
Universidade de Coimbra

Master Thesis

Medical Systems Integration

Author:

Manuel Teixeira Cabeleira

Supervisor:

Paulo Fernando Pereira de

Carvalho

Ricardo Manuel Ribeiro do Sal

A thesis submitted in fulfilment of the requirements

for the degree of Master in Informatics Engineering

in the

Departamento de Engenharia Informática

August 2014

http://www.uc.pt
http://www.uc.pt/fctuc/dei/)

Abstract

In this thesis is described a system integration solution that can acquire data from

medical devices such as, ventilators, infusion pumps and Bispectral index monitors.

The system is also capable of providing a broker capable of sharing medical device data

with other applications running in the healthcare unit.

The implemented solution intends to tackle the problem of delivering medical data from

medical devices to multiple applications with different data requirements. By solving this

problem we aim to increase the amount of information available in computer applications

of intensive care units.

Acknowledgements

Firstly I would like to thank my supervisors, Eng. Ricardo Sal and Dr. Paulo de

Carvalho as without their support and advices, this work could not have been done.

I would also like to thank all my fellow students that helped me with insightful contri-

butions and companionship.

Finally and most importantly I would like to thank my parents António Cabeleira and

Maria José Teixeira and my girlfriend Filipa Valente for their constant and unconditional

support.

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction and Methodology 1

1.1 Motivation . 1

1.2 Framming and Problem Defenition . 1

1.3 Project Team and Collaborators . 2

1.4 Work methodology . 3

1.4.1 Software development methodology 3

1.4.2 Quality Control Mechanisms . 4

1.4.3 Risk analisys . 4

1.5 Planning and Evolution . 5

2 State of the Art 9

2.1 Introduction . 9

2.2 HL7 . 10

2.2.1 HL7 version 2.x . 10

2.2.2 HL7 v.3 . 13

2.3 IEEE11073 . 14

2.4 Communication Protocols of the Integrated Medical Devices 18

2.5 Similar Solutions on the Market . 18

3 Specification Analysis 21

3.1 Requirement Analysis . 21

3.2 System Architecture . 22

3.2.1 Introduction . 22

3.2.2 Global Overview . 23

v

Contents vi

3.2.3 Application Modules . 23

3.2.4 Data acquisition Module . 25

3.2.4.1 Data Acquisition Manager 25

3.2.4.2 MD Driver Library . 27

3.2.4.3 Probing Session . 28

3.2.4.4 Data Session . 28

3.2.5 External Application Communication 28

3.2.5.1 Server . 30

3.2.5.2 Subscription Manager . 30

3.2.5.3 Subscriber . 30

3.2.5.4 Event Logger . 30

4 System Implementation 33

4.1 Implementation phases . 33

4.2 Configuration file . 34

4.3 Data acquisition Module . 35

4.3.1 Data Acquisition Manager . 35

4.3.2 Probing Session . 36

4.3.3 Data Session . 37

4.3.4 MD Driver Library . 38

4.3.5 Data Object . 39

4.3.6 RT Data Object . 39

4.4 External Application Communication . 40

4.4.1 Subscription Manager . 40

4.4.2 Subscriber . 40

5 Hl7 Integration protocol 43

6 Test Phases 45

6.1 Final Test Results . 46

7 Conclusion 49

A Requirement Analisys Document 51

A.1 Functional Requirements . 51

A.2 Nonfunctional Requirements . 52

A.3 Hardware and Software Requirements . 54

A.4 Technological and Architectural Requirements 55

B Software Test Document 57

B.1 Introduction and Objectives . 57

B.1.1 Preliminary Test 1 . 57

B.1.2 Preliminary Test 2 . 57

B.1.3 Preliminary Test 3 . 58

B.1.4 Preliminary Test 4 . 58

B.1.5 Preliminary Test 5 . 58

B.1.6 Final Test . 58

Contents vii

B.1.7 Test Pile . 59

C HL7 Integration Document 63

D MD Communication Potocol 73

D.1 MEDIBUS protocol . 73

D.1.1 Communication life-cycle . 74

D.1.2 Message Structure . 74

D.2 Agila Serial Export Protocol . 75

D.2.1 Communication life-cycle . 75

D.2.2 Message Structure . 76

D.3 CEI protocol . 76

D.3.1 Communication life-cycle . 77

D.3.2 Message Structure . 77

D.4 VISTA Binary protocol . 78

D.4.1 Communication life-cycle . 78

D.4.2 Message Structure . 79

Bibliography 81

List of Figures

1.1 GANTT for the 1st Semester . 6

1.2 GANTT for the 2nd Semester . 7

1.3 Final GANTT for the 2nd Semester . 8

2.1 Hl7 Message . 12

2.2 Reference Information Model RIM . 14

2.3 General scheme of the Model for the Medical Package 16

2.4 MDLL Protocols . 18

3.1 Global Overview of the System . 24

3.2 Application Modules . 25

3.3 Module Data Aquisition . 26

3.4 Data Acquisition Manager . 26

3.5 Supported Equipment Drivers . 27

3.6 Probing Session . 28

3.7 Data Session . 29

3.8 Module External App Communication . 29

3.9 Subscriber . 31

D.1 Generic MEDIBUS Command . 74

D.2 Generic MEDIBUS Response . 75

D.3 Generic Agila Serial Export Message . 76

D.4 First Layer of the VISTA Binary protocol packet 79

D.5 Second Layer of the VISTA Binary protocol packet 79

D.6 Third Layer of the VISTA Binary protocol packet 80

ix

List of Tables

A.1 Functional Requirements . 51

A.2 Nonfunctional Requirements . 52

A.3 Hardware and Software Requirements . 54

A.4 Technological and Architectural Requirements 55

B.1 Test Pile . 59

xi

Abbreviations

ICU Intensive Care Unit

BIS Bispectral index

MD Medical Device

DSS Decision Support System

HSJ Hospital S. João

DEI Department of Informatics Engineering

HL7 Health Level 7

ANSI American NationalStandards Institute

MDF Message Development Framework

UML Unied Modeling Language

RIM Rnformation Iodeling Model

IEEE Institute of Electrical and Electronics Engineers

ISO International Organisation for Standardization

CEN Comité Européen de Normalisation

EHR Electronic Health Record

DIM Domain Information Model

MDDL Medical Device DataLanguage

xiii

This thesis is dedicated to my parents who have always supported
me throughout all this process. . .

xv

Chapter 1

Introduction and Methodology

1.1 Motivation

The Intensive Care Unit (ICU) of the 21th century is an extremely complex and diverse

environment where life or death decisions are made every day. In this environment where

huge amounts of data are generated every hour, proper handling of this data has been

proven to improve decision making, reduce patient’s lengths of stay, increase clinician’s

productivity and overall service quality and reduce operating costs [1] .

In this work is proposed an integration solution that tackles the problem of sharing

Medical Device (MD) data in a transparent way to all the interested parties in the

ICU. In order to do this an application was developed that was capable of gathering all

data generated by Medical Devices in an ICU, in particular ventilators, infusion pumps

and BIS monitors and provide an standard based interface through a gateway to other

applications.

This solution will provide a tool to respond to an emerging problem in the data-flow

of ICU that is the appearance of applications like Decision Support Systems (DSS) or

scientific research applications that will oftentimes “compete” with the central service,

which manages the Electronic Patient Record and the unit’s workflow, for the access to

data from the unit’s MDs.

1.2 Framming and Problem Defenition

The neurological patient’s ICU service of Porto’s Hospital de S. João (HSJ) has a central

service solution (B-ICU.Care [2]) and a DSS application (ICM+ [3]) to help the clinicians

monitor their patients and improve their decision making.

1

Chapter 1. Introduction and Methodology 2

B-ICU.Care is fully integrated with both the Hospital Information System and the Lab-

oratory Information System and manages all the workflow in that hospital unit. This

solution is also responsible of acquiring and storing data from MDs. Due to the storing

feature of this solution, the sampling rate at which this data acquired is low and no curve

data is never acquired in order to keep the volume of data in the database affordable.

B-ICU.Care also has a broker capable of integrating with other applications, but only

data stored in the database can be shared.

ICM+ is a clinical research tool used by clinicians to develop and test new indicators to

better understand and treat neurological disorders. This application uses data directly

acquired from the MDs at high sampling rates. This is a stand-alone application that

has limited means of communication data to other applications.

Each of these applications provides useful information to the clinician but at the current

state of the unit’s information system, they cannot be used simultaneously. This happens

because they both use the MDs as source of data and most of the MDs in use at the

unit can only provide a single RS-232 channel and therefore can only be monitored by

a single application at a time. Even though B-ICU.Care can share its data with ICM+

via broker, this data would not be detailed enough. ICM+ is a research tool, therefore

in its construction no importance was given to this subject and a broker to share data

was never implemented.

The main purpose of this thesis is to develop a tool to tackle this problem of sharing of

data in an ICU unit. For this we propose a Medical Device Integration system capable

of integrating all acquired data from the unit’s MDs in a standard based broker. This

way all current and future applications operating in the ICU will have a simple way of

acquiring all the data they need from MDs.

In order to avoid future interoperability problems with other devices or applications, the

solution will be developed in a way that allows future developers to quickly add new

modules to communicate with other applications and devices that need to be integrated.

1.3 Project Team and Collaborators

The project team is composed by the following elements:

• Paulo de Carvalho (1)- Supervisor at DEI

• Eng. Ricardo Sal (2)- B-Simple Coordinator

• Peter Smielewski (3)- ICM+ Consultant

Chapter 1. Introduction and Methodology 3

• Celeste Dias (4)- HSJ Consultant

• Manuel Cabeleira (1)- Final Project Student

(1) Department of Informatics Engineering (DEI) is the entity responsible for

the academic part of the project.

(2) b-Simple is the engeneering company responsible for the project. It is also the

owner of the application B-ICU.Care.

(3) University of Cambridge Enterprise is the owner of the application ICM+.

It is responsible for adapting the ICM+ application to communicate with the developed

solution.

(4) Hospital S. João is the healthcare unit that will be used to test the developed

solution.

1.4 Work methodology

During the Requirement analysis and Architecture development stages of the develop-

ment of this thesis, no access to the applications or to the medical devices was required.

As such the work was performed in DEI facilities resorting to a computer with internet

access. During the development and testing phases, the work was performed both at

the HSJ when access to the equipment was necessary and at home when not.

1.4.1 Software development methodology

The development methodology used in this work was inspired in the iterative and in-

cremental development method, but here the solution only transitioned to production

after a final testing phase where in theory the developed solution should have been

transitioning to production iteratively. The development work was divided in 4 phases:

• An initial planning phase where a requirement analysis was performed in order

to gather all the important information about the project and access the risks

involved.

Chapter 1. Introduction and Methodology 4

• The second phase was to design a system architecture that would embody all

features the developed software should have in order to answer all the gathered

requirements.

• In the third phase the application was developed incrementally by starting with a

small yet functional and testable system resulting of a small part of the designed

architecture. Then continuing adding other parts of the architecture to the system.

On each new development, the system was tested for the features it incorporated

before adding more content

• After the final prototype was implemented, a final test phase was conducted where

all the load and stress tests were performed.

This development method has proven quite convenient because some parts of the project

were similar to each other, with this approach by developing and testing one of these

parts, the future development of the others proved faster. Debugging was also facilitated

as the developed code between tests was small.

1.4.2 Quality Control Mechanisms

To ensure that the final product meets all the listed requisites, the student always

validated each document and major breakthrough with the supervisors via weekly 15-

5 model reports and monthly face-to-face meetings with the supervisors. Every time

something needed to be presented to validation by any of the external stakeholders, for

example the person responsible for the applications, the email method was employed.

To improve the quality of the solution, each new development was tested to avoid the

propagation of errors during the development. The solution only passed to the pro-

duction stage after a final testing phase to further guarantee the fulfilment of all the

requisites.

In order to keep future developments easy to add, every single part of the project will

be documented in this document.

1.4.3 Risk analisys

The development of this project is imbued with several risks:

• The unavailability of the communication protocol document for a MD that needs

to be integrated. This can deeply affect the development of the project and in order

Chapter 1. Introduction and Methodology 5

to avoid this risk, all the communication protocols have been gathered before the

project began.

• Unavailability of MDs to test the solution under development. This risk can sab-

otage most of the solutions testing phase. In order to minimize this risk, we have

contacted HSJ and we got clearance to test the solution in their facilities.

• Delays in the development of the interface from the side of the ICM+ application.

This risk can also sabotage the solutions testing phase as it will make impossible

to test the solution in a real situation. In order to avoid this problem, a protocol

test tool developed by B-Simple company will be used in the testing phase.

At the beginning of the testing phase ICM+ application was still not ready for testing,

therefore the solution was only tested by the B-Simple side in a real situation

1.5 Planning and Evolution

The work presented in this thesis was performed in between the sixteenth of September

of 2013 and the second of September of 2014.

During the first two weeks of the project some time was taken to study the existing

system, the applications B-ICUCare and ICM+ and all the technologies involved in the

development of the solution. From this time the first phase of the project was planned

and a Gantt was produced (figure 1.1). This first phase covers the first two steps of the

software development methodology employed in this work.

The first period of this first phase took roughly 8 weeks and was used to make a study of

the state of the art where the student firstly took acquaintance of the medical equipments

that were to be integrated in the development solution along with the protocols that

those devices use to communicate. A literature survey was also conducted in order to

acquire information about the international standards in medical device communication,

existing technologies and similar solutions present in the market.

This period was conducted alongside the requirement analysis period where several elec-

tronic meetings with the developers of the applications were conducted. One formal

session also took place, with Dr. Celeste Dias and Eng. Ricardo Sal. The elaboration of

the requirement document was accomplished in one week after the period of the study

of the state of the art.

