection of the pertinent data that excludes undesired information 
that does not need to be processed or displayed.
Mine – Involves discerning meaningful patterns of information through 
statistical methods or data mining.
Represent – The application of a basic graphical model that presents the 
information visually.
Refine – Improving the basic representation model by making it more 
comprehensible, visually engaging and aesthetically pleasing.
Interact – The addition of elements to the visualization that permit the user 
to explore the data or even manipulate it, by giving him control over what he 
wants to visualize and the level of detail.

These steps establish a path from the collection of the raw data to the 
graphical representation and additional features that make it more visually 
engaging and make the inference of useful insights easier. However, this is 
not a strict model, as it admits for the possibility that some steps might be 
excluded depending on their pertinence to the project. While these steps are 
presented in a certain order, the actual process can be much more iterative, 
repeating previous steps in order to obtain progressively better results. Later 
stages might lead to new interactions with earlier ones because of how some 
steps affect the others. Fry illustrates this through a graphic (Fig. 3.1).

Our process also started by going through the first three steps which involved 
obtaining the data and analysing it in order to make some initial conclusions 
regarding what variables would be represented and which structures would 
be the most adequate. We created some basic graphic representations of the 
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data which were an essential step in determining whether or not the results 
are meeting our expectations, and whether the data needs to be processed 
differently. After the initial representations, we focused mainly on the last 
three steps.

Fig. 3.1 Small diagram by Ben Fry illustrating a possible iteration chain between steps.

As supported by Fry’s methodology, developing both the representations 
and the interaction is mostly an iterative process based around successive 
refinements and validations of both the visualization and the interactive 
elements. In order to represent the data effectively and efficiently, we 
followed the concepts proposed by Jacques Bertin [1] and Edward Tufte’s 
[2], as discussed in the state of the art, which allowed us to build a strong 
initial infrastructure for our visualizations and ensure a higher standard 
of efficiency in communication. Regarding the interaction stage, it was 
important that the user did not feel hindered by implemented function, so 
we explored the concept of fluid interaction [25], which is a set of general 
principles which can be applied to an interactive application in order to 
support the user’s immersion and involvement. The word “fluid“ in this case 
refers to “continuous“ or “smooth“, since the objective of these principles is 
for the user’s experience to not be interrupted, which can likely happen if, 
for example, they are unsure how to preform a certain action or if they do 
not know what a certain action does. A few examples of these principles 
are: keeping a minimalist interface, smooth and animated transitions, 
immediate visual feedback, low resistance to change, integrating interface 
components into the visual representation, and a focus on the experience.
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Preliminary work
Chapter 4

During the first semester we participated in a project created for a 
competition hosted by the Massachusetts Institute of Technology (MIT), more 
specifically, the MIT Big Data Initiative at CSAIL working in partnership 
with the City of Boston. The competition was named the Big Data Challenge, 
launching on November 12th of 2013 and it was concluded on January 20th of 
the following year. The Big Data Challenge’s proposal was divided into two 
separate projects: the development of prediction algorithms and the creation 
of information visualizations. Both of these used a provided group of datasets 
that contained information about events, points of interest, taxi pick-ups and 
drop-offs, twitter messages and the weather, all from the city of Boston.

Our initial intention was to utilize the data to create network visualizations 
that would directly relevant to this dissertation’s objectives; however, 
the data was heavily geographical and a spatial-temporal approach was 
decided to be much more relevant towards the objectives of the Big Data 
Challenge. The project required a similar methodology to this dissertation’s 
project for its development, where a large set of data had to be analyzed and 
filtered and then properly represented through the creation of an interactive 
visualization. It provided a learning experience through some of the tools 
and representation techniques used, as well as some of the dynamic, 
interactive approaches which were later applied.

We created a visualization of the taxi pick-ups and drop-offs in relation to the 
events in their area in order to show the correlation between the intervals of 
time and places where events are happening and the people riding taxis to 
those areas. There were two teams created, one for the data mining portion – 
comprised of Filipe Rodrigues, Francisco Antunes and Francisco Pereira – and 
another for the creation of the visualization – composed of Evgheni Polisciuc, 
Carlos Bento, António Cruz and Penousal Machado. The remainder of this 
section will focus mainly on the visualization developed by both António 
Cruz and Evgheni Poliscius with the help of Penousal Machado. The project 
was developed in Processing, and our objective was to display the events and 
taxi pick-ups and drop-offs geographically on a map of Boston, and then to 
make the taxi activities react to the nearby presence of events. We focused 
on an interval of time where the available data from both taxi activities and 
events would coincide and also exist in a significant amount to generate 
interesting and significant visualizations. The interval of time chosen was 
the month of May 2012. The concept at the base of the project was that each 
taxi pick-up and drop-off represented a person which would react to events in 
their vicinity: taxi pick-ups would be repelled by events, representing people 



65

leaving the event by taxi, and taxi drop-offs would be attracted to them, 
representing people leaving the taxi to attend the event. Graphically, 
these functions would lead to the creation of animated waves which 
would give an idea of the movement and flow of the areas where events 
were taking place. Each taxi pick-up and drop-off was represented as 
a point which left a trail (a line) behind as it moved, which mapped its 
course. The color of pick-ups is blue while drop-offs are red, although 
the lines representing their trails used a gradient color that changes the 
hue slightly through their length – pick-ups change from blue to green 
and drop-offs from red to orange – and their opacity and stroke weight 
changes based on the standard deviation calculated.

Events have two representations in order to distinguish those that 
have data pertaining to their duration, represented with circles, and 
those that do not, represented with crosses. Events that do not have an 
established duration are given a default duration one day, the day in 
which they take place. The animation of the taxis’ activities in relation 
to the events was achieved using a force-based layout [26] where the 
force applied is based on their distance to their initial position, which 
slows each point down as they travel further away until they stop, and 
on the standard deviation, which determines how likely they were to 
travel to that event, determining the distance they would travel. Drop-
offs are simply attracted to the closest event, though pick-ups need to be 
repelled by all events and thus required an average of the events nearby 
in order to move away from them, so their path will not necessarily be 
linear (Fig. 4.1).

Due to the size of the data we could not have examined every single 
data entry and have built a visualization that handled each event 
and taxi activity through a personalized method, so we took a nature-
inspired approach where we defined rules and procedures for how each 
type of data would be represented and interact with each other in order 
to promote emergent patterns and self-organization. The graphical 
aspects were created to be variable, allowing us to easily change and 
tweak the intensity of the forces being applied as well as other visual 
variables such as the colors and transparencies. 

