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Abstract

Evolutionary Art combines evolutionary computation approaches and com-

puter graphics in order to generate artworks. Within this field, it has been

shown that it is possible to evolve interesting artworks that can please the

human eye. However, most of these artworks are created with human

supervision and the large majority of artworks generated are abstract.

In contrast, this dissertation is inspired on a previous work that aims to

evolve figurative images, that is, images that resemble some object to the

human eye, without any human supervision during the process. Instead,

the supervision process resorts to an object classifier, trained to recognize

specific objects, which is used to assign fitness.

In this dissertation, this work is expanded in order to demonstrate that,

depending on the object classifiers created, it is possible to generate any

object. Furthermore, this dissertation explores the evolution of ambiguous

images, that is, images that can resemble several objects at the same time

within the same region, using a set of classifiers to evaluate instead of

just one. Finally, this dissertation also focuses on the evolution of images

that can be considered as di↵erent as possible among them, using novelty

search techniques.

Experimental results show that it is possible to generate images that are

(1) figurative and (2) ambiguous, from a computational and human per-

spective. The results also indicate that the classifiers’ robustness plays

an important role in approximating the computational and the human

point of view. Furthermore, the success in employing novelty mechanisms

depends also on the classifiers used: when a single classifier is used to

guide evolution, novelty search tends to result in a broader set of diverse

images. However, when several classifiers are used, novelty search is only

able to promote diversity when the classifiers are permissive.





Resumo

Arte Evolucionária é um campo de estudo que combina técnicas de computação

evolucionária e computação gráfica, de modo a gerar arte visual. Dentro deste campo,

já foi demonstrado que é posśıvel evoluir imagens interessantes que agradam ao uti-

lizador. No entanto, a maioria destes trabalhos são criados com a supervisão de um

utilizador e são imagens maioritariamente abstractas.

Por outro lado, esta dissertação é inspirada em trabalhos anteriores que evoluem

imagens figurativas, que são imagens que pretendem representar um dado objecto,

sem a supervisão humana. Em vez disso, o processo de supervisão é controlado com

a ajuda que de um classificador, treinado para reconhecer um dado tipo de objectos,

que é usado para medir a qualidade das imagens.

Nesta dissertação, este trabalho é estendido de modo a demonstrar que, depen-

dendo dos classificadores usados, é posśıvel gerar qualquer objecto. Para além disso,

esta dissertação explora a evolução de imagens amb́ıguas, isto é, imagens que são

capazes de representar vários objectos simultameamente dentro da mesma região, us-

ando um conjunto de classificadores em vez de um só. Finalmente, esta dissertação

também se debruça na evolução de imagens que possam ser consideradas o mais

distintas posśıvel entre elas, recorrendo a técnicas de pesquisa de novidade.

Os resultados experimentais mostram que é posśıvel gerar imagens que (1) são

figurativas e (2) são amb́ıguas, de um ponto de vista computacional e humano. Os

resultados demonstram que a robustez dos classificadores é importante para aprox-

imar os pontos de vista computacional e humano. Para além disso, o sucesso na

utilização de mecanismos de novidade depende dos classificadores usados: quando

um só classificador é usado para guiar a evolução, a pesquisa de novidade tende a

obter um conjunto mais alargado de imagens. No entanto, quando são utilizados

vários classificadores, a pesquisa por novidade apenas é capaz de promover diversi-

dade quando são utilizados classificadores mais permissivos.
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Chapter 1

Introduction

Based in Genetic Programming [1], Karl Sims got inspiration to create images

from programs evolved with the help of the user [2], creating an approach within the

field of Evolutionary Art, known as expression-based.

Since that moment, many issues and challenges were addressed regarding this

topic. Sims’ work relies on the user to select the best images in each generation,

which causes several limitations in the final artworks. Due to these limitations, a gen-

eral purpose challenge arose in this field: automate the evaluation process, whether

one wants to evolve images according to an aesthetic criteria or towards a goal im-

age. Many works developed regarding Evolutionary Art were inspired by Sims’ work,

causing them to share the same shortcomings pointed out in Sims’ work.

Additionally, in McCormack’s work [3], a limitation of expression-based imagery

was mentioned, namely expression-based images, would tend to hold the same ab-

stract aspect, and they would tend to share the same “class”, clearly showing that

they were computer-generated, by mathematical functions. Although this is true

from a practical point of view, Machado and Cardoso proved that it was theoretically

possible to generate any image using an expression-based approach [4].

Among the literature regarding Evolutionary Art, the majority of the works relies

on the user to generate new artworks. Within the works that tried to produce im-

agery autonomously, most of them focus on the creation of abstract images evaluated

according to a given hardcoded criteria. Moreover, the few works which tackled fig-

urative artworks, evolved images towards a “goal image” or towards a restricted set

of objects. On the other hand, this work intends to address one of the biggest chal-

lenges in Evolutionary Art, mentioned before, which is to automate the evaluation

process of images, creating non-abstract artworks, in opposition to most of the works,

which focus in abstract imagery. Additionally, this work also innovates by addressing
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the problems of evolving images that represent several di↵erent objects and evolving

ambiguous images for the first time.

The work of Correia and Machado produced results which are in line with this

work’s intentions by using an expression-based approach to generate autonomously

figurative images [5], which not only hits the challenge of relieving the user from

evaluating lots of images, but also reveals a distinctive value by evolving non-abstract

images through the resemblance of a given image to an object.

Although they proved that their approach could be extended to other objects

rather than faces, by achieving promising results, they identified a major flaw in their

results: the lack of variety in terms of objects generated within the same seed. Fur-

thermore, more study needs to be performed to determine how far can this approach

be explored in order to achieve more interesting results and more diverse artworks.

Consequently, this work applies and refines their proposed approach, inspired by nov-

elty search ideas, in an attempt to overcome the flaws that they identified.

The assessment of this approach involves the creation of an original and wide set

of object classifiers using hand built datasets, the creation of a framework which is

able to reproduce their approach, and an analysis of the results, in terms of ability

to evolve e↵ectively the desired objects, variety of artworks produced and subjective

judgements regarding the resemblance of the final artworks to the expected objects.

1.1 Scope

The work of Correia and Machado [5] has a distinctive value when compared to

others within the field of Evolutionary Art, because they use an expression-based

approach to create figurative images autonomously. In order to assess automatically

the quality of those images and their resemblance to a given “target class”, an object

classifier is incorporated within their approach. This work is built upon Correia and

Machado’s findings, because there is a desire to evolve the same type of artworks

using a similar process.

In their work, the authors say that what makes the approach viable and easy to

apply is the existence of o↵-the-shelf classifiers1. However, being restricted to third

party sources is not desirable when one wants to prove the generalization of their

approach. Consequently, its real power can be put to test through the creation of

new classifiers and a trial to create di↵erent and diverse artworks.
1Object detection classifiers which were trained, validated and provided by external sources
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The new classifiers created within the scope of this work, despite they aim to

represent several objects, they share the same classifying technique, used in previous

works of Correia and Machado and originally formulated by Viola and Jones [6].

Applying this technique, new classifiers are created by choosing a set of parameters

and building customized datasets. So, this work does not intend to study di↵erent

classifying schemes.

Regarding the artworks produced, this work is restricted to expression based evo-

lutionary art and no aesthetic nor complexity judgements are made over the images.

The only evaluations performed are in terms of resemblance to a given object and in

terms of uniqueness.

1.2 Objectives

Following in the footsteps of previous studies which aim to explore automatic

creation of artworks, this work involves expression based evolutionary art and it can

be summed up in three main goals:

• Autonomous creation of figurative images, using evolutionary algorithms to

evolve them and an object classifier to help in determining their quality;

• Autonomous creation of ambiguous images, using evolutionary algorithms to

evolve them and multiple object classifiers to determine their ambiguity level;

• Study and development of novelty search mechanisms to apply in the creation

process of artworks, by including a dissimilarity metric to influence their evolu-

tion.

As an ultimate goal, this work is expected to produce scientific results worthy of

dissemination in specialized conferences.

It is also expected that the implementation work on image rendering and au-

tomatic fitness assignment can be disseminated and become widespread over the

community.

1.3 Outline

The remainder of this document is organized as follows: Chapter 2 contains the

state of the art, describing Evolutionary Computation concepts, with a special fo-

cus on Genetic Programming and a short overview on Multi Objective Evolutionary
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Algorithms, followed by diversity metrics, and finally Evolutionary Art. Chapter 3

displays the work performed during the first semester, firstly describing the approach

used to obtain expression-based figurative images and then explaining step by step

the actions taken in order to generate images, presenting examples of obtained re-

sults. Then, Chapter 4 addresses the evolution of ambiguous images, explaining which

modifications were made to the original approach, describing how the fitness func-

tions from di↵erent classifiers were aggregated into a combined fitness function, and

presenting the experimentation work performed. Chapter 5 focuses on the novelty

study. It starts by explaining again new modifications done in the original approach,

concepts about the novelty operation mode within the approach and their respective

way of computation, and presents the results obtained regarding the novelty study.

Finally, Chapter 6 contains the final considerations about the work performed until

now and also points new directions of this study.
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Chapter 2

State of the Art

This chapter aims to present important literature related to the planned work and

research objectives.

Initially, section 2.1 presents a brief introduction to Evolutionary Computation

(EC), describing in section 2.1.1 the inspiration, principal components and mecha-

nisms involved with this field of study, including a special focus in Genetic Program-

ming in section 2.1.2 (the EC method that is going to be used) and an overview in

multiobjective evolutionary algorithms in section 2.1.3. Then, section 2.2 addresses

the diversity mechanisms considered for further exploration in this work. It focuses

on Novelty Search in section 2.2.1, Fitness Sharing in section 2.2.2 and it describes

distance metrics used along with these techniques while studying related work in the

context of Evolutionary Art and image generation (in section 2.2.3).

Finally, section 2.3 presents a background in the Evolutionary Art field. This

section is divided in three subsections. Section 2.3.1 covers interactive approaches in

the context of Evolutionary Art, section 2.3.2 covers approaches which are able to

evolve images automatically without any supervision and section 2.3.3 is more focused

on the specific branch of Evolutionary Art imagery, the evolution of expression-based

figurative images.

2.1 Introduction to EC

In 1859, Charles Darwin published the first edition of his book “On the Origin of

Species”, where he introduced a new scientific theory which suggested an explanation

for the biological diversity we can see and its mechanisms, based on the evidence that

Darwin gathered during the Beagle expedition [7].

In essence, Darwin’s theory explained the process of natural evolution of species

around the concept of natural selection. Basically, according to the principles of
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natural selection, nature itself and its resources have an essential role to select the

fittest individuals, the ones who have more capability to achieve those resources and

adapt to the current external conditions (the environment). These individuals are

the ones with major probability of survival and therefore reproduce between them-

selves to pass their characteristics to their o↵spring. On the other hand, individuals

with lower degree of adaptation to the environment die without leaving their charac-

teristics to future generations.

To be more precise, the characteristics that determine whether an individual is

more or less adapted to the environment are its behavioural or physical features.

These types of features, visible to the human eye, are defined as the phenotype of

an individual.

However, from a microscopic point of view, the phenotype of an individual is

a result of the encoding of the genotype, that is, the genetic material, organized

atomically in genes, containing the information responsible for the characteristics

expressed by an individual. The range of values that a gene can assume is defined as

the alleles.

As explained before, the fittest individuals tend to pass their characteristics through

a breeding process which allows further generations to become better adapted to the

environment. This process occurs at the microscopic level, consisting simply in cre-

ating a new individual using genetic material from the parent(s), which implies that

variations that might occur in the next generation act on the individual’s genotype.

This theory was further explored in di↵erent ways, creating new branches and

fields of study. Evolutionary Computation (EC) [8, 9, 10, 11] started as a field in

computer science, more specifically computational intelligence, taking its biological

inspiration seeded by Darwin and his Natural Selection Theory.

