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Abstract

The unprecedented success of Web 2.0, and with it, social media services, has re-
sulted in massive amounts of user-generated data. Traditional techniques are no
longer adequate to deal with this sheer amount of information. In an attempt to
address this problem, new techniques that can be applied to big data, are being
proposed in an increasingly frequent way.

In this dissertation, the concept of parsimonious sensing and some of its appli-
cations are presented. Parsimonious sensing attempts to select the most relevant
information from a large dataset, thus reducing the cost of its analysis. To do this,
it employs different techniques such as active learning, also know as optimal exper-
imental design in the field of statistics. We also explore some innovative methods
of identifying relevant anomalies from a large dataset to be subsequently explored.
This dissertation studies the application of parsimonious sensing on three unique
datasets. The first main experience studies the employment of active learning in an
environmental sensing network system with air quality parameters. The second ex-
perience depicts an attempt to predict the number of hits for a certain query related
to events happening in Singapore, thus decreasing the number of required queries.
The third and last experiment makes use of a dataset provided by a major taxi
company in Singapore and tries to identify traffic anomalies and later, synthesize
queries that are run through a search engine in order to identify the context of the
anomalies.

We found the application of parsimonious sensing to be successful when im-
plemented in the context of environmental sensing. We have further developed a
system capable of identifying traffic anomalies and returning a number of links that
can potentially explain why they happened. The fully automated system has been
shown to be better than a hybrid system, composed of information retrieved both
automatically and manually. The findings from this dissertation can hopefully shed
some light on the possible applications of parsimonious sensing to diverse contexts.
Keywords. Active Learning, Big Data, Context Sensing, Data Mining, Event
Identification, Parsimonious Sensing
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Symbols and Notation

, an equality which acts as a definition
|K| determinant of K matrix
|y| Euclidean length of vector y
yT the transpose of vector y
∝ proportional to
∼ distributed according to; example: x ∼ N (µ, σ2)
C number of classes in a classification problem
cov(f∗) Gaussian process posterior covariance
D dimension of input space X
D data set: D = {(xi,yi)|i = 1, ..., n}
δpq Kronecker delta, δpq = 1 iff p = q and 0 otherwise
E or Eq(x)[z(x)] expectation; expectation of z(x) when x ∼ q(x)
f(x) or f Gaussian Process (or vector of) latent function values,

f = (f(x1), . . . , f(xn))T

f∗ Gaussian Process (posterior) prediction (random variable)
f̄∗ Gaussian Process posterior mean
GP Gaussian Process: f ∼ GP(m(x), k(x,x′)), the function f is

distributed as a Gaussian Process with mean m(x) and
covariance function k(x,x′)

I or In the identity matrix (of size n)
k(x,x′) covariance (or kernel) functions evaluated at x and x′

K or K (X ,X ) n× n covariance matrix
K∗ or K (X ,X∗) n× n covariance matrix between training and test cases
Ky covariance matrix for the noisy y values
log(z) natural logarithm (base e)
log2(z) logarithm to the base 2
` or `d characteristic length-scale (for input dimension d)
m(x) the mean function of a Gaussian Process
N (x) Short for N (0, I)
n number of training cases
n∗ number of test cases
N dimension of feature space
y|x conditional random variable y given x
σ2
f variance of the noise-free signal
σ2
n noise variance
θ vector of hyperparameters (parameters of the covariance

functions)
X input space and also the index set for the stochastic process
X D × n matrix of the training inputs {xi}ni=1; the design matrix
X∗ matrix of test inputs
xi the ith training input
yi the xith training output
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Chapter 1

Introduction

Mankind has been recording its history since the very beginning of writing. Almost
6,000 years have passed now and the world has never recorded so much information
as it does right now. For the developed world this means more available knowledge
to the general population, but also the problem of information overload, the inability
to confirm the veracity of all facts, among others. For entities who want to analyze
all this information, such as companies, governments, and academics, this is an
excellent opportunity for development, but one highly complex, thanks to the sheer
amount of information. In 2010, Google CEO Eric Schmimdt estimated that, every
two days, we are creating as much information as we did from the dawn of mankind to
2003. Online social networks and the concepts of OpenData and quantified self push
the boundaries on digital storage, communication and computational capabilities.
Besides government and individuals, companies, from small to multi-nationals, have
also been recording every information they can about their clients and products.
This is even more prevalent in a world where sensors are becoming more and more
affordable, and readily available to the majority of people living in any industrialized
nation. From this collection of information often result datasets so large that, right
now, the costs of processing them cannot keep up with their production, these
datasets have been called Big Data. Many times these datasets can be excessively
complex, verbose, or contain a lot of redundant information. These problems are
even worse when the information does not follow a specific structure; this is especially
the case when the dataset is composed mainly of documents written in natural
language, either sourced from a social network or a website such as Wikipedia1.
Even though the field of Natural Language Processing has been improving each
day, the extraction of structured information from this kind of document continues
to be extremely challenging. Many times, unless we are looking for very specific
information from a dataset, we extract meaning from it by using different sampling
methods, the problem with this is that conflicting data is very likely to occur, and the
same is for redundant data. The machine learning community is attempting to solve
these problems by applying what is known as optimal experimental design in the field
of statistics, to the current datasets, resulting in what is now called Active Learning.
This can be particularly interesting in situations in which raw data is available in
large quantities but its labeling expensive, ultimately resulting on the reduction of
costs of experimentation and allowing models to be learned with fewer instances.
This dissertation starts by exploring the state of the art in regression algorithms,

1http://wikipedia.org.
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active learning and information retrieval from the web (see Chapter 2). Chapter
3 explores the application of an active learning methodology to an environmental
sensing problem, where it has shown promising results. Then, Chapter 4 shows
an attempt to develop a predictive system, capable of estimating the number of
results from a search engine, utilizing techniques such as topic modeling. Our final
experiment, described on Chapter 5, explores both the identification of anomalies in
a large spatio-temporal dataset and the automatic search for possible explanations.

12



Chapter 2

State of the Art

In this chapter we will explore superficially some of the techniques used in this thesis.
The first one to be studied is Gaussian Processes, a technique that can be used

for regression analysis. This will enable us to make predictions on the air quality
for the environmental sensing dataset.

The next section focuses on Active Learning, its application in essential for the
thesis and motivates the use of Gaussian Processes against using another regression
analysis technique.

2.1 Gaussian Processes
Regression analysis is a very common statistical technique that enables the study of
the relationship between variables. First described in the nineteenth century by both
Legendre and Gauss, it solved linear problems in theoretical astronomy. Because
regression analysis allows the prediction of output values for different inputs, it can
help with problems where access to different outputs is expensive, by making guesses
based on the previously read data. Unfortunately, without applying transformations
to the input variables, linear regressions can not handle non-linear, chaotic patterns,
commonly found in real world problems.

This section presents a superficial look on Gaussian Processes (GP). Gaussian
Processes are defined by a mean function and a co-variance function, by using a non-
linear co-variance function1, Gaussian Processes can be an approach to non-linear
regressions.

2.1.1 Definitions

A real-valued random variable U is said to be a standard normal random variable
if it has a probability density function fU given by

fU(x) =
1√
2π
e−

x2

2 , ∀x ∈ R , (2.1)

and we write U ∼ N (0, 1). X is said to be a normal random variable if X = σU+m,
with m,σ ∈ R and we write X ∼ N (m,σ2).

Figure 2.1 depicts the probability density function for a univariate Gaussian
distribution.

1In other contexts, commonly named kernel
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Figure 2.1: Probability Density Function of the univariate N (5, 2).

The random vectorX = (X1, X2, . . . , Xn) is called a multivariate Gaussian vector
if ∀u = (u1, u2, . . . , un) ∈ Rn, uXT is a normal random variable. Let us consider
the mean E(X) = (E(X1),E(X2), . . . ,E(Xn)) where E denotes expectation, and Σ
the matrix of covariance, with:

Σij = cov(Xi, Xj) , i, j ∈ 1, . . . , n (2.2)

and cov(Xi, Xj) is the covariance between Xi and Xj:

cov(Xi, Xj) = E[(Xi − E[Xi])(Xj − E[Xj])] . (2.3)

If the random vector X is Gaussian with mean µ = E(X) and covariance matrix
Σ = cov(X) we write X ∼ N (µ,Σ). The probability density function of X is
completely characterized by the parameters µ ∈ Rn and Σ ∈ Rn×n, a symmetric
positive-definite matrix.

Figure 2.2 depicts the probability density function for a multi-variate Gaussian
distribution.

A stochastic process is a collection (Xt, t ∈ T ) of random variables defined over
the same probability space and with values in the same measurable space, where T
is the space of the time of the process.

The stochastic process (Xt, t ∈ T ) is said to be a Gaussian Process (GP) with
mean µ and covariance matrix Σ if ∀n ∈ N, ∀t1, t2, . . . , tn ∈ T , (Xt1 , Xt2 , . . . , Xtn)
is a Gaussian vector over Rn, and we write

X ∼ N (µ,Σ). (2.4)

A GP is, therefore, completely characterized by µ and Σ. GPs can be thought of
being an infinite-dimensional generalization of the multivariate normal distribution
making it a set of random variables indexed by a continuous variable: f(x). Because
the GP is a conditional probabilistic model, while the probability of f given X,
p(f |X) is specified, the distribution on the inputs p(x) is not. It is also worth
noticing that GPs however, are not necessarily stochastic processes, where time
plays a role.

14



Figure 2.2: Probability Density Function of (X1, X2), where both variables have
Gaussian distribution N (0, 0.25).

2.1.2 Covariance Functions

To specify a particular GP prior, the mean µ and covariance matrix Σ of 2.4 need
to be defined. It is very common to use a zero mean for the prior along with a zero
mean normalization of the dataset such as the z-score, using the formula:

zscore =
X − µ
σ

(2.5)

We shall set the prior mean to zero, but the posterior GP p(f |X ) will, most likely,
not have a zero mean process. If a GP is assumed to have zero mean, the choice of
the covariance function K to construct the covariance matrix Σ completely defines
the process’ behavior. Writing 2.3 in vector form, we have:

K(x,x′) = E[(x− E[x])(x′ − E[x′])T ] (2.6)

for different points, x and x′. This covariance function effectively defines how similar
two instances are. By utilizing a non-linear covariance function, we can map a given
space into some other (usually very high dimensional) space, avoiding the explicit
mapping that is needed to get linear learning algorithms to learn non-linear functions
or decision boundaries, in the case of classification.

Provided that the covariance matrices produced are always symmetric and pos-
itive semidefinite we can choose any covariance function we want. For the best
results, a GP should use an appropriately selected covariance. Although there is

15



a variety of covariance functions available to be used, Squared Exponential (SE)
continues to be the most popular when explaining Gaussian processes [7, 53]. This
function, also known as Radial Basis function kernel, provides very smooth sam-
ple functions, infinitely differentiable. It is also stationary2 and isotropic3 and it is
defined by:

cov(f(xi), f(xj)) = k(xi,xj) = a2exp(−||xi − xj||2

2λ2
), (2.7)

where changing the hyperparameter a changes the amplitude of the function, lambda
is the characteristic length-scale4 of the system and ||xi−xj|| the euclidean distance
between xi and xj.

