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“Science is much more
than a body of knowledge,

it’s a way of thinking”

- Carl Sagan, 1996





Abstract

Breast Cancer (BC) is the second most frequently diagnosed cancer and the fifth
cause of cancer mortality worldwide. Among women, it is the leading cause of cancer
deaths, with more than 500 000 registered deaths in 2012, and Portugal also reflects
that reality. Survival prediction plays a crucial role in diseases with associated high
mortality rates, since it has the power to help clinicians to define each patient’s
prognosis, thus allowing to personalize the corresponding treatments. Particularly
for BC, prognosis is related to the patterns of recurrence (cancer that reappears
after treatment), and it even differs depending on the local involved.

This work analyses the data of a cohort of 97 patients, with a total of 27 charac-
teristics, more than 50% of them incomplete. Therefore, the first step is to handle
Missing Data (Imputation or Deletion), to perform Classification afterwards. The
purpose is to study the prognostic factors that define recurrence of female BC, to try
to build a model that accurately predicts recurrence patterns, which would create
the possibility of more targeted treatments.

The application of machine learning algorithms to the prediction of recurrence in
different sites seems to be a novel application of these methodologies, and the results
can lead the way to a better understanding of the pathways of BC recurrence.
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Resumo

O Cancro de Mama (CM) é o segundo cancro mais diagnosticado no mundo, e o
quinto com maior mortalidade. Nas mulheres é a maior causa de mortes relacionadas
com cancro, com mais de 500 000 mortes registadas em 2012, e Portugal também
reflete essa realidade. A análise de predição de sobrevivência tem um papel cru-
cial em doenças com taxas de mortalidade elevadas, uma vez que tem o poder de
ajudar médicos a definir melhor , permitindo a personalização dos tratamentos cor-
respondentes. Particularmente no caso do CM, o prognóstico está relacionado com
os padrões de recorrência (cancro que reaparece depois do tratamento), e até difere
consoante o local afetado.

Este estudo analisa dados de um conjunto de 97 pacientes, com um total de
27 caracteŕısticas, mais de 50% incompletas. O primeiro passo é portanto resolver
o problema dos dados em falta (Imputar ou Apagar), para poder Classificar mais
tarde. O objetivo é estudar os fatores prognósticos que definem a recorrência no
CM feminino, para tentar construir um modelo que consiga prever corretamente os
padrões de recorrência, o que traria a possibilidade de tratamentos mais direciona-
dos.

A aplicação de algoritmos para a predição de recorrência em diferentes locais
parece ser uma nova aplicação destas metodologias, e os resultados podem liderar o
caminho para uma melhor compreensão dos mecanismos de recorrência do CM.
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Chapter 1

Introduction

This starting chapter is organized as follows. The first section pertains to the global
theme, Breast Cancer, presenting an overall view of this disease as well as some
statistics, and also mentioning a partner of this project. Section 1.2 shows the
primary goals of this work, while Section 1.3 presents the time plan to accomplish
them, and the mitigation strategies for possible risks are enunciated in Section 1.4
The last section contains the structure of this document.

1.1 Context

Breast Cancer (BC) is a major cause of concern worldwide. According to the
latest statistics by GLOBOCAN [1], it was the second most frequently diagnosed
cancer and the fifth cause of cancer mortality worldwide, responsible for 6.4% of
all deaths. Among women, it is associated to the highest number of deaths due to
cancer, with 521 907 registered deaths in 2012 [1]. Though predominantly in women,
BC can also occur in men. However, male BC is rare: it represents less than 1%
of all cases [2]. Further references to BC will pertain to female BC except where
noted, since it is what this work will focus in.

Portugal follows these global trends, with BC being among the top three most
frequently diagnosed cancers. Particularly for women, it was the cancer with highest
rates of incidence and mortality. Solely in 2012, 6088 women were diagnosed with
this disease, and 1570 died, which confirms the alarming scenario in Portugal [1].
According to WHO (World Health Organization) projections, these number are
expected to rise, with 1620 deaths by BC predicted for 2015 [3].

In diseases with high mortality rates, such as this one, survival prediction as-
sumes an important role, since it aids clinicians to better define each patient’s prog-
nosis and the corresponding treatments to be attempted. In particular for BC,
prognosis is related to the patterns of recurrence [4]. Cancer Recurrence (or Re-
lapse) describes cancer that reappears after treatment, and in the specific case of
BC, recurrence is very common, being experienced by about one third of patients
after initial diagnosis [4]. Therefore, establishing the patterns of recurrence is a cru-
cial task to accurately predict the clinical behavior of this pathology. This enables
a more personalized treatment for the patients, avoiding undesired overtreatment
and adverse complications.

Despite the considerable advances in the study of BC in the last couple of
decades, the underlying processes of recurrence have not yet been completely under-
stood [5]. Encompassed in this reality, this work conducts a data-driven research,
attempting to construct a model of recurrence for patients with this condition. As
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1.2. OBJECTIVES

detailed in the following section, our goal is to study the prognostic factors that
define female BC recurrence, clarify the correlation between such factors and re-
lapse patterns, and lastly, to provide a model to predict recurrence for a particular
patient, based on her personal characteristics as well as her tumor expression.

Portuguese Institute of Oncology

The Instituto Português de Oncologia (Portuguese Institute of Oncology), known
as IPO, is a corporate public entity with the mission of providing timely patient-
centered health care services, focusing on treatment, prevention and research in
Oncology [6]. IPO is a tertiary cancer center in this area, meaning that its patients
have already been diagnosed with this pathology when they are admitted.

The data for this work were obtained from IPO-Porto, one of three Regional
Centers. This institution has been distinguished for its dynamism, top position in
quality standards, development of highly credible scientific activity and quality of
education in Oncology. IPO-Porto treats about 10 000 new oncology patients each
year, from which around 1000 are BC patients [6]. It is the largest unit in Portugal
regarding this latter number, and one of the top units in Europe. IPO-Porto is also
a reference center for the highest level of Clinical Trials performed in Portugal [6].

1.2 Objectives

Our project aims to construct a model of metastatic BC. This is achieved by
examining the behavior of BC relapses, in terms of the localization of the tumor
and its other features. The primary goals of this work are the following:

1. Evaluate the pattern of metastatic dissemination in patients with
BC
The first objective is to understand how the relapses are physically distributed,
and their respective characteristics. BC prognosis is related to recurrence, but
it even differs according to the site affected, namely bone only, visceral non
hepatic, and visceral hepatic. Therefore, it is important to assess the behavior
of BC recurrence metastases.

2. Establish the relation between the patterns of metastatic prolifera-
tion, patients characteristics and BC subtypes
After analyzing the metastatic spread of BC, it will be measured the corre-
lation between these data and the characteristics of the patients and their
tumors. BC subtypes are defined via Immunohistochemistry (IHC) studies,
used to determine the tumor features. The purpose of this goal is to determine
how these characteristics affect the patterns of BC recurrence.

3. Build a model of BC recurrence
This work intends to define a recurrence pattern, based on the characteristics
of both patients and tumors. To achieve this, we must construct a structure
that generalizes the relations found in the previous goal. The fact that it is
based on a real-world dataset means that this model may be able to support the
decision-making process of clinicians, establishing more accurate predictions,
following the paradigm of Personalized Medicine.

2



1.3. PLANNING

1.3 Planning

This section refers to the presentation of a time-planning diagram, prepared to
guide our work during the year. In Figure 1.1, the time expected to complete each
task can be compared to the real period spent to complete it.

Figure 1.1: Work Scheduling

The diagram shows the work plan, divided into 9 tasks, namely:

1. Familiarization with BC
Firstly, before the work was completely defined, some reading had to be done,
to better understand the subject. This task consisted of searching and read-
ing topic-related papers, to familiarize with cancer aspects, both medical and
technical. Being a medical subject, it has to be considered a long period to
assimilate ideas associated with this topic. This involved reading about BC,
and the related terminology, and its recurrence, also having specific concepts
associated with it.

Since this work is being developed by an Informatics Engineering student,
whose background is not in the medical field, this was a very time-consuming
task, requiring much effort, and taking even more time than initially planned.

2. Literature review
There has been an increase in awareness regarding BC. However, though there
is much information about scattered in the Internet, it was necessary to study
several scientific papers to understand the work developed in this area with
detail. It is always required to study the state of the art, and in this case, the
analysis of papers regarding BC relapses is an towards the correct implemen-
tation of pattern recognition techniques, as proposed in this work. This task
focused on the important step of reading articles dealing with BC recurrence,
including several studies analyzing the metastatic behavior of BC.

3



1.4. RISK ANALYSIS AND MITIGATION

3. Writing the Intermediate Report
The purpose of this task is to summarize all the work developed during the
first semester, writing the present report. It also presents the work planned for
the second semester. This report is submitted at the end of January, followed
by a public presentation, which will take place in the beginning of February.

4. Data gathering and analysis
The data used in this work were received from IPO-Porto, containing patients’
information. These data not only characterize the patients but also their
malignancies. Patients’ information included variables such as age, gender
and ethnicity, while the tumor is characterized in terms of subtype or site of
metastases, among others.

5. Defining approaches
Due to the complex nature of BC, and cancer tumors in general, we need
to determine the aspects in which we will focus our analyses. As such, BC
recurrence site was chosen as the primary splitting point, which guided the
division of sections in this report.

6. Missing Data handling
This task was not initially planned. However, it is accounted for in Section 1.4
(Task 4), since we know this could be a potential problem. The task in-
volves reading articles about BC where Missing Data (MD) imputation meth-
ods were used. Afterwards, the necessary code is developed to impute MD in
our dataset, including a simulation with the originally complete variables.

7. Implementing pattern recognition techniques
This step involves the use of several approaches to extract correlation informa-
tion from data. As explained in chapter 4, the goal is to find links between the
different variables, establish relations between characteristics of the patients
and tumors features, and among each of this groups.

8. Results: comparison and conclusions
After the approaches are implemented and tested, it is necessary to evaluate
and analyze the results. The purpose of this task is to draw conclusions from
the work developed in the previous ones.

9. Dissemination of Results
The thesis’ Final Report is written in this task, including all of the work
developed during the year, in both semesters. Moreover, a scientific article is
also be produced.

In the first semester, the primary differences between the planned and real times
concern the time given to understand BC recurrence. Since the original disease is
already a complex pathology, understanding its process of recurrence is even more
time-consuming. Therefore, task 1 took a longer period than expected.