The connection between Darwin’s ideas and Artificial Intelligence was explored

by several authors during the 20th century. John Holland’s work will be discussed

in detail as he pioneered the evolutionary approach known as genetic algorithms and

formulated the schema theory [12]. He centered his work around the concept of

adaptation. However, he enunciated a di↵erent definition, which was not restricted

to the biology field only:

“Adaptive processes have a critical role in fields as diverse as psychology

(“learning”) economics (“optimal planning”), control, artificial intelligence,

computational mathematics and sampling (“statistical inference”). Basically,

adaptive processes are optimization processes (...)”[12]
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Based on this definition, Holland formulated a general framework capable of op-

timizing processes, unifying di↵erent fields, as he did in his definition of adaptive

processes. In simple words, this framework consisted in an environment E (nature),

a set of structures ↵ (the individuals) which were measured according to a perfor-

mance measure µ (their chance of survival). ↵ and µ were submitted to an adaptive

plan ⌧ (the simulation of natural selection and breeding operations) that determined

modifications to be performed over the structures in response to the environment.

This process was repeated using discrete instants of time t (generations).

Holland also contributed one of the most important advantages of using EC: one

can apply an EC approach to a wide range of areas since it is domain-independent.

An EC algorithm can be applied to a problem where the optimal solution is hard to

find in a large and undefined search space, due to time or computational resources

limitations. Instead of waiting for the global optimal solution to be evolved, the

algorithm can be stopped when an suboptimal (but acceptable) solution is found.

Nowadays, EC is studied in the field of Computer Science and there are two

main techniques: Genetic Algorithms (GA) [12, 13, 14] and Genetic Programming

(GP)[1, 15, 16, 17], being briefly described as a stochastic process of solving problems

using biology as an analogy.

In the remainder of this section, 2.1.1 will describe the main components and

procedures needed to create a generic evolutionary algorithm whilst section 2.1.2 will

focus on Genetic Programming, since it was the EC approach chosen for the work.

Finally, evolutionary algorithms with several objectives are addressed in section 2.1.3,

where some techniques of selecting the best individuals according to multiple criteria

are tackled.

2.1.1 The Generic Evolutionary Algorithm

EC has a wide range of approaches which can be used to solve a problem (some de-

scribed in 2.1). However, an Evolutionary Algorithm has a common set of procedures

and components shared between all approaches.

First of all, they work with a set of individuals (a population), where each indi-

vidual is located in a give point of the search space as a candidate solution to solve

a problem. This population is usually created randomly and is submitted to the en-

vironment pressure (survival of the fittest) over a number of generations. During the

evolution process, in each generation all the individuals are measured in terms of capa-

bility to solve the problem using a quality measure called evaluation/fitness function.
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This evaluation allows the application of a selection operator which chooses stochas-

tically the best individuals, the ones that will be allowed to breed (parents) and

create o↵spring. Then, the variation operators (typically crossover and/or mutation)

are applied, in order to obtain increasingly more promising solutions while hoping

to maintain the necessary diversity to explore the search space globally. Crossover

(or recombination) consists in choosing two individuals from the parents group and

then generating one or more descendants by exchanging genetic material between the

parents. Mutation can be posteriorly applied over the individuals, by modifying, with

some probability, genes contained in an individual’s genotype, creating the children

set (o↵spring). After applying the variation operators, the survivor selection mech-

anism chooses which individuals will persist for the next generation, filling the new

population with individuals from the parents or the o↵spring.

The Evolutionary Algorithm runs iteratively, generation by generation, until some

termination criterion causes the algorithm to end. The diagram in figure 2.1 describes

the typical flow of an Evolutionary Algorithm. Algorithm 1 explains the operation of

an Evolutionary Algorithm through pseudocode.

Figure 2.1: Flow of a generic Evolutionary Algorithm [8].

Evolutionary algorithms have the below specific characteristics:

• They work at the population level, with several solutions simultaneously;
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Procedure: GenericEvolutionaryAlgorithm

begin
population initializePopulation();
population evaluateIndividuals(population);
while terminationcriteria not satisfied do

parents applySelectionOperator(population);
o↵spring recombinationOperator(parents);
o↵spring mutationOperator(o↵spring);
o↵spring evaluateIndividuals(o↵spring);
population survivalsSelector(o↵spring, population);

end
end

Algorithm 1: Generic Evolutionary Algorithm.

• They belong to the “generate-and-test” algorithms, in which generate corre-

sponds to the initialisation and creation of new and hopefully better individu-

als than the ones created before ,and test corresponds to the evaluation of the

adaptability to the environment;

• They are stochastic algorithms, and for this reason they do not guarantee an

optimum solution.

In order to contribute to the success of an Evolutionary Algorithm, several factors

must be taken into account. Those factors will be enumerated and further described:

• Representation

• Fitness Function

• Population

• Selection Operators

• Variation Operators

• Survivor selection mechanism

• Initialization method

• Termination criteria
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Representation

Representation means how the individual solutions are encoded computationally,

so it is the bridge between the genotype space and the phenotype space. Similarly to

nature, the genotype contains the genetic material of an individual, which in EC is

the computer code that can take the form of a bit-string, tree, graph, etc. depending

in the form of EC applied. In EC, this defines the search space where the evolution

takes place, that is, where individuals breed and exchange genetic material. This

artificial genetic material is then mapped to the context of the real problem, the

phenotype space, where it is possible to evaluate the quality of an individual. Recall

that it was mentioned before that in biology, phenotype is a set of physical features

which determines each individual’s degree of adaptability.

This factor is considered the heart of an Evolutionary Algorithm, because it is

a decisive factor between the success or failure of an algorithm and it should allow

encoding all the possible solutions of a given problem. This representation relevance

and dependence exists due to two reasons. First, it is important to notice that the way

the variation operators work will depend upon the representation used and second,

the same problem can be encoded with many representations. It is possible that a

right representation choice precludes the algorithm from converging to a good solution

and a right representation choice allows the algorithm to achieve a good solution. So,

the representation choice should be done wisely.

Some common types of representations used are: binary, tree-based, grammar-

based, graph-based and linear representation.

Fitness Function

John Holland defined the fitness of an individual as “its ability to survive and

reproduce” [12]. This definition inspired by Darwinism will ultimately lead to a

situation where only the fittest individuals will survive and will be able to reproduce.

As they contain genes that favour their survival, these genes will be passed throughout

generations, allowing the incoming individuals to better adapt to the environment

[7]. This degree of adaptation is viewed as fitness, because it di↵erentiates the best

from the worst individuals according to their quality. It is a measure, which can be

determined by a fitness evaluation function, assigned to each individual and it is an

important component of an Evolutionary Algorithm.

Holland also mentioned the role of the fitness in providing robustness of an Evo-

lutionary Algorithm, stating that if the same pattern of alleles appears in several

individuals with an above-average fitness, this pattern will be disseminated to the
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rest of population in future generations. However, if the same pattern appears in

a negligible number of individuals, it will disappear in subsequent generations, as a

result of natural selection [12].

The importance of having a good fitness function in the sense that it has major

influence on how the space of possible solutions explored. When formulating a method

to measure the quality of a solution, one has to have in mind that a good fitness

function may be hard to design because there is a drawback between precision and

performance associated to computing a fitness function with a given complexity.

Population

In nature, a population is a set of individuals which somehow strive to survive

and reproduce. Within the context of EC, a population holds the set of solutions

which are used to perform the evolution process. In each so-called generation, the old

population is transformed into a new population of individuals, through the applica-

tion of variation operators. An evolutionary algorithm works over a set of individuals

simultaneously to achieve hopefully better individuals and can allow multiple copies

of the same individual, although this a↵ects the diversity of the population.

When designing an evolutionary algorithm, one has to take into account the num-

ber of individuals used to compose the population. This number should be su�ciently

large to promote the diversity of the population, but at the same time, not too large

to avoid excessive computational burden that could compromise the evolutionary

algorithm’s capability to solve problem.

The number of individuals has also an indirect impact on the initialization meth-

ods used. The lower the number of individuals, the higher must be the concern about

exploration ability, maintaining diversity and avoiding the local optima problem. In

such cases, the population should be sampled not randomly, but somewhat premed-

itated [18], in order to optimise the coverage over the search space by the initial

individuals.

Selection Operators

Selection operators aim to collect the set of prospective parents to be allowed to

reproduce, based on the fitness of each individual. The set of o↵spring for the next

generation will be created from the parents’ set.

They take all the population into consideration according to each individual’s

fitness. This means that any individual is able to be part of the parents set. However,

this process is probabilistic and the probability of being selected to the parents set
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depends on the fitness of each individual: the higher the fitness value, the higher is the

probability to be selected. Hence, it is possible to prevent the premature convergence

of the algorithm since it exists probability of choosing a below-average individual,

avoiding a “greedy” approach.

Variation Operators

The role of the variation operators is to generate new solutions with the necessary

diversity, creating new individuals from existing ones. This is done by imitating

the reproduction mechanisms in nature. There are two main operators used which

di↵er in the classic Evolutionary Algorithm in their arity (the number of operands

necessary): recombination (or crossover) and mutation. However, other operators

were proposed, such as transduction [19], conjugation [20, 21, 22] or transposition

[23].

Recombination Also known as crossover, it is an operator that generally takes two

so-called parents as input arguments and produces one or two descendants. Parts

of the parents’ genotypes exchanged between to produce the o↵spring. This process

must be performed in such a way that the o↵spring hold a structurally valid genotype

structurally. This operator is stochastic, meaning that is known that the parents

will exchange information, but each genotype’s portion is chosen through a non-

deterministic process. The idea of using recombination is to hopefully combine the

best portion of each parent and obtain an o↵spring with increased fitness that can

better survive, it wants to exploit the search space. For this reason this operator is

applied with a high occurrence probability (typically between 0.5 and 0.8 [9]).

Mutation It is an unary operator that creates a new individual by slightly modi-

fying the input individual. The objective of this operator is to provide diversity by

exploring the search space with random and unbiased changes over the individual.

The principle behind mutation, in opposition to recombination, is to explore more

unlikely areas of the search space, which might lead in the future to better solutions.

Because it holds certain destructive (but interesting) properties, mutation is applied

with a low occurrence probability (typically around 0.001 [9])).

Survivor selection mechanism

When the o↵spring are generated, the survivor selection mechanism has the role

to select the individuals that will be part of the next generation.
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There are two approaches to define the new population. The so-called generational

approach performs full replacement, that is, the o↵spring will totally replace the

parent population. On the other hand, a partial replacement approach does not

perform a full replacement. Instead, in a simplified way, only the x best children

will replace the x worst parents (assuming that the size of the population remains

constant, which is the traditional approach, and x < size

pop

).

Generalizing the survivors selection mechanism process and assuming that the

size of the population remains constant, if the number of children is lower than the

population, the children will replace a part of the population and the remaining older

individuals will survive for the next generation. Otherwise, a full replacement can be

done.

Inicialization method

Initialization methods in evolutionary algorithms are generally low-cost processing

since it is usual to initialize the population randomly. However, in some particular

cases (for example, in case of using lower population sizes as it was mentioned be-

fore) it can involve an extra computational e↵ort. The initial solutions are created

randomly, should be controlled in order to prevent the creation of invalid solutions.

Termination criteria

Evolutionary Algorithms run for a predefined length of time. Ideally, if one knows

the optimal fitness level, when that fitness is reached by an individual, one can stop

the algorithm and retrieve the solution.

However, Evolutionary Algorithms do not guarantee reachability to a global op-

tima since they are stochastic. Even if a suboptimal solution is considered an accept-

able one, using a suboptimal fitness value as a threshold or margin error to stop the

algorithm increases the chances of ending the algorithm but it does not assure that

it is terminated. To avoid the risk of getting stuck in the evolution process, other

termination strategies were proposed to turn EC into a viable option [8]:

• The CPU time reaches its maximum level;

• The number of fitness evaluations performed reaches a limit;

• The number of generations reaches a limit;

• Fitness improvement remains under a given threshold value for a certain amount

of time (Stagnation);
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• Population diversity decreases under a given predefined threshold.