Related work shows the SE to be too smooth to model natural data [27, 49]
and that it can be useful to experiment with different kernel functions. Refer to
Appendix A to a comprehensive list of kernel functions, including definitions and
samples.

2.1.3 Regression

Assuming noise-free observations, to perform regression using Gaussian processes
we use the following formula:

f∗|X∗, X, f ∼ N (K(X∗, X)K(X,X)−1f, (2.8)
K(X∗, X∗)−K(X∗, X)K(X,X)−1K(X,X∗))). (2.9)

It is, however, too optimistic to not account for instrumental noise and other mea-
suring problems in the real world. In order to perform regression with noisy obser-
vations, we assume y to be f(x) + ε and ε to be independent identically distributed
Gaussian noise with covariance σ2

nI. Since for any random D-dimensional variables
X and Y , cov(X + Y ) = cov(X) + cov(Y ) + cov(X, Y ) + cov(Y,X), we have

cov(y) = K(X,X) + σ2
nI, (2.10)

because cov(f(x), ε) = cov(ε, f(x)) = 0 since ε is independent from f(x), ultimately
resulting in:

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), where (2.11)

f̄∗ , E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (2.12)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (2.13)

The result of this application can be seen in figure 2.3.

2The result of a stationary covariance function is defined by the separation x − x′ and not on
the actual position of x and x′ making it invariant to translations

3The result of a isotropic covariance functions is invariable to both translation and rotation
4Set for each input dimension, the characteristic length-scale defines “how far apart" two points

x and x′ have to be for X to change significantly. The characteristic length-scale is also known as
bandwidth parameters

16



Figure 2.3: GP regression.

2.2 Active Learning
Active learning, also called optimal experimental design, aims to maximize a model’s
performance while minimizing the number of necessary labeled instances. A hypoth-
esis is that given the algorithm’s power to choose which points to learn, it will be
able to accomplish the same performance with fewer data, making it computation-
ally more efficient while requiring fewer training data. In the context of this thesis,
the selection of relevant data is one of the critical success factors if we want to reduce
the cost of data collection.

Active Learning can be a powerful technique when applied to a dataset that,
regardless of its size, contains a high percentage of unlabeled instances and these
instances are expensive to label. There are a range of problems sharing this charac-
teristic, one is in the field of Evolutionary Computation [50], where there is extensive
work on reducing it, especially when a human is necessary to subjectively rank the
result of the system: to answer an unformulable question (e.g. “How beautiful is
this picture?"); another example of this is mine prospecting, when each exploration
for analysis costs a company time and money.

With the recent growth in datasets’ size came, the never so popular, big data.
Some people have described big data as information so large and complex that its
mining process can be very difficult, nearly impossible, to achieve through traditional
methods. The application of active learning has been proposed to deal with this
kind of problems before as it makes an effort to select the most informative or
representative instances to the detriment of others considered redundant [22]. This
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dissertation attempts to show the successful application of active learning to the
modeling of a large dataset.

2.2.1 Active Learning Settings

There are three main active learning settings in the literature. Two of them are
described superficially while the last one is described in greater detail as this is the
one used in the dissertation.

Membership Query Synthesis The system can ask for any instance possible
to be generated in the search space. This can lead to unexpected problems as it
can be hard to limit the search space so that only semantically correct instances are
created [4].

Stream-based Selective Sampling or Sequential active learning makes the as-
sumption that getting unlabeled instances is free or inexpensive enough so unlabeled
instances can be sampled and then decided if asked to be labeled or not.

Pool-based Sampling The pool-based active learning cycle can be explained
visually by figure 2.4. It assumes that a large number of unlabeled instances can
be gathered at once with a small set of labeled data. In this setting, a model starts
with a pool of unlabeled instances from which it selects one or more instances to
be labeled by an oracle 5. Then using the resulting training data (i.e. labeled data
returned by the oracle) the system creates a new model of the data. In the next
step, the system selects a new instance or instances to be labeled and added to the
training data, completing the cycle.

Figure 2.4: Pool-based sampling.

2.2.2 Query Strategies

There are at least six main query strategies in active learning [43]:
5An element of the system capable of labeling instances.
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Uncertainty Sampling [30]: the system queries the instances which it is least
certain about;

Query By Committee [47]: the system maintains a committee composed by var-
ious models, each model then votes on the instances label, finally the instance with
most disagreement on predicted labels is queried. This has been used successfully
with regression problems too [9];

Expected Model Change [46]: the system selects the instance that would lead
to the greatest change to the current model if its label is known;

Expected Error Reduction [36]: as the name implies the system queries the
instance more likely to reduce the error of the model;

Variance Reduction [18]: the system minimizes the expectation of a loss func-
tion indirectly by minimizing output variance;

Density Weighted Methods [44]: the system not only looks for instances it is
uncertain about, but also the ones that are similar to many others and, that way,
“representative” of the underlying distributions.

2.2.3 Uncertainty Sampling

Since Gaussian processes formally incorporate uncertainty, the most natural strategy
to use is uncertainty sampling.

Its use is straightforward for probabilistic learning models. For the classification
problem, it might be as simple as querying the instance the classifier is the least
confident about:

x∗LC = arg
x

max 1− PΘ(y′|x), (2.14)

where y′ = arg maxy PΘ(y|x), the label with the highest posterior probability ac-
cording to model Θ. This strategy was used before, for example, in information
extraction tasks for the development of statistical sequence models [12, 31,45].

Margin sampling [41] or Best vs Second Best [25], is also a proposed alterna-
tive. Instead of considering only information about the most probable label, it also
considers the second most probably label:

x∗M = arg
x

minPΘ(y′1|x)− PΘ(y′2|x), (2.15)

where y′1 is the most probably label and y′2 the second most. It works under the
assumption that instances with small margins are more ambiguous, and knowing
their true label would help the model more than it would if just choosing the ones it
is least confident about. However, when there are a large number of possible labels,
using just the top two most leads the model to ignore much of the remaining classes.
Using entropy [48] as an uncertainty measure is also a very popular choice:

x∗H = arg
x

max−
∑
i

PΘ(yi|x) logPΘ(yi|x), (2.16)
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where i ranges over the number of possible labels. In information theory, entropy is
the average amount of information that is conveyed by a message. The idea is that
the less likely an event is to occur, the most informative it is when it happens. For
binary classification, all the above uncertainty measures do the same thing, they
select the one with a class posterior closest to 0.5. However, in some cases, entropy
showed better results in problems where there is a large number of labels, such as
object recognition [21] and image classification [25], and more complex structures
such as sequences [44] and trees [23].

Figure 2.5 illustrates how these different uncertainty measures change the query
behavior. In all of the triangles, the most informative instance is located in the
center where the posterior label distribution is equal for all labels, while the least
informative instances are at the corners, where the classifier is completely certain of
their classification.

(a) Least Confident. (b) Margin. (c) Entropy.

Figure 2.5: Different query behavior in a three-label classification problem [43].

It is worth noticing that because entropy is influenced by the probability values
of unimportant classes, it can also have its drawbacks in comparison with margin
and least confident sampling. For example, entropy does not favor instances where
the classifier is confused only about two classes. Figure 2.6 illustrates an example
in which the classifier is very confused about which of two different labels should
be assigned; while in the second, it is much more confident about one specific label,
even though the entropy measure is higher.

Multiple authors have compared these different uncertainty measures, producing
mixing results [25,28,42,44]. This suggests that the choice of the uncertainty measure
is application dependent, much like the no free lunch theorem for classifier problems.

2.3 Information Retrieval and Event Identification
from the Web

Search engines use crawlers to explore the web, opening link after link and saving
everything, from text to images, from hyperlinks to mobile capability from every
page visited. The creation of Google and other search engines, such as Bing and
Yahoo! changed the way how most people look for information. With all this
information available at our fingertips, scientists are trying to use the application
of search engines in less traditional ways. People are now open to the idea of
using the Web as a Corpus for linguistic research. It has already been used for the
most different analysis, from specific tasks such as finding n-gram frequencies [35]
to detection of plagiarism [51] and even greater tasks such as creating a Catalan
corpus from the Web [26].
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Figure 2.6: In a 10 class problem, entropy can be a poor estimate of uncertainty [25].

2.3.1 Query limitations

One must keep in mind its unique characteristics while using a search engine for
information retrieval. While people are trying to make search engines more user-
friendly, this results in some added complexity and, sometimes, limitations for the
user.

One example of this is when Google and other search engines try to make use
of context expecting to provide the user better quality results. An example of this
can be observed when searching for health, care and health care. While searching
for care only, most of the results are pages where the word is used as a verb, while
in health care most of the results would show the usage of care as a noun. Worse
yet, the search engine can also search for the queries together as one single entity,
even in cases where it is just by chance that these words got in this specific order.
Furthermore, many search engines remove punctuation which could result in the
incorrect junction of these two words as just one entity, when, in fact, they are part
of two different sentences [35].

All these features can cause problems while automatically generating queries to
search on any search engine.

2.3.2 Query Expansion

Intelligent search engines such as Google, Bing or Yahoo! tend to find synonyms
of words, different morphological forms of words, or different date formats. This is
called query expansion.

In some cases, this can be advantageous to the user while in others it can return
unusual results, especially when a day is converted to a time of the day. In this case
there can be incorrect conversions between date formats, e.g. 12-08-2012 can be
converted to a query that looks for a specific time such as 12:08 during 2012. This
can be especially problematic if these results are shown in the first ten documents
or usually, the first page of hits, since 62% of users do not look past these [24].
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2.3.3 Number of Results

Search engines are nowadays too complex to run on a single machine and requests are
served by multiple servers. Not only that, but search engines need to be constantly
updating themselves for new information or removal of websites that no longer exist.
Even the indexes for the databases are spread across a distributed system [8]. This
creates a problem known as search engine “dancing”: if two machines are queried at
the exact same time and are not synchronized between each other, the number of
search results will vary. Furthermore, most of these search engines do not return the
exact number of hits, but only an estimate, unless the number is relatively small,
which can be a problem while performing analysis over these results.

2.3.4 Event Identification

Social media sites, such as Twitter, Facebook and Youtube are just some of the web-
sites where people choose to share their life experiences to the world. From birthday
parties to concerts by a popular music band, there is a wide variety and range of
event types that can be found using these websites. News on these websites can
spread even prior to the traditional news media [29, 37]. In a paper that analysis a
stream of tweets from Europe during a European Football Championship, the au-
thors compare users that post messages close to an event to human sensors, capable
of describing an event [1].

The creation of this systems can be useful for different entities, such as a gov-
erment, interested in keeping public safety with crowd control, and traffic manage-
ment; event organizers, so the can benchmark the effect of their marketing campaigns
used to attract people or the origin of their public [11].

Most of these efforts have focused on using social media in general, and Twitter
in particular [5,37,40,52]. Twitter has the advantage of the possibility to access the
data as a stream, receiving information as it is produced and this has been applied
in systems capable of identifying events happening in real time.

However, using Twitter and other social media as sources has some challenges
associated, one is the immense scale of data, while the other is the heterogeneity of
information present, which has been divided before in 9 different categories, from
self-promotion to questions to followers, none of which related specifically to events
[34].

