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Summary 

During the last years, some of the attacks towards SCADA made headlines, helping raise awareness .  

Some of the vulnerabilities may even be exploited to harm other systems, eventually, ending 

compromising specific points of SCADA networks. At the same time, a growing number of threats 

related with the physical layer made new issues and low-level mechanisms emerged, requiring careful 

approach and monitoring to secure such devices. Threats of this type are considered to be even more 

dangerous than SCADA-specific ones, since these operate at a lower level, unnoticed to scanners  

and anti-viruses. Considering this scenario we can expect a growing number of these threats to be 

affecting SCADA components, if adequate countermeasures are not taken. 

Over the last ten months (from September 16, 2013 until June 27, 2014), a new concept was 

developed, in the context of the FP7 CockpitCI project, for the current thesis, to reinforce the security 

of SCADA systems. This concept refers to a device installed in a key juncture of the network, with the 

purpose of monitoring the behavior of specific components, while reporting detected anomalies.  

However, even before this thesis (during the second curriculum semester of the year 2012/2013) 

there was already some research being made in this sense, which reflects in the amount of res ults 

included in this document. 
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1 INTRODUCTION 

1.1 CONTEXT – SECURITY IN SCADA SYSTEMS, COCKPITCI PROJECT 

In the context of the European project FP7 CockpitCI, in which the Faculty of Science and Technology 

of the University of Coimbra (FCTUC) is a partner, the present thesis was developed as a result of 

the author’s involvement in the project as a junior researcher in the Laboratory of Communications 

and Telematics (LCT) of the Centre for Informatics and Systems (CISUC). Currently, this document 

is classified as confidential due to ongoing intellectual property protection actions . Initiated in January  

2012, and for a period of 36 months, the CockpitCI project aims to reinforce the security of critical 

infrastructures, commonly referred to as Supervisory Control and Acquisition (SCADA) systems. 

These are used to control large-scale industrial processes (e.g., keep track of water levels to cool the 

fuel rods in nuclear plants) through readings and status reports carried by specialized control systems 

(e.g., a Programmable Logic Controller (PLC) or a Remote Terminal Unit (RTU)), which the SCADA 

operator supervises with a Human-machine Interface (HMI). 

The CockpitCI project is broken down into seven Work Packages (WP), distributed by twelve 

European partners, being assigned to the University of Coimbra the lead on the WP3000 whose main 

concern is the design of components to be used on the analysis and detection infrastructure, using 

local and coordinated detection mechanisms, to isolate and lower the impact of the attacks from the 

remaining system. The CockpitCI consortium includes other universities (Roma Tre and the University  

of Surrey), as well as industries partners (Selex ES; Israel Electric Corporation (IEC); Transelectrica),  

end-users, Small and Medium Enterprises (SME – LYSE Energi), and research centers (itrust 

Consulting; Multitel; National Agency for New Technologies, Energy and Sustainable Economic 

Development (ENEA); Consortium for Research in Automation and Telecommunication (CRAT);  

Centre de Recherche Public Henri Tudor (CRPHT)). 

The current thesis addresses a concept proposed by the University of Coimbra, the Shadow RTU, to 

improve SCADA security at specific areas of the infrastructure, providing an additional layer of safety 

at a different level from the remaining components. Therefore, the role of the intern in this thesis is to 

develop a set of security probes (or modules) for the Shadow RTU and, integrate it in the scenario 

installed in the laboratory (LCT) to make it interoperate with the remaining components developed by 

the other members of the LCT involved in the project. These probes make up the proposed probing 

architecture for the Shadow RTU. 

1.2 THESIS OBJECTIVES 

Due to the increasing relevance given to attacks targeting SCADA in the past few years, there is a 

need to come up with solutions that are able to react to new kinds of threats. Over time, SCADA 
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systems and architectures have evolved to the point where the number of viruses and possible ways 

to compromise these keeps growing in diversity and complexity. In particular, low-level threats, i.e., 

the ones targeting the hardware or initiated by it (e.g., USB pen drives with malicious software 

intended to compromised other devices), have occupied a special place among these systems and 

keep getting better in the way the infections are performed, remaining unnoticed from the system and 

the operators. 

In this sense, it is proposed the definition of a set of security probes for Industrial Control Systems 1 

(ICS) to sustain the Shadow RTU concept, a device of reduced dimensions, responsible for 

performing network monitoring, supported on a robust architecture for such. This architecture is 

composed of a set of modules to handle the monitored network protocol data flowing in and out of 

PLCs or RTUs, decoding and processing it, while reporting to a central point that decides which 

measures need to be taken. Following is presented a list of goals to validate the concept:  

 Comparison and validation of the devices to take on the role of Shadow RTU (e.g., available 

resources, behavior under stress conditions); 

 Study and implementation of SCADA protocols to be handled by the Shadow RTU;  

 Setup of a simple scenario for the initial validation stage of the Shadow RTU (i.e., to evaluate 

its decoding and reporting capabilities); 

 Definition of the functionalities (Application Programming Interface (API)) to be supported by 

the Shadow RTU; 

 Implementation and integration of a communication method (Web Service (WS)) that allows 

the Shadow RTU to expose its API, for management purposes;  

 Implementation of the most basic functionalities of the Shadow RTU (i.e., monitoring, parsing 

and reporting network events), as well as some additional features (e.g., use of containers to 

isolate applications); 

 Integration of the Shadow RTU in the LCT scenario and, validation with the remaining 

components (i.e., PLC, Attacker, Management Platform, and Local Correlator).  

Throughout the thesis period, there was an event that took place in Mons, Belgium (28 to 30 October,  

2013) and another at the International Council on Large Electric Systems (CIGRE – March 12 to 14, 

2014), also in Belgium. Both events implied the implementation of a set of demonstration scenarios  

that were also made part of the work planned for the thesis and therefore, also part of the validation 

process: 

 The first demonstration focused on the Shadow RTU to evaluate its monitoring and decoding 

capabilities, i.e., the base concept; 

                                                                 
1 SCADA systems are a subset of ICS, historically known for being large-scale processes composed of multiple 
sites, and large distances. 
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 For the second demonstration (CIGRE), an Attacker was implemented to complement the 

validation process of the Shadow RTU. 

1.3 STRUCTURE OF THE DOCUMENT 

The rest of the document is organized as follows: the second chapter is composed of a State of the 

Art to address the evolution of SCADA, how their generations have been exposed to different types 

of threats over time and, an overview of common vulnerabilities found in the past few years. To sustain 

the idea that designing a good architecture is a halfway to improve system security, a comparative 

study of many possible solutions is presented. The architecture partitioning approach is also 

supposed to give an understanding of the options taken in the CockpitCI reference architecture,  

presented in the next chapter. A set of statistics then present how the industry reacted to one of the 

most dangerous virus known till today, and how the industry will be prepared in the future for up to 

come threats. Finally, it is made an approach to various types of threats (mostly, at a low-level) to 

realize how accurate these are becoming. 

The third chapter covers the CockpitCI project, namely, in respect to the probing and detection 

architectures. The remaining detection agents are also mentioned, along with the description of a 

series of cyber-threats for which these agents were designed to detect. 

The forth chapter describes the Shadow RTU concept, the modules that make up the proposed 

probing architecture for the Agent’s operation and, a series of attacks against which it is effective. A 

series of functionalities to be supported by the Shadow RTU are also presented, to allow it to be 

remotely managed. 

The fifth chapter describes the entire validation process: on a first stage, a series of Single-board 

computers (SBC) are compared, along with a set of workload tests to evaluate the behavior of the 

selected board under stress conditions. At the end of this stage, the initial validation process of the 

Shadow RTU to evaluate the monitoring and decoding capabilities are presented; on the second 

stage, a set of applications used for the software validation process are presented, including Modbus 

TCP and IEC 80670-5-104 protocol implementation, containers, and an approach to allow remote 

management on the Shadow RTU. Finally, a series of scenarios are presented to validate the Shadow 

RTU in an attack scenario. 

The sixth chapter presents the followed work plan along the first and second semester, including 

constrains that occurred during that period. 

The seventh chapter concludes the document, presenting the contributions to the CockpitCI project  

and the future work to be done. 
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2 STATE OF THE ART – SCADA SECURITY 

2.1 INTRODUCTION – SCADA GENERATIONS 

Even before networks existed (in the 1960s), SCADA systems were already being developed and 

used in the Utilities industry, in the United States (U.S.), running a “mainframe” with no connectivity  

to other systems, representing the first generation (or “Monolithic”) of SCADA [SCADA2004]. Even 

though Wide Area Networks (WANs) existed at the time, communication with RTUs was performed 

with proprietary solutions, with restrictions in functionality and integration with other types of traffic.  

So far management was an easy task due to the simplicity inherent to the system itself – the operator 

only supervised the sensors state, i.e., if either these were connected and running or not. However,  

the bigger the scenario, the less feasible it becomes to maintain due to the budget overhead it 

represents, e.g., costs hiring more qualified operators to monitor the process, not to mention that, in 

some situations, it would be practically impossible due to the extent of the scenario and every  

component involved in it. 

At the time of the first generation, SCADA was composed of two key components used in every recent  

infrastructure: 

 Remote Terminal Unit (RTU) – Used to process the information sent by sensors, converting 

it into a digital format. In the first generation of SCADA, RTUs dictated the communication 

protocol to be used on the network. PLCs were also used and connected to sensors to 

perform similar tasks. Both RTUs and PLCs are also referred to as Slaves or Servers;  

 Master Station or Client – These are used to control the Slaves through a HMI, which the 

operator uses to monitor the system’s process. At the time of the first and second 

(“distributed”) generations this device was normally referred to as Master or Mainframe 

Computer. 

The two first versions of SCADA were extremely simple with absolutely  no security layer added to it, 

e.g., the only way to keep track of the system’s operation was through the observation of state 

indicator leds (1st generation) or with a HMI (2nd generation), becoming an upcoming concern on 

future generations. The third generation (“networked”) of SCADA brought with it a key advantage: the 

disaster survivability, i.e., the ability to distribute processes across separate physical areas and 

avoiding the entire network to be compromised in case an attack is targeted to a specific location. 

Since its standardization in today’s processes, additional components are now part of SCADA 

systems (cf. Figure 2-1): 

 Database – Although it is an integral part of the Master Station (along with the HMI) it plays 

a very important role to keep the system in operation, avoiding the greatest consequences of 

system downtime and engineering hours spent restoring it (e.g., an historian is maintained to 
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track system trends and perform diagnostics). In this sense, two types of databases are 

commonly used: relational and real-time. While the first (relational) is best suited for keeping 

process state history (e.g., sensor readings), the second (real-time) is used due to 

performance issues required to maintain system state at specific moments, delivering several 

distinct advantages such as powerful alarm mechanisms, long term history or (per machine) 

purpose (or application) specific optimization [RTAP]; 

 Communication Server – As already mentioned, in the first generations of SCADA it was 

common to see proprietary communication solutions being implemented until the third 

generation emerged, bringing Ethernet [IEEE802.3] connectivity. That said, it is still possible 

to see both legacy and networked components working together in today’s scenarios  (cf. 

Figure 2-1); 

 Field devices – Connected to the RTUs, field devices (or sensors) directly interact with the 

process itself (e.g., water level reading), reporting the measured values to the Master Station. 

Conversely, depending on the reported values, actuators may change the process (e.g., 

restoring water levels to normal). 

This new generation made possible to distribute SCADA functionalities across the WAN, but also 

brought with it the existing vulnerabilities and attacks in Internet Protocol (IP) networks [ISA2011] (cf. 

section 2.2). In fact, even before the integration with conventional IT (Information Technology) 

networks, SCADA systems had their own vulnerabilities due to the existing architectures, devices,  

software and special (proprietary) protocols [Choraś2010]. Simply put, the security issues in SCADA 

are not particularly new. In fact, some of the problems that were commonly reported back then still 

occur today [ICSA-14-084-01]. 

 

Figure 2-1 – SCADA architecture: Third generation (Adapted from [Edvard2013]) 

The path followed by most SCADA systems tends to the standardization of both components and 

communication protocols, allowing the adoption of Commercial Off-The-Shelf (COTS) equipment ,  

Wide Area Network

Master Station

(Legacy)
RTU

HMI

Database

Communications Server

(Networked)
RTU
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leading to a cheaper, simpler and more opened architecture. This was exactly one of the advantages 

from the adoption of the Internet of Things (IoT) technology [IoT-GSI], alongside with maintenance 

and integration ease [Harbor2012], leading SCADA to its fourth generation where the capabilities of 

cloud computing are taken advantage of to reinforce security, availability and responsiveness of the 

entire network [Combs2011]. 

2.2 OVERVIEW OF SCADA VULNERABILITIES 

Since the first generation of SCADA, security has been an issue for many different reasons. If at first 

operators trusted on security by obscurity, i.e., trusting on proprietary protocols and interfaces with 

the idea that no one else would know these; or because the network was physical secured and 

disconnected from the Internet [Synergist2012], today, with the introduction of standard network  

protocols (opened and known by everyone), the adoption of commercial Operating Systems (OSs) 

(e.g., Microsoft Windows), and the implementation of Plug and Play (PnP) devices [ISA2011], just to 

mention a few, made new issues emerge – E.g., the introduction of Transmission Control 

Protocol/Internet Protocol (TCP/IP) connectivity increased the number of unauthorized access related 

issues, forcing vendors to develop specialized Firewalls and Virtual Private Tunnels (VPNs) to secure 

the communication channels to the SCADA network [Epiphan]; the same types of viruses found in 

commercial OSs also impacted the ones used inside SCADA networks but, with a greater impact 

since these can’t just be simply stopped to apply the patches and then have the system rebooted.  

The Stuxnet virus became quite popular for exploiting a vulnerability in Microsoft Windows OSs, by 

being able to send unauthorized commands to the control equipment and changing these while 

displaying false information to the operator, making him believe that the entire infrastructure was safe 

and running properly [Falliere2014]; whenever requested, PnP devices send a detailed description of 

themselves which the attacker may use to take over control [Clarke2004]. 

In fact there are many more reasons known to the public to consider these systems unsecure – 

commercial rivalries, disgruntled ex-employees, hackers, terrorist attacks and malware (e.g., Stuxnet, 

as mentioned above) –, which isn’t properly good for the image of this industry. Anyway, whatever 

the source of the attacks may be, it is necessary to understand and examine the threats landscape 

since this is actually a concern related to national security in which the disruption of critical services 

may result in much serious consequences, such as the failure of the infrastructure of even the loss 

of lives. Due to the potential disruption of such services, some of the vulnerabilities target ing these 

are believed to be associated with politically motivated or state-sponsored attacks [Symantec] as was 

the case of Stuxnet, as confirmed in the summer of 2012 [Shekaraubi2014]. 

Also known as a Zero-day vulnerability, the Stuxnet virus reduced the lifetime of Iran’s nuclear 

centrifuges by manipulating the way these spin, eventually ending up destroying a fifth of these. In 

fact, the attack occurred in two separate phases and, its propagation through a USB pen drive 
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inserted by one of the employees working inside the facility. Initially, the goal was to reproduce an 

electrical blueprint of Natanz plant to understand how the equipment controlling the centrifuges used 

to enrich uranium worked; Since everything appeared to be normal to the operators, only after a few 

years of its detection was the second variation of the virus released along with its propagation 

[Kelley2013]. 

2.3 EVALUATION OF ARCHITECTURE PARTITIONING SOLUTIONS 

Since SCADA systems are not as “invisible” as these used to be, designing a secure architecture 

requires taking into account three key aspects [Yokogawa]: 

 Prevention – These measures should be implemented before the system design and 

architecture, and maintained over time – E.g., separation between SCADA and Corporate 

networks; updated software and OS; firewall and antivirus configuration and; access to 

technical information and backdoors limitations; 

 Detection – A logging mechanism is usually associated to these procedures for later 

examination and detection of deviant behaviors –  E.g., history and log data at the application 

and OS level; audit trails and; alert mechanisms at both software and hardware level;  

 Recovery – In case a disaster occurs, restoring the system to its default behavior requires a 

set of previously defined measures, i.e., a recovery plan, to ensure that everything comes 

back to its proper operation. These systems are not isolated, requiring some measures to be 

taken – E.g. acquisition of fault-tolerant hardware; fallback mechanisms; an impact 

assessments (a realistic prediction) and; a backup and procedure plan. 

Considering that SCADA specific protocols like Modbus [ModbusTCP] and DNP3 [ IEEE1815] were 

not conceived to be secure, other methods had to be developed to work around the vulnerabilities left 

by these, such as confidentiality and integrity. One of the most accepted methods to achieve this is 

through network segmentation, where the entire system is partitioned into distinct security zones to 

isolate critical parts of the system [Byres2012]. As mentioned by the American National St andards 

Institute (ANSI) in [ANSI-ISA-99], a security zone is a logical grouping of physical, informational, and 

application assets sharing common security requirements, which can also be combined with other 

complementary mechanisms such as Firewalls and the definition of a Demilitarized Zone (DMZ). 

Following are presented some of the ways to partition an architecture, as well as an overall 

assessment for all these [CPNI2005]. 

2.3.1 Dual-Homed Solutions 

One of the most basic ways to achieve isolation is through the use of two network interfaces on the 

device between the SCADA and Enterprise Network (cf. Figure 2-2 – Consider the blue line 

connection only). This type of isolation is not very effective since it can be easily bypassed by an 
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attacker that successfully manages to compromise the device “in the middle”, e.g., forwarding packets 

between the two networks and, possibly, compromising both. The Slammer worm acted on conditions 

similar to the ones described here, i.e., even though the target was not the SCADA network, it 

eventually compromised the nuclear plant of Davis-Bess in Ohio, United States [Poulsen2003]. 

In order to reinforce the security of this solution, a more powerful device should be used instead, e.g., 

an Historian Server, with basic Firewall policies (cf. Figure 2-2 – Consider the orange line connection 

only). 

 

Figure 2-2 – Dual-Homed Computer (blue line communication) and Dual-Homed-Server with Personal Firewall 

Software (orange line communication) (Adapted from [CPNI2005]) 

The downside of the latter solution is the possibility of having blocked traffic in the advent of, e.g., 

remote access to the operation network is needed. Since this approach only provides a server data 

sharing mechanism, it is also possible for traffic not to be blocked at all.  

2.3.2 Router and Firewall-based Solutions 

A router or a layer-3 switch configured as a bridge and acting as a packet filter Firewall, can be used 

to effectively reinforce device-to-device rule sets but can’t prevent more advanced attacks, such as 

those that take advantage of packet fragmentation techniques, due to the inexistence of Stateful 

Packet Inspection (SPI) mechanisms (cf. Figure 2-3 – Consider the blue line connection only). This  

type of solution reminds a bit the concept of security by obscurity, since it is only feasible on networks 

that are known for not being a target to attackers or, on the other hand, extremely secure. Also, many 
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of these routers can be easily upgraded to support SPI, making this solution equivalent to some of 

the ones presented in the next section. 

 

Figure 2-3 – Packet Filter Router/Layer-3 Switch (blue line connection) and Router/Firewall combination 

(orange line connection) between SCADA and Enterprise Networks (Adapted from [CPNI2005])  

The combination of the previous case with a dedicated Firewall makes a better solution, since network  

traffic will first “hit” the router and, only after handling the bulk data, is then passed to the Firewall (cf. 