The visualizations that resulted from this part of the project showed 
big bursts generated by the people entering and leaving taxis being 
affected by the events in nearby areas, creating strong and distinctive 
flows of people going and leaving the events (Fig. 4.2 and Fig. 4.3). While 
the model and representations were created based on the types of data 
we have available, we had to plan the interactions between the various 
elements and then visualize how the integration of these elements 
with the data responded to the behaviors we defined. We generated 
the graphical waves we had intended, despite not have explicitly 
programmed each one of them, and we were able to visualize organic 
flows when observing the taxi pick-ups in relation to the events despite 
that not being one of our intended behaviors.
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Fig. 4.1 Various images showing early representations of the wave concept using test event 
points. Taxi pick-ups are represented in blue, drop-offs are in red, and events are in green. 
These images show the development of various applications of the repelling forces, as the 
pick-up locations move away from the events: the top-right image shows the event repel-
ling forces acting only the over the closest pick-ups; the lower-left image applies the same 
method, but uses the initial position of the pick-ups; the lower-right image shows the func-
tion which was used in the final visualizations, where all events are used to calculate the 
force and direction, which generates a more organic flow and movement.
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Fig. 4.2 A representation of the data on a map, now using real event locations and times. 
The points now have colorful gradient trails which are more visually appealing, distinctive, 
and make their direction more apparent. The interactive timeline is shown at the bottom, 
still at an early stage.
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Fig. 4.3 A visualization frame of the project much more advanced in it’s development, using 
with graphic representations closer to their final forms. The final form of the interactive 
timeline is shown at the bottom which now also shows the temporal range of the data be-
ing represented, indicated by the black bar that follows the current position indicator notch.
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User interaction consists of a scroll bar at the bottom which represents the 
timeline, where the user can select any point within the set interval of 
time (the month of May 2012). This consisted of a line with a small movable 
segment, from left to right, and a text box below it which indicates the 
current time selected. Moving the mouse cursor over any point in the 
timeline indicates the time corresponding to the point of the timeline 
the cursor was on with another textbox, this time above, and clicking on 
this point would bring the previous segment to that location, and update 
the visualization accordingly. There is also a time window that can be 
defined, which represents the range of the current point in time, meaning 
the visualization shows the events and taxi activities that exist within 
that time window, and once they move past it, they fade away. The map 
itself also was interactive, allowing the user to move it around and zoom 
in and out. Another concept we also worked with were time waves, which 
consisted of circles centered on events with a radius that decreases and 
increases as the event nears to a start or to an end. Any taxi drop off within 
the circle radius as the event starts is considered to be a possible attendee, 
while taxi pick ups within the time wave as the event draws to a close will 
be considered as a possible person leaving that event.

The visualizations that we could generate would depend greatly on the 
values we defined for certain factors like the temporal range of the taxi 
data being displayed, and the strength of the forces which is applied to 
the elements which represented that data, but we will focus on the two 
main final visualizations1. The first (Fig. 4.4) included a new element which 
consisted of an arc representing a direct prediction of the area where people 
went after being picked up by a taxi at an event – green arc – or the area 
where they came from to get to the event – red arc. The force based layout 
is still in effect, although the arcs can point out more precise locations 
from further away. The second visualization (Fig. 4.5) does not include the 
arcs (for simplicity reasons) and presents only the pick-ups and drop-offs 
interacting with the event locations as described previously, although 
the strength of the forces affecting the elements has been increased 
significantly. This resulted in a much more exaggerated but expressive 
visual effect.

Regarding the contributions of each member, some initial data parsing 
and representations were created by me which allowed us to make a few  
conclusions regarding the direction of the project which then lead to the 
base concept of the project, which was devised by Evgheni Poliscius. I then 
started implementing the engine of the program in Processing, initially 
using experimental values in order to test the force based layout (Fig. 
4.1). Evgheni restructured the code in order to utilize the data retrieved 
from the files, along with the addition of an interactive map of Boston. I 
proceeded added my engine on to the code and created a scrollable timeline 
which provided visual feedback for the current time being represented, 
and allowed users to control the point in time they wanted to view (Fig. 
4.2). After this the intended representations and functions were finalized, 
including the timeline and force based layout, which required the efforts 
of both me and Evgheni (Fig. 4.3). The final additional elements – the time 

1  Final visualizations video: https://www.dropbox.com/s/b3kd78o5qq6sngo/waveModelsBeta.mp4
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waves and arcs found in the first final visualization – were handled by 
Evgheni (Fig. 4.4 and Fig. 4.5).

In terms of future work, there are improvements that can be made, such as on 
the level of user interaction and graphical representations in order to present 
more information about the events and predictions, and even give the user 
more options over the data such as filtering specific types of events. A more 
elaborate function was the adaptation of the forces with the city’s roads, 
meaning that as the taxi pick ups and drop offs moved towards or away from 
the events they would travel alongside the roads which would have resulted 
in much more realistic movements throughout the city.

The Big Data Challenge project allowed us to explore a lot of the process and 
behaviors that we also intend to investigate during the project proposed for 
this dissertation, from dynamic interactions to the creation of models with 
elements that present behaviors not explicitly programmed into them that 
reveal patterns in the data, though in this case it was applied to a spatial 
structure. Some of these methods and functions were also similarly used in 
this dissertation’s project, despite being build from the ground up in order 
for them to work within the different context and new datasets, and the 
realization of this project proved invaluable a practical learning experience.
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Fig. 4.4 One of the final visualizations2, showing both the arcs and force based layout in effect. 

2  Final visualizations video: https://www.dropbox.com/s/b3kd78o5qq6sngo/waveModelsBeta.mp4
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Fig. 4.5 Various frames from one of the final visualizations3, showing an exaggerated 
representation of the taxi activities reacting to the events.

3  Final visualizations video: https://www.dropbox.com/s/b3kd78o5qq6sngo/waveModelsBeta.mp4
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A genetic algorithm can be run for hundreds or even thousands generations 
which are, in turn, composed of hundreds of individuals, so it can be difficult 
to visually represent the resulting large quantities of data coherently. 
A dynamic approach was built in order to visualize all this information, 
more specifically, an application which can receive the data and output 
an interactive visualization which allows for multiple levels of detail as 
well as various layers of information which could be easily navigated and 
comprehended.

The application was developed with two concepts in mind: simple and 
minimalistic visual representations and a large focus on navigation.
Due to the size and density of the data we handled it was important for it to 
be represented through simple elements. It is important that these are still 
easily identifiable, and complex elements would either suffer from loss of 
detail or cause visual confusion when shown simultaneously on screen.
The focus on navigation is also addressing the complexity and size of the 
data, as interactivity allows us to manipulate the visualization’s level of 
detail in different ways, from filters and ordering to levels of magnification. 
John Holland also discusses this process of selection of what to show 
and what to hide as a way to allow for more complex information to be 
communicated and understood [27].

In order to provide a general overview of the entire network of individuals 
and populations, the idea began with representing each individual as 
simply as possible, even if it meant reducing these to pixels, in which case 
they would have two main visual variables through which they could 
communicate information: position and color. Regarding position, each 
population of individuals would be displayed as a column, ordered by fitness, 
and the columns would be lined from left to right chronologically, as each 
population represents a generation of individuals. This way, position alone 
would allow the user to get a relative idea of how far an individual was in 
the timeline and how fit it was in relation to the rest of the population (Fig. 
5.1). Color can then be used to indicate a variety of attributes, such as the 
actual value of fitness (instead of the relative value shown by position) or 
the number of descendants of that individual.  However, this was only the 
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original concept and, with the implementation of navigation functions, 
certain limitations can be bypassed such as the size restriction. Through 
the use of functions such as moving the graph and zooming in, it becomes 
possible to increase the size of the graph past the screen limits without 
actually losing access to the rest of the information, meaning it will not 
be necessary to reduce the elements to simple pixels, though this can still 
remain as a visualization option for the user.