Usually, to cope with this problem these systems cluster related information and
then classify these clusters into event related and non-event related groups [6].

A more general approach used a large publicly available web corpus, ClueWeb12,
and a set of 217,000 unique events to identify pages that contained information about
these events. For this, documents were scored according to the page’s likelihood
of discussing an event, taking a naive-Bayes approach and using a bag of words,
assuming that all terms are independent, estimating the probability of a whole
document by the probability of all its component terms [17].

Even identification has also been proposed using Call Detail Records, are logs of
user transactions with a mobile service provider, to identify places where the density
of people present is above normal. In a specific case, a system capable of identifying
events in the city of Mons in Belgium was used by the police and organiser to monitor
the events during the opening ceremony of Mons as the Europen City of Culture in
2015 [11].
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Chapter 3

Parsimonious Sensing

When we are retrieving information from the environment were are most likely
engaged in some kind of context sensing application. Called key to the future de-
velopment of smart environments and applications [16], context sensing is defined
as the collection, transformation, interpretation, provision and delivery of context
information [2,13]. Frequently there is a strong connection between context sensing
and ubiquitous computing [20,39]. The most recently added tool in the field of con-
text sensing and ubiquitous computing is, without a doubt, the smartphone. After
being accepted by the great majority of the public, smartphones are now packed with
features such as: various sensors, unprecedented cpu power, localization capabilities
(GPS), good battery lifetime and access to the internet, making them an affordable
alternative to more expensive wireless sensors. These applications however are lim-
ited to the available sensors present on the phone, and focus mainly on providing
context to applications present on the smartphone itself [10,14,38]. For other appli-
cations such as air quality monitoring or industrial system’s management, a more
traditional approach is still the norm. Air quality, health, and ultimately, quality of
life, are directly connected. With the rapid growth of global urban populations, the
concern for global health is increasing too. The World Health Organization lists air
pollution as a major environmental risk to health, as it has a direct relationship to
the incidence of diseases such as lung cancer, chronic and acute respiratory diseases
(e.g. asthma), heart diseases, and others. Even though the environment remains at
the forefront of scientific interest, the need to better understand the patterns and
processes that characterize it, continues to exist. Information plays an important
role, since it can have a definitive impact on the quality of environmental decisions.
This chapter will focus on the problem of collecting that information from the envi-
ronment, using limited resources. Fortunately, technological developments in recent
years brought access to affordable Internet-enabled sensors which motivated the de-
velopment of new environmental sensing projects worldwide. At least two academic
projects measure air quality parameters. That is the case for the Citisense [3], a net-
work of mobile pollution sensors developed by the University of California San Diego
and for Clairity1, a network of air quality sensors spread around the Massachusetts
Institute of Technology campus, in Cambridge, Massachusetts.

1urlhttp://clairity.mit.edu.
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3.1 Dataset
After evaluating different datasets, we finally chose to use Clairity’s dataset, for two
main reasons: data availability and fixed sensor placement, which has been for years
the reality of environmental sensing. The dataset is split across different files, one
for each sensor. Each of these files is composed by a time stamp and a column for
each air quality variable: CO, NO, NO2, O3, fine particles and big particles.

3.2 Exploratory Analysis and Data Preprocessing
This section explores the various steps of data exploration for this dataset. In it
we present a broad study over the dataset variables and different locations, we also
attempt to explain different correlations found while doing this analysis.

3.2.1 Air Quality Variables

A first glimpse of the dataset showed unexpected column names. Even though
the columns for small and big particles had a simple, direct correspondence with
columns named “small particles” and “big particles”, we could not establish the same
connection for the other concentration levels like CO and NO. Instead, the columns
were named “dylos bin x” where x would go from 0 to 4. We could also not find
anything about the used labels for each column on the project’s documentation or
web page.

Before stepping into a further analysis, we wanted to see how problematic this
could be. A very high correlation between variables could mean that we would not
need to study all the variables to test our models’ capabilities.

To confirm that the variables had a strong relationship between each others the
following steps were applied to a 1,000 observations sample:

• Normalize each column using the feature scaling formula, see Formula 3.1;

• Plot a multivariate plot, see Figure 3.1;

• Plot their correlations, see Figure 3.2;

• Analyze their correlation, see Table 3.1.

X ′ =
X −Xmin

Xmax −Xmin

(3.1)

big particles small particles dylos 1 dylos 2 dylos 3 dylos 4
big particles 1.000 0.868 0.823 0.896 0.952 1.000
small particles 0.868 1.000 0.993 0.960 0.917 0.868

dylos 1 0.823 0.993 1.000 0.925 0.872 0.823
dylos 2 0.896 0.960 0.925 1.000 0.943 0.896
dylos 3 0.952 0.917 0.872 0.943 1.000 0.952
dylos 4 1.000 0.868 0.823 0.896 0.952 1.000

Table 3.1: Correlation matrix between variables.
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Figure 3.1: Multivariate plot.

Figure 3.2: Visualization of the correlation matrix between variables.
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According to an environmental modeling adviser, Dr. Lynette Cheah, ideally, an
environmental study should focus on the CO2 concentration, but, given there is a
mean of 0.92 for all correlations, for the purpose of this analysis, using fine particles
would be an appropriate choice to use as an example.

3.2.2 Missing Data and Sampling Times

Having chosen to study the concentration of fine particles, the next step was to plot
information from different nodes. From plots like these we could visually conclude
that there were some missing values, and high correlation between some nodes.
Figure 3.3 shows the number of small Particles per 0.01ft3 during the month of
May for two different sensors which are highly correlated.

Figure 3.3: Small particles per day, showing two high correlated sensors.

Figure 3.4 shows a sensor that is highly correlated with the ones shown on the
previous Figure 3.3, but, because there is absolutely no data after the thirteenth of
May, it might not seem so.

Figure 3.4: Small particles per day, showing a sensor location with incomplete data.

Most of the Clairity project is open-source and can be found online2. After a
quick analysis of the available code, I realized some sensors had their name changed
but not their identifier. If this was the case, then, when downloading the data for a
specific place, we could actually be unknowingly downloading data for two different
places thinking it was only one, the last to be named.

When contacted about the missing data and the sensor ID’s problem, the leader
of the project, Eben Cross, confirmed these problems and stated that the network

2clairity.mit.edu.
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was still being evaluated and only data from April to July should be considered
valid. Cross also said that the change of the sensor’s placement was not public,
but everything was recorded and that this information should be released little after
this contact. Both of these problems had a negative impact in our analysis, because,
since the first records are dated from 24th of April onward, this left us with only
three months for our analysis: May, June, and July. To this day, no information has
been published on their website.

There was, however, another problem: missing data for the months in which the
sensors have not been moved out of place. For some reason, some of these sensors
still had no readings at specific times during this period. Furthermore, because this
missing data was irregular, it caused the time series to be unevenly spaced. It is,
although, very common for time series not to have constant spacing of observation
times. This happens in the stock market, geology, climatology and even in clinical
trials, where patients can not be observed at regular time intervals. Ideally, this kind
of time series are analyzed unchanged, however, most algorithms favor the analysis
of evenly spaced time series for various reasons, as linear algebra can be applied
in an efficient way in these cases. Because this is a common problem , there are
some well-known solutions for the problem of converting an unevenly spaced time
series to a regularly spaced time series. One way to do so is by using some form of
interpolation but, when the space between observation is highly irregular, which is
Clairity’s case, the introduction of errors is very likely to occur. Another method
tries to solve this, reducing the resolution of the time variable by applying the mean
function in regular spaced intervals. Having decided in favor of this, different values
for the intervals were evaluated showing a trade-off between the correlation mean
between nodes and both the number of incomplete3 and complete observations4.

By plotting the evolution of these values, we could identify, the periods with
good semantic value and where the information loss is not yet a problem. This can
be seen in Figure 3.5 and Table 3.2.

Sampling time in Minutes Correlations mean between nodes
1 0.701
5 0.719
10 0.733
15 0.739
20 0.745
30 0.750
45 0.764
60 0.767
90 0.771
120 0.775

Table 3.2: Correlation mean and sampling times.

3Observations where data exists only for some columns, in this case, for every node.
4Observations where data exists for every column.
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Figure 3.5: Correlation mean and sampling times.

We can see that, as expected, the longer the sampling time was, the more similar
nodes were between each others, likely because the longer the sampling times are, the
less noisy and sensitive to short changes the data tends to be. Weather conditions
also tend to impact outdoor locations immediately, while indoor locations, due to
their typical weather proofing tend to be less susceptible. We can also take from this
analysis that there is a very strong correlation mean (r > 0.7) between all nodes,
verifying our suspicions from the preliminary analysis.

Because the correlation mean varies very little with these relatively small sam-
pling times, the next step was to analyze how the number of complete observations
is related with the sampling time. Similarly to the elbow method5, we could use
Figure 3.6 to help us selecting the right sampling time for our analysis, which values
can be seen in Table 3.3.

Sampling Time in Minutes Complete observations
1 868,606
5 178,558
10 89,476
15 59,727
20 44,854
30 29,965
45 20,027
60 15,048
90 10,089
120 7,592

Table 3.3: Complete observations and sampling times.

5Commonly used method for determining a good number of clusters in a dataset by plotting
the percentage of variance against the number of clusters and selecting the number of cluster from
which the marginal gain drops onward.
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Figure 3.6: Complete observations and sampling times.

A 30 minutes sampling time proved to be the right choice, because:

• Each day would be divided with very little effort into 48 sections, one for each
half-hour;

• It is a reasonable resolution for this application;

• It reduced the number of complete observations to 3% of the original which
was critical to facilitate future processing; 6

• It reduced the probability of instrumental error.

With 30 minutes sampling, each node has a range of observations between 139
and 3,875, far from the 5,808 expected for the range between the beginning of April
and end of July and 4,656 from May to July. Table 3.4 summarizes this information
while Figure 3.7 shows this information visually.

6Gaussian Processes complexity is O(N3), because of the inversion of an N ×N matrix.
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Node Number of observations (30 min sampling)
Expected (April to July) 5,808
Expected (May to July) 4,656
West_Parking_Garage 3,875

Stratton_Student_Center 3,604
Cafe_4 3,572

Next_House_Courtyard 3,489
MIT_Medical_Parking 3,434

Briggs_Field 3,317
Parsons_Laboratory 2,980

Burton_Conner 2,910
Next_House_Dining 2,652

Green_Building 2,394
Building_16 1,936
Mass_Ave 1,903

Walker_Memorial 1,681
MIT_Museum 1,407

Green_Building_Roof 1,245
Killian_Court 1,167

Stata_Loading_Dock 998
Media_Lab 792
Sloan_School 312
Building_1 139

Table 3.4: Number of observations for each node (30 min sampling).

Figure 3.7: Number of observations (30 minutes sampling).
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3.2.3 Relationship Between Different Locations

The following step was to compare the values of each sensor location to each other.
Again, missing data created some problems, as some analysis did not have enough
statistical significance to be considered valid.

By calculating the correlation matrix we can see how much the behavior of one
node is similar to another at any given time. A simple visualization of these values
can be seen in Figure 3.8.