1.4 Risk Analysis and Mitigation

As with any project planning, there are associated risks. This section presents
the process of developing options and actions to reduce the potential impact of those

4



1.4. RISK ANALYSIS AND MITIGATION

threats to the goals of this work. In case this events occur, they may jeopardize the
entire project, or at least delay its execution and reduce its quality. This shows
the importance of trying to prevent these incidents, or at least prepare a backup-
strategy.

To achieve the proposed, the planning phases will be analyzed, assessing the
possible risks for the individual tasks of the project (in less formal terms, “what
could go wrong” with each one). For each risk, the Mitigation Strategy (to
circumvent the problem at hand) proposed will be presented, and in some cases,
the preventive steps (to avoid these risks) will also be indicated. This way, all
the stages of the project are covered, and the risks are organized in an structured
manner.

The first two tasks are “Familiarization with BC” and “Literature Review”. Both
of them consisted of reading and compiling information about the previous work
developed, respecting the subject of this thesis. These were the risks found in the
analysis:

1. [Task 1] BC recurrence papers are too specific
The construction of a solid medical state of art depends on the existence of
papers in this area. Although there are many proven developments in BC,
the same is not verified when dealing with its recurrence phenomena. Even
when such information is found, it is often too specific, and its understanding
becomes severely difficult without a medical background.

Impact: Medium

Mitigation Strategy: In addition to the available papers about BC recur-
rence, it is important to read about the primary disease itself.

2. [Task 2] Techniques not applied in the medical context
Several techniques that are intended to be implemented in this work have not
been yet applied to the subject in study. Some of them may have not been
used in the medical context at all.

Impact: Medium

Mitigation Strategy: To ensure the completeness of the analysis of existing
methodologies, it might be necessary to study some papers of other areas.

The tasks for the second semester are more risk-prone. Since the work depends
on external data and technologies, there are more possible sources of threats.

3. [Task 4] Dataset not available
The data for this work is received from IPO-Porto. As previously explained, it
is one of the most influential organizations of its kind, not only in the country,
but also internationally. Besides the study of BC, it has a huge reputation
in clinical trials too. Moreover, there is a team of several doctors dedicated
to this task. The prevention consists in using a dataset from such a reliable
source, compiled by a team of multiple doctors.

Impact: High

Mitigation Strategy: If the dataset from IPO-Porto is not provided for our
study, there are others available on the internet. One example is the SEER
Research website (Surveillance, Epidemiology, and End Results program), in
which a dataset from the United States can be requested [7].

5



1.4. RISK ANALYSIS AND MITIGATION

4. [Task 4] Dataset requiring preprocessing
When the dataset arrives from IPO-Porto, it may need previous preparation.
While the multiple doctors involved add a layer of trust to the data gathering
process, there can always be problems. Problems in data values can consist
of noise, contradictions and missing values, among others. Furthermore, the
attributes can be irrelevant, or its values can be imbalanced,for example.

Impact: Medium

Mitigation Strategy: These problems are addressed in chapter 4. Should
they be noted when the dataset is received, the preprocessing tasks are al-
ready prepared. Some examples are the elimination of attributes/patients,
the normalization, the imputation (estimation) of missing values.

5. [Tasks 4 and 5] Dataset delivery is delayed
If the dataset doesn’t arrive on time, it is not needed to apply the mitigation
strategy immediately. While the project goals can be achieved, we may tolerate
some level of delay. However, this change has the potential to delay the whole
project.

Impact: Medium

Mitigation Strategy: Before we receive the data, there is some preparation
work that may be done regarding the methodology. Although we don’t know
the exact problems we will have, just like this risk analysis, it is possible to
anticipate the foreseeable situations, providing alternatives to prevent them.
The Data Mining (DM) approaches can be previously enumerated, as well
as the preprocessing methods and validation tasks. When the data arrives,
is it only needed to choose the approach according to its characteristics, but
the possibilities are already defined. If the delay is too long, we consider the
dataset as “not available” (risk 3).

The work planned for the second semester also includes the implementation
phase. Regarding this step, the following risks were found:

6. [Task 7] Algorithms are too complex
Some of the computational techniques used in this work may have the po-
tential to lose computability. For example, in Neural Networks (one of the
possible techniques), there are many possibilities of variation: learning rate,
learning function, activation function, number of hidden (virtual) neurons,
among others.

As a preventive step, the search for good results is not a brute-force application
of all the configurations of the methods proposed. Instead, some possibilities
can be tested beforehand, and subsequent trials will be focused on variations
of specific configurations (based on the analysis of the previous).

Impact: High

Mitigation Strategy: Using the example of Neural Networks, and more
concretely, the number of virtual neurons used in its configuration, we may
choose to use numbers with a certain interval x (in our implementation). If
the time doesn’t allow the use of many values, it is possible to increase this
interval, and test less possibilities, while still covering the range intended.
It is also possible to focus the attention in the best-performing techniques,
increasing our efforts to optimize these algorithms.

6



1.5. DOCUMENT STRUCTURE

7. [Task 7] Algorithms’ code is not available
Several techniques are studied during this work. The existence of theoretical
explanations, or even previous work, doesn’t guarantee that their implementa-
tions are available. To prevent this situation, MATLAB will be the program-
ming language used. The tool with the same name is proprietary software from
Mathworks, for which we possess a license. This commercial tool provides a
large number of toolboxes for different applications, with Neural Networks and
Evolutionary Algorithms among the possibilities, for example.

Impact: Medium

Mitigation Strategy: The code for a certain implementation can be created
for our work, if the approach is believed to be very important. In addition, if
that is not even possible, there are other options, for example:

• WEKA: Machine Learning (ML) tool (in Java);

• R: statistical programming language;

1.5 Document Structure

The following chapters show the remainder of our work: Chapter 2 contains more
detailed information regarding the main topics of this thesis: BC as a pathology,
DM techniques, and evaluation metrics of classification systems. Chapter 3 reveals
an analysis of recent related literature regarding BC Recurrence. This State of Art
is divided into two sections, focusing on the recurrence sites on one hand, and DM
techniques on the other. Chapter 4 presents the proposed approaches to be analyzed
and compared, serving as a basis for further work to be developed. The results of
such experiments are then exposed in Chapter 5. Finally, Chapter 6 summarizes
the thesis, also providing possible directions for the continuation of this work.
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Chapter 2

Background Knowledge

The information contained in this chapter represents the basis of all the work de-
veloped throughout this project, in two distinct areas: a clinical overview of BC as
a disease (Section 2.1) and a technical explanation of DM methods (Section 2.2).

2.1 Breast Cancer

Cancer is the name given to the phenomenon of uncontrolled growth of abnormal
cells. BC is the name given to malignant tumors that originate in the breast, hence
the name. The most important statistics have already been mentioned in Section 1.1.

However, many patients that have BC do not have serious symptoms, or may
associate fatigue and weight loss (possible cancer symptoms [8]) to a number of
other causes (stress, different diet, less sleep). The mammogram, an X-ray image of
the patient’s breast, plays an important role in the early detection of BC, detecting
cancer much before any symptoms show up. External signs of BC may include a
lumps in the breast, or general changes. When a patient discovers an anomaly in the
breast (via self-examination or in a doctor’s appointment) or a mammogram reveals
it, the suspicion of cancer appears. A biopsy is then performed, and a pathologist
examines it to confirm the diagnosis, while radiology can be used to detect distant
involvement in other organs by cancerous cells (metastases).

Invasive BC can be divided according to the starting local of the tumor inside
the breast, and the two most frequent are ductal and lobular. These names originate
in the names of the ducts, channels that carry the milk from the producing glands
to the nipple, and the lobules, the glands themselves. Invasive ductal carcinomas
begin in a duct of the breast and grows into the surrounding tissue. It is the most
common form of BC, accounting for approximately 80% of invasive BC. Invasive
lobular carcinomas start in the lobules, representing about 10% of invasive BC.

BC subtypes are a way of categorizing patients based on some important fea-
tures of the tumors. The variables used to distinguish these subgroups are assessed
in a chemical precess called immunohistochemistry (IHC), and represent the pres-
ence or absence of different protein in the tumor (respectively positive, +, and neg-
ative, −). Estrogen Receptors (ER) are receptors of the hormone Estrogen, while
Progesterone Receptors (PR) are receptors of the hormone Progesterone. HER2
(human epidermal growth factor receptor 2) is another important protein, linked
with the progression of BC tumors.

The most common distinction is shown in the following list, identified with the
terminology used:

• Luminal: ER + or PR + (at least one of them) and HER −
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• HER2-enriched: HER +

• Triple-negative: ER −, PR − and HER −

Occasionally, a new subtype is considered for patients with ER + or PR + (at least
one of them) and HER +, called Luminal HER2. There can also be a distinction of
Luminal patients based on a proliferation index, Ki-67, into Luminal A (Ki-67 −)
and Luminal B (Ki-67 +) patients. This categorization of patients is regarded as the
most probable explanation for why patients have different outcomes [9].

BC is commonly treated by one or several combinations of what has been men-
tioned before: surgery, radiation therapy, chemotherapy, and hormone therapy. The
selection of therapy may be influenced by the the characteristics of the patient and
those specific of the tumor, e.g.:

• Menopausal status of the patient

• Stage of the disease

• Grade of the primary tumor

• ER and PR status of the tumor

• HER2 overexpression

• Histological type

Adjuvant therapy for BC is any treatment given after the primary therapy:
Chemotherapy is the use of drugs to try to kill malignant cells. Often, more than
one drug is given during adjuvant chemotherapy; Hormonal therapy tries to block BC
cells from receiving the hormone estrogen; Tamoxifen, for example, blocks estrogen’s
activity in the body. Trastuzumab is a targeted drug, focusing on cells that everex-
press HER2; Radiation therapy is usually given after breast-conserving surgery and
may be given after a mastectomy (it is a local therapy, while the others are systemic
therapies, because they travel to the whole body through the bloodstream). Neoad-
juvant therapy, on the other side, is given before the primary therapy, for example,
to try to diminish the size of an inoperable tumor. With the advancements in the
area of medical sciences, new medicines and therapies have been developed, bringing
renovated hope to BC patients, including those with recurrence.

When relapse is diagnosed in a patient, the median survival time is expected to
be between 1,5 and 2,5 years. It is extremely difficult to pinpoint the exact causes
for the variation, and this range can even be a result of different characteristics of
the patients included in each study. In spite of all this, some patients can survive
several decades even after a relapse episode [10], which means that it is not the end
of the road for these people. There are features associated with BC relapse, some
of these variables are lymph node involvement, large tumors, low levels of ER and
PR, and higher histological grade.