Figure 2-3 – Consider both blue and orange line connections). This solution is mostly used for 

Internet-facing Firewalls and not so much in SCADA environments.  

Most SCADA operators rely on the Firewall as the most important component to secure the 

infrastructure, applying strict rules to reduce the probability of an external attack to succeed – E.g., 

using a two-port Firewall makes a better filtering solution than the one discussed above, providing 

higher degrees of manageability and scalability (cf. Figure 2-4). 
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Figure 2-4 – Two-Port Firewall between SCADA and Enterprise Networks (Adapted from [CPNI2005])  

Considering the illustration in Figure 2-4, one can deduce that the decisions taken by the operator,  

when defining where each device will be located, can affect the policies to be applied on the Firewall,  

e.g., the Historian Server is located on the same side as the Enterprise Network, which requires the 

configuration of a rule that allows it to communicate with the devices on the SCADA network (e.g., 

the RTUs) (cf. Figure 2-4). However, a misconfigured Historian could easily compromise the devices 

inside the production network, since the Firewall “allows” it to do so. On the other hand, if the Historian 

happened to be installed inside the operation network, there should be a rule on the Firewall to allow 

some of the devices in the Enterprise Network to consult it which, again, would raise the risk of a 

compromised computer (e.g., by a virus or worm) to change the stored values in the Historian2. 

2.3.3 DMZ and VPN-based Solutions 

Considering the two-port Firewall mentioned in the previous section (cf. section 2.3.3), adding one 

more interface to it allows the operator to design an architecture with as many DMZs as additional 

Firewall ports are available. The first two ports are still used to connect to the Enterprise and SCADA 

networks, and the remaining ones to isolate specific components (e.g., the Historian) or zones of the 

network (cf. Figure 2-5 – Consider the blue line connection only). 

                                                                 
2 The communication between network hosts and SCADA devices occurs in Structured Query Language (SQL) 
or Hypertext Transfer Protocol (HTTP). 
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Figure 2-5 – Firewall with DMZ (blue line connection) and Paired Firewalls (orange line connection) between 

SCADA and Enterprise networks (Adapted from [CPNI2005]) 

Once again, rules must be applied to ensure the communication between the three zones is 

performed safely, eliminating the need to establish a direct communication path between the 

Enterprise and SCADA network. In this case, an Access Control List (ACL) can be “attached” to 

maintain these rules. Special care should also be taken when configuring the Firewall to only allow 

communications between the SCADA and DMZ networks to be initiated by the first (e.g., by an RTU),  

to avoid issues with compromised devices inside the DMZ communicating with the production 

network. Another concern with this type of configuration is the complexity accumulated in ACLs, 

making the network more prone to errors. 

Considered as one of the most secure solutions presented here, the implementation of two Firewalls  

between the enterprise and SCADA networks, allows the first one to block arbitrary traffic from 

entering the production network and the second one to prevent compromised devices from sending 

data to the SCADA network. The DMZ network is located between these two firewalls (cf. Figure 2-5 

– Consider the orange line connection only). 

Finally, another solution is presented where instead of segmenting the network with DMZs, VLANs 

are used instead to allow communication between these and force all traffic to go through a Layer-3 

packet filter Switch (cf. Figure 2-6). All traffic inside one VLAN goes through a Layer-2 Switch but, 

again, if a device in VLAN A needs to communicate with another in VLAN B, the Later-3 Switch is 

used. 
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Figure 2-6 – Firewall and VLAN-based Process Network Combinations (Adapted from [CPNI2005]) 

The combination of some of the previous scenarios makes this one the most scalable and still secure 

solution – VLAN separation prevents compromised devices from affecting others. 

2.3.4 Solution Comparison and Evaluation 

It is important to understand how SCADA architecture designs have evolved over time, and how new 

mechanisms and technologies might have changed the way operators implement more advanced 

solutions. Following, is presented an evaluation of the architectural designs mentioned above 

according to three key aspects: Security, to prevent possible attacks; Management, both local and 

remote and; Scalability, to allow the deployment of both large and small systems . 
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Table 2-1 – Approximate Security, Manageability and Scalability Ratings for SCADA Segregation Architectures 

(Adapted from [CPNI2005]) 

Architecture Security Management Scalability Score 

Dual-Homed Computers 1 2 1 4 

Dual-Homed Server with Personal Firewall 2 1 1 4 

Packet Filtering Router/Layer-3 Switch 2 2 4 8 

Router/Firewall Combination 3.5 3 4 10.5 

Two-Port Firewall 3 5 4 12 

Firewall and DMZ 4 4.5 4 12.5 

Paired Firewalls 5 3 3.5 11.5 

Firewall/VLAN-based Combination 4.5 3 5 12.5 

Considering the results in Table 2-1, one can deduce that non-Firewall solution are not even an option 

for today’s SCADA scenarios but, on the other hand, the last presented ones, i.e., the ones based on 

a three zone system, are the most feasible ones. 

2.4 POST-STUXNET SECURITY 

The discovery of Stuxnet in 2010 created a turning point in SCADA security. The the number of 

discovered flaws in SCADA software increased by twenty times and, the vendor whose PLC was the 

ultimate victim of this virus (Siemens [SimaticS7-300]) has patched 92 percent of reported 

vulnerabilities in their products, over the last seven years [Ptsecurity2012]. The impact was so 

notorious that by the end of 2011, 64 vulnerabilities in ICS products were found and reported,  

comparatively to only 9 between 2005 and 2011 and, 98 between the months of January and August 

of 2011 (cf. Figure 2-7 – blue line). This information was based on vulnerability database information 

from Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) [ICS-CERT],  

Common Vulnerabilities and Exposures (CVE) [CVE], Bugtraq [Securityfocus], Open Source 

Vulnerability Database (OSVDB) [OSVDB] and ProductCERT [CERT].  

To give an even clearer idea of the lack of importance given to the ICS industry in past years, it was 

discovered that by the time the Stuxnet incident was being investigated, one of the exploited 

vulnerabilities, a Microsoft SQL Server default password issue [CVE-2010-2772], was already known 

long before the attack. This issue was even mentioned in a forum in May 2005 and the default  

passwords published 3 years later, in May 2008. It took three additional years for the Stuxnet attack 

to occur (2010) and have this issue resolved. This case explains pretty much everything that is wrong 

with SCADA security. 
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Looking at the following chat (cf. Figure 2-7 – blue line) there is an increasing amount of found 

vulnerabilities between the years of 2010 and 2011. Most of these were discovered by a security 

researcher [Auriema], who spotted 93 out of the 129 published flaws. 

 

Figure 2-7 – Number of ICS Reported/Detected Vulnerabilities vs. Number of ICS Published Vulnerabilities 

(Adapted from [Ptsecurity2012]) 

In an interview [Peterson2011], the researcher explained the methods and techniques he carried to 

find these vulnerabilities and also why the image of this industry in terms of security is so degraded.  

The first stage consisted in an understanding the network protocol, while trying to notice existing 

bugs. For that, the researcher conducted an auditing process of the main operations with a debugger 

to verify what the program did with the bytes of the incoming packets. Finally, an automated tool was 

used to modify the original sample packet or build one from scratch until an exception was raised 

(i.e., until a crash occurred). 

To explain why the situation of security in this industry is so critical, the researcher mentioned that 

there is no interest in these vulnerabilities, something that was confirmed by ICS-CERT in his 

discussions where, according to him, the bottom line was that SCADA is a field so critical that if 

someone finds a bug, it should be immediately reported for free and, whoever discovered it should 

cooperate (also for free) to fix it. By the time he discovered the bugs he did not contact the respective 

vendors once that, according to him, most companies don’t event credit the authors for the patching.  

To sustain these arguments, the previous chart (cf. Figure 2-7 – blue and orange lines) shows a 

correlation between the detected vulnerabilities and published exploits from 2008 and 2010.  

However, from 2011 to the end of September 2012, only 50 exploits were published. Even though  

these numbers are six times greater than the ones from 2005 to 2010, which is a good thing, it also 

supports to the arguments reported in [Peterson2011]. Relatively to the low number of published 

exploits in 2012 when compared to 2011, it may, again, be related to the formalization of the 
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relationships between SCADA vendors and security researchers, as well as the use of responsible 

disclosure policies between these. Finally, the costs that are incurred in the development of 

exploitation tools causes a significant delay between the publication of the vulnerability information 

and the exploits. 

2.4.1 Vulnerabilities in Hardware and Software Components 

Most ICS vendors started to take special care in securing their products, as it was the case of 

Siemens, Schneider Electric and Broadwin/Advantech, whose numbers of found vulnerabilities made 

the top among the remaining companies in this industry. During this period, some vendors changed 

their security approach from reactive to proactive in a demand to spot and fix flaws, as it happened 

with Siemens – the company created a specific department for this purpose called ProductCERT, as 

mentioned above, whose efforts were also included in the results presented in Figure 2-7. To give a 

more clear idea of the amount of vulnerabilities found in ICS components of various vendors until the 

year of 2012, following is presented a graph where SCADA systems, HMIs and PLCs make the top 

(cf. Figure 2-8): 

 

Figure 2-8 – The Number of Vulnerabilities in Different Types of the ICS Components (Adapted from 

[Ptsecurity2012]) 

According to [Jackson2012] some vendors (e.g., Siemens) have reportedly made a lot of progress 

on workstation and server side, implementing better security controls. However, on the PLC side, 

very little progress has been made. At the same time, in software products, over a third (36%) of 

reported vulnerabilities had exploits and, half of the vulnerabilities (50%) allowed attackers to remotely  

execute code (cf. Figure 2-9). More of 40 percent of the bugs found were considered to be “critical”. 

Once again, these number don’t show a big amount of exploits that are not disclosed.  
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Figure 2-9 – Classification of Vulnerabilities in ICS According to Type (Adapted from [Ptsecurity2012]) 

Considering the graphic in Figure 2-9, vulnerabilities associated with Buffer Overflow [owasp2009]  

allow the attacker to have control over the program, ending or freezing it, leading to a Denial-of-

Service (DoS) [ST04-015] and the execution of arbitrary code on the victim’s system. These two 

vulnerabilities (DoS and Remote Code Execution) make up 50 percent of the picture (cf. Figure 2-9).  

Also relevant are the 23 percent allocated to Authentication and Key Management issues. 

To give an idea of how serious vendors take the issue of fixing vulnerabilities, according to 

[Ptsecurity2012], Siemens patched 88 percent of its vulnerabilities; Advantech/Broadwin, 91 percent;  

and Schneider Electric, 93 percent. Other vendors fixed a high percentage of vulnerabilities as well 

(above 65 percent), except for Lantronix and Schweitzer Engineering Laboratories who have made 

no fixes at all. Considering the number of vulnerabilities fixed promptly, 81 percent of these were fixed 

within 30 days of public disclosure or before the flaws became widely known. However, every fifth 

bug was not even fixed at all or it was fixed after a significant delay.  

Fixing vulnerabilities in traditional SCADA products is in fact a relatively thankless process if one 

considers that these products were never created under a security development life cycle program. 

In fact, it is going to be a never-ending process because there are systematic problems in the product  

and so, it is just a matter of time before one decides to stop patching bugs and actually start 

redesigning the code. 

2.4.2 Future Threats in ICS/SCADA 

Even though the Stuxnet worm has received a lot of attention in the latest years, the greatest threat  

to ICS are copycats that could use it as a blueprint for future attacks, creating mutations with the 

same basic techniques. Unlike Stuxnet which only affected the Siemens SIMATIC family components  

and STEP 7 PLC projects with specific proprieties [Falliere2010], these mutations may even extend 
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the range of vendors, becoming less selective. The fact that it took 12 months for the Stuxnet to be 

detected proves that the use of conventional protection mechanisms (e.g., Antivirus) are never 

sufficient and that, a fast and reliable discovery of such threats are a key aspect for defense against  

vulnerabilities that are yet to come. 

That being said, following are described the activities of the Stuxnet virus across all the affected layers 

in four stages, to provide a way of planning proactive measures against future mutations of it and 

minimize its negative impact [Rössel2011]: 

1. Operating System Infection – As already mentioned, the worm spreads across networked 

and non-networked devices running Microsoft Windows through a USB pen drive, exploiting 

four previously known vulnerabilities (zero-day exploits). At this point, the virus installs two 

device drivers signed with private keys stolen to two reliable companies, Realtek and 

JMicron. These vulnerabilities have in fact been in several generations of the OS and so, it 

wasn’t something particularly new. 

2. Software Manipulation – The worn now manipulates the OS databases as well as any STEP 

7 projects it finds, while making itself persistent on the system to locate the controllers 

referenced by those projects to be used as future targets (cf. step 3). Afterwards, the worm 

renames the Dynamic-link Library (DLL) files inside the directory responsible for the 

communication between the SIMATIC Manager and the S7 controllers and replaces it with a 

wrapper DLL of its own. 

3. Controllers Manipulation – The wrapper DLL mentioned in step 2, allows the Stuxnet to inject 

malicious code into compromised PLCs with very specific properties (S7-417 series of 

controllers), selectively. This code combines denial-of-control and denial-of-view techniques 

into a Man-in-the-middle (MITM) attack, making legitimate PLCs lose control of the process 

without anyone (e.g., operators) or anything (e.g., HMIs) noticing it. At this point, the code 

permanently manipulates the frequency converters and turbine controls to disrupt the 

process, as also mentioned in chapter 2.2. 

4. Communication with Control Servers – The infected computers now try to communicate with 

command and control servers over the Internet to upload collected information from the target  

and its environment. Once the connection is established to the exterior, the Stuxnet can even 

receive updates and execute the new data. 

Simply put, Stuxnet became the first known rootkit for ICS capable of hiding itself, while taking 

advantage of the programming software to upload code into the PLC. When the operator used the 

infected machine to check on the PLC, it would also hide the injected malicious code. At this point it 

is important to understand that rootkits are still evolving and becoming serious threats, not only for 

SCADA but in every domain. In general, rootkits are known for being extremely difficul t to remove 

from the infected machine due to their ability to trick the detection software, a characteristic known 
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as polymorphism, i.e., the ability to rewrite the code, requiring the entire system to be reinstalled in 

some cases, e.g., when the rootkit is installed in the kernel. However, if the threat goes beyond the 

kernel level (e.g., firmware rootkits) it may be necessary to replace the infected hardware 

[Kassner2008]. 

2.5 LOW-LEVEL THREATS 

Low-level threats are today a serious concern, not only for SCADA operators, becoming more 

complex and hard to understand each day – basically anything that has the ability to process or be 

processed is going to be used to expand the attack surface on a given system, e.g., from physical 

and virtual ports to browsers and the OS. The trend of focusing in security at the application level 

may have contributed to put aside these kinds of threats, making also path for new high-speed 

technologies like the USB 2.0 and FireWire to join the team [Wilson2013].  

The complexity and accuracy inherent to these types of threats may possibly call the attention for any 

attacker with intentions of making a step beyond Stuxnet, raising the awareness in ICS security even 

more. What really makes such vulnerabilities really interesting is that these operate at the lowest 

level, i.e., the hardware, enabling full control of devices at a root level, making it even possible to 

perform the infection before these completely boot. 

Following are described some of the most relevant types of low-level threats to better understand 

how these attacks are performed [Causey2013]. 

2.5.1 Advanced Volatile Threats (AVTs) 

These threats are targeted to the computer's volatile memory. According to Triumfant, whose activity 

is mainly focused in the detection, analysis and remediation of malicious attacks that evade traditional 

endpoint protection solutions such as the ones listed here, AVTs are becoming increasingly popular 

and may event one day replace Advanced Persistent Threats (APTs – described below) as the most 

common type of attack. By writing the malicious code in memory rather than in disk, it makes it harder 

to be detected or even from knowing it was even there (e.g., after a system reboot or an overwrite 

action is performed). On the other hand, and since the attacker doesn’t get the persistence either, he 

would have to “re-attack” the system/device to gain access once again.  

2.5.2 Memory Attacks 

In this case, a vulnerable application or module in the OS is typically used as a starting point, requiring 

either physical access or a way to load code into Random-access Memory (RAM) in a persistent way. 

Even though these types of attacks are not necessarily new, most of these are still unsolved or still 

unsecure (e.g., Stack and heap-based buffer overflows that operate in memory). Memory injection 

attacks using DLL files are a typical example (cf. Figure 2-10): once stored in disk, the installed anti-

virus will scan the DLLs so these can be loaded in memory at a later stage. However, it is possible to 
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replace the loaded DLL, tricking the processor into executing the new code. At this point, the real 

damage begins – now, it all depends on the difficulty to compromise the chosen platform or OS. This  

previous example is only applicable on Microsoft Windows OSs, however, even Linux or BSD-based 

(Berkeley Software Distribution) kernels can be exploited [Iozzo2009] for the same type of attack. 

 

Figure 2-10 – Reflexive Memory Injection (Adapted from [Causey2013]) 

One thing to be noted is that these types of attacks, once operating in volatile memory, can spread 

to disk and become a persistent threat. Nevertheless, there are still two more things that makes these 

types of attacks scarier: The first one, relates to on how hard it is for anti-viruses to detect such 

threats, since these reside on RAM; the second one, relates to the fact that Remote Method 

Invocation (RMI) can use either authorized or protected processes (by Data Execution Prevention 

(DEP) and Address Space Layout Randomization (ASLR), respectively), to pull libraries into these.  

The issue to be noted here is that memory attacks don’t even required user interaction, e.g., the case 

reported in [Pauli2013] describes an example where external physical interfaces that use Direct 

Memory Access (DMA) are vulnerable to a sophisticated malware dubbed DAGGER. Once again,  

this attack was not detected by the antimalware system because it was out of its detection scope.  

2.5.3 Advanced Persistent Threats (APTs) 

This type of threat involves writing data to disk to maintain access and expand capabilities, e.g., by 

hosting itself inside the victim’s network for long periods of time and retrieving sensitive information.  

The extent of damage is still unknown but can infect a system as low as the firmware and, since these 

are only detected when active its detection is almost impossible.  
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2.5.4 Firmware Attacks 

Firmware is a very particular type of code, also impossible to scan and access by anti -viruses and 

HIDSs making these the most difficult type of persistent threat to handle. What makes it even more 

dangerous and hard to detect is the fact that devices like printers [Cui2013] and Wireless access 

points, which contain firmware, don’t have any  kind of security software in it making its information 

(e.g., log files) even more unreliable. 

2.5.5 Rootkits 

Starting on RAM, Rootkits then exploit a non-critical module or application until reaching the user and 

kernel space, where it will stay undetected until it finds a way to strike its final goal, the OS (cf. Figure 

2-11). The Stuxnet virus, as already mention here, is included in this category. Rootkits can be User 

or Kernel Mode: While the first (User Mode) runs without any kind of privileges, allowing i tself to reside 

inside an authorized process in memory, the second (Kernel Mode) is way more difficult to detect and 

remove since these run with system level privileges, allowing themselves to make damages at a 

deeper level in the system. 