Figure 3.8: Correlations with p-values where not-significant.

Using the correlation value as the inverse of the distance between each node, we
can get a type of similarity distance between nodes. Multi-dimensional scaling can
use distances between instances to create visualizations that try to respect these
distances in a two-dimensional space. The image that results from using Multi-
dimensional scaling to visualize the correlation values depicts how clustered different
sensors’ behaviors tend to be. Our hypothesis was that, if there are indoor and
outdoor sensors, it is expected for, at least, two clusters to be clearly visible, and
other characteristics should also be visible. The resulting plot can be seen in Figure
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3.9.

Figure 3.9: Multidimensional scaling.

Auto-correlations

The next step was to analyze the auto-correlations for every node. Because the auto-
correlation measures the correlation between an original time series and a delayed
version of itself, it allows us to study how cyclic the data is. Figure 3.10 depicts an
example of this applied to a sin function and Figure 3.11 shows the application of
this to the values read by one of the sensors7.

What we can understand from this is that there is a weekly cyclic behavior,
with high correlation every multiple of 7 days. Unfortunately, there is not enough
significant data to perform the auto-correlation analysis monthly even though it is
very likely to be a strong one. It is worth remembering the auto-correlation value

7The blue lines indicate the point of statistical significance - Values between these lines and
zero are not statistically significant and those above and bellow are significant.
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Figure 3.10: Auto-correlation example.

Figure 3.11: Auto-correlation for the sensor located at Stratton Student Center.
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will always decrease in time because the data is finite and with each increase in lag,
the number of observations decreases.

Cross-correlations

The cross-correlation between different nodes was also analyzed as this could give
insights about any lag shared between the nodes. This works in a very similar way
to the auto-correlation analysis but, instead of studying the correlation between one
time series and its own delayed version, it works by comparing one time series to a
delayed version of a second one. Figure 3.12 shows an example of this. As expected,
knowing the nodes are highly correlated between each other and themselves have a
strong weekly auto-correlation, the cross-correlation graph confirms that the nodes
are also highly correlated between each others, even if separated by a matter of
some weeks. However, if we plot the vertical lines for each week, there seems to be
a decreasing delay between the correlations peaks, which will be discussed later.

Figure 3.12: Cross-correlation between two nodes.

Eliminated the nodes with insufficient data, the next step was to study their au-
tocorrelations to investigate the existence of cyclic behaviors. This kind of behaviors
also indicates the possibility that cyclic features, such as the day of the week, which
would contribute to the prediction model. A strong weekly correlation was found,
telling us it is very likely for the values to behave in a similar way if the time of the
week is the same; intuitively, we can suspect this is due to the pattern drawn each
week-end with fewer people on campus.

3.2.4 Descriptive Statistics

Descriptive statistics was also used to summarize each variable distribution, for
every node. The first step was to calculate the measures of central tendency: mean,
median and mode. The second step was to analyze their five number summary,

34



a descriptive statistic that provides basic, but fundamental information about the
data. It consists of:

• Sample minimum;

• Lower quartile, Q1;

• Median, Q2;

• Upper quartile, Q3;

• Sample maximum.

. This statistic is the precursor of many L-estimators 8. It is also the core for regular
box plots, which are nothing more than a visualization of these values. Histograms
were used to better apprehend the distribution of data.

Figure 3.13: Box plots.

From the analysis of Figure 3.13 we can see that the data has many outliers,
even though they can be useful in some cases, they can be very hard to model so
we choose to remove the top 95 percentile. The box plot for both values, with and
without the removal of the outliers can be seen in Figure 3.14.

The final step was to group the values for each half-hour and day of the week
and calculate their mean. This way we would know what was the mean behavior
for the air quality in any given day of the week or any half-hour for any day. This
can be seen in Figure 3.14.

These results were different than the expected. It would be reasonable to think
the peaks would appear at very similar times, especially for weekdays, but this was
not the case. There seem to be two different patterns spread across the different
sensors. One that showed lower values for Wednesdays and Thursdays and other

8L-statistic estimators are linear combinations of order statistics, very useful in robust statistics
since they are resistant to outliers.

35



Figure 3.14: Means for two different nodes for different hours and days of the week.

that showed lower values for Saturdays, Sundays, and Mondays. Even though this
could correspond to the truth, there was some suspicion about it. After contacting
another member of the project, we realized that the sensors used by MIT to develop
this network, were made in-house, using readily available parts, one of which was a
Raspberry Pi, an affordable, small sized computer that cuts its costs by removing
some parts such as the Real-Time Clock, commonly found in computer boards.
Because of this, the Raspberry PI needs to use an NTP9 server to update its clock
frequently, based on locale settings, and worse yet, it resets itself if it loses current
for a short period of time. We suspect this was a common problem in this dataset
as, before, we observed some cross-correlation deviations from the 7 days period,
which would not be expected if the clocks were correctly synchronized. We also
think that the locale settings are not set up as the same for each sensor, giving a
possible justification on why some sensors showed peak values after dinner time and
through the night. We expect however that the GP is capable of understanding
these problems, provided it has been given enough training data.

3.3 Prediction Model
This section explores the development of the prediction models applied to the Clair-
ity dataset. It starts with the study of different hyperparameters and covariance
functions and then jumps into testing the application of active learning using GP’s
to this dataset. The first application has the purpose to confirm or refute that active
learning can provide good results, it does not, however, simulate a realistic applica-
tion. The second application simulates a real-life application of the model while the
third improves on it.

9Network Time Protocol.
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3.3.1 First Model Application

The first experiment performed was to use Gaussian Processes regression to learn
and predict just one node. This would allowed us to choose the best covariance
function as well as its hyperparameters. To evaluate the hyperparameters, a cross-
validation method called repeated random sub-sampling validation was used. This
method splits the dataset into training and validation data, in our case 80% and
20% of the data, respectively; then the model is fitted with this training data and
evaluated against the validation set. This is done multiple times, in our case, 10
times, and the results are then averaged over the splits. The exploration of the
hyperparameter space was then done manually.

The next step was to test the active learning methodology using pool-based
uncertainty sampling. To accomplish this, measurements from just one node were
selected. The system starts with a sample of 100 instances and then, using the
max uncertainty about its prediction, it chooses the next instance to be queried.
This application has little value in the real world, however, it serves as a good toy
dataset; better than any simple analytic function would, because it deal with real
data. In order to evaluate the system’s performance, we tested it 50 times against
a system that would select any random reading to be learned next. To assure a
fairer comparison, the random seeds at the beginning of each run were the same
for both the active system and the control setup. The system uses Mean Squared
Error(MSE) to measure its performance as follows:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2, (3.2)

where Ŷi is a vector of n predictions and Yi the vector of n true values. Figure 3.15
illustrates the results. Horizontal lines connect the means of the MSE values, while
the vertical lines are a representation of the their standard deviation.

Figure 3.15: Active Learning Toy Dataset.
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The output variable used to benchmark the system, small particles, is scaled
from 0 to 1, hence such small numbers for the MSE. It is also worth noticing that
the standard deviation metric assumes a symmetrical distribution of the values,
responsible for the illusion that the random system can be much better at the
intermediate state.

3.3.2 Second Model Application

Now that it has been shown that Gaussian Process’s uncertainty could be used
to develop an active learning system, we could continue ,with some confidence, to
simulate the application of this parsimonious sensing method to a real problem.

We developed an experiment that would simulate a real-life example. In this
experiment we assume there is the need to evaluate the air quality around the MIT
campus, however, we added some restrictions and assumptions:

Limited number of sensors: Lets assume the management only authorized a
single sensor for long term use, either because it was too expensive financially or
there was a very high maintenance costs associated to keeping various sensors;

Availability of each sensor: We also assume that we know when a sensor is
going to be able to read more than 50% of the time;

Learning phase: There is a learning phase, where various sensors would be dis-
tributed around the campus and collect information for every sensor. This would
only happen on the first day;

Portable sensors : The sensor can be moved between 7 different places.
With these restrictions, the problem was for the following days, to have a strategy

to choose which sensor location to use.
A naive approach, would be to randomly select the sensor’s location for the next

day, while another one could be to number the sensor’s available placements and
cycle through them, without repeating one until everyone was used the same number
of times. Even though these seem very viable solutions, our objective was to test if
we can use active learning to select which one would be the best place to move the
sensor to by selecting the place we are less certain about.

We finally tested three different selection methods, on all of them, only places
where the sensor was available more than 50% of the time could be selected:

• The first method, is the random selection of the next place to be explored.
This method does not guarantee that the system will not choose repeatedly
the sensor placement every day, however, the odds of this happening, even
assuming each place is available for every day (with more than 50% of the
data) are extremely low;

• The second method, assumes that we always know, not only if that place is
available for use the next day, but also how much of its data it is available,
i.e. the percentage of the data available for that day. Using this information
the system would choose to maximize the known data, selecting the placement
that would retrieve more information for the following day;
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• The last method, uses active learning to select the next sensor placement.
To do this, the system, using the known data to learn the GP’s, would try
to predict the sensor values and their confidence for the next day. Then,
these predictions would be grouped by sensor placement and the mean of
the confidence for each group is calculated. Finally, the system selects the
placement where the confidence is lower and is available to be explored on the
following day.

To evaluate this model, the system would predict the values for the following
day and compare them against the observed values. Finally these results would be
plotted, as can be seen in the last section of this chapter.

The Matlab library that we used, GPML, has a function called minimize which
serves to train the hyper-parameters, minimizing the negative log marginal likeli-
hood. We have found this search to be extremely local for our application and
we wanted to find a way of automatically perform a broader search over the search
space. While reading about different algorithms for Hyper-Parameter Optimization,
we found about Trees of Parzen Estimators and, soon, a library, named hyper-opt,
that implemented them, in Python. To use this library we simply needed to define
the search space and the fitness function. Our search space was defined by the dif-
ferent likelihoods, inferences, covariance functions and their arguments, while our
fitness function was the performance of the active learning system, that measured,
using the RMSE, would represent the quality of the prediction for the last day.
Having defined all of these, we would then try to find the best hyper-parameters
for a short period, 4 days of the dataset. These would serve as a global search for
hyperparameters that would then be used at the system initialization. The function
minimize would then be used each time new information was added to the system,
in our case each time the system gathered information for one more day. A sample
code for using the hyper-opt library can be seen in Code 3.1.

Listing 3.1: Definition of Hyper-parameters for Hyper-opt
space = hp . cho i c e ( ’ model_likelyhood ’ , [

{
’ l i k e l yhood ’ : ’ l ikGauss ’ ,
’ i n f e r e n c e ’ : hp . cho i c e ( ’ g_in ference ’ , [ ’ in fExact ’ , ’ i n fLap l a c e ’ ] ) ,
’ e l l ’ : hp . uniform ( ’ g_el l ’ , 0 . 01 , 2 ) ,
’ covFunc ’ : hp . cho i c e ( ’ g_convFunc ’ , [

{
’ covFunc ’ : ’ covMaterniso ’ ,
’ covArg ’ : hp . cho i c e ( ’g_d ’ , [ 1 , 3 , 5 ] )

} ,
{

’ covFunc ’ : ’ covSEiso ’ ,
}

] ) ,
’ s f ’ : hp . uniform ( ’ g_sf ’ , 0 . 01 , 2 ) ,
’ sn ’ : hp . uniform ( ’ g_sn ’ , 0 . 01 , 2)

} ] )
bes t = fmin ( test_args ,

space=space ,
a lgo=tpe . suggest ,
max_evals=300 ,
t r i a l s=t r i a l s )
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Figure 3.16: Evolution of RMSE when evaluated against the next day prediction.

