
University of Coimbra

Master’s Thesis

Platform for the supervision of remote
systems using low cost devices

Author:

Vitor Sousa

vhsousa@student.dei.uc.pt

Supervisor:

Professor Alberto Cardoso

alberto@dei.uc.pt

Master’s in Informatics Engineering

Laboratory of Industrial Informatics and Systems

Department of Informatics Engineering

July 6, 2015

http://www.uc.pt
Research Group Web Site URL Here (include http://)
http://www.uc.pt/fctuc/dei/

University of Coimbra

Master’s Thesis

Platform for the supervision of remote
systems using low cost devices

Author:

Vitor Sousa

vhsousa@student.dei.uc.pt

Supervisor:

Professor Alberto Cardoso

alberto@dei.uc.pt

Jury:

President: Professor Fernando José BARROS

Vowels: Professor Jorge HENRIQUES

Professor Alberto CARDOSO

Master’s in Informatics Engineering

Laboratory of Industrial Informatics and Systems

Department of Informatics Engineering

July 6, 2015

http://www.uc.pt
Research Group Web Site URL Here (include http://)
http://www.uc.pt/fctuc/dei/

Resumo

O desenvolvimento da experimentação on-line representa uma oportunidade para a

criação de laboratórios remotos, abordando diversos temas em diversas áreas, espe-

cialmente em temas relacionados com cursos de engenharia.

O principal objetivo deste trabalho é o desenvolvimento de uma plataforma que integra,

monitoriza e controla sistemas laboratoriais, através de uma forma uniforme de interação

com diversos equipamentos e tecnologias. A arquitetura proposta considera a utilização

de dispositivos de baixo custo, tais como os Raspberry Pi, num ambiente distribúıdo

acesśıvel através da internet e que permite a interação com dispositivos de redes de

sensores sem fios (e.g. TelosB), placas de aquisição de dados (e.g. National Instruments)

e redes de sensores virtuais. Os utilizadores têm a possibilidade de observar os sistemas

laboratoriais através de uma web câmara.

Com o suporte da plataforma desenvolvida, foram criados cinco casos de estudo para

testar e avaliar as suas funcionalidades e o seu desempenho. Os casos de estudo foram

usados para a colaboração com algumas instituições e demonstrados em dois eventos:

Human Sensor and Geographic Information Systems for Disaster Risk Management

(HSenSIG) e a 3rd Experiment@International Conference - exp.at’15.

Os resultados obtidos através dos testes de benchmarking, monitorização da utilização e

comentários dos utilizadores, dão-nos boas perspetivas para a sua utilização numa escala

mais alargada, possibilitando uma maior qualidade à experiência de aprendizagem, para

diferentes utilizadores.

Keywords: Experimentação On-line, Laboratórios Remotos, Integração de Sistemas,

Redes de Sensores sem Fios, Aquisição de dados, Redes de Sensores Virtuais, Sistemas

Distribúıdos.

Abstract

The development of on-line experimentation represents an opportunity to create remote

laboratories addressing several topics in different areas, specially on topics of engineering

courses.

The main purposes of this work are the development of a platform that integrates,

monitors and controls laboratory systems, by creating a uniform way of interaction

with different equipment and technologies. The proposed architecture considers low-cost

devices, such as the Raspberry Pi, in a distributed environment that is accessible over

the Internet allowing the interaction with wireless sensor network devices (e.g. TelosB),

data acquisition boards (e.g. National Instruments) and virtual sensor networks. The

users can observe the laboratory systems through a web camera.

With the support of the developed platform, were created five study cases to test

and evaluate its features and performance. They were used on the collaboration with

some institutions and demonstrated on two events: Human Sensor and Geographic

Information Systems for Disaster Risk Management (HSenSIG) and the 3rd Experi-

ment@International Conference - exp.at’15.

The results obtained with the benchmarking testing, usage monitoring and feedback

from users gives good perspectives for its usability at a larger scale, providing a higher

quality of learning experience to different students.

Keywords: On-line Experimentation, Remote Laboratories, Systems Integration, Wire-

less Sensor Networks, Data Acquisition, Virtual Sensor Networks, Distributed Systems.

Acknowledgements

First of all I would like to express my gratitude to Professor Alberto Cardoso for giving

me the opportunity to work alongside him and thank him for his guidance, patience and

availability. Without those, this work would never get as far as it became.

To my colleagues who worked in parallel projects that were using the work presented on

this thesis, I want to acknowledge my gratitude for their patience when things weren’t

always working as they should be.

To my beloved, who helped me through all of this time by providing shelter, food and

patience when the work was coming in huge quantities and the deadlines were close, or

through great reviews some of my written work. Definitely this was a fundamental and

truly important piece to me.

I would also like to thank my friends for all the amiability and support given through

all of these years together. Definitely I got by with a little help from my friends.

Last but not least, I want to thank my dad, mom, brothers and my awesome dog, fáısca,

who provided all the support, including financial, encouragement and comprehension

during all of these years.

To all of you, thanks!

iii

Contents

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Contributions . 3

1.3 Proposed Platform . 4

1.4 Platform Use Cases . 5

1.5 Publications . 6

1.6 Outline . 7

2 State of the Art 8

2.1 Platforms for Remote Laboratories . 8

2.1.1 iLab . 8

2.1.2 Go-lab . 10

2.2 Wireless Sensor Networks . 11

2.3 Data Acquisition Systems . 13

2.4 Synthesis . 15

3 Methodology 16

3.1 Development Methodology . 16

3.2 Work plan . 17

3.2.1 First Semester . 17

3.2.2 Second Semester . 18

3.3 Risk Assessment . 19

3.3.1 Devices Integration . 19

3.3.2 Heavy Data Fetch . 19

iv

Contents v

3.3.3 Platform Use Cases . 19

4 Requirements Specification 20

4.1 Functional Requirements . 20

4.1.1 API . 20

4.1.2 Internal Server . 22

4.2 Non-functional Requirements . 23

4.2.1 Scalability . 23

4.2.2 Robustness . 24

4.3 Synthesis . 24

5 Platform Architecture 26

5.1 Overview . 26

5.2 Technologies Used . 27

5.2.1 Flask . 27

5.2.2 Pyro . 28

5.2.3 JSON . 28

5.2.4 JWT . 29

5.2.5 MongoDB . 29

5.2.6 Synthesis . 30

5.3 Authentication Mechanism . 31

5.3.1 JWT Creation . 32

5.3.2 JWT Validation . 32

5.4 Gateway Handler Module . 32

5.4.1 Gateway Drivers . 34

5.4.2 Data Fetching Thread . 36

5.4.3 Database Connector Module . 37

5.4.4 Stateful Control Mechanism . 38

5.4.5 Mail Module . 40

5.5 RESTful API . 41

5.5.1 Formats . 41

5.5.2 Endpoints . 41

5.6 Heatmap Module . 45

5.7 Network Configuration File . 46

5.8 Camera . 47

5.9 Internal Mechanisms . 49

5.9.1 Command-line interface . 49

5.9.2 Exceptions and alerts . 49

5.9.3 Downloads Garbage Collector . 50

5.10 Horizontal Scalability . 50

5.11 Synthesis . 51

6 Tests and Results 53

6.1 Functional Tests . 53

6.1.1 Tools Used . 53

6.1.2 Tests Definition . 55

6.1.3 Tests Execution . 55

Contents vi

6.1.4 Results and analysis . 56

6.2 Benchmarking Tests . 56

6.2.1 Tools used . 57

6.2.2 Experimental Setup . 59

6.2.3 Standalone Scenario . 61

6.2.4 Distributed Scenario . 61

6.2.5 Results and analysis . 62

7 Platform Use Cases 66

7.1 Remote Laboratory for identification and control of nonlinear systems . . 66

7.2 Remote Laboratory for Programming in Python using a Raspberry Pi . . 68

7.3 Volunteered Geographic Information Service 73

7.4 Remote Laboratory for Modeling and Simulation of Physiological Processes 75

7.5 Geographic Information System Web Platform 77

8 Conclusions 80

8.1 Accomplishments . 80

8.2 Setbacks . 81

8.3 Future Work . 81

8.4 Final Thoughts . 82

A Tests definition tables 86

A.1 API Tests . 86

A.2 Back-end Tests . 93

B Tests results 95

B.1 API Tests . 95

B.1.1 Test 1 . 95

B.1.2 Test 2 . 95

B.1.3 Test 3 . 96

B.1.4 Test 4 . 96

B.1.5 Test 5 . 96

B.1.6 Test 6 . 97

B.1.7 Test 7 . 97

B.1.8 Test 8 . 97

B.1.9 Test 9 . 98

B.1.10 Test 10 . 98

B.1.11 Test 11 . 98

B.1.12 Test 12 . 99

B.1.13 Test 13 . 99

B.1.14 Test 14 . 99

B.1.15 Test 15 . 100

B.1.16 Test 16 . 100

B.1.17 Test 17 . 100

B.1.18 Test 18 . 101

B.1.19 Test 19 . 101

Contents vii

B.1.20 Test 20 . 101

B.1.21 Test 21 . 102

B.1.22 Test 22 . 102

B.1.23 Test 23 . 102

B.1.24 Test 24 . 103

B.1.25 Test 25 . 103

B.1.26 Test 26 . 103

B.1.27 Test 27 . 104

B.1.28 Test 28 . 104

B.1.29 Test 29 . 104

B.1.30 Test 30 . 105

B.1.31 Test 31 . 105

B.1.32 Test 32 . 105

B.1.33 Test 33 . 106

B.1.34 Test 34 . 106

B.2 Back-end Tests . 106

B.2.1 Test 1 . 106

B.2.2 Test 2 . 107

B.2.3 Test 3 . 107

B.2.4 Test 4 . 108

B.2.5 Test 5 . 108

B.2.6 Test 6 . 109

B.2.7 Test 7 . 109

B.2.8 Test 8 . 109

B.2.9 Test 9 . 110

C Benchmarking results 111

C.1 Standalone scenario . 111

C.1.1 Test 1 - Small 1000 . 111

C.1.2 Test 2 - Small 5000 . 111

C.1.3 Test 3 - Small 10000 . 112

C.1.4 Test 4 - Moderate 1000 . 112

C.1.5 Test 5 - Moderate 5000 . 113

C.1.6 Test 6 - Moderate 10000 . 113

C.1.7 Test 7 - Heavy 1000 . 114

C.1.8 Test 8 - Heavy 5000 . 114

C.1.9 Test 9 - Heavy 10000 . 115

C.2 Distributed scenario . 115

C.2.1 Test 1 - Small 1000 . 115

C.2.2 Test 2 - Small 5000 . 116

C.2.3 Test 3 - Small 10000 . 116

C.2.4 Test 4 - Moderate 1000 . 117

C.2.5 Test 5 - Moderate 5000 . 117

C.2.6 Test 6 - Moderate 10000 . 118

C.2.7 Test 7 - Heavy 1000 . 118

C.2.8 Test 8 - Heavy 5000 . 119

C.2.9 Test 9 - Heavy 10000 . 119

List of Figures

1.1 An example of different interfaces. 3

2.1 iLab Shared Architecture [1]. 9

2.2 Go-lab UML Component for Smart Device services [2]. 11

2.3 Example of a WSN node [3]. 12

2.4 Example of a DAQ board. 14

3.1 First semester Gantt chart. 17

3.2 Second semester Gantt chart. 18

5.1 Supervision Platform Architecture. 27

5.2 Authentication Mechanism Flowchart. 31

5.3 Gateway Handler Module architecture. 33

5.4 Gateway Driver architecture. 34

5.5 Database Connector Module architecture. 37

5.6 Stateful Control Mechanism Flowchart. 39

5.7 Mail Module architecture. 40

5.8 Network Loading Mechanism. 47

5.9 Snapshot of a camera feed via the platform 48

5.10 Horizontal Scalability architecture. 50

6.1 Screen-shot of PAW. 54

6.2 Screen-shot of OS X command line. 54

6.3 Screen-shot of htop. 59

6.4 Experimental setup for the standalone scenario. 61

6.5 Experimental Setup for the distributed scenario. 62

6.6 Benchmarking results of the standalone scenario. 63

6.7 Benchmarking results of the distributed scenario. 63

6.8 Comparison of the benchmarking results between the standalone and the
distributed scenarios. 64

7.5 Architecture of the Remote Laboratory for Programming in Python. . . . 71

7.6 Camera view of the Remote Laboratory for Programming in Python. . . . 71

7.7 File upload statistics of the remote laboratory for programming in Python. 72

7.8 Execution errors statistics of the remote laboratory for programming in
Python. 72

7.9 Visualization of the volunteered geographic information service map oc-
currences. 74

viii

List of Figures ix

7.10 Volunteered Geographic Information service web camera and location vi-
sualization. 74

7.11 Volunteered Geographic Information service architecture. 75

7.12 Architecture of the Remote Laboratory for Modeling and Simulation of
Physiological processes. 76

7.13 Virtual tank and web camera visualization. 76

7.14 Water level history graph. 77

7.15 Geographic Information System Web Platform architecture. 78

7.16 Interpolation surface based on the temperature data from a WSN. 78

7.17 History and real-time data of a WSN. 79

7.18 WSN data from a specific day. 79

List of Tables

4.1 API functional requirements definition. 20

4.2 Internal Server functional requirements definition. 22

6.1 Benchmark parameters . 60

A.1 API functional tests definition. 86

A.2 Back-end functional tests definition. 93

x

Abbreviations

ADC Analog-to-Digital Converter

API Application Programming Interface

DAB Data Acquisition Board

DAC Digital-to-Aanalog Converter

FIFO First In First Out

FCFS First Come, First Served

GPIO General Purpose Input Output

IP Internet Protocol

JWT JSON Web Token

NaN Not a Number

NTP Network Time Protocol

QA Quality Assurance

RAM Random Access Memory

ROM Read-Only Memory

RPi Raspberry Pi

SMTP Simple Mail Transport Protocol

SPOF Single Point Of Failure

TCP Transport Control Protocol

URL Uniform Resource Locator

VGI Volunteered Geographic Information

VSN Virtual Sensor Network

WSN Wireless Sensor Network

xi

Chapter 1

Introduction

This thesis corresponds to the research work done at the Laboratory of Industrial In-

formatics and Systems of the Department of Informatics Engineering within the The-

sis/Project curricular unit of the Master in Informatics Engineering course at the Uni-

versity of Coimbra.

1.1 Motivation

The development of Information and Communication Technologies (ICT) enables many

benefits and advances regarding all components of the educational process and play an

increasingly fundamental role to support teaching and on-line learning in engineering

courses. In particular, the development of on-line experimentation represents an oppor-

tunity to create remote laboratories addressing several topics in different areas, specially

on topics of engineering courses.

Higher education institutions have to provide learning experiences that engage and ad-

dresses the needs of society in the twenty-first century [4]. As Swail [5] states, the

”rules are changing and there is increased pressure on institutions of higher education

to evolve, adapt, or desist”. The transformation of teaching and learning on higher

education is inevitable with the use of web-based communications technology [6]. The

field of on-line learning, in general, should incorporate the potential of technology to

address the challenges associated with, providing a high-quality learning experience in

different educational contexts and using diverse technological supports and interfaces.

1

Chapter 1. Introduction 2

The recent large turnout to the Internet brought new means to share information and

knowledge not only in terms of content but also as tools and platforms that allow edu-

cators to create innovative ways to support learning. A major outcome from this effort

is the on-line laboratory paradigm. Remote laboratories provide to students the abili-

ties to interact, in real time and with less access restrictions, with a laboratory system

to perform practical experiences, visualizing and analyzing the dynamic behavior of a

system.

Some laboratory systems were designed to be used on a restricted environment and do

not provide any interface to collect data on a digital format, for further usage. Also,

some of the experiments may only involve the manipulation of data collected from sen-

sors, without any interaction with a real systems. Technologies such as Wireless Sensor

Network (WSN) and Data Acquisition Board (DAB) provide the ability to interface

with an analog system and convert the systems signals into digital data that can be

sent through the Internet. Also the wireless sensor network, as a distributed framework,

provides the abilities to integrate multiple actuators and sensors that are spatially dis-

tributed and connected trough nodes of a wireless network to a gateway. The data from

those sensors, namely air temperature, humidity or luminosity, can be used for academic

purposes, as presented on chapter 7.2, and can be emulated through a Virtual Sensor

Network (VSN), removing the need of having a real WSN installed, when the accuracy

of data may not be necessary.

After creating the means to retrieve data from laboratory systems or from sensors, we

still have the problem of the amount of different accesses we have to make, using diverse

communication protocols and different interfaces, as we can see in figure 1.1.

In this sense this thesis aims to contribute with a platform capable of unifying different

interfaces into one that is accessible through the Internet.

Chapter 1. Introduction 3

Figure 1.1: An example of different interfaces.

1.2 Objectives and Contributions

One of the objectives of this work is to contribute to existing knowledge regarding the

remote laboratories paradigm by reactivating some of the systems available at the Lab-

oratory of Industrial Informatics and Systems (LIIS) of the Department of Informatics

Engineering (DEI) of the University of Coimbra (UC), making them remotely acces-

sible for academic purposes and give a richer experience to courses that benefit from

interaction with laboratory systems. Another objective corresponds to the development

of an environment capable of unifying the access to different systems, which by nature

the accesses are very distinct, and make them accessible through a remote environment

using the Internet.

Based on the objectives, the main contributions of this work are:

1. The study of a set of platforms and technologies, presented on chapter 2, that

enriches, improves, and allows to understand what are its main requirements.

2. On chapter 4, a set of main requirements for a platform that allows the integration

of different devices and the remote access.

3. A fully detailed architecture with the explanation of the mechanisms for a platform

of this sort, done on chapter 5.

Chapter 1. Introduction 4

4. Finally, on chapter 7, a set of applications that use the platform and help to

understand, test and validate the approach and the scenarios where this platform

can be applied.

It is expected that all the research, analysis and development work done on this thesis,

contribute to the development of the general paradigm of remote laboratories.

1.3 Proposed Platform

With this work, we pretend to develop a platform that integrates, monitors and controls

devices (e.g. WSN or DAB) and virtual environments (e.g. VSN), creating a unique

way of interaction with different equipment and technologies. All the infrastructure is

designed to be supported by low cost devices in a distributed environment, and accessible

over the Internet, allowing the monitoring and control of remote systems. To complement

this remote interaction, for each remote system is provided the possibility of having a

web camera associated with.

To integrate some of the proposed devices, were developed drivers with abilities to

communicate with WSN or DAB gateways. This solution was created with the intent to

use specific devices such as the National Instruments 6008 or Crossbow TelosB, meaning

that to integrate new devices, new modules must be created. However, it is possible to

created several instances of any of the integrated devices or virtual environments.

The interaction with the platform is made through a RESTful API that has endpoints

to fetch recent data, fetch data from a database, authenticate a user, make a control

request to a network, fetch information about a given network or fetch all the available

networks.

For each solution, there are internal mechanisms that fetch and store data to a database

for later usage, to alert the gateway administrator of any problem, to authenticate and

to manage the control interaction. The authentication mechanism is mainly used to

return a token that is considered on the control requests, to guarantee the authenticity

of the user that is controlling the system. To provide an equal usage distribution of

the solutions to all of the users, the control mechanism uses a First Come, First Served

policy, with an established maximum threshold for individual usage time.

Chapter 1. Introduction 5

Any of the modules previously mentioned is configurable through a configuration file,

that specifies all of the parameters that describe a network (e.g. Gateway IP).

1.4 Platform Use Cases

To test and evaluate the developed platform, the following 5 applications were created:

(1) a remote laboratory for identification and control of nonlinear systems; (2) a remote

laboratory for programming in Python, using a Raspberry Pi; (3) a Volunteered Ge-

ographic Information Service; (4) a remote laboratory for modeling and simulation of

physiological processes; (5) and a Geographic Information System Web Platform.