2.2 Data Mining

Data are everywhere, and the volume never stops increasing. As new repositories are
created, new gathering methodologies are also developed, which keeps feeding this
cycle. The hobby of photography is something that changed over the years. Instead
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of having to own a dedicated camera, one can simply grab the smartphone (if not
holding it already!) and take a picture. Nowadays, many synchronization services
automatically save this into online storage space. And as long as new repository
services and new technologies become more available, the amount of data keeps
growing.

In the medical field, there is also a constant search for new techniques to capture
data about the patients. Whether it is a wearable accessory that monitors your
heartbeat 24/7, or a new diagnostic method with High Definition three-dimensional
resolution, all this adds to the toll. To extract information of this incommensurable
world of “zeros and ones”, it is necessary to develop intelligent computational ways
of transforming these data into real human-understandable information. Without
this process, all we get are values, while the (possibly useful) information remains
hidden.

Data Mining (DM) is the answer for this problem, as it involves methodologies
of Machine Learning (ML). This means that a computer will receive examples of
data and try to understand the underlying patterns, thus getting the knowledge to
predict future examples. Pattern recognition is natural to the human being, and
even the “machine” part is not that new, but that are more opportunities to use
them than ever. The goal of ML, more than simply compile the information about
the examples seen, is to generalize for future data. The algorithms used in this
work are Supervised, meaning that the system takes a known set of responses to the
known input data (although some of them may also have Unsupervised versions).
In Unsupervised algorithms, the predictor wouldn’t know the response, and would
try to “draw inferences” from the inputs [11]. Figure 2.1 shows the two steps of the
process of Supervised Learning.

Figure 2.1: Depiction of the Supervised Learning process

There are many ML algorithms, and the following are the ones used in this
work. The next subsections only present the computational techniques used, while
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the implementation details of the both the imputation and the classification are
explained in the next chapter.

2.2.1 k-Nearest Neighbors

This algorithm, also known as kNN, is based on the concept that similar examples
should be associated with similar outputs. There is an unsupervised version [11],
but the one used in this work is supervised. In MATLAB, there is even a direct
function to impute, called knnimpute(), which replaces MD in a dataset using this
algorithm, allowing to vary parameters such as the value of k, for instance. In theory,
kNN starts by choosing the closest k examples in the training set to the new data,
retrieving also their response values. The classification label for the new example
is based on the labels of the different values. A different value of k will make the
decision be based on more or less neighbors. Moreover, there are alternative ways of
finding the closest points, instead of the basic euclidean distance. The ten available
distance metrics are [12]:

• euclidean: Euclidean distance

• seuclidean: Standardized Euclidean distance; each distance is scaled

• cityblock: City block (or Manhattan) distance

• minkowski: Minkowski distance

• chebychev: Chebychev distance (maximum coordinate difference)

• cosine: One minus the cosine of the included angle

• correlation: One minus the sample linear correlation

• spearman: One minus the sample Spearman’s rank correlation

• hamming: Hamming distance, percentage of coordinates that differ

• jaccard: One minus the Jaccard coefficient, the percentage of nonzero coordi-
nates that differ

Instead of focusing only on the most used distances, this study aims to com-
pare all of them, to try to get the best possible result, both in imputation and
classification.

2.2.2 Artificial Neural Networks

ANNs were created with the purpose of resembling how the brain works internally.
In our case, the architecture we are going to use is the Multi-Layer Perceptron, in
which the network transforms inputs in outputs by means of layers of neurons with
weighted interconnections [13].

There is always an input layer (where data entries), and an output layer; ad-
ditionally, there are intermediate layers with a variable number of nodes, called
hidden layers. It has been stated [13, 14] that a neural network can approximate
any function with only one layer of hidden nodes, as accurately as desired, as long
as there are enough neurons there (it is a universal approximator). This way, we
will vary the number of hidden nodes, but with only a single hidden layer. Another
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parameter to vary in this algorithm is the training function, and there are thirteen
choices:

• trainlm: Levenberg-Marquardt

• trainbr: Bayesian Regulation

• trainscg: Scaled Conjugate Gradient

• trainrp: Resilient BackPropagation

• trainbfg: Broyden–Fletcher–Goldfarb–Shanno quasi-Newton

• traincgb: Conjugate Gradient with Powell-Beale restarts

• traincgf: Conjugate Gradient with Fletcher-Reeves updates

• traincgp: Conjugate Gradient with Polak-Ribiere updates

• traingd: Gradient Descent

• traingda: Gradient Descent with adaptive (variable) learning rate

• traingdm: Gradient Descent with momentum

• traingdx: Gradient Descent with momentum and adaptive learning rate

• trainoss: One step secant

A comparison between them, spanning different problems, has been performed
and is available online [15].

2.2.3 Decision Trees

Theoretically, DTs are a representation of classes through a series of yes/no ques-
tions. These correspond to the binary splits in the branches of the tree that repre-
sents such a model [16].

There were two parameters in this algorithm that we changed: the minimum leaf
size (minLeaf), the minimum number of instances in a leaf (end of a branch, with
the class of the instances that follow the path to it); and the criterion used to create
the splits, namely:

• Gini’s diversity index

• twoing rule

• deviance reduction
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2.2.4 Support Vector Machines

Data are represented by a set of feature vectors. When the data have two classes,
SVM can try to divide them with an hyperplane. To do this, the algorithm projects
the examples in a higher-dimensional space, simplifying the problem of creating
a division. SVM also tries to maximize the distance between this boundary and
the training examples of either side (class). If they are not separable, it will try
to separate most of them (called a soft-margin). Among the parameters that we
changed is the Kernel Function:

• Linear

• Radial Basis Function (RBF)

• Polynomial (order 1)

• Polynomial (order 2)

Another parameter is the Optimization Routine (parameter ‘Solver’):

• L1 soft-margin minimization by quadratic programming (L1QP)

• Sequential Minimal Optimization (SMO)

Some parameters of SVM may use subsampling (picking a subgroup of patients
from the original group). This involves random processes, which lead us to restart
the random generator to the same number before each imputation. This way we
ensure that all imputations start from the same point of randomness, allowing the
results to be replicable.

2.3 Conclusion

This chapter provides the fundamental knowledge required to understand the differ-
ent steps of this thesis. It covers both the clinical and technological points of view.
The terminology and core concepts of BC are explained in the first section, and
clearly show the complexity of this pathology. The intricate details of relapse are
also shown, particularly for the case of BC. It is more difficult for someone outside
the medical community to understand, but the collaboration has the potential to be
very rewarding. The DM section explains the theory of the computational aspects
of this thesis.

14



Chapter 3

Literature Review

This chapter will present a selection of research papers about BC Recurrence, divided
into two categories. While Section 3.1 contains articles with a focus on the different
recurrence sites, Section 3.2 shows the use of predictive machine learning in BC
recurrence. Our work fits in the two categories, but to the best of our knowledge,
this was never attempted. The first section features clinical statistical studies in the
first section, and none of the authors try to use machine learning approaches. On
the other hand, the articles in the second section deal with recurrence as an atomic
event. Nevertheless, these show some of the applications of Data Mining techniques
to the study of recurrence of malignant breast tumors. Finally, a brief conclusion of
this review work will be provided.

3.1 Recurrence Sites

The goal of this section is to present a review of state-of-the-art articles in the
field of BC recurrence. For terminology and background knowledge about BC, see
Section 2.1.

There has been significant progress in the characterization of BC. However, it
is often still difficult to accurately predict its behavior [17]. In luminal like disease
(hormonal receptor positive, HR +), this is especially noted, since the mechanisms
of treatment resistance, late relapse and dormancy are not well-understood [18,19].
Moreover, BC metastatic behavior not as well studied as breast cancer itself. Search-
ing in a platform from Thomson Reuters [20] for documents with the expression
“breast cancer” in the title yields more than 330 000 results. In comparison, the
value associated with recurrence is of around 20 000, obtained when including the
results for any combination of the terms “recurrence(s)”, “relapse(s)” and “metas-
tasis(es)”. This starts to show the novelty of this work, and the development of
new therapies and approaches might decrease the incidence of relapse, as described
by Hurk et al. [21] in a Dutch population-based analysis. After a direct contact
with IPO-Porto, it was decided that this work will focus on the prediction of recur-
rence in the different metastatic locations, trying to assess the relation of different
characteristics of patients and tumors with different prognoses.

Even though cancer tumors are not completely homogeneous masses, it was
found that the characteristics of the primary tumor are usually preserved in metas-
tases [22]. Several studies analyze the impact of BC subtypes [4, 23–25] and the
tumor’s hormone receptor status [26–29] in its relapse patterns. However, the effect
of HER2 status (Human Epidermal growth factor Receptor 2) on distant recurrence
in early stage breast cancer differs according to the metastatic site [23], for example.
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Throughout this review, Overall Survival (OS, the time interval between diag-
nosis and death or last contact), and Progression-Free Survival (PFS, the period
from the diagnosis of metastases to progression of disease, death, or last follow-up)
are common metrics used. The results of that type of analysis may have important
implications in our understanding of the disease process, allowing more aggressive
treatment in a subgroup of patients [30], while avoiding overtreatment in others.

In a study with 3726 female patients, Kennecke et al. [31] showed that the lumi-
nal/HER2 + and HER2 enriched tumors are associated with higher rates of brain,
liver and lung recurrence. On the other hand, triple negative tumors are associated
with a significantly higher rate of brain and lung metastases but a significantly lower
rate of liver and bone relapses. In this particular study, the goal was to compare
characteristics from patients and their tumors, throughout the several BC subtypes.
Patients’ data were retrieved from the British Columbia Cancer Agency.

The tests used were χ2 (chi-squared, for categorical variables) and Wilcoxon rank
sum (for continuous). The method used for the estimation of cumulative incidence
curves was the “competing risks methodology” (to estimate a single event when
several competing ones exist: the patients who died before developing recurrence,
and those who hadn’t died at cutoff date). Having established the cumulative curves
across BC subtypes, Gray’s test was the choice to compare them, testing them for
statistically significant differences. Survival (from initial and recurrence diagnoses)
was estimated with Kepler-Meier method, and was later compared with the log-
rank test. The site of relapse was tested for association with the BC subtype with
chi-squared, and also with multivariate models using logistic regression (dependent
variable: presence or not of relapse in a determined site; covariates: characteristics
of patients/tumors). It was used the software SAS (Statistical Analysis System) and
also the R Statistical Language (Programming) Language.