Initial tests were created using randomized data that fit the parameters 
expected of the target dataset while the data was not available to us, which 
allowed for some graphical tests and some initial understanding on both 
the usability and the flexibility of the application. The visuals were based on 
the concepts described before, although the biggest focus at this point was 
the implementation of the navigation functions. By clicking and holding 
the right mouse button on screen and dragging the mouse around the user 
can drag the graph in any direction and visualize any part that could be off 
screen, but there are limits established so that the user does not drag the 
graph completely off screen. Using the mouse wheel the user can zoom in and 
out on the position where the mouse is currently located.

Fig. 5.1 This screenshot shows the very first version of the application which displays the 
randomly generated individuals as colored squares. Each column represents ae genera-
tion, in sequence from left to right, and the individuals in each column are ordered by their 
fitness. Color represents the fitness of each individual, ranging from red to green. Since the 
data is randomized the average fitness of each column is roughly constant throughout, 
meaning that there are no significant increases or decreases throughout the generations.
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Individuals have connections to their parents and their children, and 
this information allows us to build the complete family tree of any one 
individual, which means we can understand how the transformations that 
their genes underwent. By use of these connections, a function was created 
which allowed the user to select any individual on the graph by selecting 
them with the mouse and clicking them with the left mouse button, 
highlighting only those that are connected with it, meaning that every 
ancestor and descendant of the individual selected would be highlighted 
and easily distinguishable from the rest (Fig. 5.2).  This allows the user to 
see both how that individual came to be, and what originated from it. If the 
left mouse button is pressed outside of any individual, then everything is 
deselected and the visualization will go back to it’s default view.

An additional function allowed the selection of an entire population (a 
column) by selecting from an additional row of buttons placed along the 
top of the graph. These buttons have a different height and color from the 
rest of the nodes on the graph to assure that they stand out from the actual 
data and that there does not exist any confusion regarding this.

When a column is selected only the ancestors are shown, but not the 
descendants (Fig. 5.3). The reason for this was because when one selects a 
every individual in a population all their children would also be selected, 
meaning that every single individual from that population forward would 
be selected and no new information would actually be revealed from that 
selection. Furthermore, by not selecting anything forward, the selected 
column acts as a clear visual indicator without further need for other 
colored indicators. Finally, an additional advantage of this method is that 
it helps the visualization’s processing speed by not rendering information 
which is already available when nothing is selected, which is every 
individual’s connections. 

With the current grid visualization the connections between each 
individual are not immediately perceptible, although it still serves as 
an overview of every individual which is connected to the selected one. 
In order to visualize the connections properly a new visualization mode 
was created in the style of a flow chart, where a variable interval is 
introduced between each column of the graph and the connections would 
be represented in that space, connecting each respective individuals with 
a line (Fig. 5.4). Since the interval is variable, the user can open and close 
the graph at will, as well as define the size of the interval, increasing or 
decreasing the level of detail for the representation of the connections, or 
removing them completely by reverting the graph to it’s grid visualization.
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Fig. 5.2 Screenshots depicting what happens when an individual is selected. The individual 
selected is represented in white, and every individual which is connected to it in some way 
(ancestors on the left and descendants on the right) keeps its color, while the remainder are 
represented in grey. In the bottom image, the selected individual has no children, meaning 
his family line ends with him and so every population past it is in grey.
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Fig. 5.3 Screenshots showing the population selection function. The top light grey bar is 
divided into elements which can be selected like any other individual, and it will select 
the entire respective column. The bottom picture shows the last column selected, and this 
results in greying out every individual which is not connected to the final generation, 
meaning that their genes did not contribute to the creation of the final population.



79

Fig. 5.4 These screenshots show the opened graph which adds an interval between each col-
umn and  connects the selected individuals which have family connections through lines. 
If no individual is selected then every connection is shown (top image), but with a higher 
transparency. The bottom image shows a close up of a selected individual, with connec-
tions to his parents to the left, and connections to his children to the right. The connections 
are separated into blue and red, and this is done to differentiate both parents under certain 
conditions, which will become more important with the actual data, as explained in the 
next section.
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Data description
Before we had access to the data the early prototypes allowed for some 
of the original concepts to be implemented which could theoretically be 
used to visualize general data resulting from any genetic algorithmn, 
as the only necessary data inputs were the individuals, their fitness 
and their descendents. However, it was necessary to utilize real data to 
properly visualize how the actual values and variations are represented 
and perceived, so these can be properly adjusted. The data files we received 
contained the data of one hundred generations of one hundred individuals 
from a genetic algorithmn whose purpose was to receive a curve on a 
two-dimensional plane and find a function which creates a curve as close 
as possible to the received one. This is similar to the problem described 
in Chapter 2: Genetic algorithms abeit more complex, as the algorithmn is 
handling individuals whose genotypes are functions instead of simple 
number arrays, and because these will have to represented later, it is 
necessary to have a basic understanding of how they work.

The genotype of each individual is actually a tree where each node represents 
a mathematical operation, such as an addition, multiplication or even a 
square root. These node make up a function that is described by following 
the branches in proper order. This function describes a mathematical curve 
which can be compared to the target function’s curve in order to determine 
the individual’s fitness. This is done by comparing the curves and not the 
trees themselves because the objective is to reach a function that produces a 
curve similar to the target function’s curve, and a similar tree to the target’s 
tree could actually wield a function with a very different curve. However, 
it is this tree which is subjected to mutations and crossovers in order to 
originate other varied solutions, and not the mathematical curve itself.

There were actually two approaches taken for the same problem: one 
involved the more common method that is based on natural selection, while 
the other based itself on sexual selection. The most notable distinctions 
between these two methods that matter to this project are that individuals 
on sexual selection have two chromosomes, where each contains a different 
genotype and is affected by a genetic operator idependently of the other, 
meaning that on the same individual one chromosome could be generated 
by a copy and the other by means of a mutation. It is also important to note 
that during crossovers there is now a clear distinction between the mother 
and the father, and this is represented in the application by coloring the 
connection between the mother and her child in red, and the father and 
his child in blue. Since there is no distinction between mother and father 
outside of sexual selection in the data, with the natural selection files all the 
connections are shown in black. The two approaches are independent of each 
other and are located within different data files, and as such only one type 
of these data files is read during each execution of the application, although 
multiple files of the same type of selection can still be loaded up at once.
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Interface and functions
The early prototypes allowed for some of the original concepts to be 
implemented but it was necessary to utilize real data to properly visualize 
how the actual values and variations are represented and perceived, so these 
can be properly adjusted. The first available data file contained the data of 
one hundred generations of one hundred individuals. 

By visualizing this data through the current application we could already 
quickly discern simple patterns and tendencies, such as the evolution of the 
population’s fitness through each generation, and how an individual’s fitness 
influenced their chances to be chosen to pass on their genes on to the next 
generation (Fig. 5.5).