The first application consists on a remote laboratory that allows carrying out remote

experiments using a real laboratory system and visualize the process via a web camera.

The experiments conducted on this remote laboratory included operations like moni-

toring systems, observing physical variables, systems identification, digital control of

dynamic systems, network control systems and distributed control systems, considering

remote controllers in a shared communication network. This application was used on an

academic work of students from courses about identification and control of dynamical

systems of a Master Degree on Electrical Engineering. The objective was to make ac-

cessible to students, a laboratory system that was in the LIIS so that the students could

complete an academic work related with the intelligent control of a process, using fuzzy

logic.

The second application is a remote laboratory that allows students to develop programs

and run them remotely on a Raspberry Pi which has access to a WSN. The sensor

nodes were used to measure air temperature, humidity and luminosity and each one

was spatially distributed. This application was used on a CS2 course [7] of Informatics,

Networks and Multimedia at the University of Azores, where the students had to develop

a Python application that displays, for each node of the WSN, a descriptive statistical

information about the data collected by sensors.

The third application is a web service that allows receiving and visualize information

that was voluntarily sent by humans with their respective geographical location. It was

created to be used on two sessions of the training school Human Sensor and Geographic

Chapter 1. Introduction 6

Information Systems for Disaster Risk Management (HSenSIG). The first session con-

sisted on a simulacrum exercise where the volunteers contributed with information about

buildings on fire, road blocks or people in danger, and this information was used by the

Coimbra Civil Protection Authority to coordinate the firemen. The second session was

a simulation of a real flooding in which was considered a model to control the three-tank

system. Each tank, controlled via the developed platform, represented a location of

the Mondego and Ceira rivers and the volunteers had to submit information warning

of a possible flood. The information submitted on the second session was validated by

verifying if the levels read by the sensors on the three-thank system, corresponded to

situation that the user was submitting.

The fourth application consists on a web platform that allows the students to visual-

ize and obtain data from an on-line experiment, supported by a three-tank laboratory

system, that models, simulates and monitors a physiological process as the system of

ingestion and excretion of a drug. It was designed to be used in courses about computa-

tional models of physiological processes and algorithms for diagnosis and self-regulation

of the Master Degree on Biomedical Engineering, in a blended learning context.

Finally, the fifth application is a platform for sensor data visualization. The main func-

tionalities are: (1) visualization of sensor measurements and sensor location on a map;

(2) processing the measurements; (3) visualization of the processed results on a map.

As presented on chapter 7.5, this web platform combines the data retrieval and process-

ing functionalities of the platform, to build a visual environment that demonstrates the

potentialities of a Geographic Information System (GIS).

1.5 Publications

Of all the work presented in this thesis, resulted in the following articles:

Alberto Cardoso, Vitor Sousa, Joaquim Leitão, Vitor Graveto and Paulo Gil. “Demon-

stration of identification and control of nonlinear systems using a remote lab”. Proceed-

ings of the 3rd Experiment@ International Conference – exp.at’15, pp. 97-98, June 2015;

Chapter 1. Introduction 7

Hélia Guerra, Alberto Cardoso, Vitor Sousa, Joaquim Leitão, Vitor Graveto and Lúıs

Mendes Gomes. “Demonstration of Programming in Python using a remote lab with

Raspberry Pi”. Proceedings of the 3rd Experiment@ International Conference – exp.at’15,

pp. 101-102, June 2015;

Alberto Cardoso, Daniel Osório, Joaquim Leitão, Vitor Sousa, Vitor Graveto and César

Teixeira. “Demonstration of modeling and simulation of physiological processes using a

remote lab”. Proceedings of the 3rd Experiment@ International Conference – exp.at’15,

pp. 103-104, June 2015;

Alexandra Ribeiro, Jorge Vieira, Vitor Sousa and Alberto Cardoso. “Demonstration

of GIS web-based platform for experimentation supported by geosensors in a WSN ”.

Proceedings of the 3rd Experiment@ International Conference – exp.at’15, pp. 137-138,

June 2015;

Apart from these, it is expected the publication of other articles, at least in the journal

International Journal of Online Engineering (iJOE).

1.6 Outline

The document is organized as follows: Chapter 2 presents an overview of the State of

the Art in terms of remote laboratories, technologies such as WSN and a synthesis of

all the addressed subjects. Chapter 3 explains all the development methodology, risk

assessment and the work plan for the first and second semester. Chapter 4 contains

all the requirements analysis done in order to define the necessary features to develop.

Chapter 5 presents, in detail, the architecture, features and mechanisms developed.

Chapter 6 presents all the functional and benchmarking tests that were done, in order

to prove and guarantee the proper functioning and performance. Chapter 7 shows some

applications that use the developed platform to control or monitor a remote system. On

the final chapter of this thesis, Chapter 8, are presented some conclusions about the

developed platform, including the accomplishments, setbacks and future work.

Chapter 2

State of the Art

2.1 Platforms for Remote Laboratories

Remote laboratories are systems based on real equipment, which allows users to per-

form experimental work through an Internet connection [8]. The provides the abilities

of interaction in real time with a laboratory system to perform practical experiences,

visualizing and analyzing the dynamic behavior of a system.

On this section, are described and analyzed two examples of remote laboratories services

that contributed largely to the actual knowledge.

2.1.1 iLab

Created by Massachusetts Institute of Technology (MIT), the iLab [1] is a platform that

aggregates several remote laboratories and makes them accessible through the Internet,

allowing students, researchers and educators to carry out experiments from anywhere at

any time. Sharing high cost or delicate equipment and minimizes the effort of the access

to laboratory equipment are the main objectives of iLab. There are three categories of

experiments available on this platform: (1) Batched experiments, where the entire course

can be specified before the experiments begin (e.g. script); (2) Interactive experiments,

where the students can monitor and control one or more aspects of the experiment; (3)

Sensor experiments, where the user observes real-time data streams without influencing

8

Chapter 2. State of the Art 9

the phenomena that are being measured. The remote laboratories are aggregated using

the iLab Shared Architecture (ISA).

The ISA is a web service infrastructure that provides a unifying software framework that

can support access to a variety of on-line laboratories, that can be globally distributed

such as the users that access these remote laboratories through a single sign-on interface.

This architecture is highly scalable in the sense that it minimizes the load involved

on the Lab Server, decentralized in the sense that each organization manages its own

users, secure by providing a mechanism for encrypted authorization and access control

and compatible in the sense of it allows the interaction with commercial software like

National Instruments LabView.

As we can see in figure 2.1, the iLab’s architecture separates the on-line labs into three

distinct modules connected by a web service. The modules are:

• A Lab Server that is operated by the laboratory owner and deals with the actual

operation of the laboratory systems;

• The Lab Client that runs on the client’s computer and provides the interface to

operate the remote laboratory;

• The Service Broker which mediates the communication between the Lab Client

and the Lab Server, providing storage and administrative services that are generic

and can be shared by multiple laboratories within a single university.

Figure 2.1: iLab Shared Architecture [1].

Chapter 2. State of the Art 10

The protocol used to communicate between the servers of the ISA is the Simple Object

Access Protocol (SOAP) that consists on eXtensible Markup Language (XML) informa-

tion set and relies on other application layers (e.g. HTTP) for the message negotiation

and transmission.

2.1.2 Go-lab

The Go-lab is a European collaborative project co-funded by the European Commis-

sion that creates an infrastructure to provide access to a set of on-line laboratories

from worldwide renowned research organizations, such as European Space Agency (ESA,

the Netherlands), European Organisation for Nuclear Research (CERN, Switzerland),

Núcleo Interactivo de Astronomia (NUCLIO, Portugal), as well as several other universi-

ties and institutions. Similar to the previous example, the iLab, the Go-lab promotes an

environment that can be used by universities, schools, instructors or students to extend

regular learning activities with scientific experiments, conducted not only by teachers as

a demonstration but also by students, giving them a real experience of scientific work.

To ease the integration of new labs, the Go-lab enables various levels of integration

which can be chosen according to the possible resources a lab owner can invest: (1)

Full integration; (2) Intermediary integration; (3) Low integration. The first level of

integration consists on the standard client-server approach, implementing a Smart De-

vice specification, that consists on a server gateway connected to the laboratory system

with predefined interfaces (figure 2.2). The second level of integration consists on de-

veloping a Smart Gateway to interface with an already existing laboratory server that

is connected to the laboratory system, and act as a Smart Device. The third level of

integration consists on integrating an already existing client as an iFrame on the Go-lab

page.

The communication between the Go-lab server and the Smart Devices and Smart Gate-

ways is done using web sockets, enabling the server to push or pull information from

the client asynchronously and only the meta-data information, plain text analytics, is

fetched via HTTP GET request. As we can see in figure 2.2, there are a set of key

components that interacts with the Smart Devices/Smart Gateways and provides the

necessary mechanisms to control and monitor a laboratory. The authentication to use

a remote laboratory is done using a token, that is generated by the booking system,

Chapter 2. State of the Art 11

Figure 2.2: Go-lab UML Component for Smart Device services [2].

directly sent to the Smart Device/Smart Gateway. Those only contain logic to validate

the token provided, only accepting or rejecting the authentication.

On the low integration level, the mechanisms used to interact with the remote laboratory

are defined by the owner since this does not have any of the Smart Device or Smart

Gateway integration.

2.2 Wireless Sensor Networks

Recent advances in wireless communications, digital electronics, and analog devices en-

abled the creation of sensor nodes that are low-cost and low-power to communicate

untethered in short distances and collaborate as a group [9]. These spatially distributed

autonomous devices can, using a set of sensors and actuators, be used to monitor and

control a physical system, monitor environmental conditions such as air temperature,

humidity, luminosity, etc. and cooperate to transfer data to a gateway. Due to their

wireless capabilities they can be self-organized into clusters or collaborate together to

complete a task that is issued by the users.

A wireless sensor is characterized by its small size, its ability to sense environmental phe-

nomena through a set of transducers and a radio transceiver with autonomous power

supply [10]. In figure 2.3 we can see an example of a WSN node which the main com-

ponents are: (1) a photosynthetically active radiation sensor; (2) a total solar radiation

sensor; (3) a temperature sensor (4) a humidity sensor; (5) a total of 18 expansion

connectors (6) and a CC2420 radio and an internal antenna. On this example, the ex-

pansion connectors can be used as analog-to-digital (ADC) or digital-to-analog (DAC)

converters to monitor or control analog systems.

Chapter 2. State of the Art 12

Figure 2.3: Example of a WSN node [3].

The low cost of each node is an important advantage of this type of networks, allowing

an economical large-scale deployment of nodes. However, the low-cost together with the

small dimensions, causes some limitations at levels like computing capabilities, storage

capacity, communication and mainly at an energy level. An approach to overcome

this problem, is for each node to use their small processing capacities to carry simple

computations and transmit only the required data to a sink node that aggregates the

data from all the nodes of the WSN and sends it to a remote server with higher processing

capacities.

In terms of radio transceivers, currently there are mainly two types: (1) Carrier Sense

Multiple Access (CSMA); (2) 802.15.4. CSMA is the cheaper and simpler radio that

operates in a license free band (315/433/868/916 MHz) and has a bandwidth of 20 to

50 kilobits per second (kbps). The second type, 802.15.4, is a radio operating in 2.4

GHz band with 250 kbps of bandwidth, 5 times higher than the first type, but also more

expensive. This type of radio offers the possibility of using an internal antenna making

the nodes more practical, instead of having an external whip antenna.

The operating system is a software that manages all the underlying hardware compo-

nents and resources of a device. The mainly used operating systems for WSN are: (1)

TinyOS; (2) Contiki.

TinyOS is an open-source component-based operating system for devices with low power

specifications. It has a component-based programming model, codified by the NesC

language [11], a dialect of C, that allows to interact with the operating system through

Chapter 2. State of the Art 13

three types of components: (1) Commands; (2) Events; (3) Tasks. Commands are

instructions that the developer want to give to the device, such as fetching data from

one of the sensors. Each Command creates a new Task and a Callback that is called

when the task has ended. Tasks are non-preemptive and run in a First In First Out

(FIFO). A typical application is about 15K in size, of which the base operative system

is about 400 bytes; the largest application, a database-like query system, is about 64 K

bytes [12]. The latest release is the 2.1.2 and brought the support for IPv6 (6lowPAN)

through a module called Berkeley Low-power IP stack (BLIP).

Contiki [13] was developed by Adam Dunkels at the Swedish Institute of Computer

Science in 2004 and first released in 2005. Just like the TinyOS, this is an open-source

operating system that was designed to run on low specs devices, such as the nodes

of a WSN, that is highly portable and event-driven with optional preemptive multi-

tasking. When compared to other WSN operating systems, Contiki had the advantage

of bringing the support of network protocols like the IPv6 (6lowPAN), RPL and CoAP,

a lightweight threading, called protothreads, and a kernel prepared to a wide range of

architectures and dynamically linked code. A typical configuration uses 2 kilobytes of

RAM and 40 kilobytes of flash memory and the programming language used is C with a

set of adjustments to meet the Contiki specifications. There are several projects, such as

the ICT FP7 GINSENG, that uses Contiki as the main operative system for the nodes

of the network, but with major adaptations. The ICT FP7 GINSENG [14] aims to

create WSN that meet demanding performance specifications and that can be applied

in industrial environments where a real-time operation is critical. The latest release of

Contiki is the 2.7, launched at November 15, 2013.

2.3 Data Acquisition Systems

Data acquisition (DAQ) is the process of collecting signals that measure physical con-

ditions and converting them into digital numeric values that can be manipulated by a

computer. Typically the data acquisition hardware includes sensors that convert the

physical parameters into electrical signals, a signal conditioning circuitry to convert sen-

sor signals into a form that can be converted to digital values, and a ADC which converts

conditioned signals into digital values. Sometimes it is necessary to amplify or filter the

signal from the transducer because it may not be suitable for the DAQ hardware that

Chapter 2. State of the Art 14

is being used. The hardware provides the necessary interface to connect to a computer

(e.g. USB, Parallel, Serial, etc.) or slot cards to (S-100 bus, PCI, etc.) connect in the

motherboard.

On the figure 2.4 we can see an example of a DAQ board from National Instruments,

model USB-6008, that has USB connection to the computer, 8 analog inputs, and 2

analog outputs.

Figure 2.4: Example of a DAQ board.

Most of the boards allow two types of signaling: (1) Single-ended; (2) Differential. Single-

ended signaling is the simplest method of transmitting electrical signals over wires. It

resumes to two wires, one carrying the electrical signal, and the other wire is connected

to a reference voltage, usually ground. The differential signaling consists on sending the

electrical signal twice, one per wire. The circuit that receives the two signals responds

to the electrical difference between the two electrical signals, instead of the difference

between a single wire and a reference voltage.

Chapter 2. State of the Art 15

2.4 Synthesis

At this chapter was shown an overview of the state of the art in terms of remote lab-

oratories, wireless sensor networks and data acquisition systems, complementing the

proposed approach to the creation of a platform to monitor and control remote systems.

Being this work directly related with remote laboratories, was studied two approaches

in order to understand what were the main problems that they found and, if the case,

understand what was the approach that they took to overcome it. The main conclusions

drawn was that there is a huge problem in creating a unique way to communicate with

laboratory systems and each of the examples takes an approach that is best suitable

for their scenario. Fortunately, there is a huge motivation into creating a unifying

mechanism, but it is still far from becoming a standard.

There are several scenarios of laboratory systems and remote laboratories. The most

common scenarios are: (1) a remote process (e.g. PCS 327) identification and control; (2)

Control of a remote system (e.g. three-tank system); (3) Sensor data analysis. WSN and

DAB has specificities that make them adequate for the certain scenarios. For example,

on the first scenario the sampling rate of approximately 1 second, provided by a WSN,

may not be sufficient making the usage of a DAB more efficient on an identification and

control environment. On the other hand, the DAB is cable dependent boards and do

not provide the spatially distributed character, making the WSN more suitable for the

third scenario.

Concluding, we propose a platform that integrates all of this devices shown on this

chapter, creating a good environment to cover most of the scenarios seen in remote

experimentation.

Chapter 3

Methodology

3.1 Development Methodology

At the start of the project, there was an idea of what to develop and the objective

was that each week that idea would be tweaked until it was according to the thesis

objectives. To match this type of iterative and incremental workflow, we choose the

agile software development methodology SCRUM. It’s principal aspect is the recognition

that something unexpected, as a new requirement, can surge during the course of the

project.

This methodology was adapted to a laboratory environment where a real client does

not exist, neither does a development team. Mainly, there was two people involved on

the roles: (1) The supervisor, Professor Alberto; (2) The student, Vitor. The project

supervisor took the roles of product owner and scrum master and the student was the

development team.

Instead of having a daily scrum, we had a weekly scrum where the scrum master and

the development team met and discussed what was done on the previous sprint. After

the meeting, it was planned what was necessary to be done on the next sprint, and so

on until the end of the project.

16

Chapter 3. Methodology 17

3.2 Work plan

In this section are shown the activity plans for both of the semester of the internship.

This was a compilation of all the features and requirements that were analyzed on each

of the weekly scrum meetings.

3.2.1 First Semester

The Gantt chart of the activity plan for the first semester is described in figure 3.1. On

2014 2015

Set Oct Nov Dec Jan F

State of the art study

Wireless Sensor Networks

Software

Hardware

Low Cost Development Boards

Network Topologies

Remote Laboratories

Reasearch of equipment to buy

Reasearch of extra modules to buy

Requirements Analysis and Architecture Creation

Requirements Analysis

Architecture Development

Prototype Development

First Prototype Development - 7.1

Camera Configuration

Process and WSN setup

Tests and Debugging

Study Cases

Monitoring and Debugging

Documentation

Creation of the mid-semestre Report

Figure 3.1: First semester Gantt chart.

the first semester was done a study of the state of the art to understand what technologies

are adequate and work had been done, as well the creation of a first prototype that is

shown at the section 7.1.

Chapter 3. Methodology 18

3.2.2 Second Semester

The Gantt chart of the activity plan for the second semester is described in figure 3.2.

The second semester was mainly dedicated to the development of the platform. After

2015

F Mar Apr May Jun Jul

Development

Platform Modules

Endpoints

Device Integration

Data Retreival

Database Connection

Authentication Mechanism

Distributed Control

Internal Mechanisms

Notifications

Data Interpolation

Platform Use Cases

Volunteered Geographic Information System - 7.3

Physiological Process - 7.4

Geographic Information System - 7.5

Demonstrations

HSenSIG

3rd Experiment@ International Conference

Testing

Functional Testing

Benchmark Testing

Documentation

Thesis writting

Presentation preparation

Figure 3.2: Second semester Gantt chart.

the platform was in a stable version, the efforts were dedicated to the development of

the use cases to be presented at the summer school, Human Sensor and Geographic

Information Systems for Disaster Risk Management (HSenSIG), and at the 3rd Ex-

periment@International Conference - exp.at’15. Lastly were done the functional and

benchmarking tests and written all the documentation.

Chapter 3. Methodology 19

3.3 Risk Assessment

At this section we discuss some risks for the project, as well as a mitigation plan for

each one of them.

3.3.1 Devices Integration

Since the whole project consists on the integration of multiple devices, not completing

this feature would result on a complete failure of the project. We created some Gateway

Drivers that communicate with the existing devices according to their specifications (e.g.

TCP sockets).

3.3.2 Heavy Data Fetch

Storing one sample every second, 24/7, results on a large quantity of data that is stored

on the database. Since users can fetch data directly from the database, there is the

possibility of fetching large quantities of data (e.g. 5GB) and stall the whole system.