The primary distinction of locations is between bone-only metastases and visceral
sites. Visceral metastases were classically related with worse prognosis. Some pa-
tients and tumor characteristics could be linked with this type of recurrence namely
age, menopausal status, tumor size, lymph node involvement, stage, Estrogen and
Progesterone Receptors (ER and PR), and HER2 pattern [30]. Among visceral
sites, three sites will be considered in the following sections, according to the most
observed categories.

The relapse sites were considered bone, liver, brain, and lung, each one in the
next subsections.

3.1.1 Bone

In 2010, Kennecke et al. [31] reports bone as the most commonly diagnosed metastatic
site. This study included more than 3000 female patients with recurrent BC. Men-
donza et al. [30] showed that the development of bone metastasis was dependent on
primary tumor characteristics like size, lymph node involvement, lymphovascular
invasion, stage, estrogen and progesterone receptors and HER2 pattern.

In a cohort of 351 breast cancer patients with bone-only metastasis, Niikura et
al. [32] intended to determine what factors influence the outcome of patients with
bone-only metastases, while comparing PFS and OS of these patients, according to
their treatments. The study defines as favorable prognostic factors: performance sta-
tus 0-1, asymptomatic bone disease and single metastasis. Patients with metastatic
disease at diagnosis (vs recurrence), a single metastasis and asymptomatic bone dis-
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ease had also a prolonged PFS. In luminal patients (HER2 negative) combination
therapy (chemotherapy and endocrine therapy) was associated with better outcomes
(OS and PFS). In multivariate analysis, combination therapy (chemotherapy with
endocrine therapy) was not superior in terms of PFS or OS to endocrine therapy
alone. In patients with HER2+ disease, trastuzumab was associated with longer
PFS with no impact in OS [32].

To achieve this, several methods were used: to sum up the age at diagnosis,
µ and σ (mean and standard deviation) were used; mean age was compared be-
tween treatment groups using variance analysis; Pearson’s χ2 and Fischer’s exact
tests were performed to test the association of these treatments with categorical
clinical features; these features were presented using frequencies and proportions; to
estimate PFS and OS, Kaplan-Meier product-limit was the method chosen, while
Kaplan-Meier curves were used for presentation; Cox regression models (uni- and
multivariate) had the purpose of testing the effect of predictive factors. The software
used was SAS (analysis) and S-PLUS (plots).

3.1.2 Liver

In 2003, Wyld et al. [33] analyzed 145 patients liver metastases at the time, from a
total of 506 that presented to the Nottingham Breast Unit over a 5-year period. Pa-
tients’ age ranged from 24 to 92 years, with a median of 61 years. None of them was
able to survive at least 5 years, and only one patient managed to survive more than
3 years. Kruskal–Wallis ANOVA and Mann–Whitney U-test were used to compare
survival times between patients with different metastatic distribution patterns, while
Kaplan–Meier cumulative survival plots for survival with liver metastases according
to a serum concentration level.

Local therapies for hepatic metastasis might provide a survival benefit in some
patients. Surgical resection is a safe procedure in specialized centers, with a 5-year
overall survival after that of 21-61% [34, 35]. Local ablation, has also a survival
benefit (5-year overall survival of 27-41%). Macroscopically radical resection (R0)
is the only favorable prognostic factor described in the studies and a major surgical
effort to obtain this with a low mortality is essential. Factors like: age≤50 years [36],
time to hepatic recurrence ≤1 year after diagnosis [35–37], metastases size (overall
metastases diameter higher than 3.5cm) [36] and number [37], absence of expression
of estrogen and progesterone receptors (primary tumor) [36], and the presence of
extrahepatic disease [34, 37] were described as worst prognostic factors, but data
were not consistent.

Weinrich et al. [38] added in 2014 that high T and N stage and high grade
(of the primary tumor) could also be one of the worst prognostic factors. Their
study focused on the University Hospital of the Saarland (Germany), analyzing
29 operations performed on 24 patients suffering from isolated liver metastases of
breast cancer (3 patients required two surgical interventions and 1 patient required
three). SAS software was used to perform the statistical calculations. Survival rates
were compared with the logrank test. Multiple regression analysis was performed
using a Cox regression. Mortality rates of two groups at fixed time points were
compared with Fisher’s exact test. Test results with p values of less than 0.05 were
considered statistically significant and results with p values between 0.05 and 0.10
were statistically only slightly significant.
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3.1.3 Brain

Breast cancer is the second most common cause of metastasis to the Central Nervous
System (CNS) [39]. In a review of 420 patients, Altundag et al. [39] described that
these patients had more frequently tumors T2 (40.1%), N1 (59.7%) and G3 (81.4%),
at diagnosis and CNS was the first site of recurrence in 12%.

Comparing to other tumors that also affects CNS (lung, GI, renal and melanoma),
breast cancer patients seemed to be younger, had more frequently the primary tu-
mor controlled and had better survival [40]. Better prognosis was associated with:
younger age, no skull base involvement, radiation therapy, luminal A tumors, good
basal performance status (ECOG 1-2 vs 3-4) and bone metastasis only vs hepatic
or skin metastases [40]. The increase on the risk of dying was independently related
to lack of systemic therapy and liver involvement [40].

Survival differs also according to BC subtypes, with a worse survival related to
triple negative tumors, according to Anders et al. [25]. In their study, comprising
119 patients who had BC-derived metastases in the CNS, the goals were: to assess
the clinicopathologic traits of the tumors, evaluating primary BC and metastases in
the CNS; report local and systemic treatments in patients with brain metastases;
and evaluate the correlation between patients’ outcomes (after CNS recurrence) and
their characteristics, both intrinsic traits and the BC subtype. To compare survival
curves, the Kaplan-Meier method and log-rank test were used, while Cox regression
analysis was the choice for the evaluation of possible predictors. The authors built
4 different multivariate models, since it was not possible to put together all the
information into a single one, due to the presence of missing data. The software
used was SAS.

3.1.4 Lung

Overall, lung is the second more frequent site of breast cancer recurrence [41]. Con-
sidering only basal-like tumors, lung was the most common relapse site [31,41], and
this subtype represents around 40% of metastatic BC in the lungs [41].

Similarly to other visceral locations, metastatic BC to the lung is not commonly
associated with luminal A tumors. However, metastases in the lung derive from
luminal B cancer in a significant percentage (around one third) [41].

3.2 Data Mining approaches

The classification of cancer patients into groups with different prognoses is essential
for providing customized treatment, and automated systems can aid clinicians in
the decision-making process [42]. Tumor characteristics are not enough to assess
the patient, as it was regarded in the past, since the classification through tumor
morphology is only representative in less than 25% of patients with invasive breast
carcinomas [43]. But allowing clinicians to predict the outcome of this disease helps
them to make more informed decisions to improve the efficiency of the treatments.
Due to the high dimensionality of databases, it is necessary to develop intelligent
strategies to find meaning in such data [44,45].

Statistical techniques were the traditional approach to discover hidden relations
among data variables, but Data Mining techniques have been gradually adopted,
and have been applied in several fields including medical research [46], obtaining
good results. Paliwal and Kumar reported in 2009 that Artificial Neural Networks
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(ANN), probably the most commonly applied data mining modeling example, had
been used for prediction and classification tasks, for which statistical methods used
to be the typical choice [47]. Most authors apply only one of the methodologies,
although some comparisons also exist in the literature [48, 49].

The patterns of relapse of BC are yet to be fully studied with application of
machine learning methodologies, but some research has been published, especially
using private databases. This section provides a review of some of these articles,
developed for the prediction of the prognosis of breast tumors, regarding recurrence.

In 1997, Subramani Mani et al. [50] used a database from a Breast Care Center,
with 887 patients, to find tumor features associated with recurrence of BC. About
10% (85) of these patients experienced this event during follow-up, while the remain-
ing 90% (802) had no evidence of it (10% rate of recurrence). Since the two classes
were imbalanced, 6 different subdatasets were created, each with 148 relapse-free pa-
tients and all of the 85 with recurrence (64%/36%). From many initial features, six
were hand-picked by a surgeon. The algorithms used included DT (C4.5 and CART)
and Association Rules (C4.5rules and First Order Combined Learner [FOCL]). Ac-
cording to the authors, the extracted trees and rules (respectively) provide crucial
information, especially in this medical context [50–52]. In this paper, a comparison
is made with the Naive Bayes algorithm, but all of the other algorithms failed to sur-
pass its accuracy results (average of ≈68.3%). To properly evaluate the techniques,
50 runs were conducted for each subdataset, splitting into different partitions of
training set (n=155) and test set (n=78). Averaging the accuracy of the 300 runs
(50×6), the second best value was achieved by FOCL (≈66.4%). However, this was
the only metric used, which does not allow a full comparison of performance.

José Jerez-Aragonés et al. [53] employed a hybrid model, combining ANN and
DT, to a database from a hospital in Málaga, Spain. There were 14 variables chosen
by doctors beforehand (from 85 fields), and information of this data is presented
in the article (range, mean, standard deviation, median). The authors apply a
neural network to predict recurrence in BC patients at 7 given intervals (10-month
periods: 0-10, 10-20,...,50-60 and more than 60 months), using a subset of the 14
variables as input. To choose which variables to use, they employ a new decision tree
algorithm (CIDIM: Control of Induction by Sample Division Method). This dataset
was constituted by 1035 patients, but records with Missing Data were discarded,
resulting in 845, 741, 681, 600, 520, 466 and 466 patients, respectively for each
interval. To evaluate the performance of the algorithm, the authors partitioned the
data (Holdout method) in 80% for training and 20% for testing purposes. Using an
holdout method (partition train/test) with 20% of the data for testing purposes, the
accuracy values found range from 93.4% to 96%, while sensitivity varied between
78.7% and 88.7%, and specificity between 94.5% and 97.2%.

Amir Razavi et al. produced two papers in 2005 [54, 55] concerning the ap-
plication of Canonical Correlation Analysis (CCA) to the study of BC recurrence.
In the first study [54], associated with a Swedish Breast Cancer Study Group, the
purpose was to try to find risk factors for both local and distant recurrence. The
database used was local, with 637 patients and 18 variables (17 binary and 1 with
three values). The idea stated is that CCA could be applied as a feature selection
method, without decreasing the predictive performance. The advantage indicated
for CCA is the possibility of analyzing the correlation of sets of multiple variables,
which allows the evaluation of several outcomes simultaneously. To the best of our
knowledge, no other authors applied this technique to the subject in question. They
didn’t validate their results analytically, but the system seemed to detect known
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risk factors, according to the authors, specifically for the time intervals of 0-2 and
2-4 years. The impact of CCA on an actual classification task and the associated
performance metrics is the focus of the next paper.