2.1.2 Genetic Programming

This EC method will be briefly described concerning the structures and operators

used, since GP is the approach chosen to perform the evolution of images.

GP was first proposed by Cramer [24], and further extended by Koza [1], as

a trial to evolve programs instead of simple structures. Koza argued that evolving

programs could be used to solve problems without explicitly programming them. The

main di↵erence compared to other Machine Learning approaches (formal grammars,

self-organizing maps, neural networks, decision trees, etc.) remains in the use of a

generalized structure while other Machine Learning approaches use GP use computer

programs special structures to solve a problem.

GP evolves stochastically individuals into new individuals through generations,

trying to obtain the best individual possible although there are no guarantees. The

main distinguishing feature of GP is the type of individual used to evolve: a program.

From now on, the terms individuals, programs and candidate solution will be used

interchangeably.

GP’s main advantage is the construction of increasingly more complex structures,

which causes the growth of the genotype length. The structure is not restricted to

a fixed length. However, this growth can occur in an uncontrolled way, without

increasing the fitness. This phenomenon is denominated bloat [25].

Representation in GP

Programs can be represented through abstract syntax trees, they are more in-

tuitive and there is a lot of work performed in GP using trees [1, 16]. Although

tree representation is the most widely used in GP, linear [26] and graph [27, 28] rep-

resentations can also be used. As an example, Figure 2.2 represents the program

max(x + x, x + 3 ⇤ y). Notice in this program that the variables x and y, and the

constant 3 are the leaves of the tree. This subset is designated in GP as the terminal

set. On the other hand, the operators + and ⇤ correspond to the internal nodes of

the tree. This set is designated in GP as the function set. Together, the function

set and the terminal set form the primitive set. Table 2.1 shows an example of a

primitive set used in GP.

As indicated in the example in table 2.1, both the function set and the terminal

set can have several types of data. For example, functions can range from a simple
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Figure 2.2: Example of a program using tree representation [17].

Table 2.1: Example of a primitive set that can be used to solve a possible GP problem
[17]

Function Set
Kind of Primitive Example(s)
Arithmetic +,*,/
Mathematical sin, cos, exp
Boolean AND, OR, NOT
Conditional IF-THEN-ELSE
Looping FOR, REPEAT

Terminal Set
Kind of Primitive Example(s)
Variables x, y
Constant values 3, 0.45
0-arity functions rand(), go left()

add operation to a loop. Terminals have constants, variables and functions which do

not take any arguments.

Irrespective of the primitive used, Koza defined two main properties that must be

satisfied in order to have a GP algorithm to run properly: su�ciency and closure.

Su�ciency enunciates that the primitive set should be su�cient to express a so-

lution for the problem. The problem is that, in general, it is hard to know what is the

correct primitive set to use. It is only possible to know in cases which theoretically or

empirically one knows in advance the right primitive set to express a solution. Fol-

lowing a trial-and-error approach, it can happen that the primitive set is insu�cient,

and in that case, one cannot obtain the optimal solution, but an approximate one.

On the other hand, if unnecessary primitives are added, the algorithm does not slow

down too much, but it can create unexpected biases.
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The other property defined by Koza was closure, to assure type consistency and

evaluation safety. Basically, type consistency means that any subtree can be used as

an argument of any function which requires arguments. This fact implies that the

data type used remains consistent, and if there is a possible problem with incom-

patible types, conversion mechanisms can be provided. For example, the expression

AND(1,�1) generates a function which accepts two boolean operands, but instead

this expression has two integer operands. A possible solution consists in defining a

non-negative number as TRUE and a negative as FALSE. However, these mecha-

nisms can introduce unexpected biases in the problem. Evaluation safety guarantees

that functions are handled for cases in which they fail at runtime, such as the division

of a number by zero. To solve this problem, protected versions of these functions are

created or individuals which fail in the evaluation phase are strongly penalized in

their fitness.

Initialization methods

Initializing individuals in GP is typically a random process. It consists in creating

trees using functions and terminals as nodes. Before explaining the main methods

used to initialize the population, there are two properties used to analyse an individ-

ual. The depth of a tree is the number of edges that need to be traversed to reach

the furthest terminal node. Concerning a metric related with nodes, the size of a

tree is the number of nodes in a tree.

All the methods that will be described below use the depth of a tree as a reference

in the initialization process. The full method consists in building trees with the

same depth for every path that connects the root to the leaves (a predefined depth

that should not be exceeded). Figure 2.3 illustrates the generation process step-by-

step (t = time) using the full method with a maximum depth of 2. Nodes from the

function set are added until the defined depth is reached (in t = 1, 2 and 5). After

that, only nodes from the terminal set can be used to fill the remaining of the tree

(t = 3, 4, 6, 7).

Although this method fills the tree with nodes until it is full, one could immediately

deduce that all the the programs generated will have the same size. However, this

situation only happens if all the nodes from the function set present in all the trees

have the same arity. But even considering an optimistic scenario where the function

set has functions with di↵erent arities, full method generates trees with a quite limited

range, which does not favours diversity.
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Figure 2.3: Iterative scheme of full method initialization strategy [17].

A di↵erent method, known as grow method tries to overcome this shortcoming.

The main di↵erence compared to full method is that both nodes from the function and

terminal sets can be used to fill the tree. This means that, despite having a maximum

depth limit to the generated tree, not every path from the root to the leaves must

have the same depth. Figure 2.4 illustrates the generation process step-by-step using

the grow method with a maximum depth of 2.

Figure 2.4: Iterative scheme of grow method initialization strategy [17].

Notice that with this method, in the moment t = 2 a terminal node is used to fill

is chosen instead of a function one. Automatically, this node will be a leaf and the

depth will be lower than the predefined.

The grow method is very sensible in what concerns the size of the terminal set

and function set. If the number of terminals is significantly larger than the number of
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terminals, grow method will generate short trees, regardless the tree depth defined.

On the other hand, if the number of functions is significantly higher than the number

of terminals, grow method will generate very similar trees when compared with the

full method.

Despite of creating di↵erent tree types (analysing both tree depth and size), grow

method and full method are not able to provide substantial variety in the created

trees. To overcome this problem, Koza proposed a combination of those methods,

known asRamped Half-and-half. This method uses several depths. For each depth

half of the individuals are created with the grow method and the remaining half are

created with the full method. Table 2.2 summarizes the creation process of Ramped

Half-and-Half, choosing a population size of 20 and a number of depths that ranges

from 2 to 6 with individuals I
i

in which i identifies an individual. For example, I1 is

an individual created with the grow method with a depth of 2.

Table 2.2: Description of initialization of 20 individuals and depth varying from 2 to
6, created with Ramped Half-and-half method.

Method d=2 d=3 d=4 d=5 d=6
Grow Creation I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

Full Creation I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

Ramped Half-and-Half is the most widely used method to initialize populations

in GP because it provides the necessary structural diversity to the population. How-

ever, there are some problems associated with this method [17] and sometimes, one

has to take into account that if some properties of the problem are known, and if

that happens, a non-random initialization may improve the performance of the GP

algorithm.

Fitness functions

Fitness functions are meant to provide information about which regions of search

space are good or not. In GP, individuals are programs and in order evaluate them,

each program must be executed to know the fitness measure.

In GP, fitness measures can be expressed in several ways. It is possible to measure

fitness by minimizing the error between an expected output and the real output or

maximizing the accuracy in classification problems where one has to recognise pat-

terns. A fitness metric can also be built around the amount of resources used to
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accomplish a predefined task (e.g. time), or taking into account the payo↵ resul-

tant from a set of actions taken by a game-playing program or even measuring the

compliance of a structure with a predefined criteria.

In order to evaluate each individual/program, an interpretation is performed in

such a way that each node is only executed when the value of their arguments is

known. This is done by traversing similarly to a depth-first search from root to

leaves and executing a node only when all of its children were already executed. This

evaluation process is schematically described in figure 2.5.

Figure 2.5: Example of a tree evaluation to compute fitness measure [17].

Selection Operators

As in EC in general, GP uses a selection mechanism based on the fitness of each

individual. There are several ways to provide selection [29]. However, only the tour-

nament selection is going to be focused because it is the most common alternative

chosen within GP’s scope [17] and it is the selection method chosen for this work.

An important aspect of selection is that whatever is the selection mechanism

chosen, it has to be selective enough (promote selection pressure) to accelerate the

convergence and fitness improvement, but at the same time not too selective and

consequently compromising population diversity by exploring local optima.

Tournament selection chooses a parent by randomly retrieving a predefined num-

ber of candidates from the current population and then selecting the best of them.

Given that a crossover needs two parents, two tournament selections will be needed

to perform a crossover. Selection pressure can be regulated by adjusting the number

19



of candidates retrieved. For example, if the number of candidates is 1, it is the equiv-

alent to a random selection. On the other hand, if the number of candidates is the

same of the size of the population, the best individual will be chosen. A reasonable

number of candidates, capable of coping with the drawback mentioned before, will be

able to provide the rise of the fitness by choosing the best individuals to breed and

at the same time allow some average-quality individuals to breed if they are the best

from the candidates chosen to tournament selection, avoiding the premature conver-

gence of the algorithm. The most common values chosen for tournament selection

are between 2 and 10.

Variation Operators

In tree-based GP, both recombination and mutation operators are adapted to work

with tree structures. As in other EC approaches, GP uses these operators with a given

probability. Typically, recombination is used with high probability values (around

90% [9]) whereas mutation is applied with very low probability values (roughly 1%

[9]).

In some cases, when the sum of recombination and mutation probability (denoted

by p) does not pass 100%, another operator is introduced, known as reproduction,

which will act with a probability of (1 � p). This operator only clones the selected

individuals.

Recombination

In GP, the most common type of recombination used is subtree crossover. Given

two parents, this methods selects in each parent a crossover point, in a probabilistic

way. Then, copies of the parents are created to avoid their disrupt. These copies are

used to perform the exchange of subtrees. The crossover point in the first parent will

be the root of the subtree used to replace the crossover point of the second parent.

The second o↵spring is generated similarly, by replacing the selected subtree in the

first parent with the selected subtree of the second parent. This process is illustrated

in figure 2.6.

Given the structural properties of trees, if an uniform distribution was used to

select crossover points, they would have higher probabilities of being chosen in nodes

with higher depth (in a complete binary tree the number of leaves is higher than the

number of internal nodes). This fact would imply that crossover would exchange less

information. To prevent this situation to happen, Koza suggested to attribute 90%

of selection probability to internal nodes and 10% to external nodes.
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Figure 2.6: Description of subtree crossover process [30].

Mutation

The most common form of mutation in GP is subtree mutation, also known as

“headless chicken crossover” [31].

In summary, a new subtree is generated and this new subtree will replace a ran-

domly selected subtree within the individual, like in subtree crossover. The di↵erence

is that there are not two individuals involved but one instead. Besides, new genotype

information is introduced through a new tree since there are no second individual to

exchange genetic information with. This process is illustrated in figure 2.7.

Figure 2.7: Description of subtree mutation process [17].
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2.1.3 Multi Objective Evolutionary Algorithms

Real-world problems do not usually have a single global optimal solution and they

are not subjected to a single objective. Instead, they have multiple and equally good

optimal solutions. This fact occurs because if a solution is analysed according to

several often conflicting objectives, there is not any solution better than all of the

others over all objectives. Consequently if one wants realistic solution, the problem

has to be solved in a more complex way.

These so-called multiobjective optimization problems, tend to be trickier to solve

because their objectives may conflict each other, which means that an improvement

over one objective usually comes at the price of other(s) objective(s) degrading.