Chapter 1. Introduction and Methodology 6

14

61

49

20

29

16/09/2013 06/10/2013 26/10/2013 15/11/2013 05/12/2013 25/12/2013 14/01/2014
In

tr
o
d
u
c
ti
o
n
 t

o
th

e
 e

x
is

ti
n
g

p
la

tf
o
rm

S
ta

te
 o

f
th

e
 a

rt
R
e
q
u
ir
e
m

e
n
t

a
n
a
ly

s
is

S
y
s
te

m
A
rc

h
it
e
c
tu

re
/

T
e
s
ts

D
o
c
u
m

e
n
t

W
ri
tt

in
g
 o

f
th

e
R
e
p
o
rt

Figure 1.1: Gantt of the 1st Semester

The next period of roughly three weeks was used to develop and validate the system

architecture. The last phase of 4 weeks was used to write an intermediate report and

the Test document.

As can be seen in the Gantt the initial planning was fulfilled with few deviations. The

major deviation to the plan was the development of the test document that was per-

formed alongside the period dedicated to writing the intermediate report.

The second phase of the development of this thesis covers the implantation and testing

steps of the software development methodology employed. The planning of this phase

was performed at the end of the first phase, from this planning the Gant diagram of

figure 1.2 was produced.

This plan envisioned a 2 month period to develop the module DataAquisiiton responsible

for the acquisition of the data from the MDs.

The second phase of the plan was destined to the development of the ExtAppCommu-

nication module that would implement an Broker capable of transferring data from the

MDs.

Chapter 1. Introduction and Methodology 7

The third phase was destined to the development of the DataBase module that would

save all the acquired data in a shared database with the B-Simple application and would

take 9 days to be accomplished.

In the fourth phase the EventLogger module was to be implemented in 5 days where all

relevant occurrences would be logged.

The fifth phase of about 2 weeks the final tests would be made to the application In the

last month all the documentation would be produced.

60

27

9

5

15

30

07/02/2014 27/02/2014 19/03/2014 08/04/2014 28/04/2014 18/05/2014 07/06/2014 27/06/2014

DataAquisition

ExtAppCommunication

DataBase

Event logger

Tests

Final Report

Figure 1.2: GANTT for the 2nd Semester

This plan proved however difficult to fulfil due to several factors:

• The expected amount work for the Data Acquisition module was underestimated,

mainly due to the complexity of some protocols.

• Scheduling tests in the testing phase also proved difficult to accomplish because

we had to test two applications at the same time, due to the need of having to

apply the contingency plan of creating a client for our broker in the B-Simple side.

• The plan was also altered during the development time due to the need of applying

the contingency plan of developing an application from the b-simple side to serve

Chapter 1. Introduction and Methodology 8

as a client to our application’s broker, the DataBase module became obsolete and

was removed.

• The Event Logger module was found to be implemented alongside with the other

phases and therefore was also removed from the Gantt

Because of some of these reasons it was decided to postpone the delivery of this thesis

from the early July to early September, in order to be able to accomplish everything in

time. In order to compare the initial planning to the actual outcome of the development

process another gantt with the actual timings of each of the development phases is

presented in figure 1.3

72

36

74

29

07/02/2014 29/03/2014 18/05/2014 07/07/2014 26/08/2014

DataAquisition

ExtAppCommunication

Tests

Final Report

Figure 1.3: Final GANTT for the 2nd Semester

Chapter 2

State of the Art

2.1 Introduction

The ICU is a hospital unit where patients are often connected to a wide range of MDs like

ventilators, vital signs monitors, infusion pumps, etc. In the last few decades advances

in technology have bestowed the ICU with MDs capable of providing huge amounts

of valuable information to the clinicians, but each device uses its own communication

protocol developed by the device’s manufacturer. These protocols are often proprietary

and can only work alone or inside single-vendor equipment. Even though this situation

creates many interoperability issues, the MD’s manufacturing companies are not inter-

ested in interoperating with each other due to several reasons. The first reason is the

lack of regulatory requirements regarding interoperability. Implementing this kind of

regulation is hard, because if a MD’s purpose was also to communicate data to other

systems, the manufacturers would have to test the device with every generic system to

ensure safety and effectiveness generating unaffordable financial costs [4]. In this sce-

nario it would also be impossible to ensure compatibility with future devices. Another

reason is customer retention. MD market is highly competitive and if a device has a

company specific communication protocol it becomes harder to a client to change to a

device of another company.

In this scenario several organizations have tackled this problem by developing standards

for the interoperability of medical information systems. In regard to the ICU there are

two standards that are well known and widely accepted, the Health Level 7 (HL7) and

the ISO/IEEE 11073.

9

Chapter 2. State of the Art 10

2.2 HL7

Health Level 7 is the name of an organization certified by the ANSI as a standard

developing organization committed solely to the healthcare domain [5]. This organi-

zation focuses on the production of standards to provide interoperability in the data

exchange processes for all the healthcare system, including sectors like administration

and finances. The standards developed by this organization with more success are the

messaging protocols Hl7 v2 and HL7 v3.

This organization was created in 1987, during this time and throughout most of the

90’s the interfaces between systems in healthcare units were very limited and costly

because each interface was custom designed, requiring extensive programming by all

the parts involved. In this scope the first versions of the standard were developed by

clinical interface specialists. These developers noted that in order to drastically reduce

the interfacing costs it was only necessary to predefine 80% of the interface framework

upfront. The remaining 20% could be custom made by a given facility to reflect special

cases.

The first usable version of the standard was released in 1990 by the name of HL7 v2.1.

This version and its successor, HL7 v2.2 (1994), were vague and under documented in

order to make this standard flexible enough to attract as many users as possible. The

user base of this standard kept growing and new versions of the standard were released

accordingly, HL7 v.2.3 (1997) and HL7 v.2.3.1 (1999). By this point the acceptance level

of this standard was so high that almost every new application in the healthcare area

was compliant with the standard. Four more versions were released until the present,

the version HL7 v.2.4 (2000), HL7 v.2.5 (2003), HL7 v.2.5.1 (2007) and the HL7 v.2.6

(2008). All these versions are backward compatible, making an application developed in

the version 2.3 able to process messages for the 2.2 version. The next section summarizes

the HL7 v2.x message protocol.

2.2.1 HL7 version 2.x

All v.2.x messages are encoded as ASCII text strings with delimiters and constitute the

atomic unit of data transferred between systems. Each message is always initialized with

an ACSII character ‘0x0b’ and terminated by an ‘0x1c’ character followed by a carriage

return character.

The set of documents that constitute the HL7 v.2.x define a base message structure that

can be used to transport different types of messages, it can produce messages relative

to, patient management, financial services, laboratory tests, etc. These messages can

Chapter 2. State of the Art 11

also come in the form of queries, results, observations, etc. In order to compose these

messages the standard defines different segments and a valid combination of segments

makes a message.

• Segments

The body of a message is composed of segments and a message has an indeterminate

number of segments. Depending of the message type a given segment may be mandatory

or optional, it can also be repeatable or not. The standard also allows Z segments, these

segments are completely customizable, but its use must be considered carefully. Each

segment defined has a unique three characters identifier and it logically groups data, for

example the PID (patient identification) segment contains data related to a patient, like

his name and address.

• Fields

Each segment of a message is composed by a given set of fields. Each field is composed

by a size variable string and is delimited by a ‘|’ character. A valid segment must contain

all the fields that define them delimited, because each field contains semantics in the

scope of the standard and a field is identified by its position in the message. There are

three different data types to define a field. They can be defined internally, using a table

of the standard, externally, using a vocabulary like ICD (International Classification of

Diseases [6]) or by the user in the Z segments. A field can also be single or composed.

An element of a composed field can be separated by using the character ‘ˆ’ as separator.

The subcomponent separator is the character ‘&’ and the character ‘˜’ can be used to

repeat a different version of a component.

• Example message

In figure 2.1 an example message is presented. This message is referent to an unso-

licited observation result (ORU) composed of 9 different segments. The first segment

is the Message header (MSH) and contains information about the sending application

(B-Sharer), the receiving application (BICUCare), the message type (ORUˆR01), the

message ID (1408480019815) and the HL7 version number (2.4). The second segment

is referent to the Patient Identification (PID) and fields with the patient internal ID

(1), the patient name (SmithˆJohn). The following segment is the patient visit segment

(PV1) containing a field relative to the bed where the patient is (ˆˆ2). The Segment

(PV2) contains more information about the patients loation. The next segment is the

Chapter 2. State of the Art 12

Observation segment that contains the date of the observation (20140819202654). This

segment is used to provide generic information about the following Observation fields

and can have associated to it numerous Observation segments. In the Observation seg-

ments are inserted fields with the actual results of the observation. The first observation

contains a field with the Value Type (NM abbreviation for ‘numeric’), the second field

is the Observation identifier (280ˆTVexp) the next field is the actual value of the obser-

vation and is followed by the field where the units of the measurement are present, in

this case is a ml (mililiter). The other OBR segments follow the same logic.

MSH|^~\&|B-Sharer|HSJ|BICUCare|HSJ|20140819202700||ORU^R01|1408480019815|P|2.4||1

PID|||2||Smith^John

PV1||I|^^2

PV2|Neurocrı́ticos^ICU^2^HSJ

OBR|1|||^MedibusEvita4|||20140819202654

OBX|1|NM|280^TVexp||600|mL|||||F

OBX|2|NM|118^MVexp||9.5|L/min|||||F

OBX|3|NM|774^FR||16|1/min|||||F

OBX|4|NM|594^SpRR||0|1/min|||||F

Figure 2.1: Hl7 Message example

• HL7 v.2.X Limitations

The objectives of the older 2.x version were pretty much achieved, because they suc-

cessfully reduced the costs of interfacing systems and created a common language the

most of the healthcare systems speak nowadays. But now that the system is widely

accepted, the ambiguity and flexibility imbued in the protocol are now the main sources

of criticism in this standard, being often framed as the ‘non-standard standard’.

This flexibility is now the standards main weakness because, even though the standard

defines restrictions to the composition of the segments and the fields, it is still possible

to implement custom messages that violate the standard if the changes are previously

negotiated between the implementing parties. This situation happens regularly and

causes each interface to still require special attention.

In order to work around this problem, the HL7 organization has developed a new version

of the standard, the HL7 v3 [7]. This new version defines a more consistent data model

and is less flexible. It was also decided that the new standard would not be compatible

with the older versions transforming it into a new standard. This new version has been

Chapter 2. State of the Art 13

released in late 2005 and promises to predefine 90% of the interface. The next section

summarizes the HL7 v.3 message protocol [8].

2.2.2 HL7 v.3

For this new protocol, HL7 has replaced the ASCII messages with an object oriented

approach that exchanges XML messages. This version makes use of the new developed

Message Development Framework (MDF) that makes use of Unified Modeling Language

(UML) design concepts.

• Reference Information Model (RIM)

The RIM is the cornerstone of the HL7 v.3 information models. It is the ‘grammar’ of

the standard and specifies a set of ‘building blocks’ that imbue the data in a message

with semantic context, and lexical connection with other fields of the message. The Rim

consists of six core classes:

• Act: In this standard every happening is an Act and therefore this class represents

the actions that are executed in the healthcare domain. This class has several

specializations, for example, an observation or a procedure.

• Entity: Every Act involves interaction of entities, therefore this class represents

every object or being related to an Act. This class also has several specializations,

for example, an entity can be a living subject or a material or even a place.

• Role: Every entity performs a role, in this class is represented the role that an

entity plays in an act. There are also several specializations for role, for example,

if the entity is a person, the role can be ‘patient’ or ‘nurse’.

• ActRelationship: Represents the links or relationships between Acts

• Participation: Represents the relation and involvement between a Role and an Act

• RoleLink: Represents the links or relationships between Roles

In figure 2.2 a model of the RIM is presented. Each class of the RIM has a pre-defined

set of attributes and each attribute has a predefined data type. These attributes and

data types are then used in the XML messages as tags. HL7 v.3 supports several data

types:

• Basic data types: these can be Boolean, Binary, String, Text, numeric, etc.

Chapter 2. State of the Art 14

• Codes and identifiers: there are two main code types in this version, the first set

of codes are defined by HL7 and are used to structural attributes, the second type

of codes are defined by other entities, like SNOMED [9]. An identifier is a code

generated automatically used to provide a unique identity to people, organizations,

objects, etc.

• Date/time

• Name and address: these data types are similar to the ones used in v.2.x

The organization has also developed a notation model called Refined Message Infor-

mation Model (RMIM) that displays the structure of the message. This model can be

presented as a color-coded diagram.

Figure 2.2: Reference Information Model (RIM)

2.3 IEEE11073

The ISO/IEEE 11073 [10] also known as x73 or is a family of standards developed by

the Institute of Electrical and Electronics Engineers (IEEE) and the European Commit-

tee for Standardization (CEN) that were grouped by the International organization for

standardization (ISO).The first part of this standard began being developed by IEEE

in 1984 under the name of MIB. Another important part of the standard was indepen-

dently developed by CEN in 1994 by the name of (PoC-MDC). This was already a set

of standards to interconnect and interchange MD data. This standard was revised in

1999. Later in 2000/2001 both ISO and IEEE reached a consensus and created a joint

project to create an international standard. To reach international consensus, CEN was

also invited to the project.

Chapter 2. State of the Art 15

This family of standards aims to respond to the interoperability issues of between-

vendor MDs in the ICU by using the Poc-MDC standards for MD connection with the

information system and a set of documents that specify each of the 7 OSI layers of a

communication system.

The Poc-MDC standard solves the interoperability issues in the level of the MD by con-

necting all the devices to be monitored to a central gateway responsible of managing

all communication between the MDs, retrieving data from the MDs and communicating

that data to the EHR server. In some solutions [11] the MDs with proprietary commu-

nication protocols are connected to an adaptor responsible of converting the acquired

data to the X76 data representation model and dealing with the communications with

the gateway creating solutions that are end-to-end standards.