We adopted a timeout mechanism to the database queries that aborts a query if it is

taking too long.

3.3.3 Platform Use Cases

Developing use cases to the platform results in less time spent in developing features

and can compromise the proposed objectives. By creating a template, using existing

technologies like Bootstrap or AngularJS, we are able to speed up the process of creating

a web-accessible remote laboratory and mitigate this risk.

Chapter 4

Requirements Specification

4.1 Functional Requirements

Functional requirements describe the operations that a software system should be able

to perform. In this section are presented and described the main functional requirements

for the platform.

4.1.1 API

In table 4.1 we have the API functional requirements, that defines the necessary end-

points to monitor, authenticate and control a network.

Table 4.1: API functional requirements definition.

Name Description

1 List available networks
A user can fetch a data

of all the gateways available on the platform.

2 List network information
A user can fetch information about a network

that is available on the platform.

3
Fetch network recent

data

A user can fetch the most recent data retrieved

from a specified network.

4
Fetch network device

recent data

A user can fetch the most recent data retrieved

from a specified network and device

20

Chapter 4. Requirements Specification 21

Name Description

5
Fetch network database

data from a date

A user can fetch database data, from a network

that has storage options, since a specified date.

6
Fetch network database

data until a date

A user can fetch database data, from a network

that has storage options, until a specified date.

7
Fetch network database

data between two dates

A user can fetch database data, from a network

that has storage options, between two specified

dates.

8
Fetch network database

data from a device

A user can fetch database data, from a network

that has storage options, specifying the device.

9

Fetch network database

data specifying the

sampling rate

A user can fetch database data, from a network

that has storage options, specifying the sampling

rate.

10
Fetch network database

data with interpolation

A user can fetch database data, from a network

that has storage options, creating an

interpolation of the values retrieved.

11
Fetch network database

data with multiple options

A user can fetch database data, from a network

that has storage options, specifying multiple

options (e.g sampling rate and the device id)

12 Authenticate to control
Using valid credentials on a specified network,

a user can authenticate himself.

13 Control a network
Using a valid token, a user can send control

actions to a network.

14 Access to a network camera
A user can access to a camera from a specified

network

Chapter 4. Requirements Specification 22

4.1.2 Internal Server

The table 4.2 has the some of the main functional requirements to the basic functioning

of the server.

Table 4.2: Internal Server functional requirements definition.

Name Description

1 Command-line settings
The server settings are able to be modified

through command line parameters

2 Settings file
The server settings are able to be modified

by loading a settings file

3 WSN Integration
The server is able to monitor and control

a WSN

4 DAB Integration
The server is able to monitor and control

a DAB

5 VSN Integration The server is able to monitor a VSN

6 Load networks
The server is able to load a set of networks

from their respective files

7
Fetch data from network

gateway

The server is able to fetch data from a

network gateway

8
Store data from network

gateway

The server is able to store the fetched

data into a database

9
Recover from lost connection

to a gateway

The server is able to recover a lost

connection to a gateway (DAB or WSN)

10
Alert network administrator

of failure

The server is able to alert the responsible

administrator of a particular network,

that a failure occurred.

11 Generate authentication token
The server is able to authenticate

and generate a control token

12 First Come, First Served control
The server is able to manage the control

on a First Come, First Served order

Chapter 4. Requirements Specification 23

4.2 Non-functional Requirements

Non-functional requirements specify criteria that judge the operation, rather than spe-

cific behaviors of a system. These are requirements that have no visible impact on end

users but improves the overall quality of the interaction experience. At this section are

described two non-functional requirements, scalability, and robustness, that are consid-

ered the most important to this project, due to the expected heavy user interaction.

4.2.1 Scalability

Scalability is the ability of a system to handle a growing amount of work. There are two

types of scalability: (1) Vertical; (2) Horizontal. The vertical scaling consists on adding

more resources to a computer, typically involving the addition of memory, hard disk or

more CPUs. The horizontal scaling consists on adding more computers to a distributed

software.

Having the possibility to run more instances of the platform on different computers,

results in better response times on low and high demand requests. To meet this re-

quirement, it is necessary to create a system that is capable of having multiple instances

working as one. This brings some problems: (1) In terms of data storage and data

fetching, it is necessary the creation of means to differentiate the instance that does

the sampling and store, from the instance that only does the sampling and does not

store, surpassing the problem of having duplicated keys on the database; (2) The con-

trol policy must be done by multiple machines with different states, creating the need

of a stateful control mechanism that saves the control action to a database, accessible

by other machines.

In terms of scalability, the objective with this platform is to build a system that is

capable of running on a standalone or distributed mode, allowing both horizontal and

vertical scalability.

Chapter 4. Requirements Specification 24

4.2.2 Robustness

Robustness can be defined as the ability of a software system to cope with unanticipated

events, invalid inputs, corrupted stored data, and so on, during its runtime. If a software

system includes interaction with hardware system, it should consider its problems too,

like equipment damage or loss of power.

Independent systems, software and hardware, can generate faulty situations where there

is no possibility of automatically restart or repair. For example, WSN are very propitious

to faulty situations where one or all nodes of the network fail and there is no data

incoming from the gateway or the sink node. On this case, the platform should handle

the situation by generating values indicating that there is no connection to the WSN,

such as not a number (NaN) values. When the connection from the nodes or the gateway

resumes, the system should be capable of reconnecting and resuming normal operations.

Other than that, the platform itself can generate some buggy situations and, itself should

be able to recover from the faulty situation.

On a remote laboratory environment, sometimes the experiments are slow and take time.

It is important that the system stays operational most of the time, not contributing to

the user having to restart his experiment.

4.3 Synthesis

At this chapter was shown the main requirements, functional and non-functional, that

are mainly considered for the development of the platform. Having a set of requirements

gives a good notion of what needs to be done and how long it might take to do it.

Functional requirements helped to define what are the main functionalities of the API,

explaining what are the kind of endpoints should be considered by the system, and the

internal server, by specifying internal functionalities. The non-functional requirements,

from a developer point-of-view, helped to understand how the architecture should be

defined in order to accomplish them, as explained on each one of them.

Chapter 4. Requirements Specification 25

There is a set of other requirements that are equally important but not considered on

this chapter. For example, at the non-functional requirements, scenarios like backup,

security or efficiency. These are as important as the requirements defined on the previous

sections, but due to the small size of this work in terms of usage and development time,

it would be an excessive overhead. Due to lack of time, it was impossible to exploit all

the requirements in order to build a platform with greater quality.

With this set of requirements, it is possible to build a stable environment on a small

scale and keep developing features improving the overall service.

Chapter 5

Platform Architecture

5.1 Overview

After analyzing the state of the art devices and platforms for remote laboratories, we

tried to define an architecture capable of accomplishing what was proposed. In this

chapter, each of the modules is described, demonstrating what are their main features

and their connection with the other modules.

In figure 5.1 we can see an overview of the defined architecture that is composed by

seven interconnected modules: (1) Authentication Mechanism (AM); (2) Gateway Han-

dler Module (GHM); (3) Database Connector Module (DBCM); (4) RESTful API; (5)

Stateful Control Mechanism (SCM); (6) Heatmap Module (HM); (7) Mail Module (MM).

Each of these modules has distinct functionalities, but some of them depend on each

other to complete tasks. For example, the Stateful Control Mechanism depends on sev-

eral modules like the RESTful API, the Database Connector Module, and the Gateway

Handler Module.

All of the modules are separated from each other with the exception of the Database

Connector Module, Stateful Control Mechanism, and Mail Module that are inside the

Gateway Handler Module, but accessible from the other modules.

26

Chapter 5. Platform Architecture 27

Figure 5.1: Supervision Platform Architecture.

On the following sections will be explained in detail the functionalities of each module

and of the internal components of the platform.

5.2 Technologies Used

At this section are described the main software technologies that were used to develop

the architecture of the platform.

5.2.1 Flask

Flask is a web development micro-framework for Python with a small core and easy-to-

extend philosophy.

The core version of Flask is a HTTP server with a routing system. Making a request to

a URL (e.g. /networks/), will result on the execution of a method on the server side and

it is possible to pass parameters to the function just by adding them to the request. If

the parameters added do not meet the server requirements, the request will be aborted.

This routing system automatically order routes by their complexity, meaning that it is

possible to declare routes in a arbitrary order and they will work as expected. The only

criteria is that the declared routes must be unique or the request will redirected to a

canonical URL, usually a 404 Not Found.

Chapter 5. Platform Architecture 28

For each incoming request Flask creates a new thread to respond. This results on a

non-blocking server allowing to respond to several requests simultaneously.

The idea of Flask is to build a good foundation for all web applications and to everything

else is added by extensions.

5.2.2 Pyro

Python Remote Objects (Pyro) is a remote method invocation library, for Python,

that enables building applications where objects can communicate each other over the

network, with minimal programming effort. It takes care of locating the right object on

the right computer and makes possible to use normal Python method calls, with almost

every possible parameter and return value type. Written in Python, Pyro runs on normal

Python 2.x, Python 3.x, IronPython or Pypy and runs on any operating system. It is

also possible to define timeouts on network communications to prevent a call blocking

forever and supports automatic reconnection to servers in case of interruptions.

Pyro works as client-server architecture, where on the server are defined the methods

to be invoked and it keeps waiting for client connections on a certain port and registry.

The client connecting to the server, using the same Pyro library, can invoke methods

that are defined on the server side.

There is a lightweight native client library available for .NET and Java, called Pyrolite.

Pyro is now on the version 4.

5.2.3 JSON

JavaScript Object Notation (JSON) is a lightweight, text-based, language-independent

data interchange format. It was derived from the ECMAScript Programming Language

Standard. JSON defines a small set of formatting rules for the portable representation

of structured data [15]. It can represent four primitive types: (1) Strings; (2) Numbers;

(3) Booleans; (4) Null, and two structured types: (1) Dictionary; (2) List.

Chapter 5. Platform Architecture 29

5.2.4 JWT

JSON Web Token (JWT) is a compact mean of representing claims to be transferred

between two parties. The claims in a JWT are encoded as a JSON object that is used

as the payload of a JSON Web Signature (JWS) structure or as the plaintext of a JSON

Web Encryption (JWE) structure, enabling the claims to be digitally signed or integrity

protected with a Message Authentication Code (MAC) and/or encrypted [16].

5.2.5 MongoDB

MongoDB is a cross-platform, NoSQL, document-oriented database, with the purpose

of being flexible and scalable [17]. The main reason why MongoDB moves away from

the relation model is to make scaling out easier. A document-oriented database replaces

the concept of row with a more flexible model called document, that makes it possible to

represent complex hierarchical relationships with a single record. There is no predefined

schema allowing to the document’s keys and values from different types or sizes. Without

a fixed schema, adding and removing fields as needed becomes easier. In general, this

makes development faster as developers can quickly iterate and try multiple modules for

the data and choose the best one to pursue.

MongoDB can also run over multiple servers, balancing the load and/or duplicating data

to keep the system up and running in case of hardware failure. These features are:

1. Sharding: The abilities to scale horizontally through shards of the database. A

shard consists on a partition of data from the database that is held on a separate

server. This is divided into ranges, based on the shard key, and distributed across

multiple shards.

2. Replication: This consists on making two or more copies of the data sets. Each

set can be either primary or secondary replica at any time. The primary replica

performs all writes and reads by default, while the secondary replica will maintain a

copy of the primary one. When a primary replica fails, the replica set automatically

conducts an election process to determine which secondary set should become

primary.

Chapter 5. Platform Architecture 30

A document-oriented structure favors JSON-like documents, making MongoDB a good

solution to the integration of data in certain types of applications.

5.2.6 Synthesis

At this section were shown the main technologies that are used to support the creation

of the platform.

One of the main objectives of this work is making it accessible over the Internet using a

unique address. Technologies such as Flask, can create a web API capable of accepting

requests (e.g. GET or POST) and start an action on the server side, like getting data

from a WSN. Essentially we only need the routing mechanism from Flask and since the

rest of the features only comes through extensions, we get less overhead and a more

efficient RESTful server.

The simplicity of Pyro made possible to create drivers as fast and simple as possible,

investing more developing time on the platform features instead on drivers to the devices

(e.g. DAB) as we will see on the next section.

Using an standard data interchange format such as JSON, when compared with other

data interchange format like XML, will result in a more efficient parsing and better

compatibility with other programming languages. This means that it is possible to

access, export or import data from/to the platform in most of the programming lan-

guages. Since we are on a remote experimentation environment, it is useful for users

to have the ability to interact with the platform in different languages (e.g. Matlab

or Javascript) without any restriction. With JWT we get all of these benefits and the

necessary mechanisms for a stateless authentication.

Devices that does monitoring (e.g. WSN or DAB) tend to generate large quantities

of data and storing that, can lead to some problems. The MongoDB will provide the

necessary horizontal scalability through the features of replication and sharding and

also, since it is a document-oriented database, we can store directly JSON data without

any additional parsing or processing. This results on a more efficient data store and

retrieval.

Chapter 5. Platform Architecture 31

Concluding, we now have the necessary basis to create an Internet-accessible platform,

capable of efficient and fast device driver creation and integration, with standard data

interchange formats and an efficient database system.

5.3 Authentication Mechanism

The Authentication Mechanism is used to generate tokens to authenticate a user on

control requests and they are only valid for the network they were generated. In figure

5.2 we can see a flowchart with the steps necessary to create a new token.

Figure 5.2: Authentication Mechanism Flowchart.

The process starts with a user request to create an authentication token for a network,

providing a username and a password. Next it is verified if the pair, username, and

password, exists on the database. If a user is returned, meaning that the credentials are

valid, a JWT token is created with the username encapsulated and returned to the user.

Chapter 5. Platform Architecture 32

Otherwise, the mechanism will return a response to the user alerting that the credentials

provided are wrong.

5.3.1 JWT Creation

To create a JWT token, it is necessary two parameters: (1) An expiration date; (2) A

secret key to encrypt the encapsulated data. The expiration date consists on a number

of seconds that the token will expire in. By default, it is set to 1200 seconds, but it

is configurable on the respective Network Configuration File. The encryption key is

hard-coded on the platform and it is used to encrypt the encapsulated data.

Those parameters are used to instantiate a TimedJSONWebSignatureSerializer that

creates the token by dumping the information, in this case a JSON with the username

and the network (e.g. ”username”:”xpto”, ”network”:”liis wsn01).

5.3.2 JWT Validation

To validate a token it is used the same package as before but now instantiated only

with the secret key and then loading the token. When loading a token, there are three

possible results: (1) A JSON format data with the username; (2) A SignatureExpired

exception, meaning that the token has already expired; (3) A BadSignature exception,

which indicate that the token is invalid.

5.4 Gateway Handler Module

The Gateway Handler Module is the module that integrates the networks with the

remaining functionalities of the platform. For each network loaded by the platform, a

new instance of the GHM is created and stored on a list that is available at runtime,

but is deleted when the server restarts or shuts down.

In figure 5.3 we can see the architecture of the Gateway Handler Module, of an instance

that is connected to a WSN.

There are six key components on this module:

Chapter 5. Platform Architecture 33

Figure 5.3: Gateway Handler Module architecture.

1. Data Fetching Thread: Access the gateway driver to fetch the data from the

network devices and does the pre-fetching, the database storing and the recent

data storing.

2. Gateway Driver: Connects to the respective network gateway to send or receive

data. Each driver is made specifically to a network.

3. Database Connector Module: Manages the database accesses to fetch or store

data. Only works when pre-fetching is active.

4. Stateful Control Mechanism: Manages the control interaction of a network.

5. Actuate Method: Method invoked to send a control signal to a gateway driver.

6. Recent Data Storage: Variable containing the most recent values fetched from

the network. Only works with pre-fetching.

7. Mail Module: Manages the email sending.

At the startup procedure of the Gateway Handler Module, it is loaded a file that defines

the configurations of the network this module will handle, for example, what type of

Gateway Driver should be used and the configurations for the Database Connector

Module. The remaining configuration parameters can be seen in section 5.7.

Chapter 5. Platform Architecture 34

5.4.1 Gateway Drivers

Gateway Drivers provides a direct connection with the network gateways to send and

receive data. As we can see on the figure 5.4, each driver must have two fundamental

methods: (1) Process; (2) Actuate, and a connection to the gateway (e.g. TCP).

Figure 5.4: Gateway Driver architecture.

The first method, Process(Queue), is invoked by the GHM to get data from the gateway,

process and return it on a JSON format. If the pre-fetching mechanism is active it is

passed a queue, with the values that were collected, to be processed and if the queue is

empty the response will be filled with NaN. The second method, Actuate(Device, Value),

is called by the Stateful Control Mechanism and sends commands to the gateway with

the device and the actuation voltage.

The connection to the gateway must be implemented by the developer along with the

necessary mechanisms to restart the connection in case of internal driver failure. When

the GHM cannot connect to the driver, it will try to restart the driver, as many times

as defined on the network configuration file, and if the error persists it will try to send

an email to the network responsible alerting the situation.

Each of the drivers has to be created according the specifications of the gateway that it

is meant to be connected with. In this case, we developed three drivers for three different

gateways: (1) a Contiki IPv6 Wireless Sensor Network; (2) a National Instruments 6008

DAQ board; (3) a Virtual Sensor Network.

Node Interaction Module

This driver was developed to be used with a Contiki IPv6 Wireless Sensor Network. The

communication between the driver and the gateway is made via a TCP socket to send

or receive a stream of bytes that represents an action (e.g. control action) or values that

Chapter 5. Platform Architecture 35

were read from a device. The received values are then parsed and then converted from

bytes to the voltage signal according to the sensor specifications.

Although the TCP connection guarantees packet delivery, the Contiki IPv6 WSN does

not have any mechanism to guarantee that the data will be sent at the sampling rate.

When the driver is trying to get data from the gateway and does not receive anything

on the sampling rate period, the return message will be filled with NaN values.

The values returned for this type of network are:

• Temperature: Measures temperature in the air (Celsius).

• Humidity: Measures the humidity in the air (Percentage).

• Photosynthetically Active Radiation (PAR): Measures the spectral region

of the solar radiation that is visible to the human eye (Lux).

• Total Solar Radiation (TSR): Measures all the spectral region of the solar

radiation (Lux),

• Battery: Voltage of the node’s battery (Volt).

• Internal Temperature: Internal Temperature of the Microprocessor (Celsius).

• adcX: The X represent the number of the ADC that the value was read (e.g.

adc0) (Volt).

Board Interaction Module

This driver allows the interaction with a Pyro server that is connected to a National

Instruments 6008 DAQ board. The Pyro server uses the PyDAQmx driver to communi-

cate with the board and has two remote methods: (1) read all(); (2) execute task(output,

number of samples, value).

The Pyro methods are remotely called by this driver in order to fetch data or actuate

on the board. If any error occurs during a remote call, NaN values are returned for all

of the inputs of the board.

The values returned for this type of network are:

Chapter 5. Platform Architecture 36

• aiX: The X represents the number of the channel where the value was collected

(e.g. ai1). The values are returned in Volt.

Virtual Interaction Module

The Virtual Interaction Module driver is different from the other two, previously ex-

plained, drivers. It does not connect to any server but instead it is a virtual environment

that simulates a Wireless Sensor Network.

It is possible to add new nodes and assign them sensors, via the configuration file ex-

plained in section 5.7. To create a trustworthy dataset for the sensor values, it was

calculated the mean and standard deviation for each hour of the day, based on approx-

imately 3600 values that were fetched by a real Wireless Sensor Network. To calculate

the return value of the virtual sensor, it is used the data generated to the hour of the

server and is added or subtracted to the mean, a random value inside of the standard

deviation.

On this driver, there is no option of actuation. The method exists, but it just returns

an error to the client saying that the network with this driver is not controllable.