A formal definition of a multiobjective optimization problem is described in equa-

tion 2.1:

maximize
Y

Y = f(x) = (f1(x), ..., fn(x))

subject to x = (x1, ..., xm

) 2 X,

y = (y1, ..., yn) 2 Y ;

(2.1)

where one wants to maximize a set of functions that maps m parameters into n

objectives. In equation 2.1, x denotes the decision vector, X denotes the parameter

space, y represents the objective vector and Y the objective space.

The set of solutions of this type of problem called as Pareto optimal, is composed

of solutions that cannot be improved in any objective without degrading another.

In order to understand the Pareto optimal concept, it is necessary to introduce

dominance and non-dominance. One says that solution a dominates solution b (a � b)

according to equation 2.2.

8i 2 {1, ..., n} : f
i

(a) � f

i

(b)^

9j 2 {1, ..., n} : f
j

(a) > f

j

(b),

a, b 2 X.

(2.2)

On the other hand, when a decision vector is not dominated by any of the others

decision vectors, it is a non-dominated solution. Pareto optimal set, or Pareto front,

contains all the non-dominated solutions.

One possible way to tackle these types of problems consists on using Multi Ob-

jective Evolutionary Algorithms (MOEA’s). These approaches have been preferred

over non-population-based methods during the last years due to the characteristics

of Evolutionary approaches, as they can explore several solutions in the search space

simultaneously, in a single run.
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In MOEA’s, evolution must favour the appearance of hopefully better solutions

taking into account an entire set of objectives rather than a single one. However, as it

was said before, most of the times it is not possible to select an overall best solution.

Based on the overviews in [32, 33], three main techniques of using evolutionary

algorithms to evolve optimal solutions according to several objectives are described

and explained.

Plain aggregation techniques When applying the “survival of the fittest” prin-

ciple in a simple evolutionary algorithm, scalarization is necessary in order to select

the best individuals by comparing their fitness. Plain aggregation techniques merge

all fitness values (each value corresponding to each objective) into one single value

that is used for selection purposes. Consequently, the selection process is made in the

exact same way as a single objective evolutionary algorithm. This can be seen as an

advantage because the general evolution process of the evolutionary algorithm is not

changed, it only needs an additional combining function to convert the entire set of

values into a single one.

However, the capability of finding an optimal solution depends on the combining

function used and formulating such a function is a hard task and requires knowledge

about the problem domain. The e↵ort of finding an optimal solution through this

technique is worsened by running the algorithm several times, with di↵erent combin-

ing functions. In the literature two popular approaches can be highlighted, (1) the

weighted-sum approach [34], which consists in obtaining an aggregated fitness value

as a result of a linear combination between single fitness values and weights associ-

ated to each single objective and (2) the target vector optimization [35], in which

the algorithm minimizes the distances between the objective values and a goal vector

that contains the designed goal of each objective.

Population-based non-Pareto techniques Another possible way to address mul-

tiobjective optimization using evolutionary algorithms is to influence the evolution

direction during reproduction phase. Here, the parents are selected by considering

the di↵erent objectives, i.e. some parents are selected according to one objective,

while others are selected according to another. This way, the concept of best individ-

ual will not get blurred by an aggregation and non-commensurable goals are treated

separately. Within this scope, two works can be highlighted, (1) the choose of indi-

viduals according to a priority list of objectives selected by the user [36] and (2) the
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control of each objective’s importance using an associated weight value which varies

according to the average fitness considering each single objective [37].

Pareto techniques Pareto approaches benefit from the fact that all the non domi-

nated solutions are treated in the same way in terms of quality evaluation. Therefore,

there is no risk of valuing an objective more than the others.

Two ways of applying Pareto approaches are reported. The first one, introduced

in [38], consists in ranking the individuals according to how many other individuals

dominate it, where non-dominated individuals are ranked above the ones which are

dominated. The more individuals dominate a given individual, the lower will be

its fitness. Following this idea, the Non-dominated Sorting Genetic Algorithm-II

(NSGA-II), was proposed [39].

Pareto dominance at the tournament level was introduced in [40]. In this case,

the pareto domination criterion is applied in a binary tournament where the indi-

vidual that dominates the other wins. In case of neither individual dominating the

other, the winner is determined by analysing the existence of individuals within their

neighbourhood. The exploration of these techniques intensified and became popular

and widely used within the scope of multiobjective optimization

2.2 Maintaining diversity of the population

In biology, diversity plays an important role by providing several ways to survive

in the same environment. The higher the diversity, the higher will be the survival

probability of a given species by the mean of creation of innovative and novel be-

haviours.

In EC, the same phenomenon occurs while one is seeking the best solution. Main-

taining the diversity of a population because during the evolutionary run the algo-

rithm tends to converge to a set of very similar solutions in terms of fitness. If this

convergence happens in a suboptimal search space zone, the task of finding the global

optima becomes harder. Concerning the diversity topic, the initialization method

is important because it is expected to create individuals that will cover the search

space with the lowest bias possible. If individuals assume a vast range of solutions,

then it is less probable that the algorithm converges to a local peak (the local op-

tima problem). Population size is important too, because the larger the number of

individuals, the higher will be the coverage of the search space, minimizing the risk

of leaving unexplored areas of the search space that may contain a global optima.
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However, increasing the number of individuals will cause the algorithm to be more

time-consuming and resource-demanding.

Several techniques exist to promote diversity [41, 42], taking into account either

genotypic measures [43] or phenotypic measures [44]. This work will focus on novelty

search and fitness sharing, using measures at the phenotype level, because these

techniques match with this work objectives.

2.2.1 Novelty Search

When one addresses the fitness functions’ topic, it is almost implicit that one is

talking about objective-based fitness functions since the work of Holland and others

was disseminated throughout the literature about EC. The idea behind this type

of fitness functions consists in having a specific target, an objective in mind, which

is used as a reference to evaluate how close a candidate solution is to the optimal

solution.

One can characterize these fitness functions as convergent, in the sense that they

are typically used for optimization (maximization or minimization) problems and the

candidate solutions are gradually evolved to obtain increasingly closer solutions to

the optimal solution (in the best case scenario the optimal solution itself). This

evolution occurs over the di↵erent generations of the Evolutionary Algorithm and it

is expected to improve the quality of the population on average, as the algorithm

proceeds through generations. After a finite number of runs, if the fitness is precise

and expresses correctly the desired improvement, one expects to have the algorithm

exploring more promising regions as the individuals are located nearby the optimal

solution.

Despite the reported success and dissemination of these objective-based functions,

some authors argue that objective-based approaches narrow the potential of an Evo-

lutionary Algorithm [45]. The reason for this claim lay on the fact of the e↵ectiveness

of an objective function in an Evolutionary Algorithm depends on the problem’s char-

acteristics, namely if it is a deceptive problem or not. The concept of deception was

introduced by Goldberg [38] when he realised that the above-average individuals were

not globally competitive when testing the algorithms with a set of deceptive prob-

lems created before [46, 47, 48]. Since then, several studies addressed the deceptive

phenomenon.[49, 50]. With objective functions, ambitious goals have higher di�culty

of being pursued, as fitness landscapes become more complex because of the di�culty

of formulating appropriate fitness functions. Thus, evolution can guide individuals to

dead ends in the search space.
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While some authors focused on studying the deception itself and its e↵ects on an

Evolutionary Algorithm’s performance, others studied a way to mitigate deception.

What if the best way to reach an objective could be attained by not searching for

the objective itself? This is the idea behind the novelty mechanisms in Evolutionary

Computation. Instead of looking for something specific, towards a fixed objective, the

Evolutionary Algorithm evolves according to a so-called novelty degree instead of the

traditional fitness. The more distinctive is the solution, the higher will be its novelty

value. Thus, if one tries to reward the uniqueness of each individual, the Evolutionary

Algorithm will strive for di↵erent solutions along the generations. In the context of

Art and Computational Creativity, Saunders developed a computational model that

consisted of multiple agents looking for novel images generated by them through GP

[51] inspired by “The Law of Novelty”, a thought settled by Martindale in his work

known as “The Clockwork Muse” [52]. Their novelty metric was based on a subjec-

tive definition of interestingness which states that what makes something interesting

depends upon two aspects: unexpectedness and actionability [53]. To compute the

novelty value of each individual, a Self-Organizing Map (SOM) (described in section

2.2.3) was used.

A di↵erent novelty search approach was proposed by Lehman and Stanley [45, 54].

Instead of using a SOM to obtain a novelty measure directly, each pair of individuals

has a dissimilarity value associated. Thus, the final novelty measure from an individ-

ual x can be obtained by adding all the dissimilarity values between the individual

x and its neighbours µ

i

in which i identify an individual di↵erent from x. As this

process is very time-consuming, the k-nearest neighbours distance relative to x are

used to compute the novelty measure. Equation 2.3 resumes the way to calculate

novelty measure ⇢ given an individual x.

⇢(x) =
1

k

kX

i=1

dist(x, µ
i

) (2.3)

where k is a fixed parameter determined experimentally and µ

i

is the ith-nearest

neighbour concerning a domain-dependent distance measure dist between x and µ

i

.

In this context, Liapis et al. proposed a distance measure used to analyse the dis-

similarity of two images using Auto-encoders (described in section 2.2.3) [55]. Then,

this distance measure was applied on Novelty Search algorithms.

This approach could bring some problems exploring the search space, because

maximizing explicitly novelty using exclusively equation 2.3 does not prevent a “back-

tracking” behaviour, where the algorithm is exploring already explored solutions, like
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a random walk. To avoid this behaviour and transform novelty search into a viable

alternative, a novel archive was used to store the most relevant (novel) individuals

found until the current population. To allow storage of the most relevant individuals

only, a threshold ⇢

min

was defined and individuals were only added if they reached

that minimum value. Thus, the k-nearest neighbours take into account both individ-

uals from the current population and the novel archive. Figure 2.8 summarizes the

evolution process of an algorithm which uses novelty search.

Figure 2.8: Novelty search process along generations [56].

Distinguishing visually how the implicit process of both fitness-based search and

novelty search is performed is intuitive. Figure 2.9 illustrates which ares of the search

space are more likely to be explored, using a maze as an example and assuming that

one wants to minimize the distance from the individual to the final maze position.

In figure 2.9a, the candidate solution (represented by a filled circle) will strive to get

as close as possible to the optimal solution (represented by an “X”) in a eager way.

After hitting the wall, the candidate will more likely stay in similar positions as it falls

into the trap induced by a deceptive problem. In figure 2.9b the candidate solution

is always trying to be as unique as possible. If one considers the set of individuals

represented by white circles, the candidate solution will try to “run away” from the

other individuals, and eventually traversing the right path in order to get the final

position in the end.

In spite of outperforming the traditional objective-based fitness functions, novelty

search has a divergent nature, because it is not directed to any particular goal. It

overcomes the deceptiveness of a problem, but there is no particular focus in solving

the problem explicitly because there are no guiding references about how close are

the candidates solutions relative to the optimal solution. Novelty search per se is not

suited to constrained optimization problems.

Lehman and Stanley worked around this problem by presenting the Minimal Cri-

teria Novelty Search (MCNS) [58]. The purpose of this approach was to explore
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(a) Fitness-based Search. (b) Novelty Search.

Figure 2.9: The rewarding mechanisms in Fitness-based search and Novelty Search
[57].

novelty search while enforcing individuals to have a given requirement. This solution

was capable of o↵ering a di↵erent guiding mechanism, focusing on exploring novelty in

valid solutions (or feasible solutions) only. MCNS extends the default novelty search

by determining if the candidate solution is a feasible solution or not in the evaluation

phase. If the candidate is a feasible individual, novelty search operates as normal,

but if the candidate is an infeasible individual, the novelty value will be zero.

The default version has di�culty to cope with large search spaces and MCNS

prunes infeasible regions, and this is why the latter achieves better results than the

default novelty search. However, MCNS performs a random walk while no feasible

individual is found, because there is a trial to evolve individuals which have the same

fitness value.