In the other article [55], Razavi et al. applied CCA as a preprocessing method,
to predict BC relapse using DT. The dataset used included 3949 patients with BC,
obtained from a Swedish regional center. Unlike in many other articles, handling of
Missing Data was performed in this study, instead of removing these patients. For
this purpose, Expectation Maximization (EM) method [55] was used, to estimate
the missing values of incomplete data. From more than 150 variables, the first step
was to select 13 predictors with the help of medical experts, which resulted in 17
inputs. The outcomes were local and distant recurrence, both before and after a
five-year threshold (from time of diagnosis). CCA application resulted in a reduced
system, with 8 inputs and 1 output (distant metastases in the first five years). The
best accuracy results are obtained using the proposed preprocessing (67%), higher
than without (54%) or just Missing Data imputation (57%). There is however a
slight decrease in sensitivity (83% to 80%), meaning a lower capability of detecting
positive recurrence. Nevertheless, it is still an important result, considering this
solution yields trees with only 10% of the size of those without preprocessing (27
nodes with 14 leaves, instead of 273 nodes with 137 leaves). This results in a simpler
system, improving interpretability.

In 2007, the same authors applied once again DT to predict recurrence in BC [56].
This time, the main goal was to compare its performance with two medical experts’
diagnoses. From the dataset with 3949 patients, repeated entries were removed,
resulting in 3699 registries. The authors left 100 cases aside for comparison (selected
randomly, with the same class proportion as the original dataset), and the DT
performance was based in 10-fold cross-validation of the remaining 3599. CCA was
used again to select the variables, the outcome chosen was “distant metastasis or
death because of breast cancer within 4 years”, and the Missing Data imputation
method used was Multiple Imputation (MI). This is a combination of EM with
“a data augmentation [...] procedure” [56]. Despite a better accuracy, DT had
lower AUC values, but the differences were not statistically significant. In terms of
predictive power of Recurrence, DT was better than one of the doctors, but worse
than the other. The results obtained for DT were 82% for accuracy and 0.755 for
AUC. A good point of this article is the presence of the confusion matrices of both
oncologists and DT, and the ROC curve and AUC values.

In the same year, Yijun Sun et al. [57] combined clinical information with genetic
features to try to obtain better predictive results. The dataset is publicly available
in Nature website [58] (and it was used by Laura van’t Veer et al. [59] to create a
70-gene signature of BC, to predict patients’ outcome and treatment responses). In
this study, the authors use 97 registries in their analysis, in which they try to predict
distant recurrence of BC in the first five years. As preprocessing, the data is nor-
malized to the range of 0 to 1, and feature selection (I-RELIEF method) is applied.
To evaluate the methodology and compare it against the previous approaches, the
authors set a 90% sensitivity threshold, and analyzed the specificity values. In fact,
the proposed algorithm achieves the best performance, with 67%, better than the
genetic-only study (47%) and clinical-only (48%) studies. The AUC value was also
better (visible from the ROC curve), although no concrete values were not provided.
However, it would be useful to carry this analysis using a larger dataset, which is
more difficult to compile (hence the small size of the one used), given the hybrid
nature of the system (both clinical and genetic data). It is still a good result, given
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the difficulty shown in previous studies in combining these data [60,61].

In terms of number of different algorithms tested, the most comprehensive study
was found to be published by Thora Jonsdottir et al. [62], in 2008. With 17 different
algorithms, they tested a wide range of techniques: Naive Bayes classifier, different
DT and several Rule Inducers, among others, although these algorithms were only
used with one configuration. Using a dataset named Rose, from Iceland, with a
total of 400 variables reported, they chose the top 98 features using knowledge
from literature, creating a base dataset (Base-DS ). Med-DS, which contained the
best 22 features chosen by a doctor, and Small-DS, including only the top 5, were
also used in this study, along with many others (over 100) generated with feature
selection methods. The number of patients included is 257. One of the goals was to
predict whether a BC patient would develop recurrence during a 5-year period after
diagnosis. Then, the authors tried to predict the same, but with an added subjective
variable, a Risk group (low, intermediate, high; attributed by a doctor). Finally, a
secondary goal was to predict the Risk variable from the remaining variables. The
datasets yielded similar results, with better performance for Naive Bayes and J48
DT, without significant improvement from the addition the Risk variable. Despite
the accuracy reported being around 75% to 80%, the value of sensitivity was only
around 40%, which is especially bad in the medical context (indicates a large number
of wrong predictions of “Recurrent” class). A better way to assess the performance
is with the AUC, for which Naive Bayes had the best value (0.77), for Small-DS. All
of the values were validated using 10-fold cross-validation, a strength of this study.

The study developed by Qi Fan et al. [63] in 2010 targeted the internationally
available SEER dataset [7]. Records with Missing Data were ignored, but the au-
thors didn’t mention the number of patients in the final dataset. As feature selection,
medical consulting resulted in 13 attributes being selected as inputs. The algorithms
used included ANN and DT, with four variants of the latter. Dividing the dataset
into training and test partitions (80%/20%) showed that C5 DT had the best ac-
curacy (71%), but ANN provided better predictive power for the Recurrence class
(78%, higher than 72% by C5 DT), although with lower accuracy (66%). However,
the data was only partitioned once, which may mean that results are not represen-
tative of the real performance. Moreover, a single configuration of the algorithms
was used, and the authors did not provide details about the architecture used nor
about the reasons to use it.

Smaranda Belciug et al. (2010) [64] used a clustering approach to predict re-
currence in a public BC database, WPBC (Wisconsin Prognostic Breast Cancer
dataset) [65], with 198 patients. It is known that there are From a total of 34 fea-
tures included in the original dataset (numerical variables, continuous), the authors
chosen 12 to be considered inputs, though no methods for this selection were made
explicit in the text. The output class was the presence of relapse. The three al-
gorithms used were k-means, self-organizing map, and cluster network. The latter
obtained the best results, by comparing the test performance. The system had 78%
accuracy, obtained through 10-fold cross-validation.

Leila Ahmad et al. [66] compared in 2013 three different methods to predict re-
currence of malignant breast tumors. The data used were retrieved from a national
center in Iran. From a total 1189 records, 642 were removed because important data
was missing, resulting in a cohort of 547 patients. Then, an imputation method was
applied to estimate the values of other continuous variables, namely Expectation
Maximization. Using ANN (MLP), DT (C4.5) and SVM, the final result was ob-
tained through 10-fold cross-validation. To evaluate the performance the authors
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presented the accuracy, sensitivity and specificity values. In all metrics, the SVM
method had the best values (95.7%, 97.1% and 94.5, respectively), and was thus
considered the best performing algorithm in this study.

Alberto Pawlovsky and Mai Nagahashi (2014) [67] applied the well-known kNN
clustering algorithm to BC Prognosis. This method creates groups (or clusters)
of labeled data, so that new data can use the nearest neighbors (data with more
similarities) to induce its own class. Moreover, the article explains how to select
a good setting for the algorithm. The dataset used was WPBC [65] (198 patients,
4 with Missing Data removed), and the data was used in three ways: raw data
(without preprocessing), standardized data (mean = 0, standard deviation = 1),
normalized data (range from 0 to 1). The authors then tested the classification
with kNN with several configurations, by using a different number of neighbors and
different percentage of training data, and running it several times. It is explained
that a “good” setting would retrieve a good average prediction value, but also not
very low minimum. The first conclusion was that the preprocessing does not seem
to influence the results obtained significantly. Then, the average results increase
as the k value increases (with drops at even k values), but it stabilizes around
70%, and the minimum is still 20%. Bearing all this in mind, the authors build a
score mechanism, in which they assign weight values to several parameters (three)
and resulting metrics (five). Considering the ideal result, scores were given for the
different possibilities: a higher score is given to a higher mean, but also to a lower
range of accuracy values, for example. Finally, from 5130 different settings, the
conclusion is that the best setting includes 80% of data (raw/standardized better
than normalized) for classification, and a k value of 19. Also, 100 simulation trials
seem to be enough to assess the settings’ performance. The accuracy achieved with
this methodology was 76%, ranging from 62% to 90%.

In the same year, Zahra Behesti et al. [68] used a more modern approach in
nine different medical databases. Among them is the WPBC [65] (198 patients), for
the prognostic of patients with malignant breast tumor. To handle Missing Data (4
records), the authors used the Mean method (statistical) [68]. The methods used are
based in Particle Swarm Optimization (PSO), in which a population of candidate
solutions moves gradually towards a global solution, by following the best positions
of the “swarm” (the group). Besides more common approaches (in this field), a
novel one is shown, namely a Centripetal Accelerated PSO (CAPSO), which takes
advantage of Newton’s motion laws. Moreover, the authors implement a fusion of
CAPSO (and other three methods) with ANN (MLP), resulting in a hybrid learning
strategy. The settings used to configure the parameters of the architecture used were
said to be based in the literature. To evaluate these algorithms, several metrics
are presented: Mean Square Error (MSE), Accuracy, Sensitivity, Specificity and
AUC. In addition, statistical tests between the accuracy values of the approaches
considered are also performed (Wilcoxon’s signed ranks and t-test). Particularly
for Breast Cancer, CAPSO-MLP had significantly better results than two of the
others (mean 80.25%, ranging from 77.5% to 82.5%). The only close result was
obtained by Gravitational Search Algorithm (GSA-MLP), but its sensitivity values
only averaged less than 8%, compared to 52.33% of CAPSO-MLP, which also obtains
the best specificity (83.38%) and AUC (0.63). Each algorithm was run 10 times, and
the best, worst and mean results were provided by the authors. The values presented
were based in the application of the Holdout method. For training purposes, 80%
of the data was used, while the remaining 20% constituted the test partition. The
latter originated the resulted observed in this review.
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Table 3.1 presents an overview of the datasets and methodologies used in the
studies analyzed, and results achieved for several metrics. To identify each article,
it is presented the first author and publication year. Concerning the dataset, its
availability and number of records is shown. The main metrics are also in the table,
as well as the algorithm that achieved them. Moreover, validation methods used are
displayed in this table. The last column shows if Missing Data was observed in the
dataset, and if so, how the authors handled this problem.