Along with the refinement of the visuals and navigation, new functions 
were implemented that would help the user find specific information. This  
required an interface to show all the functions available and allow the user 
to select which ones he wanted to execute, providing visual feedback for 
these choices. The interface was designed with a minimal look in mind, 
consisting of a black bar on the left side with small buttons that activated 
the various functions accompanied by a short and descriptive name (Fig. 5.7). 
Originally the functions which were currently not active were represented by 
having their respective buttons in grey, while active ones were represented 
with white, but was changed as the interface evolved (Fig. 5.6).

Fig. 5.5 Final representation of a single data file, now with a white background and with the 
colors ranging from blue to black, where blue represents high fitness. It is possible to visualize 
that the initial generations had very poor individuals and that with each generation the aver-
age fitness became higher as columns on the right have brighter blues. The top bar for column 
selection was eventually changed to orange in order to stand out more from the rest.
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Fig. 5.6 Select versions of the interface during the biggest additions and changes, ordered 
by date, with the leftmost being the older and the rightmost being the most recent. Certain 
names and values would change to reflect what was being hovered on.

Active functions were now represented in blue, while white buttons 
represented buttons which could be pressed but were not influencing the 
visualization. Grey buttons represented buttons which could not be used 
at that point, such as the chromosome buttons which cannot be used while 
visualizing natural selection data, because there is only one chromosome.

The main typography used throughout the application is condensed variant 
of Roboto, a sans-serif typeface family designed by Christian Robertson for 
Google [28]. It was a font developed to be used for the interface of smaller 
devices, more specifically it is the system font for the Android operating 
system, making it an appropriate choice for the smaller text sizes which exist 
in the developed interface, necessary for the optimization of space in regards 
to the number of functions and necessary information.
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Fig. 5.7 The most recent version of the application showing the interface on the left side, a 
small subtitle next to it on the top left and a scroll bar on the bottom. The main visualiza-
tion in the center still uses all the navigation functions described previously.

On the top left corner of the screen there is an indicator with the currently 
selected individual, indicating its belonging generation, its position 
(meaning its fitness rank within the population) and its fitness. This value 
will change as the mouse hovers around the graph, showing the respective 
values to each individual, but when it is not hovering over anyone or when 
it is on the interface, it will indicate the values belonging to the currently 
selected individual. Below it is a tab which lets the user switch between the 
two main visualizations, full view and individual view, each with their own 
functions, representations and objectives. The current section focuses only 
on the full view,  which is currently being represented [Fig 5.7]. On the right of 
this, outside of the interface bar, there is also a small textual subtitle which 
indicates the currently selected visualization mode, since the user has the 
option to change through various modes and even combine some of them.

The scroll bar on the bottom of the window is used to aid the user’s 
navigation, mainly to help with the navigation of the open graph [Fig 5.8], 
allowing the user to scroll from one end of the graph to the other. This is 
a necessary feature because the graph can become very large horizontally 
and the user should not be forced to slowly drag the graph to their desired 
position. In addition to this, as the user drags the scroll bar there is a textual 
indicator with the current generation’s number shown under the generation 
which is currently being displayed on the middle of the screen, which is also 
pointed out by a small arrow.
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The application has various functions which were implemented to aid the 
user’s navigation and visualization of the data4, which are visible on the final 
version of the interface (Fig. 5.6, rightmost). 

Bezier curves
This is a style option which replaces the straight lines that connect the 
invididuals during the open graph visualization with bezier curves [29], 
creating smoother visuals and a more apperent flow (Fig. 5.8). However, due 
to the high number of connections this setting can affect the performance 
speed of the application, which is why the user is given the option to toggle it.

Close and expand
This function is used to open and close the graph in order to visualize the 
connections between the individuals (Fig. 5.9), and can also be done on the 
keyboard, utilizing the left and right arrow keys. The user can control the width 
of the opening by pressing the close and expand buttons multiple times.

Fig. 5.8 Two screenshots showing the difference between having bezier curves off (top) and 
and on (bottom).

4  Full view video: https://vimeo.com/105060412
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Fig. 5.9 Screenshots showing the open graph of a sexual selection data file where the con-
necting lines are colored in order to distiguish the mother (red) from the father (blue) for 
crossovers. The interval between the columns can be controlled by the user in order to visu-
alise the connections better, demonstrated in the bottom picture. There is a clear pattern of 
fit individuals having fathers with poor fitness and individuals with poor fitness having fit 
mothers.
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Color change
While initially color was only used to represent the fitness value of each 
individual (Fig. 5.10), more options were added along with the development. 
The genetic operator option shows the genetic operator present at the 
conception of each individual, which can either be a mutation, crossover or a 
simple copy of another (Fig. 5.11). The children option represents the number 
of descendants each individual has through brightness, thus representing 
individuals with many children with bright colors, and using black for those 
with none (Fig. 5.13).

The overall color scheme also underwent a lot of changes but it was finally 
settled on a simple system for every color mode where blue represents high 
values, black represents low values, and light grey represents nodes which 
are not selected. The genetic operators also were distinguished with colors 
initially, but their representation was changed to shapes instead of using 
colors in order to make them more distinguishable from each other and easier 
to identify. An option to filter each genetic operator is also available, which 
removes the shapes and reduces the colors to a binary scheme, where the 
colored individuals will represent those with the selected genetic operator 
(Fig. 5.12).

Fig. 5.10 A data file being 
represented through the 
default color scheme which 
maps color to fitness.
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Fig. 5.11 Same data file from 
Fig. 5.10 being represented 
through the genetic opera-
tor option. The image in the 
top right shows a close up 
of the symbols being used.
Filled in squares represent 
copies, unfilled squares 
show mutations and those 
that are competely empty 
show crossovers.

Fig. 5.12 Same data file from 
Fig. 5.10 with a filter which 
only shows inidivduals cre-
ated through copies, shown 
in blue. It is also possible to 
filter them by crossover and 
mutation.
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Chromosome selection 
When simulating sexual selection the genetic operators act on each 
chromosome independently, meaning that an individual can been created as 
a result of both a crossover and a mutation. Each chromosome is represented 
individually and the user has the option to switch between them using the 
buttons on the interface. This way, one can visualize the genetic operators 
affecting each chromosome at a time. This option is unselectable when 
visualizing the natural selection data because they only contain one 
chromossome per individual.

Position by fitness
A different visualization mode was added that maps the vertical position of 
each individual to the value of its fitness, meaning the individuals will be 
placed higher the more fit they are, giving the user another way to perceive 
the fitness curve over the passing of the generations. (Fig. 5.14) This mode 
also works as an alternative to color in order to visualize the fitness growth 
over each generation, and allows fitness to be visualized alongside another 
variable mapped to the color of each individual, such as the number of 
children or the genetic operator. 

Fig. 5.13 Same data file from 
Fig. 5.10 using color to repre-
sent the number of children 
of each individual. It is 
noteworthy that the most 
fit individuals (at the top) 
are the ones that originate 
the most children, as they 
are the ones chosen.
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Fig. 5.14 Two different data files shown through the mode position by fitness. It is easier to 
precieve the evolution of the fitness throughout the generations, as position is more discern-
able than color. The top image is showing the same data file from 
Fig. 5.10.
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Eva mode
This mode is named after Eve, who, according to an Abrahamic religion’s 
creation myth, is the first woman which all humans descended from. When 
eva mode is active the user can select an entire population in order to find 
the closest ancestor (or ancestors) which is related to every individual in that 
population (Fig. 5.15). This allows us to visualize how many generations it 
took for a previous individual’s genes to spread scross an entire population 
(Fig. 5.16).