There are three available sensors:

• Temperature: Measures temperature in the air (Celsius).

• Humidity: Measures the humidity in the air (Percentage).

• PAR: Measures the spectral region of the solar radiation that is visible to the

human eye (Lux).

5.4.2 Data Fetching Thread

Data Fetching Thread is the mechanism that collects data from a network, using the

gateway driver and has two operating modes: (1) Direct; (2) Pre-fetching. The first

mode consists on collecting the data from the network when there is a request for data.

The second mode, pre-fetching, is done by running a thread at the sampling rate and

collecting automatically the data from the gateway, and storing it on a variable, recent

data, that can be accessed from the outside of the Gateway Handler Module to fulfill,

Chapter 5. Platform Architecture 37

for example, /fetch/recent requests. At the rest of the time, the thread is at a sleep

state and only wakes up to collect new data.

For both modes, the fetched data is parsed and converted into a JSON format and

added the timestamp of the moment it was collected. Only one of the modes works

simultaneously, meaning that either the direct mode or the pre-fetching mode can be

active at the same time and the pre-fetching mode is the only mode that is able to store

data into the database.

5.4.3 Database Connector Module

This module manages all the connections to and from the database. For each Gateway

Handler Module is instantiated a new Database Connector Module to manage all of the

database accesses, reads, and writes, for that network.

As we can see in figure 5.5, this module is composed by a set of collections, a data queue,

a storing thread and a MongoDB driver.

Figure 5.5: Database Connector Module architecture.

The users, data and control collections are the only means to have direct interaction with

the database driver. At the startup of this module they are loaded from the database

and stored into variables that can be later accessed, from outside of the module, to make

find, insert or update operations directly to the database.

To Store, Queue is used by the Data Fetching Thread that sends sets of JSON data to

be stored on the database. Using a queue to hold data while it is not saved into the

Chapter 5. Platform Architecture 38

database, allows the pre-fetching thread to be non-blocking. This means that it can

collect and queue data continuously even if the connection to the database is down or

slow.

When there is data on the To Store Queue, the Data Store Thread awakes and starts

retrieving it and storing to into the data collection, that is directly connected to the

database driver, Pymongo. The data is only removed from the queue if the insert

operation does not fail.

5.4.4 Stateful Control Mechanism

This mechanism manages the requests to control a network with a First Come, First

Served policy. To send control actions to a network, a user must provide: (1) A JWT

Token, generated by the Authentication Mechanism; (2) The network that he wants to

control; (3) The device he wants to control; (4) The control value in percentage. In

figure 5.6 we can see the workflow of the Stateful Control Mechanism.

The first step is to verify if the provided token is valid, using the JWT validation

method from the Authentication Mechanism and if the token is not valid, a response

is sent alerting the user that the token has expired or is invalid. The next step is

to convert the provided value from percentage to voltage. In the control section of a

network configuration file, it can be set the maximum and minimum input voltage of all

its devices. Those values are used to convert from a percentage to a voltage using the

equation at 5.1.

actuate voltage =
(input value×max v −min v)

100
+ min v (5.1)

A response message is returned alerting the user that the input exceeds the limits of the

system if the calculated actuation voltage is not inside or equal to the maximum/mini-

mum specified voltage. Otherwise, the operation continues.

If all previous conditions are valid, then it is searched on the Control Collection, the

record that describes the user that is actuating, not the one that has made the request.

The record comes with the username, a timestamp of when the actuation period started,

Chapter 5. Platform Architecture 39

Figure 5.6: Stateful Control Mechanism Flowchart.

waiting flag that defines if the user is on the waiting list or actuating, and the email to

alert the user that is time period of actuation has come.

If the record does not come empty and the time period of actuation is still valid, it is

verified if the user that made the request is already in queue and he is added if he is

not in queue. The response for both cases, if he is in queue or not, will be the time left

until it is his turn to actuate.

Otherwise, meaning that the user that made the request is able to actuate, a control

action is created and stored to the database. Using the converted voltage and the device

that the user provided it is sent an action to the Gateway Driver method Actuate(Device,

Value) and then sent a response to the user with the remaining time that he has to

actuate.

Storing the control actions to the database is one of the reasons that makes this mecha-

nism stateful and able to do distributed controlling, but there is still a problem. When

Chapter 5. Platform Architecture 40

the actuation is made using different servers at the same time, it is possible that the

clocks of the servers are out of sync. The difference can be of 1 millisecond, 1 minute

or even they can be in different timezones. To overcome this problem and instead of

relying on the server’s internal clock, it is used an Network Time Protocol (NTP) pool

to guarantee that all of the servers use the same timestamp when verifying if the user

period of actuation is over, calculating all the return values and adding an action record

to the database.

5.4.5 Mail Module

This module handles all the requests to send email notifications. As we can see in the

figure 5.7, it is very similar to the Database Connector Module, by using the same

queue and thread mechanism, allowing a non-blocking interaction. The content of each

message that is stored on the To Send Queue is: (1) Subject; (2) Message Body; (3)

Destination email.

Figure 5.7: Mail Module architecture.

The mailer thread awakes every 30 seconds to check if there are any new messages to be

sent. If there is any message, it is processed and sent via the Python SMTPLIB library

to the Simple Mail Transport Protocol (SMTP) server address that is provided via the

Network Configuration File. Otherwise, if there is no SMTP server address, none of the

messages is sent.

This module is mainly used to send notifications about the start of the control period,

to send emails with the content fetched from the database and to send error messages

Chapter 5. Platform Architecture 41

to the administrator of a network. content fetched from the database and to send error

messages to the administrator of a network.

5.5 RESTful API

At this section are described the main endpoints of the RESTful API and the data

format of the inputs.

5.5.1 Formats

The formats of the input data are:

• <date>: Date’s format must be YYYY-mm-dd%20HH:MM:SS. The %20 must

be present in order to separate the date from the hours. It is possible to ignore

values (e.g. 2015-03-16 or 2015-03-16%2011:00);

• <samplingrate>: Interval in seconds between each timestamp of the collected

data. (Integer);

• <deviceid>: ID of a network device. (String);

• <network>: Specifies the network that you want to retrieve data from. (String);

• <email>: Used for large database data fetches. (String);

• <heatmap>: Name of the sensor to generate the data interpolation. (String);

5.5.2 Endpoints

The API is constituted by several endpoints. Each endpoint returns a response on a

JSON format containing a key that is related to the endpoint (e.g. data) and three other

keys that define if the request was successful or not. The main keys are:

• status

– 200 - The operation was successful;

Chapter 5. Platform Architecture 42

– 400 - Bad request;

– 401 - Unauthorized;

– 403 - Forbidden;

– 405 - Method not allowed;

• success: This parameter is a boolean that determines if the search was completed

successfully or not;

• message: In case that the parameter success is false, this will show up with a

message that explains what has gone wrong.

On the following subsections are explained the created endpoints and their respective

request input parameters and response keys.

/networks

Returns a list with all the networks attached to the platform

/camera/<network>/

If this network has a camera attached, you can see the video through this endpoint. If

no camera is attached, then a white screen is presented.

/info/<network>/

This endpoint returns all the information related with the provided network name. The

added response keys are:

• info

– number-of-nodes The number of devices available on the network;

– ids A list with the ids of the devices present on the network;

– sampling-time The period (in seconds) in which the network collects data;

– units The units for each type of data returned (temperature, humidity, etc.);

Chapter 5. Platform Architecture 43

– general General info about the network such as:

∗ admin Email of the network administrator;

∗ master Boolean that determines if this is a master or a slave instance of

the platform;

∗ type The network type (e.g. VSN, WSN or DAB);

∗ camera Address of the camera. Null if no camera is attached;

/authenticate/<network>/

This endpoints authenticates and returns a token to control a network. It must receive

two parameters in a JSON format:

1 {
2 "username":"XPTO",
3 "password":"1234"
4 }

The added response key is:

• token Token that allows user to control a network.

/control/<network>/<token>/<deviceid>/<value>/

The added response keys are:

• time remaining The time left to actuate or time left to the turn of the user.

/fetch/recent/<network>/

This endpoint returns the data that was most recently collected by the provided network.

The optional parameter is:

• deviceid ID of the device where data was collected.

The added response keys are:

• data A dictionary, where the keys are the device ids, with data collected from

each device. The IDS are specific to the type of network that results came from.

Chapter 5. Platform Architecture 44

• ids A list of devices that where data returned, was collected from.

/fetch/database/<network>/from/<date>

This endpoint returns data since the provided <date>.

The optional parameters are:

• deviceid ID of the device where data was collected.

• samplingrate Time between each sample in seconds;

• heatmap Interpolate data based on the sensor provided from this parameter;

• email Email to send large query results.

The added response keys are:

• data A dictionary, where the keys are the device ids, with data collected from

each device. The IDS are specific to the type of network that results came from;

• ids A list of devices IDS where data was collected from;

• heatmap URL to the image created based on the interpolation of data.

/fetch/database/<network>/until/<date>

This endpoint returns data until a specific <date>. The optional parameters are:

• deviceid ID of the device where data was collected;

• samplingrate Time between each sample in seconds;

• heatmap Interpolate data based on the sensor provided from this parameter;

• email Email to send large query results.

The added response keys are:

Chapter 5. Platform Architecture 45

• data A dictionary, where the keys are the device ids, with data collected from

each device. The IDS are specific to the type of network that results came from;

• ids A list of devices that where the data returned, was collected from;

• heatmap URL to the image created based on the interpolation of data.

/fetch/database/<network>/between/<date1>/<date2>

This endpoint returns data between <date1> and <date2>. The optional parameters

are:

• deviceid ID of the device where data was collected;

• samplingrate Time between each sample in seconds;

• heatmap Interpolate data based on the sensor provided from this parameter;

• email Email to send large query results.

The added response keys are:

• data A dictionary, where the keys are the device ids, with data collected from

each device. The IDS are specific to the type of network that results came from:

• ids A list of devices that where the data returned, was collected from;

• heatmap URL to the image created based on the interpolation of data.

5.6 Heatmap Module

The Heatmap Module is a script that generates an image based on the interpolation of

data, fetched from the database, belonging to spatially distributed devices, like WSN’s

or VSN’s.

This module uses gdal grid to create a grid based on the provided coordinates. The

grid nodes are filled with values from the interpolation of the data fetched, and then

the values are converted to colors using a palette of reds, creating thus an image that is

Chapter 5. Platform Architecture 46

saved to the downloads folders. To prevent the accumulation of images in the downloads

folder, each image is saved with a JWT token that expires 300 seconds after the image

was created and is deleted by the Downloads Garbage Collector.

The response from this module is a link to download the image generated.

5.7 Network Configuration File

The Network Configuration File specifies all the parameters necessary to the mechanisms

and modules of the platform. Each file is in a JSON format and represents a network

and its name corresponds to the name of the file. When the server starts, all of the

files, inside a specified folder, are loaded. This folder can be set via the command-

line interface or by default is used, or created, one called ”networks” that is inside the

platform folder.

On the following list is shown and described all the supported parameters.

1 {
2 "info":{
3 "type": The type of Gateway Driver. (WSN, DAB, VSN)
4 "master": Defines if this is a Master or a Slave
5 Gateway Handler Module (Boolean),
6 "camera": Link to the remote camera (URL),
7 "admin": Email address of the network administrator
8 },
9 "connections" :{ Defines the configurations for all the connections

10 "dispatcher": { Connections settings of the Gateway Driver
11 "version": Version of the Gateway (IPv6, NI-6008, ...),
12 "ip": IP address of the gateway,
13 "port": PORT of the gateway,
14 "registry": "REGISTRY of the gateway,
15 "connection -mode" : Connection mode (static or automatic)
16 },
17 "database": { Defines the configurations for the
18 Database Connection Module
19 "version": Version of the database that is
20 being used (Mongo -3.0),
21 "ip": IP address of the database,
22 "port": PORT of the database,
23 "database": The name of the database,
24 "username" : Username credential to the
25 database access (liis),
26 "password": Password credential to the
27 database access (liismongo)
28 },
29 "mail": { Defines the configurations for the Mail Module
30 "from": Address from where the emails
31 are sent (liis -lab.dei.uc.pt),
32 "SMTP": SMTP server of the "from" email
33 address ()smtp.dei.uc.pt)
34 }
35 },
36 "control":{ Defines the configurations for the
37 Stateful Control Mechanism
38 "type": The type of controller (FCFS, Booking ...),
39 "expire": Token Expiration Time (1200),
40 "max -v": Maximum voltage of DAC (2.5),
41 "min -v": Minimum voltage of DAC(0),

Chapter 5. Platform Architecture 47

42 "timeout": Control Timeout for each user (200),
43 "cancellable": Set device that is being controlled to
44 minimum voltage when the timeout has been reached,
45 "users": Location of the CSV file with the users able to control
46 },
47 "supervise":{ Defines the configurations for the Data Fetch Thread
48 "min -v":Minimum voltage of DAC(-2.5),
49 "max -v":Maximum voltage of ADC (2.5),
50 "nn": Number of nodes. Only works with the WSN,
51 "ts": Sampling rate for the pre -fetching,
52 "max -retries": Number of retries before alerting the administrator,
53 "nodes": Defines the nodes for the VSN. (e.g.
54 [{"temperature":1 , "humidity":10, "par":2000},
55 {"temperature":7 , "humidity":15, "par":1000},
56 {"temperature":2.5, "humidity":5, "par":32}])
57 "pre -fetch": Defines if the pre -fetching is active or not (Boolean),
58 "db -store": Defines if the database storage is active or not (Boolean),
59 "storage": The collection where the data fetched is stored.
60 }
61 }

As we can see in figure 5.8, the server will load every file and start a Gateway Handler

Module for each one, passing the configurations in order to start all of the mechanisms

and modules configured.

Figure 5.8: Network Loading Mechanism.

After the configurations are loaded, the handler is stored on a dictionary, allowing it to

be accessed by the RESTful API, at any time.

5.8 Camera

Directly, the platform does not provide any support to stream audio or video from a

camera. Instead, it is possible to define a URL to a camera that has those abilities and

the user accesses directly to it thus removing the huge overhead of transmitting live

video and audio.

If the URL provided, on the Network Configuration File, produces snapshots of the

camera live video, there is the possibility to the /camera endpoint of a network and see

Chapter 5. Platform Architecture 48

a feed with one image per second, as we can see in figure 5.9. Otherwise, the user has

to access directly to the camera feed.

Figure 5.9: Snapshot of a camera feed via the platform

Chapter 5. Platform Architecture 49

5.9 Internal Mechanisms

At this section are described the internal mechanisms of the platform which act as a

complement of the previously explained modules.

5.9.1 Command-line interface

Through the command-line interface, when starting the platform, it is possible to set

some minor configurations of the server such as:

• -h or –help: Displays the usage of the command-line interface.

• -p or –port: Defines the port that the server will run on. The input must be a

valid integer.

• -t or –threadtimeout: Defines the thread timeout for the large database searches.

The input must be a valid integer.

• -n or –networksfolder: Defines where is the folder with the network configuration

files. The input must be a valid path.

• -c or –configurationfile: Defines where is the configuration file. The input must

be a valid path. This configuration file does not override any of the previous

commands.

5.9.2 Exceptions and alerts

Sometimes unpredicted conditions are met or the communication with other systems

fails. Besides making a log of every error that occurs, the platform can send, using the

Mail Module, email alerts to the administrator of a network, alerting of an error. For

example, if the connection to a gateway is lost and the handler could not reconnect on

a number of retries defined at the Network Configuration File, an alert is sent to the

administrator, while the system continues to reconnect.

Chapter 5. Platform Architecture 50

5.9.3 Downloads Garbage Collector

This mechanism consists on a thread that wakes every hour to check if there is any file

to be deleted. Files, like the heatmap, when are created the name assigned is a JWT

token with an expiration time. What this thread does is to verify if there is any file on

the downloads folder that has expired and delete it, if so. This prevents the server from

accumulating files that are not used and only occupies hard drive space.

5.10 Horizontal Scalability

By running more instances of the platform, we will have more computational power,

meaning that the responses to high and low demand requests is faster than having only

one instance. To scale horizontally the platform, a set of tools and adaptations had to be

used and made. In the figure 5.10 we can see the distributed architecture of the platform.

The scenario presented consists on three instances of the platform that are running on

different servers and connected, all of them, to the same databases and gateways.

Figure 5.10: Horizontal Scalability architecture.

Chapter 5. Platform Architecture 51

Basically this architecture consists on replications of one platform instance with minor

tweaks: (1) Only one of the servers must be configured, at the Network Configuration

File, as master and the rest must be slaves. This means that the master server is the

only one that can store data into the database and the rest of the servers can only

do pre-fetch, preventing from having duplicated data on the database; (2) Another

obligatory condition is that all of the instances must be connected to the same gateways

and databases, to the operations be coherent on all of the instances and to the Stateful

Control Mechanism work properly; (3) To make the access to the platform instances

transparent to the user, it is used a Load Balancing Server, Nginx, that distributes the

requests between the available instances. This setup is done by adding the IP address

of the server to a pool of servers on the Nginx configuration file.

5.11 Synthesis

At this chapter, was shown and described the architecture of the supervision platform,

that allows the integration and access to Wireless Sensor Networks, Data Acquisition

Boards and Virtual Sensors Networks data from one RESTful API.

The technologies shown on the first section are crucial to the architecture of the su-

pervision and control platform. Flask provides the routing mechanism to receive and

respond to requests, using a unique interface and, complementing flask with a JSON

data interchange format, results on a more efficient and compatible approach. Based on

JSON, the JWT tokens provide the functionalities to do stateless authenticate, resulting

on fewer accesses to the MongoDB database. The simplicity of Pyro enables the creation

of Gateway Drivers very quickly through remote method invocations.

Following that, it is explained the how the Authentication Mechanism works and how

the JWT are created, validated and used.

The Gateway Handler Module is one of the key modules to integrate multiple gateways

simultaneously by creating one handler for each of the Networking Configuration File

that is loaded on the startup procedure of the platform. The Gateway Handler Module

internal mechanisms, such as the Database Connector, the Stateful Control Mechanism,

the Data Fetching Thread and the Gateway Drivers are instantiated for each of the

networks, providing a completely separated environment for each network loaded that, in

Chapter 5. Platform Architecture 52

case of failure, will not disturb the workflow of the other handlers. The Gateway Drivers

handles the communication with the network gateway and has all the mechanisms to

convert the data gateway specs to JSON. This data is then used by the Data Fetching

Thread, directly or pre-fetched, to serve the users requests and to store it to the database.

The database connection is made using the Database Connection Module that provides

a queue/thread to process and store data from other modules, allowing them to do

non-blocking store. There is also the users and control collections that are used by the

Stateful Control Mechanism that provides the abilities to do distributed control over a

network, on a First Come First Served policy, by saving each action of the control into

a database.

Using a RESTful API, it provides a unique interface to do data access, control and

authenticate on all of the networks.

There are other small modules that complement all of the architecture. To communicate,

via email, any situation, it was created the Mail Module that can be invoked from any of

the Gateway Handler Modules on the platform. The Heatmap Module has the abilities

to interpolate data from the database and create an image based on the values from

spatially distributed devices such as the Wireless Sensor Network.

Finally, it is explained how it is possible to scale horizontally the platform. This is

done by replicating several instances of the platform and using a load balancing server

to distribute the requests between all of the instances, however, there are some restric-

tions. Only one of the instances can store data to the database, otherwise there will be

duplicated entries of data on the database.

Chapter 6

Tests and Results

6.1 Functional Tests

The objective of software quality assurance (QA) is to assure sufficient planning, re-

porting, and control to affect the development of software products which meet their

contractual requirements [18]. Functional testing is a quality assurance (QA) process

that bases its tests cases on the specifications of a software that is being tested and

consists on feeding inputs and checking whether the outputs are equal or not to an ex-

pected result. Since this is a black box type of testing, the internals of the software that

is being tested are rarely considered, such as on the following cases.