3.3 Conclusion

As can be seen in the two previous sections, there have been many studies regarding
the pathways of BC recurrence. The main purpose of the first section was to sys-
tematize the previous work in this area. The authors of these research studies use
statistical algorithms to find the characteristics of the patients in each study pop-
ulation. After an overview of the recent evidence about this topic, a more specific
analysis to the work developed for each recurrence site is presented.

Machine Learning algorithms have also been applied to the study of BC recur-
rence, with the capacity of unveiling information hidden in the data, generalizing
from its underlying patterns. The authors either use binary response variables in
the classification task, or try to predict periods of time, which means that these
studies do not exactly match the goal of the present thesis. However, the referred
articles can help understand what kind of algorithms may be used in this area, and
there have been interesting developments in this field.
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Chapter 4

Experimental Setup

This chapter presents the methodology used in this thesis. The first section de-
scribes the dataset used in this work, while the other two present implementation
details, namely the plan for the handling of incomplete records (Section 4.2) and
the construction of a classification model (Section 4.3), respectively.

4.1 Dataset characterization

The dataset used in this work was retrieved from IPO-Porto. The study population
is composed of female patients, older than 18 years of age, with breast carcinoma
histologically confirmed in all of this patients. To protect the confidentiality of the
patients, we never had access to their names, using an ID (IPO number) as distin-
guishable identifier. From a database with 99 patients, two of them did not contain
the necessary information about recurrence. Those were removed immediately, leav-
ing a final cohort with a total of 97 patients.

The next step was to analyze the distribution of MD among variables. It was
found that 12 features were complete for all patients, while the remaining had MD
rates in the range of 1%-91%. After removing some variables with MD rates above
70%, the final number of variables was 27, of which 12 are complete and 15 are not.
This left the database with only 28 complete patient records (28.85%), while the
remaining 69 (71.13%) had at least one missing value.

4.1.1 Inputs

Table 4.1 shows the distribution of the missing values. About the table:

• Ca 15-3 was transformed into a binary feature, with a cut-off value of 30 U/ml,
based on the literature [69–74];

• The variable Age Dx years contains the age of the patient, in years, at the
time of diagnosis of BC (range = 27-84 years, median = 48 years);

• When the variables concerning the histology of the tumor (whether it is Ductal
and Lobular, respectively) are both true, the tumor is considered “Mixed”,
while the combination of both features as false means “Other” type, as defined
by the doctors from IPO-Porto;

• Patients in this study have disease of either stage I, II or III ;

• ER, PR and HER2 expression were determined via IHC;
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Table 4.1: MD rates in
the input features used (in
percentage).

Adj: Adjuvant,
agLHRH: Luteinizing

Hormone-Receptor
Hormone agonist (therapy
combined with tamoxifen),

CA15-3: Cancer Antigen
15-3, CT: Chemotherapy,

DCIS: Ductal Carcinoma In
Situ, Dx: Diagnostic,

ER: Estrogen Receptor,
HER2: Human Epidermal
growth factor Receptor 2,

HT: Hormone Therapy,
Hx: Histology of tumor,

N: part of the TNM staging,
N cycles: Number of

(chemotherapy) cycles,
Neoadj: neoadjuvant,

PR: Progesterone Receptor,
RT: Radiotherapy,

Sx: Surgery type, T: part of
the TNM staging,

Trast: Trastuzumab,
Tx: Therapy (in general)

Variable name Variable type % MD (N)

Menopausal binary 8.25 (8)
CA15-3 initial binary 40.21 (39)
Age Dx years discrete 0 (0)
Type Sx 1 binary 1.03 (1)
Type Sx 2 binary 1.03 (1)
Hx ductal binary 0 (0)
Hx lobular binary 0 (0)
T ordinal 5.15 (5)
N ordinal 3.09 (3)
Grade ordinal 11.34 (11)
DCIS binary 40.21 (39)
Stage ordinal 2.06 (2)
ER binary 0 (0)
PR binary 11.34 (11)
HER2 binary 19.59 (19)
Tx Neoadj binary 0 (0)
CT neoadj binary 0 (0)
HT neoadj binary 8.25 (8)
Trast neoadj binary 5.15 (5)
N cycles neoadj discrete 0 (0)
Tx adj binary 0 (0)
CT adj binary 0 (0)
RT adj binary 0 (0)
HT adj binary 0 (0)
Trast adj binary 4.12 (4)
agLHRH binary 0 (0)
N cycles discrete 3.09 (3)

• In the TNM staging, the T status represent the diameter of the tumor (T1,
T2, T3 or T4), while the N status indicates the invasion of cancer cells to the
lymph nodes involvement (N0, N1, N2 or N3). M would be the Metastatic
characteristics;

• The Grade feature refers to how differentiated the tumor cells are (1 to 3);

• Considering the tumor size, adjacent organs invaded, regional lymph nodes it
has spread to, and whether it metastasized, a value 1 to 3 (I, II or III ) is
atributed to the feature Stage.

4.1.2 Outputs

Table 4.2 shows the output variables. Each of the variables refer to a single location,
with exception of “Rec other”, which represents all the other relapse sites. In the
same table, the number of patients in the positive class (with metastasis in that
site) is indicated.
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Variable Variable type Positive

Rec bone binary 63
Rec ganglia local binary 11
Rec ganglia distant binary 15
Rec local binary 12
Rec pleural binary 13
Rec pulmonary binary 22
Rec hepatic binary 19
Rec cerebral binary 8
Rec other binary 5

Table 4.2: Outputs respective to recurrence sites.

4.2 Missing Data handling

Missing values may have different origins, but for the purposes of this work, it will
be assumed that all MD is missing completely at random (meaning that its real
value is uncorrelated to being absent). The methods used to handle MD included
Deletion and Imputation methods: with the first, patients or variables with MD
are deleted, to generate a smaller complete dataset; the second attempt to estimate
those missing values using statistical and ML techniques.

4.2.1 Missing Data simulation

To assess which imputation methods performed better, a simulation of the sev-
eral available algorithms was prepared. This consisted in using only the complete
variables of the original dataset, removing some values at random After making a
selection of the best imputation methods, the classification step can be done in much
less time.

The MD percentages to test were decided to be 5%, 10%, 15%, 20%, 25%, 30%,
50% and 70%, to cover a spectrum of percentages without overcharging the simu-
lation, until an acceptable maximum. However, performing a brute-force analysis
would generate

(m+ 1)v − 1 = 912 − 1 = 282 429 536 480

datasets for each imputation configuration, where m is the number of MD rates
(m + 1 includes the 0%), v is the number of variables, and the “−1” at the end
of the formula removes the combination where none of the variables has missing
values. Therefore, it was decided to perform feature selection, to determine the
most important features, in which we would introduce missing data.

Feature Selection

The purpose of using feature selection at this stage is to diminish the number of
combinations of MD rates to analyze. To do so, four feature selection methods
were used (code was available), and a rank system was built based on them. The
four methods were based in AUC (Area Under the receiver operating characteristic
Curve), F1-score (harmonic mean of two other evaluation metrics), information gain,
and the point-biserial correlation coefficient, respectively.

Firstly, each method was applied to each complete variable, in relation to each
binary output at a time. Then, we averaged the results of each feature selection for
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each variable through all the outputs. Then, we ranked them from higher scores to
lower, awarding more points to higher positions. Finally, we added the points from
each feature selection algorithm.

After choosing the most important variables, the simulation of MD is ready to
start.

Imputation

When the new datasets are created, the system can start imputing them with the
desired approaches, whether they are statistical or apply ML techniques. Two sta-
tistical methods were used, Mean Imputation and Median Imputation, which are
exactly what they seem: replacing each missing value for the mean or median, re-
spectively, of the non-missing elements of the same feature. These results cannot be
improved, because there are no parameters to change.

On the other side, we have ML algorithms, namely kNN, ANN, DT and SVM
(defined in Section 2.2). For each one, the methodology of the implementation was
the same, both in the inner working of these methods and the search for the best
architecture.

Considering the inner working, all algorithms use the complete patients for train-
ing, while the testing occur with the incomplete patients. For both phases, the
complete variables are the input, while the incomplete ones are the target/output.
In terms of our search for the best settings, they were also used in the same way:
starting with a combination of some values for the parameters, a group of the best
is chosen according to the evaluation metric desired, to then explore more around
the same search space.

In the case of kNN algorithm, the first iteration used only five values for k
(number of neighbors), but all possible values for the distance. The values chosen
for k were sufficiently apart to cover the interval from one to the number of patients:
1, 10, 20, 50 and 90. By the end, we could estimate what were the best distances,
and then proceed for a more thorough search in other k values. Afterwards, the
same was done for ANN, DT and SVM, each one with their own parameters, but
the search method was the same.

4.2.2 Validation

When creating each dataset with random missing data, the same dataset is used for
all imputations. To ensure that random processes did not play a role in the different
performances, the set of all datasets created is the same for every imputation archi-
tecture. This single iteration may lead us to think that randomness could still play
a role, since we do not repeat the process: however, it does not lose the robustness
since the final value for the evaluation metric is the average of thousands of values
from thousands of imputations.

The choice for metric, due to its simplicity, is Accuracy, given by the following
formula:

Accuracy = (TotalCorrect)/(TotalV aluestoImpute)

This gives us a general idea of how much the system is learning, as a proportion
of the total missing values to impute in each dataset. The final metric to use is an
average Accuracy over the total datasets, and the results are shown in Section 5.2.
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4.3 Classification

“Prediction is an attempt to accurately forecast the outcome of a specific situation,
using as input information obtained from a concrete set of variables that potentially
describe the situation” [53]. Our task is to make a model learn the underlying
patterns in the data. To that end, we applied several ML algorithms to create
models that tried to accurately predict the output variables for new, unseen data.
Averaging the metric of choice over the several outputs after cross-validation was
the method used to evaluate and validate the classifiers.

4.3.1 Classification Algorithms

The methodology applied in this step is the same as the Imputation task: we start
each algorithm with a set of algorithms, evaluate them, and proceed to another round
with a different set of parameters. For more information, see Section 4.2. Besides
the classifiers used in imputation, NB was also used for classification, searching the
best solution in the same way. In this case, the Kernel Smoother type was the
parameter changed.