As we can see from the results shown in Figure 3.16, active learning is superior
to both random learning and learning the most complete node, but not every time
and not by very much. The inconsistency of the results for each day is also very
visible with high local extremes on the first days and some other extreme variations
on the tenth and fifteenth days. At this point, we think that active learning has
more potential then it seems to have in this example, and using the following day
to evaluate the algorithm, may not be the best option since there are big variations
of behavior and sensor availability from one day to the next.

We also observe that consistently selecting the sensor from which we have more
data can actually be detrimental to the system. If there is a sensor with no missing
data, it will always be selected, and even though the amount of training data avail-
able to the system is greater, its quality is not. Furthermore, the system is evaluated
against all sensor locations, so if there is a sensor that is very incomplete, the active
learning system will try to learn from it (if available more than 50% of the time for
that specific day) since it is less certain about it. On the other hand, selecting the
most complete sensor will always ignore this one, leading to worse end results.

3.3.3 Third Model Application

The third model application was very similar to the previous one, and, if one analyzes
its results, its motivation can be easily understood. The first reason was that not
every day had sensor information for every location, so sometimes we would be just
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benchmarking the system against a limited dataset. Another reason was that some
days were just more unusual than others, which would be difficult for the model to
predict, resulting in very high error values.

To solve this evaluation problem, 5 days, in the future, where every location was
represented with at least more than 50% of the available data, were selected, and
the system was ran against it. The system still used its prediction of the following
day to select which node to explore, the only difference is that now, it is evaluated
against 5 unknown days.

For this experiment, we used only the top five most complete sensor locations
for one month and five days. Again, the first day was used as learning phase, where
sensor information would be gathered from all the available sensors. This was done
29 times, with the system trying to predict those 5 days each passing day.

Figure 3.17: Evolution of RMSE when evaluated against the fixed set of days.

The improvement on the evolution for the Root Mean Squared Error is visible
in Figure 3.17. After changing the evaluation function, not to minimize the RMSE
for the last of four initial days, but to minimize the RMSE for 5 different days in
the future, the evaluation became more stable resulting in an immediate and drastic
impact on the system performance, from the first day, decreasing from about 240
to 73. The evaluation curve is also a lot smoother now. The superiority of the
active learning system is visible throughout the graphic, after the fourth day, and
we can affirm with 95% confidence to be better against a random selection of nodes.
The effect of selecting the most complete nodes is also visible from the third day
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onwards, where the RMSE begins by getting worse than the random learning mean
from which the system can not recover until the sixteenth day.

3.3.4 Discussion and Improvements

The most notable conclusions are that Active Learning proved to be superior to other
methods in an environmental sensing application; and that, as we initially expected,
choosing the most complete node does not result in better results than choosing a
node randomly. We also think that these two last models could be improved even
further by exploring different ways of evaluating the system’s performance, such as
leave one out. In that case we would run each setup the same number of times as
the number of days, and, each time, remove one day from the training data and
use it as the evaluation, calculating the mean results after all the tests. These tests
were not ran because Gaussian Processes demand very high computational power
and each would take about 30 times more processing time.

We also thought of adding a very simple memory to each system, this memory
would prevent the system to explore the same sensor placement twice in a row. The
advantages are obvious for the random selection, as it would make impossible for the
system to choose, for example, the same sensor everyday, which, although unlikely, is
possible. As for choosing the most complete sensor, it would also prevent problems
when a predictable node has consistently a high percentage of available data. The
effect could be even more drastic for the active learning method. The problem of
applying the GP’s blindingly in this problem, is that they can choose to learn from
the worst nodes, the ones that give very noisy readings, have low routine behaviors,
or simply little information for all days; in this case, selecting the most difficult
sensor placement to predict would actually result in worse performance overall.
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Chapter 4

Event Popularity Prediction

The goal of this experiment was to test the application of the Parsimonious Sensing
Methodology to predict the popularity of an event, based on the number of hits
returned by a search engine. By doing this, our objective was to predict with some
success how popular an event would be based on its characteristics, reducing the
number of searches that was needed to do to a minimum.

Before jumping to the main question, one should focus on other, simpler, ques-
tions like:

• How hard/easy is it to predict search engine hits?

• Are topics enough for this task?

• Does the number of topics have an effect on the quality of the predictions?

• Would it be worth to create a model for each query size? I.e. one model for
queries with two words, three words and so on?

The first question has already been answered before in this document: predicting
the number of hits can be very complex. We expected this experiment to be a
challenge as many, if not all, of the papers referenced in Section 2.3, have shown
how hard this problem can be to tackle. From restrictions to the possible queries
that can be done to very unpredictable behavior, varying from search engine to
search engine; many were the problems faced in this chapter. However, we still
wanted to try an experiment with the objective of predicting the number of hits for
a specific query, our reasoning was that, instead of using single words to analyze
the queries, we would try to limit the dimensionality of the problem by using topic
modeling. Furthermore, we would limit the application to a very specific domain:
events such as music concerts, expositions, workshops, etc.

The last three questions are answered throughout the development of the exper-
iments described in this chapter.

4.1 Dataset
For this experience, a dataset was designed from scratch. We started with a list of
4,829 events that happened in Singapore. We then defined the format of a query as
the event name plus “Singapore”. This would result in the same number of queries
to be run, which would in turn result in the number of hits on Bing search engine.
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Query Number of Hits Processed Query Number of Words
We Are Like This Only! 214,000,000 [like] 1
Digital Photography I 8,390,000 [digit, photographi] 2

The Little Red Hen Singapore 33,000,000 [littl, red, hen] 3
Singapore Toy, Game & Comic Convention 3,280,000 [toy, game, comic, convent] 4

Dividends Don’t Lie Singapore 30,900 [dividend, lie] 2

Table 4.1: Dataset with number of hits and number of words for each query.

To these two rows, query and number of hits, we added another for the number
of words of each query. To calculate the number of words we removed stop words1,
as this is common practice in information retrieval systems [32, 33]. The remaining
words were then stemmed using a lemmatisation algorithm and added to the dataset
in a new column.

Table 4.1 shows the head2 of the file with one added column for the words that
were not processed.

4.2 Data Preprocessing
The next step was to apply topic modeling algorithms to the queries, more specif-
ically to the filtered and stemmed words. We experimented with both LSI3 and
LDA4 with the number of topics ranging from 2 to 99.

By defining the number of topics when we apply this algorithm, we get the topic
distribution for each one. In other words, for example, if we have 3 topics, for each
query, both of these algorithms will return three numbers. Summed up, these are
equal to one and each of these numbers will correspond to how much a query belongs
to a specific topic.

The main purpose of this was to extract semantic meaning from the queries and
try to understand if words associated to the same topics, and so, associated between
each other, could have similar search results. For example, if the word live was
strongly associated with the word music our hypothesis was that they will have
strong correlation in terms of search results, and this would be enough to make
some kind of predictions. This would work, in a sense, as feature reduction, and we
expected this to help the prediction model.

Our final, preprocessed dataset was then composed of 4,829 queries and their
corresponding topic distributions, a sample, for three topics can be seen in Table
4.2.

Query # of Hits Bag of Words Topic Distributions Stemmed Words # of Words
We Are Like This Only! 214,000,000 (0, 1) [0.167, 0.189, 0.643] [like] 1
Digital Photography I 8,390,000 (1, 1), (2, 1) [0.125, 0.755, 0.120] [digit, photographi] 2
The Little Red Hen 33,000,000 (3, 1), (4, 1), (5, 1) [0.825, 0.087, 0.088] [littl, red, hen] 3
Singapore Toy, Game & Comic Convention 3,280,000 (10, 1), (11, 1), (12, 1), (13, 1) [0.068, 0.862, 0.069] [toy, game, comic, convent] 4
Dividends Don’t Lie 30,900 (16, 1), (17, 1) [0.724, 0.118, 0.157] [dividend, lie] 2

Table 4.2: Dataset with topic distribution and bag of words added, for each query.

1We used Python’s Natural Language Toolkit 127 stopwords list. If this proved to be insufficient,
we were ready to use the Information Retrieval Group’s 319 stopword list.

2The first 5 rows.
3Latent Semantic Indexing.
4Latent Dirichlet Allocation
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4.3 Exploratory data analysis
We started the data exploration by studying the number of results for each query
length. We defined the query length as being the number of words, not the number
of characters, which can be seen in the previously presented tables, including 4.2.

To do this, we group the queries by length size and plotted both mean and
median (Figure 4.1 this is an example where the difference between the two shows
with very different results, especially for the query length of one.

Figure 4.1: Comparison between the two averages.

This result lead us to believe there was a peculiar distribution on the number of
hits, and, after removing values above the 90% percentile, we plotted a boxplot to
help us understand better the results, which can be seen in Figure 4.2.

Figure 4.2: Boxplot for the number of hits, grouped by query length.

From these results we can conclude that the distribution is not normal, in fact,
we can observe from Figure 4.3 that the distribution of hits for the number of results
for 8 word queries is one long-tailed distribution.
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Figure 4.3: Histogram and approximation of the probability density, distribution for
the number of results, 8 word queries.

Regression algorithms, in particular Gaussian Processes, can suffer from this
kind of distributions without specific data treatment such as output transformation,
e.g. the application of a function function such as log and its inverse to the output
of the system; or by using a specific kernel that takes this distribution into account.

We also wanted to see what was the effect of applying LSI and LDA for queries of
different sizes. We found this results to be very peculiar, and it would be interesting
to study this phenomenon in greater detail.

Figure 4.4: Distribution for the number of results, for 8 words queries.

A pattern starts to emerge when LSI is applied to the queries. This pattern
becomes even more evident when LDA is applied to the data as can be seen in
Figures 4.5 and 4.4. This pattern shows a tendency for the creation of “similarity
rings” which are the same number as the number of words of the queries. This may
direct us to believe that when only two words can vary, a small variation on either
one would have a visible impact on the query proximity with other queries. The
number of topics also had a visible impact on the proximity between queries. It
would seem like the feature space would be divided between the number of topics,
so if we used 8 topics, queries would most likely align in lines that would have one of
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eight angles in relationship to the center of the image. When using a large number of
topics such as 40, these lines are no longer perceptible and rings begin to manifest
more and more. We also found that using LDA instead of LSI resulted in more
separation for each document from topic to topic, which can be seen in Figure 4.5.

A visualization for only four topic can be seen on Appendix B and shows that,
in fact, these shapes are not rings but not very different from deformed polygons
with the same number of vertices as the number of topics.

We suspect this to be an artifact caused by the visualization algorithm, Multi-
dimensional scaling, which as been used before, in Section 3.2 to aid with the visu-
alization of correlations between different sensor nodes.