Save to file: PNG and PDF
In order to fully view the graph as a static image, the application allows the 
creation of an image file of the visualization with the current parameters, 
meaning the outputted image will match the colors and any other selections 
that are shown on screen, and its size will match the current zoom level. 
However, this is not a simple screenshot since the saved image will contain 
the entire visualization and not just what is visible on screen, without any of 
the interfering elements of the interface. The image can be saved as either a 
PNG or a PDF file.

Fig. 5.15 Screenshot showing the data file from Fig. 5.10 with the final population selected 
with eva mode on. The top left individual has a yellow border indicating that it was the 
closest individual found that is connected to every individual in the last population, which 
was selected. If more than one indiivdual is found in the same generation that is also con-
nected to every individual of the selected popualtion, then they will also have a yellow 
border.
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Load and visualize multiple files
Genetic algorithms rely on random values to create the initial population and 
maintain diversity in the subsequent generations, and, as such, each time 
they are run the results will be different and a single run may not yield the 
best results, so there will typically be multiple data files files which will need 
to be analysed.

The application was prepared to receive and display multiple files at once 
(provided they all have the same format), which let the user switch the 
current file being displayed through buttons located on the interface, 
allowing him to quickly switch between any of the files loaded on to the 
program (Fig. 5.17 and Fig. 5.18). When the file is switched the current settings 
are not reset, meaning that, for example, if a column is selected, that column 
will remain selected as the user changes the current file and the user can 
quickly visualize the same selection in the remaining files.

Fig. 5.16 Screenshot showing the same file 
in the previous image (Fig. 5.15) but with 
an open graph. Through the connections it 
becomes more apparent how quickly a fit 
individual’s genes can spread through an 
entire generation.
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Fig. 5.17 Screenshots of the thirty natural selection data files in the default fitness color 
option. The color mapping is done by using the maximum and minimum fitness values of 
every file, meaning the brightest blues correspond to the best individuals of all files, and not 
the best individuals of each individual file. As an example, the fourth file in the top line has 
very dark colors in comparison to many of the other files because it was not a very success-
ful run and didn’t achieve very fit individuals,
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Fig. 5.18 Screenshots of the thirty sexual selection data files in the default fitness color 
option. Compared to the natural selection files it is noticeable that there are a lot of less fit 
individuals throughout, represented by the lower half being persistently in black.
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Because the number of files can be rather large to analise individually, a 
function was implemented to create a graph which represented the average 
of all the values in every file5, activated by pressing the button between the 
switch file buttons. The fitness value, genetic operator selected and number 
of children was averaged for each position across every file and the displayed 
with the same method as any other file, with the exception of the genetic 
operators where the amount of each operator chosen for each position across 
the files decided the transparency of each genetic operator symbol, which 
were then overlayed (Fig. 5.19, Fig. 5.20 and Fig. 5.21). The number of operators 
chosen is hard to identify based on this overlay, however it still is possible to 
identify the most common genetic operator in each position, and the user can 
still use the filter options as before. The generated images can mainly be used 
for identifying trends across a large number of files.

Selecting an individual or population works like before, except every 
individual connected to that position across every file will be selected, and 
the less common the connections, the more transparent they will appear in 
order to show the distribution of connections across every file (Fig. 5.22). The 
opened graph visualization will also display every connection across every 
file. Other modes will also adapt to this new graph: eva mode will show the 
closest ancestor of every file from a selected population (Fig. 5.23), and the 
position by fitness view will display the individuals based on their averaged 
fitnesses (Fig. 5.24).

Fig. 5.19 Screenshots of the thirty file average of the fitness of both the natural selection 
(left) and sexual selection (right) data. 

5  File average video: https://vimeo.com/105063501
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Fig. 5.20 Screenshots of the thirty file average of the genetic operators of both the natural 
selection (left) and sexual selection (right) data. Even through detailed analysis it is hard to 
discern large patterns, though in the natural selection data the top half is darker, indicating 
that the most fit inidividuals are more often copied, while in sexual selection the choice of 
genetic operators appears to be more uniform throughout.

Fig. 5.21 Screenshots of the thirty file average of the number of children of both the natural 
selection (left) and sexual selection (right) data. It is quite discernable that in sexual selec-
tion both the best and the worst individuals are more often chosen to create children, un-
like in the natural selection data, where only the most apt are picked.
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Fig. 5.22 Screenshot of an individual being selected in the file average view. This will “acti-
vate“ every individual that is connected to that psoition in every file and the more common 
individuals that are connected, the less transparent each position will be. The bottom im-
age shows part of the top graph opened which reveals every connection across every file.
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Fig. 5.23 Eva mode in the 
natural selection file 
average. The last column 
is selected and the result 
is the highlight of every 
individual that met the 
eva mode conditions across 
every file.

Fig. 5.24 Position by fitness 
mode in the natural selec-
tion file average. The posi-
tion mapping works like 
before but with the average 
fitness value.
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Individual view is a different but parallel visualization which focuses on 
representing all the information of a single individual at a time4 (Fig. 5.25). 
As described previously, each individual represents a possible solution to the 
problem trying to be solved, which in the case of the data being visualized 
is a search for a function which creates a curve as close to a target curve 
as possible. This means that each individual contains a function (or two 
in case of sexual selection) which can be represented as a curve alongside 
the target curve so that the user can actually visualize how the two curves 
become more similar as the solutions become more fit. The function’s 
structure contained in the individual is actually a tree, in which the nodes 
are composed of either variables or mathematical operators and each 
path of the branches represents a segment of the function. This allows 
us to represent the function visually as a tree instead of a string of text, 
which makes it both more visually interesting and easier to discern the 
differences between various individuals. It is a much more complex process, 
but necessary because this data is likely to get rather complex after many 
recombinations, and a graphical representation makes it much easier to 
understand when compared to rather large written formulas.

One of the main objectives of this visualization is to observe the process 
that shapes the individuals genes into fitter solutions over time, which can 
be complicated when any one individual can have a large amount of both 
ancestors and descendants. The solution was to focus on a single path of 
connected individuals, selecting only one per generation. This path works 
as a timeline, where one can move forwards and backwards through the 
generations and focus on one selected individual for each generation and 
observe how the genes change in that particular family line. 

Individual view

Fig. 5.25 Individual view consists of a different set of structures used to visualize each individ-
ual’s data, namely a graph and a tree. The interface also contains a distinct set of functions.