Liapis et al. proposed two di↵erent approaches of constrained novelty search [59],

using Feasible-Infeasible Two-Population Algorithm (FI-2pop GA)[60] as an inspi-

ration. FI-2pop GA operates with two di↵erent sets with independent heuristics to

compute fitness values: the set of infeasible individuals and the set of feasible indi-

viduals. In each generation the population is divided into these sets and breeding

is performed only between individuals of the same set. Nevertheless, it is possible

that the mating of two feasible individuals generates an infeasible individual and the

mating of two infeasible individuals generates a feasible individual. FI-2pop GA al-

lows the migration of the o↵spring in those cases, which promotes diversity in both

populations.

Novelty Search was introduced with FI-2pop in two di↵erent forms. The first

one is known as FINS and performs an objective-based search in the infeasible set of

individuals and a novelty search in the feasible set. The idea is to first obtain valid

individuals, and once they are obtained, one starts to evolve them in order to retrieve
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(a) FINS algorithm. (b) FI2NS algorithm.

Figure 2.10: Representation of FINS and FI2NS evolution processes along generations
[56].

a vast range of feasible solutions. In order to know how close infeasible individuals

are to being part of the feasible set, a border which separates the two sets must be

defined. The closer infeasible individuals are to the border, the higher will be their

fitness.

However, determining a good border is a hard task, and to avoid that problem

a di↵erent flavour of FI-2pop was created. This flavour is known as FI2NS and it

di↵ers from the first in the sense that both sets, infeasible and feasible, uses novelty

search, which saves the work of designing the border.

These algorithms were employed in DeLeNoX system [55]. In this work, both use

equation 2.3 to compute novelty for each individual, using a specific distance measure

between two phenotypes. This metric uses auto-encoders to detect relevant features

from images and these features will be used to assess the uniqueness of an individual

(auto-encoders are further described in section 2.2.3).

Comparing these two methods, the authors concluded that FI2NS was able to

generate more diverse content but it had di�culty in maintaining an acceptable num-

ber of feasible individuals. On the other hand, FINS had better results on highly

constrained search spaces although it generated less diverse content.

Figure 2.10a illustrates how evolution is processed along generations using FI-

2pop GA with Novelty Search in the infeasible set of individuals (FINS) while figure

2.10b illustrates evolution process of FI-2pop GA with Novelty Search in both sets of

individuals (FI2NS).
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The problem of novelty search being explored in smaller search spaces as it suits

better these kind of problems is referred also by Cuccu and Gomez [61]. Their idea

starts from this motivation and consists in doing two evaluations per individual: one

in terms of fitness-based search and the other concerning novelty search. These two

values are combined explicitly using equation 2.4.

score(x) = (1� ↵) · fit(x) + ↵ · nov(x) (2.4)

The result, score(x) is obtained by performing a weighted sum between fitness

calculated from the fitness-based search(fit(x)) and the value calculated from novelty

search (nov(x)). The weight factor is denoted by ↵. In the end, the final value

score(x) is the value actually used to guide the evolution process. It is also relevant

to notice that both fit(x) and nov(x) are normalized values according to the actual

population and not simple raw fitnesses. Their normalization is calculated using

equation 2.5,

fit(x) =
fit(x)� fit

min

fit

max

� fit

min

, nov(x) =
nov(x)� nov

min

nov

max

� nov

min

, (2.5)

where fit(x) and nov(x) are respectively, the raw fitness and novelty degree of

individual x, normalized according to their maximum and minimum value in the

current generation. Maximum values for fitness and novelty are respectively denoted

by fit

max

and nov

max

while their minimum values are denoted by fit

min

and nov

min

.

2.2.2 Fitness Sharing

Multimodal problems are characterized by having multiple optima instead of a sin-

gle global optima. In this situation, a traditional genetic algorithm often converges

to one of those optima instead of identifying all of them. This happens because the

selection operator induces a strong pressure towards convergence in spite of the exis-

tence of the mutation operator. As this operator is not able to provide the necessary

diversity to multimodal problems, other techniques must be used.

Fitness sharing was proposed by Holland [12] and further improved by Goldberg

and Richardson [62]. It is a niching method used in genetic algorithms to search in

the neighbourhood of several peaks in parallel and is based on the idea of speciation

and competition among the individuals of each niche who strive to obtain resources

to survive. The higher the number of individuals within a niche, the lower will be
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the survival probability of all individuals inside that niche because they will need to

share the same resources. This encourages niches with fewer individuals to survive.

In EC, this idea can be implemented by worsening the raw fitness of individual i

(f
i

) according to its niche count m
i

, based on the number of individuals belonging to

that niche and their proximity to individual i. The niche count is calculated as it is

represented in equation 2.6.

m

i

=
NX

j=1

Sh(d
i,j

), (2.6)

in which N represents the size of the population, d

i,j

represents the distance

between individuals i and j and Sh is a sharing function which calculates how similar

two individuals are, according to equation 2.7.

Sh(d
i,j

) =

(
1� (di,j

�

)↵ if d
i,j

 �

0 if d
i,j

> �.

(2.7)

in which ↵ is a constant parameter that is normally set to 1 and it regulates the

shape of the sharing function. In turn, � is a parameter that denotes the boundary

which separates the niche radius from the rest. Only individuals within this boundary

will be considered competing within the niche.

Thus, the final fitness of an individual i (f̂
i

) can be obtained using equation 2.8.

f̂

i

=
f(i)

m(i)
(2.8)

Despite of favouring exploration of search regions which were not explored yet,

fitness sharing has shortcomings too. One of them is related with the � parameter,

as it is defined in advance and, generally, one does not have information about the

search space. Besides, the computation of the sharing fitness for all individuals in

all generations is a time-consuming task. To overcome this problem, Oei, Goldberg

and Chang proposed a method to update fitnesses continuously. Fitness sharing was

applied alongside with a binary tournament selection scheme until all the parents

were selected to generate the o↵spring. Furthermore, Yin and Germay suggested the

employment of a clustering algorithm over the population and the sharing fitness

would be computed taking into account only the individuals belonging to a given

niche instead of the entire population.
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2.2.3 Measuring diversity

In a trial to distinguish techniques which aims to promote diversity in the pop-

ulation from metrics used to measure diversity, section 2.2.1 and 2.2.2 address the

promotion of diversity only mentioning which metrics were used with the techniques

employed. This helps the reader keeping track of the subject addressed in each sub-

section while receiving only the most relevant information. Thus, this subsection

addresses how diversity metrics were employed in a deeper way. Recall that until

now, two metrics were identified: one that uses auto-encoders and other which uses

SOMs to associate an uniqueness degree to each individual.

Auto-encoders

Auto-encoders [63] are a type of artificial neural networks which can be used for

dimensionality reduction or data compression purposes. In the context of imagery,

auto-encoders can be useful to represent images with a more abstract and compact

representation. For the sake of simplicity and contextualization within this work,

only the architecture of the auto-encoder employed in DeLeNoX will be explained in

detail.

An auto-encoder is a feedforward network and it has an input layer, an hidden layer

and an output layer. Although it can be trained using backpropagation algorithm [64],

its learning method is placed in the category of unsupervised learning. An example

of an auto-encoder is presented in figure 2.11.

Figure 2.11: An example of an Auto-Encoder [55].

In the backpropagation algorithm error is computed using equation 2.9a, where

r is the real output and y is the expected output. With auto-encoders, to compute

the error, the input value x is used instead of y, as it is possible to notice in equation
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2.9b. This happens because, conceptually, input and output layers aim to represent

the same space and the auto-encoder will be trained to learn the identity function.

E =
1

2
· (r � y)2 (2.9a)

E =
1

2
· (r � x)2 (2.9b)

Basically, an auto-encoder with the input space P and m dimensions will repre-

sent the same data in a lower dimensional space Q with n dimensions (n < m) by

performing an encoding using the parametric function described in equation 2.10a,

where W is the weight matrix, b is the bias from the input layer and sig is the sig-

moidal function used as activation. Then, a decoding is performed by mapping back

Q into the original space P 0, where data is reconstructed with a small reconstruction

error using equation 2.10b, where W | is the weight matrix transposed and b

0 the bias

from the hidden layer. As the number of dimensions in the hidden space is lower than

the number of dimensions in the original space, one can consider an auto-encoder as

a lossy method to compress data.

Q = sig(W · P + b) (2.10a)

P

0 = sig(W | ·Q+ b

0) (2.10b)

In the context of imagery, an auto-encoder was used to retain the most significant

features from an image in a higher level. These features were used to compute the

novelty degree of an individual. Based on equation 2.3 from section 2.2.1, equation

2.11 was defined,

⇢(x) =
1

k

kX

i=1

vuut
NX

n=0

[q
n

(x)� q

n

(µ
i

)]2 (2.11)

where x is the individual being analysed, k is the number of neighbours, N is the

number of features in the hidden layer, q
n

identifies a neuron from the hidden layer

and µ

i

identifies one of the neighbours of x used to compute novelty. In this equation

it is possible to notice that an euclidean distance between individuals is used, after

retrieving high-level features for them, in the hidden layer.
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Self Organizing Maps

Self Organizing Maps (SOMs) [65] are non-traditional neural networks. When

compared with the most traditional ones (perceptron, ADALINE, Multilayer Feed-

forward Networks, etc.) they have structural di↵erences and they learn how to classify

data without supervision. Instead of working with traditional layers, SOMs have an

input layer with n neurons and a lattice of neurons, each with a vector of n weights

associated because each input node has a connection to every node in the lattice, as

it is represented in figure 2.12.

The learning algorithm is built as it follows. Weights vectors are randomly initial-

ized and then, examples from the training data are presented to the lattice. For each

example presented, the algorithm determines which node is the most similar to the

example presented. This node is designated as the Best Matching Unit (BMU), rep-

resented in black in figure 2.12. This node can be determined using a simple distance

measure such as the Euclidean distance.

Figure 2.12: An example of a SOM [66].

In the next phase, weights vectors are going to be updated. Once again, this

perspective di↵ers from the most traditional ones. In SOMs, nodes are organised in a

lattice because each node has its own coordinates values, making possible to compute

distance between nodes. This distance is used to select the nodes that will su↵er
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a weight adjustment. Basically, there is a neighbourhood parameter that marks the

region of nodes that need to be adjusted in each iteration. This neighbourhood region

will decay over time according to equation 2.12.

�(t) = �0 · e�
t

�

, t 2 N (2.12)

where �(t) denotes the neighbourhood radius value in the time instant t and � is

a constant.

Weight adjustments are performed over each node within the lattice using equation

2.13

W

t+1 = W

t

+⇥
t

· ↵
t

· (I
t

�W

t

), t 2 N (2.13)

where I

t

is the input vector in time instant t, W
t

is the weight vector of a given

node in time instant t, ↵
t

denotes the learning rate in time instant t and ⇥
t

represents

the influence of a node’s distance from the BMU.

As it is possible to notice, learning rate and distance influence are parameters

which varies over time. Learning rate is a parameter which decays over time according

to equation 2.14

↵

t

= ↵0 · e�
t

�

, t 2 N (2.14)

where ↵0 is the initial learning rate and the remaining variable were already men-

tioned. Distance influence is computed using equation 2.15.

⇥
t

= e

� dist

2

2�2
t

, t 2 N (2.15)

where dist denotes the distance (it can be the euclidean distance mentioned before)

between the node and the BMU and �

t

is the neighbourhood radius value computed

using equation 2.12.