The first part of the communication standard worthy of mention is based on standards

developed by CEN and specify basis upon which the rest of the standard is configured.

It defines the nomenclature, syntax and semantics of the data, the Domain Information

Model (DIM) and provides several specialization documents regarding MD categories.

• Domain Information Model (DIM)

The DIM is an object oriented model that represents real world entities like MD or

patients in an abstract manner. This model is made up of eight packages:

The Medical Package deals with acquiring biomedical signals and correctly repre-

senting them, while also gathering context information necessary for the interpretation

of those measurements. In 2.3 a general scheme for the Model of the Medical package

is presented. Here the VMO (Virtual Medical Object) object is the base class of all the

objects of this model. The VMD (Virtual Medical Device) in an abstraction of a medi-

cal device and contains objects representing measurements and status information. The

channel object is used to group metric objects that can be of several kinds (Numeric,

Real time, etc.)

The Alert Package contains objects to deal with information related to physiological

alarms, techniques and information for the user about the equipment.

The System Package deals with the representation of devices that acquire or process

vital signals information.

The Control Package contains objects that specify the data accessible by an remote

system. It also implements means to control several parameters of the data, for example

the sample rate.

Chapter 2. State of the Art 16

The Extended Services Package contains objects providing management services

for medical objects.

The Comunication Package contains the objects responsible for storing information

regarding to how the devices communicate

The Archive Package supports objects related to the storage of the acquired signals

The Patient Package contains objects regarding the patient that are relevant to the

device.

Figure 2.3: General scheme of the Model for the Medical Package

• Common Nomenclature

This part of the X76 protocol also defines document with a Medical Device Data Lan-

guage (MDDL) based on the DIM. Here all the semantics and syntaxes used in the

messages are specified and the all the nomenclature used is defined using 16-bit unique

codes. This language contains thousands of terms regarding information about patients,

MD, measurement values and methods, techniques, alarms, etc.

• Medical Device Application Profiles

Chapter 2. State of the Art 17

The second part of the standard defines the application layer for exchanging data coded

in MDDL. In this section the standard defines the services that will be used to com-

municate information between MD, Gateways and servers in the three upper layers of

the OSI model, the application, presentation and session layers. In 2.4 is presented the

generic communication stack and the encapsulation scheme of this part of the standard.

In order to be efficient in the implementation, the headers that are added in each layer

of the communication model have a fixed structure with optional elements. This made

the communication stack more flexible and allows other message transmission profiles

to be accommodated in the structure. For this five protocols are defined:

The Common Medical Device Information Service Element (CMDISE) is responsible

for providing services of data objects management like data retrieval or object creation.

The Association Control Service Elements (ACSE) provides mechanisms to establish

or brake logical links between two applications of different systems.

The Remote Operation Service Element (ROSE) defines the means to invoke operations

in a remote system by using request/answer elements.

The Presentation Layer responsible to negotiate the abstract and reference syntax

The Session Layer to provide support the ACSE standard

The Medical Device Information Base (MDIB) is specified MIB part of the standard

and contains the names of the object instances of the DIM. In the MIB also defines two

communication profiles, a Baseline Profile that mainly receives information via report

events when there are changes in data or new data is available and a Pooling profile that

allows the host to explicitly request data from the device.

The Standard also has standards for the remaining layers, for an overview of the x73

documents we refer to [12].

This standard is still under development but it is already possible to create end-to-end

solutions by using it [11], several MD manufactures have also adopted the standard and

implemented versions of it in their devices, one example is Philips. X73 is also being

adapted to telehealth systems and has been adopted by the Continua Health Alliance

[13] as its base standard.

Chapter 2. State of the Art 18

Figure 2.4: MDLL Protocols - Generic Communication Stack (left) Encapsulation
Scheme (right)

2.4 Communication Protocols of the Integrated Medical

Devices

This solution envisions the integration with all MD of the HSJ neurological patient’s

ICU. This unit is equipped with ventilators from two different vendors, the Maquet

servo-I and the Draeger Evita. It also has infusion pumps manufactured by Fresenius

and a BIS monitor manufactured by Aspect Medical Systems.

The communication protocols are different for each vendor and therefore four differ-

ent drivers had to be implemented. In appendix D each of these protocols are briefly

presented.

2.5 Similar Solutions on the Market

The application developed in this work intends to be an upgrade for the B-ICU.Care

solution in the areas of MD integration and MD data sharing. With this new addition

B-Simple intends to solve a particular problem in the HSJ neurological patient’s ICU

while adding more value to its flagship solution B-ICU.Care.

Chapter 2. State of the Art 19

This solution is inserted in the Portuguese and Spanish market of ICU and anaesthesia

information systems. In these markets the major competitors are the intensive care

solutions distributed by iMD-Soft [14] and Otpum[15], formally known as Praxis. Both

these companies offer a solution in everything similar to the one provided by B-Simple

but no specific information regarding the nature of medical data acquired is provided

the on these companies websites.

Still in the Portuguese market another solution worthy of notice is Alerts Patient Data

Monitoring System [16]. This solution is also capable of at least acquiring medical data

from MD, but this company is still to enter in the ICU information System market.

Capsule is one company responsible for the distribution of one of the leading solutions for

ICU information systems [17] outside the Portuguese market. This solution is specialized

in the integration of MD data in the Electronic Medical Record and provides a standard

based broker for MD data sharing. Another company that also provides a solution

specialized in the MD integration is distributed by True Process [18]. This solution is

also capable of sharing MD data through an broker.

The addition of this new feature to B-Simple’s solution will therefore provide competitive

advantages regarding the Iberian market and will imbue the solution with more tool to

enter new markets.

Chapter 3

Specification Analysis

In this chapter are presented the first stages of the software development, the requirement

analysis, the system architecture and the software test protocol.

3.1 Requirement Analysis

This analysis was performed in the first 8 weeks of the development process. During this

time all the necessary requirements were listed by conducting several meetings with all

the major stakeholders. Due to the geographical distance between all the stakeholders

it was not possible to conduct a meeting that gathered everyone. All the requisites were

therefore gathered by using the three following methods:

• Informal week-to-week electronic meetings with b-simple’s engineer Ricardo Sal,

• A face-to-face meeting with Ricardo Sal and Dr. Celeste Dias in the HSJ,

• E-mail conversations with Dr. Peter Smielewski, developer of ICM+.

From these meetings a Requirement Analysis document was produced and is available

in the Appendix A of this thesis. In this document all the requirements are subdivided

in four groups:

• Functional Requirements

• Nonfunctional Requirements

• Hardware and Software Requirements

• Technological and Architectural Requirements

21

Chapter 3. Specification Analysis 22

The main functional requirements are related to the acquisition of data from medical

devices, whether it is numerical or curve data (Requirements 1-6). Another important

functional requirement was the presence of an HL7 broker capable of allowing external

applications to select the data they need (Requirements 7-8).

The main non-functional requirements listed in the document are closely related to the

need of constantly upgrading the application, whether it is by increasing the number of

MDs supported or the types of query that the broker can receive (Requirements 11-13,

22). Another area covered is scalability, here requirements related to the capacity of the

solution to perform well in any condition or volume of work and be capable of quickly

restoring its function if anything goes wrong (Requirements 14-20).

In the Hardware and Software Requirements section are listed all pieces of hardware and

software needed to perform the work.

Lastly in the Technological and Architectural Requirements is stated the programming

language that the solution will be developed on and some important features of how

the data acquisition process should have, namely the capacity of connecting with a MD

using a serial connection or a TCP/IP one (Requirement 27).

Some of the requirements became partially or completely obsolete during the develop-

ment process when the need of integrating with a database ceased. These requirements

are the requirement 9, 13, 14,17 and 20.

3.2 System Architecture

3.2.1 Introduction

The second step of software specification is the system architecture. In this chapter an

overview of the proposed architecture is presented. This architecture aims to produce a

model capable of effectively responding to the listed requirements. In particular, with

this architecture we aim to address the requirements of:

• Automatic detection of any supported MD

• Homogenous data representation

• HL7 Broker

• Extensibility

• Event logging

Chapter 3. Specification Analysis 23

During the course of this work the initial architecture took on some changes. The most

important of these changes will be mentioned when pertinent throughout the chapter.

3.2.2 Global Overview

With the analysis of the problem statement and the requirement analysis sections it is

easily noticeable the existence of two major interfaces that the solution to be developed

must interact with. The first interface, the MD Interface, is responsible of the commu-

nication with all connected MDs operating in the Unit. All these MDs and the solution

under development are physically connected by a serial terminal server. This interface

poses several development challenges:

• Each different medical device will usually communicate via a proprietary protocol.

This means that the solution will have to support as many protocols as needed.

It also means that the running solution will have to be able to detect in which of

the supported protocols the MD is communicating.

• Most MDs are passive devices, meaning that they will not proactively try to ini-

tialise communication. To tackle this problem the solution will have to periodically

probe all the ports where new MDs can eventually be connected.

The second interface is the External Communication Gateway and will be responsible for

managing all the sharing of data from the medical devices with external applications.

In this interface all intervening applications will always communicate using the HL7

protocol. The main challenge in this interface will be to devise a method to route the

right data to each application communicating with the HL7 broker.

At the beginning of the project two more interfaces were also envisioned. These were

the Database and the email service interfaces. The Database interface was removed

from the project because it was decided that this solution was to work independently

from the B-Simple solution and all communication would be made via the HL7 Broker

making this way this interface obsolete. The email service interface was also removed

from the solution and left to be done as future work.

In figure 3.1 is presented a diagram depicting the general overview of the system.

3.2.3 Application Modules

The developed application was divided in two main modules, the Data Acquisition and

the External Application Communication modules. With each module incorporating all

Chapter 3. Specification Analysis 24

Figure 3.1: Global Overview of the System

the necessary tools to properly handle one of the interfaces stated above. The main

responsibilities of these modules are:

• Data Acquisition module : managing all the communication and data acquisi-

tion processes with the medical devices and generating data objects to be used by

the other modules of the application.

• External Application Communication module: managing all the communi-

cation with external applications requiring data from the MDs. This module will

use the data objects generated by the Data Acquisition module as the source of

MD data.

Alongside these two modules will be running another called Event Logger that will be

responsible of logging all the important information regarding the normal functioning

of the application. As a future work this module will also generate emails containing

exceptionally important information that would require immediate attention from the

support team. In figure 3.2 and overview of the application modules is presented.

Chapter 3. Specification Analysis 25

Figure 3.2: Application Modules

3.2.4 Data acquisition Module

This module is divided in four main sections:

• The Data Acquisition Manager responsible of orchestrating the creation of probing

and data sessions, and managing all the data generated in the module.

• The Probing Session is the entity responsible of probing a port in order to detect

a MD and the protocol he communicates with.

• The Data Session is the entity responsible of orchestrating the communication with

a given medical device and generating data objects containing data from that MD.

• The fourth section of this module is the MD Driver Library that is composed of a

collection of DLL files that are used by both the probing and data sessions.

The diagram depicting this module is presented in figure 3.3.

3.2.4.1 Data Acquisition Manager

In order to be able to orchestrate the creation of Probing and Data sessions the Data

Acquisition manager will keep track of the state of every port potentially being used by

Chapter 3. Specification Analysis 26

Figure 3.3: Module Data Aquisition

the MDs. It will then periodically create probing sessions on idle ports. If any probing

session would find a supported MD it would inform the Data Acquisition Manager of the

occurrence and a new Data session will be created in that port. This manager will also

have to maintain a buffer to accommodate all the data objects generated by the data

sessions and providing an interface to the External Application module so that module

can have access to these data objects. This buffer will also have to be managed in order

to keep the amount of data in the buffer workable and relevant. In figure 3.4 a diagram

depicting the Data Acquisition Manager is presented.

Figure 3.4: Data Acquisition Manager

Chapter 3. Specification Analysis 27

3.2.4.2 MD Driver Library

The MD drivers in this library will be used by both the Probing and the Data sessions.

These drivers are responsible of processing the messages issued from the MDs and creat-

ing the messages to be sent to the MDs. These drivers will also provide the Data Session

with data so that it can generate data objects. In figure 3.5 a diagram depicting a MD

driver is presented. The architectural objects presented are:

Figure 3.5: Supported Equipment Drivers

• The Protocol Orchestrator is responsible maintaining the communication with the

MD by managing the timings of message generation and keeping track of the state

of the protocol,

• The Message Parser will use the byte stream received from the Session that is

implementing it to generate valid messages,

• The Interpreter will be responsible of extracting the information contained in a

received message. If a probing session is implementing the driver, the interpreter

will be also used to identify the MD in question.

• The Data Generation will be responsible of extracting all the medical data from

the messages and issue it to the Data session implementing it.

• The Command/Response Message Generator will be responsible of creating all the

messages that need to be sent back to the MD by the Protocol Orchestrator.

Chapter 3. Specification Analysis 28

3.2.4.3 Probing Session

The probing session will establish a connection between the application and the MD. In

order to detect the MD present in the port it will iteratively try to initiate communication

by using one of the protocols implemented by the MD drivers. When a MD starts

responding to the initialization commands the Probing Session will inform the Data

Acquisition Manager of the occurrence and terminate. In figure 3.6 a diagram depicting

this Session is presented.

Figure 3.6: Probing Sessions

3.2.4.4 Data Session

When a MD is detected a Data session will be created. This session will also establish

a connectionr between the application and the MD. It will also gather all the data

generated by the MD and create Data Objects. These objects will then be sent to the

central buffer in the Data Acquisition Manager. In figure 3.7 is presented a diagram

depicting the Data session.