6  Individual view video: https://vimeo.com/105060415
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When an individual is chosen a timeline is created, and this is achieved by 
selecting which of the individual’s parents and children will be added to the 
timeline through established rules, which are then repeated and applied to 
the chosen parents and children until the timeline is completed. The rule for 
picking the parent is simple: the parent with the highest fitness will be chosen, 
and if both parents have the same fitness then the mother will be chosen. 
A simple method was also used initially to pick the children, where the child 
with the highest fitness was chosen, but this path would very often lead to a 
child with low fitness and no descendants and prematurely end the timeline. 
A different approach was taken to fix this: when an individual is picked, 
the best individual of the newest generation which belongs to the selected 
individual’s family line is selected, and then a path of the fittest individuals 
that connect those two is selected and all the individuals in that path are 
added to the timeline, assuring that the timeline goes as far as possible. The 
bottom scroll bar in the individual view is used to navigate through the 
timeline, allowing the user to click and drag the indicator to the generation he 
wishes to visualize. The controls on the interface (Fig. 5.26) also allow for some 
control, such as moving forward or backwards one generation at a time, as well 
as a “play” button, which initiates an automatic forward sequence on a timer, 
like an animation which shows the story of the selected individual’s family line.

Fig. 5.26 A close-up on the individual view’s interface. You can switch 
between full and individual view using the tab buttons on the top. Like the 
full view interface, buttons in grey are not usable, such as those relating to 
changes in chromosomes when visualizing natural selection data, which 
only contains information on one chromosome.
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The view timeline function is actually in Full View, but it is described in 
this section because it was necessary to have a basic understanding of 
what the timeline was, and because it is used mainly as a navigation aid 
for the individual view. By selecting this option it is possible to visualize 
which individuals are selected into the timeline as they will be highlighted 
with a surrounding yellow box as if they were selected (Fig. 5.27). The 
currently selected individual with be changed to a filled yellow box, to 
further distinguish it from the rest, much like when visualizing a different 
individual in the timeline than the currently selected one (Fig. 5.28). 
Furthermore, if the user opens the graph to visualize the connections, all 
the connections that aren’t part of the timeline will be faded out, while 
the current timeline will appear as fully opaque.When individual view is 
selected there must be a timeline to visualize, so there is a default selection 
which is automatically made if there isn’t any individual selected, which is 
the best individual of the final generation. This was done so that the default 
selection shows the timeline which lead to the best possible individual. It is 
also not possible to create a timeline of an entire population, meaning that 
when a population is selected and the user enters individual view the best 
individual of that population will be selected for the creation of the timeline. 
Finally, there is also a small visual indicator which appears if the user was 
viewing a different individual in individual view and then switched to Full 
View: the currently selected individual will maintain its surrounding yellow 
box but the individual the user was viewing will be represented with a filled 
yellow box. This is because the individual being viewed isn’t selected, and 
instead is part of the selected individual’s timeline (Fig. 5.28).

Fig. 5.27 Visualizing the 
timeline in full view using 
the view timeline function.
The individual in each 
generation which belongs 
to the timeline appears 
highlighted. This timeline 
originates from the indi-
vidual in the top right.



101

Regarding the individual’s data itself, it is represented through the use of two 
structures: a graph and a tree. The graph is represented with a very basic style 
where a line is drawn on a two-dimensional plane representing every value 
gone through the function (the genotype), within a certain range (Fig. 5.29). 
This main graph line is colored yellow (like the selection indicator in Full 
View) and it is built through a dynamic function which adjusts its size to the 
maximum values so that the whole graph is always represented. However, 
this could have originated confusion as to the exact scale of the graph as the 

Fig. 5.28 The top im-
age shows the time line 
selected for the top middle 
individual. In the mid-
dle image, the timeline 
remains the same, but the 
individual selected in the 
individual view is on the 
middle left. This is more 
easily verified on the bot-
tom image, when the view 
timeline option is off.

Fig. 5.28 Open graph visualization whil the view timeline mode is on. All connections 
become more transparent with the exception of the connection shared between each indi-
vidual in the timeline.
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Fig. 5.29 An example of a graph, shown 
along with its progenitors, picked from 
sexual selection data. It shows a crossover 
between two individuals which results in 
an individual with a curve which is closer 
to the target curve.

maximum values change along with the scale, but this was solved by adding 
some points of reference, represented with black lines. The main reference 
point is the target curve which is drawn behind the individual’s graph so 
it can be easily compared. The remaining reference points are two thin 
dashed lines which represent the x and y axis, along with numerical values 
which indicates their upper and lower limits. When visualizing the sexual 
selection data, the user can view both chromosomes’ curves at once as they 
are distinguishable through color, where the currently first chromosome 
keeps the yellow line, and the second chromosome is represented with a 
blue line. The user also has the option to switch on and off which curves he 
wants to see by using the appropriate buttons on the interface, namely the 
target curve and the curve of the currently unselected chromosome (Fig. 
5.30). Drawn below the individual’s graph are its parents graphs, as well as 
a textual indicator of the acting genetic operators, which serve as a quick 
overview of the origin of the current graph’s genotype (Fig. 5.29). During 
sexual selection, this textual indicator will distinguish the two graphs as 
“Mother” and “Father”, but when displaying natural selection data those 
graphs will only refer to the operator as “Crossover” because there is no clear 
distinction between parents, much like the connections’ colors in the open 
graph view described previously.
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Fig. 5.30 Various combinations of filters being applied to 
the same individual’s graph, which also shows the adap-
tion process of the graph’s limits. The filters simply vary 
between showing or hiding the curves of the chromosome 
which is not selected and the target curve.
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The tree can be a much more complex structure to represent as it can have 
thousand of nodes and branches, and as the program needs to load these 
structures from the data files without knowing exactly how large they 
would be, certain precautions had to be taken to guarantee that the user 
could visualize them both in their entirety and in detail within the limited 
space. The solution was to implement something similar to the navigation 
in the Full View visualization, where the user can drag the tree around 
and zoom in and out, utilizing the exact same controls, meaning that the 
size and complexity of the tree would no longer be a problem in terms of 
adapting to the space available. The tree structure itself also had to be 
designed with a couple of concepts in mind: it had to adapt itself to any size 
or complexity of data in order to maintain legibility, which means each of 
the branch paths should be identifiable with as little overlapping branches 
as possible, and there should also be some discernible elements that would 
allow the user to identify what mathematical operator corresponded to 
each node.

In order to tackle the adaptability of the structure to the data we turned to 
some of the nature-inspired techniques, which are most notable for their 
ability to sort out large amounts of elements by creating simple interaction 
rules between them. The organization of a tree structure could also be 
achieved through a force-based system [26] with simple rules, mainly by 
having all the nodes in the tree repel each other, along with an attraction 
force between any two nodes that are connected, assuring that every 
connected node will maintain a set distance between each other and try to 
not interfere with any other nodes which aren’t directly related. Through 
a careful calibration of each of the forces values we were able to achieve a 
balance between them and obtain some favorable results even on some of the 
more complex trees, though there was still some notable overlapping in some 
cases. In order to both speed up the organization process and to help prevent 
overlapping branches the position of the nodes was no longer randomized 
at the start, and instead a function was built which would calculate a fixed 
starting position based on what level of the tree they were on (vertical 
position) and with how many other nodes (horizontal position) (Fig. 5.31). The 
combination of this function with the force based layout lead to a very quick 
and effective organization of the nodes which also resulted in the creation of 
structures that looked more organic than those which would have only used 
a static positioning function. This process is activated when a new tree is 
loaded, at which point the user can watch as the tree unravels itself (Fig. 5.32).