In the context of novelty search, a SOM was used to compute a novelty degree

over each candidate that is going to be classified [51]. For this purpose, a lattice size

must be defined, and each node within the lattice denotes a possible category or type

determined in the train phase. When one is presenting a given example to a SOM

and the BMU is determined, it is assumed that the BMU is the category which better

fits the characteristics evidenced by the example. From this moment, one reasonable

approach to assess novelty is to compute the di↵erence between the category defined

by the BMU and the example presented. This can be done through the calculation

of the classification error of a given example.
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2.3 Evolutionary Art

Evolutionary art is a research field which overlaps concepts related with art, nature

and science. It “allows the artist to generate complex computer artwork without them

needing to delve into the actual programming used”[67]. The artistic dimension of

this field is present on the final products performed by the machine, whether they are

music, imagery, video, etc. Science assumes its role on Evolutionary Art (Computer

Science in particular) by handing over the creator role gradually from the human to

the machine. Finally, Nature has its influence by inspiring the artistic production

process based on the biologic roots left by Darwin.

Metaphorically speaking, one can consider the evolutionary art process in the

following way. Given a director (the environment, in biology) which leads a team of

artists (individuals), they will strive to solve a problem by presenting their solutions.

Then, these solutions are evaluated by the director, who decides the ones who are

the best according to some given criteria (fitness). After receiving feedback from the

director, the best solutions are selected (natural selection) and new solutions will be

produced based on the selected ones (reproduction).

A computer can create a similar process using EC techniques. They can be applied

in the form of Genetic Algorithms albeit the most common EC flavour used in the

context of imagery (which is within the scope of this work) is Genetic Programming.

Using Genetic Algorithms it is possible to represent an object as a set of param-

eters. Lets say for example that one wants to evolve cartoon faces. Thus, one can

define one parameter as the radius of an eye, another as the thickness of a mouth

and others parameters can be defined. This whole set of parameters is the genotype

and according to the value of each gene, the corresponding image will be produced

with a given appearance, creating the phenotype. A population of these cartoon faces

can be generated by adjusting the parameter values. Examples of phenotypes with

di↵erent gene values are presented in figure 2.13.

Figure 2.13: Examples of cartoons faces created from a set of parameters [68].
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(a) Tree representation
of expression x+y.

(b) Image generated
from expression x+y.

Figure 2.14: Genotype and phenotype using genetic programming approach to gen-
erate images [4].

Concerning Tree-based Genetic Programming, it is possible to represent an image

using an expression (it can have mathematical operators, logic operators, decision

operators, etc.) which is represented by a tree (the genotype). In this case the image

appearance will be influenced by the set of operators used, how mapping between

genotype and phenotype is performed, as well as Genetic Programming specific pa-

rameters. An example of a tree (figure 2.14a) and its respective image (figure 2.14b)

are presented on figure 2.14.

Evolutionary Art is divided in two major branches in the remainder of this section.

Section 2.3.1 addresses interactive evolutionary systems, where the evolution user-

guided. On the other hand, section 2.3.2 addresses automatic evolutionary systems,

which are systems capable of evolving artistic productions autonomously. All of these

subsections comprise only imagery topic, which is the only one within the scope of

this work.

2.3.1 Interactive Evolutionary Systems

Interactive Evolutionary approaches in the context of Evolutionary Art have been

used often, mainly because it is hard to define a good fitness function which is able to

control evolution process autonomously. In these kind of systems, the human plays

the role of evaluator, deciding which individuals will be used to breed.

The first system to appear within this category was The Blind Watchmaker, cre-

ated by Richard Dawkins [69]. He used genetic algorithms to evolve what he calls

“biomorphs” (vaguely animal-like shapes) by associating a determined gene to a given

characteristic of the biomorph (position, angle, length). He chose to evolve these 2D

images to show the impact of applying small changes over a significant amount of time
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and prove that in a narrow time window, new entities appear by chance. However,

the final product is the result of “cumulative selection”, which is not a pure random

process. Examples of biomorphs are shown in figure 2.15.

Figure 2.15: Examples of biomorphs created by Dawkins [69].

Following the steps of Dawkins, Sims created what is today the most popular ap-

proach to evolutionary art, the expression-based approach [2]. Using GP approach to

evolve images, textures and animations, Sims pointed out that fixed-length genomes

would limit the search space and it was important to remove this boundary from the

evolution process to allow the creation of more complex structures. Genotypes were

LISP expressions that were organised according to tree-based genetic programming:

each internal node was a LISP function and each external node was a constant or

variable. Everytime a symbolic tree was executed, a new image was produced. The

user was able to guide the evolution process like in The Blind Watchmaker, evaluat-

ing each image resultant from the corresponding expression. This evaluation would

enable the mating and mutation of symbolic expressions using more probably those

who generated images that met users taste. After this phase, a new generation of

individuals was created and the whole process was repeated.

Many authors started to get inspiration in Sims work to develop their own ap-

plications. Those were the cases, for example, of Rooke, which created a wider set

of functions, including fractals [70], Unemi, which created a multi-field interface1

to gather important features from di↵erent populations evolved independently [71],

Machado [72] who identified the problem of memory usage storing many images as a

knowledge base and proposed a method of automatic seeding to solve that problem,

and Hart, whose work focused particularly on color and form of the evolved images

[73].

1The author defined field as a population of individuals that can be visualized and selected by
the user
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Expression-based systems are in fact very powerful and theoretically, they have

been proven to be able to generate any image [4]. Nevertheless, in practice, generated

images tend to be abstract and mathematical based. Besides, the search space ex-

plored will depend on system parameters such as the primitive set, genetic operators,

genotype-phenotype mapping, etc.

Other techniques of Evolutionary Art were also explored, such as the line/shape

based approach. Concerning this approach, Ellie Baker used genetic algorithms to

evolve drawings as a set of lines. In this case the genotype was not composed by

symbolic expressions [74]. Instead, a set of strokes was used, where each one had a set

of parameters that described how each stroke should be performed. In this work, two

operating modes were created. One of them consisted in evolving line drawings from

a random initial set of drawings according to the user criteria. The authors obtained

butterfly forms and face shapes, despite of the di�culty of this achievement. These

results were the motivation of a second operating mode where the user performed a

preliminary sketch and then submitted it to a interactive evolution process, which

allowed to collect variations of interesting images.

Despite of the more common use of Interactive Evolutionary approaches, several

limitations have been pointed out [75]:

User fatigue It is the biggest problem identified by researchers. In interactive ap-

proaches, evolution depends on the human user. After a while, repeating the

same task all over again can induce monotony and fatigue, with the increase of

evaluation error.

Lack of consistency in evaluation Art is a subjective field, the decision of liking

or not some image depends on the user context and tastes. It is possible that a

user can vote positively for some image, and then change his mind, if the same

image appears again after some generations. Consequently, evolution can be

guided in an inconsistent way.

Novelty is valued instead of quality Evolutionary algorithms tend to converge

to some optima after a number of generations. In this case, it is common to

have a set of very similar images which can even be pleasant the human user.

However, the lack of diversity in those images will cause human eyes to highlight

a possible “outlier” that can be not so pleasant and value it more than the other

images.

39



Need to search under poor conditions Keeping in mind the human users limi-

tations, pleasant images must be obtained within a reasonable number of gener-

ations (avoiding fatigue) and with a low number of individuals (more individuals

means more evaluations and more memorizations to be done in order to com-

pare images). Under these conditions, evolutionary algorithms tend to have a

bad performance in terms of the quality of the produced images.

Slow process Evolving images where evaluation is conducted by the human user

is not just a tiresome task, is a very slow process which could be improved if

evaluation was performed by the machine.

In order to solve some of these problems, some applications run their evolution

software with voting/server systems [76, 77, 78]. This option is particularly useful to

avoid human fatigue, as the evaluation can be distributed through several users at

the same time.

However, this is a controversial option from an artistic point of view if images are

not generated always by the same user, because the artist does not review himself in

the final product [72].

A di↵erent solution proposed to avoid interactive approach problems consisted in

creating partial interactive evolving systems. They save user e↵ort while trying to

maintain the quality of generated images. Concerning this field, Machado et al. [79]

suggested a mechanism which allowed the user to choose either if he wanted to per-

form interactive mode, taking the responsibility of guiding evolution, or if he wanted

to perform automatic evolution for a given number of generations. In case of auto-

matic approach, evolution was guided by a formula that related several complexity

estimations.

Nevertheless, one of the most relevant challenges of Evolutionary Art comprises

the full automation of evolution process. Theoretically, it has capability to solve all

the problems mentioned above, but other issues are introduced because the quality

of the images generated tend to be considerably lower. How can a machine learn to

model human preferences in a context of multiple users with mixed choices? Which

criteria should be used in order to produce pleasant images? Researchers who study

automatic evolutionary art are trying to answer to these questions.

2.3.2 Automatic Evolutionary Systems

Automatic Evolutionary approaches di↵ers from interactive ones in one key aspect:

the evaluation is performed by the machine, relieving the user from performing a
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time-consuming task. Three main approaches used to automate fitness assignment

of artworks were identified: hardwired fitness functions, machine learning approaches

and co-evolutionary approaches.

Hardwired fitness functions are made with a specific purpose. Their formula has

some theory or idea behind the function. Thus, they require more domain knowledge,

and their generalization cannot be achieved. Within the scope of imagery, Machado

and Cardoso built a fitness function which aimed to generate pleasant images from an

aesthetic point of view [4]. Their theory behind the fitness function was that aesthetic

visual values depends on two factors. The first is Image Complexity (IC), which is

desired to be maximized, in order to capture the most attention possible from the

human eyes. This metric was computed using Root Mean Square Error (RMSE) and

jpeg compression. The higher the compression achieved, the less aesthetic value it

would have, because in this metaphor, aesthetic is about causing some reaction on

the human brain through some kind of surprise, change or anomaly. However, they

considered that complex images do not imply a di�cult way to build them, giving the

example of fractal images, which are generated in a simpler way. Following this idea,

the second factor is Processing Complexity (PC) which is desired to be minimized.

PC was computed through fractal compression.

Greenfield developed fitness functions based on color segmentation performed over

images [80]. According to the di↵erent regions areas and perimeters, several fitness

functions were developed.

Ralph and Ross proposed a di↵erent measure, the bell curve gradient [81]. They

described its computation in three steps. The first step consists in computing the

image’s color gradient, for each RGB channel. Then, the stimulus of an image is

calculated for each pixel, using the Euclidean distance of the three channels. The

second step constructs a normal distribution, computing the mean and standard de-

viation from the previous computed responses distribution. The final step computes

the deviation from normality (DFN), where 0 means a perfect fit to a normal dis-

tribution. They stated that for example, painting, photographs and graphic designs

have di↵erent values of mean, standard deviation and DFN, which allows evolution to

be conducted towards di↵erent kinds of imagery. These three values were used after

to perform multi-objective optimization.

Machine Learning approaches are more likely to be generalized, as they do not

require specific knowledge. At most, they need to know users tastes in order to predict

them.
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The work of Baluja et. al is the most noticeable using Machine Learning ap-

proaches to evolve images autonomously albeit they had some inconclusive results.

They used an Artificial Neural Network (ANN) to evolve images and estimate aes-

thetic preferences of the user. The ANN was trained with a set of images with size

48x48 px. These images were retrieved during an initial period of interactive evolu-

tion. After that, the ANN tried to predict the user preference, which could be a value

ranging from 0.0 to 1.0, with increments of 0.1. Higher values mean more pleasant

images. A lot of future work and interrogations remained, concerning the tuning of

population size and the ANN architecture for example. The work of Correia et. al is

also within this scope, but it will be explained in section 2.3.3.

Co-evolutionary approaches assume that an interaction between di↵erent types

of populations exists, where their fitnesses are assigned according to a degree of

“supremacy” over others populations or “reciprocity”, depending on one is tackling

competing or cooperating environments, respectively.

Greenfield explored this approach by evolving filters and images following a parasite-

host relation [82], where filters play the role of parasites and images play the role of

hosts. The rationale was that the interestingness of an image is influenced by our

vision, the information absorved and consequently, the interpretation of that infor-

mation in our brain. An interesting image is one which is recognized by our brain as

visually significant. This idea of absorption was applied through convolution filters

in the original image in the following way: if the convolved image is di↵erent than

the original one they are more interesting than the ones where both convolved and

the original images are similar. Fitnesses for both images and filters were computed

based on this principle, the more di↵erent an image is, the more its fitness is valued.