3.2.5 External Application Communication

The diagram depicting this module is presented in figure 3.8. This module is divided in

three main sections: The server, the Subscription Manager and the Subscriber.

Chapter 3. Specification Analysis 29

Figure 3.7: Data Session

Figure 3.8: Module External App Communication

Chapter 3. Specification Analysis 30

3.2.5.1 Server

The Server is an architectural object responsible of maintaining a server capable of

sending and receiving messages from external applications.

3.2.5.2 Subscription Manager

The Subscription Manager will manage the creation of subscribers.

3.2.5.3 Subscriber

The Subscriber unit will be responsible of managing all communications with a single

application. The diagram of this object is presented in Figure 3.9. It implements 5

architectural objects:

• The Query Parser is responsible of gathering all relevant information from the

query.

• The Subscription Manager will use information from the parser in order to config-

ure the Data Object Retrieval, retrieve messages from the buffer and handle the

communication with the external application.

• The Data Object Retrieval will be used to gather all the relevant data object from

the Data Acquisition Module.

• The Message Buffer will store all the messages that are in queue to be sent to the

application.

• The Message Creator will transform Data Objects in messages.

3.2.5.4 Event Logger

This module will receive information regarding events that occurred in the other modules

of the application and stores it in log files. This part of the application was provided by

B-Simple.

Chapter 3. Specification Analysis 31

Figure 3.9: Subscriber

Chapter 4

System Implementation

In this chapter an overview of the implementation phase will be presented. As stated

in the Requirement analysis the solution was developed in VB.net. In this phase all the

described architectural objects were implemented, from this a fully functional prototype

was developed.

In order to aid in the development process, B-Simple has provided a test tool that was

capable of issuing both MD and HL7 messages. It has also provided the Event Logger

class, a base for the Hl7 broker and a class that parsed Hl7 messages and provided

methods to retrieve information contained in the message. It also provided a class that

was capable of maintaining a TCP socket.

4.1 Implementation phases

As stated in the Software Development Methodology section the implementation phase

was conducted incrementally. The first architectural object implemented was a MD

driver, and in order to produce a testable prototype, part of the data session was also

implemented in order to handle the physical communication with the MD. This proto-

type passed through a preliminary test where it capacity to establish communication

and retrieve medical data were tested.

After studying the results of the preliminary tests, a new iteration on the developed

prototype was conducted in order to correct some bugs and the rest of the MD drivers

were implemented. With the experience gathered during the previous phase, the imple-

mentation of the new drivers proved faster. As in the end of the previous phase, the

prototype developed was tested and reiterated.

33

Chapter 4. System Implementation 34

The third development phase produced, after its corresponding tests and reiterations,

another functional prototype. This prototype contained a fully developed Data Acquisi-

tion Module containing all the Architectural objects implemented. This prototype was

capable of generating data objects from MD.

The fourth increment produced a prototype that implemented the interface between

the Data Acquisition module and the External Application Module. Here the part of

the Subscriber that retrieves information from the Data acquisition and the part that

created HL7 messages were also implemented. This prototype was capable of acquiring

data from the devices and producing Hl7 messages with the medical data.

In the fifth and final increment the rest of the subscriber was implemented alongside with

the HL7 broker and the Subscription manager. In this last increment, the HL7 message

protocol was also created and implemented in the solution. The resulting prototype

was a fully functional solution that was capable of both acquiring data from MD and

maintaining an HL7 broker capable of sharing that data with other applications.

4.2 Configuration file

In order to make it easy to configure the developed solution to different medical units,

an user interface was developed. Here it is possible to:

• Associate hospital beds with ports,

• Define the sleep time for all data related timers,

• Define the IPs and ports of the HL7 broker,

• Insert invariable information to be used in the Hl7 messages, like the hospital

name.

• Configure the folder where the Dll files containing the MD drivers are to be placed

in.

This user interface then generates an xml file that is parsed at the initialization of the

application.

Chapter 4. System Implementation 35

4.3 Data acquisition Module

As stated above, this module is responsible of acquiring all data from the medical devices

and generating Data objects to be used by the External Application Module to create

HL7 messages.

4.3.1 Data Acquisition Manager

This is the base class of the Data Acquisition Module and can be divided in two main

sections, the Session Manager and the Data Buffer Manager.

The Session Manager is responsible for handling the creation and destruction of ses-

sions. For this the session manager uses a Timer that periodically checks for idle ports

and initializes new Probing Sessions in those ports. This timer makes use of an array

containing the status of each port configured in the solution. Here a port can have one

of three statuses, the Idle, the Probing and the Data Status.

The overall logic for the creation of session is as follows: after a Data session is termi-

nated, the method SessionCloser is called and the status of the port is set to idle. The

port will stay in the idle status for a configurable amount of time. After that time, the

timer will create a new probing session on that port by using the method ProbingSes-

sionCreator. If the probing session detects a new device the method SessionCreator

is called so that a new Data Session is created in that port. If no MD is detected the

method OnClosingProbingSession is called and the port is set to idle again.

In this module all sessions are self-destructed, therefore the Data Acquisition Manager

will only receive events from the sessions informing its termination.

The Probing Sessions will raise the CanStartSession event, that calls the Session-

Creator method, when a MD is detected and the OnProbingSessionClosing, that

calls the method OnClosingProbingSession, when no medical device is detected.

The Data Sessions raise the OnSessionClosing event, that calls the method Session-

Closer, when they terminate.

The methods called when sessions are closed are also responsible for eliminating the

session objects from the Array List that is holding them. Therefore the methods used to

create sessions are also responsible of adding these sessions to the corresponding Array

List.

The Data Buffer Manager is composed by two independent timers and two data

buffers. The timers will periodically check for old data in one of the data object buffers

Chapter 4. System Implementation 36

and deletes will it if it is considered old. A Data Object is considered old after it is in

the buffer for longer than a configurable amount of time.

These buffers are instantiated at the moment of the class construction. One of these

buffers is responsible of storing numeric data objects and another for storing curve data

objects.

This section also handles all the access to the Data Buffers by providing thread safe

methods to insert and access data in the buffer. The AddToBuffer is the method

used by the data sessions to populate the Numeric Data Object buffer. This method is

called after the Data session raises the OnDataObjCreated event. To populate the

Curve Data Object buffer, the method AddToRTBuffer is called after the session that

created the data object raises the OnRTDataObjCreated.

The External Application module will access the data in the buffers by using three

different methods:

• The GetDataObjectList method is used to retrieve all numeric Data Objecs that

were inserted in the buffer after given date and corresponding to a given subset of

ports.

• The GetNewestDataObjectList method is also used to retrieve numeric data

objects, but here for each port only the newest data object will be retrieved.

• The GetCurveObjectList method is in all similar to the GetDataObjectList

but here the buffer used is the one responsible of storing curve data.

The input variables for these methods are therefore an array of ports and a date corre-

sponding to the last time the buffer was accessed by the subscriber calling it. All these

methods and timers are controlled by two semaphores, one for each buffer that will only

allow access to the buffers to one thread at a time.

4.3.2 Probing Session

This class is instantiated by the Data Acquisition Manager when a port is Idle for a

configurable amount of time. The Probing Session begins by instantiating an object

for every MD driver present in the DLL library using assemblies. It will then get a

message of initiation of communication from each driver. These messages will then be

periodically sent to the medical devices by a timer called ProbingSessionTimer.

Chapter 4. System Implementation 37

This Session will also instantiate an object responsible for creating a TCP socket that

will handle the physical connection with the MD. From this object two main events can

be raised:

The first is called the OnConnectionBroken and is raised when the TCP connection

goes down. This event calls a method with the same name that will try to re-establish

the TCP connection.

The second event is the OnReceiveData that is raised when a steam of data from the

MD is ready to be processed. This event will also call a method with the same name

that will send a copy of the byte stream to each instance of MD drivers.

When a Probing Session detects a valid “start of communication response” from a MD

it will raise an event called OnProtocolFired that will call the method Determine-

Protocol. This method will determine the name of the protocol and raise the method

CanStartSession to inform the Data Acquisition Manager that a MD with that com-

munication protocol is connected in that port and that a Data Session can be initialized.

The method DetermineProtocol will also be responsible of terminating the Probing

session class and releasing all objects from memory. If no MD is detected after a period

of time, the method to close this session will be the Close method and the event raised

to inform the Data Acquisition will be the OnProbingSessionClosing.

4.3.3 Data Session

This class is also instantiated by the Data Acquisition Manager object, but here the

method that instantiates it is the SessionCreator.

Similarly to the Probing session, this class also will instantiate an object responsible for

creating a TCP socket where the same events are raised.

In contrast to the probing session, here only one MD driver is instantiated. The MD

drivers will raise four different events:

• The OnSendMessage event is raised when a message needs to be sent to the

MD. This event calls the method SendMessage that will queue a message to be

sent by the socket to the MD.

• The OnProtocolClosing event is raised when the Driver detects that no more

messages are being sent to him, in this case it will self-destruct and warn the

Data Session of it. The session will then call the method closeProtocol that will

terminate the session and warn the Data Acquisition Manager of the occurrence.

Chapter 4. System Implementation 38

• OnDataGenerated event is raised when the Driver finishes parsing a set of MD

messages that contain Numeric Data. The session then calls the method Cre-

ateDataObject that will create a Data Object and raise the event OnDataOb-

jCreated in the Data Acquisition Class so it can be added to the numeric data

buffer.

• OnRTDataGenerated event is raised when the Driver finishes parsing a MD

message that contain Curve Data. The session then calls the method CreateRT-

DataObject that will create a Curve Data Object and raise the event OnRT-

DataObjCreated in the Data Acquisition Class so it can be added to the curve

data buffer.

4.3.4 MD Driver Library

This library is composed by a set of DLL files containing the drivers that can process

and create messages to be sent to the medical devices. These drivers are instantiated

by both the Probing and Data sessions.

Even though all communication protocols with MD are different, these files were con-

structed so that the interface with the sessions is consistent through all drivers.

The interface with the sessions is conducted through the five events previously mentioned

earlier:

• OnSendMessage

• OnProtocolClosing

• OnProtocolFired

• OnDataGenerated

• OnRealTimeDataGenerated

And through the method ToMessage that is called by the session that instantiated the

MD driver when the OnRecievedData event is fired. This will redirect the received

byte-stream to the MD. The ToMessage method is responsible of parsing the byte

stream into valid messages from the protocol the MD driver implements.

When a message is generated by the ToMessage method, the Interpreter method is

then called. This method will be responsible of extracting information from the messages

and sending that information back to the Session implementing it. This information can

Chapter 4. System Implementation 39

be the name of the MD if a probing session is instantiating it or data objects if it is

under a Data Session.

The driver also provide a timer responsible of orchestrating the cadence of messages to

be sent to the MD in order to achieve a steady flow of data. This timer will also be re-

sponsible of terminating the communication with the MD and triggering the termination

of the Sessions when the MD stops receiving data from the MD.

4.3.5 Data Object

This is the generic object used to transport numeric data throughout the application.

This object is instantiated by the Data Sessions when data related events are fired and

is used by the External Application Module to create Hl7messages. It is composed by

several variables:

• The device variable will contain the name of the protocol, and therefore the device

that originated the data

• The timestamp variable will be used to contain the timestamp of the moment of

the generation of data coded as and Hl7 date type.

• The internalTimeStamp variable will be used to contain the timestamp of the

moment of the generation of data coded as the processor time. This variable will

then be used in all timing calculations, whereas the previous time stamp will be

used to create the HL7 messages.

• The ip will contain IP address of the Terminal served that the device is connected

to.

• The port will contain the port number of the Terminal Server that the device is

connected to

• The numericData variable will contain a list of string arrays, with each array

containing the value of a data element, the generic code used by the application

to represent the data element, the units in which the element is encodded in and

an abbreviation of the common name given to the data element.

4.3.6 RT Data Object

This object is equal in everything to the Data Object presented above, but in the RT-

data variable that substitutes the numericData. This object will be used to transport

Curve data through the application.

Chapter 4. System Implementation 40

The RTdata variable in this object will also be composed by a list of string arrays the

will contain a string representing the array of data containing the curve, the generic code

used by the application to represent the data element, the units in which the element is

encodded in, an abbreviation of the common name given to the data element and the

sampling rate at which the data was generated by the MD.

4.4 External Application Communication

This module is the one responsible of maintaining an HL7 broker by using the data

objects created by the Data Acquisition Module. This module is divided in three main

sections, the Subscription manager, the Hl7 Broker and the Subscriber.

4.4.1 Subscription Manager

This class implements a TCP server that is capable of receiving connections from other

applications through a listener that creates a new TCP client when a new connection is

received.

This listener is associated to a thread that periodically checks when a new client is

created. When this happens the subscription manager will compare the IP of the new

client with the IP of all subscribers running in the application. If there is no subscriber

with the IP, a new subscriber is created. If there is already a subscriber communicating

with that IP, the manager will use a method of that subscriber called Reconnect in

order to re-establish the connection with that application.

When a subscriber terminates the communication definitively, an event called OnSub-

scriberClosed is raised. This calls the method CloseSubscriber that will remove the

subscriber from the subscriber list and make that IP available again.

4.4.2 Subscriber

The subscriber incorporates all the necessary methods to interpret Hl7 queries, create

Hl7 messages with data from MD and sending Hl7 messages.

In order to handle the socket and the HL7 communication protocol, and object of the

class HL7Protocol is instantiated.

When the HL7protocol object receives a message, it creates an HL7Data object with it

and raises an event called OnHl7ParseEnd. When this event is raised the Subscriber

Chapter 4. System Implementation 41

will check if that message is of the HL7 QRYˆR02 type and proceeds to process it in

order to update the data subscription. If the received message is of the ACK or NAK

type, a different event is raised. The OnHL7ACK also retrieves an HL7Data object

and is used by the subscriber to check for its corresponding message in the message

buffer in order to delete it.