Initially the tree would reset its position every time that a different 
individual was changed, which made for very abrupt transitions, so this 
was changed so that only the branches which had changed between 
individuals would have their positions reset. The result was that as the user 
scrolls through the timeline and visualizes the tree change, the unchanged 
branches will keep their positions and movement, while the branches that 
change or appear will reposition themselves and cause their surrounding 
section to reorganize itself (Fig. 5.33), acting as a visual indicator of the 
changes that took place without having to resort to style changes, such as 
different colors. 
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Our second main concern was the representation of the data value attached 
to each node on the tree. Some of the initial ideas considered different colored 
nodes with textual subtitles or just small textual indicators next to the nodes, 
but due to the data density of some of the trees an approach which was more 
simple and direct was necessary. Each of the nodes can have only one of 
seven values associated with it, which consist of mathematical operators and 
variables: a sum, subtraction, multiplication, division, square root, a variable 
representing the x axis, and an ephemeral random constant (ERC). Given that 
we were working with this limited range of values, we decided to use simple 
and easily identifiable symbols which represented each of them accordingly, 
since most of them already had a widely known mathematical symbol, 
namely the sum (+), subtraction (−), multiplication (x), division (÷) and the 
square root (√). Given the density of some of the trees we took a simplistic 
approach to their design: the symbols appear on the position of the nodes and 
are connected with thin lines and only the leaf nodes are circled with a thin 
stroke in order to distinguish themselves as the end nodes. The root node is 
colored in order to be the most notable since it is at the top of the hierarchy, 
and its color matches the color of its respective line on the graph, meaning 
that it will be yellow when representing the first chromossome’s tree and 
blue when representing the second (Fig. 5.34).

The symbols are written using the bold weight of the Euclid typeface, a 
modern typeface family designed by the Design Science group, used in their 
software MathType, a programs for editing mathematical equations [30]. The 
choice was based on how well the font could preform the task of representing 
all of the mathematical symbols that were contained in the data in such 
a way that they were easily recognizable, which the current main font, 
Roboto, could not do on its own. Since the variable is supposed to represent 
the x axis of the graph, its symbol should be an x, however this cannot be 
confused with the multiplication sign, which is why an italic, cursive x was 
picked, making it very distinct and easily identifiable. The ERC was simply 
represented with a capital E, however an extra function was added to this 
particular symbol do the fact it has got a constant value associated with it, 
allowing the user to visualize the value next to the symbol when the user 
hovers the mouse on it. In order to avoid overlapping, the text with the value 
will appear on the side of the symbol which is opposite to the center of the 
graph, which is more likely to have less branches (Fig. 5.35). Every symbol was 
written using the Euclid Symbol variant of the family, with the exception of 
the x, which was written with the regular variant of the typeface.

Aside from the described navigational functions there is also a function 
located on the interdace which allows some more control over the tree 
representation called “reset position”. This is a simple function which resets 
the position of both the tree itself (by centering it) and all of its nodes. It 
was added because the nature-inspired method which organizes the tree’s 
nodes isn’t infallible, particularly when adding or changing branches which 
can result in some undesired overlapping. However this isn’t a common 
occurrence, and the function also exists in case the user simply wants to see 
the animation of the tree organizing itself from the start. 
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Fig. 5.31 If the tree is being loaded for the 
first time or if its positions are reset, the 
branches will be positioned below the root 
node in accordance to their level on the tree 
and the number of nodes on that level.

Fig. 5.32 The tree represented in this image is the same as the one in Fig. 5.31 after a few sec-
onds have passed, as the nodes reposition themselves due to the force based layout. 
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Fig. 5.34 When the tree represents the sec-
ond chromosome of an individual, its node 
will be blue to match its respective graph’s 
curve.

Fig. 5.35 When the mouse hovers the 
ephemeral random constant (E) symbol 
there will be an indicator which shows the 
value of the constant in that node.

8.651

Fig. 5.33 As the user navigates through the timeline the tree’s branches represent any exist-
ing changes and reposition themselves in order to adapt to these changes. This image shows 
as a new branch is added to the tree on the left, resulting in the tree on the right.
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When visualizing a file average, all of the individuals located in the same 
position (row and line) are merged in order to show an aggregate of all their 
data so that one can find a distinguishable pattern when comparing these 
when overlaid. This was applied to the graphs by overlaying the curves of 
the functions of each individual with some transparency, which depends on 
the amount of individuals being displayed (more curves requires a higher 
transparency value), while allowing the target curve to still be present in the 
background so that they may be compared to it as well. However, the tree is 
a much more complex structure which cannot simply be overlaid in order to 
draw the same conclusions since the variation in size and branches would 
cause a lot of confusion, especially when dealing with a lot individuals at 
once. Because of this the tree structure is not present in the individual view 
with the file average option selected. Another function which did not work 
across multiple files was the ability to build and navigate through a timeline 
because there are no consistent relationships between individuals across 
multiple files and a timeline could not be properly selected using averages, 
unless we risked selecting individuals which were not connected which 
would be inaccurate to the process.

Regarding the “save to fle” function during individual view, as there are more 
types information being displayed on the screen, saving to file will result 
in a simple screenshot which will save the graph and tree as they are being 
shown at that moment, but without the interface and horizontal scroll bar.

Fig. 5.29 Graph showing the file average of the thirty best individuals of the natural 
selection data.
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The visualizations we managed to create from the data allowed us to make 
a much more deeper analysis than through more conventional methods, 
which usually rely more on looking only at the best overall results. However, 
the scope of this dissertation is still focused primarily on information 
visualization and not artificial intelligence, meaning that our result analysis 
will mainly consist of identifying and analyzing the patterns of information 
within the context of genetic algorithms. It also means our analysis will 
be focused on what we can identify from the data we received, and not on 
the parameters of the genetic algorithm which originated it, given that the 
algorithm itself was handled by a different group. 

Some of the initial representations already allowed us to visualize how 
quickly the fitness would increase throughout the populations and just 
how different these results would vary between each run of the algorithm, 
especially through the use of the “position by fitness” option. Selection of 
individuals and populations allowed us to observe the percentage of the 
population which was picked to pass on its genes to the next one, and in 
some cases how long it could take for a new individual to surpass the past 
best, which could be copied through elitism through many generations. Some 
of the worst runs did not manage to generate better individuals throughout 
many of its recombinations which resulted in long intervals where the 
best fitness values would remain throughout most of its generations. If, for 
example, this had occurred more consistently throughout the runs it could 
have meant a lack of genetic variation in the data which could have been 
seen as a indication that the mutation rate should have been increased.

Results overview

Fig. 5.29 Fitness view of an individual which was not able to create individuals with better 
fitness than each previous population after the first few generations. Because of elitism the 
current best kept being copied from each previous population, which can easily be seen in 
the position by fitness mode on the right, represented by the top horizontal line.
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Eva mode was also very useful in revealing information which would have 
been impossible to discern with the textual data alone, namely just how 
quickly a fit individual’s genes can spread through an entire generation. 
Fit individuals can have many children which allows their genes to spread 
very quickly, which can be better observed in the open graph visualization 
through the large increase in connections from generation to generation. 
Looking at the genetic operators we could also see some patterns that 
indicated that individuals who were picked to be copied tended to be 
fit, while individuals created from mutations were often unfit, though 
this is still a necessary process because mutations add genetic variation 
which is often necessary to generate better solutions rather than constant 
recombinations of the same genes.