Filters fitnesses have the complement value, considering the fitness upper bound 100.

Saunders and Gero also proposed a co-evolutionary environment where the fitness

was the interestingness metric mentioned in section 2.2.1 [51]. Basically, they created

an agent society, where each agent could evolve its own artworks, and if they exceeded

a given threshold, they were shared to other agents. These agents could incorporate

received images in their population, to induce some diversity, and even share them

in a public domain, labeled with the respective author. Therefore, not only each

agent is evolving its own creations (with the help of the the remaining agents), but

also an agent gives credit to another agent if it considers the artwork creative and

meaningful. This particular work combines also the co-evolutionary approach with a

machine learning approach, as the novelty value is computes with a SOM.
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2.3.3 Figurative Expression Based Evolutionary Art

When Karl Sims worked on his first images generated by his evolutionary engine,

one of them became famous because he could not save the expression that would be

able to generate the image in figure 2.16. The expression was lost and he was unable

to reproduce that image again using an expression-based approach.

Figure 2.16: The “lost” image in Sims work [2].

In his future work, Sims mentioned that it would be interesting to evolve symbolic

expressions using a specific goal image. John McCormack identified this problem as

an open problem in the field of Evolutionary Art and described it as “finding a

needle in a haystack” [3]. Within a search space so vast, it is very hard to apart

interesting images from the rest automatically, taking into account that evolutionary

techniques will tend to generate portions of a perfect image with some fuzziness mixed

and obtaining the whole perfect image is a scenario with very low probability. He

also a�rmed that using an expression-based system to represent images, despite of

creating a wide range of possibilities, is a limited approach because they tend to have

a “certain class” [83], which di�culties the task of finding a symbolic expression to

represent a given figurative image. However, Machado and Cardoso have proved that

NEvAr system, an expression-based one, was able to theoretically generate any image

[4].

Within this scope, Paola and Gabora [84] tried to use a GP approach to evolve

towards Charles Darwin portrait, but their results were disappointing. In fact it was

hard for a human to detect any resemblance between the generated images and the

goal image.

This problem can be interpreted as a symbolic regression problem where one tries

to find the model that correctly maps a set of coordinates to the final image. This
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(a) Faces.
(b) Lips.

(c) Leaves.

(d) Breasts.

Figure 2.17: Figures evolved using an evolutionary engine with an object detector
[87].

problem can change its di�culty whether one tries to evolve any expression or a

compact expression.

Despite of being an interesting problem to solve in terms of compression of code

length, evolving symbolic expressions to approximate from a goal image are useless

from an artistic point of view because there is no creativity nor novelty in performing

such task.

However such a problem can be transformed in order to become more interesting

in terms of creativity. Instead of measuring resemblance from a solution to the goal

image, one can generate several candidate solutions using GP (the creator) and mea-

sure them using an object classifier (the critic) which evaluates solutions according

to its resemblance to a predefined object, without boundaries on its characteristics.

Romero et al. [85] proposed a framework which could be applied to several domains

(they gave the example of music and image) where proposed artworks were submitted

to a artificial art critic (AAC). The AAC converted artworks to an internal represen-

tation in order to be evaluated by an Evaluator Module which was modular and could

adapt to perform di↵erent evaluation tasks. In the end, artworks would be assessed

in order to identify the corresponding author or style.

Since that moment, Correia et. al worked on the idea of having an external object

detector and an evolutionary engine. This engine would evolve images according to

the object classifier trained. Thus, it is theoretically possible to evolve any object if

there is a classifier capable to detect it. E↵orts have been made to prove this, through

the evolution of faces (figure 2.17a) [5, 86], lips (figure 2.17b), leaves (figure 2.17c)

and breasts (figure 2.17d) [87], using a cascade classifier proposed by Viola et. al [6]

and trained with Haar features (further described in section 3.2). This work is the

big inspiration of this thesis.
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Chapter 3

Evolving Figurative Images

This chapter addresses the evolution of figurative images without the user’s help.

In order to fulfill this goal, a tool known as geNeral purpOse expRession Based Evo-

lutionary aRt Tool (norBErT) was developed, inspired on the work of Machado and

Romero [85]. This chapter intends to prove that their proposal is able to evolve

images evocative of di↵erent objects and this is done through a set of experiments

that aims to assess the tool’s ability to create di↵erent images that resemble di↵erent

objects.

The first three sections tackle important decisions regarding the application of

their approach on norBErT. Section 3.1 explains the approach used to evolve figu-

rative images. It also describes implementation details such as frameworks used and

changes made in order to meet work requirements. Section 3.2 describes the role of

an object classifier within the approach, its operation mode and which features were

used to train it. Section 3.3 details how the classifier contributed to computing the

fitness values. Consequently, the designed fitness function is presented and explained.

Section 3.4 contains all the information about the tests performed. It is divided in

section 3.4.1 which contains the parameters set used in the experimentation, section

3.4.2, that shows relevant results obtained, namely interesting images generated and

the study of fitness modification over the generations and section 3.4.3 which anal-

yses the results showed in the previous section. Finally, section 3.5 summarizes all

the subjects approached in this section in a more compact form the findings about

evolving figurative images.

3.1 Evolutionary Engine

Machado and Romero proposed a general purpose approach where it was possible

to evolve figurative images towards any object, depending on a chosen object classifier
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[85]. In [5, 86, 87] the same approach was used to evolve faces, face silhouettes, leaves

and lips. This approach was selected for this work and it is presented in figure 3.1.

Figure 3.1: Architecture used for the experimentation work[5]. Red marks symbolize
major changes performed.

The approach presented in figure 3.1 has several similarities when compared to

the generic evolutionary algorithm presented in figure 2.1. A given number of in-

dividuals is initialized to fill a population. Then, the population is evaluated in a

slightly di↵erent way in relation to the generic algorithm. In EC, fitness is obtained

after evaluating a given phenotype, which are images in this particular problem. To

create these images, one needs to gather all the genotypes from the population and

convert them into images. That is what rendering module is responsible to do. Then,

an object classifier will evaluate the generated images in order to detect whether the

image contains an object or not. This step is very important within the whole ap-

proach because the classifier produces internal values that are used to compute the

fitness function and, therefore, assign a fitness value to each individual. The remain-

ing steps are the same of the generic evolutionary algorithm as selection and mating

operators are applied to the population. Afterwards, the o↵spring will replace the

old population in order to start the same process all over again.

In order to develop the chosen approach, a Java-based evolutionary computation

software, known as ECJ [88], was used. This choice was made mainly for two reasons.

First, the system is developed in Java, providing portability, and second, the author

had already some past experience working with ECJ.

ECJ provides several EC features to build and run evolutionary algorithms. In or-

der to adapt the generic evolutionary algorithm and recreate the approach referenced,

major changes were made in components marked in red in figure 3.1. The remainder

of this section will describe in detail changes performed in each component.
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Genomes In expression-based art, GP is the most used EC approach, and this work

is not an exception. Individuals’ genomes are trees, composed by a list of primitives

hierarchically connected. A genome of an individual is influenced by the primitive set

used to solve a problem. Table 3.1 describes primitives used to construct GP trees.

To construct this set, primitives used in [5] were assembled with other operators

introduced just in case they were needed.

Table 3.1: Primitive set used in the proposed architecture.

Function Set
Kind of Primitive Primitive Arity
Trigonometric sin, cos, tan 1
Other mathematical sign, neg, abs, exp, sqrt, log 1
Arithmetic +,-,*,/ 2
Other mathematical max, min, mdist, mod 2
Boolean AND, OR, XOR 2
Conditional IF 3
Distortion warp 3

Terminal Set
Kind of Primitive Primitive
Variable x, y
Single Ephemeral Random Constants (S-ERC) e.g: 0.2
RGB Ephemeral Random Constants (RGB-ERC), e.g: (0.2, -1, 0.5)

Trigonometric operators and arithmetic operators performs the regular mathe-

matical operations, needing 1 and 2 arguments, respectively. Operator sign is a

function which returns 1 if the argument is positive, -1 if the argument is negative,

otherwise, returns 0. Operator neg inverts the signal of the argument, abs returns

the absolute value, exp performs the natural exponential function(ex), sqrt performs

the square root and log the logarithm. Other mathematical functions that takes 2

arguments such as max and min returns the maximum or minimum between two ar-

guments, respectively, mdist returns the mean distance between two arguments and

mod performs the integer division using a dividend and a divisor. Boolean functions

perform bitwise operators over two arguments (in this case, the operators AND, OR and

XOR are used) and the conditional operator if accepts three arguments, applied in the

following form: if a then b else c, where a, b and c denote arguments. The distortion

operator warp is a bit more complex. It gathers an image (img), an abscissa coordx

and an ordinate coordy, returning a distorted version of that image (img

0). Both

coordx and coordy are obtained from two pixel values of two di↵erent images. For

example, if one is calculating the first pixel of img

0, coordx and coordy are obtained
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by accessing the values of the first pixel of two di↵erent images. Then, the first pixel

of img

0 will assume the value of img(coordx, coordy).

Concerning the terminal set, x and y are variables that represent abscissas or

ordinates of the image, S-ERC are normal constants and RGB-ERC are special con-

stants which provides the capability of generating colorful images, overcoming the

restriction of being limited to grayscale images.

Image rendering In GP, the evaluation of an individual is performed by inter-

preting the tree (its genotype) to obtain a value. This value can be used to measure

fitness in terms of error, by calculating the di↵erence between a predefined value and

the value obtained after interpreting the tree.

In this problem, an individual requires requires an evaluation per each image

pixel, in which each final value will be the color of the respective pixel. For example,

if one wants to render an image with size 10x10 px from a genotype, the tree must

be interpreted 100 times, once for each pixel. Within this context, variables x and y

from the terminal set presented in table 3.1 assume a critical role providing diversity

to the generated images. If these terminals did not exist, the image generated would

have the same color in all of its pixels.

In order to use x and y variables, a virtual Cartesian coordinate system is used

to map an image into it. This system ranges from -1 to 1 both in x axis and y axis.

The mapping consists in creating the number of pixels necessary into the intervals

x 2 [�1; 1] and y 2 [�1; 1], according to a predefined resolution. This means that

the rendering module can render images of any resolution. Then, values of x and y

are determined for each pixel in order to be input in the individual’s tree. Figure 3.2

summarizes this process using an image with size 10x10 px.

Using figure 3.2 as a reference, the first tree interpretation is done for the first pixel

(the one in the upper left corner), using values x = �1 and y = 1. After computing

the value of the first pixel, the process is repeated for the second pixel (next to the

first pixel, in the same row) with values x = �0.8 and y = 1. The third iteration is

processed with x = �0.6 and y = 1 and the process continues iteratively until all the

pixels are interpreted.

After interpreting the tree and obtaining a pixel value, this output is converted

to a value within the RGB scale (between 0 and 255) for each channel, according to

equation 3.1.

treeoutput =
treeinput+maxDomain

2 ·maxDomain

· 255 (3.1)
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Figure 3.2: Mapping an image 10x10 px into the coordinates.

where maxDomain = 1 because it is the maximum possible value in the axis

presented in figure 3.2 and the input is a value within the interval [�1; 1]. Values

outside of this interval are truncated.

Classifier Observing figure 3.1, it can be seen that the classifier component is exter-

nal to the EC environment. This gives the idea of modularity and possibility of using

a classifier trained to recognise any object. In terms of implementation, the classi-

fier is considered external to the engine because it runs outside of this environment.

For this purpose, OpenCV API [89] was used to detect whether images contain the

object for which the classifier was trained. OpenCV was compiled into its wrapped

Java version and integrated in the evaluation phase of ECJ, where a fitness value is

assigned to each image entry using the internal values of the classifier.