4.3.2 Validation

To validate the models created in the previous step, there are several possible valida-
tion processes and evaluation metrics. As for the process, 10-fold Cross-Validation
was chosen, for its acceptance as a standard [62,75].

Regarding evaluation metrics, Accuracy is in practice the most used metric [76].
In fact, that is used for the imputation phase, as described in Section 4.2, because it
did not matter what the model predicted correctly, as long as it did. With thousands
of datasets to impute, the training and test cases have much variation. However,
in the case of our outputs, in some cases very imbalanced, the accuracy can be
misleading: if three quarters of the outputs belong to the negative class, the model
can have 75% accuracy just by assigning every patient to that class.

Sensitivity and Specificity give us the definition we would like for Negative and
Positive classes. Their formulas are:

Sensitivity = TP/(TP + FN)

and

Specificity = TN/(TN + FP )

where:

• TP = True-Positives (elements of the positive class correctly classified)

• TN = True-Negatives (elements of the negative class correctly classified)

• FP = False-Positives (elements of the negative class incorrectly classified)

• FN = False-Negatives (elements of the positive class incorrectly classified)

29



4.4. CONCLUSION CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.1: Example of a ROC curve

At one extreme, all outputs can be
considered part of the positive class,
originating a sensitivity of one and a
specificity of zero; at another, all pa-
tients can be considered in th neg-
ative class, originating the opposite.
This leaves us with the problem of
having two metrics instead of one: if
two models have only one of the mea-
sures higher than each other, how can
we decide that one is better than the
other? What is needed is “an unbi-
ased measure of the accuracy of the
model”, that can also account for both
classes and how much we lose or gain
by changing the thresholds of decision. The ROC (Receiver Operating Character-
istic) curve is plotted by associating each value of sensitivity to the correspondent
of specificity. The Area Under this Curve is called AUC, and weighs both sensi-
tivity and specificity. The final value for each architecture of classification was the
averaged AUC over the nine outputs in use.

Moreover, we made sure that randomness was “controlled”, by using the same
partitions (folds of cross-validation) for every creation of a classification model,
besides the restart of the random number generator.

4.4 Conclusion

The methodology of this thesis shows the steps taken during the implementation
phase. Starting with a raw dataset, it was preprocessed manually, and then MD
was computationally handled. After this, the dataset was ready to start building
the classification model. The results of the MD simulation and the Classification
are shown in Chapter 5.

30



Chapter 5

Results

There were several implementation steps in the course of this thesis. This chapter
covers all of them, presenting the actual results of the experiments already described.
In the next sections, the results of Feature Selection (for MD simulation), Imputation
of missing values, and Classification will be in Sections 5.1, 5.2 and 5.3, respectively.

5.1 Feature Selection

The process of Feature Selection, as a preparation for MD Imputation, is explained
in Section 4.2.

Variable Variable Points

Age Dx years 10

Hx ductal 12

Hx lobular 12

ER 22

Tx Neoadj 30

QT neoadj 36

N cycles neoadj 36

Tx adj 11

QT adj 14

RT adj 16

HT adj 10

agLHRH 11

Table 5.1: Feature Selection ranking points for each variable: the higher the score,
the more important the variable is

Table 5.1 It can be seen that four of the variables had considerably better re-
sults. Therefore, these were the variables chosen for the next step of the work, the
imputation of MD. It is good that not all of the chosen variables are binary, since
the initial dataset also contained non-binary features which will have to be imputed
afterwards.

This four features represent a total number of 94− 1 = 6 560 datasets. The next
section addresses the imputation of all of them with different algorithms.
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5.2 Imputation

In this section, the results of the imputations are presented, culminating in the group
of datasets to use in the classification phase.

5.2.1 Imputations by algorithm

The metric considered was accuracy, and the final value was calculated as the average
of the 6560 datasets. The next subsections will display the results of the imputations
performed during the imputation phase. For background information about the ML
algorithms, see Section 2.2.

Statistical methods

The first imputations were Mean and Median Imputations, and the results are reg-
istered in Table 5.2.

Method Average accuracy in percentage (AvAp)

Mean 57.85

Median 75.97

Table 5.2: Imputation results for Mean and Median

The better result of Median is probably explained by the presence of a non-binary
feature, with values up to 8, that increase the mean, while 0 is the most frequent
value. The median, on the other side, accurately predicts the 0’s.

kNN

The first iteration was performed with the following parameters:

• Mean vs Median

• k = {1, 10, 20, 50, 90}

• distance = {euclidean (1), seuclidean (2), cityblock (3), minkowski (4), cheby-
chev (5), cosine (6), correlation (7), spearman (8), hamming (9), jaccard (10)}

The average accuracies, by parameter, are shown in Tables 5.3, 5.4 and 5.5.

Mean/Median Mean Median

Average Accuracy 68.68 76.14

Table 5.3: First iteration of kNN Imputation: Mean and Median

k 1 10 20 50 90

AvAp 74.19 73.26 73.12 71.42 70.03

Table 5.4: First iteration of kNN Imputation: k

Having in mind the previous results, the parameters selected for the second
iteration were these:
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Distance 1 2 3 4 5

AvAp 70.86 73.23 71.22 70.86 69.65

Distance 6 7 8 9 10

AvAp 74.97 75.03 75.03 71.45 71.18

Table 5.5: First iteration of kNN Imputation: Distance

• Median

• k = {1,2,...,30}

• Distance [metric] = {seuclidean,cosine,correlation,spearman}

The best 5 settings in this iteration are the ones in Table 5.6, ordered by average
accuracy (also indicated).

k Distance Mean/Median AvAp

5 correlation median 79.92

9 cosine median 79.73

11 cosine median 79.61

12 cosine median 79.56

20 spearman median 79.56

Table 5.6: Final results for kNN Imputation

The best setting for kNN is the first one: using a k value of 5, and correlation
as the distance metric.

ANN

To start the ANN imputation, the parameters were:

• Hidden [nodes] = {1,2,3}

• Train [function] = all

The three best results all contained ‘trainbr’ as a training function, as it is visible
in Table 5.7.

Hidden Train AvAp

1 trainbr 77.09

2 trainbr 72.56

3 trainbr 69.94

1 trainlm 69.43

2 trainlm 68.40

Table 5.7: First iteration for ANN Imputation

Using ‘trainbr’ as the train function, the attempt to use different numbers of
hidden nodes to improve the accuracy was unsuccessful, as can be seen in Table 5.8.
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hidden 1 2 3 4 5

AvAp 77.09 72.56 69.94 69.35 68.77

hidden 6 7 8 9 10

AvAp 68.42 67.89 67.90 67.80 67.78

Table 5.8: Second iteration of ANN Imputation

DT

In the case of DT as an imputation algorithm, the first try was made with these
parameters:

• MinLeaf = {1,2,3}

• Split [criterion] = all

The results for the AvAp of the several different split criteria are displayed in
Table 5.9.

Split Gini’s diversity twoing deviance

AvAp 79.59 79.57 79.82

Table 5.9: First iteration of DT Imputation

As we can see, deviance reduction seems to be the best criterion, and we lock it
for the next cycle. Then, we try to discover the best value for minLeaf by running
many numbers, and Table 5.10 presents the result.

MinLeaf 1 2 3 4 5

AvAp 79.65 80.17 80.02 80.05 68.77

minLeaf 6 7 8 9 10

AvAp 68.42 67.89 67.90 67.80 67.78

Table 5.10: Second iteration of DT Imputation

We can see that minLeaf is worse with value 1 than with 2 or 3. This is probably
due to overfitting, because the tree is allowed to have leafs for just one patient.
Next, we remembered that the 6560 dataset are not all equal, and how much the
size of the training partition can change between different datasets. Our idea was
to use a relative minLeaf value: instead of setting an integer directly, we could set
as a proportion of the training input. The results are displayed in Table 5.11

MinLeaf 1 1/2 1/3 1/4 1/5

AvAp 75.97 75.97 75.90 76.05 77.18

MinLeaf 1/6 1/7 1/8 1/9 1/10

AvAp 79.04 80.08 80.28 80.19 80.09

Table 5.11: Third iteration of DT Imputation

In fact, there is a slight improvement, and the new best is now minLeaf = 1/8,
with deviance reduction as split criterion.
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SVM

The last imputation algorithm is SVM. The starting configuration had several values
for three parameter at the same time:

• Kernel [Function] = {linear, Radial Basis Function (RBF), polynomial (orders
1 and 2)}

• Optimization Routine = {L1QP, SMO}

• Standardize = {false, true}

Kernel linear RBF polynomial (order 1) polynomial (order 2)

AvAp 78.16 81.61 81.61 79.10

Table 5.12: First iteration of SVM Imputation: Kernel Function

Optimization Routine L1QP SMO

AvAp 79.85 80.43

Table 5.13: First iteration of SVM Imputation: Optimization Routine

Standardize false true

AvAp 79.85 80.43

Table 5.14: First iteration of SVM Imputation: Standardize

The average accuracies, by parameter, are in Tables 5.12, 5.13 and 5.14.
The best configuration would be to Standardize, use SMO as Optimization Rou-

tine, while the Kernel Function has a tie. The best and the function to classify the
variable with more than two classes (see Section 5.1). For this latter, we can use
one of the previous, already tuned, algorithms. Comparing the association of SVM
with

• Kernel [Function] = {radial basis function, polynomial (order 1)}

• Multiclass [Function] = {L1QP, SMO, }

The best 5 results of this simulation are listed in Table 5.15

Multiclass Optimization Kernel AvAp

DT SMO polynomial (order 1) 82.2822

DT L1QP RBF 82.2809

DT SMO RBF 82.2808

DT L1QP polynomial (order 1) 82.2782

kNN SMO polynomial (order 1) 81.7157

Table 5.15: Final results for SVM Imputation

The best setting for SVM is then: Standardize, SMO as Optimization Routine,
Polynomial Kernel Function of order 1, and DT to classify the multiclass variables.

35



5.2. IMPUTATION CHAPTER 5. RESULTS

5.2.2 Final datasets for classification

There were two types of datasets created, depending on whether patients or variables
are deleted, or missing values are imputed.