After a subscription is made, a timer is instantiated that will retrieve the subscribed data

objects from the Data acquisition module using the GetDataObjectsmethod. This

method will retrieve information using one of the three methods previously mentioned:

• The GetDataObjectList method,

• The GetNewestDataObjectList method,

• The GetCurveObjectList method.

Whenever a new query is received all aspects of the subscription will be updated.

If the GetDataObjects method retrieves numeric data objects an HL7 message is

created by the CreateHL7 method and sent to the client. If the data object received

is relative to a curve the CreateRTHL7 method is called instead and an HL7 message

containing curve data is generated.

These messages are also inserted in a Message buffer that will keep it in memory until

the corresponding ACK is received. The messages in the buffer have a configurable

life-span and are periodically resent if they remain in the buffer. The Subscriber will

continue generating and sending new messages to the subscriber, but it will time-out

and close if no messages are received for a period of time.

In the HL7 Integration Protocol chapter a description of the messages exchanged and

overall communication flow can be found.

Chapter 5

Hl7 Integration protocol

The main objective of this work is to produce data sharing tool that can be easily

integrated with. In order to do this, a set of communication rules were created having

the version 2.4 of the HL7 protocol as a base.

When using this protocol the external application must act as the master and take

initiative when initializing communication. This is done by creating a TCP client in the

server provided by the developed application.

After having the communication established, the external application will have to sub-

scribe data from medical devices. This is done by issuing query messages of the type

QRYˆR02 to the developed application. These queries can configure several aspects of

the subscription:

• Add or remove medical data from beds operating in that unit from the subscription,

• The cadence a which messages are generated and sent,

• The mode of message creation; The external application can retrieve one message

with data from that moment, or a message with all the data generated in the

subscribed beds after the last message was sent,

• Subscribe numeric data, curve data or both,

• Completely unsubscribe and close connection.

In this protocol subsequent query messages will update the subscription. Any queries

received by the broker will generate an ORFˆR04 informing the external application of

the status of the subscription.

43

Chapter 5. Hl7 Integration protocol 44

After the data is subscribed, the broker will periodically generate ORUˆR01 messages

with the medical data. If more than one bed is subscribed, the broker will generate a

different message for each bed.

All ORUˆR01 messages must be responded to with an HL7 ACK message, otherwise

they will be periodically resent to the external application.

For a more detailed explanation on the actual structure of the messages exchanged, the

supported MD and the data codes used to route the data elements, consult appendix

C.

Chapter 6

Test Phases

During the development of the application five preliminary and one final testing phases

were conducted. Each of the five preliminary testing phases was intended to test the new

features of one of the functional prototypes that resulted from each of the development

phases. The testing scenarios for each of these testing phases were:

• The testing scenario for the First testing phase was the running prototype and

one instance of the testing tool provided by B-simple, simulating the Draeger ven-

tilator. This test intended to access the capability of the solution to communicate

with the medical device and generate a stable flow of data from the equipment.

• In the Second testing phase two scenarios were envisioned. The first testing

scenario was equal to the one conducted in the first testing phase and intended to

test the same features, but now for each of the medical devices that the solution

had to integrate with. The second testing scenario was conducted alongside the

real equipments. This scenario intended to prove that the drivers would also work

with real devices.

• The Third testing phase was again performed by resorting to the testing tool.

Here several instances of the tool were acting as medical devices. The main purpose

of this testing phase was to test the MD device detection algorithm, the creation

of multiple data Sessions and the generation of data objects.

• In the Fourth testing phase the testing scenario was the same as in the third

phase, but here the aim of the test was access the prototype’s capabilities of

generating HL7 messages by using data objects.

• The Fifth testing phase already used a prototype that implemented all the

features implemented. The testing scenario here was similar to the one of the two

45

Chapter 6. Test Phases 46

previous testing phases, but here three new instances of the testing tool were also

present. These three new instances were intended to simulate external applications

trying to access data from the HL7 broker. Two of these instances were running

in the same computer and the third was running in another computer present in

the same internal network.

The main intent of this testing phase was to test the creation and life-cycle of

subscribers and that each subscriber received the correct HL7 messages.

After these preliminary testing phases, a final one was conducted. In this testing phase

the MD drivers were again tested with real equipments in order to revalidate the stability

of the drivers and to validate the integrity of the data present in the data stream through

the application.

The solution was then tested in the central server of the ICU of Braga’s hospital. In

this scenario, the solution was responsible of acquiring all the data from the MD of that

unit. The solution was also connected to the B-Simple solution through the HL7 broker.

This scenario was intended to validate the capacity of the solution to keep subscribers

resulting from real applications and to test the capacity of the solution to keep a stable

run through long periods of time in the real world.

During this last testing scenario, it was not possible to test Real-Time related events,

because in that unit, no supported BIS monitor was present. Therefore these features

were only tested in the simulated environments.

On Appendix B is present more information regarding the actual tests performed during

each of the testing phases.

6.1 Final Test Results

The final testing phase proved that the solution answered positively to 36 of the 41 tests

performed. From these 5 remaining tests, the answerer to 3 is also positive, but some

problems worth mentioning were detected:

• One of these tests envisioned a continuous operation of the developed prototype

during at least 48 hours in a real environment. The solution was capable of han-

dling all the tasks presented to it smoothly and without any errors. During this

time the CPU usage never surpassed 5% and the RAM was always between 30

Mb and 40 Mb. The solution exhibited however a small tendency to increase the

Chapter 6. Test Phases 47

RAM usage during the 48 hours. This increase was not higher than 5 Mb. During

this test the solution also appeared to accumulate handles.

This problem was immediately addressed and the inappropriate release of some

handles was found. The solution was again tested in the simulated environment

and the problem was apparently solved. However scheduling a new 48 hour test was

not possible and because of this, the solution could not transition to production.

• The other test was the CPU usage. As mentioned above the solution when tested

in a real environment did not use more than 5% of the CPU, but here the driver of

the BIS monitor was never used because Braga’s ICU did not use this equipment.

In the tests with the BIS monitor CPU usages of more than 20% were verified.

This problem was extensively studied and the origin was found to not be related to

the developed driver or to the application. It seems to be related to the way data is

acquired form the serial port, because the difference in the CPU usage in a scenario

where the solution is just acquiring data from the port and a scenario where the

solution is acquiring data and generating HL7 messages is hardly noticeable.

The logic used to acquire data from the serial ports is the same for all drivers, but

this is the only driver where this happens.

• The remaining test was the RAM usage test. The problem here was in every-

thing similar to the CPU usage problem, but here the RAM used increased when

acquiring data from this protocol.

These last two problems will prevent the usage of the driver relative to the BIS monitors

in a real environment until they are solved. In the test where these problems were verified

the solution made use of a RS232 to USB converter in order to acquire data from the

serial port whereas in the real environment data is acquired via a Serial terminal and

the data reaches the solution via a TCP connection. The problem can be related to

this fact, but this possibility was not tested because the serial terminal in HSJ was not

accessible.

The last two problems where the solution answered negatively were the capability of

restoring operation when the system crashed, and the capability of blocking applica-

tions that continuously issued corrupt messages. This happened because both these

functionalities were not implemented. The restoration of operation will only be imple-

mented when the solution transitions to production as it will be transformed in a window

service.

Chapter 7

Conclusion

The developed solution provided a suitable answer to the most important requirements,

in particular the developed solution encompasses:

• The capacity of dynamically detecting and acquiring data from MD,

• A functional HL7 broker capable of sharing medical data with any application

present in a ICU,

• Easiness in the integration with new MD and in improving the complexity of the

queries supported due to the modular philosophy employed in the development of

the solution,

• Capacity of keeping data backups when the communication links become disabled,

• A solution easily configurable, allowing it to be installed in different medical units

with minimal effort.

• The capacity of handling information from all MD and in an ICU unit and of

distributing that information through all the applications in the unit.

• A solution where faults are handled in a way that allows most of the crashes to

be prevented and where all interface situations are properly threaded so that the

occurrence of blocks is minimized.

The developed solution did not envision however any extensibility regarding the use of

other communication protocols in the broker. This happened because the decision of

implementing the solution’s broker using the HL7 standard proved to be enough, due to

its versatility and widespread use. By using this standard, the solution became capable

of integrating with the majority of the applications present in a medical unit.

49

Chapter 7. Conclusion 50

The testing phase proved that the developed solution will be ready to transition to

production and start managing the acquisition of data in an ICU unit when a final 48

hour test in a real environment is repeated in order to ensure that the remaining bug

was effectively removed.

Appendix A

Requirement Analisys Document

In order to list all the necessary requirements, several meetings with all the major

stakeholders were conducted:

• Informal week-to-week electronic meetings with b-simple’s engineer Ricardo Sal,

• A face-to-face meeting with Ricardo Sal and Dr. Celeste Dias in the HSJ,

• E-mail conversations with Dr. Peter Smielewski, developer of ICM+.

In this document all the requirements listed were subdivided in four groups:

• Functional Requirements

• Nonfunctional Requirements

• Hardware and Software Requirements

• Technological and Architectural Requirements

A.1 Functional Requirements

Table A.1: Functional Requirements

Req. Functionality Requirement description

Req.1 Ventilator Recognition Detection of any supported ventilator that

is connected to the network followed by

the establishment of communication and

data transfer.

51

Appendix A Requirement analisys Document 52

Req.2 Infusion Pump Recogni-

tion

Detection of any supported Infusion pump

that is connected to the network followed

by the establishment of communication

and data transfer.

Req.3 BIS Monitor Recogni-

tion

Detection of any supported BIS monitor

that is connected to the network followed

by the establishment of communication

and data transfer.

Req.4 Homogenous data rep-

resentation

The solution should be capable of generat-

ing a common representation for data with

the same semantic value, but that was ac-

quired with different formats. (ex. data

from ventilators from two different manu-

facturers).

Req.5 Acquisition of data rel-

ative to curves

The solution should only be able to ac-

quire curve data form the devices when

that data is specially required.

Req.6 Acquisition of numeric

data

The solution should be able to acquire all

numerical data available on the devices at

a configurable frequency.

Req.7 HL7 query processing The solution should be able to process in-

coming HL7 messages from the 2.4 version

and extract valid information from it.

Req.8 HL7 message generation It should be capable of generating HL7

(v.2.4) messages containing: Numeric

Data and Curve data.

A.2 Nonfunctional Requirements

Table A.2: Nonfunctional Requirements

Requ Functionality Requirement description

Req.09 Database inaccessible to

other applications

The solution should guarantee that no

other application can insert or access in-

formation present in the database.

Appendix A Requirement analisys Document 53

Req.10 Patient data should be

masked

The solution should guarantee that in

the HL7 message, the data from patients

should be masked.

Req.11 Medical equipment ex-

tensibility

The solution should be developed in a way

that ensures that future additions of med-

ical device interfaces are easily integrated.

Req.12 Extensibility on the in-

ter application commu-

nication gateway

The solution should be developed in a way

that ensures that future additions of in-

ter application interfaces are easily inte-

grated, whether they are new types of HL7

queries or other communication protocols.

Req.13 Extensibility on the

database communica-

tion

The solution should be developed in a way

that ensures that future additions of other

database interfaces are easily integrated.

Req.14 Communication Recov-

ery

The solution should be able to recover the

communication links with any medical de-

vice or the database if the communication

is not closed correctly.

Req.15 Message Validation The system should verify the validity of

every message received, whether this mes-

sage is derived from a medical device or

an external application.

Req.16 System robustness The solution should be capable of recover-

ing from any fatal error that might occur.

It should also be able to recover from non-

fatal errors without compromising the rest

of the solution.

Req.17 Data backups If the connection with the database is lost,

the system should be able to generate a

data backup and send it back when the

communication is re-established.

Appendix A Requirement analisys Document 54

Req.18 Scalability The solution should support the addition

of any numbers of medical devices or ex-

ternal applications without compromising

its performance.

The solution should also guarantee that

the resource consumption does not com-

promise the performance of other services

running on the same machine.

Req.19 Continuous availability

to receive messages

The solution should be able to receive all

queries sent from external applications at

any given moment.

Req.20 Event Logger The solution should be able to keep a log

of all the relevant events related to medi-

cal devices, database communication, ex-

ternal applications and internal events.

Req.21 Critical event alarm

system

The solution should be capable of warning

the support team and authorized person-

nel of any critical event occurring in the

running solution via an email service.

Req.22 Reconfigurable system The solution should be developed in a way

that it is easily installed and configures in

a different hospital.

A.3 Hardware and Software Requirements

Table A.3: Hardware and Software Requirements

Req. Functionality Requirement description

Req.23 Server It will be necessary an windows machine

to be used as a server with sufficient ca-

pacity to deal with all the data being ac-

quired from the medical devices in the

healthcare unit and all data being trans-

ferred to other applications running on the

ICU.

Appendix A Requirement analisys Document 55

Req.24 BIS monitors form the

Aspect medical systems

The device should support numeric and

curve data communication

Req.25 Orchestra infusion

pumps

The device should support numeric data

communication

Req.26 Draeger and Maquet

ventilators

The device should support numeric and

curve data communication

A.4 Technological and Architectural Requirements

Table A.4: Technological and Architectural Requirements

Req. Functionality Requirement description

Req.27 Communication with

medical devices

The solution should communicate with

medical devices by RS232 and by TCP/IP.

All supported devices should be plug-and-

play

Req.28 Database Integration The developed solution should be capable

of populating a database shared with the

B-ICUCare resorting to MSSQL queries

Req.29 Simultaneous data ac-

quisition from multiple

devices

The solution should be capable of sup-

porting the simultaneous data acquisition

from all the medical devices running on

the healthcare unit.