6.1.1 Tools Used

To perform and monitor the tests, it was used some tools that make the functional

testing process, as on this case, easier and efficient.

The tool PAW was used to make all of the API functional testings and the command

line was used always to monitor the logs from the platform.

PAW

PAW is an HTTP request builder that enables the quick creation of HTTP requests

with headers, URL parameters, JSON form URL-encoded or a multi-part body. It is

53

Chapter 6. Tests and Results 54

also possible to get, for each request made, a response in various formats (e.g. JSON)

and save all of the requests for later usage.

On the figure 6.1 we can see a screen-shot of PAW with a request to fetch all of the

networks from the platform. The response then appears in JSON format, as expected.

Figure 6.1: Screen-shot of PAW.

This tool is only available for a Mac OS X operating system and has a free trial of 30

days and each license costs $29.99.

Command line

The command line was used to access via SSH the server that was running the platform

in order to monitor the logs. The command ’tail -f out.log’ shows the last logs that were

written to the file, as in the figure 6.2.

Figure 6.2: Screen-shot of OS X command line.

Chapter 6. Tests and Results 55

6.1.2 Tests Definition

For each test it was defined the test condition, providing a input if necessary, and the

expected result from the platform.

API Tests

At the Appendix A.1 are shown the set of tests that ensure the proper implementation

and functioning of the API. It covers most of the endpoints and they were tested with

and without all of their parameters. On the expected results row are the keys and values

of a JSON format based dictionary that is expected to be returned from the endpoint

at the given condition.

Back-end Tests

The set of tests shows on the table A.2 ensure the proper functioning and implementation

of the main internal functions. From the 1st to the 8th test the server was rebooted

each time in order to load the new configurations. The 9th and 10th test were made by

forcing the restart of the dispatcher that was connected to the Wireless Sensor Network.

6.1.3 Tests Execution

Some of these tests were done as the platform was being developed, in order to detect

and fix some bugs, but they were all revised as this document was being written.

In order to simulate a real-time situation, the tests were done on a production version

of the platform that was being used at the same time by other projects.

All of the API requests were made using PAW (described at 6.1.1) via an external

network different from the server where the platform was running. The rest of the tests

were made through the terminal.

As the tests were being executed the server logs were being monitored to detect any

error or exception, meaning that the test had not been successfully completed.

Chapter 6. Tests and Results 56

6.1.4 Results and analysis

This section shows and discusses the results of the previously defined tests. The results

are available at the Appendix B and the main objectives of this tests were to:

• Test and prove the proper functioning of the API

• Test and prove the correct operation of the platform internals

• Test and validate all of the main requirements.

As shown on the results, all of the executed tests have a passed status. By using agile

development environment, every week new features had to be implemented and after

the development of the feature, a functional test was made to guarantee the proper

functioning. When the functional test had a ”pass”, the feature was done and ready for

the production mode.

Several users detected bugs and reported them via email, with a set of steps to reproduce

the error and if the functional test for that situation existed, they re-ran to verify if the

pass status had changed. Otherwise, the set of steps were reproduced in order to detect

the bug, fix it and create a new functional test to guarantee that the problem would not

appear anymore.

Almost everyone has experienced a project that was declared “done” and then continued

for weeks or months afterward [19]. By ensuring a ”passed” on a functional test allowed

to prove that a feature was done and ready for usage.

6.2 Benchmarking Tests

The basic principle of benchmarking is to collect a measure for a number of systems

and compare the measured value of the system under assessment to these values. This

allows us to decide if the system is better, equally good, or worse compared to the

benchmarking base [20].

On this section is benchmarked and analyzed the performance of the platform with

different workloads. The comparison is made between two operating modes of the plat-

form, the standalone which consists on having only one instance of the platform, and

Chapter 6. Tests and Results 57

the distributed that has 2 instances running on different servers with a load balancer to

distribute the workload between those.

6.2.1 Tools used

In order to ease the benchmarking process, there are tools to generate workload to a

RESTful web service or to do a constant monitoring of the systems hardware resources.

These tools generate enough data that allows to make some conclusions and analysis of

the platform’s performance.

Bench-Rest

Bench-rest is a Node.js client module for load testing or benchmarking RESTful API

[21]. This tool can be used via the command-line or using Javascript. The parameters

that can be defined are the number of iterations (-n) and the amount of concurrent op-

erations or clients (-c). As an example, with 1000 iterations and 50 clients, the output

for this test would be:

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent
/liis_wsn01

2
3 errors: 0
4 stats: { totalElapsed: 6456.860515996814,
5 main: { meter:
6 { mean: 155.44475690949898,
7 count: 1000,
8 currentRate: 213.32138588726016,
9 ’1MinuteRate ’: 11.993337805601524,

10 ’5MinuteRate ’: 2.479281926757393,
11 ’15MinuteRate ’: 0.831022799265474 },
12 histogram:
13 { min: 271.00808000564575,
14 max: 400.7492479979992,
15 sum: 315039.55147928,
16 variance: 236.4249771854178,
17 mean: 315.03955147928,
18 stddev: 15.376117103658446,
19 count: 1000,
20 median: 315.31109300255775,
21 p75: 323.02037300914526,
22 p95: 335.63698898777363,
23 p99: 368.85343126177787,
24 p999: 400.74374668300163
25 }
26 }
27 }

Chapter 6. Tests and Results 58

The main keys of the output dictionary are:

• errors: Number of errors that occurred.

• stats.totalElapsed: The elapsed time for the entire run, including all the setup.

(milliseconds)

• stats.main.meter.mean: Average number iterations per second

• stats.main.meter.count: Number of iterations completed

• stats.main.meter.currentRate: Number of iterations per second at this mo-

ment. This is manly useful to monitor progress.

• stats.main.meter.1MinuteRate: Number of iterations per second for the last

minute. This is only relevant if more than one minute has passed.

• stats.main.histogram.min: The minimum time any iteration took (millisec-

onds)

• stats.main.histogram.max: The maximum time any iteration took (millisec-

onds)

• stats.main.histogram.mean: The average time any iteration took (millisec-

onds)

• stats.main.histogram.p75: The amount of time that 95% of all iterations com-

pleted within (milliseconds)

htop

The htop is a native tool for the operating systems based on the UNIX to do system

monitoring and process view.

As we can see on the figure 6.3, it shows a frequently updated list of the processes that

are running on a computer, with the respective CPU, memory, and swap usage. The list

can be ordered by any of the parameters available. For the benchmarking tests, this tool

is helpful to monitor the memory and CPU usage of the process that is being tested.

Chapter 6. Tests and Results 59

Figure 6.3: Screen-shot of htop.

6.2.2 Experimental Setup

This section shows and describes all the related aspects that make the benchmarking

tests possible.

Platform Instance 1

The first instance is running on a machine with these hardware specifications:

• CPU: 4x Intel(R) Core(TM)2 CPU Q6600 @ 2.40GHz

• RAM: 4134 MB

• Operating System: Ubuntu 15.04 LTS

Platform Instance 2

The second instance is running on a machine with these hardware specifications:

• CPU: 8x Intel(R) Core(TM) i7 CPU 950 @ 3.07GHz

• RAM: 6102 MB

• Operating System: Ubuntu 14.04.2 LTS

Chapter 6. Tests and Results 60

Tests Definition

At the table 6.1 are shown the different configurations used during the benchmarking

tests. The tests are focused on varying the number of requests and see how the response

times vary and then conclude if the distributed version has better performance in terms

of response times, since there is a bigger number of instances processing the requests.

On every test, the number of concurrent operations was 50.

Table 6.1: Parameters of the benchmarking tests.

Workload

Type

Number

of

Requests

Endpoint

Small 1000 /fetch/recent/

Small 5000 /fetch/recent/

Small 10000 /fetch/recent/

Moderate 1000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=3600

Moderate 5000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=3600

Moderate 10000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=3600

Heavy 1000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=600

Heavy 5000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=600

Heavy 10000
/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/

?samplingrate=600

Chapter 6. Tests and Results 61

6.2.3 Standalone Scenario

This scenario consists on a standalone instance of the platform serving all the requests,

as we can see on the figure 6.4.

Figure 6.4: Experimental setup for the standalone scenario.

Only the first instance is used and there is no load balancer to redirect the requests. It

is expected higher response times on all workload conditions.

6.2.4 Distributed Scenario

As we can see on the figure 6.5, there is two instances of the platform running simulta-

neously. The load is being distributed by an apache web server with a 50/50 criteria.

By adding a second instance with higher hardware specifications, it is expected to achieve

lower response times than the standalone benchmarking.

Chapter 6. Tests and Results 62

Figure 6.5: Experimental Setup for the distributed scenario.

6.2.5 Results and analysis

On this section are presented and analyzed the results of the tests made on both scenarios

in order to verify if there was an increase of performance by using a distributed platform

scenario versus a standalone platform scenario. The results can be found in Appendix

C.

Figure 6.6 shows the total execution times of each test on a standalone scenario. For

the smaller workload tests, the execution times were lower when compared to the other

tests on the same scenario. As for the moderate workload type, the results suggest that

at higher number of requests, the execution times start to escalate quickly in relation to

the lower number of requests tests. Probably this is related to the number of errors that

occurred since for each error the client and the server have to wait until the timeout to

guarantee there was no response. As for the heavy workload type tests, we can see that,

as expected, the overall execution times were higher than the other tests. However, it

was not possible to complete the test with 10000 requests from the heavy workload type

tests. The test generated such a high amount of data, approximately 500 MB on each of

the 50 concurrent requests, that the first instance wasn’t able to handle all the process

of request, process and respond.

Similar to the results of the standalone scenario, the distributed scenario also had the

quick escalation of the execution times, when compared to the tests with a lower number

of requests. The same reason applies to this, meaning that this is an overall problem

Chapter 6. Tests and Results 63

Figure 6.6: Benchmarking results of the standalone scenario.

of the HTTP protocol and not from the platform itself. As we can see in figure 6.7

by distributing the load of the requests between two instances of the platform, running

different machines, we were now able to complete all the tests with lower execution times

and, based on the results, reduce the number of errors from 7447 to 387.

Figure 6.7: Benchmarking results of the distributed scenario.

Chapter 6. Tests and Results 64

Figure 6.8 shows a direct comparison between the results of the execution times of both

scenarios. As we can see, the execution times from the distributed scenario are far lower

than the ones from the standalone scenario. What causes the low response times is the

capabilities of the distributed version to distribute the tasks between two instances of

the platform. With that, if one of the instances is overloaded processing a request, the

other one can still process as many requests come, but only if it is not overloaded. In

fact, the distributed version can respond 2 times faster for the small workload type, 4

times for the moderate and 5 times for the heavy, having a lower number of errors per

test. The main type of errors occurred were HTTP 504 (Gateway timeout) due to the

fact that the server may be overloaded and could not respond to the request in timely

meaning that with more platform instances fewer requests will overload fewer servers.

Figure 6.8: Comparison of the benchmarking results between the standalone and the
distributed scenarios.

These results are according to what was expected because we are not only adding one

more instance of the platform, but increasing twice as many processing capabilities and

hardware specifications.

Chapter 6. Tests and Results 65

During the execution of the benchmarking tests, it was detected that the server could

not keep the demand of 50 requests for a 1 GB data request, generated from the endpoint

/fetch/database/liis wsn01/between/2015-05-01/2015-05-02/?samplingrate=60. The heavy

workload type tests had to be tweaked, by increasing the sampling rate of the heavy

workload type testing to 600 seconds. Also, during the execution of the heavy and mod-

erate workload type tests on the standalone scenario, the machine could not handle all

of the intensive CPU work and overheated to a point that it restarted. The tests had to

be re-executed after the machine was fixed with a temporary solution.

Chapter 7

Platform Use Cases

On this chapter are described the use cases created to test, demonstrate and validate the

platform. They were used on the collaboration with some institutions and demonstrated

on two events: Human Sensor and Geographic Information Systems for Disaster Risk

Management (HSenSIG) and the 3rd Experiment@International Conference - exp.at’15.

7.1 Remote Laboratory for identification and control of

nonlinear systems

This application consists on a remote laboratory that allows carrying out remote experi-

ments using a real laboratory system that is at the Laboratory of Industrial Informatics

and Systems (LIIS) of the Department of Informatics Engineering of the University of

Coimbra. The experiments include operations like monitoring systems, observing physi-

cal variables, systems identification, digital control of dynamic systems, network control

systems, and distributed control systems considering remote controllers in a shared com-

munication network.

Using a web platform to interact with the remote laboratory, students can visualize

and obtain data in real time from the remote system. In general terms, the remote

experiment can be used for: (1) identification of the system model; (2) control of the

nonlinear system. For the first case, it is possible to send a signal to the input of the

remote system, and then observe and record the resultant response of the system. In the

66

Chapter 7. Platform Use Cases 67

second situation, the remote system can be controlled considering a remote controller

interacting in real time with the laboratory system, developed, for example, in Matlab.

The remote monitoring and control of the system was implemented using a WSN, where

the sensor and actuator are connected through nodes of the wireless sensor network to

a gateway that provides data to the main platform. All of the remote lab is based on a

client-server architecture where the connection from the client to the server is done via

socket and from server to the physical process is done through a WSN as in figure 7.1.

This application does not have any integration with the platform for the control and

monitoring of remote systems since this was a prototype version to better understand

the main requirements to develop a complete version. Instead, this uses standard TCP

communication between the server and the gateway of the WSN and only one gateway

is supported. The communication from the front-end to the back-end, is sent plain text

messages with values of actions or commands to start or shut down the supervision.

Figure 7.1: Architecture of the remote laboratory for identification and control of
nonlinear systems.

This application surged through the need of using a laboratory system on an academic

work. The objective was to make accessible to students a laboratory system, so that

they could make one of the courses work related to intelligent control of a process, using

fuzzy logic

After the usage of this application, and in a way to receive feedback from the users, it

was given a questionnaire with 5 questions to evaluate the importance of using remote

laboratories on academic works and how to improve the experience. Through figure

7.2 we can see that some of the students considers that remote experimentation is not

so relevant on the context of a learning process. Complementing the results with the

written feedback, it was possible to verify that the students who responded that this

application was not so relevant had issues using it.

Chapter 7. Platform Use Cases 68

Figure 7.2: Answers about the importance of remote experimentation.

As for the relevancy of using a way to see what is happing on the process (figure 7.3),

60% of the students told that the visual stimulus contributed to a better experience on

the interaction with this remote experimentation. As by directing our visual attention

to objects of high value in a scene, we make the best use of the high-resolution space of

our retina and information processing resources of our brain [22].

Figure 7.3: Answers about the importance of using a way to visualize the experiment.

Although the answers were positive, the visual stimulus of this experiment was weak.

Besides the remote process and the nodes, the only thing that the users could see were

the measured values from the multimeter and the LED lights from WSN nodes (figure

7.4)

This application was submitted and accepted, as a demonstration on the 3rd Experi-

ment@International Conference.

7.2 Remote Laboratory for Programming in Python using

a Raspberry Pi

This application consists on a remote laboratory that allows students to develop pro-

grams and run them remotely on a Raspberry Pi which has access to data from a WSN.

Chapter 7. Platform Use Cases 69

Figure 7.4: Camera view of the remote laboratory for identification and control of
nonlinear systems.

The CS2 course [7], where this application was used, provides basic knowledge on elemen-

tary data structures and algorithms and some of the projects involve the development

of programs to run remotely on a Raspberry Pi. The sensor nodes of the WSN were

used to measure temperature, humidity and luminosity and each one was distributed on

different locations of the LIIS. The objective was to simulate real conditions like direct

sun exposure, at the interior of a house and a low light environment. The task of the

students was a group project to develop a small Python application that displays, for

each node of the WSN, a descriptive statistical information about the data collected by

sensors. All the data and results should be saved in Comma Separated Values (CSV)

files for later usage.

Concerning the process of interaction with the remote laboratory, the students had to

register on a Moodle platform where was available a tutorial with information about the

basics of programming in Python, guidelines to test the experimental setup and a simple

program to exemplify how to perform basic operations like retrieval and processing data.

A Python module with a set of functions to fetch data from the WSN was developed so

that the students only had to develop the core part of the program without worrying

on understanding how the interaction with the platform is made. To the access to the

remote laboratory, a management system was provided by the platform, based on a

First Come, First Served policy, with the establishment of a maximum threshold for

individual usage time.

Chapter 7. Platform Use Cases 70

To carry out the project of a registered student, the procedure for testing the code

involves the following steps:

1. Login to the platform;

2. Submission of a file with the program in Python;

3. Waiting for the turn to run the users code;

4. Program execution with visualization, in real time, of the results shown in a Rasp-

berry Pi monitor;

5. Download of a file with data recorded.

After a user’s program execution and if it did generate any file, it is always available

through the main menu of the platform.

Regarding the architecture, some servers were used to separate the load. The front-end

was developed on a Model View Controller (MVC), a framework for implementing user

interfaces. It divides a given software into three interconnected parts, so as to separate

internal representations of information from the ways that information is presented to

or accepted from the user. As we can see on figure 7.5, the MVC framework was used to

create all of the interface, including file submission and download, camera visualization

and web socket communication to the back-end server that is running on a Raspberry

Pi. Here the program syntax will be checked for errors, if it is a Python file and the user

that submitted a file has already something running, all the conditions for execution are

ok, the file will be queued. When available, a consumer thread will start to execute the

files that are in queue and alert, in real-time through web sockets, the front-end of the

execution status. If a user is not on-line when his program execution ends, an email will

be sent with the output.

The module provided to the students has all the necessary mechanisms to fetch data from

the endpoint /fetch/recent/ of the platform through a function getdata() invocation.

Only the documentation of the module was provided to the students and the module

is installed on the Raspberry Pi. To execute a student’s program, the consumer thread

does a system call for $ python student file.py and since the module is installed on the

system, if there is calls to getdata(), the module with the mechanisms to fetch data

Chapter 7. Platform Use Cases 71

Figure 7.5: Architecture of the Remote Laboratory for Programming in Python.

from the platform endpoint will start to work. Besides getdata(), there is a plotdata()

function, that receives a fixed format dictionary, to plot data into the PiTFT Raspberry

Pi screen (figure 7.6).

Figure 7.6: Camera view of the Remote Laboratory for Programming in Python.

All of the interactions with this application were stored and counted for statistical pur-

poses. During the group project, the total number of requests was 8933 and of those,

2370 were file uploads 520 file downloads. As we can see in figure 7.7, of the total number

of uploads, there was a success rate of 72% and 28% of the submissions had errors.

There were 3 types of possible errors: (1) Syntax Error; (2) Not a Python File; (3)

Execution Time Limit Exceeded. In figure 7.8 we can see that the biggest number of

errors was syntax errors. Since the users could not test their scripts on their computers,

the application sometimes was used as a debugger, raising this number. With 41%, the

Execution Time Limit Exceeded (TLE) error was the second biggest type of error. After

analyzing some of the submitted projects, and with some feedback that was received via

email, it was possible to understand that this error happened because many students

Chapter 7. Platform Use Cases 72

Figure 7.7: File upload statistics of the remote laboratory for programming in Python.

tried to create a script that collected data during various times of the day, but in only

one submission. This caused the consumer thread to abort, after the timeout period,

the execution of the program execution, returning a TLE error to the user. Last, with

7%, there was some users trying to submit a non-python file.

Figure 7.8: Execution errors statistics of the remote laboratory for programming in
Python.