It was also possible to discern large differences between the natural selection 
data and the sexual selection data on multiple aspects. Regarding their 
fitness, sexual selection has a larger percentage of individuals with poorer 
fitness and seems to have less fitness variation in its results. The individuals 
selected to pass on their genes is also quite different, clearly visible in the 
children view where most of the natural selection individuals which have 
children are fit individuals, while the sexual selection individuals chosen 
seem to be both the most and least fit (Fig. 5.21). Using the open graph 
visualization in sexual selection we can also clearly visualize that the fit 
individuals are being picked as mothers while the unfit are picked as fathers 
for the creation of new individuals (Fig. 5.9).

Fig. 5.29 Average file visualization of the genetic operators of the natural selection data. 
Copies are represented on the left image, showing a concentration of copies on the top, and 
mutations are represented on the right image, which shows a larger concentration of muta-
tions of the bottom.
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This analysis of the population’s evolution was further helped with the 
addition of the individual view which allowed us to visualize the changes 
that take place between each generation in greater detail. Visualizing the 
individuals evolving is fairly simple and quick by scrolling through the 
timeline and it is easy to identify at which moments its genes underwent the 
biggest changes, as well as the conditions which lead to those changes. This 
can be seen through both the graph, which serves as a direct comparison to 
the intended solution, and the tree, which allows the user to visualize the 
complexity of the function which is currently being shown and the intensity 
of the changes between each generation. 

The various functions and modes implemented allow for a large degree of 
interaction which give the user control what he wants to see and how, which 
is how we were able to address the main concern of having to represent 
large quantities of data without having to sacrifice neither legibility nor 
information, while also adding a new dimension which helps captivate and 
maintain the user’s interest.7, 8, 9 

7  Full view video: https://vimeo.com/105063501
8  File average video: https://vimeo.com/105063501
9  Individual view video: https://vimeo.com/105063501
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Throughout the dissertation we discussed the influence of the field of 
information visualization in the past and present, as well as how it continues 
to change and evolve as we move towards the future. As we delved into the 
creation of a visualization tool it was necessary to study the existing work 
in the field in order to both use it as a point of reference and to expand upon 
it as we seek to build new visualization tools. The history of information 
visualization extends as far as early as the creation of the first maps and 
tabular presentations and these techniques have since been been polished 
in order to represent information more efficiently and more effectively, aided 
with the creation of technological tools which allowed for the processing of 
extremely large datasets automatically and represent them graphically in such 
a way that the viewer can easily understand.

The techniques we still use today are still based on some of the most important 
early developments in the field, such as Jaques Bertin’s theories which 
documented some of the most essential principles of graphical communciation 
and established the basic rules for the representation of information, and 
Edward Tufte’s work which pointed out some of the biggest problems 
surrounding information visualization and how they could be corrected or 
avoided. These were some of the basic rules and concepts that we covered, 
but these approached data visualization in a rather broad way, and this is 
because they act as effective standards to have during the development of 
most visualizations. However, in order to properly represent the data, the 
visualization needs to be built with it in mind, meaning that different datasets 
can entail completely distinct visualization structures.

During the first semester we dedicated ourselves to planning and research 
but there were some limitations due to the dataset being unavailable, 
making it necessary to consider the representation of different types of 
visualization structures in order to prepare for the representation of the data 
which we would be able to use. A more practical approach was taken with the 
development of the project for the Massachusetts Institute of Technology’s 
contest, and while it was not directly linked to our own project, it acted as a 
preparation for the creation of the application at the center of this dissertation. 
As we entered the second semester we were able to obtain the desired dataset 
and refine and focus our research and development. This data contained all the 

Conclusions and 
future work

Chapter 6
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information generated and processed by various runs of a genetic algorithm, 
a search heuristic used for finding and optimizing solutions to particular 
problems by using methods based on natural selection. After generating an 
initial population of individuals, new populations are the progressively created 
through the recombination and mutation of a selection of the best individuals 
from each previous generation. Our objective was to represent theses 
generations and their changes with each iteration, allowing the observer to 
identify and analyze any of the individuals generated and both their history 
from past generations and influence over the following generations. 

We were able to build a functional prototype capable of loading and processing 
the external data files we had received and then display them on screen by 
using the appropriate visualization structures. The main network structure 
depicted the proprieties of each individual, such as their fitness and genetic 
operators, and their relationships with each other, achieved by establishing 
connections with their progenitors and descendants. The visualization of the 
data was aided by the integration of interactive functions which provided 
various options to the user and gave him control over the information he was 
viewing, allowing him to view specific parts of the visualization in more 
detail, filter and switch between different information, navigate through the 
data using a variety of methods, and export the current visualization into a 
static artifact. These interactions were programmed to be achieved through 
simple commands using the mouse and the interface.

The main visualization structure that we focused on building initially was 
the network, due to the type of data and relationships which would have to be 
represented, although we also turned to tree structures in order to represent 
a particular set of data that related to the more detailed information of each 
individual. These were structures that we also approached in the dissertation 
in order to have a more in-depth knowledge on their proprieties so that we 
could build our own. Temporal structures were also studied, and while the 
data was not temporal in the usual sense (using defined dates or timestamps), 
the populations of individuals were simulating various sequential generations 
and we were able to adapt useful concepts from temporal structures into the 
navigation and certain other functions, such as the creation of timelines. 
The application allowed us to produce various visualizations of the data we 
worked with, but one of our main objectives was to do more than represent 
information on screen. The functions implemented served their purpose in 
aiding the user navigate through all the information available and observe 
it through various points of view or levels of detail, and allowed the user to 
quickly search through the information, analyze the intricate relationships 
between the data, and identify significant patterns which could lead to 
meaningful conclusions. 

Most of the future work regarding this project would be in the interest of 
turning this application into a proper tool which could be used by anyone 
which required its services. The application was created with certain 
limitations in mind, the biggest one being the limited time available for its 
development. This meant that our focus was on representing the datasets we 
had available, and so the program is structured to deal with a rather specific 
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data file structure, which can be seen as a limitation. By obtaining more data 
we could start to develop better error prevention methodologies which would 
allow the user to easily figure out what files he could use with the application 
or to indentify the problems with is current files more promptly. A more 
concrete example of unprepared exceptions are the individual representations 
for which there are only seven symbols that can represent the data values 
used in their trees, since these were the only ones present in our data files, 
but these could be expanded upon in order to be prepared to recieve any other 
kind of data value and still represent it effectively. More advanced techniques 
to receive feedback could also be employed such as focus groups which would 
allow for futher user testing, allowing us to create an interface which would 
always assure intuitive interaction with the average user.

In parallel with the work developed in the context of this dissertation we 
also explored the use of swarm based approaches for the visualization of 
music. This bio-inspired approach was the winner of the Science Visualization 
Competition, Visual Media Category of the ALIFE 14: The Fourteenth  
International conference on the synthesis and Simulation of Living Systems, July 
30th – August 2nd, 2014, New York, NY, USA.
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