Figure 4.5: Distribution for the number of results, for 8 words queries.

4.4 Prediction Model
We followed this exploratory analysis with the application of Gaussian Processes to
predict the number of hits for a certain query.

Since we didn’t know a priori what would be the best number of topics, we
started with a simple analysis where the dataset was split in a train and test group,
with 80% and 20% of the data, respectively.

We tested using 2 to 99 topics, the results can be visualized on the Figure 4.6.
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Figure 4.6: Performance for different number of topics.

4.5 Results and Discussion
These results confirmed how hard it can be to accomplish satisfactory results when
predicting search engine results, using topic modeling for the specific task of predict-
ing search engine hits for events happening in Singapore. Because of this, we came
to the conclusion that if we wanted to analyze events using context from the web,
this was not the right direction and we should explore other possibilities. It could
be interesting to try this same experiment but to perform the topic modeling over a
big corpus and then see the topic distribution for the queries. The fact is that only
very specific keywords are usually used to name an event and that can make it hard
to establish connections between new, less, common words. Another improvement
would be to test this with a larger dataset, as it is possible that this problem is so
complex that little less than 5,000 events is simply insufficient to perform this type
of predictions.
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Chapter 5

Event Detective

Building on the experience from the previous chapter, we revised our objective to
focus on setting up a system capable of identifying large movements of people to a
certain area and the causing event.

Having a system that could solely identify unusual behavior on the streets would
be particularly interesting to a traffic administrator or law enforcement agent. This
however would still force the user to try to identify the causing event on a search
engine or other alternative. Keyword based search engines often return too many
results, leading to information overload [54]. Also it would be very time consuming
for a traffic administrator to go through all zones and identify where there were
anomalies. If this system could also provide, quickly and automatically, the context
in which it happened, it would be a great advantage.

In this chapter we present Event Detective, a dashboard system that would in-
form its user of the events happening in that place at that time, resulting in higher
quality adaptations to the city’s transportation system, while avoiding the unnec-
essary search for events, effectively resulting in a a type of parsimonious context
sensing. The question would then be: “Can we develop a system capable of identi-
fying anomalies and the events responsible for them?”.

5.1 Anomaly Definition
Since we wanted to study different traffic anomalies, we first had to define what
an anomaly was. A very obvious one would be to identify any kind of traffic jam,
i.e. where cars would be moving at a speed unusually slow for that area. However,
this could be due to an unpredictable event such as an accident or a fire. Instead
we defined an anomaly as a place where there would be an exceptional number of
drop-offs.

5.2 Dataset
The first step to answer to this question was to get traffic data, or anything that
would represent it in a satisfactory manner, and then how to get context automati-
cally and identify the culprit event.

Singapore is renowned for its unusual number of taxicabs, having, as of June 2015
a total fleet of 28,686 taxis, operated by six different taxi companies and almost 200
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independent taxis. These taxis usually have two assigned drivers, each with a 10
to 12 hour shift. There are two major reasons for taxi demand to be so high in
Singapore. The first is that according to Singapore’s law, to own and use a car
in Singapore, one must buy a Certificate of Entitlement (COE), these are bought
through an open bid uniform price auction which can drive the price of a basic
Toyota Corolla to prices in excess of 100,000 SGD. In fact, just the open category
COE itself has peaked in January 2013 costing 97,889 SGD at auction. This would
still not have the same impact if these COE were not only valid for a period of 10
years, at which point they must be extended.

Luckily for us, a major taxi company in Singapore provided us with some of
their private data, which, unfortunately, cannot be shared outside the SMART’s
workforce as it is protected under a non-disclosure agreement. The information
shared here protects the privacy of the company, whose name shall not be disclosed.

This 154.4 GB dataset is composed of 76 different log files, which describe the
positions and status for all the vehicles of a major Taxi company in Singapore. Each
file represents a unique day, from 2012-06-01 to 2012-08-15. Each of these files has
about 35 million rows, each of which composed by: Time stamp, plate number,
latitude, longitude, speed in kph and taxi state.

The field that defines the taxi state can describe different states on the taxi
meter, these are:

• FREE - Vehicle is free to take passenger;
• POB - Passenger on Board;
• OFFLINE - Driver has logged off;
• BUSY - Vehicle is not free to take passenger;
• STC - Soon to Clear, Vehicle will become free in short time;
• PAYMENT - Cashless payment in progress;
• ONCALL - Vehicle is on hire. Not available for street hire;
• BREAK - Vehicle is not free to take passenger;
• POWEROFF - Not used;
• ARRIVED - Vehicle has reached the pickup location.

5.3 Preprocessing
It would be extremely hard to use the dataset as it was so we had to find a way
to extract representative information from it, which is described next. It was very
important to reduce the amount of information and try to reduce the dataset to
a manageable size. We start by extracting the most important information, which
was for us the taxi trips and then we clean any invalid data that we could find and
perform statistical analysis over the remaining data.

5.3.1 Trip extraction

The dataset is composed by raw spatio-temporal data for each taxi. If we assume a
trip the time and space from when a specific client enters a taxi until the time he
leaves, we can split this data into separated trips.

This script would simplify further analysis by aggregating the data relative for
each trip in eight different fields:
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• origin_latitude;
• origin_longitude;
• start_time;
• destination_latitude;
• destination_longitude;
• end_time;
• duration;
• taxi_plate.

To do this, the script would go through each row, sorted by reading time and
keep track of when and where, for each plate number, the status changes from POB
1 to any different one.

I found some dataset errors while performing this analysis, for example, some
trips had an exceptionally big or negative duration. These are likely to be the result
of a system left running or an updated internal clock respectively. Fortunately,
these account for only 285,022 of 64,231,651 trips, which leaves us with 99.56% of
the dataset.

Another script removes this invalid trips by filtering the ones with a negative or
above one day duration.

5.3.2 Statistical Analysis

We would consider an event, when at some place and specific time of the day, there
was an unusually high traffic of taxi drop-offs. As both the geographic and the
time features for the trips are high in precision, if we wanted to perform statistical
analysiso n them, we would have to quantized them into lower frequencies. Similarly
to what we did in Chapter 3, values were averaged for each half-hour of each day.

As for locations, this problem is not so simple to solve. Except for specific
places and exceptional times, taxis are limited to the streets, and, by doing the
same type of analysis, i.e. dividing the space uniformly, we are ignoring many of the
characteristics underlying in this kind of systems: city organization, event centers,
terrains and others.

There has been some work using cellphone tower-based locations to identify
places with greater population density for the identification of events. In this case
the city was divided into 319 cells using a Voronoi tessellation [19] based on the cell
tower’s localization [11]. Ideally, one could use something similar to this, taking into
account the specific case of transportation. To do this, we used a dataset from LTA 2,
that would help us solve this problem. This dataset divides the country of Singapore
in 1,092 areas, and it was developed having all the characteristics of Singapore
streets and traffic into account. This zones are defined as a set of polygons with
their respective names and other information. We could then merge the information
from the two datasets and identify to which zone a specified coordinate pair would
belong to. These zones can can be seen in Figure 5.1, with each color representing
one of the 7 different regions.

With the definition for these zones, the same way a histogram aggregates different
values in some bins, we can now aggregate values by their zone, day and half-hour.

1Person on Board.
2Land Transport Authority.
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Figure 5.1: Singapore Zones.

This, in conjunction with some statistical analysis, would make us able to identify
what we first defined as an anomaly: a particular area and time where there would be
an unusual number of drop-offs. The next step was to define, what was, specifically,
out of the ordinary.

The first rule we used to define an outlier was very simple, anything above 95%
of the other values would be considered one. There is although a problem with using
this rule: since we are using the 95th percentile, we consider always 5% of the data
as an outlier, even when it has very little semantic value. To limit the number of
results, we filtered only days where the outlier would be at least twice of the 95th
percentile and above 200. First we aggregate the data by day of week, zone and
half-hour. Since we only have 77 days this means we only have, 11 readings of each
type, e.g. 11 readings for all Mondays, at 10h00m in a specific zone. We then went
through all these combinations, and to see if one is an outlier, we exclude it from the
analysis, calculate the percentiles for the others in the same day of the week, zone
and half-hour and compare. Initially this analysis would take about two weeks to
run, however, I was able to reduce that to just little more than a day, more details
can be found on the Appendix D.

5.4 Exploratory data analysis
Now that we have some statistics we can visualize both the routine behavior for each
zone on a specific day and the specific times where the drop-off values were greater
than expected, Figure 5.2 is example of this.

This image tells us that, usually, this place does not have more than about 40
drop-offs throughout that day of the week, however, at this specific date, at about
15h30 (31th half-hour) there is a rise in drop-offs, going well above 95% of what was
seen on any of the other days, exceeding the 350 mark for drop-offs in some of the
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Figure 5.2: Routine behavior for a specific zone.

Figure 5.3: First dashboard.

30 minutes split. We can state with some confidence that this is the effect of an
event happening in the area, that peaked around 8 pm.

5.5 Manual Event Identification
The following step was to identify a set of anomalies and the correspondent events
that caused them. By identifying to events manually, we could get a greater un-
derstanding of how the human mind works when trying to solve a problem like this
using various sources, and we get the results for comparison with an automated
system.

To help with this task, I developed a dashboard application that shows the
statistics of a specific area and a visualization of the area, a first version of this can
be seen in Figure 5.3.

This system turned out to be insufficient to identify most of the events found,
as the zones would be hard to identify. To try to solve this problem, the dashboard
was updated with a new map, now using OpenStreetMaps for the visualization of
the drop-offs. This would have a major impact on the dashboard usability as the
user now could not only identify the area in question but could also zoom in and out
and move in all directions, which would simplify the identification of each individual
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drop-off. Figure 5.4 shows an example of a what the user could see when analyzing
a specific day near the Singapore Flyer. Later this system would also show the
drop-offs that happened during the outlier in a different color than the customary
drop-offs. The dashboard also showed the place where the passengers got inside
the taxi, as this could help identify events where people parted from one place to
another, e.g. private companies dinner parties.

Figure 5.4: Improved version of the dashboard.

5.6 Manual Identification
By looking up the events manually we understood that a person can employ different
techniques to identify the anomaly causing events.

An option would be to get a list of events that occurred in the period showed.
Then, we could look up each event one by one and see if any one would be close to
the particular area with unusual drop-offs. This however had limited success as most
of the event aggregation websites cannot capture all events happening in Singapore,
and even the listed events have, frequently, incomplete fields such as starting time
or venue.

Another, more general approach would be to look up manually for what we
thought was a POI3 and for that specific day on Google or other search engine.
This would generally include the results from the previous option as well as new
sources. However, some false positives are also more likely.

To evaluate our automatic model, we did this searches manually and created a
dataset with about 30 events identified in a supervised way. Once an event was
found, we would save the pages that identify, creating a dataset with what we
thought, was the name of the Point of Interest, the date, time, name of the event
and websites that identified it correctly. Part of this dataset would also be used
in the development of the first automatic system, by using the manually identified
POI’s.

3Point of Interest.
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Figure 5.5: Outliers showing the Singapore Expo and the Marina Bay Sand Hotel.