Comparing with the results obtained on the previous years, this application contributed

to a higher percentage of students enrolled in the projects and an increase of the percent-

age of positive grades. To be more specific, in the previous academic year, 2013/2014,

the course had a total of 23 students that completed all the evaluation processes and this

academic year, 2014/2015, there was a total of 32 students. The number of registrations

on all of the projects in 2013/2014 was 31,08% of 74 students and this year the numbers

raised to 41,56% of 77 students. Once again, this validates the use of real and interactive

Chapter 7. Platform Use Cases 73

experiments contributes to a high-quality learning experience and motivates students to

participate on the projects.

This application was submitted and accepted, as a demonstration on the 3rd Experi-

ment@International Conference.

7.3 Volunteered Geographic Information Service

This application consists on a web platform that allows to receive and visualize infor-

mation that was voluntarily sent by humans with their respective geographical location.

It was created to be used on two sessions of the training school Human Sensor and

Geographic Information Systems for Disaster Risk Management (HSenSIG). The two

sessions had different objectives: (1) Simulacrum exercise by Coimbra Civil Protection

Authority with Volunteered Geographic Information (VGI) collection for Damage As-

sessment; (2) Simulation of the integration of human and physical sensors for Disaster

Management.

For the first case was built a web environment where users could submit information

about an occurrence that they were seeing, including a description, number of victims,

a photo, phone number, geographic location and intensity of the watched phenomena.

That information was then submitted to a server and displayed on a map in real-time

(figure 7.9). This map was on a computer at the command post of the Coimbra Civil

Protection, and the instructions for the firemen were given based on the voluntary

contributions.

The second scenario was the simulation of a flooding using the three tank laboratory

system with a model that controlled the level of each tank representing three locations of

the Mondego and Ceira rivers: (1) Penacova; (2) Cabouco at Ceira River, Coimbra; (3)

Parque Verde, Coimbra. The first tank was only considered on the control scenario but

not as a possible location for the volunteers. Similar to the first scenario, the volunteers

had to submit information about the status of the river where they were if a flood

was occurring. To simulate the environment, it was created a page for each location

(figure 7.10) that was placed running on a Raspberry Pi with a monitor in two different

locations of the Department of Informatics Engineering, where the event occurred. This

simulated the real situation where the volunteer would be at the location.

Chapter 7. Platform Use Cases 74

Figure 7.9: Visualization of the volunteered geographic information service map oc-
currences.

Figure 7.10: Volunteered Geographic Information service web camera and location
visualization.

As the levels of the tanks ascend, the state presented on the web page changed, according

to a system-defined threshold and then the volunteers started to contribute saying that

there was a flood at their location. To simulate a real geographic position, the users had

to select their location based on a list of default locations.

When the contribution is submitted it is verified the validity of the information. The

verification consists, as seen in figure 7.11, on checking with the supervision platform

if, according to the respective tank level, there is a flood occurring. If the submitted

information is invalid it is stored as invalid and is not shown on the map of figure 7.9.

All of the supervision is done through the developed platform.

Although subjective, all the received feedback was very encouraging. There is a lot

Chapter 7. Platform Use Cases 75

Figure 7.11: Volunteered Geographic Information service architecture.

of interest by the Coimbra Civil Protection Authority to develop a system like this,

with some improvements like web semantics and techniques of pattern recognition for

the received images from the volunteers. One of the situations that surprised the Civil

Protection, was the ability to see what the volunteers were seeing through the sent

images. This proved to be very efficient on recognizing locations and streets without

knowing the name.

7.4 Remote Laboratory for Modeling and Simulation of

Physiological Processes

This application consists on a web platform that allows users to visualize and obtain

data from an on-line experiment, supported by a three-tank laboratory system, that

models, simulates and monitors a physiological process as the system of ingestion and

excretion of a drug. It was designed to be used in courses about computational models

of physiological processes and algorithms for diagnosis and self-regulation of the Master

Degree on Biomedical Engineering, in a blended learning context.

In general terms, the remote experiment can be used for the following purposes: (1)

identification of the system model; (2) control of the nonlinear system. For the first

case, it is possible to send a input signal to the remote system and observe and record

the resultant response of the system. For the second situation, the remote system can be

controlled considering a local controller with parameters defined by the user or a remote

controller interacting in real time with the three-tank lab system.

In order to supervise the three-tank lab system, it is connected to a DAB. As shown

in figure 7.12, we can see that the interaction between the front-end and the system is

Chapter 7. Platform Use Cases 76

made through the API of the platform, taking advantage of the RESTful interface to

authenticate, control and monitor the system.

Figure 7.12: Architecture of the Remote Laboratory for Modeling and Simulation of
Physiological processes.

To provide real-time data to the user, the front-end is fetching from the platform at a

fixed sampling rate. This data is used to feed the virtual tank visualization (figure 7.13)

and the graph with the history of the water level of all tanks (figure 7.14). Also, the users

can observe the dynamic behavior of the system through a Web camera. To administrate

the access to the remote lab, a management system is provided by the platform, based

on a First Come, First Served policy, with the establishment of a maximum threshold

for usage time for each individual user. All of the access management is done by the

Stateful Control Mechanism.

Figure 7.13: Virtual tank and web camera visualization.

When the user access the web platform, if he has permissions and is the first in the

queue, an initial setup is made that consists on setting the water on each tank to a

system defined level. After that, the user can simulate the ingestion of the drug by

clicking on the ingestion button (figure 7.13). The web platform will start to apply the

Chapter 7. Platform Use Cases 77

model to the tank system, calculating the actuation and controlling the two available

pumps on the tank 1 and 3.

Figure 7.14: Water level history graph.

This application is based on a thesis of a Masters in Biomedical Engineering enti-

tled Modeling Physiological Systems - A computational and hybrid approach. Also,

this application was submitted and accepted, as a demonstration on the 3rd Experi-

ment@International Conference.

7.5 Geographic Information System Web Platform

This application is a platform for sensor data visualization. The main functionalities are:

(1) visualization of sensor measurements and sensor location on a map; (2) processing

the measurements; (3) visualization of the processed results on a map. As shown in

figure 7.15, this web platform combines the data retrieval and processing functionalities

of the platform, to build a visual environment that demonstrates the main functionalities

of a Geographic Information System (GIS).

Data used on this application, namely air temperature, humidity, and luminosity is being

fetched by stationary wireless sensor network in a testbed that has an artificially assigned

geographic location, is spatially distributed over a geographic area and is connected to

the supervision platform. The endpoints used were:

• /fetch/info/ : Get network information for the main page

Chapter 7. Platform Use Cases 78

• /fetch/recent with device identification : Get sensor data for each of the nodes

on the map. This was also used to present data in real-time on the map or on the

graph analysis

• /fetch/database with heatmap parameter : Get time-series for the historic

page and generate the interpolation images for the map

Figure 7.15: Geographic Information System Web Platform architecture.

This application provides, for each node, a location on a map and it is possible to view

the time-series data, graphically as in figure 7.17. For each node, the user can choose the

sensor from which he wants to view the time-series. The information that is displayed

on the map (figure 7.16) is being fetched in real-time, from the selected node.

Figure 7.16: Interpolation surface based on the temperature data from a WSN.

One other feature is that a user can activate an option to create an interpolation surface

based on temperature values from all of the nodes on the network. When this option is

activated, 3 layers are created at different times of the day and it is possible to activate

or deactivate any of the layers. For each layer, it is also possible to define what time

of the day or change the day when the data was collected. After all the parameters are

set, the output image of the interpolation surface is shown on the map.

Chapter 7. Platform Use Cases 79

Figure 7.17: History and real-time data of a WSN.

For each of those variables, there was the possibility to see a timeline of the values fetched

from 30 days ago and navigate through each day seeing the values with a sampling rate

of 1 hour (figure 7.18).

Figure 7.18: WSN data from a specific day.

This application was submitted and accepted, as a demonstration, on the 3rd Experi-

ment@International Conference.

Chapter 8

Conclusions

This chapter presents the main conclusions of all the work discussed on this thesis. On

the first section are described the main accomplishments achieved by done by developing

this work. Next follows the setbacks and limitations of the developed platform. The

third section talks about some new features that will be developed in the future. Finally,

are presented some minor comments about the experience obtained during the course of

the internship.

8.1 Accomplishments

With this work we created a platform that integrates, monitors and controls different

technologies, such as Wireless Sensor Networks, Virtual Sensor Networks and Data Ac-

quisition Boards, through an Internet accessible RESTful API, using low-cost devices

such as the Raspberry Pi. It also includes features such as: (1) Automatic fetch and

storing of data; (2) Stateless authentication via JWT token; (3) Distributed control with

a First Come, First Served policy; (4) Email notifications; (5) Data interpolation.

Through the benchmarking tests, we could see on chapter 6.2, that the platform created

is scalable to a higher number of users, providing an overall better quality of experience

on the interaction with the remote systems.

A big achievement was the creation of a unique and transparent way of interaction with

devices that have different characteristics and interfaces. There are several approaches

80

Chapter 8. Conclusions 81

to the laboratory paradigm, but it is very difficult to reach consensus on the creation

of a standard way to communicate with different devices through one interface. With

this work, we present one approach to the problem by creating several drivers that can

communicate with standard devices.

Another achievement was the rehabilitation of some devices that were inoperable due to

missing controllers or complex interfaces. Now, it is possible to have a remote interaction

with that equipment, making them accessible to a larger number of users.

With this work, we also managed to produce something that can contribute to higher-

quality academic projects, by providing students the ability to do remote experimenta-

tion with real systems, in real-time and with fewer access restrictions.

8.2 Setbacks

The integration of different software technologies (e.g. drivers) causes a major overhead

when retrieving the data from the gateways. This overhead adds latency to the requests

and makes the sampling rate lower than direct access conditions, namely, outside of the

platform. For example, this overhead is not noticed on a WSN since it has a relatively

higher sampling rate, but on a DAB it is noticeably higher.

8.3 Future Work

There are still features to be developed that increases the potentialities of the platform

and reduce the cost of implementing a gateway, such as:

• Arduino support: Create a Gateway driver that connects to an Arduino Board;

• Geosensors support: Create a Gateway driver that connects to sensors that

have Geolocation capabilities;

• Booking control policy: Implement an alternative to the First Come, First

Server control policy. The Booking control policy allows the users to choose a

specific time and day to conduct an experiment;

Bibliography 82

• Remote turn on/off : Associate to a network gateway a relay that, remotely,

can turn on or off the system.

8.4 Final Thoughts

These past few months of the internship have been very rewarding, allowing me to

interact with different software and hardware technologies. It was a great joy being

able to do some of the physical connections and then integrate the hardware with the

software, allowing a remote interaction with something that was not designed for that.

It was also very rewarding being able to build something that can be used as the main

tool in different projects, allowing students to explore and carry on experiments on

systems that had restricted access, such as remote laboratory system.

Bibliography

[1] MIT. The ilab project. URL https://wikis.mit.edu/confluence/display/

ILAB2/Home. Last access on July 1, 2015.

[2] Go-Lab. Specifications of the lab owner and cloud services (initial) – m21

revision. URL http://www.go-lab-project.eu/sites/default/files/files/

deliverable/file/Go-Lab%20D4.1%20revision.pdf. Last access on July 1, 2015.

[3] Yacine CHALLAL. Anatomie d’un noeud capteur. URL http://moodle.utc.

fr/file.php/498/SupportWeb/co/Module_RCSF_35.html. Last access on July 1,

2015.

[4] D Randy Garrison and Norman D Vaughan. Blended learning in higher education:

Framework, principles, and guidelines. John Wiley & Sons, 2008.

[5] Watson Scott Swail. Higher education and new demographics: Questions for policy.

Change: The Magazine of Higher Learning, 34(4):14–23, 2002.

[6] Frank Newman, Lara Couturier, and Jamie Scurry. The future of higher education:

Rhetoric, reality, and the risks of the market. John Wiley & Sons, 2010.

[7] ACM and IEEE. Computer Science Curriculum 2013: Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science., 2013.

[8] Fernando Coito and Lúıs Brito Palma. A remote laboratory environment for blended

learning. In Proceedings of the 1st International Conference on PErvasive Technolo-

gies Related to Assistive Environments, PETRA ’08, pages 69:1–69:4, New York,

NY, USA, 2008. ACM. ISBN 978-1-60558-067-8. doi: 10.1145/1389586.1389667.

URL http://doi.acm.org/10.1145/1389586.1389667.

[9] Cauligi S Raghavendra, Krishna M Sivalingam, and Taieb Znati. Wireless sensor

networks. Springer, 2006.

83

https://wikis.mit.edu/confluence/display/ILAB2/Home
https://wikis.mit.edu/confluence/display/ILAB2/Home
http://www.go-lab-project.eu/sites/default/files/files/deliverable/file/Go-Lab%20D4.1%20revision.pdf
http://www.go-lab-project.eu/sites/default/files/files/deliverable/file/Go-Lab%20D4.1%20revision.pdf
http://moodle.utc.fr/file.php/498/SupportWeb/co/Module_RCSF_35.html
http://moodle.utc.fr/file.php/498/SupportWeb/co/Module_RCSF_35.html
http://doi.acm.org/10.1145/1389586.1389667

Bibliography 84

[10] Paolo Baronti, Prashant Pillai, Vince WC Chook, Stefano Chessa, Alberto Gotta,

and Y Fun Hu. Wireless sensor networks: A survey on the state of the art and the

802.15. 4 and zigbee standards. Computer communications, 30(7):1655–1695, 2007.

[11] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David

Culler. The nesc language: A holistic approach to networked embedded systems.

SIGPLAN Not., 49(4):41–51, July 2014. ISSN 0362-1340. doi: 10.1145/2641638.

2641652. URL http://doi.acm.org/10.1145/2641638.2641652.

[12] J. Polastre R. Szewczyk K. Whitehouse A. Woo D. Gay J. Hill M. Welsh E. Brewer

P. Levis, S. Madden and D. Culler. Tinyos: An operating system for sensor

networks. URL http://www.cs.berkeley.edu/~culler/papers/ai-tinyos.pdf.

Last access on July 1, 2015.

[13] The contiki os. URL http://contiki.sourceforge.net/docs/2.6/. Last access

on July 1, 2015.

[14] Tony O’donovan, James Brown, Felix Büsching, Alberto Cardoso, José Cećılio,

Jose Do Ó, Pedro Furtado, Paulo Gil, Anja Jugel, Wolf-Bastian Pöttner, Utz

Roedig, Jorge Sá Silva, Ricardo Silva, Cormac J. Sreenan, Vasos Vassiliou, Thiemo

Voigt, Lars Wolf, and Zinon Zinonos. The ginseng system for wireless mon-

itoring and control: Design and deployment experiences. ACM Trans. Sen.

Netw., 10(1), December 2013. ISSN 1550-4859. doi: 10.1145/2529975. URL

http://doi.acm.org/10.1145/2529975.

[15] Douglas Crockford. The application/json media type for javascript object notation

(json). 2006.

[16] Michael Jones, Paul Tarjan, Yaron Goland, Nat Sakimura, John Bradley, John

Panzer, and Dirk Balfanz. Json web token (jwt). 2012.

[17] Kristina Chodorow. MongoDB: the definitive guide. ” O’Reilly Media, Inc.”, 2013.

[18] Kurt F. Fischer. Software quality assurance tools: Recent experience and future re-

quirements. SIGSOFT Softw. Eng. Notes, 3(5):116–121, January 1978. ISSN 0163-

5948. doi: 10.1145/953579.811110. URL http://doi.acm.org/10.1145/953579.

811110.

http://doi.acm.org/10.1145/2641638.2641652
http://www.cs.berkeley.edu/~culler/papers/ai-tinyos.pdf
http://contiki.sourceforge.net/docs/2.6/
http://doi.acm.org/10.1145/2529975
http://doi.acm.org/10.1145/953579.811110
http://doi.acm.org/10.1145/953579.811110

Bibliography 85

[19] Amr Elssamadisy and Jean Whitmore. Functional testing: A pattern to follow and

the smells to avoid. In Proceedings of the 2006 Conference on Pattern Languages

of Programs, PLoP ’06, pages 27:1–27:13, New York, NY, USA, 2006. ACM. ISBN

978-1-60558-372-3. doi: 10.1145/1415472.1415504. URL http://doi.acm.org/10.

1145/1415472.1415504.

[20] Klaus Lochmann. A benchmarking-inspired approach to determine threshold val-

ues for metrics. SIGSOFT Softw. Eng. Notes, 37(6):1–8, November 2012. ISSN

0163-5948. doi: 10.1145/2382756.2382782. URL http://doi.acm.org/10.1145/

2382756.2382782.

[21] Jeff Barczewski. Bench-rest, 2015. URL https://github.com/jeffbski/

bench-rest. Last access on July 1, 2015.

[22] Binbin Ye, Yusuke Sugano, and Yoichi Sato. Influence of stimulus and viewing task

types on a learning-based visual saliency model. In Proceedings of the Symposium

on Eye Tracking Research and Applications, ETRA ’14, pages 271–274, New York,

NY, USA, 2014. ACM. ISBN 978-1-4503-2751-0. URL http://doi.acm.org/10.

1145/2578153.2578199.

http://doi.acm.org/10.1145/1415472.1415504
http://doi.acm.org/10.1145/1415472.1415504
http://doi.acm.org/10.1145/2382756.2382782
http://doi.acm.org/10.1145/2382756.2382782
https://github.com/jeffbski/bench-rest
https://github.com/jeffbski/bench-rest
http://doi.acm.org/10.1145/2578153.2578199
http://doi.acm.org/10.1145/2578153.2578199

Appendix A

Tests definition tables

A.1 API Tests

Table A.1: API functional tests definition.

Endpoint Input Expected result

1 /networks -

”status”:200

”success”:true

”data”: <a list with

all the network names>

2 /info/<network>/
method: GET

network:liis wsn01

”status”:200

”success”:true

”data”: <dictionary>

3 /fetch/recent/<network>/
method: GET

network:liis wsn01

”status”:200

”success”:true

”data”: <dictionary with

fetched data>

4 /fetch/recent/<network>/
method: GET

network:liis wsn11

”status”:400

”success”:false

”message”: ”Invalid

Network liis wsn11

86

Appendix A. Tests definition tables 87

Endpoint Input Expected result

5
/fetch/recent/<network>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

deviceid:101

”status”:200

”success”:true

”data”: <dictionary with

fetched data from node

101>

6
/fetch/recent/<network>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

deviceid:105

”status”:400

”success”:false

”message”: ”Bad Request.