Two complete datasets were created using Deletion methods. By eliminating
patients with MD, the dataset generated was completePatients, while deleting the
variables with MD yielded the dataset completeVariables. The information of each
dataset can be understood from the statistics of Section 4.1, but is presented in
Table 5.16 for a more direct visualization:

Dataset Number of Variables Number of Patients

completePatients 27 28
completeVariables 12 97

Table 5.16: Complete datasets resulting from the use of Deletion

Instead of using the overall best, we would like to see how different imputation
algorithms behave in the classification phase. The imputed datasets to be used are
then the best setting for each of the best three algorithms:

• completeSVM - Kernel Function: polynomial (order 1); Kernel Scale: 1;
Solver: Sequential Minimal Optimization; Standardized; DT to classify mul-
ticlass

• completeKNN - k = 5; Distance: correlation; Median

• completeDT - minLeaf = 12, criterion = deviance reduction
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5.3 Classification

This section has the purpose of showing the results of the classification phase of this
thesis.

5.3.1 Classifications by algorithm

The values shown were obtained from an average of nine values, each one corre-
sponding to one output. In turn, each of those individual values were obtained from
cross-validated models, to ensure the validity of results. The metric used was AUC,
shown here as Average AUC (AvAU).

kNN

The first test to a classification algorithm was done with kNN, with the following
parameters:

• k = {1, 10, 20, 30, 40, 50, 60, 70, 80, 90}

• Distance [metric] = {euclidean (1), seuclidean (2), cityblock (3), minkowski (4),
chebychev (5), cosine (6), correlation (7), spearman (8), hamming (9), jac-
card (10)}

The reasons for this choice were the same as in the previous section, when also
using kNN. The 5 best settings in this cycle are present in Table 5.17, ordered by
AvAU (also indicated),

k Distance AvAU Dataset

20 7 0.6104 completeKNN

60 9 0.6081 completeKNN

20 8 0.6050 completeKNN

20 6 0.6011 completeKNN

10 6 0.6004 completeKNN

Table 5.17: First iteration of kNN Classification

Considering this results, a new iteration was performed, to cover all possible
values for k, with the following parameters:

• k = {1, 2, ..., 97}

• Distance [metric] = {cosine (6), correlation (7), spearman (8), hamming (9)}

The results of this second attempt are the ones in Table 5.18
The optimal configuration for this algorithm is k=15 (or near) and the use of

‘correlation’ as the distance metric. It is interesting that the best MD handling
mechanism to combine with this classification algorithm also uses kNN, and the
similarities may not be a coincidence, since even the distance metric is the same.

To compare the performance of the different imputation methods, Table 5.19
contains the best setting for each complete dataset.
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k Distance AvAU Dataset

15 7 0.6446 completeKNN

16 7 0.6388 completeKNN

17 7 0.6378 completeKNN

18 8 0.6285 completeKNN

16 8 0.6279 completeKNN

Table 5.18: Second iteration of kNN Classification

Dataset k Distance AvAU

completePatients 18 9 0.5891

completeVariables 16 8 0.6125

completeKNN 15 8 0.6446

completeDT 18 8 0.6244

completeSVM 17 8 0.6232

Table 5.19: Best results of kNN Classification for each Complete Dataset

ANN

The first iteration of ANN involved the following setting:

• Hidden [nodes] = {1,2,3,4,5,10,15,20,25,30}

• Train [function] = all

The reasons to choose this configuration were the same as in the imputation
phase. Ordered by AvAU, the 5 best settings are registered in Table 5.20.

Train Hidden AvAU Dataset

traincgf 5 0.6770 CompletePatients

trainscg 5 0.6742 CompletePatients

traingd 5 0.6698 CompletePatients

traingdm 5 0.6674 CompletePatients

traingda 5 0.6623 CompletePatients

Table 5.20: First iteration of ANN Classification

Since all these have 5 Hidden Units, the next step was to search around this
number. Numbers under 5 were already included, so the parameters were:

• Hidden [nodes] = {6,7,8,9}

• Train [function] = all

There was only one setting that achieved a better result than the previous, which
is in Table 5.18

In fact, this is the optimal configuration for the algorithm. To compare the
performance of the different imputation methods, the best setup for each dataset is
registered Table 5.22.
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Train Hidden AvAU Dataset

traincgf 7 0.6855 completePatients

Table 5.21: Second iteration of ANN Classification

Dataset Train Hidden AvAU

completePatients traincgf 7 0.6855

completeVariables traincgf 25 0.6115

completeKNN traingd 20 0.5872

completeDT traingda 2 0.5888

completeSVM trainoss 20 0.5832

Table 5.22: Best results of ANN Classification for each Complete Dataset

To classify with ANN, imputing MD does not seem to be the best approach. The
best results were obtained when using the dataset with only originally complete
patients, connected to a network with Conjugate Gradient with Fletcher-Reeves
updates as the training function, as well as a hidden layer of 7 neurons.

DT

The parameters for the first run with DT in the creation of a classification model
used these values for the parameters:

• MinLeaf = {1, 5, 10, 15, 20}

• Split [criterion] = all

Once again, the reasons to choose this are the same as the imputation phase The
5 best settings of this first iteration are listed in Table 5.23.

Split MinLeaf AvAU Dataset

deviance 5 0.6001 CompletePatients

Gini’s diversity 5 0.5951 CompletePatients

twoing 5 0.5951 CompletePatients

deviance 10 0.5707 CompletePatients

Gini’s diversity 10 0.5642 CompletePatients

Table 5.23: First iteration of DT Classification

The three best have 5 as MinLeaf. Moreover, the next best results have 10 as
MinLeaf, which lead us to think that maybe the best values are between 5 and 10.
It appears that there is an order in the split criterion too, but without so much
impact.

• MinLeaf = {6,7,8,9}

• Split [criterion] = all
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Split MinLeaf AvAU Dataset

deviance 7 0.6079 completePatients

deviance 5 0.6001 completePatients

deviance 8 0.5988 completePatients

Gini’s diversity 5 0.5951 completePatients

twoing 5 0.5951 completePatients

Table 5.24: Second iteration of DT Classification

Dataset Split MinLeaf AvAU

completePatients deviance 7 0.6079

completeVariables deviance 25 0.5183

completeKNN deviance 20 0.5595

completeDT deviance 2 0.5262

completeSVM deviance 20 0.5277

Table 5.25: Best results of ANN Classification for each Complete Dataset

Table 5.24 shows the respective results.
To compare the performance of the different imputation methods, the best setup

for each dataset is registered Table 5.25.
Once again, the Deletion dataset yielded better results than Imputation. The

best results were obtained when using the dataset with only originally complete
patients, and the parameters of the algorithm were 7 for minimum size of leaves and
deviance for the split criterion.

SVM

The parameters to run SVM were the combination of all those that have been
changed imputation:

• Kernel [Function] = all

• Optimization [Routine] = all

• Split [criterion] = all

The 5 best settings of this first iteration are listed in Table 5.26.

Kernel Optimization Standardize AvAU Dataset

polynomial(order 1) L1QP true 0.6277 CompletePatients

RBF L1QP true 0.6215 CompletePatients

RBF SMO true 0.6215 CompletePatients

polynomial(order 1) SMO true 0.6215 CompletePatients

polynomial(order 1) L1QP true 0.6096 CompletePatients

Table 5.26: First iteration of DT Classification

To compare the performance of the different imputation methods, the best setup
for each dataset is registered Table 5.27.
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Dataset Split MinLeaf MinLeaf AvAU

completePatients deviance 7 7 0.6079

completeVariables deviance 25 25 0.5183

completeKNN deviance 20 20 0.5595

completeDT deviance 2 2 0.5262

completeSVM deviance 20 20 0.5277

Table 5.27: Best results of SVM Classification for each Complete Dataset

One more time, the Deletion dataset had better results than Imputation. this
algorithm did not have the best results, but still had a respectable contribution.

5.3.2 Final results

This section evaluated the results of this work, concerning the classification step.
Since we had to work to develop the MD simulation, the first idea that we may have
is that it does not help. Had the imputation been performed only using kNN, the
kNN is a good option to have a high AvAU value.

The best setting, however, is
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Chapter 6

Conclusion

This final chapter summarizes the work developed during this thesis, showing a
glimpse of the paths this study may lead to.

6.1 Discussion

The main purpose of this academic study was to attempt to build a model for
Recurrence in BC. To the best of our knowledge, there was never an attempt to
predict BC relapse sites as multiple targets, as can be read in the Literature Review.
The studies in the area of BC recurrence tend to analyze whether metastases appear
or not, or predicting survival.

To handle a problem like this, in real world, one must take into account the
problems that may emerge from raw data. In our case, the biggest problem we
have come across was MD. To address it, we first simulated missing values to choose
the best imputation method. Besides the best algorithm, SVM, we also used the
best settings for the second and third best algorithms, respectively, as well as two
datasets created by deletion of patients or variables (one each). However, we later
found out that deleting records may sometimes a better option.

After selecting the best imputation methods, the next phase involved the cross-
validation of several classification models, with different combinations of parameters
for each algorithm used. Then, each configuration was trained for the several output,
one at a time, being evaluated for each one. To handle the multi-target situation,
each output was treated like an individual binary problem, but the goal was to unify
this aspect, hoping to find a good model for the recurrence as a whole.

It is also an important point that this study was created with the concern to
be replicable: the repetition of the same experience would yield the same results,
since the random number generator is reset to the same point when necessary, the
datasets with simulated MD were all saved, and the partitions of the classification
phase were also saved.

In this type of private studies, with databases not available to the public, it is too
difficult to establish comparisons. Nevertheless, 0.6855 is a very respectable value
for an average AUC over nine values, all of them from cross-validation.

6.2 Future Work

To continue this study, we could hope to have access to an even bigger database.
This would help us validate our results, while also providing the opportunity to
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build even better models. However, that is not entirely up to us, and only time can
bring such an opportunity.

Meanwhile, that are some points that could be further analyzed. One of them
is the issue of imbalance, particularly in the output classes. Subsampling would be
one way of dealing with this problem, but it would reduce even more the database;
oversampling methods that copy data can be better, but they are not generating
any new information; however, some oversampling methods like Synthetic Minority
Oversampling TEchnique generate synthetic data, some synthetic and are proving
to be efficient in providing balanced datasets to work upon.

Many other ML algorithms could also be tested in both imputation and classifi-
cation phase. Moreover, the ones at study could be further improved, for example,
with a more exhaustive search, although it requires much time. Feature Selection
was also something implemented in this project, even if in a small scale. It could be
used again before the classification phase, or even inside the imputation (choosing
a subset of the complete variables to predict the incomplete ones from).

This thesis was a longer process than initially expected, but it will hopefully help
others to explore this topic even further. There is still a long way to go, but thinking
about all those that this work can help, we can always find more motivation.
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