This dataset would then serve as ground truth for the evaluation of the new,
automatic systems.

5.7 Automatic system / Model deployment
Using what we learned from the previous process, we then began implementing an
automatic system that would create Google queries, using text describing the place
and time of an anomaly.

5.7.1 POI’s identification

To implement this, the first thing we needed was to convert a zone to something
searchable on Google. Manually we could identify on the map places that we know
a priori that were POI’s however, a machine has to do this automatically.

For this, we first needed a way to select representative points for the drop-offs as a
whole area should be too wide to identify the event venue. After some thoughts and
looking at some maps, like the ones seen in Figure 5.5, clustering algorithms came
immediately to our minds when looking at some maps, they seemed the obvious
answer.

Different clustering algorithms were tested: density based scan, k-means, affinity
propagation and a custom algorithm. By selecting one, we would have a way to
extract interesting points.

Our first test was to apply the density based clustering algorithm. It seemed
possible to apply it correctly, since we wanted to look for a place where the density
of drop-offs was higher. However, it also carried some problems:

• The density based scan does not have centroids, so we would need to develop a
way to identify which point from a cluster would represent it. Simple solutions,
such as using an arithmetic mean, are not successful as there is no guarantee
the points will be distributed in a circular way, leading to incorrect placement
of the centroid;

• The density based algorithm implies the use of a parameter: the distance to
which two points are considered part of the same cluster. Theoretically this
could work, however, in the real world, different streets and venues have dif-
ferent characteristics, for example, some avenues have very specific drop-off
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points for taxis while in others cases, for events in big buildings or gardens it’s
usual to see taxis stop all around the venue. This would force us to somehow
adapt this parameters dynamically for each zone, to avoid, for example cover-
ing the whole street with just one cluster, or having simply too much clusters
for a big area, which would happen if we were to assume all the areas to have
a similar behavior.

The next step was to apply k-means, a very simple algorithm, where the number
of clusters has to be selected a priori, independently of the data characteristics. This
algorithm brings advantages and disadvantages with it. It can be general enough to
extract a lot of potential POI’s but it can also fail to identify the main point, for
various reasons. This point can be too far away from the street, or the clustering
algorithm could just perform badly on the specific pattern of the street.

The affinity propagation has shown visually some good results, but, like the
others, it also had some examples where its performance would be inadequate. We
decided not to used this clustering algorithm as its complexity is quadratic with the
number of points and it would not be uncommon for an event to have more than
6,000 points, more than 3.6 million.

Finally I have developed a custom algorithm for this problem. This algorithm
would extract the percentile 25 of the interpoint distances and then, for each point,
calculate how many points where at a distance bellow this value. The point with
the highest number of close points would then be selected as the Point of Interest.

Having now different ways to select the points of interest, we would still need to
extract meaning from this coordinates. To do this we needed an API to return names
for the Points for Interest. There are a number of options to do this, Foursquare
has an API, and so does Instagram and other websites like Factual; Google does
have this information but not a public API to access it. We also realized that when
looking at our dashboard, that there were already some Points of Interest already
marked, so we investigated and found out that OpenStreetMaps made use of an API
when searching for names, called Nominatim. Because of this, we expect the results
of the API to be in agreement with our maps.

When using an algorithm such as the k-means we do not get only one pair of
coordinates but k different points instead. Nominatim would then be queried for
these points, a typical response would include the street name, neighborhood, county
and of course city and country. Some points had other specific characteristics, such as
parking if there was a car park nearby. The information would then be collected for
the k points and merged in such a way so there was no repetition and no conflicting
information was lost. For a set of three points we could get the common fields,
including different values for each one, if that is the case, and the other specific
characteristics.

5.7.2 Date and time

As for date and time, we experimented with different formats and variations. For
example, the same date could be written in various ways: “August 12 2012”, “12th
August 2012” or a more numerical approach “2012-08-12”. The system would then
create from a date, different possible ways of writing it. The system was even
capable of detecting if the time of an outlier was either in the morning, afternoon,
evening or even a full time event but after analyzing the resulting queries manually,
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we realized there was a negative impact on the number of results when adding words
like “morning” to the query, so we did not use this in the final system.

Another thing to take account to was that some events could be announced as
being on the previous day at night but in fact, the outliers could only be visible on
the following day. So the previous date and its written variations were also added
to the possibilities.

Finally, we created a list of Singapore holidays and we would see if a certain date
was one of them. If it was, it too would be added to the list of possible dates.

5.7.3 Results

In the end we would have a large combination of dates and times for each anomaly.
For example, Figure 5.6 shows an image of the automatic system, using k-means

as the clustering algorithm. In this specific case the use of Nominatim API resulted
in 6 different points of interest4, while our date system returns at least two dates,
if using only a single format. From the product of possibilities would result 12
queries, if one of theses dates was an holiday, this number would jump to 18. We
decided to test different combinations and to see if we could remove some of these
queries, knowing that Google does automatic query expansion and can even change
the weight of some words, this should be possible.

Figure 5.6: Improved version of the dashboard with K-means and Points of Interest.

To benchmark the system we would extract the domain names of the search
results and evaluated its precision and recall against the domains that we found
during the manual event identification, where we found a mean of 5.52 websites,
explaining each event. Table 5.1 shows these results. For the sake of simplicity, we
call “1st format” for dates following the order YYYY-mm-dd, eg. “2012-08-12”; and
we call “2nd format” dates written in full, like “8th August +2012”.

4City and Country are removed.

POI Date Format Holiday Days Matches Mean Found Links Mean Precision Recall
Manual 1st Format No Outlier Day 1.94736842105 9.94736842105 0.1958 0.3524
Manual 1st Format No Day Before 0 1.57894736842 0 0
Manual 2nd Format No Outlier Day 0.157894736842 0.157894736842 1.0000 0.0286
Manual (1st Format) | (2nd Format) No Outlier Day 1.94736842105 9.94736842105 0.1958 0.3524
Manual (1st Format) | (2nd Format) Yes Outlier Day 2.0 10.1578947368 0.1969 0.3619
3-means (1st Format) | (2nd Format) Yes Outlier Day 0.263157894737 1.57894736842 0.1667 0.0476
Custom Algorithm (1st Format) | (2nd Format) Yes Outlier Day 0.263157894737 1.0 0.2632 0.0476

Table 5.1: Dataset with number of hits and number of words for each query.
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One of the first conclusions to take from the tests was that using the previous days
didn’t actually result in better values, there are a couple of possible explanations
for this. We expected to capture two different kinds of events using this technique,
the ones related to nightlife where people would get to the event after midnight
and events that are celebrated at midnight. What we found was that nightlife in
Singapore usually starts before midnight, usually at 23 or sooner, and that for events
that are celebrated at midnight, even thought some outliers can exist on the previous
day (usually present in both) these events are usually announced with the name of
the holiday, and not the day preceding it. We decided to remove the option of using
the day before on the following tests for these same reasons.

By using the second date format, we no longer receive as many links as expected.
However, every link returned was about the event we wanted identify. Another thing
about dates is that we can conclude, after using both date formats, that the second
format was already used by Google when using the first one, this is a good example
of query expansion. Because of this, there is no improvement or deterioration on the
system’s performance. Finally we created a list of holidayswhich we then used 5 on
the creating of new queries. This made the performance of the algorithm rise both
in precision and recall.

We then tested different ways of selecting the Points of Interest, both using K-
means and the custom algorithm described before in Subsection5.7.1. These now
represent a fully automated system. These results were expected not be as good as a
manual system, even though their performance was slightly better than other exist-
ing manual systems. It is worth noticing that these systems found very little links,
with a mean of about 1.57 and 1 for K-means and the custom algorithm respectively.
While the k-means precision was not better of any of the other tested setups, which
was expected for a system that always chooses 3 points, making assumptions about
the points geometry. The custom algorithm helped the system to identify the Point
of Interest better than the manual identification did, this is likely because Nomina-
tim does not only return just one POI name but a list of possibilities, one per field,
at least.

Finally we ran the last tests using only the top 1 and top 3 results from Google,
Table 5.2 shows a comparison between using these or all the 10 links return in the
first page.

As we can see from these results, doing this would result in a trade-of between
precision and recall. It was clear that doing this would reduce the mean number

5Holidays used: New Years Day, Chinese New Year, Good Friday, Labour Day, Vesak Day,
National Day, Hari Raya Haji, Deepavali, Christmas Day, Ramadan.

POI Date Format Top Matches Mean Found Links Mean Precision Recall
Manual (1st Format) | (2nd Format) 10 2.0 10.1578947368 0.1969 0.3619
Manual (1st Format) | (2nd Format) 3 1.10526315789 2.84210526316 0.3889 0.2000
Manual (1st Format) | (2nd Format) 1 0.526315789474 0.95789473684 0.5494 0.0952
3-means (1st Format) | (2nd Format) 10 0.263157894737 1.57894736842 0.1667 0.0476
3-means (1st Format) | (2nd Format) 3 0.210526315789 0.736842105263 0.2857 0.0381
3-means (1st Format) | (2nd Format) 1 0.210526315789 0.421052631579 0.5000 0.0381
Custom Algorithm (1st Format) | (2nd Format) 10 0.263157894737 1.0 0.2632 0.0476
Custom Algorithm (1st Format) | (2nd Format) 3 0.210526315789 0.473684210526 0.4444 0.0381
Custom Algorithm (1st Format) | (2nd Format) 1 0.210526315789 0.315789473684 0.6667 0.0381

Table 5.2: Dataset with number of hits and number of words for each query.

58



of results but the higher precision would probably be the better option for a real
application.

5.8 Discussion and Improvements
Some events were almost impossible to identify, for example, there was an outlier
with more than 200 drop-offs close to a military facility. This was extremely hard
to identify and we were only able to understand what happened in that place after
looking up military events in Singapore. Only then, we knew that was one of the
cadet’s graduation days, after identify a single blog post, from a soldier, talking
about the event itself. Some events were even more bizarre: there was a large number
of drop-offs late at night in a very specific urban neighborhood, with apparently not
a single point of interest nearby. Stranger yet, most of these people have come from
a very specific place, another, seemingly, very uninteresting place. We were not able
to identify anything related to this event.

It was also interesting to see some outliers on some holidays at the Singapore
power station and we could even identify some changes of shifts and other curious
patterns. One of the most interesting ones was a very high number of drop-offs close
to the police academy, just one day before Singapore’s National Day, probably the
last mission briefing before the big day.

We think that even though this experiment was successful, there is room for
improvement. The first would be for example the development of a classifier that
would go through the search results and identify which one would most likely identify
the event. This would be particularly important when websites such as Wikipedia,
are included in the search results, that, even though may bring some relevant im-
portance to the specific venue or holiday, will most likely not identify the specific
event we are trying to find. There have been similar approaches to this, which
are described in Section s2.3. Another improvement, would be to make the system
use Event Aggregation websites API such as All Events In allevents.in and look
directly into this websites. However, this would create more dependencies for the
system and make the general context sensing from the web only a secondary feature.