No data for this Node ID

7

/fetch/database/

<network>/

from/<date>/

method: GET

network:liis wsn01

date:2015-06-16

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-06-16>

8

/fetch/database/

<network>/

from/<date>/

method: GET

network:liis wsn01

date:2015-12-16

”status”:404

”success”:false

”message”: ”No results

found”

9

/fetch/database/

<network>/

from/<date>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date:2015-06-16

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-06-16 but only from

node 101>

10

/fetch/database/

<network>/

from/<date>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date:2015-06-16

14:00

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-06-16 at 14h00

with results only from node

101>

Appendix A. Tests definition tables 88

Endpoint Input Expected result

11

/fetch/database/

<network>/

from/<date>/

?deviceid=<deviceid>

&samplingrate=<sr>

method: GET

network:liis wsn01

date:2015-06-16

14:00

deviceid:101

sr:3600s

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-06-16 at 14h00

with results only from node

101 and with a sampling

rate of 1 hour(3600s) >

12

/fetch/database/

<network>/

from/<date>/

method: GET

network:liis wsn01

date:2015-05-16

14:00

”status”:400

”success”:false

”message”: Your query

is taking too long. Since

you did not provide an email,

your query will be ditched

13

/fetch/database/

<network>/

from/<date>/

?email=<email>

method: GET

network:liis wsn01

date:2015-05-16

14:00

email:vhsousa@

me.com

”status”:400

”success”:false

”message”: Your query is

taking too long. The results

will be sent to your email,

as soon as they are gathered

14

/fetch/database/

<network>/

from/<date>/

?heatmap=<ht>

method: GET

network:liis wsn01

date:2015-06-16

ht:temperature

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-06-16>

”heatmap”: <url for the

heatmap image>

15

/fetch/database/

<network>/

until/<date>/

method: GET

network:liis wsn01

date:2015-03-29

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-03-29>

Appendix A. Tests definition tables 89

Endpoint Input Expected result

16

/fetch/database/

<network>/

until/<date>/

method: GET

network:liis wsn01

date:2015-02-29

”status”:404

”success”:false

”message”: ”No results

found”

17

/fetch/database/

<network>/

until/<date>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date:2015-03-29

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-03-29 but only from

node 101>

18

/fetch/database/

<network>/

until/<date>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date:2015-03-29

14:00

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-03-29 at 14h00

with results only from node

101>

19

/fetch/database/

<network>/

until/<date>/

?deviceid=<deviceid>

&samplingrate=<sr>

method: GET

network:liis wsn01

date:2015-03-29

14:00

deviceid:101

sr:3600s

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-03-29 at 14h00

with results only from node

101 and with a sampling

rate of 1 hour(3600s) >

20

/fetch/database/

<network>/

until/<date>/

method: GET

network:liis wsn01

date:2015-03-29

14:00

”status”:400

”success”:false

”message”: Your query

is taking too long. Since

you did not provide an email,

your query will be ditched

Appendix A. Tests definition tables 90

Endpoint Input Expected result

21

/fetch/database/

<network>/

until/<date>/

?email=<email>

method: GET

network:liis wsn01

date:2015-03-29

14:00

email:vhsousa@

me.com

”status”:400

”success”:false

”message”: Your query is

taking too long. The results

will be sent to your email,

as soon as they are gathered

22

/fetch/database/

<network>/

until/<date>/

?heatmap=<ht>

&samplingrate=<sr>

method: GET

network:liis wsn01

date:2015-03-29

ht:temperature

sr:3600s

”status”:200

”success”:true

”data”: <list with the

database entries since

2015-03-29>

”heatmap”: <url for the

heatmap image>

23

/fetch/database/

<network>/between/

<date1>/<date2>/

method: GET

network:liis wsn01

date1:2015-06-10

date2:2015-06-11

”status”:200

”success”:true

”data”: <list with the

database entries between

date1 and date2>

24

/fetch/database/

<network>/between/

<date1>/<date2>/

method: GET

network:liis wsn01

date1:2014-06-10

date2:2014-06-11

”status”:404

”success”:false

”message”: ”No results

found”

25

/fetch/database/

<network>/between/

<date1>/<date2>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date1:2015-06-10

date2:2015-06-11

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries between

date1 and date2

but only from node 101>

Appendix A. Tests definition tables 91

Endpoint Input Expected result

26

/fetch/database/

<network>/between/

<date1>/<date2>/

?deviceid=<deviceid>

method: GET

network:liis wsn01

date1:2015-06-10

14:00

date2:2015-06-11

14:00

deviceid:101

”status”:200

”success”:true

”data”: <list with the

database entries between

date1 and date2

with results only from node

101>

27

/fetch/database/

<network>/between/

<date1>/<date2>/

?deviceid=<deviceid>

&samplingrate=<sr>

method: GET

network:liis wsn01

date1:2015-06-10

date2:2015-06-11

deviceid:101

sr:3600s

”status”:200

”success”:true

”data”: <list with the

database entries between

date1 and date2

with results only from node

101 and with a sampling

rate of 1 hour(3600s) >

28

/fetch/database/

<network>/between/

<date1>/<date2>/

method: GET

network:liis wsn01

date1:2015-06-01

date2:2015-06-10

”status”:400

”success”:false

”message”: Your query

is taking too long. Since

you did not provide an email,

your query will be ditched

29

/fetch/database/

<network>/between/

<date1>/<date2>/

?email=<email>

method: GET

network:liis wsn01

date1:2015-06-01

date2:2015-06-10

email:vhsousa@

me.com

”status”:400

”success”:false

”message”: Your query is

taking too long. The results

will be sent to your email,

as soon as they are gathered

Appendix A. Tests definition tables 92

Endpoint Input Expected result

30

/fetch/database/

<network>/between/

<date1>/<date2>/

?heatmap=<ht>

&samplingrate=<sr>

method: GET

network:liis wsn01

date1:2015-06-10

date2:2015-06-11

ht:temperature

sr:3600s

”status”:200

”success”:true

”data”: <list with the

database entries between

date1 and date2>

”heatmap”: <url for the

heatmap image>

31
/authenticate/

<network>/

method: POST

network:liis dab

username:vhsousa

password:liis2014

”status”:200

”success”:true

”token”: <JWT>

32
/authenticate/

<network>/

method: POST

network:liis dab

username:vhsousa

password:liis2015

”status”:401

”success”:false

”message”: Unauthorized.

Invalid Credentials

33

/control/<network>/

<token>/

<deviceid>/

<value>/

method:POST

network:liis dab

token:<JWT>

deviceid:ao0

value:100

”status”:200

”success”:true

”message”: Actuated

successfully

”time remaining”: x

34

/control/<network>/

<token>/

<deviceid>/

<value>/

method:POST

network:liis dab

token:<JWT>

deviceid:ao0

value:120

”status”:400

”success”:false

”message”: Input exceeds

limits of the device: 5 v

”time remaining”: x

Appendix A. Tests definition tables 93

A.2 Back-end Tests

Table A.2: Back-end functional tests definition.

Test Condition Input Expected result

1
Add a new

Virtual Sensor Network

vsn test

configuration file

Server loads the new network

and it’s available through

the endpoint /info/vsn test

2
Add a new

Wireless Sensor Network

wsn test

configuration file

Server loads the new network

and it’s available through

the endpoint /info/wsn test

3
Add a new

Data Acquisition Board

dab test

configuration file

Server loads the new network

and it’s available through

the endpoint /info/dab test

4

Start a new platform

instance changing the

default port through the

command-line parameters

port: 9823

Server passes the startup

procedure without any error

or exception

5

Start a new platform

instance changing the

default port through the

server configuration file

port: 9823

Server passes the startup

procedure without any error

or exception

6

Start a new platform

instance changing the

default fetch-thread

timeout through the

command-line parameters

thread timeout: 120

Server passes the startup

procedure without any error

or exception

7

Start a new platform

instance changing the

default fetch-thread

timeout through the

server configuration file

thread timeout: 120

Server passes the startup

procedure without any error

or exception

Appendix A. Tests definition tables 94

Test Condition Input Expected result

8
Connection Lost with a

Wireless Sensor Network
-

Email is sent to the

administrator alerting

that the network is down

9
A WSN

reconnects to the platform
-

All the mechanisms

resumes normal operation

Appendix B

Tests results

B.1 API Tests

B.1.1 Test 1

• Request http://hydra.dei.uc.pt/supervision/api/v2/networks

• Response

1 {
2 "status":200,
3 "networks":["liis_dab","vsn_test","liis_wsn03","liis_wsn02","liis_wsn10","

liis_wsn01","liis_wsn06","liis_wsn07","liis_wsn04","liis_wsn05","
liis_wsn08","liis_wsn09"],

4 "success":true
5 }
6

• Status Passed

B.1.2 Test 2

• Request http://hydra.dei.uc.pt/supervision/api/v2/info/liis_wsn01/

• Response

1 {
2 "status": 200,
3 "info": {
4 "units": {
5 "par": "lux",
6 "temperature": "C",
7 "battery": "volt",
8 "internal -temperature": "C",
9 "humidity": "%",

95

http://hydra.dei.uc.pt/supervision/api/v2/networks
http://hydra.dei.uc.pt/supervision/api/v2/info/liis_wsn01/

Appendix B. Tests results 96

10 "adc": "volt",
11 "tsr": "lux"
12 },
13 "number -of-nodes": 3,
14 "ids": ["102","103","101"],
15 "sampling -time": 1,
16 "general":"{\"admin\":\" vhsousa@student.dei.uc.pt\",\" master \":true,

\" camera \":\"http://hydra.dei.uc.pt/remoteprocesscam/image/jpeg.cgi\",\"
type\":\"wsn\"}"

17 },
18 "success": true
19 }
20

• Status Passed

B.1.3 Test 3

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_

wsn01/

• Response

• Status Passed

B.1.4 Test 4

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_

wsn11/

• Response

• Status Passed

B.1.5 Test 5

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_

wsn01/?deviceid=101

http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn11/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn11/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/?deviceid=101

Appendix B. Tests results 97

• Response

• Status Passed

B.1.6 Test 6

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_

wsn01/?deviceid=105

• Response

• Status Passed

B.1.7 Test 7

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-06-16/

• Response

• Status Passed

B.1.8 Test 8

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-12-16/

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/?deviceid=105
http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/?deviceid=105
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-12-16/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-12-16/

Appendix B. Tests results 98

B.1.9 Test 9

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-06-16/?deviceid=101

• Response

• Status Passed

B.1.10 Test 10

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-06-16%2014:00/?deviceid=101

• Response

• Status Passed

B.1.11 Test 11

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-06-16%2014:00/?deviceid=101&samplingrate=3600

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16%2014:00/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16%2014:00/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16%2014:00/?deviceid=101&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16%2014:00/?deviceid=101&samplingrate=3600

Appendix B. Tests results 99

B.1.12 Test 12

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-05-16%2014:00/

• Response

• Status Passed

B.1.13 Test 13

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-05-16%2014:00/?email=vhsousa@me.com

• Response

• Status Passed

B.1.14 Test 14

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/from/2015-06-16/?heatmap=temperature

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-05-16%2014:00/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-05-16%2014:00/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-05-16%2014:00/?email=vhsousa@me.com
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-05-16%2014:00/?email=vhsousa@me.com
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/?heatmap=temperature
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/from/2015-06-16/?heatmap=temperature

Appendix B. Tests results 100

B.1.15 Test 15

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-03-29/

• Response

• Status Passed

B.1.16 Test 16

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-02-29/

• Response

• Status Passed

B.1.17 Test 17

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-03-29/?deviceid=101

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-02-29/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-02-29/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/?deviceid=101

Appendix B. Tests results 101

B.1.18 Test 18

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-03-29%2014:00/?deviceid=101

• Response

• Status Passed

B.1.19 Test 19

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-03-29%2014:00/?deviceid=101&samplingrate=3600

• Response

• Status Passed

B.1.20 Test 20

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-04-29%2014:00/

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29%2014:00/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29%2014:00/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29%2014:00/?deviceid=101&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29%2014:00/?deviceid=101&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-04-29%2014:00/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-04-29%2014:00/

Appendix B. Tests results 102

B.1.21 Test 21

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-04-29%2014:00/?email=vhsousa@me.com

• Response

• Status Passed

B.1.22 Test 22

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/until/2015-03-29/?heatmap=temperature&samplingrate=3600

• Response

• Status Passed

B.1.23 Test 23

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-10/2015-06-11/

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-04-29%2014:00/?email=vhsousa@me.com
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-04-29%2014:00/?email=vhsousa@me.com
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/?heatmap=temperature&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/until/2015-03-29/?heatmap=temperature&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/

Appendix B. Tests results 103

B.1.24 Test 24

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2014-06-10/2014-06-11/

• Response

• Status Passed

B.1.25 Test 25

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-10/2015-06-11/?deviceid=101

• Response

• Status Passed

B.1.26 Test 26

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-10%2014:00/2015-06-11%2014:00/?deviceid=101

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2014-06-10/2014-06-11/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2014-06-10/2014-06-11/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10%2014:00/2015-06-11%2014:00/?deviceid=101
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10%2014:00/2015-06-11%2014:00/?deviceid=101

Appendix B. Tests results 104

B.1.27 Test 27

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-10/2015-06-11/?deviceid=101&samplingrate=3600

• Response

• Status Passed

B.1.28 Test 28

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-01/2015-06-10/

• Response

• Status Passed

B.1.29 Test 29

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-01/2015-06-10/?email=vhsousa@me.com

• Response

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?deviceid=101&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?deviceid=101&samplingrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-01/2015-06-10/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-01/2015-06-10/
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-01/2015-06-10/?email=vhsousa@me.com
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-01/2015-06-10/?email=vhsousa@me.com

Appendix B. Tests results 105

B.1.30 Test 30

• Request http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_

wsn01/between/2015-06-10/2015-06-11/?heatmap=temperature&samplignrate=

3600

• Response

• Status Passed

B.1.31 Test 31

• Request http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_

dab/

• Response

1 {
2 "status": 200,
3 "token": "eyJhbGciOiJIUzI1NiIsImV4cCI6MTQzNjAxOTk0NSwiaWF0IjoxNDM2

MDE2MzQ1fQ.eyJ1c2VybmFtZSI6InZoc291c2EiLCJzeXN0ZW0iOiJsaWlzX2RhYiJ9.dS3
qmQHr -H7PbN8yiy48Nb1acWlH6-XPJup8x2eg9Wk",

4 "success": true
5 }
6

• Status Passed

B.1.32 Test 32

• Request http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_

dab/

• Response

1 {
2 "status": 401,
3 "message": "Unauthorized. Invalid Credentials",
4 "success": false
5 }
6

• Status Passed

http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?heatmap=temperature&samplignrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?heatmap=temperature&samplignrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/between/2015-06-10/2015-06-11/?heatmap=temperature&samplignrate=3600
http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_dab/
http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_dab/
http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_dab/
http://hydra.dei.uc.pt/supervision/api/v2/authenticate/liis_dab/

Appendix B. Tests results 106

B.1.33 Test 33

• Request: http://hydra.dei.uc.pt/supervision/api/v2/control/liis dab/eyJhbGci

OiJIUzI1NiIsImV4cCI6MTQzNjAxOTk0NSwiaWF0IjoxNDM2MDE2MzQ1fQ

.eyJ1c2VybmFtZSI6InZoc291c2EiLCJzeXN0ZW0iOiJsaWlzX2RhYiJ9.dS3

qmQHr-H7PbN8yiy48Nb1acWlH6-XPJup8x2eg9Wk/ao0/100/

• Response

1 {
2 "status": 200,
3 "time_remaining": 120,
4 "message": "Actuated successfully",
5 "success": true
6 }
7

• Status Passed

B.1.34 Test 34

• Request http://hydra.dei.uc.pt/supervision/api/v2/control/liis dab/eyJhbGci

OiJIUzI1NiIsImV4cCI6MTQzNjAxOTk0NSwiaWF0IjoxNDM2MDE2MzQ1fQ

.eyJ1c2VybmFtZSI6InZoc291c2EiLCJzeXN0ZW0iOiJsaWlzX2RhYiJ9.dS3

qmQHr-H7PbN8yiy48Nb1acWlH6-XPJup8x2eg9Wk/ao0/120/

• Response

1 {
2 "status": 400,
3 "message": "Input exceeds limits of the device: 5 v",
4 "success": false
5 }
6

• Status Passed

B.2 Back-end Tests

B.2.1 Test 1

• Condition Add a new Virtual Sensor Network

• Result The network vsn test is now accessible at /info/vsn test/

• Status Passed

Appendix B. Tests results 107

B.2.2 Test 2

• Condition Add a new Wireless Sensor Network

• Result The network wsn test is now accessible at /info/wsn test/

• Status Passed

B.2.3 Test 3

• Condition Add a new Data Acquisition Board

• Result The network dab test is now accessible at /info/dab test/

• Status Passed

Appendix B. Tests results 108

B.2.4 Test 4

• Condition Start a new platform instance on port 9823 through a command line

parameter

• Result Using the parameter ’-p’ as in ’python restful-server.py -p 9823’, it is

possible to change the default port of the server.

• Status Passed

B.2.5 Test 5

• Condition Start a new platform instance on port 9823 through the configuration

file.

• Result Using the parameter ’-c’ as in ’python restful-server.py -c conf.json’, it is

possible to load a JSON configuration file with ”port”, ”networks” and ”thread timeout”

parameters.

• Status Passed

Appendix B. Tests results 109

B.2.6 Test 6

• Condition Start a new platform instance with a thread timeout of 120 seconds,

through a command line parameter

• Result Using the parameter ’-t’ as in ’python restful-server.py -t 120’, it is possible

to change the default thread timeout of the server.

• Status Passed

B.2.7 Test 7

• Condition Start a new platform instance on port 9823 through the configuration

file.

• Result Using the parameter ’-c’ as in ’python restful-server.py -c conf.json’, it is

possible to load a JSON configuration file with ”port”, ”networks” and ”thread timeout”

parameters.

• Status Passed

B.2.8 Test 8

• Condition Connection with a Wireless Sensor Network dispatcher is lost

• Result After 5 connection retries, the administrator of the network is alerted of

the situation

• Status Passed

Appendix B. Tests results 110

B.2.9 Test 9

• Condition A Wireless Sensor Network dispatcher reconnects to the platform

• Result All mechanisms resume normal operations.