Req.30 Programming Language The solution shall be implemented in

VB.net

Appendix B

Software Test Document

B.1 Introduction and Objectives

In this document the test pile that will be used to evaluate the developed solution is

presented. The tests described in this document aim to verify that all the requirements

have been fulfilled and all the modules are performing correctly.

The test phase was itself divided in five preliminary sub-phases and one final phase

where the solution was tested in the real world.

At each new test sub-phase the test performed in the previous phases were repeated and

new tests were added to the test pile.

B.1.1 Preliminary Test 1

In the first testing phase the prototype was tested for its capability of connecting to a

Draeger ventilator and establishing a stable communication with it by using the com-

munication protocol specific to the MD.

For this the prototype had to establish a data link with a MD emulator provided by the

B-Simple company.

B.1.2 Preliminary Test 2

In the second testing phase the process performed in the first phase was repeated, but

here all drivers developed were tested with the emulator and with the actual MD.

57

Appendix B Requirement analisys Document 58

B.1.3 Preliminary Test 3

In this section the prototype’s capabilities of generating Data objects from data acquired

form medical devices was tested. Here the developed logic for handling the creation and

destruction of sessions was also tested.

The scenario in this phase involved five MD emulators, each representing one medical

device. All these emulators were running in the same computer as the running prototype.

B.1.4 Preliminary Test 4

In this phase the ability of the prototype to generate HL7 messages by using the Data

objects generated by the Data sessions was evaluated.

The scenario here was the same as the scenario of the third test phase.

B.1.5 Preliminary Test 5

In this phase the prototype already contained all features of the final solution. This

prototype was inserted in a simulated environment where it was tested when handling

communications with 5 emulated MDs and three emulated subscribers. Both the MDs

and two of the subscribers where running on the same computer, the other one was in

another computer connected to the same network.

Here the capabilities exchanging HL7 messages through the HL7 broker with multiple

subscribers while handling multiple subscriptions was tested.

B.1.6 Final Test

This final test phase was conducted in two different places. The first place was Hospital

S. João where the solution was tested with the actual MDs in order to further validate

the final MD drivers.

The second place was the Hospital of Braga where the solution was run in the central

server for two days. Here the solution was responsible of acquiring all the Data gener-

ated by connected MDs and serving a B-Simple Subscriber that received all the data

generated.

Appendix B Requirement analisys Document 59

B.1.7 Test Pile

The next section presents a table containing all performed tests. For each test this table

depicts:

• The test number (N)

• The phase at which the test was added to the pile (TP),

• The situation under test (Situation),

• The test description(Description),

• The results of the final test (RFT).

In the table the term Supported Medical Device is encompasses all medical devices listed

in the Requirement analysis document.

Table B.1: Test Pile

N TP Situation Description RFT

1 1
Connection of a Draeger Ven-

tilator to the MD network

Does the system correctly in-

stantiates the communication

protocol?

yes

2 1
Connection of a Draeger Ven-

tilator to the MD network

Does the system maintain a

stable flow of data from the

MD?

yes

3 2
Connection of a Servo-i Venti-

lator to the MD network

Does the system correctly in-

stantiates the communication

protocol?

yes

4 2
Connection of a Servo-i Venti-

lator to the MD network

Does the system maintain a

stable flow of data from the

MD?

yes

5 2

Connection of a Fresenius In-

fusion Pump to the MD net-

work

Does the system correctly in-

stantiates the communication

protocol?

yes

6 2

Connection of a Fresenius In-

fusion Pump to the MD net-

work

Does the system maintain a

stable flow of data from the

MD?

yes

Appendix B Requirement analisys Document 60

7 2
Connection of a Vista BIS

Monitor to the MD network

Does the system correctly in-

stantiates the communication

protocol?

yes

8 2
Connection of a Vista BIS

Monitor to the MD network

Does the system mantain a

stable flow of data from the

MD?

yes

9 3

A Supported MD is connected

to a port where a probing ses-

sion instantiated

Does the system correctly de-

tect the MD
yes

10 3

A Supported MD is connected

to a port where a probing ses-

sion instantiated

Does the system initialize a

Data Session
yes

11 3
When a Data session is isntan-

tiated

Does the system start genera-

tion Data objects?
yes

12 3
When a Data session is isntan-

tiated

Is the probing session in that

port properly terminated?
yes

13 3 When a Data object is created

Is the solution capable of in-

ferring the bed that Data ob-

ject belongs to?

yes

14 3 When a Data object is created
Does the Data buffer recieve

the Data Object?
yes

15 3
When communications with a

device are ceased.

Does the solution try to re-

establish communication?
yes

16 3

When the communication

with a device cannot be

re-established.

Does the solution delete the

device session?
yes

17 3

When the communication

with a device cannot be

re-established.

Does the solution Start a new

Probing session on that port?
yes

18 3
When the communication

with a device is re-established.

Does the Session resume the

acquisition of data?
yes

19 3
When a Data Object reaches

its life-span limit
Is that Data Object deleted? yes

20 4
When data objects are re-

trieved by one subscriber

Are the requested Data ob-

jects to send back to the sub-

scriber

yes

Appendix B Requirement analisys Document 61

21 4
When data objects are re-

trieved by one subscriber

Does the subscriber correctly

generate HL7 messages with

MD data

yes

22 4
When na HL7 message is gen-

erated

Is it correctly stored in a mes-

sage buffer
yes

23 5

When a new connection is re-

cieved form na external appli-

cation

Does the system correctly in-

stantiate a new subscriber?
yes

24 5

When a known subscriber

sends a valid query message to

the HL7 broker

Does the solution update the

configuration for that sub-

scriber?

yes

25 5

When a known subscriber

sends a valid query message to

the HL7 broker

Does the solution send na

ORF message responding?
yes

26 5

When a known subscriber

sends an invalid query mes-

sage to the HL7 broker

Does the solution issues a

NAK message?
yes

27 5

When a known subscriber

fails to send an ACK message

to the HL7 broker

Does the solution resend that

message?
yes

28 5
When a valid HL7 message is

correctly generated.

Does the requesting applica-

tion receive the message?
yes

29 5

Whens an external applica-

tion sends an end of commu-

nication message.

Is the data subscription of the

subscriber deleted?
yes

30 5

When relevant data to a given

subscriber is made available in

the data buffer

Does the solution generate a

valid HL7 Message?
yes

31 5
When the Broker loses con-

nection to the subscriber

Does the solution keep stor-

ing the data subscribed in the

Buffer?

yes

32 5
When the Broker loses con-

nection to the subscriber

Does the solution mantain

that subscriber active?
yes

33 5
When the connection to a sub-

scriber is re-established.

Does the solution send all the

corresponding data stored in

the buffer to that subscriber?

yes

Appendix B Requirement analisys Document 62

34 5

When the connection to

a subscriber cannot be

re-established.

Does the solution terminate

the session with the sub-

scriber and releases the ip?

yes

35 F
When operating in a real sit-

uation

Is the solution capable of han-

dling every supported MD in

thata unit?

yes

36 F
When operating in a real sit-

uation

Is the solution capable man-

tainning working subscribers?
yes

37 F
When operating in a real sit-

uation

Is the solution stable for at

least 48 hours?
yes

38 F
When operating in a real sit-

uation

Does the solution use less than

15% of CPU?
yes

39 F
When operating in a real sit-

uation

Does the solution use less than

200 Mb of RAM memory?
yes

40 F
When the system crashes or

improperly shuts down

Is the solution capable of

restoring its function?
no

41 F

When an external application

sends more than 10 corrupted

messages in one minute.

Does the solution block that

connection?
no

Appendix C

HL7 Integration Document

63

1

Integration Document for B-Sharer

Version 1.0

1. Introduction
The purpose of this document is to describe the computer interface provided by B-Sharer with other
devices and applications. It is intended for programmers with knowledge of the standard medical
communication protocol HL7 version 2.4.

B-Sharer acts as the central data acquisition unit that stores and redistributes all medical device data
generated in a medical unit. This middleware application interfaces with external devices via a broker that
acts as a TCP/IP server.

This interface will only share information relative to data from medical devices. No personal information
from patients is handled.

2. Communication Protocol
The external device must act as master and take the initiative when starting the communication session.

B-Sharer’s broker works with a subscriber system, where new clients generate new subscriptions. A new
subscription is created any time a device first establishes connection with the broker. This subscription will
remain active until the broker gets no response from a client for 30 minutes. If a client loses connection
with the broker the subscription will remain active and the client can reconnect and retrieve all the
information still on the subscription buffer.

After the subscription is made, the client will have to issue a Query message (QRY^R02) that will
configure the data response messages. Subsequent Query messages may be issued to reconfigure,
update the content on data response messages or unsubscribe the service. The format of the query
messages is further explained in the Chapter 3 of this document.

When the broker receives a valid query message, it will begin to periodically issue ORU^R01 messages
containing the medical data. The format of the ORU^R01 messages is further explained in the Chapter 4
of this document.

3. The Query Command
The broker does not transport nor handles any patient information. As such it will only be possible to
subscribe for medical data relative to a bed. If there are no medical devices generating data, the query will
still be valid, but no data response messages will be generated.

The broker will expect messages of the type QRY^R02 with a format compatible with the 2.4 version of the
HL7 Standard. This message is composed by three segments:

- Header (MSH segment)
- Original-style query definition (QRD)

2

- Original-style query filter (QRF)

The expected format of the header segment is the following:

MSH|^~\&|<Receiving application>||<Sending application>||<date>||QRY^R02|<Message ID>|P|2.4|

Field Hl7 data format Description
Receiving application String Name of the application the application that will receive

the message.

Receiving application String Name of the application the application that is sending
the message.

Message date HL7 date The timestamp of the message creation.

Message ID Integer The identification number of the message (Can’t be
repeated).

The format of the QRD segment is the following:

QRD|<query date>|R|I|<Query ID>|||1|<bedID>|OTH|I<MedicalUnit Code>^<MedicalUnit Name>||T

Field Hl7 data format Description

Query Date Hl7 Date Timestamp for the query creation (can be the same as
the <Message date> of the header).

Query ID Integer Identification number of the query.

Bed ID Integer
Identification number representing the bed of the
medical unit witch the query is referred to. (According to
the standard this field is referred to the patient ID, but
here we use the bed ID)

Medical Unit code Integer The numerical code that represents the medical unit
Medical unit name String The name of the medical unit where the bed is located

The format of the QRD segment is the following:

QRF|<Bed ID>:Bed||||||||<Data Retrieval Mode>^Q<Interval>S^^^^^< Data type code >

Field Hl7 data format Description
Bed ID Integer Same as the Bed ID from the QRD segment (*)

Data retrieval mode Integer
This field defines the data generation mode. There are
two possible modes, the instantaneous mode and the
continuous mode. (**)

Interval Integer This value defines the interval (in seconds) in between
Hl7 messages generated by the broker

Data type code String This field can take one of two values: “ND” for Numeric
Data or “RT” for Real Time data

(*) The bed number must be a two byte integer. The addition of a “-” character (0x2D) before the bed
number will unsubscribe all message generation for that bed. The broker only accepts information of one
bed per message, therefore if data for more than one bed is needed, that many query messages must be
issued.

3

(**)To enable the instantaneous mode the code “1” must be inserted. In this mode the broker will only
generate messages with the most recent data for all the equipments subscribed. This mode can only be
used to send numeric data. The continuous mode will be enabled with the code “2”. This mode can be
used for numeric data and real-time data. It will send all the data generated since the last message issued.

To completely unsubscribe the service the “-” character must be inserted in the Bed ID field, but now
without any bed number. In this situation all remaining configuration information will be ignored.

A complete example of a query message can be seen in the figure below:

In this example the client intends to subscribe data from bed 01 of an ICU unit with code 24050. This data
will be numeric and sent in the instantaneous mode every 10 seconds.

These query messages will have its ORF^R04 response acknowledging the query.

MSH|^~\&|<Receiving application>||<Sending application>||<date>||ORF^R04|<Message ID>|P|2.4|
MSA|AA|<QRY^R02 ID>
QRD|<query date>|R|I|<Query ID>|||1|<bedID>|OTH|I<MedicalUnit Code>^<MedicalUnit Name>||T
OBR|1|||^Subscription
OBX|1|NA|^Beds||<Subscribed Beds>|I|||||F

The QRY^R02 ID is the id of the query message that originated this ORF^R04 message. The QRD
segment is the same as the one in the query message. The Subscribed Beds field contains an array with
all the beds currently subscribed.

A complete example of an ORF^R04 message can be seen in the figure below:

This message is the response the Query presented as an example. According to this response the
external application had already subscribed bed 2 and 3 in previous queries.

4. Data Response Messages

All Data response messages issued by the broker will follow the structure of the ORU^R01 messages of
the as described in the 2.4 version of this standard. These messages are composed of three different
sections:

MSH|^~\&|B-ICUCare||B-Sharer||20140429173745||QRY^R02|0000001|P|2.4
QRD|20140514143454|R|I|BQ01|||1|01|OTH|24050^ICU NeuroCritics Unit HSJ||T
QRF|01:Bed||||||||1^Q10S^^^^^ND

MSH|^~\&|B-Sharer||B-ICUCare||20140429173747||ORF^R04|000002|P|2.4
MSA|AA|0000001
QRD|20140514143454|R|I|BQ01|||1|01|OTH|24050^ICU NeuroCritics Unit HSJ||T
OBR|1|||^Subscription
OBX|1|NA|^Beds||[1 2 3]||||||F

4

- The header which is composed of 1 segment
- The Patient identification, composed by 3 segments
- The Order observations composed of a variable amount of segments

The expected format of the header section is the following:

 MSH|^~\&|<Receiving application>||<Sending application>||<date>||ORU^R01|<Message ID>|P|2.4|

Field Hl7 data format Description
Receiving application String Name of the application the application that will receive

the message.