Another thing to keep in mind is that the manual identification of events is
not perfect, in fact, there is a strong possibility that we did not capture all the
relevant links and seeing that the automated system using the custom algorithm
for POI identification had some better results than the system using the manual
identified POI’s of interest, points us in that direction. We suspect that the system
was capable, using the Nominatim API to find better terms to look up the venue
and indirectly get more relevant results than some of our queries.
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Chapter 6

Conclusion

This dissertation studied the application of different techniques with the shared
objective of selecting automatically what would be the most informative information
to use. The foremost application comes in a form of an environmental sensing
system. This system would have one movable sensor only, and the possibility to
change it between a limited number of places. We developed a strategy that applies
an Active Sensing setup to choose which sensor local to choose next, i.e. which
information to feed next to a regression model. This strategy turned out to be better
than choosing the sensors with the most available information and the random,
uniform, selection of locals. The second application consisted of predicting the
number of results a search engine would return for a given query. We focused on
predicting queries related to events happening in Singapore. We have learned how
hard this task was for our model since the results were never satisfactory. Our goal
then evolved to be the identification of traffic anomalies in Singapore and also the
identification of which events may have caused it. Starting with a manual search,
we went through an iterative process of automatizing this search and identification
of events. In order to do different experiments, we could not get into much detail for
each problem. We are sure that both of them can be improved, if there is sufficient
motivation to do so, which we think is the case.

Even though the dissertation experiments were mostly successful, we are confi-
dent that having different datasets for both Chapter 3 and Chapter 4 would have
brought us better end results. In the first case, having a better quality dataset,
would most likely, reduce much of the needed pre-processing and make it easier to
model using Gaussian Processes; for the second case, we suspect that 4,829 would be
an insufficient number of queries to analyze, for a problem of such high complexity.
Fortunately, the last dataset, even though challenging to process due to its size, did
not share this problem of invalid data.

This dissertation shows different contexts where parsimonious sensing can be ap-
plied, and how different techniques can be used to optimize the process of reducing
the quantity of information necessary for a system to compute. We believe parsi-
monious sensing can allow for needed efficient selection of information to study, in
the following years, as the amount of documents grows.
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Appendix A

Kernel Functions

Some papers and books define the same kernels differently, some with more, others
with less arguments, this chapter presents the most commented kernels, both in [53]
and [15]. This appendix is to be used as a visual aid to comprehend the behavior of
kernel functions and their formulas.

Each of the functions is presented with its formula followed by two samples from
the prior. The arguments values used were chosen only for visualization purposes
and are ,probably, not the best, performance-wise.

Section A.1 shows the behavior of a covariance function with different lenght-
scales, this can serve as an example for other functions.

A.1 Squared Exponential
The de-facto default kernel for GPs and SVMs, also known as RBF or Radial Basis
Function.

It works very well with smooth, continuous functions, but it can fail to model
real data.

Figure A.1: Squared Exponential Function, ` = 1.
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kSE(x, x′) = σ2 exp

(
−||x− x

′||2

2`2

)
(A.1)

Figure A.2: Squared Exponential Samples, ` = 1.

Figure A.3: Squared Exponential Samples, ` = 3.

A.2 Rational Quadratic Kernel
This kernel is equivalent of many Squared Exponential Kernels with different length-
scales added.
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When α → ∞ it is identical to SE. It also shares the problem of beeing too
smooth for most data.

Figure A.4: Rational Quadratic Function, ` = 1, α = 2.

kRQ(x, x′) = σ2

(
1 +

(x− x′)2

2α`2

)−α
(A.2)

Figure A.5: Rational Quadratic Kernel ` = 1, α = 2.

A.3 Periodic Kernel
It allows the model to make predictions over functions which repeat themselves.
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p is the period, the distance between repetitions.

Figure A.6: Periodic Function, ` = 1 and p = 1.

kPer(x, x
′) = σ2 exp

(
−2 sin2(π||x− x′||/p)

`2

)
(A.3)

Figure A.7: Periodic Kernel, ` = 1 and p = 1.

A.4 Locally Periodic Kernel
A function capable of modeling functions which are periodic but that change over
time results from multiplying a SE kernel with a Periodic Kernel. Because most

64



periodic functions do not repeat themself exactly, this adds more flexibility to the
model.

Figure A.8: Locally Periodic Function, ` = 1 and p = 1.

kLocalPer(x, x
′) = kPer(x, x

′)kSE(x, x′) (A.4)

= σ2 exp

(
−2 sin2(π||x− x′||/p)

`2

)
exp

(
−||x− x

′||2

2`2

)
(A.5)

Figure A.9: Locally Periodic Kernel, ` = 1 and p = 1.
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Appendix B

Extra LDA Analysis

This Appendix shows a visualization of the topics distributions of the queries us-
ing LDA, for different number of topics. Multi-dimensional scaling is used for the
dimensionality reduction. Figures B.1, B.2, B.3, B.4, and B.5, show the different
visualizations for 3, 4, 8, 20 and 40 topics, respectively.

Figure B.1: Distribution for the number of results, 3 topics.

Figure B.2: Distribution for the number of results, 4 topics.
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Figure B.3: Distribution for the number of results, 8 topics.

Figure B.4: Distribution for the number of results, 20 topics.

Figure B.5: Distribution for the number of results, 40 topics.
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Appendix C

Python, R and Matlab interaction

During the development of this thesis I explored the application of different program-
ming languages to the problem of context and parsimonious sensing. Each of these
languages have their own advantages over the others. R allowed for very easily de-
scribing, both visually and numerically the datasets and also their transformations,
like normalization and filtering. Matlab has, what I have found to be, personally,
the best Gaussian Processes library. Complete with many different likelihood, co-
variance functions, it allowed for a freedom that most other libraries did not. Its
code is also very optimized, while using Python’s sklearn library to do regression
using Gaussian Processes, invariably resulted in IO trashing because of the mem-
ory it required while inverting matrices. While Python, being one of the languages
which I am more comfortable writing allowed me to write new easily readable tests
very quickly. Another reason to use Python was the library Hyper-opt, which was
essential for finding good hyper-parameters for the Gaussian Processes.

Easing these three languages separately made me have to develop big script
files that would run programs wrote in different languages and each of them being
feed the input of the previous one, this was obviously not good, and most times a
simple modification of a test would be extremely hard to debug, which made me
lost valuable time.

I came to the conclusion that the perfect solution would be to have good libraries
for the language which I am most fluent in, Python and try to develop the tests using
only this. After some research I found Pandas, a data analysis library for Python
which allowed me to do operations in a similar way as one would in R, which was
great, but did not have the same visualization capabilities as R does, natively. I
found however that the library I was using for most of my visualizations in R called
ggplot2 was being ported to Python, and even though there were still some bugs in
this implementation, I found that my specific application did not suffer much from
this, and in fact, only a slight modification of the datasets would allow me to use it
in a very similar way as I was using it before in R. Finally, the big challenge was to
find a complete Gaussian Processes library that would not be as limited as sklearn
in terms of option and that would also make good management of the system’s
memory and CPU. I could not find this, instead, I thought of developing a module
that would establish a connection between matlab and Python, but only the last
version of matlab supported this connection, which I did not have access to. I was
running out of options until I remembered that GPML is compatible with octave,
an open-source matlab alternative, that although is not as good performance wise,

68



should be enough. The result was an experimental Python class that would receive
Gaussian Processes hyper-parameters and would have the methods fit and predict.
After developing this class, I ported most of the tests that I would, most likely, alter
and re-run to Python, which made the process easier and cleaner.
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Appendix D

Working with Big Data

Working with large datasets proved to be a problem.
As most of the scripts would take a long time to run, most of the times I imple-

mented a new one, I would first test it on a small sample, limiting the rows read by
the script.

Applying this technique would enable me to perform many more experiences
than I would if running over the complete 54 GB dataset. However, it also brought
some unexpected problems from which I learned.

D.1 Reading large files with Python
By default, pandas1, when opening a dataset from a CSV2 file, tries to guess the
column types. This process hogs up memory, provoking IO trashing very quickly
in a 16 GB’s machine, for a relatively small file of 1 GB. The first time I solved
this problem, I did it by explicitaly defining the columns types, however this was
insuficient for some later analysis.

D.2 Processing chunks of information
For the longer tests, I would have the script to print every few seconds the expected
time to finish.

Extracting statistics for specific zones, dates and times of the day, the tests was
expected to take at least two weeks to run, on a single thread3. For this test, there
was a CSV file with the statistics to run, besides some other information, each
line would contain a zone and date. The script would then lookup a database for
more information about that zone in the dates that would correspond to the same
week day. I immediately tried to tap into the other threads of the CPU, by trying
to make scripts that would make use of multi-core enabled libraries or python 3
multiprocessing library. After all, most of these tests were, what is considered
“embarrassingly parallel”, i.e. it would seem that for little effort, one could separate
the problem into a number of parallel tasks.

1A data analysis library with similar structures as R.
2Comma Separated File
3The used setup had a Intel i7-4700HQ Processor, 64 bits, 4 cores, 8 threads, 2.4 GHz to 3.4

GHz, 6 MB of cache with 16 GB of RAM.
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First, I have developed the script using a sample of the data and I would bench-
mark them against the single threaded version. Once I achieved reasonable results
I would try to run it on the complete dataset. However, when doing this, one must
remember that the multiprocessing library is based on the fork system call, and,
because of this, it creates copies of the current process, multiplying the used mem-
ory by, at least, the number of processes opened. Using shared memory was not an
option since the library API only provides very limited data structures for it.

The next experiment would be to read the files line by line and send each line
for a different process, this proved efficient for the small dataset, however, for large
datasets it became slower then using a single thread. Finally I understood that
reading the file line by line, even though was memory efficient, it was not an efficient
way to read the files and it lost performance over the process management overhead.
The best and final solution would be to read thousands of lines each time, fill an
array with them and then send them to each separated process.

Adding a semaphore to the script, so only one thread would lookup the database
at a time resulted in some added performance.

Finally, using 7 of the 8 available CPU threads, with the semaphore, some mem-
ory optimization and the creation of database indexes for the columns “zones” and
“date” would ultimately reduce the running time of some tests from two weeks to
little more than one and a half day, almost 10 times faster.

Unfortunately, this was not the case for every test. It was not possible to run
more than two, sometimes, three, processes using Gaussian Processes regression
since they would quickly exhaust any available system memory causing the system
to either crash or trash the hard disk.
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[51] Ondřej Veselỳ and Jan Kolomazník. Predicting number of search engine re-
sults to optimise online plagiarism detection. Proceedings of Plagiarism across
Europe and Beyond, 2013.

[52] Andreas Weiler, Marc H Scholl, Franz Wanner, and Christian Rohrdantz. Event
identification for local areas using social media streaming data. In Proceedings
of the ACM SIGMOD Workshop on Databases and Social Networks, pages 1–6.
ACM, 2013.

[53] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for
machine learning. 2006.

[54] Leo Yuen, Matthew Chang, Ying Kit Lai, and Chung Keung Poon. Excalibur: a
personalized meta search engine. In Computer Software and Applications Con-
ference, 2004. COMPSAC 2004. Proceedings of the 28th Annual International,
volume 2, pages 49–50. IEEE, 2004.

75