 

Figure 2-11 – Modern Rootkit Flow (Adapted from [Causey2013]) 

2.6 METHODS OF EXPLOITATION 

A recent article published in [Mello2013] warned energy industry enterprises using SCADA systems 

to be on alert for targeted spear phishing attacks conducted through emails sent to the employees 

containing malware that, could possibly spread into the network and open a back door for future 

attacks. However, the biggest issue is when an employee has to access the Internet to update 

something on the SCADA network, possibly starting the contamination. Another example of a recent  

compromise are watering hole attacks which take the process a step further by infecting the victim 

with malware embedded in a website likely to be visited by it .  

Malicious
website

Exploit
vulnerability

Bypass
ASLR/DEP

Escalate
local privilege

Download
rootkit

Execute
payload

Install rootkit
Kernel-Mode

exploit

Escape
sandbox



21 
 

The fact is that no enterprise is capable of protecting its network against all the malicious attacks, no 

matter how secure the perimeter may seem or be. Considering this, organizations must invest in 

solutions at a host and network level that focus on detection and prevention of infections. Also, no 

one should ever consider that if the Anti-virus does not show any alerts it is equivalent to good news, 

even less if one is dealing with lower-level threats that operate below the application level (cf. sect ion 

2.5). 

2.7 SECURE EXECUTION ENVIRONMENTS 

The differences between ICS and general purpose IT systems in terms of security present opposite 

priorities relatively to availability, integrity and confidentiality [ ISA-99.00.01-2007]: while IT security is 

more concerned with securing “back office” or business systems, placing confidentiality at the top of 

its priorities, in ICS systems the concern of having the entire infrastructure operating at all times, gives 

availability the highest priority and, confidentiality the lowest. In both systems integrity ranks the 

second place (cf. Figure 2-12). 

 

Figure 2-12 – Security priorities between ICS and IT networks  

The fact that ICS places confidentiality at the bottom of priorities does not mean that operators care 

less with security. It means that, unlike IT applications which in general are more tolerant to delays, 

in ICS these delays could represent a possible threat to the operation of the infrastructure itself and 

the purpose it serves. Since security in IT has always been taken with great care, the adoption of 

some of its preventive measure could actually be of a great use in ICS as well. One of these measures 

relate to the deployment of lightweight virtualization and/or sandboxing solutions in an attempt to 

create an additional and parallel level of safety for ICS components, allowing the execution of unsafe 

or untrusted code inside a protected environment. 

An overview of two approaches to achieve confinement for software testing purposes are following 

presented for a better understanding of the idea presented above. 
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2.7.1 PEE within a Computer System 

The idea presented here refers to an agent that installs itself within the device’s file system to control 

the modifications performed to it, by intercepting the Inputs and Outputs (I/Os), and classifying the 

application as secure or unsecure according to a configuration utility [Jooste2008]. If the latter 

attempts to modify the protected execution environment, the agent terminates the original I/O request,  

creates a new one and redirects it to an alternate environment (cf. Figure 2-13). 
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Figure 2-13 – Diagram illustrating a system-level overview of an embodiment of the invention [Jooste2008] 
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The configuration of the protected environment involves classifying the installed applications as 

authorized or unauthorized, by executing the utility method as system administrator (regular users 

are not allowed to perform such configuration). After the execution, a list of both types of applications 

is produced. Also, to aid the classification procedure, the load path of the process ID is used and an 

active process data structure is created and maintained to associate a process ID for an application 

with its load path and a parent-child data structure to track the relationship between an unauthorized 

application that launches another unauthorized application (parent-child relation). 

2.7.2 One-way Isolation 

This approach refers to the protected environment as Safe Execution Environment to describe a way 

to experiment new software without damaging the system. This is achieved by reproducing the 

application’s behavior inside the safe environment via one-way isolation – once inside, processes are 

given read-only permission and, write operations are forbidden from escaping the environment 

[Sun2005]. The safe environment also includes commit and rollback functionalities, and a consistency 

criteria for the previous actions; environment reproduction, i.e., once found to be stable the application 

can run on the “original” file system; and confinement, as mentioned before. 

The features presented above are implemented on an Isolated File System (IFS), created by 

interposing file system operations within the kernel at the Virtual file System (VFS) layer (cf. Figure 

2-14). Also, the implementation of IFS requires the support of Copy-on-Write3 (COW) optimization 

strategies. 

 

Figure 2-14 – IFS Layout on Modification Operations [Sun2005] 

                                                                 
3 Copy-on-Write is a strategy used when many separate tasks use similar copies of the same data stored in 
memory or disk. Instead of creating a different copies for each process, a pointer is given to the same 
resource. 
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The illustration in Figure 2-14 demonstrates the operation of the IFS: The Main File System 

corresponds to the host file system; the Temporary Storage holds modified copies of files and 

directories, overriding the view of the previous (i.e., the Main File System); and the Combined View 

corresponds to the combination of the previous two cases. The IFS operations are maintained in a 

table called “inode table”, indexed by the inode number of file system objec ts, with a field indicating 

whether the inode corresponds to an object in the Temporary Storage or in the Main File System. 

Other optimization techniques are used to make this approach as efficient as possible, while keeping 

low performance overheads. 

2.8 SECURE EXECUTION APPROACHES 

To keep the desired ICS components continuously running, without the risk of getting compromising 

by the execution of unsafe code, these algorithms should run inside a protected environment, giving 

the ability to experiment as the output gets confined. Many solutions have already been developed,  

mainly, in the context of desktop software (e.g., checking if new updates do not compromise the 

remaining applications running in the system, or to evaluate how vulnerable is the system to a new 

virus), keeping the host system safe. Most of these solutions are used for later reproduction of the 

actions carried inside the secure environment into the system itself (cf. section 2.7.2). However, most 

of these solution require high processing capabilities and/or provide unnecessary features that do not 

make sense for some ICS components, requiring a careful approach to balance both functionality and 

overhead. 

There are popular solutions built-in most UNIX-like systems, such as chroot [Chroot] and more 

sophisticated sandboxing ones like systrace [Systrace], to run applications a somewhat confined 

environment. However, more advanced sandboxing techniques exist such as the ones described in 

the following section. 

2.8.1 Virtualization 

This is the most basic and maybe logic way to isolate the actions performed by an application in IT 

systems, on an OS (e.g., using Virtual Machines (VM)) to keep the code away from the real hardware.  

Some functionalities, namely, the firewall must be carefully configured to disallow any attempt to 

access the host environment or, if necessary, the virtual network interfaces could simply be disabled 

or removed. This gives the operator the ability to either isolate both systems completely or give a two-

way isolation, between both host and VM environments. 

A VM instance requires a kernel, a bootable OS, shared memory and processing with the host system. 

Lighter4 implementations of a virtual system like User-mode Linux (UML) may not be feasible due to 

                                                                 
4 In the sense that UML lacks most of the features present in most virtualization solution (e.g., Oracle 
VirtualBox or VMware). 
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low performance issues when compared with, e.g., Linux Containers (cf. section 2.8.3), and the fact 

that some system architectures are yet not supported. 

2.8.2 File System and Process Confinement 

Using chroot to confine a process into a specific zone of the file system is not safe – using ptrace 

debugging tool [Ptrace] (used for intercepting system calls) on another process outside of chroot, one 

could easily get out of that same zone. To work around this issue, each process would have to be 

run as a different user to prevent it from attaching to another one using ptrace. On the other hand,  

this might cause a race condition when setting the new user. Nevertheless, since there is no way to 

prevent malicious code from opening network sockets such solution might be useless for most 

components requiring safe network access. 

It is also possible to have hybrid solutions where chroot is used along with container calls (cf. section 

2.8.3) for file system isolation, namespaces [Namespaces] for process isolation and prctl [Prctl] to 

disable process trace (ptrace). Seccomp [Seccomp] is another mechanism making use of prctl, that 

only allows processes to call read, write, exit and sigreturn functions (any other call terminates the 

process – SIGKILL). This approach does not even allow memory allocation, since it does not 

virtualizes any system resources (only process isolation is guaranteed). 

2.8.3 Containers 

Linux containers (LXC) [LXC] use a set of namespacing tools to achieve lightweight virtualization of 

a whole system or just a single process, by calling unshare5 [Unshare] and clone [Clone] tools. By 

doing so, newly created network sockets are in a different namespace and, network isolation is 

achieved. The cgroups functionality is also used to limit and isolate the usage of resources (e.g., 

Central Processing Unit (CPU), memory and disk I/O). 

Isolating process IDs is done properly since it can’t see or ptrace anything outside of the container;  

File system isolation is also done properly by (un)sharing mount points  and combining it with 

FileSystem in Userspace (FUSE) [FUSE], useful for writing VFSs without editing the system kernel – 

VFS provides an abstraction within the kernel space with an interface to userspace applications; for 

networking isolation, a properly firewalled virtual or physical network adaptor can be used.  

From a container lockdown perspective, LXC is still not completely secure since root users still have 

access to dmesg [Dmesg] and the proc directory [Proc], allowing these to access /proc/sysrq-trigger 

and restart the host machine6 [Ramesh]. For such reason, some administrator choose LXC-based 

solutions (cf. section 2.8.4) to overcome this issue. 

                                                                 
5 unshare is a command line interface to unshare Linux syscall and allows a program to run with some parts 
of the process execution context unshared from parent. 
6 Running echo b > /proc/sysrq-trigger will  reboot the machine. 
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2.8.4 Container-based Solutions 

Other solution take advantage of the capabilities provided by LXC (cf. section 2.8.3) such as the ones 

described here: 

 Linux-VServer – The first container-based implementation to appear for the Linux system that 

performs process and resource isolation through the capabilities inherent to the kernel (e.g., 

file system isolation using chroot or memory limits using rlimit [Rlimit]), as well as inter-

container security via a global PID space that prevents other containers from seeing each 

other’s processes [VServer]. Its biggest advantage is scalability for a growing number of 

containers. As for the disadvantages is the impossibility to implement live migration and 

partition checkpoint and, network subsystems are not virtualized (i.e. , routing and IP table 

are shared with other containers). 

 OpenVZ – Unlike the previous, isolation between containers is guaranteed using kernel 

namespaces and, features like migration and partition checkpoint are possible [OpenVZ].  

Each container is allowed to have its own network stack (i.e., its own routing and IP table) 

and the host system can even assign a real network device, providing better network  

performance. Using the inter-process communication (IPC) [Ramankutty2004] kernel 

namespace capabilities, each container is also allowed to have its own shared memory 

segments, semaphores and messages. Resource management is much better than the 

previous solution (VServer), allowing for more specific configurations, such as limiting 

memory usage and various in-kernel objects (e.g., IPC shared memory segments or network  

buffers), and fair processing resources distribution per container. 

2.8.5 Access Control Policies 

To achieve high levels of security and confinement the Security Enhanced Linux (SELinux) [SELinux] 

allows the system administrator to take control over user and application access to specific resources 

(e.g., files), using policies that can’t be modified neither by users nor (malformed) applications. An 

example, is the targeted policy used in most Linux distributions that puts a great number of confined 

daemons in a controlled state [Targeted]. 

Instead of specifying which users are able to perform read, write and execute operations over files,  

SELinux allows the specification of who can unlink, append or move the same resource (e.g., files, 

network resources and IPC). This fine-grained control over resources makes this solution great for 

confinement purposes and, for very modular architectures. 

2.9 CONTAINERS COMPARISON AND EVALUATION 

A complete study conducted in [Xavier2013] comparing a set of performance metrics between native 

LXC, LXC-based solutions (OpenVZ and VServer) and a truly virtualized system (Xen) is presented 

(cf. Table 2-2). These benchmarks were conducted to evaluate how much a single container could 
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influence/interfere with another one results, with 6 different stress tests (CPU, memory, disk and 

send/receive network intensive tests and, a fork bomb test) for High Performance Computing (HPC) 

applications, using a Dell PowerEdge R610 [R610] with a 2.27 GHz processor (8 cores each), 16GB 

of RAM and a Gigabit Ethernet adapter.  

Table 2-2 – Performance isolation for LU applications 7 [Xavier2013] 

 LXC OpenVZ VServer Xen 

CPU Stress 0 0 0 0 

Memory 88.2% 89.3% 20.6% 0.9% 

Disk Stress 9% 39% 48.8% 0 

Fork Bomb DNR 0 0 0 

Network 

Receiver 

2.2% 4.5% 13.6% 0.9% 

Network Sender 10.3% 35.4% 8.2% 0.3% 

The conclusions discussed in [Xavier2013] demonstrate that the CPU stress tests do not impact any 

of the solutions. Only all the other resources have impacts when stressed, impacting well -behaved 

guests (containers), leading the researches to believe that while the kernel is handling the stressed 

guest calls, it won’t be able to handle calls from well-behaved guests, influencing the performance 

results. The fork bomb test allowed the researches to validate the security issues on the LXC solution, 

due to the impossibility to limit the number of processes by cgroups – something that OpenVZ and 

VServer deal with perfectly. 

It should be noted that carrying these performance tests to a device with reduced capabilities, would 

have a different impact and meaning over the analysis made to the results. Normally, these kind of 

evaluations are performed on devices with a lot of processing capabilities (e.g. , in the context of cloud 

computing with emerging approaches to migrate from current virtualized solution to container-based 

ones) and so, adapting these to a different context would require a different approach. 

2.10 ISOLATION CONTEXTS 

The various types of implementations described in the previous sections can be categorized 

depending on one out of two situations: if the isolation is applied at an existing user-space (App-level 

– restricting what a process or user can do) or if the user-space is entirely sandboxed (OS-level). In 

the case of VMs, these isolate both the user-space and the kernel-space creating a “full” sandboxed 

solution. 

                                                                 
7 LU – Lower-Upper Gauss-Seidel solver (a pseudo application). 
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Table 2-3 – Sandboxing implementations by context8 

Context Solution 

Features 

File-

System 

isolation 

Network 

isolation 

Root 

isolation 

Disk 

quotas 

CPU 

quotas 
I/O rate 

Memory 

limits 

Os & App. 
Virtual 

Machine9 
N/A 

OS-level 

Chroot Partial10 No No No No No No 

LXC Partial11 Yes No Partial Yes Yes Yes 

LXC-

based 
Yes12 Yes Yes Yes Yes Yes Yes 

App-level 

Seccomp 

No 
SELinux 

 

  

                                                                 
8 Only open-source implementations, covered by the GNU General Public License (GPL) l icense [GPL] were 

considered, leaving aside FreeBSD jails [Jails]. 
9 Virtualization is not an OS-level approach since it reproduces a completely new system, i.e., new kernel and 
OS. 
10 Using a root user account, one can easily work around the chroot confinement. However, this tool was 

never designed for this goal. 
11 The Linux kernel does not support user namespace separation. LXC has to be combined with FUSE. 
12 Native LXC solution have been recently subject to a n attack as mentioned in [lxc2011]. 
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3 COCKPITCI REFERENCE ARCHITECTURE 

3.1 REQUIREMENTS FOR THE PROPOSED ARCHITECTURE 

The proposed CockpitCI detection architecture takes special consideration with the integrated layers, 

providing an autonomous solution with self-healing and preventive capabilities at the Field layer, 

where the RTUs operate, making it difficult for attackers willing to take advantage of the deployed 

components to actually compromise these. To overcome this contradiction, i.e., Autonomy vs.  

Security, a hybrid schema was developed covering two levels: at first, at the Control center (or Control 

Room – cf. Figure 3-2), accurate assessments are performed to provide the operator with qualitative 

and quantitative measures with information from the field level, other infrastructures and smart 

detection agents; secondly, at the field level, a detection system is introduced to continuously analyze 

the inputs and outputs of the RTUs and prevent attacks from occurring [D3.1_2013] – in these 

situations, i.e., in case of attack, RTUs are supposed to behave accordingly, either ignoring 

commands or isolating themselves, until the operator comes up with a solution. 

The integrated analysis and detection layers should deploy the mentioned smart agents and operate 

as close as possible to a real-time Distributed Monitoring and Perimeter Intrusion Detection System 

(PIDS) that receives the filtered and analyzed information of possible attacks. In this sense, both 

probing [D3.1_2013a] and detection [D3.1_2013b] architectures were conceived, in order to provide 

a set of security mechanisms to process the information sent by probes (or sensors) and other 

monitoring devices. While the first architecture (Probing architecture – cf. Figure 3-1) tries to address 

the problem of probe placement though zone separation, the second (Detection architecture – cf. 

Figure 3-2) builds on the previous to give relevance to the correlation structure, while introducing two 

innovative concepts, namely, the Shadow RTU and Backup Master Station (BMS), used for capturing 

and analyzing data (e.g., search for abnormal activity), respectively. 

3.2 PROBING ARCHITECTURE 

The Probing architecture is composed of three security zones to allow the traffic to be captured and 

the intrusions detected (cf. Figure 3-1): the IT Network is basically composed of HMIs, allowing the 

operator to check the system state. This network is not part of the SCADA system and still it  may 

represent an entry point for attackers willing to compromise components inside it ; the Operations 

Network is comprised of Master Stations and its complementary components used for data acquis ition 

and visualization, i.e., the Database server and HMI; The Field Network contains the RTUs, Honeypot  

and Shadow RTU. 



31 
 

 

Figure 3-1 – Generic probing architecture [D3.1_2013a] 

This separations was done to differentiate infrastructure contexts for handling with different detection, 

correlation and reaction strategies, and defining security perimeters to control the exchange of 

information between each zone. These perimeters were strategically positioned to address detection 

but also reaction and countermeasure mechanisms. 

3.3 DETECTION AGENTS 

Following is a brief description of each proposed component (or agent) operating at the Field Network,  

responsible for the detection of anomalies, and their respective roles on the infrastructure to give an 

understanding of the best suited mechanisms to deal with the detection of specific threats. 

3.3.1 Network and Host Intrusion Detection Systems 

The Network Intrusion Detection System (NIDS) is a sensor located at the boundary of each delimited 

zone to monitor the traffic flowing between these, using patter-based mechanisms (e.g., signature 

and anomaly-based) to search for unexpected behavior and activity, such as probe scans, DoS or 

MITM attacks. The Host Intrusion Detection System (HIDS) is used to search for the same type of 

anomalies as the NIDS does, but at the host level, e.g., on the Master Station, Database or HMI 

consoles, processing the device logs, performing signature checking, and monitoring key system 

structures, e.g., monitoring system calls between applications and the OS, to detect abnormal 

behavior (e.g., using machine learning methods), intrusions and the integrity of the system itself. This  

is the way to get basic control of data flows at both generic and specific levels. 

3.3.2 Honeypot 

The honeypots are conceived to be a dummy target for attackers trying to compromise real SCADA 

devices. There are three different kinds of honeypots, for each zone of the detection architecture, to 

simulate the operation of real devices, e.g., the Operations Network honeypot simulates a Master 

Station. However, Field Network honeypots are a bit different from the ones operating in the other 
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two zones due to the nature of the network itself – at this level, honeypots simulate SCADA control 

devices (PLCs) unlike to what turns out in the remaining networks where it predominates an ICT 

(Information and Communications Technology) environment. Since the honeypots are just fake 

SCADA devices, these are not connected to real system components and do not perform any kind of 

production task and so, any received communication will have a high chance of representing an 

illegitimate operation. As in the honeypots operating at the IT and Operation Networks, at the Field 

level the range of operations must be contained and protected with a Layer-2 Firewall between the 

honeypot and the rest of the network, to limit the interaction with the attacker, preventing him to gain 

access to the system and remain undetected. 