Receiving application String Name of the application the application that is sending
the message.

Message date HL7 date The timestamp of the message creation.

Message ID Integer The identification number of the message (Can’t be
repeated).

The 3 segments that compose the Patient Identification section are:

- Patient Identification Segment (PID)
- Patient Visit 1 (PV1)
- Patient Visit 2 (PV2)

 PID|||<BedID>||Smith^John
 PV1|<BedID>|I
 PV2|<Point of Care>^<Room>^<BedID>^<Facility>

Field Hl7 data format Description

BedID Integer
Identification number representing the bed of the
medical unit witch the query is referred to. (According to
the standard this field is referred to the patient ID, but
here we use the bed ID)

Point of Care String The name of the Service The patient is currently in (ex.
Neurocritical)

Room String The name of the Room The patient is currently in (ex.
ICU or Internment)

Facility String The name of the Hospital the patient is Currently in.

The last section of the Data response message is where the actual data from the medical devices is
located. This section is composed by a variable number of the following segments:

- Observation Request (OBR)
- Observation Result (OBX)
- Notes and Comments (NTE) (Optional)

 OBR|<OBR Number>|||<Equipment Code>^<Equipment Name>|||<Data Timestamp>

Field Hl7 data format Description

OBR Number Integer Sequence number of this OBR segment in this
message

Equipment Code Integer Numerical code representing the medical Device
Equipment Name String The name of the medical device

5

Data Timestamp HL7 Date The Timestamp of the generation of the data related to
this device

OBX|<OBX #>|<Data Type>|<DV Code>^<DV Name>||<Data>|<Unit>^<U Name>^SI|||||F|<Date Last>||<Date>

Field Hl7 data format Description

OBX # Integer Sequence number of this OBX segment relative to its
corresponding OBR segment

Data Type String
Code representing the Type of data present on the Data
field. It can take the values of “NA” for Numeric Array,
“NM” for numeric and “ST” for String

DV Code Integer
The Numerical Code representing the Data variable
featured in this segment (See Section Data Codes for a
list of all possible codes)

DV Name String
The name representing the Data variable featured in
this segment (See Section Data Codes for a list of all
possible names)

Data Variable The data value formatted as stated in the Data Type
field

Unit String Abbreviation of the name of the unit the in the
International System

U Name String Full name of the unit in the International System

Date Last HL7 Date The Timestamp of the generation of the last data with
the same code for the same device

Date HL7 Date The Timestamp of the generation of the data present in
this segment

 NTE|< NTE Number >||<Additional Information>

Field Hl7 data format Description

NTE Number Integer Sequence number of this NTE segment relative to The
preceding OBX segment

Additional Information String
String used to pass additional information relative to the
preceding OBX segment. (In this version of the broker it
is only used to pass the Sampling
Frequency used in the acquisition of numeric Arrays.)

For each subscribed medical device an OBR Segment is generated in the message. Following this
segment all its corresponding OBX segments are inserted. Any necessary NTE segments are inserted
after its corresponding OBX segment.

Two complete examples of ORU^R01 messages are presented. The first is relative to a numeric data
message and the second is relative to a Curve data message.

MSH|^~\&|B-Sharer||B-ICUCare||20140101010120||ORU^R01|MSG-000001|P|2.4
PID|||01||Smith^John
PV1|01|I
PV2|Neurocríticos^ICU^1^HSJ
OBR|1|||01^Servo-I|||20140101010105
OBX|1|NM|503^Mechanical Breath Rate||20|^1/min|||||F
OBX|2|NM|280^Expiratory Tidal Volume||5|^L|||||F

6

All ORU^R01 must be answered with an HL7 ACK message. If this message is not received by the broker
all the data will be inserted in the next ORU^R01 message. The structure of this message is as follows:

MSH|^~\&|<Receiving application>||<Sending application>||<date>||ACK|<Message ID>|P|2.4|
MSA|AA|<ID ORU^R01>

Field Hl7 data format Description

Receiving application String Name of the application the application that will receive
the message.

Receiving application String Name of the application the application that is sending
the message.

Message date HL7 date The timestamp of the message creation.

Message ID Integer The identification number of the message (Can’t be
repeated).

ID ORU^R01 Integer The Message ID of the ORU^R01 message to be
acknowledged

5. Supported Medical Devices

B-Sharer supports the following medical devices:

Generic Device Name Equipment Code Equipment Name

Ventilators

01 Maquet Servo-i
02 Maquet Servo-s
03 Dräger Evita 4

Infusion pumps 04 Orchestra Fresenius

BIS Monitors
05 Aspect Medical Systems:

Vista

6. Data Codes

Equipment
Type

Data
Code

Parameter Name Data Type

Ventilator 503 Mechanical Breath Rate Numeric

MSH|^~\&|B-Sharer|ICU NeuroCritics Unit HSJ|B-Sharer|ICU NeuroCritics Unit
HSJ|20140825104803||ORU^R01|1408963682877|P|2.4||1
PID|||1||Smith^John
PV1||I|^^1
PV2|Neurocríticos^ICU^1^HSJ
OBR|1|||^Vista|||20140825104800
OBX|1|NA|4051^EEGC||[0.2,-0.15,0.15,0.3,0.15,0,0,0,0,0,0,0,0,0.05,0.2,0.15,-0.2]|mv|||||F
NTE|01||128 Hz
OBX|2|NA|4052^EEGC||[6.4,-0.15,0.15,0.3,0.15,0,0,0,0,0,0,0,0,0.05,0.2,0.15,-0.2]|mv|||||F
NTE|01||128 Hz

7

DataCodes 280 Expiratory Tidal Volume Numeric
279 Inspired Tidal Volume Numeric
119 Inspired Minute Volume Numeric
118 Expired Minute Volume Numeric
454 Peak pressure Numeric
110 Mean Airway Pressure. Numeric
103 Plateau Pressure Numeric
149 Inspired Oxygen Concentration Numeric
94 End-Tidal CO2 Concentration Numeric
431 Expiratory Resistance Numeric
433 Inspiratory Resistance Numeric
93 Static Lung Compliance Numeric
99 Peak Expiratory Flow Numeric
100 Peak Inspiratory Flow Numeric
433 Inspiratory Resistance Numeric
111 1: Inpired:Expired Ratio Numeric
92 Dynamic Lung CompliVitalSigns Numeric
359 Dynamic Lung Resistance Numeric
2010 PEEP total Numeric
107 Intrinsic PEEP Breathing Pressure Numeric
594 Spontaneous Respiration Rate Numeric

Infusion
Pump
DataCodes

4000 Infusion Pump - Module Numeric
4001 Drug Name String
4002 Infused Volume Numeric
4003 Programmed Volume Bolus Numeric
4004 Remaining Volume Numeric
4005 Infused Volume Numeric
4006 Concentration Numeric
707 Infusion Pump Delivery Rate Numeric

BIS Monitor
DataCodes

5000 EEG Suppression Ratio L Numeric
5001 EEG Suppression Ratio R Numeric
5002 BIS Signal Quality Index L Numeric
5003 BIS Signal Quality Index R Numeric
5004 Bispectral Index L Numeric
5005 Bispectral Index R Numeric

4050 Raw EEG Curve Data Numeric Array

8

Appendix D

MD Communication Potocol

In this appendix are described the proprietary communication protocols used by the MD

with whom the solution will integrate with. These communication protocols are:

• The MEDIBUS protocol is used by the Draeger Ventilators,

• The Agila Serial Export protocol is used by the Fresenius infusion pumps,

• The CEI protocol is used by the Servo-I Ventilators

• The VISTA Binary protocol is used by the BIS monitor

D.1 MEDIBUS protocol

This communication protocol is used by all Draeger R© ventilators to exchange data via

RS-232 interfaces. Through this interface two types of message are exchanged, com-

mands and response messages. A command is emitted by a device that expects to

access data from another device. The response is emitted by the device that received a

command message. Some response messages can possess embedded commands. Medibus

consists of two independent protocols, the ‘slow’ and the ‘fast’ that can run simultane-

ously in the same communication line. The ‘slow’ mode is used to transport numerical

data from the ventilator with a periodicity in the temporal scale of seconds using ASCII

encoded messages with charecters ranging from the 0x00 until the 0x7f. The ‘fast’ pro-

tocol is used to transport real-time data from the ventilators. These protocols can run

simultaneously, because the ‘fast’ protocol also uses ASCII encoded messages but ignores

the charecters ¡ 0x80 used by the ‘slow’ protocol. In this work only the ‘slow’ protocol

will be implemented.

73

Appendix D emphMD Communication Potocol 74

D.1.1 Communication life-cycle

Whenever a ventilator is connected, it starts emitting the command ‘initialize communi-

cation command’ (ICC) periodically until a valid response to this command is received.

When a response to the ICC command is receive, the ventilator issues a command to

request the identification of the responding device. If the response to this command is

valid the MEDIBUS protocol is active and the device is ready to communicate data in

the ‘slow’ protocol. The protocol also defines commands to suspend, resume and abort

message transmissions and commands to terminate the communication session. In this

protocol two time-out mechanisms are implemented that terminate the communication

if no messages are exchanged or if a complete response message is not received in a given

time frame. In order to avoid time-out events when no messages need to be exchanged

for long periods of time, the protocol allows special commands that don’t require a

response message to be issued in a pre-established frequency. If a time-out event oc-

curs the communication is considered broken by the device and it restarts emitting ICC

commands.

D.1.2 Message Structure

The structure of a command is presented in figure D.1. All command messages are

initiated by a 1 byte header followed by the code of the command also with 1 byte. If

the command requires an argument the information regarding the argument follows the

command code and can have variable size. In order to check the validity of the message

a checksum field with 2 byte is inserted in the message before the 1 byte terminator.

Header Command Code Argument Checksum Terminator

1 1 1 2 N N+2 2 N+4 1 N+5

Figure D.1: Generic MEDIBUS Command

A response message is also initiated with a 1 byte header followed by the echo of the

command that originated the response. The actual response is encoded next in a field

with variable size. Similarly to the command message, the response is also terminated by

a checksum field and a terminator character. Some responses can also have no response

field, for example the response to a control, unknown or corrupted command. The

response to a corrupted command contains a special code instead of the command echo

that informs the recipient of the response that the command received was corrupted. In

figure D.2 a generic response message is presented.

Appendix D emphMD Communication Potocol 75

Header Command Code Response Checksum Terminator

1 1 1 2 N N+2 2 N+4 1 N+5

Figure D.2: Generic MEDIBUS Response

The code used in the header of a message is different according to the message types

but the terminator is always the same. The size of a message in this protocol can be

N+5 byte if the message has an argument or a response field or 5 byte if not.

D.2 Agila Serial Export Protocol

This protocol is used to communicate with the infusion pump systems Orchestra Base

Intensive and Orchestra Base Primea manufactured by Fresenius. Each infusion pump

system is composed of a central module called a ‘base’ where 1-8 syringe or volumetric

pumps can be assembled. All the internal communications between the modules and

the base station is performed internally. External communication is performed via a

full-duplex asynchronous RS-232 interface. Through this connection line the user can

monitor both the base station and the pump modules.

D.2.1 Communication life-cycle

In order to establish a connection with an infusion pump system through this commu-

nication protocol, it is necessary to send a ‘start of communication’ command. The MD

then replies with an acknowledgement massage and becomes ready to receive messages.

If a message is stent before a communication is opened, the MD replies with an error

message. The communication can be manually terminated using a ‘end of communica-

tion’ command.

All message exchange processes follow an acknowledgment protocol therefore, every time

a message is received by any device, it must send an acknowledgment message informing

the other device that he is ready to receive another message. As the communication

is full duplex, it is possible to receive a command while sending a message, when this

happens the device will only send the acknowledgment message after sending the mes-

sage, therefore the character code for the acknowledgment command must not be used

in other messages. If a device receives a corrupted message, an error message is sent

instead of the acknowledgment message.

It is possible to implement time-out mechanisms in the communication. When this

feature is active, the systems periodically exchange special characters. This exchange

Appendix D emphMD Communication Potocol 76

process is independent of the message exchange process and can therefor occur simul-

taneously. If this character is received in the middle of a message, the receiving device

must ignore it for the message processing context. If a time-out is verified all the com-

munications are ceased.

D.2.2 Message Structure

All the messages exchanged while using this communication protocol have a similar

structure. The messages have a 1 byte header followed by a 1 byte character that

identifies the module number, or base station, that the message is related to. The

message is then followed by a variable length field that contains the message body. This

message body can contain command codes with its respective arguments or response

codes with associated with data. Similarly to the MEDIBUS protocol, the messages are

ended with a 2 byte checksum field and a 1 byte termination character. In figure D.3 is

presented the structure of a generic message. The size of a message can vary between 5

byte or N+5 byte depending on the size of the body of the message.

Header Number Message Checksum Terminator

1 1 1 2 N N+2 2 N+4 1 N+5

Figure D.3: Generic Agila Serial Export Message

D.3 CEI protocol

This protocol is used by the manufacturer MAQUET to interface the ventilators Servo-i

and Servo-s with external equipments via an RS-232 serial interface. Here the external

equipment must work as master and transmit commands to the MD in order to retrieve

information.

In this protocol all of the respiratory parameters are stored in a different channel and the

device supports 999 different channels. This protocol supports two modes of operation,

the ‘Basic’ and the ‘Extended’ modes. The ‘Basic’ mode uses the first 100 channels and

can be used to retrieve numeric values and buffered curve data from a limited number

of parameters. The ‘Extended’ mode supports a wider range of numeric and curve

parameters and it allows the external device to acquire real-time data. For this it uses

the channels 100-999. Due to memory restrictions the number of curve data channels

that can be sampled at the same time is restricted to 4.