• Status Passed

Appendix C

Benchmarking results

C.1 Standalone scenario

C.1.1 Test 1 - Small 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent
/liis_wsn01/

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
5 Progress [=======================================] 100% 0.0s conc:0 278/s
6
7 errors: 0
8 stats: { totalElapsed: 3623.9584990143776,
9 main: { meter:

10 { mean: 278.4362447692208,
11 count: 1000,
12 currentRate: 280.5756198841005,
13 ’1MinuteRate ’: 0,
14 ’5MinuteRate ’: 0,
15 ’15MinuteRate ’: 0 },
16 histogram: { min: 107.12453600764275,
17 max: 235.10389000177383,
18 sum: 172715.6273112893,
19 variance: 226.03482449181942,
20 mean: 172.71562731128932,
21 stddev: 15.034454579126555,
22 count: 1000,
23 median: 172.93098299205303,
24 p75: 179.38070376217365,
25 p95: 196.2859849512577,
26 p99: 222.77655490398408,
27 p999: 235.0972281517686 } } }

C.1.2 Test 2 - Small 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent
/liis_wsn01/

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/

111

Appendix C. Benchmarking results 112

5 Progress [=======================================] 100% 0.0s conc:0 281/s
6
7 errors: 0
8 stats: { totalElapsed: 17875.07683700323,
9 main: { meter:

10 { mean: 281.38720237948974,
11 count: 5000,
12 currentRate: 261.4361577804727,
13 ’1MinuteRate ’: 63.01883053763066,
14 ’5MinuteRate ’: 13.888227217351368,
15 ’15MinuteRate ’: 4.706411437356729 },
16 histogram: { min: 111.96197098493576,
17 max: 404.978128015995,
18 sum: 880444.8200371265,
19 variance: 198.40592786378832,
20 mean: 176.08896400742532,
21 stddev: 14.085663912779841,
22 count: 5000,
23 median: 175.36499550938606,
24 p75: 184.98664101213217,
25 p95: 195.91386535614728,
26 p99: 205.6593801492453,
27 p999: 404.07545330938706 } } }

C.1.3 Test 3 - Small 10000

1 $ bench -rest -n 10000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
recent/liis_wsn01/

2 Benchmarking 10000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
5 Progress [=======================================] 100% 0.0s conc:0 269/s
6
7 errors: 0
8 stats: { totalElapsed: 37407.43246102333,
9 main: { meter:

10 { mean: 268.97820660803893,
11 count: 10000,
12 currentRate: 282.79778296000205,
13 ’1MinuteRate ’: 118.57265589302867,
14 ’5MinuteRate ’: 29.658024032300002,
15 ’15MinuteRate ’: 10.279735685126555 },
16 histogram: { min: 98.42391300201416,
17 max: 398.8617199957371,
18 sum: 1851112.0583595932,
19 variance: 283.76143016405484,
20 mean: 185.1112058359593,
21 stddev: 16.845219801595196,
22 count: 10000,
23 median: 185.3311125189066,
24 p75: 195.8551039993763,
25 p95: 215.50707319527862,
26 p99: 234.4049980250001,
27 p999: 247.2208455658853 } } }

C.1.4 Test 4 - Moderate 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:0 2/s
6
7 errors: 669

Appendix C. Benchmarking results 113

8 stats: { totalElapsed: 426466.55399897695,
9 main: { meter:

10 { mean: 2.3449852984289605,
11 count: 1000,
12 currentRate: 936.0600267127926,
13 ’1MinuteRate ’: 1.0969616278097978,
14 ’5MinuteRate ’: 1.0051339143632672,
15 ’15MinuteRate ’: 0.5423435426144453 },
16 histogram: { min: 31.72358199954033,
17 max: 60242.00378400087,
18 sum: 21317791.763157994,
19 variance: 748841089.9756408,
20 mean: 21317.791763157995,
21 stddev: 27364.960989843214,
22 count: 1000,
23 median: 1434.532360509038,
24 p75: 60006.77843025327,
25 p95: 60009.81715217531,
26 p99: 60086.77107515067,
27 p999: 60241.98389444789 } } }

C.1.5 Test 5 - Moderate 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:0 2/s
6
7 errors: 1605
8 stats: { totalElapsed: 2216623.083884001,
9 main: { meter:

10 { mean: 2.2557894059318215,
11 count: 5000,
12 currentRate: 2.100654814331804,
13 ’1MinuteRate ’: 1.317787551048485,
14 ’5MinuteRate ’: 1.8375989132390127,
15 ’15MinuteRate ’: 1.863273139263995 },
16 histogram: { min: 371.6240490078926,
17 max: 60216.55198299885,
18 sum: 108423109.92340195,
19 variance: 740305591.3735102,
20 mean: 21684.62198468039,
21 stddev: 27208.557318856696,
22 count: 5000,
23 median: 1267.428599998355,
24 p75: 60007.54934449494,
25 p95: 60041.39262700081,
26 p99: 60054.14178850591,
27 p999: 60081.61743149805 } } }

C.1.6 Test 6 - Moderate 10000

1 $ bench -rest -n 10000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 10000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:5 2/s
6
7 errors: 2453
8 stats: { totalElapsed: 3609068.7201870084,
9 main: { meter:

Appendix C. Benchmarking results 114

10 { mean: 2.7709615406996497,
11 count: 10000,
12 currentRate: 2.687812584202406,
13 ’1MinuteRate ’: 1.4121227832264576,
14 ’5MinuteRate ’: 2.237393873332537,
15 ’15MinuteRate ’: 2.4315233342847793 },
16 histogram: { min: 330.832987010479,
17 max: 60213.842245996,
18 sum: 179052716.36869335,
19 variance: 642207299.6660855,
20 mean: 17905.271636869336,
21 stddev: 25341.809321082135,
22 count: 10000,
23 median: 1439.621718004346,
24 p75: 60006.761581502855,
25 p95: 60008.292285099626,
26 p99: 60014.27010460794,
27 p999: 60035.83111399594 } } }

C.1.7 Test 7 - Heavy 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=600

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=600
5 Progress [=======================================] 100% 0.0s conc:5 2/s
6
7 errors: 628
8 stats: { totalElapsed: 540311.0297130048,
9 main: { meter:

10 { mean: 1.850890280452474,
11 count: 1000,
12 currentRate: 7.63161063992038,
13 ’1MinuteRate ’: 4.121376290591109,
14 ’5MinuteRate ’: 1.8320994205997052,
15 ’15MinuteRate ’: 0.8741931918775679 },
16 histogram: { min: 129.72210198640823,
17 max: 67223.52881500125,
18 sum: 26343525.693567663,
19 variance: 727408243.5086714,
20 mean: 26343.525693567663,
21 stddev: 26970.50691975721,
22 count: 1000,
23 median: 4493.075258508325,
24 p75: 60007.46653249115,
25 p95: 60013.81241939366,
26 p99: 64860.256787961465,
27 p999: 67223.52638803223 } } }

C.1.8 Test 8 - Heavy 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=600

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=600
5 Progress [=======================================] 100% 0.0s conc:5 2/s
6
7 errors: 2092
8 stats: { totalElapsed: 2877997.7980590165,
9 main: { meter:

10 { mean: 1.7373823180035426,
11 count: 5000,

Appendix C. Benchmarking results 115

12 currentRate: 6.278463965099324,
13 ’1MinuteRate ’: 2.0884575863034276,
14 ’5MinuteRate ’: 2.00471697426522,
15 ’15MinuteRate ’: 1.7348056191123928 },
16 histogram: { min: 3.2220929861068726,
17 max: 60143.657187998295,
18 sum: 142280741.97609693,
19 variance: 722465966.7057348,
20 mean: 28456.148395219385,
21 stddev: 26878.72702911607,
22 count: 5000,
23 median: 6438.0112404972315,
24 p75: 60007.2398544848,
25 p95: 60009.11733900309,
26 p99: 60012.94824192226,
27 p999: 60066.92654612556 } } }

C.1.9 Test 9 - Heavy 10000

1 Did Not Finish

C.2 Distributed scenario

C.2.1 Test 1 - Small 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent
/liis_wsn01/

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
5 Progress [=======================================] 100% 0.0s conc:0 475/s
6
7 errors: 0
8 stats: { totalElapsed: 2140.134290009737,
9 main: { meter:

10 { mean: 474.9320083658196,
11 count: 1000,
12 currentRate: 658.0085559253455,
13 ’1MinuteRate ’: 0,
14 ’5MinuteRate ’: 0,
15 ’15MinuteRate ’: 0 },
16 histogram: { min: 11.01552301645279,
17 max: 317.43131598830223,
18 sum: 99178.30727088451,
19 variance: 2436.194935583726,
20 mean: 99.17830727088452,
21 stddev: 49.35782547462688,
22 count: 1000,
23 median: 84.588982000947,
24 p75: 130.2738462537527,
25 p95: 183.06794265061606,
26 p99: 267.09811198800804,
27 p999: 317.4301757513285 } } }

Appendix C. Benchmarking results 116

C.2.2 Test 2 - Small 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent
/liis_wsn01/

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
5 Progress [=======================================] 100% 0.0s conc:0 568/s
6
7 errors: 0
8 stats: { totalElapsed: 8910.53682500124,
9 main: { meter:

10 { mean: 568.1689988677684,
11 count: 5000,
12 currentRate: 508.4395353783525,
13 ’1MinuteRate ’: 45.84653265154609,
14 ’5MinuteRate ’: 9.477468378684593,
15 ’15MinuteRate ’: 3.176723153992152 },
16 histogram: { min: 2.7009589970111847,
17 max: 485.5687710046768,
18 sum: 431546.09162795544,
19 variance: 5850.268973978615,
20 mean: 86.30921832559109,
21 stddev: 76.48705102158544,
22 count: 5000,
23 median: 118.46559999883175,
24 p75: 163.60698150098324,
25 p95: 182.31061576008796,
26 p99: 216.33568752139817,
27 p999: 433.076977509231 } } }

C.2.3 Test 3 - Small 10000

1 $ bench -rest -n 10000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
recent/liis_wsn01/

2 Benchmarking 10000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/recent/liis_wsn01/
5 Progress [=======================================] 100% 0.0s conc:0 549/s
6
7 errors: 0
8 stats: { totalElapsed: 18501.65299001336,
9 main: { meter:

10 { mean: 549.2979316979639,
11 count: 10000,
12 currentRate: 352.3060242648794,
13 ’1MinuteRate ’: 124.28932612955519,
14 ’5MinuteRate ’: 27.397618379701562,
15 ’15MinuteRate ’: 9.284812454075418 },
16 histogram: { min: 2.592501014471054,
17 max: 618.7567619979382,
18 sum: 901367.1941169202,
19 variance: 6634.934451308326,
20 mean: 90.13671941169203,
21 stddev: 81.4551069688594,
22 count: 10000,
23 median: 57.9816310107708,
24 p75: 170.40583249926567,
25 p95: 196.81019430458545,
26 p99: 216.84557927280665,
27 p999: 249.05417836061125 } } }

Appendix C. Benchmarking results 117

C.2.4 Test 4 - Moderate 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:3 11/s
6
7 errors: 10
8 stats: { totalElapsed: 141125.61739900708,
9 main: { meter:

10 { mean: 7.0871650342808135,
11 count: 1000,
12 currentRate: 5.3647302815218465,
13 ’1MinuteRate ’: 4.586150236580643,
14 ’5MinuteRate ’: 2.523544487812693,
15 ’15MinuteRate ’: 1.0102536323810112 },
16 histogram:{ min: 152.72400000691414,
17 max: 120105.47211900353,
18 sum: 5928349.952686518,
19 variance: 295913272.5156277,
20 mean: 5928.349952686518,
21 stddev: 17202.129883117024,
22 count: 1000,
23 median: 759.8622290194035,
24 p75: 932.4883162528276,
25 p95: 60223.38605868071,
26 p99: 60978.20882558554,
27 p999: 120105.45228691954 } } }

C.2.5 Test 5 - Moderate 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:24 2/s
6
7 errors: 47
8 stats: { totalElapsed: 418786.22589698434,
9 main: { meter:

10 { mean: 11.942531885555692,
11 count: 5000,
12 currentRate: 2.5810580839774535,
13 ’1MinuteRate ’: 6.157131295016485,
14 ’5MinuteRate ’: 8.254208096898411,
15 ’15MinuteRate ’: 4.335227729857532 },
16 histogram: { min: 145.0069130063057,
17 max: 120097.92607998848,
18 sum: 19421799.267213047,
19 variance: 219458941.41870704,
20 mean: 3884.359853442609,
21 stddev: 14814.146665221964,
22 count: 5000,
23 median: 385.84690798819065,
24 p75: 748.0849217474461,
25 p95: 60257.51644394696,
26 p99: 103135.06078876945,
27 p999: 120013.16534028479 } } }

Appendix C. Benchmarking results 118

C.2.6 Test 6 - Moderate 10000

1 $ bench -rest -n 10000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=3600

2 Benchmarking 10000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=3600
5 Progress [=======================================] 100% 0.0s conc:44 8/s
6
7 errors: 126
8 stats: { totalElapsed: 860182.7290740013,
9 main: { meter:

10 { mean: 11.628400419573383,
11 count: 10000,
12 currentRate: 2.850427469952005,
13 ’1MinuteRate ’: 5.073493899662898,
14 ’5MinuteRate ’: 9.250925967706149,
15 ’15MinuteRate ’: 6.79299784571018 },
16 histogram: { min: 1.9229399859905243,
17 max: 126747.89685499668,
18 sum: 41138739.17031655,
19 variance: 257270398.13791355,
20 mean: 4113.873917031655,
21 stddev: 16039.650810971963,
22 count: 10000,
23 median: 630.2924530059099,
24 p75: 895.819596260786,
25 p95: 60484.60631704926,
26 p99: 103365.98573436736,
27 p999: 120016.28803542662 } } }

C.2.7 Test 7 - Heavy 1000

1 $ bench -rest -n 1000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=600

2 Benchmarking 1000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=600
5 Progress [=======================================] 100% 0.0s conc:5 2/s
6
7 errors: 15
8 stats: { totalElapsed: 161508.92374899983,
9 main: { meter:

10 { mean: 6.193191524757363,
11 count: 1000,
12 currentRate: 3.214154312866782,
13 ’1MinuteRate ’: 4.6709132054035605,
14 ’5MinuteRate ’: 2.516717737959244,
15 ’15MinuteRate ’: 1.0094662204583655 },
16 histogram: { min: 15.233238011598587,
17 max: 120110.44702798128,
18 sum: 6528580.207422644,
19 variance: 392528853.8976216,
20 mean: 6528.580207422644,
21 stddev: 19812.340949459292,
22 count: 1000,
23 median: 821.2134099751711,
24 p75: 1145.4326097518206,
25 p95: 60650.43591144681,
26 p99: 120015.75932596475,
27 p999: 120110.4445516533 } } }

Appendix C. Benchmarking results 119

C.2.8 Test 8 - Heavy 5000

1 $ bench -rest -n 5000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=600

2 Benchmarking 5000 iteration(s) using up to 50 concurrent connections
3
4 Progress [=======================================] 100% 0.0s conc:24 7/s
5
6 errors: 43
7 stats: { totalElapsed: 558429.6055970192,
8 main:
9 { meter:

10 { mean: 8.955164054423522,
11 count: 5000,
12 currentRate: 33.67553400219773,
13 ’1MinuteRate ’: 4.785332421066812,
14 ’5MinuteRate ’: 6.829210106435755,
15 ’15MinuteRate ’: 4.016999048248094 },
16 histogram:
17 { min: 210.24665799736977,
18 max: 120059.37963500619,
19 sum: 26201967.756153792,
20 variance: 293016351.1343462,
21 mean: 5240.393551230758,
22 stddev: 17117.720383694385,
23 count: 5000,
24 median: 890.6764625012875,
25 p75: 1284.5379507541656,
26 p95: 60775.01846369505,
27 p99: 120011.65967198342,
28 p999: 120014.26740372449 } } }

C.2.9 Test 9 - Heavy 10000

1 $ bench -rest -n 10000 -c 50 http://hydra.dei.uc.pt/supervision/api/v2/fetch/
database/liis_wsn01/between/2015-05-01/2015-05-02/? samplingrate=600

2 Benchmarking 10000 iteration(s) using up to 50 concurrent connections
3
4 flow: http://hydra.dei.uc.pt/supervision/api/v2/fetch/database/liis_wsn01/

between/2015-05-01/2015-05-02/? samplingrate=600
5 Progress [=======================================] 100% 0.0s conc:5 2/s
6
7 errors: 146
8 stats: { totalElapsed: 1320666.0195119977,
9 main: { meter:

10 { mean: 7.573026189011743,
11 count: 10000,
12 currentRate: 3.785801300594897,
13 ’1MinuteRate ’: 2.1264375727622173,
14 ’5MinuteRate ’: 5.087058166678599,
15 ’15MinuteRate ’: 5.095478785905252 },
16 histogram: { min: 1.954048991203308,
17 max: 120421.08014401793,
18 sum: 64302869.60345107,
19 variance: 367279160.1360143,
20 mean: 6430.286960345107,
21 stddev: 19164.528695901037,
22 count: 10000,
23 median: 1561.4685180038214,
24 p75: 2313.7137604877353,
25 p95: 62516.00978614389,
26 p99: 120012.70189100862,
27 p999: 120059.41709774289 } } }

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 Proposed Platform
	1.4 Platform Use Cases
	1.5 Publications
	1.6 Outline

	2 State of the Art
	2.1 Platforms for Remote Laboratories
	2.1.1 iLab
	2.1.2 Go-lab

	2.2 Wireless Sensor Networks
	2.3 Data Acquisition Systems
	2.4 Synthesis

	3 Methodology
	3.1 Development Methodology
	3.2 Work plan
	3.2.1 First Semester
	3.2.2 Second Semester

	3.3 Risk Assessment
	3.3.1 Devices Integration
	3.3.2 Heavy Data Fetch
	3.3.3 Platform Use Cases

	4 Requirements Specification
	4.1 Functional Requirements
	4.1.1 API
	4.1.2 Internal Server

	4.2 Non-functional Requirements
	4.2.1 Scalability
	4.2.2 Robustness

	4.3 Synthesis

	5 Platform Architecture
	5.1 Overview
	5.2 Technologies Used
	5.2.1 Flask
	5.2.2 Pyro
	5.2.3 JSON
	5.2.4 JWT
	5.2.5 MongoDB
	5.2.6 Synthesis

	5.3 Authentication Mechanism
	5.3.1 JWT Creation
	5.3.2 JWT Validation

	5.4 Gateway Handler Module
	5.4.1 Gateway Drivers
	5.4.2 Data Fetching Thread
	5.4.3 Database Connector Module
	5.4.4 Stateful Control Mechanism
	5.4.5 Mail Module

	5.5 RESTful API
	5.5.1 Formats
	5.5.2 Endpoints

	5.6 Heatmap Module
	5.7 Network Configuration File
	5.8 Camera
	5.9 Internal Mechanisms
	5.9.1 Command-line interface
	5.9.2 Exceptions and alerts
	5.9.3 Downloads Garbage Collector

	5.10 Horizontal Scalability
	5.11 Synthesis

	6 Tests and Results
	6.1 Functional Tests
	6.1.1 Tools Used
	6.1.2 Tests Definition
	6.1.3 Tests Execution
	6.1.4 Results and analysis

	6.2 Benchmarking Tests
	6.2.1 Tools used
	6.2.2 Experimental Setup
	6.2.3 Standalone Scenario
	6.2.4 Distributed Scenario
	6.2.5 Results and analysis

	7 Platform Use Cases
	7.1 Remote Laboratory for identification and control of nonlinear systems
	7.2 Remote Laboratory for Programming in Python using a Raspberry Pi
	7.3 Volunteered Geographic Information Service
	7.4 Remote Laboratory for Modeling and Simulation of Physiological Processes
	7.5 Geographic Information System Web Platform

	8 Conclusions
	8.1 Accomplishments
	8.2 Setbacks
	8.3 Future Work
	8.4 Final Thoughts

	A Tests definition tables
	A.1 API Tests
	A.2 Back-end Tests

	B Tests results
	B.1 API Tests
	B.1.1 Test 1
	B.1.2 Test 2
	B.1.3 Test 3
	B.1.4 Test 4
	B.1.5 Test 5
	B.1.6 Test 6
	B.1.7 Test 7
	B.1.8 Test 8
	B.1.9 Test 9
	B.1.10 Test 10
	B.1.11 Test 11
	B.1.12 Test 12
	B.1.13 Test 13
	B.1.14 Test 14
	B.1.15 Test 15
	B.1.16 Test 16
	B.1.17 Test 17
	B.1.18 Test 18
	B.1.19 Test 19
	B.1.20 Test 20
	B.1.21 Test 21
	B.1.22 Test 22
	B.1.23 Test 23
	B.1.24 Test 24
	B.1.25 Test 25
	B.1.26 Test 26
	B.1.27 Test 27
	B.1.28 Test 28
	B.1.29 Test 29
	B.1.30 Test 30
	B.1.31 Test 31
	B.1.32 Test 32
	B.1.33 Test 33
	B.1.34 Test 34

	B.2 Back-end Tests
	B.2.1 Test 1
	B.2.2 Test 2
	B.2.3 Test 3
	B.2.4 Test 4
	B.2.5 Test 5
	B.2.6 Test 6
	B.2.7 Test 7
	B.2.8 Test 8
	B.2.9 Test 9

	C Benchmarking results
	C.1 Standalone scenario
	C.1.1 Test 1 - Small 1000
	C.1.2 Test 2 - Small 5000
	C.1.3 Test 3 - Small 10000
	C.1.4 Test 4 - Moderate 1000
	C.1.5 Test 5 - Moderate 5000
	C.1.6 Test 6 - Moderate 10000
	C.1.7 Test 7 - Heavy 1000
	C.1.8 Test 8 - Heavy 5000
	C.1.9 Test 9 - Heavy 10000

	C.2 Distributed scenario
	C.2.1 Test 1 - Small 1000
	C.2.2 Test 2 - Small 5000
	C.2.3 Test 3 - Small 10000
	C.2.4 Test 4 - Moderate 1000
	C.2.5 Test 5 - Moderate 5000
	C.2.6 Test 6 - Moderate 10000
	C.2.7 Test 7 - Heavy 1000
	C.2.8 Test 8 - Heavy 5000
	C.2.9 Test 9 - Heavy 10000