3.3.3 Shadow RTU 

The Shadow RTU operates transparently to the entire system while monitoring the activity of the 

RTUs without any physical intrusion, receiving both inputs and outputs  with a passive Ethernet Tap 

so these can be later processed and the security status reports sent to the security management 

infrastructure. This concept goes in line with another one, the Smart RTU, allowing the Shadow RTU 

to extend its capabilities with resilience and self-healing mechanisms. This is also the scope of this 

thesis and so, more details on this component are mentioned in the next chapter (cf. chapter 4).  

3.4 DETECTION ARCHITECTURE 

The Detection architecture is composed of two levels of correlation to process  and analyze the 

captured information provided by the security probes (cf. Figure 3-2): Local correlation is performed 

at each zone with the acquired network data, which is then processed for synthesis purposes, e.g., 

removal of duplicated events. At this level, it is possible that the Local Correlators also have decision 

and reaction capabilities, according to their zone scope; The Main Correlator receives the events from 

the Local Correlators, detecting network transversal attacks, i.e., attacks initiated at one Network  

zone throughout the others. In some cases, correlation may also be carried at the Agent or service 

level when attacks are specifically targeted to these and, where very specific rules are needed to 

conduct the correlation of events. 

Considering the detection architecture the CockpitCI team had several attacks in mind, namely:  

 Sending unauthorized commands to control devices, e.g., changing alarm thresholds, while 

displaying wrong information to the operator;  

 Introducing perturbations on the network, delaying data flows and;  

 Infecting devices with malicious software, e.g., viruses and worms. 
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Figure 3-2 – Proposed CockpitCI detection architecture (Security management flows in red, network security 

information flows in green) (Updated v10.4 from the [D3.1_2013b]) 
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Unlike the agents presented in the previous section (cf. section 3.3), there are other components with 

a domain specific behavior as it is the case of the Field Security Manager (FSM) that incorporates 

the Local Correlator, BMS and Heartbeat logic at the Field Network, inside a specific Autonomous 

System (AS). For simplicity and clarity purposes, the FSM is illustrated as a Local Correlator and, 

possesses a key role in the detection architecture (cf. Figure 3-2): the Local Correlator processes the 

events sent by both NIDS and Shadow RTU, of the same AS it is running at; the BMS provides some 

level of autonomy, guaranteeing that the system keeps running in the advent of an attack, e.g., if an 

attacker attempts to reprogram the RTUs, the control center isolates the AS and the BMS forces 

every device to reboot and restore to its normal operation; the only way for the BMS to know that the 

AS has been isolated from the rest of the network is through the Heartbeat mechanism, a periodic  

request-response signal. If for some reason the BMS fails to receive a response to a performed 

request, it assumes the AS is isolated and a set of predefined actions are followed (e.g., shutting 

down or rebooting every RTU). 

In order to communicate the security events generated in the SCADA network, a Secure Mediation 

Gateway (SMGW) is used between the SCADA and the Secure Mediation Network (SMN), which 

receives the events in a safe way, allowing it to assess threats in a global scale. Also, the SMN is the 

only way by which the CockpitCI internal components have to communicate with their respective 

modules. The Integrated Risk Prediction (IRP) is a module designed to support the process of 

decision making, providing current situation awareness and risk assessments through the prediction 

of short-term situations. 

The Security Management Platform (SMP) is used to manage the infrastructure components, making 

use of security audit and maintenance mechanisms (cf. Figure 3-2 – yellow boxes inside the SMP) 

which the operator supervises to check how effective the deployed measures (including the detection 

agents) truly are. The operator may also define a set of rules to detect and confine anomalies, using 

a policy management console. 

The One Class Support Vector Machine (OCSVM) is a machine learning tool engine used for analysis 

purposes to adjust the risk levels of the architecture components according to a specific criteria, 

namely, the effectiveness and range of a specific attack. 

One thing to be noted in this architecture is that there are no specific reaction mechanisms. However,  

it provides mechanisms for execution of reaction countermeasures, e.g. , in case a security event is 

triggered and a fast reaction is required for a limited period of time. Due to these timing requirements  

and availability needs, the architecture presented above needs to be implemented on a separate 

network, e.g., using a VLAN, to avoid interfering with the control network, guaranteeing its normal 

operation. 
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3.5 COCKPITCI SECURITY ONTOLOGY 

As mentioned in the previous section (cf. section 3.4) the CockpitCI team had a few attacks in mind 

for each detection agent of the presented architecture (cf. Figure 3-2). To defend the infrastructure 

against these and similar anomalies, the following security ontology (cf. Table 3-1) briefly describes 

the effectiveness of each mechanism for dealing with such threats [D3.1_2013]. 

Table 3-1 – Security ontology for the components of the CockpitCI cyber-analysis and detection reference 

architecture (Adapted from [D3.1_2013c]) 

Mechanisms Cyber-threat/symptom Reason 

Shadow RTU 

Sending of unauthorized 

commands;  

Master impersonation 

The Shadow RTU is able to detect abnormal 

command activity from unauthorized origin. 

RTU reprogramming 
The Shadow RTU is able to detect abnormal 

behavior from the monitored device. 

Abnormal delay 
In some situations, the Shadow RTU may be able 

to monitor traffic and detect excessive delay. 

MITM attacks 

The Shadow RTU is able to detect abnormal 

behavior from the monitored device, by monitoring 

commands and actions. 

Probe attacks 
The Shadow RTU is able to detect abnormal 

command activity from unauthorized origin. 

Honeypot 

Sending of unauthorized  

commands  

The presence of traffic on the honeypot is a sign of 

unauthorized activity. 
Master impersonation  

RTU reprogramming 

Probe attacks 

Network IDS 

Sending of unauthorized  

commands  

Domain-specific NIDS can monitor the command 

flow and detect these issues. However, 

conventional NIDS can also be useful in some 

cases, when the commands come from an 

unknown Master Station. 

Master impersonation  
When properly configured, NIDS can detect 

abnormal command flows from unknown origins. 
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MITM attacks 

Depending on the nature of the attack, Domain-

specific NIDS can track state changes on the 

command flow. 

Probe attacks 
NIDS are able to detect traffic traces 

corresponding to such situations. 

IP protocol level attacks 

(Smurf, Address 

Resolution Protocol 

(ARP) spoofing, 

flooding, etc.) 

When combined with firewalls, NIDS can be very 

effective in detecting and stopping such attacks 

DoS attacks 
When combined with firewalls, NIDS can be very 

effective in detecting and stopping such attacks 

Host IDS 

Rootkits 
HIDS are able to detect signature changes on 

critical system files. 

Tampering 

HIDS are able to detect signature changes on 

critical system files or unexpected configuration 

changes. 

Remote Access Trojan 

(RAT) attacks 

HIDS are able to detect signature changes on 

critical system files, but can also check for open 

TCP ports or unexpected configuration changes. 

Worms and virus 

HIDS are able to detect signature changes on 

critical system files or unexpected configuration 

changes 

Unauthorized access 
HIDS are able to analyze logs to check for 

unauthorized access. 

FSM/BMS 

Abnormal delays and  

interruptions 

FMS/BMS has the means to correlate information 

about abnormal behavior on the AS, being able to 

(accordingly with established policies) to proceed 

with autonomous remediation. 

Unexpected systems  

isolation 

FMS/BMS has the means to ensure safe operation 

levels are maintained (accordingly with established 

policies). 
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Abnormal PLC behavior 

FMS/BMS has the means to initiate remediation 

actions in such cases (accordingly with 

established policies), which can go to the extent of 

reprogramming the field device. 

MultiZone 

Correlation 

Zone-specific abnormal  

activity 

System is able to detect and pinpoint specific 

problems, affecting a particular zone of the Critical 

Infrastructure (CI). 

System-wide abnormal  

activity 

Enables detection and tracking not only of ongoing 

threats, but also of ab initio symptoms, related to 

probing and attack preparation. Global correlation 

provides a broad perspective on the security 

status of the CI, enabling detection of 

sophisticated behavior patterns, involving several 

zones of the CI. 
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4 PROPOSED PROBING ARCHITECTURE 

4.1 SHADOW RTU CONCEPT 

In order to increase the protection levels of the SCADA system, the CockpitCI detection layer uses 

the Shadow RTU, a device responsible for monitoring, collecting and processing the network data 

handled by a single RTU or PLC. To do so, the Shadow RTU uses a special device, an Ethernet Tap 

(cf. section 4.2.1), that allows it to listen to the exchanged information between the PLC and the 

Master Station while remaining unnoticed from both communicating ends. Once installed in the 

detection layer architecture, the Shadow RTU also connects with a Local Correlator and the SMP to 

report the security events and allow remote management by the system’s operators (cf. Figure 4-1). 

 

Figure 4-1 – Proposed Probing Architecture (Shadow RTU Concept) 

Whenever requested by the Master Station, the RTU reads the values from the sensors, reporting 

these back. If these values need to the changed, the Master requests the RTU once again to regulate 

the values on the actuator, so these can be read once more from the sensor and reported back, 

again, to the Master. This process involves SCADA specific protocols, such as the Modbus TCP (cf. 

Annex A) or the IEC 60870-5-104 (IEC104) (cf. Annex B), which the Shadow RTU inspects to make 

sure the request are being performed by a legitimate Master Station and the responses from an 

equally reliable source. 

Once the network information is collected, the Shadow RTU may either process it, sending the 

resulting events to the Local Correlator in a special message format, or it may perform a lower-level 

correlation itself and automatically inform the Control Room (SMP) of the anomalies that are taking 

place at the moment. The bidirectional flow between the Shadow RTU and the SMP is also justified 
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by the Heartbeat mechanism, to inform the later of its operational status and, also, to allow the 

operator to manage the agent (cf. section 4.2.6). 

4.2 PROBING MODULES 

The definitions for the term “probe” may vary in the context of computer networking: it may be an 

action taken with the purpose of knowing the current state of the network (e.g., sending an Internet  

Control Message Protocol (ICMP) packet to a specific host to check if it is alive); or a mean to gain 

access to a device by taking advantage of a known weak point [Probes2000]. Relatively to the 

proposed architecture, it refers to a device (the Shadow RTU) installed on a key juncture of the 

network with the purpose of monitoring and collecting information about a specific process, i.e., 

communication between a particular host and a PLC or RTU, or a component’s activity, i.e., again, a 

PLC or RTU. 

Generally speaking, probing methodologies provide the operator with a series of statistics concerning 

the network operation, such as traffic analysis and most active users, or applications and protocol 

usage, just to mention a few. If a specific device starts behaving differently or in a way that makes it 

suspicious, the operator is notified and the monitored information for the latest activity analyzed. This  

makes it possible to effectively manage the network, ensuring a proper operation and performance 

of all components involved in the process. 

In this sense, a set of security modules were developed for the Shadow RTU to collect and store 

detailed data on exchanged protocol messages that can be analyzed to validate the true overall 

performance of the process being monitored. These probes, when combined, provide an accurate 

and secure solution for handling network events with reporting capabilities, even for high utilization 

links where some probing mechanisms would fail and leave the network vulnerable to attacks.  

The following six modules were conceived to work together and give support to the purposes of the 

Shadow RTU, namely, to the monitoring and reporting capabilities, to keep the central point aware of 

anomalies that the PLC or RTU may be subject. 

4.2.1 Network Event Monitoring 

In its most basic mode of operation, the Shadow RTU simply listens to every network event targeting 

the PLC or the RTU that is being monitored, in a passive manner. For that, it uses a specific method 

that makes it completely transparent to the network and the process itself [Einwechter2002] .  

Considering this, a simple setup is proposed in which an Ethernet tap is installed between the 

monitored device and the one making the requests (usually a Master Station, through an HMI) to 

provide a copy of all network traffic to the Shadow RTU (cf. Figure 4-2). 
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Figure 4-2 – Ethernet TAP device concept 

The most basic setup for an Ethernet tap (or network tap) is illustrated in Figure 4-2: two ports for the 

communicating devices and a third one (monitor/mirror port) for the Shadow RTU (in this case, also 

referred to as a Packet Sniffer) to listen for the flowing traffic. This method does not only allow the 

Shadow RTU access all the information flowing between device A and B but also makes it physically 

impossible to introduce data on the wire, complying with the above mentioned requirements.  

In turn, the Shadow RTU works in promiscuous mode which causes all the traffic to be received and 

processed by it even if the frames have a different destination Media Access Control (MAC) address,  

i.e., not intended to be received by the Packet Sniffer. This method makes it great for legacy systems 

since no modifications are required to the existing network. 

4.2.2 Network Data Collection 

Providing a redundancy mechanism for the Shadow RTU is essential due to the amount of information 

it has to deal with while monitoring the network events, and so prevent data loss in the advent of an 

unexpected shutdown of the device or, the zone in the file system to store the events gets 

compromised. To cope with this, a copy of the events is maintained in buffer until a specified threshold 

is reached and the information dumped into disk (cf. Figure 4-3 – read and write functions refer to the 

operations performed by the application process; pcap_set_buffer_size function sets the buffer size 

to use [pcap_set_buffer_size]) [pcap]. Measuring the network activity is also necessary to manipulate 

the amount of buffer size to use in the process of traffic monitoring. 
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Figure 4-3 – Generalization of the Linux file system implementation  

Since the amount of information collected by the Shadow RTU can be quiet large, there is also a 

filtering syntax mechanism [pcap-filter] to select only the type of network events of interest to be 

stored and processed afterwards. 

After the event filtering, a second stage is responsible for backing up the network events into an 

external server and synchronized using sophisticated update mechanisms [rsync]. With this method 

it is also possible for the Shadow RTU to pull specific blocks of data, make the desired changes and 

then upload the performed modifications. 

4.2.3 Network Data Processing 

Depending on the resulting overhead, tasks can be carried by dedicated devices with specialized 

processing capabilities. This concept is fundamental to understand which tasks are meant to be 

performed by the Shadow RTU and which should be processed by more capable devices – E.g., 

event correlation is a heavier process and so should be carried by the operating Correlators; other 

tasks such as network event monitoring (cf. section 4.2.1), filtering (cf. section 4.2.2) and network  

message integrity check are carried by the Shadow RTU since the required processing levels are 

lower, allowing the device to operate properly for other tasks. 

To look for inconsistencies in the exchanged Modbus TCP messages, a protocol decoder is used to 

allow the operator to manipulate and see the information inside each frame [pymodbus]. So, for each 

flowing network packet, the decoder is applied and a simple verifications are done.  

4.2.4 Network Event Configuration 

As a result of the monitoring operation conducted by the Shadow RTU (cf. section 4.2.1), it is also 

necessary to provide the operator with means to (pre)configure the device (e.g., by uploading code 

into it) to carry simple tasks in the domain of system and/or network status and reporting – E.g., collect 

physical magnitudes every five seconds and report these for later analysis.  

Making these events work on the Shadow RTU may be done by simply enabling basic modules to 

extend the kernel functionalities [lkm]. 
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4.2.5 Network Event Programming 

In case more sophisticated thresholds are needed to handle the network events (unlike the process 

of event configuration (cf. section 4.2.4)) a safe execution environment, which is illustrated in Figure 

4-4, is added to prevent malicious or malformed code from compromising the Shadow RTU [lxc], 

making it inoperable. Since the “eventing” code is designed to control a specific process (i.e., a PLC 

or RTU), it should be possible for the operator to remotely execute it so that it is activated using a 

specific logic (in this case, with asynchronous calls – cf. section 4.2.6) when the event occurs – E.g., 

if a third message to write on a specific register (or coil) of a PLC is detected, the appropriate handler 

(i.e., an alert) will be raised to inform the SMP. 

 

Figure 4-4 – Representation of the safe execution environment for handling complex or unsafe code using 

asynchronous calls  

Allowing code to be remotely executed poses an additional attack vector that, in order to be 

succeeded must compromise both the RTU (or PLC) and the Shadow RTU, which makes this very  

unlikely to occur since each component is based on a different technology  or platform. 

The idea behind the protected environment is for it to be connected to the inputs and outputs (I/O) 

and block any attempt to change the physical environment by the execution of unsafe code. With this 

approach the operator is left with the responsibility of defining a modular representation for the 

behavior of the complex algorithm and, to determine which network events are considered as normal 

(or abnormal). 

4.2.6 Event Execution 

The set of features to manipulate the Shadow RTU are described on a data model (cf. section 4.4) 

provided by the agent itself and a component management adaptor, also responsible for maintaining 

Safe Execution
Environment

Security Management Platform

Network events

Remote code execution

Physical
Environment

Programmable Logic Controller

Shadow RTU



43 
 

its proprieties (i.e., state and semantics). This adaptor performs the attribute mapping for the specific 

interfaces of each component of the architecture (in this case, the Shadow RTU via an Extensible 

Markup Language (XML) file) into a uniform data model structure (an XML Schema Definition (XSD) 

file), creating a uniform management interface [D3.4_2013]. The execution of the functionalities  

referred in the data model is performed through a WS installed in the Shadow RTU and the calling of 

Hypertext Transfer Protocol (HTTP) methods from the SMP (cf. Figure 4-5). 

 

Figure 4-5 – Uniform management interface through the Management Adaptor 

For each implemented HTTP method (Get, Post, Put and Delete) the XML file is manipulated and an 

operation is carried inside the Shadow RTU, e.g., to start a network monitoring routine, the operator 

must call the HTTP PUT method against the XML Path Language (XPath) expression that leads to 

the “State” tag, relative to the monitoring operation, and change its default value from “down” to “up”.  

From this point on, the operator may check the service state using the GET method and, read directly 

from the XML file; call the PUT method to stop the execution; or even the DELETE method if he finds 

no need to keep such service in the data model. To add a new service into the data model, the POST 

method is used. 

4.2.7 Event Reporting 

In response to the events handled (or processed) by the Shadow RTU, reporting mechanisms are 

used to either alert the SMP or to simply forward information to be processed by the Local and Main 

Correlators and, the generated events by these reported to the SMP. The exchange of event  

information between the Shadow RTU and the Local Correlator requires the implementation of a 

special library on the Agent (Event Bus Publisher Library13) to produce events using a general XML 

                                                                 
13 Previously called Enterprise Service Bus (ESB), a software architecture model, has stated in “D3.4 – Design 
of the Dynamic Perimeter Intrusion Detection System” (Submitted: July 19, 2013). The il lustration in Figure 4-

Security Management Platform

Data Model
(XSD)

Mapping

Management Adaptor

Shadow RTU
(API / XML)

HTTP
Request



44 
 

data format, the Intrusion Detection Message Exchange Format (IDMEF) [RFC4765], in a Service 

Oriented Architecture (SOA) (cf. Figure 4-6). 

 

Figure 4-6 – Event transmission using a Publish-and-Subscribe messaging pattern 

Since the Correlators do not support IDMEF natively, the library is used on the Agent to parse and 

filter the network events, which are then sent to the Event Bus using a Publish-and-Subscribe 

messaging pattern, e.g., once the daemon running on the Shadow RTU executes, it passes an array  

of strings related to event to the Event Bus Library to be read and converted into the new format 

(IDMEF) and, finally sent to the Correlator through the Event Bus.  

4.3 MOTIVATIONS AND REQUIREMENTS 

Designing a new module to enhance the security at specific junctures of the network, without any 

need to change the regular operation of the existing one, e.g., modifying the architecture or the 

existing physical connections, requires coming up with an approach that on the one hand proves to 

be easy to set up and that, on the other hand, provides an understanding on how effective and reliable 

the new concept truly is – one must consider that this component is supposed to be uninterruptedly  

running for many years in a production environment. 