Appendix D emphMD Communication Potocol 77

D.3.1 Communication life-cycle

In order to initiate communication with the ventilator, the external equipment must

issue a ‘hello’ command. The ventilator responds with a standard message and enters

in the ‘Basic’ mode. This mode only accepts ‘Basic’ commands and a special command

used to enter in the ‘Extended’ mode. The ‘hello’ command can also be used to return

to the ‘Basic’ mode from the ‘Extended’ mode.

After establishing the communication in the desired mode, the external device must

then subscribe the channels containing the data it intends to access. This subscription

is valid for the rest of the session or until a new subscription is made. In order to access

the subscribed data the external device must issue commands to read the data buffers

of the ventilator.

D.3.2 Message Structure

The commands issued by the external device are different depending on the mode that is

currently activated. In the ‘Basic’ mode the messages are initialized with the command

code codded in 2 ASCII characters. Depending on the issued command the message

can be followed by a variable amount of fields, each enclosing the value of an argument.

These fields can also have variable lengths. All the messages are then terminated with

a 1 byte termination character. The messages in the ‘Extended’ mode are similar to the

ones above, but here the command codes are encoded in 4 ASCII characters instead of

2 and before the termination character, a checksum value of 2 byte must be inserted.

The structure of the response generated by the device can vary depending on the com-

mand received, but all the responses are composed by a number of variable sized fields,

followed by the checksum value, if the ‘Extended’ mode is selected, and terminated by

the same termination character.

In both communication modes an empty command can be issued, this message is com-

posed solely by the termination character and is used primarily to check the connection.

The value of all parameters is transmitted in the form of numbers between 0000 and

9999. In order to access the real value, measured in engineering units, the transmitted

value must be converted trough a formula that takes into consideration the scale factor

associated with each parameter.

Appendix D emphMD Communication Potocol 78

D.4 VISTA Binary protocol

This protocol is used by the BIS monitor manufactured by Aspect Medical Systems to

communicate with external devices via a RS-232 serial interface. The BIS monitor can

be interfaced using 2 different protocols, one denominated ASCII protocol and the other

Binary protocol. The protocol that will be used in the communication with external

devices must be firstly selected in the monitor’s settings menu.

The ASCII protocol is the simplest one and is used to retrieve some processed EEG

parameters. These parameters are assembled in records that can be retrieved by external

devices using single character commands. Each record is composed of a variable number

of 8 character fields separated by a ‘vertical bar’ character. All records are terminated

using a 2 byte termination code.

The Binary protocol is more versatile as it can access a wider array of processed EEG

data as well as raw EEG data. This protocol can be used in one of 2 modes, the

‘Legacy Binary’ that is mainly used to maintain compatibility with older systems and

the ‘VISTA Binary’ that is used by the most recent devices and supports bilateral

sensors. This operation mode must also be selected in the device’s settings menu. The

following section are related uniquely to the ‘VISTA Binary’ mode, as this will be the

mode used I this work.

D.4.1 Communication life-cycle

As soon as the communication mode is selected in the device’s settings menu, the device

is ready to receive commands from external devices. These commands and the respective

responses are exchanged via packets. Here 3 types of packets are defined, the data

packets, the acknowledgement packet (ACK) and the negative acknowledgement packet

(NAK).

Every time a data packet is received, the receiving device must issue a ACK packet in

a given time frame to the sender, otherwise the sender will assume a time-out event. If

the packet is corrupted a NAK packet must be issued. When a time-out occurs or a

NAK is received, the external device must resend the command packet that originated

the event. It is also unnecessary to send ACK or NAK packets to the monitor as it will

always assume an ACK packet and will never repeat the information previously sent.

Appendix D emphMD Communication Potocol 79

D.4.2 Message Structure

All the packets exchanged have a 3 layered structure. The first layer is the physical

layer and is concerned with the transmission of data over the serial link. The second

layer provides routing information that can be used for routing the message in a system

with multiple processes. The last layer is the application layer and is concerned with

the transmission of data.

The first layer is composed of 6 fields organized as in figure D.4. The first field of a packet

is a 16 bit header. This header is followed by a 16 bit unique sequence determined by

the monitor. This sequence is set to 0 every time the monitor is connected. The number

of bytes of both the second and the third layers is inserted next in a field with 16 bit

length. The layer 1 directive is inserted next and here is where the type of packet is

defined (data, ACK or NAK). If the packet is of the type NAK or ACK the optional

data field is ignored. If it is a data packet, the fields regarding the second and third

layers are inserted in this field. In the end of each packet, a checksum with 16 bit length

is inserted.

Header
Packet Se-
quence ID

bytes of
Opt. Data

Layer 1 di-
rective

Optional Data
(data from layer
2 and 3)

Checksum

16 16 16 16 variable 16

Figure D.4: First Layer of the VISTA Binary protocol packet

The second layer is composed of a field 32 bit long comprising a routing identifier that

is used to identify a specific task or mailbox to which a command or the results of a

command are to be directed. The last field of this layer is the data from the application

layer with a variable size. In figure D.5 is presented the structure of the second layer.

Routing identifier Application Data

16 variable

Figure D.5: Second Layer of the VISTA Binary protocol packet

The third and final layer is composed of a message ID field that contains the code of

the command or the code of the response, this field is 32 bit long. The next field is

the sequence number, the purpose of this field is similar to the Packet Sequence ID, but

here a separate sequence number is kept for each different Message ID. The number of

bytes of the message depended data is inserted next and has a size of 16 bits. The last

Appendix D emphMD Communication Potocol 80

parameter, the Message Dependent Data, is where the parameters or the EEG data are

inserted, depending if the packet is a command or a response. In figure D.6 is presented

the structure of the third layer.

Message ID Sequence Number Length Message Dependent Data

32 16 16 variable

Figure D.6: Third Layer of the VISTA Binary protocol packet

Bibliography

[1] West Health Institute. The Value of Medical Device Interoperability accessed

in 2014-01-28. URL https://s3.amazonaws.com/wwhi.org/interop/WHI-The_

Value_of_Medical_Device_Interoperability.pdf.

[2] B-Simple. accessed in 2014-01-28. URL http://www.b-simple.pt/.

[3] University of Cambridge Enterprise. ICM+ R© Software for Brain Mon-

itoring in Neurological Intensive Care accessed in 2014-01-28. URL

http://www.enterprise.cam.ac.uk/industry/licensing-opportunities/

icm-software-for-brain-monitoring/.

[4] K. Lesh, S. Weininger, and J. M. Goldman. Medical device interoperability –

assessing the environment. Joint Workshop on High Confidence Medical Devices,

Software, and Systems and Medical Device Plug-and-Play Interoperability, pages

1–10, 2007. URL ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04438159.

[5] Health Level 7. About HL7 accessed in 2014-01-28. URL http://www.hl7.org/

about/index.cfm?ref=nav.

[6] World Health Organization. International Classification of Diseases (ICD) accessed

in 2014-01-28, . URL http://www.who.int/classifications/icd/en/.

[7] B. Courtney. An investigation into the use of hl7 clinical document architecture

as a standard for discharge summaries in ireland. Master Thesis, 2011. URL

https://www.scss.tcd.ie/postgraduate/health-informatics/assets/pdfs/

An%20investigation%20into%20the%20use%20of%20HL7%20Clinical_BC.pdf.

[8] Corepoint Health. The HL7 Evolution accessed in 2014-01-28. URL

https://www.corepointhealth.com/sites/default/files/whitepapers/

hl7-history-v2-v3.pdf.

[9] International Health Terminology Standards Development Organization. SNOMED

CT accessed in 2014-01-28, . URL http://www.ihtsdo.org/snomed-ct/.

81

https://s3.amazonaws.com/wwhi.org/interop/WHI-The_Value_of_Medical_Device_Interoperability.pdf
https://s3.amazonaws.com/wwhi.org/interop/WHI-The_Value_of_Medical_Device_Interoperability.pdf
http://www.b-simple.pt/
http://www.enterprise.cam.ac.uk/industry/licensing-opportunities/icm-software-for-brain-monitoring/
http://www.enterprise.cam.ac.uk/industry/licensing-opportunities/icm-software-for-brain-monitoring/
ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04438159
http://www.hl7.org/about/index.cfm?ref=nav
http://www.hl7.org/about/index.cfm?ref=nav
http://www.who.int/classifications/icd/en/
https://www.scss.tcd.ie/postgraduate/health-informatics/assets/pdfs/An%20investigation%20into%20the%20use%20of%20HL7%20Clinical_BC.pdf
https://www.scss.tcd.ie/postgraduate/health-informatics/assets/pdfs/An%20investigation%20into%20the%20use%20of%20HL7%20Clinical_BC.pdf
https://www.corepointhealth.com/sites/default/files/whitepapers/hl7-history-v2-v3.pdf
https://www.corepointhealth.com/sites/default/files/whitepapers/hl7-history-v2-v3.pdf
http://www.ihtsdo.org/snomed-ct/

Bibliography 82

[10] Institute of Electrical and Electronics Engineers. SNOMED CT accessed in 2014-

01-28. URL http://standards.ieee.org/.

[11] I. Mart́ınez, J. Fernández, and M.Galarraga. Implementation experience of a pa-

tient monitoring solution based on end-to-end standards. Proceedings of the 29th

Annual International Conference of the IEEE EMBS Cité Internationale, Lyon,

France, pages 6425–6429, August 2007. URL http://www.ncbi.nlm.nih.gov/

pubmed/18003493.

[12] M.Galarraga, I. Mart́ınez, and P. Toledo. Review of the iso/ieee 11073 - pocmdc

standard for medical device interoperability and its applicability in home and am-

bulatory telemonitoring scenarios.

[13] Continua Health Alliance. About the Alliance accessed in 2014-01-28. URL http:

//www.continuaalliance.org/.

[14] iMD softr. MetaVision for Critical Care accessed in 2014-08-24. URL http:

//www.imd-soft.com/critical-care.

[15] Optumr. Critical Care Solutions accessed in 2014-08-24. URL http://www.optum.

com/providers/clinical-performance/critical-care.html.

[16] ALERTr. ALERTrPatient Data Management System accessed in 2014-08-24.

URL http://www.alert-online.com/pdms.

[17] Capsuler. Capsule Solutions accessed in 2014-08-24. URL http://www.

capsuletech.com/solutions.

[18] True Processr. Medical device connectivity solution ac-

cessed in 2014-08-24. URL http://trueprocess.com/products/

medical-device-connectivity-solution.

http://standards.ieee.org/
http://www.ncbi.nlm.nih.gov/pubmed/18003493
http://www.ncbi.nlm.nih.gov/pubmed/18003493
http://www.continuaalliance.org/
http://www.continuaalliance.org/
http://www.imd-soft.com/critical-care
http://www.imd-soft.com/critical-care
http://www.optum.com/providers/clinical-performance/critical-care.html
http://www.optum.com/providers/clinical-performance/critical-care.html
http://www.alert-online.com/pdms
http://www.capsuletech.com/solutions
http://www.capsuletech.com/solutions
http://trueprocess.com/products/medical-device-connectivity-solution
http://trueprocess.com/products/medical-device-connectivity-solution

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction and Methodology
	1.1 Motivation
	1.2 Framming and Problem Defenition
	1.3 Project Team and Collaborators
	1.4 Work methodology
	1.4.1 Software development methodology
	1.4.2 Quality Control Mechanisms
	1.4.3 Risk analisys

	1.5 Planning and Evolution

	2 State of the Art
	2.1 Introduction
	2.2 HL7
	2.2.1 HL7 version 2.x
	2.2.2 HL7 v.3

	2.3 IEEE11073
	2.4 Communication Protocols of the Integrated Medical Devices
	2.5 Similar Solutions on the Market

	3 Specification Analysis
	3.1 Requirement Analysis
	3.2 System Architecture
	3.2.1 Introduction
	3.2.2 Global Overview
	3.2.3 Application Modules
	3.2.4 Data acquisition Module
	3.2.4.1 Data Acquisition Manager
	3.2.4.2 MD Driver Library
	3.2.4.3 Probing Session
	3.2.4.4 Data Session

	3.2.5 External Application Communication
	3.2.5.1 Server
	3.2.5.2 Subscription Manager
	3.2.5.3 Subscriber
	3.2.5.4 Event Logger

	4 System Implementation
	4.1 Implementation phases
	4.2 Configuration file
	4.3 Data acquisition Module
	4.3.1 Data Acquisition Manager
	4.3.2 Probing Session
	4.3.3 Data Session
	4.3.4 MD Driver Library
	4.3.5 Data Object
	4.3.6 RT Data Object

	4.4 External Application Communication
	4.4.1 Subscription Manager
	4.4.2 Subscriber

	5 Hl7 Integration protocol
	6 Test Phases
	6.1 Final Test Results

	7 Conclusion
	A Requirement Analisys Document
	A.1 Functional Requirements
	A.2 Nonfunctional Requirements
	A.3 Hardware and Software Requirements
	A.4 Technological and Architectural Requirements

	B Software Test Document
	B.1 Introduction and Objectives
	B.1.1 Preliminary Test 1
	B.1.2 Preliminary Test 2
	B.1.3 Preliminary Test 3
	B.1.4 Preliminary Test 4
	B.1.5 Preliminary Test 5
	B.1.6 Final Test
	B.1.7 Test Pile

	C HL7 Integration Document
	D MD Communication Potocol
	D.1 MEDIBUS protocol
	D.1.1 Communication life-cycle
	D.1.2 Message Structure

	D.2 Agila Serial Export Protocol
	D.2.1 Communication life-cycle
	D.2.2 Message Structure

	D.3 CEI protocol
	D.3.1 Communication life-cycle
	D.3.2 Message Structure

	D.4 VISTA Binary protocol
	D.4.1 Communication life-cycle
	D.4.2 Message Structure

	Bibliography