Considering that the proposed Detection architecture (cf. Figure 3-2) already had other powerful 

security agents operating in both Operation and Field Networks (i.e., NIDS, HIDS and honeypot), the 

introduction of the Shadow RTU as a Field device must present peculiar and distinctive advantages 

over these. Some of the key features to be supported by this agent are described below. These will 

                                                                 
6 was edited according to the latest developments, has discussed with the developer responsible for that 
module. 
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be in line with the presented Security Ontology for the components of the CockpitCI detection 

reference architecture (cf. Table 3-1): 

 Packet Sniffer – Transparently sniff network packets at the lowest level (including physical 

errors) and still remain unnoticed from the entire system (i.e. , none of the communicating 

devices are aware of this device); 

 Packet Decoder – While the packets are being captured, the Shadow RTU performs the 

decoding using protocol implementations for Modbus TCP or IEC104, depending on the 

protocol used in the SCADA system where the Shadow RTU is deployed. This may be used 

to perform tampering checks, i.e., verify if the Modbus TCP packets have not been changed 

in transit. If a Modbus TCP instruction is sent with some of the parameters modified, these 

are immediately checked and an alarm is triggered; 

 Continuous Monitoring – Monitoring the predictable bandwidth usage and traffic patterns, 

would allow the Shadow RTU to trigger an alarm if some of these parameters changed 

dramatically. In such cases, it could be an indicator of a malware infection, Distributed Denial -

of-service attack (DDoS), brute-force, or a random equipment failure, e.g., a device that 

usually responds in intervals of 10 seconds and, suddenly, changes to a frequency of 20 

seconds (also an indicator of excessive delay) [Higgins2013]. This can also be used to detect 

zero-day threats, such as the Stuxnet worm (cf. chapter 2). 

Other temporal patterns could be included, such as: Inter Message Time (IMT), Inter 

Reconnection Time (IRT), Time To Failure (TTF), Number of Lost Messages (NLM) and Total 

Number of Loss Messages (TNLM);   

 Message Integrity Check  – In result of an IP Spoofing attack, where an attacker sends 

unauthorized commands to a RTU, the Shadow RTU allows the detection of inconsistencies 

between the messages sent by the Master and the ones received by the RTU/PLC; 

 Abnormal Behavior Detection – A usual way to intercept a connection between two end 

devices (e.g., a Master and a Slave device, such as a PLC), is commonly done by adding an 

extra agent between the conversation, as it occurs in MITM attacks. To change the way one 

of these components acts, one could try to inject new code into the RTU or PLC to be loaded 

on boot. RTU or PLC reprogramming attacks could be done by accessing the 

polling/communication circuit or by replacing the valid programming files for the Slave with 

malicious ones so that in the next reboot, these are immediately downloaded [Shaw2004]); 

 HMI Exploitation/Modification Detection – In some cases the HMI may be perceived as a 

gateway into the ICS environment, using dictionary attacks (e.g., brute force attacks) against  

it to log in using default credentials [Wilhoit2013]. In this case, attackers are looking to exploit 

two types of vulnerabilities: SQL injection – E.g., the Master is a victim of a successful brute 

force attack, through the HMI (Master Impersonation). In most cases, this type of attack is 

often targeted to the backend database; Cross-Site Request Forgery (CSRF) – malicious 
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exploitation of a website by transmitting unauthorized commands from a user that the site 

trusts. 

Some of the mentioned attacks could also be detected by other components of the CockpitCI 

detection layer, such as the honeypot: sending unauthorized commands (e.g., using the Master IP 

address – Master impersonation) or a Probe attack to collect information about the network activity 

(monitoring), in an attempt to gain access to a specific device (e.g., the Master Station). What follows 

from a “successful” series of probes could be a (D)DoS attack. The main difference relatively to the 

honeypot in terms of detection, is the ability to perform inspection at a lower level, providing an 

additional layer of security (at a deeper level). 

4.4 MANAGEMENT INTERFACES 

The Shadow RTU provides a series of management functionalities, organized in three categories,  

included in a data model and, manipulated using WSs. The first set of features are related to the 

management of the device itself, while the second and third set relate to the applications developed 

by the operator to manage the events and the monitored process.  

4.4.1 System Management 

The operator is provided with a set of functionalities to perform out-of-band management for the most 

basic parameters of the system, using a dedicated channel. The functionalities for this interface are 

described below: 

 Set Agent State – Allows the operator to reboot the agent and keep track of the last time the 

signal was sent; 

 Set Remote Access – Set up a private VPN with all the necessary certificates and keys for 

both server (Shadow RTU) and client. The parameters provide the path for the generated 

certificates and keys; 

 Set Network  Interfaces – Set a series of network parameters for both interfaces (i.e., 

management and monitoring interfaces). These parameters include: interface name (e.g. , 

eth0); type (e.g., static or dynamic); IP Address; Mask; Gateway; State (up or down); and 

Promiscuous mode (yes or no); 

 Set Time – Synchronize the time and date with a preconfigured set of Network Time Protocol 

(NTP) servers list, to coordinate the events and logs with the correct timestamps. Other 

parameters include the state of the service and the last time and date the Shadow RTU 

synchronized with the time server. Changing the time servers must be done carefully, since 

it may cause time-based events (e.g., cron) to be run more than once, or not at all 

[Ntpdate2005]; 

 Set Task Schedule – Manage the tasks (jobs) the system is supposed to execute on a regular 

basis using the crontab format, e.g., backup the event logs to an external backup server every  
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day of the week, at 8 PM. The parameters include the crontab fields (minute, hour, day, month 

and week); the name of the application to run; and the last time and date it executed; 

 Set Startup Scripts – Enable/disable applications at system startup depending on whether 

these are required or not by the system. The parameters vary depending on the application 

– E.g., one of the applications that must be running at the startup for the Shadow RTU, is the 

WS itself to allow the operator to call the HTTP methods on it . For this specific application 

the parameters are: the listening IP address; listening port; number of concurrent processes 

it can handle; and the state; 

 Set Kernel Module – Create and compile new modules into the kernel to extend its 

functionalities. The parameters include: the name and path of the module; an indication if it 

is used by any other module; the log file; and the state (i.e., if it is already loaded into the 

kernel). 

4.4.2 Event Management 

The following parameters are used to identify the properties of every application uploaded into the 

Shadow RTU by the operator. Each one of these applications are responsible for handling specific 

events. 

The following parameters can be used to manage an event: 

 Set Event Name – The name of the application must be self-explanatory for easy 

understanding of what it is supposed to do, e.g., the script “mbus_monitoring.py” monitors  

Modbus TCP packets and dumps the information into a file, which is then parsed by the 

“mbus_parser.py” script; 

 Set Event Description – A textual description of what the application is supposed to do; 

 Set Event Log – Specify the name and location to store the log file of the application; 

 Set Container ID – Identifies the container in which the application is running. It is not 

mandatory to run every application inside a container, since it is the operator’s responsibility  

to decide what should be confined to prevent malformed code from compromising the 

Shadow RTU; 

 Set Event State – Set the application state to “up” or “down” to easily identify if it is running; 

 Set Time and Date – Identify the last time and date the application was executed. 

4.4.3 Container Management 

To execute code in a safe environment, a set of parameters are required to create the containers.  

Each container is identified by an integer associated with the event application (Set Container ID – 

cf. section 4.4.2), along with other parameters: 

 Set Container Name – Identifies the container in which the applications will run. By default,  

the containers use the root user account so, when logged in the console wi ll present  
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“root@containerName”; 

 Set Container Description – A textual description of what the container is for; 

 Set Network  Interface – Set the IP, Mask and MAC address for the container. This interface 

will be automatically bridged to the Shadow RTU; 

 Set Container State – Start or stop the container execution; 

 Set Container on Boot – Run the container automatically when the Shadow RTU boots. 
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5 CONCEPT VALIDATION 

5.1 HARDWARE VALIDATION 

The operations performed by the Shadow RTU do not require high performance hardware (e.g., CPU, 

memory and storage capacity), leaving room for additional functionalities without creating too much 

overhead. In this sense, it was conducted an analysis over a series of components and 

methodologies, to create the most reliable solution, so that i t can be safely deployed in production 

environments. 

5.1.1 System Requirements 

Considering availability and reliability requirements necessary for the proper operation of ICS/SCADA 

systems, such as a component’s fast response time and behavior under stress condi tions, deciding 

which should be the most appropriate device to take the role of the Shadow RTU requires a careful 

analysis over the available hardware solutions. This choice should at first take in consideration the 

cost, size and processing capabilities, to comply with some of the initial requirements. That said, a 

research was conducted to evaluate some of the existing Single-board Computers (SBC) (also 

referred to as System on a Chip (SoC)), leading to an initial specifications comparison between two 

Arduino devices (Arduino Uno [Arduino] and Intel Galileo [329676-002US]), a BeagleBone Black 

[Coley2014] and a Raspberry Pi [RaspberryPi] (cf. Table 5-1). 
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Table 5-1 – Hardware specifications for a series of SBC 

 Arduino Uno Intel Galileo 
BeagleBone 

Black (Rev. C) 

Raspberry Pi 

(Model B Rev. 2) 

Price ~ $30 ~ $70 ~ $45 ~ $35 

Size 2.95” x 2.10” 4.2” x 2.8” 3.4" x 2.1" 3.37” x 2.125” 

CPU 
16 MHz  

ATMega 328 

400 MHz  

Intel Quark X1000 

1 GHz  

ARM Cortex-A8 

700 MHz  

ARM11 

RAM 2 KB 256 MB DRAM 512 MB DDR3L 512 MB SDRAM 

Flash 32 KB 

8 MB  

(also uses a 

microSD card) 

4 GB  

(also uses eMMc 

and SD cards) 

(only uses an SD 

card) 

Input 

Voltage 
7-12 v 5 v 5 v 5 v 

Minimum 

Power 
42 mA (0.3 W) 3000 mA (15 W) 2000 mA (10 W) 700 mA (3.5 W) 

Digital 

GPIO 
14 14 65 8 

Since the Arduino project started in 2005 as project for students, other companies have also started 

building their own SBC microcontrollers, keeping the board size, price and electric consumption low, 

while investing in better (more capable) hardware [Orsini2014]. However, there are peculiar 

differences between some of the initially released boards (e.g., Arduino Uno) and more recent ones 

(e.g., Raspberry Pi). While the first ones were not conceived to be a computer, the latest boards 

already support a complete OS, allowing these to be programmed in a completely different way.  

It should be noted that having the most capable device in terms of processing power, does not always 

mean having the best suited solution for every situation. There is another set of variables that must 

be equally considered when it comes to meet a different kind of requirements: 

 Does it require some sort of background knowledge to take advantage of the device 

capabilities or, is it simple to start working with? 

 Is it an embedded system designed specifically for developers or, is it a fully -fledged 

computer running a well-known and recent kernel? 

 Is there any kind of support for the device (e.g., communities of enthusiasts devoted to give 

support and help other users)? 
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 Does it possess adequate hardware capabilities, balanced with reasonable power 

consumption levels? 

Most of the applications running on the Shadow RTU will require reasonable process ing capabilities  

and, two network interfaces (one for remote access and the other for network monitoring purposes)  

to operate – both requirements put aside the Arduino Uno, mostly because of its slow processor.  

Even though all the remaining boards have an Ethernet network interface, the one on the Raspberry  

Pi is actually a built-in USB-Ethernet adaptor which means that, the greater the network activity, the 

higher the CPU consumption levels – this is where both the Galileo and BeagleBone have an 

advantage. As for the Intel Galileo, even though it has a slower CPU frequency and half the memory, 

relatively to the other two, it doesn’t make it particularly slower. In fact, the x86 architecture brings a 

great advantage to its side but neither the price nor the required power to operate, make it a feasible 

option. 

The final decision lies solely over the Raspberry Pi and the BeagleBone, being the advantage over 

the last. The decisive factor here relies on the processing capabilities (CPU) and the fact that it 

possesses on-board flash storage, enough to host a complete Linux distribution (e.g., GNU/Linux 

Debian). Both price and power consumption do not make it an unfeasible option as the Intel Galileo 

did, since those are not that different from the Raspberry Pi. However, by the time the validation 

process started, the initial versions of its latest revision (Rev. C) were being released (April, 2013),  

making it easier and faster to acquire the Raspberry Pi instead. The latest revisions were only 

commercialized in May, 2014. Nevertheless, all developments were made towards the possibility of 

porting these to the BeagleBone – in fact, this SBC will be the basic platform for a new generation of 

the ShadowRTU prototype, which exceeds the original specifications for the fi rst one. This new 

generation is under development and makes use of three particular BeagleBone Black characteristics 

that make it stand out among other SBCs: 

 Programmable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS) – The 

PRU-ICSS consists of dual 32-bit RISC cores (Programmable Real-Time Units, or PRUs),  

shared, data, and instruction memories, internal peripheral modules, and an interrupt  

controller (INTC). The programmable nature of the PRUs, along with their access to pins and 

events, provides flexibility in implementing custom peripheral interfaces, fast real -time 

responses (without need for using real-time OS for the purpose), power saving techniques,  

specialized data handling and DMA operations, and in offloading tasks from the other 

processor cores of the SoC. The BeagleBone Black's TI chip (TI AM335x ARM® Cortex-A8 

processor from the Sitara Family) has two PRUs (PRU0 and PRU1) that can be programmed 

using a small, deterministic instruction set architecture. Each PRU can operate independent ly  

or in coordination with each other and can also work in coordination with the device-level host 

CPU. This interaction between processors is determined by the nature of the firmware loaded 
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into the PRU’s instruction memory. 

 Ethernet implementation – Unlike the Raspberry Pi (which implements its Ethernet interface 

using an USB-Ethernet Application-specific integrated circuit (ASIC) (prone to performance 

and overhead issues), the BeagleBone implements its Ethernet interface in the form of a 

dedicated component of the main processor. This brings a significant benefit, as it allows to 

reduce the overall capture overhead on the Shadow RTU by a significant margin). This is one 

of the most serious shortcoming of the Raspberry Pi, as there is a significant CPU overhead 

caused by the fact that the embedded USB-Ethernet ASIC is not able to perform DMA 

transfers (albeit the host USB chip is able to do it), having to encapsulate Ethernet packets 

within USB protocol frames. 

 Embedded 12-bit Analog-to-digital converter (ADC) – Unlike the Raspberry Pi (which requires  

an external ADC such as the MCP3008), the BeagleBone incorporates a 7 channel, 12-bit  

ADC, which is very useful for physical monitoring of the control outputs of a PLC/RTU, while 

reducing the part count. Together with the PRU-ICSS, the embedded ADC makes it becomes 

possible to capture information from ADC within strict, real-time constrains without depending 

on a real-time OS. Nevertheless, the Xenomai RT patch is entirely compatible with the 

Beaglebone Linux Kernel, and might be used to further improve real-time capabilities of the 

device. 

As such, these capabilities have turned the BeagleBone Black into to best candidate SBC to host the 

next interactions of the Shadow RTU. 

5.1.2 Network Monitoring Options 

Using port mirroring capabilities on a switch connecting two devices to monitor the communication,  

might not provide the expected results since, in some cases, it is expected to get a copy of both links, 

from device A and B, on a single one, connected to the switch. With such configuration an operator 

risks downgrading the network’s performance and losing packets on the monitoring device. Also, one 

has to take special attention to the fact that the links being monitored cannot exceed the performance  

of the port mirroring device. On the other hand, using a passive network tap it is possible to avoid 

bottlenecks and packet loss, allowing the communication to go on even in the absence of power (in 

case a robust tap is used). 

A comparison of both tap and port mirroring capabilities (pros vs. cons) are summarized and 

presented bellow (cf. Table 5-2). 
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Table 5-2 – Tap vs. Port Mirroring 

 Tap Port Mirroring 

Pros 

Less risk of having dropped packets. 
Low cost solution. Embedded in more 

robust switches. 

All packets including physical errors are 

received by the sniffer. 

Configurable from any device connected to 

the switch. 

Full visibility into full-duplex networks. Intra-switch traffic copy. 

Cons 

If not using an aggregator tap, it may be 

necessary a dual-receive interface when 

using a full-duplex tap. 

Packets are dropped when handling heavy 

utilized full-duplex links. 

Physical errors are filtered making it difficult 

to perform some types of analysis. 

When copying packets the load is placed 

over the switch’s CPU. 

Requires additional hardware. 
Lower priority is set in port mirror ports than 

on regular ones. 

Cannot monitor intra-switch traffic. 
Frame timing interaction can be changed, 

modifying response times. 

Depending on the network characteristics each option should be deployed accordingly: a network tap 

is a good solution when the analysis requires inspecting all traffic (including physical-layer errors) on 

a network whose utilization may range between moderate and heavy; for an effective compromise 

between a tap and port mirroring, an aggregator may be used (described below – cf. section 5.1.3), 

providing some of the advantages of a tap and none of the disadvantages of port mirroring; in case 

the analysis is not affected by packet loss, port mirroring can be considered as the right solution for 

low utilization networks. 

5.1.3 Passive Ethernet Taps 

An easy way to build a passive Ethernet Tap involves cutting a RJ45 wire [Hamilton2007] and 

attaching two Ethernet connectors to the transmission (Tx – white with orange stripe) and reception 

(Rx – white with green stripe) pairs (cf. Figure 5-1). This method doesn’t allow high speeds, since 

only two pairs are being used, leaving the remaining ones untouched. Also, it would be unthinkable 

to put such solution in a production scenario for many reasons, e.g., the wires connected to the 

Ethernet connectors are not shielded and so, are subject to external interferences.  Nevertheless, this 

was actually the way the initial tests were conducted to evaluate how useful an Ethernet Tap would 

be when deployed in a scenario as the one presented in the next chapter (cf. Figure 5-2). There are 
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many other types of Ethernet Taps that provide higher speeds and zero packet loss, according to 

some vendors [Securicore], which might not be exactly true since there is always a 0-1 probability of 

losing packets, due to a 5-10 milliseconds switchover time. In high availability networks this can be a 

bigger problem, causing routers and switches to renegotiate their links (e.g., VLANs and Spanning 

Tree) [Gómez2005]. 

 

Figure 5-1 – Ethernet Tap using connectors attached to the Tx and Rx pairs  

Ethernet taps may be setup using various approaches, apart from the one mentioned above. These 

may even use a throwing star shaped circuit board, specifically designed to be soldered with Ethernet  

connectors and capacitors, and still produce the same effec t [Ossmann2009]. In a production 

network, more sophisticated solutions should be used, with higher levels of precision to avoid losing 

packets in the presence of high network activity. Following are described different types of network  

taps [Gómez2004]: 

 Adaptive Tap – Used to convert signals (e.g., from Gigabit-Tx to Gibagit-Sx, or from Gibagit-

Lx to Gibagit-Sx) and capturing network traffic. 

 Regenerator Tap – The idea is to generate multiple streams of the monitored network traffic  

from a single point, using a single Tap or, two or more Taps [Netoptics]. It can be used when 

it is necessary to analyze traffic in both directions with different machines (e.g., for both 

intrusion detection and protocol analysis). 

 Aggregation Tap – Used to monitor both directions on a single port, unlike any of the previous.  

Some solutions make it possible to inject RESET TCP packets to kill unwanted 

communications, making it particularly useful for environments with a NIDS with active 

response capabilities, or with a NIPS (Network Intrusion Prevention System) 

[NetworkCritical]. 

As for the tests performed at the LCT, a USB powered Ethernet (Aggregation) Switch Tap 

[Dualcomm] and a USB Ethernet adapter [Apple] were acquired, allowing the Shadow RTU to still 

have one Ethernet port with an IP address assigned to it (used for remote access), leaving the other 
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one connected to the Ethernet Tap. Both Ethernet Tap and adaptor were connected to the available 

USB ports on the Raspberry Pi, and still operated correctly  without disruption. 

5.2 BASE SCENARIO SETUP 

The connections between each device involved in the validation process of the Shadow RTU are 

following described (cf. Figure 5-2). This scenario only includes the necessary components for the 

Shadow RTU to carry its monitoring functionalities, focusing solely on the interconnection process 

between these. 

 

Figure 5-2 – Base Scenario for the Validation Process 

The Ethernet Tap is composed of five ports, some of those with specific purposes: Ports 1 and 5 are 

used for port mirroring (outgoing and incoming network packets on port 1 are forwarded to port 5); 

and Ports 1 and 2 as pairs for Power over Ethernet (PoE) inline power pass through. The remaining 

ports (3 and 4) are used for regular switching. That said, and since the idea is to monitor the network  

packets flowing in and out of the PLC [M340], port 1 is connected to it and, port 5 to the monit oring 

Ethernet port on the Shadow RTU (on-board adaptor), working in promiscuous mode. The second 

port on the Shadow RTU (USB-Ethernet adaptor) is connected to a Layer-2 Switch [SRW2008] for 

remote access. To enable connectivity from the Master Station (or any other device) to the PLC, the 

third port on the Ethernet Tap is used to connect to the Switch.  

5.3 SCENARIO NO. 1: WORKLOAD TESTS 

By the time the workload tests were initiated, Raspberry Pi’s were manufactured mainly in China and, 

only after (and solely) in the United Kingdom (UK), at Sony Corporation. The decision to move the 

production implied the modification and improvement of some of the components used to build the 

device, namely the Ethernet interface. The initial tests conducted with the models manufactured in 

L2 Switch
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China led to the conclusion that the installed Ethernet interfaces ware causing oscillations and packet 

losses [RaspberryPiIssueNo29], something that with the ones made in the UK didn’t happen.  

However, the reason the workload tests were carried out had to do with the fact that Ethernet port on 

the Raspberry Pi is actually a built-in USB Ethernet, as mentioned in previous chapters (cf. section 

5.1). 

To perform the test, a laptop computer (client machine) took the place of the Master Station (cf. Figure 

5-2) to generate a predefined set of UDP (User Datagram Protocol) data streams, so as to subject 

the monitoring network interface of the Shadow RTU with different congestion levels and so, evaluate 

the CPU behavior. The idea is to determine which are the acceptable congestion levels the device 

might undergo without crashing. 

5.3.1 Workload Stack 

Following are described the set of congestions levels that were carried against the Shadow RTU (cf. 

Table 5-3), using a network throughput test tool [Iperf]. The following tests were conducted for a 

growing amount of UDP bandwidth congestion levels and a fixed packet length of 1470 bytes 14. 

Before setting the workload stack, previous testing was performed to verify at which levels the CPU, 

packet loss and delay parameters started varying the most. During the tests both Master Station and 

PLC were connected, simply exchanging read register messages at each second. The workload tests 

were actually conducted in a different TCP port from the one used by Modbus TCP.  

 

 

 

 

 

 

 

 

 

 

 

                                                                 
14 The default UDP datagram length used in Iperf [Iperf], which is about 6 time more the maximum size of 
the Modbus TCP Protocol Data Unit (PDU). 
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Table 5-3 – Workload Stack (UDP Data Streams) 

Workload Type Description 

10 Mbytes/sec Minimum 
Minimum workload. Very low CPU usage is expected. At 

this point, no problems should be reported. 

25 Mbytes/sec Minimum/Average 
Minimum/Average workload. Medium CPU usage is 

expected. The Raspberry Pi should work properly. 

50 and 60 

Mbytes/sec 
Average/High 

Average/High workload. High CPU usage is expected. 

The Raspberry Pi is expected to present some lag but 

still working fine. 

75, 85 and 95 

Mbytes/sec 
High 

High workload. Very high CPU usage is expected. Some 

errors and/or packet losses are expected. 

100 Mbytes/sec Maximum 
Maximum workload. At this point the Raspberry Pi is 

supposed to crash or become inoperable. 

5.3.2 Experimental Results and Analysis 

The results obtained from the workload tests were retrieved with a simple script that monitored the 

system tasks [Top], to get the average CPU usage of the network throughput test tool [Iperf]. The 

same tool provides the results for Jitter and Packet Loss (cf. Table 5-4). For each congestion level,  

ten tests were performed for a period of 120 seconds, the resulting values averaged and the 

respective standard deviations calculated. 
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Table 5-4 – Raspberry Pi congestion results 15 

UDP Bandwidth 

(Mbytes/sec) 

Interval  

(sec) 

Jitter  

(ms) 

Lost Packets 

 (%) 

Avg. CPU Usage16 

(%) 

10 

120 

0.139 0.15 7.05 

25 0.037 0.09 14.9 

50 0.117 0.09 36.7 

65 0.161 1.4 60.2 

75 0.215 20 81.7 

85 15.987 64 63.1 

95 20.244 97 42.1 

100 6.954 98 39.6 

Considering the results presented in Table 5-4, the biggest turning point occurred between the 75 

and 85 Mbytes per second congestion levels. Even though at 65 Mbytes/sec the CPU usage was 

already more than 50 percent, only when the bandwidth raised to 75 Mbytes/sec, the number of lost 

packets began to increase. On the other hand, Jitter only started to increase at 85 Mbytes/sec. This  

can be justified by the huge leap in lost packets from the previous stage (15 percent) to the current  

(64 percent). Following is a chat to better illustrate the relation between the number of lost packets 

and the average CPU usage of the network throughput test tool (cf. Figure 5-3). 

                                                                 
15 Jitter results were rounded to two three decimal places. Lost Packets and CPU usage were rounded to two 
and one decimal places. 
16 These values are referent to the iperf [Iperf] process. 
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Figure 5-3 – CPU Usage: Avg. CPU usage of the network throughput test tool (y-axis) x UDP bandwidth  

(x-axis) 

While performing the test with a bandwidth of 85 Mbytes/sec, the CPU levels started to drop, as 

illustrated in Figure 5-3. However, when analyzing the system processes in real-time [Top], a specific 

one named ksoftirqd/0 [ksoftirqd] started consuming more than a half of CPU percentage than it did 

for every other previous test (about 25%, when previously it only used about 15% (75 and 65 

Mbytes/sec) and, 10% (50 Mbytes/sec) of CPU resources). Actually, this process is used to handle 

interrupt requests (IRQs) that the system queues for later processing. If this process takes more than 

a tiny percentage of CPU time, means that the device is under heavy interrupt load, causing the CPU 

levels of the most demanding process (i.e., the network troubleshooter process) to drop – this means 

that, even though the CPU levels of the network application process lowered, the global system CPU 

levels continued rising. However, since Modbus TCP traffic is not too heavy, if the Shadow RTU ever 

finds itself on a similar situation an event should be immediately reported.  

5.4 SOFTWARE VALIDATION 

The most basic set of features to be supported by the Shadow RTU, such as the deployment of a 

Modbus TCP library and a WS application for remote management are described in the next chapters, 

along with a set of complementary functionalities for the Agent itself (e.g., safe code execution) and 

other components to support the final validation process. 
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5.4.1 Modbus Simulation Tool 

The following tool was used to simulate the operation of the Modbus TCP protocol [ModbusTools ]  

and, verify that the Shadow RTU was properly monitoring the requested operations carried by the 

Mbus Pool client application (e.g., change of a specific register) against the PLC (cf. Figure 5-4). The 

tool also includes a server side application (Mbus Slave) but, since the LCT had already acquired a 

real Modbus PLC there was no point in using a simulator for it.  

 

Figure 5-4 – Modbus Poll (back) and Write Single Register (front) GUI [ModbusTools] 

For the write register operation, the only parameters to specify are the Slave ID, Register Address, 

Value and Function Code (to write on a single or multiple registers), as illustrated in Figure 5-4. Once 

the operation is submitted, a packet monitoring tool may be used on the Shadow RTU to see the 

corresponding messages (cf. Annex D) [Tcpdump]. 

5.4.2 Modbus TCP and IEC 60870-5-104 Libraries 

When performing the monitoring operation, the Shadow RTU may also implement a protocol decoder 

over the exchanged messages to find out what are the operations being requested by the Master 

Station and, to verify if the returned responses match (i.e., have not been modified in transit). For 

such, a complete implementation of the Modbus standard specification was adopted, with both client 

and server modes [Pymodbus]: as for the client features, it allows read/write operations on coils and 

registers; most of the extended protocol (diagnostic/file/pipe/setting/information); payload 

builder/decoder utilities and, synchronous and asynchronous operation modes; the server mode,  

provides a full control context (e.g., device information and counters) and, a few number of backing 

contexts (e.g., database, redis [Redis] or a slave device). Other two implementations of the protocol 

exist but were immediately discarded, since one of these only supports Modbus RTU 

[MinimalModbus] and, the other presented higher CPU loads [Modbus-tk] while operating in 
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client/server mode, when compared to Pymodbus. Also, none of those implementations provide a 

complete decoding library necessary to perform a deep analysis over the Modbus TCP packets.  

Relatively to the IEC104 standard, there is an open-source project written in C [OpenMRTS], that 

emerged as an attempt to create a complete solution of the iecsock  library for Linux systems. To get 

it working, it is necessary to register both master and slave sessions, set specific session hooks on 

the events of interest and, receive the Application Service Data Units (ASDUs) (cf. Annex E) –  while 

the link layer parameters are under the user control, the connection and session management is 

handled by the iecsock  library. There is also a Perl implementation [Net::IEC104] which, like the 

previous, contains both client and server modes. However, it only supports ASDU NN 30, 35, 36 and 

37 for direction control information and ASDU 100 and 103 for controlled direction of system 

information. None of these implementations are as complete as the ones mentioned for the Modbus 

TCP protocol and so, one should only expect a minimal set of functionalities from these.  

5.5 CONTAINERS: REQUIRED ISOLATION FEATURES 

As mentioned in the previous chapters (cf. section 4.4), due to the complexity inherent to some 

applications these should be executed within a confined environment, to avoid compromising the host 

system. Only when the code is found to be safe, should it migrate to the host file system and remain 

there until new changes are made to the algorithm. In general, container applications have a 

somewhat large set of features from which only a few are required to be implemented on the Shadow 

RTU, such as the ones mentioned bellow: 

 File system isolation and quotas – Unlike application-level approaches that apply isolation to 

the process itself, at the OS-level confinement is applied at the file system, meaning that 

malformed applications will not compromise the host file system. This could be achieved by 

the utilization of a virtual file system. 

 Network  isolation – The host system has to operate as an intermediary between the physical 

interface and the isolated environment, “replicating” the network data into the container. This  

means that the host system connections shouldn’t be used. 

 Root isolation – This feature is supposed to allow root access between containers without  

affecting their operation. 

 CPU, memory and I/O allocations – Resources should be allocated considering the 

application requirements to avoid overhead issues and allow multiple containers to be 

running simultaneously. 

The information presented in [Xavier2013] (cf. section 2.9), shows that all containers are in some way 

more or less equivalent and so, the choice must be carefully balanced between overhead and 

functionality. That said, LXC were found to be the best solution since process isolation is allowed 

and, CPU and memory levels can still be kept low if only the required resources are put to use. 
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However, installation of LXC on the Shadow RTU was not particularly trivial, requiring a “LXC-friendly” 

kernel to be built specifically for the Raspberry Pi on another machine running Linux (a technique 

known as Cross-compiling [Lekhonkhobe2014]) with the necessary modules. 

5.6 REMOTE MANAGEMENT 

As mentioned in previous sections (cf. section 5.2) one of the network interfaces on the Shadow RTU 

was left with an IP address to allow the operator at the Control Room to manage its data model, an 

XML file with all the supported functionalities (cf. sect ion 4.4). From the Control Room, the operator 

is provided with a graphical user interface (GUI) application where he types the XPath expression 

corresponding to the desired operation, i.e., the full path of the resource and the action to be applied 

to it, to communicate via Representational State Transfer (REST) messages using simple HTTP calls 

(e.g., HTTP POST method to create a new resource; HTTP PUT and DELETE to update and delete 

an existing resource, respectively; and HTTP GET to obtain the current value of a specific resource).  

In turn, the Shadow RTU has a WS application listening on the same port as the one used by the 

operator to perform the requests, to answer to HTTP requests and parse the XML file using a specific 

library. If the request happens to be successful, a second application responsible for managing the 

modules state on the Shadow RTU is invoked (e.g., modules to change the network interface state; 

to monitor and decode the Modbus TCP messages; to detect impersonation attacks towards the 

Master Station; and to report events to the Event Bus, just to mention a few). The following diagram 

explains the process described above (cf. Figure 5-5). 

 

Figure 5-5 – Operator managing the Shadow RTU through its data model using Web Services  

The example in Figure 5-5 illustrates the operator performing an HTTP Put request over a specified 

resource (/CockpitCIAgent/Extensions/MbusMonitor/State), the Modbus TCP monitoring application 

state. The WS application running in the Shadow RTU uses the specified XPath expression to modify  

Operator
(datamodel.xsd)

Shadow RTU
(webservice:8080)

  <CockpitCIAgent>
      <Extensions>
          <EventManagement>
              <MbusMonitoring>
                  <State>down</State>
              </MbusMonitoring>

  def put_method():
      if State ==  up :
          monitor.start()

http://<shadow_ip>:8080/model?xpath=
/CockpitCIAgent/Extensions/MbusMonitor/State

 -d  up  -X PUT

HTTP PUT Method

datamodel.xml manage.py

mbusMonitor.py
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the resource value in the data model and, execute the corresponding operations (manage.py and 

mbusMonitoring.py). The operator is provided with the data model schema (datamodel.xsd) of the 

Shadow RTU to known in advance what is the path of the resource to manipulate. Consistency 

between the XML and XSD files is also maintained to avoid having a scenario where the operato r 

tries to manipulate an inexistent resource. 

The remote management approach, though the implementation of a WS on the Agent makes it very  

simple for the operator to control the services provided by it, without having to deal with the 

applications code. For every new service added to the Shadow RTU, a set of parameters are defined 

in the data model (cf. section 4.5.2), making service management a much easier and simpler task for 

the operator. 

5.7 SCENARIO NO. 2: MIRRORING MODE 

The mirroring mode is the most basic mode of operation of the Shadow RTU, used to dump the 

monitored network packets with an Ethernet Tap. In the following scenario the Shadow RTU is 

connected to an external machine (Message Checker), where the Modbus TCP messages are 

decoded [Pymodbus]; a client device simulating the Master Station; and a PLC to process the 

requests (cf. Figure 5-6). The Message Checker was introduced as an auxiliary mechanism to present  

the Shadow RTU running in its most basic mode of operation and, other complementary features to 

help in the detection of attacks (cf. section 5.8). 

 

Figure 5-6 – Mirroring mode enabled 

L2 Switch

Master Station

Mbus query

Mbus response

TAP

Tx/Rx Copy

Message
Checker

Modbus Packet Decoding

Shadow RTU

PLC



64 
 

Once the client machine exchanges Modbus TCP messages with the PLC, these are captured by the 

Shadow RTU and saved into a file, using a specific tool [Tcpdump], which is then sent and analyzed 

at the Message Checker [Wireshark] (cf. Annex D). With this scenario it was proved that the Shadow 

RTU could efficiently capture every packet flowing between the two communicating ends, without  

losing messages or disruption. The network packets were only analyzed and decoded at the Message 

Checker (cf. Annex F), because a graphical tool was needed [Wireshark] for an easier visualization 

when presenting the Shadow RTU concept in Moons, Belgium (September 30, 2013). 

5.8 SCENARIO NO. 3: ARP CACHE SPOOFING 

The following scenarios introduce a new agent, an Attacker, connected to the Local Area Network  

(LAN) to conduct an ARP cache spoofing attack, a technique whereby fake ARP reply messages are 

sent to the LAN. The messages sent to both communicating ends, have their respective destination 

IP associated to the Attacker’s MAC address, causing all traffic to be sent to the Attacker instead (cf. 

Figure 5-7). Before the ARP reply messages reach their destinations, both ARP tables on the HMI 

and PLC match the respective destination IP to the correct MAC address. Only when the Attacker 

stops sending these fake messages, will both HMI and PLC receive legitimate replies from each other 

and, have the original communication path reestablished. This happens because ARP is a stateless 

protocol, meaning that received replies are automatically cached and/or overwritten, even if the ARP 

entries have not expired [RFC826]. Also, every device in the LAN receives the ARP replies even if 

not requested. 

In Figure 5-7 the message flows are indicated by their corresponding number and color, to distinguish 

the ARP replies sent to the HMI and the PLC and, in Figure 5-8, to illustrate the path of both Mobdus 

query and response messages. 
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Figure 5-7 – ARP Cache Spoofing (Attacker sends gracious ARP messages) 

To perform the ARP Cache Spoofing, the Attacker doesn’t need an IP address since ARP reply 

messages only need to associate an IP to a destination MAC address. To conduct the attack a 

network security tool for MITM attacks [Ettercap] was used on the Attacker to scan the network and, 

select the target hosts (HMI and PLC) to send the malformed ARP replies. After that , the Attacker 

sniffs the remote connection and sees all traffic flowing between the HMI and PLC (e.g., using a 

network monitoring tool [Tcpdump]). Once the Attacker receives the exchanged Modbus messages, 

he forwards these to their respective ends. 

 

Figure 5-8 – ARP Cache Spoofing: MITM Attack (Attacker receives and forwards the messages) 
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Actually, the ARP cache spoofing attack if often used as an opening for other attacks. In the scenario 

illustrated above (cf. Figure 5-8), the ARP entries have been spoofed and the Modbus traffic flows 

between the HMI and the PLC unchanged, i.e., the Attacker only sees the traffic. At this point, the 

Attacker may choose to conduct a more robust MITM attack (e.g., receive the Modbus queries form 

the HMI, modify their respective parameters and only then, forward these to the PLC). A different type 

on MITM attack may also be performed, in which the Attacker forwards the traffic to a different device 

or application (cf. section 5.9). 

5.9 SCENARIO NO. 4: PLC SIMULATOR 

Once the Attacker has the Modbus messages being forwarded to him, the range of attacks he can 

now perform may vary depending on the level of damage he intends. For the following scenario, the 

Attacker cloned every register from the PLC to create an exact copy of it (i.e., a simulator), diverting 

the connection and, making the HMI believe it is communicating with the real one (cf. Figure 5-10).  

To complement the scenario and make sure that the HMI would no longer be communicating with the 

real PLC, a relay was connected to it. This relay would turn on and off when the operator changed a 

specific register value from 1 to 0 using a graphical interface developed by Roma Tre, one of the 

CockpitCI project partners (cf. Figure 5-9). The Modbus protocol implementation [Pymodbus] was 

also used to make it easier to change the relay state, by writing on the respective coil address.  

 

Figure 5-9 – HMI interface developed by Rome Tre 
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Figure 5-10 – ARP Cache Spoofing: MITM Attack (attacker runs a PLC simulator and controls the relay) 

For the scenario illustrated in Figure 5-10, each color represents a separate process. With the HMI 

communicating with the fake PLC, the Attacker is now free to send Modbus requests to real PLC or, 

change the requests from the HMI in transit. In that sense, only the first situation was tested. Also, 

trying to manipulate the register that controls the relay state is no use because the connection is 

being diverted to the simulator, giving to the operator the idea that he is interacting with the real PLC.  

5.10 SCENARIO NO. 5: MESSAGE INCONSISTENCY CHECK 

The following scenario was designed to alert the operator for situations where it might be 

communicating with a fake PLC without noticing it (cf. section 5.9). In this case, for every Modbus 

query message sent by the HMI, a copy is also sent to the Message Checker. The same happens 

when the Attacker sends a query to the PLC, i.e., the Ethernet Tap sends a copy to the Shadow RTU, 

which it then forwards to the Message Checker (cf. Figure 5-11). 
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Figure 5-11 – MITM attack (HMI and Shadow RTU send a copy to the Message Checker) 

Since both messages don’t match, an alert is triggered and sent directly to the Control Room where 

the operator is informed about the ongoing attack. The Message Checker, just like the Shadow RTU, 

could also be connected to the Event Bus to report such anomalies (cf. section 4.4). This scenario 

made possible to present a case where the Shadow RTU is actually useful and peculiar relatively to 

the remaining detection components. Another test was performed without the aid of the Message 

Checker, which consisted in detecting a Master impersonation attack (cf. section 3.5) – once the 

Shadow RTU detects that the PLC MAC address between two consecutive messages differs, the 

respective event information (IDMEF) is sent to the Local Correlator, through the Event Bus. 
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6 WORK PLAN 

6.1 INTRODUCTION 

The following chapters describe the followed work plan and its evolution throughout the current  

academic year, in both first and second semester. Some of the constraints found along the path are 

also mentioned. 

6.2 1ST SEMESTER SCHEDULE 

By the time the thesis had officially started, there was already some work done in the context of the 

State of the Art and validation process of the Shadow RTU. Also, both CockpitCI project and SCADA 

systems in general were known. That said, some modification to the scheduled work plan had to be 

performed to reflect this. Nonetheless, some of the work that was already done had to be performed 

again to rectify some inconsistencies that were found at the time or, simply to improve the 

documentation and adapt it to new developments. The performed tasks are described below with a 

corresponding identifier (ID) to match the diagram presented at the end (cf. Table 6-1): 

 ID 1 – Shadow RTU concept validation. 

o Preparation of a document comparing single-board devices to take the role of the 

Shadow RTU. At this point, workload tests were carried with the Raspberry Pi to 

analyze the behavior of the device under stress conditions. 

o Preparation of a document with a complete analysis of the Modbus TCP and IEC104 

protocol standards. Many implementations of both protocols were also tested to find 

out which ones possessed the necessary features to perform packet decoding.  

o Study and evaluation of different network monitoring approaches to be used by the 

Shadow RTU. At this stage, occurred a validation process using a passive Ethernet  

tap to monitor and capture network packets. 

 ID 2 – Preparation of the Shadow RTU demonstration. 

o Preparation of a document to discuss the purpose of the Shadow RTU as a Field 

device running inside the Field Network. A series of attacks detected by the Shadow 

RTU were also described, to present where it is really effective. 

o Definition of the first use case: Shadow RTU operating in mirroring mode, using a 

passive Ethernet tap to capture the exchanged Modbus TCP messages between a 

Master Station and a PLC. 

o Definition a second use case: Detection of a MITM Attack using a second machine 

to compare both messages sent by the Master Station and Shadow RTU. 

 ID 3 – Management Interface Functionalities: Preparation of a document to define the most 

basic functionalities (API) to be supported by the Shadow RTU. This document underwent  
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many revisions until the final version. 

 ID 4 – Definition of the Probing architecture modules. 

o Preparation of a document to define which should be the modules to include in the 

Shadow RTU. This stage was particularly important and time consuming, since it 

defines the key aspects that make the Shadow RTU effective. 

o Evaluation of Simple Object Access Protocol (SOAP) and Representational State 

Transfer (REST) implementations to be used for the communicating with the Even 

Bus (i.e., Local Correlators). This task was preceded by a short period to study a new 

programming language (Python), applied in this task and all the following ones.  

o Study on the many available approaches to achieve confinement for applications.  

This stage was time consuming due to the range of available solutions and the 

constraints to implement on the Raspberry Pi. 

 ID 5 – Writing of the intermediate version of the thesis report. 

The biggest constraint during this semester was related to the implementation of containers. Most of 

these were developed for the x86 architecture and, the one that was actually compatible with ARM 

processors (and suited for the board’s hardware), was in its early stage. Trying to run it on the 

Raspberry Pi required some time, as also mentioned in previous chapters (cf. section 5.5).  

The following table presents the tasks mentioned above, with the respective time each one took to 

be completed (cf. Table 6-1). 

Table 6-1 – 1st semester scheduling 

 2013 2014 

ID Task Weeks Sep. Oct. Nov. Dec. Jan. 

1 Concept Validation 2 16-30     

2 Demo 5 23-30 01-28    

3 API 4  31 01-24   

4 Probing Arch. 5   25-30 01-30  

5 Report ½     13-28 

6.3 2ND SEMESTER SCHEDULE 

During the second semester, the focus was on the integration and the developed of the probing 

modules of the proposed architecture, integrated in the CockpitCI architecture. Following is described 

the schedule for the 2nd semester: 

 ID 6 – Preparation of the CIGRE demonstration. 
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o Development of an Attacker machine to conduct an ARP cache spoofing attack 

targeted to the HMI and PLC. 

o Implementation of a PLC simulator to be used by the Attacker to conduct a MITM 

attack. 

 ID 7 – Development of the Web Service to be used by the Shadow RTU and remaining 

detection agents (e.g., honeypot). This was the most time consuming task to the semester, 

since it involved not only the Web Service development, but also all the applications to be 

used by the Agent. 

o Definition of the data model (XML and XSD) 

o Implementation of the base Web Service application to manipulate the data model 

 ID 8 – Implementation of the most basic functionalities (API) 

o Modbus TCP monitoring, Modbus TCP parser/decoder and, ARP cache spoofing 

detection. Other basic functionalities such as, changing the IP address and start/stop 

the application execution, were implemented. 

o Generation of a simple IDMEF message for an HMI impersonation attack. Once the 

Shadow RTU detects the attack, the message is generated and sent to the Even Bus 

to be processed. 

 ID 9 – Integration of the Shadow RTU and respective probing architecture in the scenario 

setup at the LCT. 

 ID 10 – Writing of the final version of the thesis report 

As for the second semester the biggest constrains were found in the development of the Attacker for 

the CIGRE demonstration. The initial idea was to change the Modbus TCP packets in transit, once 

the ARP cache spoofing had been performed. However, taking into account the difficulties  

encountered, the attack was instead conducted using a PLC simulator to perform the MITM attack.  

The following table presents the tasks performed in second semester (cf. Table 6-2): 
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Table 6-2 – 2nd semester scheduling 

   2014 

ID Task Weeks Feb. Mar. Apr. May June 

6 CIGRE Demo 6 01-28 01-12    

7 Web Service 4  15-31 01-13   

8 Functionalities (API) 6   14-30 01-31  

9 Integration17 8  15-31 14-30 01-31  

10 Final Report 4     01-30 

 

 

 

  

                                                                 
17 The integration process occurred from the beginning of the Web Service development until  the 
implementation of the Shadow RTU functionalities. 
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7 CONCLUSION 

7.1 DEVELOPED WORK OVERVIEW 

The present document covered the proposed probing architecture relative to the Shadow RTU, one 

of the detection agents operating in the Field Network of the CockpitCI detection architecture. Since 

the main purpose of this component is to raise security awareness over the monitored devices, the 

presented State-of-the-Art focused on vulnerabilities targeted to SCADA and on an overview of the 

industry after the impact caused by of one of the most well-known rootkits so far. Also in this section, 

the problem of architecture partitioning was addressed to sustain the decisions made by the CockpitCI 

team and its three layer architecture. Finally, a series of low-level threats and preventive measures 

implemented in IT systems were presented. The idea with these last subjects is to provide an 

overview of what might be the future security concerns of SCADA operators, and how making use of 

containers could raise the safety levels in these networks.  

Relatively to the proposed probing architecture, a series of modules were developed, namely, for 

monitoring the PLC activity, process the captured network information and report anomalies. After the 

implementation of some use cases to validate the concept, an integration phase was followed to allow 

the Security Management Platform to remotely manage the agent and, to make it report security 

events to the Local Correlators, through the Event Bus. 

7.2 CONTRIBUTIONS 

During the involvement of the student in the CockpitCI project, some contributions were made: the 

information contained in Annexes A, B and C relative to the Modbus TCP, IEC 60870-5-104 standard 

and, a comparison between IEC 870-5-101, Modbus and DNP3 were included in deliverable D3.1; 

some of the the information contained in chapter 5, relative to the Ethernet tap, monitoring options 

and single-boards comparison were included in D3.3; a brief chapter on the Shadow RTU concept 

was added in D3.4 (cf. Annex G); and both chapters 4 and 5 were included in D3.5. 

7.3 FUTURE WORK 

The work presented in this thesis will be continued, namely, as for the API functionalities and 

integration with the architecture. Even though the most basic features of the Shadow RTU have 

already been implemented, not all of them have. The idea is provide a larger set of available 

functionalities and implement a more robust use case for reporting security events. So far, the 

Shadow RTU only reports security events for an HMI impersonation attack, which is a simple case. 

More sophisticated cases will be implemented in the next months.  
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ANNEXES 

ANNEX A – MODBUS TCP PROTOCOL 

The TCP version of the Modbus protocol uses the same philosophy of the Modbus RTU variant, with 

some changes in terms of message structure. It was introduced to add support to TCP/IP networks, 

using TCP port 502 and non-privileged ports (above 1024) for Slave and Master devices, respectively .  

Its framing is based on the RTU variant, with an identical Protocol Data Unit (PDU) but, without the 

remaining Application Data Unit (ADU) fields (the Additional Address and Error Check fields are not 

used) and, an additional header (MBAP – Modbus Application Header) containing the following fields 

(cf. Figure 8-1): 

 A Transaction Identifier (2 bytes), identifying the request to ensure coherence in case 

responses arrive out of sequence (in Modbus TCP, a slave can handle several requests 

simultaneously). 

 A Protocol Identifier (2 bytes), filled by the Master station. 

 The Length field containing the number of used bytes. 

 The Unit Identifier is used when RTU devices are used in a TCP environment, through 

protocol gateways. 

The CRC16 error check field used in Modbus RTU is discarded in Modbus TCP, since it is assumed 

that the TCP/IP protocol stack already offers integrity control for payloads . It is also possible to convert  

Modbus RTU equipment for TCP operation, using special-purpose gateways for translation purposes 

[IDC2009]. 

 

Figure A-1 – Modbus TCP Framing [Modbus2006] 

The fields referent to the Modbus TCP/IP PDU, relate to requested operations (Function Code), and 

additional information (Data). The Function Code field may contain any integer value from 0 to 255, 

being the range of [0, 127] referent to requests sent by the Master and, the range of [128, 255] relative 
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to responses sent by the Slave. The meaning of these values is explained with a simple pseudo-code 

(cf. Table 8-1): 

Table A-1 – Function Code Operation 

Function Code Operation (pseudo-code) 

START 

IF (values between [128, 255]) 

     There was an error executing the command 

ELSE IF (response value = request value) 

     Slave executed the command 

ELSE 

     Slave alerts Master of an error 

END 

Note that the value 0 (zero) is never used, even though it was referred that the range of these values 

is between 0 and 255. Reading the code above (cf. Table 8-1), if the values range between 128 and 

255 it means that an error occurred. On the other hand, if both request and response values match, 

means that the Slave executed the command successfully. In case none of the above conditions are 

met, the Slave notifies the Master that an error occurred. 

The functions used for reading, writing and all the other remaining operations are categorized by 

class, the respective Function Name and Code (cf. Table 8-2): 
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Table A-2 – Transaction types 

Class Function Name (FN) Function (FC) 

Class 0 

Read Multiple Registers 3 

Write Multiple Registers 16 

Class 1 

Read Coils 1 

Read Input Discretes 2 

Read Input Registers 4 

Write Coil 5 

Write Single Register 6 

Read Exception Status 7 

Class 2 

Force Multiple Coils 15 

Read General Reference 20 

Write General Reference 21 

Mask Write Register 22 

Read/Write Registers 23 

Read FIFO Queue 24 

As for the Data field, in case the requested command has successfully executed, the message 

contains the exact information requested by the Master. Otherwise, it only includes information 

concerning the error message (cf. Table 8-3). 

Table A-3 – Data Bytes Operation 

Data Bytes Operation (pseudo-code) 

START 

IF (execution = SUCCESS) 

     The message contains the data requested by the Master 

ELSE 

     The message contains information about the error 

END 
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ANNEX B – IEC 60870-5-101/104 

The IEC 60870-5 (IEC 60870 part 5) standard defines five transmission protocol documents for 

sending basic telecontrol messages between two systems, using permanent  and directly connected 

data circuits and, standard profiles necessary to uniform applications, such as the IEC 60870-5-101 

(IEC101), where the way a device acts is defined. Each one of these documents are then briefly  

described: 

 IEC 60870-5-1 [IEC60870-5-1] – Specification of standards for coding, formatting and 

synchronizing data frames to be transmitted, of fixed and variable length, meeting specified 

data integrity requirements. These services are provided by the data link and physical layers 

for telecontrol applications. 

 IEC 60870-5-2 [IEC60870-5-2] – Services for data link transmission using a control field and 

an optional address field (some point-to-point topologies do not require either the source or 

the destination address). 

 IEC 60870-5-3 [IEC60870-5-3] – Rules for general structuring of application data in frame 

transmission, without specifying details about information fields and their contents. These 

rules are also intended to be used by a great variety of telecontrol application in the future. 

 IEC 60870-5-4 [IEC60870-5-4] – Rules for the definition and coding of information elements, 

particularly digital and analogue process variables used in telecontrol applications.  

 IEC 60870-5-5 [IEC60870-5-5] – Definition of basic application functions that perform 

standard procedures for telecontrol systems, situated between the Open System 

Interconnection (OSI) application layer and the application program (cf. Table 8-4, green 

shaded section). These functions are used for specific telecontrol tasks, which result in the 

following application profiles, generated by the IEC Technical Committee 57 (Working Group 

03): 

o IEC 60870-5-101 [IEC60870-5-101] – Transmission protocols (basic telecontrol 

tasks). 

o IEC 60870-5-102 [IEC60870-5-102] – Transmission of integrated totals in electric 

power systems (not widely used). 

o IEC 60870-5-103 [IEC60870-5-103] – Transmission protocols (informative interface 

of protection equipment). 

o IEC 60870-5-104 [IEC60870-5-104] – Transmission protocols (network access for 

IEC101). 

Any functions that are not defined in the documents listed above, must be specified within the profile.  

Examples of these functions are: Station Initialization, Cyclic Data Transmission, Data Acquisition by 

Polling and Station Configuration. 
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Unlike Modbus protocol, the IEC 870-5 standard (IEC 60870-5), as well as the DNP3 [IEEE1815-

2010], is based on a three-layer reference model (the Enhanced Performance Architecture (EPA) – 

cf. Figure 8-2), used for efficient implementation within RTU devices, also defining basic application 

functionality for a user layer, which adds interoperability for functions like Clock Synchronization and 

File Transfer. 

 

Figure B-1 – Reference models [TriangleMicroworks1999] 

The main reason the EPA model only has 3 layers is to reduce the overhead of the 7-layer model 

(OSI), so it can be optimized for SCADA environments. As shown in the previous illustration, a 

correspondence is made between the OSI and EPA models so it is bet ter understood where the 

layers match. Also, next to the EPA model, at each one of its 3 layers, is represented the location of 

the base documents and profiles, as mentioned above. 

As stated before, the IEC104 standard is in fact an extension of the IEC101 to support TCP/IP 

connection, transporting IEC101 ASDUs (Application Service Data Units), based on the ISO-OSI 

reference model but, only using 5 of these layers. So, while the IEC101 standard is intended to work  

on serial RS232 lines, the IEC104 standard, an extension of the previous, communicates over TCP/IP 

with changes implemented on the transport, network, link and physical layers to enable such 

communications. The application layer is maintained in both standards. The IEC 60870-5-104 

reference model is located in the application layer (cf. Table 8-4). 
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Table B-1 – IEC 60870-5-101/104 network reference model [Weiqing2010a] 

Layer Description 

User layer18 

Selected application functions of IEC 60870-5-5: 

a) Station Initialization 

b) Cyclic Data Transmission 

c) General Interrogation 

d) Command Transmission 

e) Parameter Loading 

f) File Transfer 

g) Data Acquisition by Polling 

h) Acquisition of Events 

i) Clock Synchronization 

j) Transmission of Integrated Totals 

k) Test Procedure 

Application layer (7) 

Selection of ASDU from IEC 60870-5-101 and 104. 

Application Protocol Control Information (APCI). 

Transport Interface (User to TCP interface). 

Transport Layer (4) 

Selection of TCP/IP Protocol Suite (RFC 2200) 

Network Layer (3) 

Link Layer (2) 

Physical Layer (1) 

In respect to the 3 layers referent to the IEC101 protocol, following is a description of what each one 

of these represents: 

 Application Layer – Selected application information elements of IEC 60870-5-4 for definition 

and coding of information elements and, the ASDUs of IEC 60870-5-3 for general structure 

of application data. The contents and sizes of individual information fields of the ASDUs (cf. 

Figure 8-4) are specified according to the declaration rules for information elements defined 

                                                                 
18 User layer does not correspond to a real layer of the OSI model. It is just a representation to better 
understand the application functionality defined in IEC 60870-5. 
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in IEC 60870-5-4.  

Also, Type Information defines the structure, type and format for information objects. These 

2 predefined parameters (Elements and Type Information) do not allow the addition of new 

information elements or types by any vendor. In fact, the information elements have been 

defined for equipment protection, voltage regulators and for meter values to interface 

Intelligent Electronic Devices (IEDs) with the RTUs. 

 Link Layer – Selected link transmission procedures of IEC 60870-5-2 for data link 

transmission services and the transmission frame formats of IEC 60870-5-1. The 

transmission mode (balanced or unbalanced) is also defined in this layer as well as the 

provided addresses for each link. 

 Physical Layer – Selected International Telecommunication Union Telecommunication 

Standardization Sector (ITU-T) recommendations, defining the hardware-dependent  

specifications of the IEC 60870-5-101 and 104 communication interfaces, compatible with 

Electronic Industries Association (EIA) standards RS-232  and RS-485 , also supporting fiber 

optic interfaces. 

The IEC 60870-5-1 standard offers the asynchronous FT 1.2 frame format, specified in 

IEC101, to provide data integrity with the maximum efficiency for acceptable convenience of 

implementation, using standard Universal Asynchronous Receiver/Transmitters (UARTs).  

The IEC104 protocol provides 255 bytes APDU packets (including start character and length 

identification), meaning that the ASDU maximum length is 253. Also, the APDU length includes 4 

octets of control field and ASDU, meaning that the maximum ASDU length is 249. So, this type of 

provision limits an APDU packet to send up to 121 normalized measured values without the quality 

descriptor or a 243 single-point information data. Otherwise, if the amount of collected data by an 

RTU exceeds the above limit, the APDU packet has to be divided before being sent. The APDU 

packet structure is illustrated bellow (cf. Figure 8-3), as previously mentioned. 
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Figure B-2 – APDU Packet [Weiqing2010b] 

The application header (cf. Table 8-4), is referred to as the Application Protocol Control Information 

(APCI), which may either be 2 or 4 bytes, depending whether it is a request or a response (cf. Figure 

8-4). 

Start 68H
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Control field octet 1
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Figure B-3 – Application function codes [Gordon2004] 

The keyword AC stands for Application Control, which has a corresponding Function Code (FC) and 

type. The control fields of the Modbus APDU illustrated above (cf. Figure 8-3) define the control 

information for protection against message loss or duplication, start and stop of message transfers ,  

and for supervision of transport connections. These octets can be classified into three kinds of 

message formats by its definition. 

 I format (Numbered information transfer) – This filed is used for APDUs containing an ASDU, 

i.e., information being indicated by a 0 (zero) in the first bit position. The frame is then 

represented bellow (cf. Figure 8-5). 



10 
 

 

Figure B-4 – Information (I) format control field (Variable length frame) [Lian2011a] 

 S format (Numbered supervisory functions) – This filed is used for APDUs containing only 

the APCI header. Unlike the previous, these frames do not have any information attached 

and so, are only used for controlling the transport of the APDUs. It is indicated by 1 in the 

first bit position, followed by a 0 (zero) in the second bit position (cf. Figure 8-6) 

 

Figure B-5 – Supervisory (S) format control field [Lian2011b] 

 U format (Unnumbered control functions) – Just like the previous, this field is also used in 

APDUs that only contain the APCI. It is used as a start-stop mechanism for information flow 

or when more than one connection is available between stations, also allowing a changeover 

between these connections without losing data (cf. Figure 8-9). Also, it should be noted that 

there are no sequence numbers. 
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Figure B-6 – Unnumbered control (U) format control field [Lian2011c] 

The sequence numbers in these control fields are used to control the APSUs flows in both directions. 

Once the receiver gets an APDU, it advertises the sender of the highest sequence number, using an 

I or S format message, so the sender can re-send ASDUs that might have been lost. This also 

depends on whether the receiver is sending information in the opposite direction. 

A detailed view of the ASDU frame (green shaded section in Figure 8-3) is illustrated bellow with the 

respective fixed and variable fields, as in the IEC 60870-5-1 document (cf. Figure 8-8). 

 

Figure B-7 – ASDU Frame [Jay2003a] 

The blue shaded sections are the optional fields which will be determined by a system level parameter 

shared by all devices in the system. The green shaded sections are the variable fields per ASDU, 

whose common address size is determined by a fixed system parameter, in this case 1 or 2 octets 

(bytes). The remaining fields are all fixed per ASDU. 
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The IEC101 standard profile has 2 definitions that are not present in any of the documents previous ly  

referred: 

 Control direction – Transmission from the controlling station to the controlled station.  

 Monitor direction – Direction of the transmission from the controlling station to the controlled 

station. 

In order to aid administrators in the configuration of their SCADA systems, the IEC101 profile defines 

a check list in which these can ensure interoperability between the used devices and the ones from 

other vendors. This list does not only contains information from the ASDU for both control and monitor 

direction (as previously referred), but also includes parameters such as baud rate, ASDU field length 

common address, link transmission procedure and, basic application functions defined in IEC 60870-

5-102 and 105 documents. This check list allows vendors to define their devices or system in a 

protocol perspective. 

When communicating, both devices in the SCADA system using the IEC 60870-5-101 protocol can 

perform its transmissions in 2 different modes: balanced and unbalanced. At the data link layer, the 

IEC101 standard profile species whether an unbalanced (includes multidrop) or balanced (includes 

point-to-point) transmission mode is used, together with the link procedures (and corresponding link 

function codes) to be used and, an unambiguous number (address) for each link. Following are 

described each one of the transmission modes: 

 Unbalanced mode – In this case, only the Master station can initiate a transmission, polling 

the controlled outstations, which can only respond when the requests are sent by it , the 

Master. The supported transmission service types selected from IEC 60870-5-2 are 

described below (cf. Table 8-5): 

Table B-2 Service types initiated by the Master station [ABB2010a] 

Service Description 

SEND / NO REPLY 
Global messages and cyclic set-point commands for the 

Master station 

SEND / CONFIRM Control and set-point commands from the Master station 

REQUEST / RESPOND Data polling from the controlled outstations 

 Balanced mode – Unlike the previous case, here any station involved in the communication 

can initiate the transmission of messages, acting as the controlling (Master) stations or 

controlled outstations, simultaneously. Therefore, these devices are called combined 

stations, being restricted to point-to-point and to multiple point-to-point configurations.  

Following are described the supported transmission services (cf. Table 8-6). 
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Table B-3 – Service types initiated by controlling and controlled stations [ABB2010b] 

Service Description 

SEND / NO REPLY 

Global messages and cyclic set-point commands. This can only be 

initiated by a controlling station with a broadcast address in a 

multiple point-to-point configuration 

SEND / CONFIRM Control and set-point commands 

Following is a list of basic application functions implemented by the current standard, as it has been 

referred: 

 Data acquisition – Since the data may appear faster than the communication link is able to 

transfer, the controlled station buffers all data such as, command replies or process values 

collected cyclically, upon change or request from the Master Station. The actions performed 

on the buffered data varies whether balanced or unbalanced transmission is used: For 

unbalanced transmission, on the link layer the controlled stations wait for a request coming 

from the Master Station, which polls the buffered data. On the other hand, for balanced 

transmission, the controlled station transmits the data to the Master Station without delay. 

 Event acquisition – The events occur at the controlled station’s application level, being also 

buffered for the same reasons mentioned for Data acquisition. 

 Interrogation – This function is used to update the controlling station after an internal station 

initialization or when information loss is detected, being performed either by an interrogation 

group (1-16) at a time, or all groups at once. When requested, the controlled stations transmit 

the actual values of their process variables. 

 Clock synchronization – After the clock of the controlled station is synchronized with the one 

on the controlling station, it keeps synchronizing periodically with the C_CS ACT command. 

This provides a correct chronological sequence of time-tagged events or information objects. 

When an ASDU is received, the time information must be corrected by one of the end devices.  

Also, the transmission delays are calculated by a delay acquisition command so the time is 

corrected at the controlled station when sending. 

 Command transmission – In order to change the state of the operation equipment, a 

command may be sent by the controlling station, which can be one of the following:  

o Direct command – Used to immediately control operations in the controlled stations. 

For safety purposes, the permissibility and validity of the received messages are 

checked. 

o Select and execute command – Used to prepare a specified control operation in a 

controlled station, check if the correct control operation is prepared and, finally, 

execute the command. In this case, the preparation is checked by an operator or by 

an application procedure and if the controlled station does not receive the correct 



14 
 

execute indication, the control operation does not start. The controlled station 

receives a command transmission confirmation through an activation confirmation 

response and after the command is executed, an activation termination response is 

sent to the controlling station. 

 Integrated totals transmission – An integrated total is a value that is integrated over a 

specified period of time. In the other hand, a system parameter corresponds to the specific 

clock times and the periodic time interval of successive acquisitions of the integrated totals. 

Two methods for acquiring counter information are: Acquisition of integrated totals (Freeze -

and-read); and acquisition of incremental information (Clear-and-Read). 

 Protocol and Link  parameters changes – When changed, the new values of the protocol and 

link parameters take effect after they have been committed. 

 Transmission delay acquisition – Time correction is determined by the sum between the 

transmission delay and the internal equipment delay. To obtain the value of the transmission 

delay, either parameterization or using a dynamic procedure (initiated by the controlling 

station), are both valid alternatives. 

 Analog Value Deadband – The use of the deadband feature allows a user to reduce the 

number of unnecessary events using analogue measurements for each point,  which might 

be configured using proper tools, by setting 2 parameters: 

o Range – Considering a range of 0.05 (5%), if the data point value changes beyond 

this value from the previously sent one, the data will be sent as deadband data.  

o Interval – Limits the deadband value to be sent once per configured time window, in 

seconds. To disable this feature, the interval is set to 0.  
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ANNEX C – COMPARISON OF IEC101, DNP3 AND MODBUS 

With the Modus, DNP 3 and IEC104 protocols already described, it is interesting to check a 

comparative table in which their features are briefly described. Table 8-7 describes a comparison 

based on the features of each protocol. Some of the most relevant information in this table includes, 

features by layer (Physical, Data link and Application layers), addressing, required parameters, 

application specific information, etc. 

Table C-1 – Comparison of IEC101, DNP3 and Modbus 

Feature IEC 870-5-101 DNP 3.0 Modbus 

Standardization 
IEC Standard (1995) 
Amendments 

2000,2001 

Open industry 
specification (1993) 

Not Applicable 

Standardization 
Organization 

IEC TC 57 WG 03 DNP users group Modicon Inc. 

Architecture 
3-layer EPA 
architecture 

4-layer architecture 
Also supports 7 layer 

TCP/IP or UDP/IP 

Application layer 
messaging protocol 

Physical layer 

Balanced Mode - 

Point to Point 
Multipoint to point  

Implementation by 

X.24  

/ X.27 standard 

 

Unbalanced Mode - 
Point to Point Point 
to Multipoint  

Implementation by 
V.24  

/ V.28 standard 

Balanced mode  

transmission 

 

It supports multiple 
masters, multiple 
slave and peer-to-

peer communication  

 

RS 232 or RS 485  

implementation  

 

TCP/IP over 

Ethernet, 802.3 or 
X.21 

Balanced mode of  

transmission  

 

RS 232 serial 
interface  

implementation  

 

Peer to peer 

communication  

 

TCP/IP over 

Ethernet 

Data link layer 

Frame format FT 1.2 

Hamming distance - 
4 

Frame format FT3 
Hamming distance-6 

Two types of 
message  

frames are used: 
ASCII mode and 
RTU mode 

Application layer 

Both IEC 870-5-101 

and DNP 3.0 
provides: 

> Time 

synchronization 

Remote starting / 
stopping of software 

applications  

 

Does not give time 
stamped events. We 

have sequence of 
events (without time 
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> Time stamped 
events 

> Select before 
operate 

> Polled report by 

exception 

> Unsolicited 
responses 

> Data group/classes  

 

Limited to single data  

type per message  

 

Can control one point 

per message only  

 

No internal indication 

bits  

 

No application layer 

confirms for events 

Polling by data 
priority  

level  

 

Broadcast 

addressing  

 

Multiple data types 

per message are 
allowed 

 

Internal Indication 
field  

IID present in 

response header  

 

Application layer 

confirms events; use 
of CON bit is made 

but not event list with 
time. 

 

Does not provide 
polled report by 

exception  

 

Checksum ensures 

proper end-to-end 
communication 

Device Addressing 

Link address could 
be 0, 1, 2 bytes  

 

Unbalanced link 
contains slave 
address  

 

Balanced link is point 
to point so link 

address is optional 
(may be  

included for security) 

Link contains both 
source and 
destination address 

(both always 16 bits)  

 

Application layer 

does not contains 
address  

 

32 b point addresses 
of each data type per 
device 

Addresses field 

contains  

two characters 
(ASCII mode) or 8 

bits (RTU mode)  

 

Valid address in 

range 1-247  

 

Address 0 used for 

broadcast 

Configuration 
Parameters required 

Baud rate  

 

Device addresses  

 

Balanced / 
unbalanced  

 

Frame length  

 

Baud rate  

 

Device addresses  

 

Fragment size 

Baud rate  

 

Mode ASCII or RTU 

 

Parity mode 
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Size of link address  

 

Size of ASDU 
address  

 

Size/structure of 
point number 
 

Size of cause of  

transmission 

Application Specific  

information model 

A few application 
specific data types 

available 

 

Data objects and 

messages are not  

independent to each 
other 

Permits vendors to 
create application 

specific extensions  

 

Data objects and 

messages 
independent  

to each other 

Allows user to create 

application specific 
model 

Cyclic  

transmission 

Eliminates static data 

poll message from 
master 
 

Interrupted by event  

triggered 
communication 

request 

Available but interval 
cannot be remotely 
adjusted 

Not Applicable 

Dominant market 
Europe (South 
America, Australia 
and china) 

North America 

(Australia and china) 

Used worldwide for 
application with low 
volume data 

Online configurations 

Enable/ disable 
communication 

control objects  
 

Loading 

configuration  

 

Change report / 

logging behavior 

Define group of data  

 

Selecting data for 
responding 

Enable/ disable 
communication 
control objects  

 

Loading 
configuration  

 

Change report / 
logging behavior 

Efficient online 

configuration could 
be made by Modbus 
TCP/IP 
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Open for other 
encoding solutions 

Not Available 
Yes open for other 
encoding solutions 

like XML 

Yes. One could write 
source code in 

programming 
languages  

like C, VC++ & JAVA 

etc. 

The protocol selection depends on the scenario and the operator expectancies. There isn’t a  best 

protocol for the every situation. With this in mind, some issues must be cleared in order to get the 

proper solution, as those presented below: 

 Application domain – When dealing with utilities or oil and gas industries, the operators  

should go either with IEC101/104 or DNP 3. Mainly, if the SCADA system has requirements  

such as time-stamping. Since the Modbus protocol is more a general purpose solution, it is 

more suited for industrial applications with direct register mapping with small volumes of data.  

 Communication devices – Depending on which are the communicating devices, one might 

have one of the following situations: If communication with substations there are protocols  

meant for protection control and metering, such as Modbus, IEC103 or Profibus [Profibus]; if 

the communication is established outside the substations,  protocols used for the exchange 

of data between substations and master control centers are IEC101/104 or DNP 3; For 

communications between applications, there is the standard IEC 61968, still under 

development. 

 Specific requirements (e.g., amount of data, bandwidth, response time and distance between 

devices) – When sending large volumes of data, both DNP 3 and IEC101 present good 

solutions, since the first sends small number of large sized data, and the second sends large 

number of small sized data. However, if there is the need to transmit huge volumes of data 

across long distances, working with high baud rates, the DNP 3 becomes the favored one 

over the IEC101. But if a much more simple setup is to be used, the Modbus is the perfect  

solution since it requires less memory, has fewer data types, has smaller frame sizes, is fast  

(packs a lot of information per message) and it is safer maintaining the data integrity  since it 

is always required to poll the process. 

 Devices to equip (e.g., Embedded devices, PLCs, Personal Computers (PC)) – If using 

embedded controllers with little memory requirements, the Modbus protocols is the best 

solution. 

 Interface functions (e.g., Parameterize relays remotely, download disturbance data and 

events, retrieve measurements) – Since Modbus is much more simple than the other two 

protocols, a master and slave have to be implemented, in order for the protocol to operate 

fully (if different vendor devices are used it may present an obstacle). Although, if much more 

simple operations are required (e.g., read/write register) the Modbus protocol can be used 

without any kind of problems. 
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 Domain players – Depending on the brand and model of the device, the proper protocol 

should be selected from a list of the supported ones. 

 Geographical location – If the scenario is going to be deployed in Europe, the most obvious 

choice would be IEC101/104. If in North America, DNP3 would be used instead. 
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ANNEX D – MODBUS TCP PACKET ANALYSIS 

Once performed the network packet capture, resulting from the exchange of Modbus TCP messages 

between the Master and Slave devices, a deeper analysis was conducted using the Wireshark tool. 

The following capture presents a Read Multiple Registers operations intercalated with a Write Single 

Register (cf. Figure 8-9). 

 

Figure D-1 – Modbus packet analysis  

While communicating, both end devices exchange Modbus TCP (Modbus/T) request and response 

messages, along with a TCP packet sent from the Master Station, used for control. The selected 

response message, presents two Modbus sections: the Modbus/TCP section keeps track of every  

field contained in the MBAP header; while the following section (Modbus) presents the Modbus 

TCP/IP PDU. 

 

 

 

 

 



21 
 

ANNEX E – IEC 60870-5-104 PACKET ANALYSIS 

Following are presented the results from the experiments using OpenMRTS and the network  

monitoring and capture tool Wireshark (cf. Figure 8-10). 

 

Figure E-1 – IEC104 packet analysis (Master IP: 10.3.3.181; Slave IP: 10.3.3.65) 

The selected frame (frame nº 66) corresponds to a 104apci protocol packet, containing a U frame 

used as a start-stop mechanism for information flow (cf. Annex B). The frame nº 80, corresponds to 

the response sent to the Master for this very same packet. Following, a 104asdu packet (frame nº 

112) is sent to the Master, in which an I frame has its first field incremented by 1, maintaining the 

second field with the value 0.  The following response packet (frame nº 147) has its second field of 

the I frame beginning with 12, incrementing the first field from 0 to 11 (cf. Figure 8-11). 
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Figure E-2 – Frames nº 112 (left) and nº 147 (right) 

The Type identification (TypeId=0) is not used since the range goes from 1 to 127 – it is actually used 

for standard definitions of the IEC101 protocol; the range [128, 135] is used for message routing; and 

[136, 255] for special use (private – not defined in the standard). 
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ANNEX F – PYMODBUS: PACKET DECODING 

With regard to the execution of the parsing script (message-parser.py) from Pymodbus, following is 

presented the output when decoding the message referent to the Write Single Register operation.  

The output also presents information for both server and client decoder. The information to decode 

(000100000006010600120001) relates to the encoded format of the message. After that, a set of 

hexadecimal values are assigned to each field, for both client and server decoders. 
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Table F-1 – Pymodbus decoding script output 

Message-parser output 

====================================================================== 

Decoding Message 000100000006010600120001 

====================================================================== 

ServerDecoder 

-------------------------------------------------------------------------------- 

name = WriteSingleRegisterRequest 

protocol_id = 0x0 

unit_id = 0x1 

value = 0x1 

skip_encode = 0x0 

address = 0x12 

check = 0x0 

transaction_id = 0x1 

documentation = This function code is used to write a single holding register in a remote device.  

The Request PDU specifies the address of the register to be written. Registers are addressed 

starting at zero. Therefore register numbered 1 is addressed as 0. 

 

ClientDecoder 

-------------------------------------------------------------------------------- 

name = WriteSingleRegisterResponse 

protocol_id = 0x0 

unit_id = 0x1 

value = 0x1 

skip_encode = 0x0 

address = 0x12 

check = 0x0 
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transaction_id = 0x1 

documentation = The normal response is an echo of the request, returned after the register 

contents have been written. 
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ANNEX G – CONTRIBUTION FOR D3.4 

The contribution relates to section 3.1.1.3 of deliverable D3.4 where the Shadow RTU concept is 

described. The deliverable D3.4 is on the DVD delivered with the thesis document. 
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