3.2 Classifiers

For this work, the cascade classifier proposed by Viola et. al [6] was chosen to

detect the existence of objects within an image. The cascade classifier has been used

before in expression-based figurative imagery [5, 86, 87], it is able to classify examples

fast and it had a considerable impact regarding academic contribution. The training
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and detection processes using these object classifiers were already implemented on

OpenCV.

In order to detect whether an object exists or not, an object detection algorithm is

applied to choose which parts of an image will be submitted to the cascade classifier.

This allows to locate possible objects that exist within an image. The detection

process can be resumed in these steps (steps gathered from [86]):

1. Define a window of size w (20x20).

2. Define a scale factor s greater than 1. For instance, 1.2 means that the window

will be enlarged by 20%.

3. Define W and H as the width and height of the input image.

4. From (0,0) to (W,H) define a sub-window with a starting size of w for calcula-

tion.

5. For each of these sub-windows apply the cascade classifier.

6. Apply the scale factor s to the window size w and repeat 5 until window size

exceeds the image in at least one dimension.

The cascade classifier is composed by stages, each stage containing a so-called

strong classifier. Given that an image can produce many sub-windows to the cascade

classifier, it is important to give more attention to sub-windows that actually contain

the desired object than others which contain wasteful information. To do so, each

stage aims to discard non-objects and retain sub-windows that may contain objects.

The rationale is the following, simpler classifiers are built in the beginning of

the cascade in order to discard unrelated sub-windows. The further a sub-window

progresses through the cascade, the more attention it deserves. This means that

more advanced stages will have more complex classifiers to analyse whether the sub-

window should advance to the next stage or should be discarded. If a sub-window

passes through all the stages, the interpretation is that the cascade classifier detects

an object. The cascade architecture described is presented in figure 3.3.

Each strong classifier is trained with the AdaBoost algorithm, which selects the

best features instead of using all of them and settles that the final classifier is a

composition of weak classifiers. In figure 3.3, a strong classifier is defined for each

stage, with a set of features that will be used to evaluate a sub-window, in order to

decide whether the sub-window passes to the next stage or it is discarded. The weak
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Figure 3.3: Structure of the cascade classifier used to detect objects [87].

classifiers are decision trees that use a single feature to divide positive and negative

examples with the least classification error possible.

Three types of features are implemented in OpenCV and expected to be used in the

cascade classifier: Haar features, Local Binary Patterns features (LBP) and Histogram

Oriented Gradients features (HOG). However, HOG features were discarded because

they had less documentation associated in OpenCV and they turned out to be very

time-consuming during the training and detection phases.

Haar Haar features work by defining rectangular areas of black and white zones.

After applying a given Haar feature to a subwindow, the value of this feature is

computed as the di↵erence between the sum of the pixels within the black and

the white zone. Then, this value is compared to a threshold calculated during

the training process. If this value is higher than the threshold, the feature exists

on the image. An original set of Haar features was proposed by by Viola et al.

, further extended by Lienhart et al. [90]. This extended set presented in figure

3.4 is used in this MSc study.

LBP LBP features capture more information about the image than Haar features.

However, they contain redundant information. Assuming grayscale images, the

simple LBP version introduced by Ojala et al. [91] is applied in a 3x3 window

where px

c

holds the value of the pixel in the center. Then, each one of the

neighbours px
i

, i = (1, 2, ..., 8) is compared against p
c

using a threshold function,
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Figure 3.4: Extended Haar features [90].

specified in equation 3.2

value =
8X

i=0

2i · sign(px
i

� px

c

) (3.2)

where sign is defined as in equation 3.3.

sign(i) =

(
1 if i � 0

0 else.
(3.3)

Figure 3.5 shows how the threshold function is applied on the original pixel

values in order to obtain the comparison outputs. The LBP window is applied to

every possible location within the image sub-window and all the output values

are gathered in order to compute the histogram corresponding to the image

sub-window. Since each computed value has 8 bits, the histogram will have

256 di↵erent bins which will be used in the cascade classifier for classification

purposes.

Figure 3.5: LBP feature applied to a 3x3 block.

Further information about the application of these features in cascade classifiers can

be found in [92].
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3.3 Fitness Functions

Using a classifier to detect whether an object exists or not is a binary classification

problem. Using the binary value as the fitness guiding function would not be practical

because this fitness value could be no indication of how close a candidate solution is

to a perfect solution and the search would essentially become a random search.

A fitness function appropriate for evolving figurative images should value images

that resemble the object that is being evolved and penalized images that do not.

From this perspective, cascade classifiers can be a significant help because the more

stages an image pass, the more similar the object is expected to be with the desired

object. This means also that, the more stages the classifier has, the more accurate

the evolution process can be. Following this idea, a fitness function was formulated

by Correia and Machado by accessing internal values of the classifier [86] as presented

in equation 3.4

fitness(x) =
cstages

xX

i

beststagedifference

x

(i) · i+ cstages

x

· 10 (3.4)

where cstages

x

denotes the number of stages that a given example x has passed

and beststagedifference

x

denotes the highest di↵erence achieved on the ith stage

between a value attained by example x and the threshold necessary to pass a stage.

Besides valuing images with more stages passed, equation 3.4 has another variable,

beststagedifference

x

, which settles that images with values near the threshold are

more doubtful to resemble the desired objects. On the other hand, images that greatly

passes the threshold have more probability to resemble the object. Therefore, these

images will have higher fitness.

This fitness function was integrated in ECJ in order to evolve objects according

to the values returned by a given object classifier.

3.4 Experimentation

The experimentation performed was characterized by three steps. Since it was

intended to develop new classifiers, there was a need to create datasets which allowed

classifiers to learn how to detect the desired objects. This study covers four objects:

faces, face silhouettes, flowers and leaves. Then, datasets were used to train new

classifiers. For this purpose, OpenCV provided an executable which trained classifiers

according to a set of predefined parameters. Finally, trained classifiers were integrated
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in the approach mentioned in section 3.1, to provide internal values needed to compute

fitness during the execution of the evolutionary algorithm.

Section 3.4.1 describes the preparation of each step mentioned above, showing the

relevant parameters sets. Section 3.4.2 presents examples of results obtained for each

object covered by this study and their respective graphics regarding the evolution

process. Finally, section 3.4.3 analyses the results obtained.

3.4.1 Setup

In order to train classifiers, data is required in order to provide labeled examples

to the classifier, so that it can learn to detect the existence of a given object. A

common negative dataset was used to all the objects trained. The goal of a negative

set is to provide images in which there is not any of the four objects covered by this

study. It was ensured that there were no faces, face silhouettes, flowers nor leaves

within these images. This negative dataset was already used in [87].

Regarding positive datasets, they provide information to classifiers regarding when

and where there is an object. Depending on the object classifier trained, a di↵erent

dataset was used. Four datasets were constructed, one for each object. Face images

were retrieved from Facity website [93], face silhouette images were fetched using a

random search through image search engines, flower images were selected from Oxford

17 Category Flower dataset and other examples were added after using image search

engines. Leaf images were obtained from Caltech-256 Object Category dataset and

from web searches.

All the examples were binarized, in order to highlight the contrast between the

object and everything around it. This decision had consequences in the image gen-

eration process because, if a classifier was trained to detect an object using only a

black and white environment, it can only detect images within the same environment.

Therefore, generated images are limited to black and white colours. However, image

binarization also limits the search space, which is useful to reduce the di�culty of this

problem, and objects within the generated images can be identified more easily by

the human eye. For this purpose, a simple tool to manipulate images was developed

and used to automatically binarize images. The number of examples of each dataset

is presented in table 3.2.

The classifier training phase is an essential phase of the image generation process

because the success of this approach depends on the generalization capabilities of the

classifier.
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Table 3.2: Number of examples used for each dataset

Object Positives Negatives
Faces 1000

1905
Face Silhouettes 55
Flowers 312
Leaves 201

The executable from OpenCV had a list of parameters that could be used to tune

the cascade classifier, including the number of stages. It controlled the maximum

number of stages that would be trained, di�culting the task of passing all stages in

order to detect an object. The minimum hit rate defined a minimum rate, per stage,

of positive images that were actually classified as positive. The False Alarm (FA) rate

helped to control the maximum error allowed, per stage, of negative images classified

as positive. Regarding the input samples, they must respect an input size. Weak

classifiers can be adjusted in terms of depth/splits (recall that weak classifiers are

decision-trees). Table 3.3 summarizes the values chosen regarding these parameters.

Table 3.3: Training parameters used

Parameter Setting
Input width 40
Input height 40
Number of stages 20
Number of splits 1
Min. Hit Rate 0.999
Max. False Alarm 0.5 (0.45 in face silhouettes)
Adaboost Algorithm Gentle Adaboost

In order to assess the quality of the classifiers trained, they were validated using

the validation dataset mentioned before. The results of this validation process are

depicted in table 3.4.

Once classifiers were validated, they were integrated in the approach presented in

figure 3.1, in order to allow the evaluation of images generated by the GP engine.

During the execution of the evolutionary algorithm, each image was submitted to the

classifier, using the object detection algorithm summarized in the steps mentioned

in section 3.2. This process also required the definition of some relevant parameters,

presented in table 3.5.

Concerning the GP engine, parameters chosen during these runs were similar to

the ones used in previous work [87]. They are described in table 3.6.
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Table 3.4: Classifiers’ accuracy using a training dataset and a validation dataset.

Training dataset Validation dataset
Classifiers Positives Negatives Positives Negatives
LBP Leaf Classifier 86.71% 84.24% 85.56% 92.78%
Haar Leaf Classifier 96.67% 98.01% 94.21% 98.05%
LBP Face Classifier 87.00% 98.51% 85.40% 98.44%
Haar Face Classifier 92.30% 97.52% 90.81% 95.51%
LBP Flower Classifier 98.85% 99.01% 97.19% 96.89%
Haar Flower Classifier 95.04% 99.13% 97.19% 96.89%
LBP Face Silhouette Classifier 85.45% 96.65% - -
Haar Face Silhouette Classifier 74.55% 93.80% - -

Table 3.5: Detection parameters used to evolve figurative images.

Parameter Setting
Min. window width 42
Min. window height 42
Image Width 64
Image Height 64
Scale Factor 1.1
Image pre-processing Otsu’s Binarization

Table 3.6: GP engine’s parameters used to evolve figurative images.

Parameter Setting
Population Size 100
Generations 100
Crossover Probability 0.8
Mutation probability 0.05
Initialization Method Ramped Half-and-Half
Initial Maximum Depth 5
Mutation max tree depth 3

3.4.2 Results

To perform this experimentation, 30 independent EC runs were done per classifier.

As one studied two di↵erent classifiers per object (one with LBP features and the other

with Haar features), a total of 240 EC runs were made.

The results shown presents some of the most interesting images obtained with

each classifier. It is important to note that since generated images are submitted

to the classifier, only images in which the classifier detected the desired object were

selected. Among these set of positive generated images, a subjective assessment was

made by hand, in order to select the best generated images which were considered to
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contain the object by the classifier. A set of 10 interesting images were gathered for

each classifier, in which figure 3.6 shows faces evolved with a LBP face classifier, figure

3.7 shows faces evolved with a Haar face classifier, figure 3.8 shows face silhouettes

evolved with a LBP face silhouette classifier, figure 3.9 shows face silhouettes evolved

with a Haar face silhouette classifier, figure 3.10 shows flowers evolved with a LBP

flower classifier, figure 3.11 shows flowers evolved with a Haar flowers classifier, figure

3.12 shows leaves evolved with a LBP leaf classifier and figure 3.13 shows leaves

evolved with a Haar leaf classifier.

Figure 3.6: Examples of faces evolved with LBP classifier.

Figure 3.7: Examples of faces evolved with Haar classifier.
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Figure 3.8: Examples of face silhouettes evolved with LBP classifier.

Figure 3.9: Examples of face silhouettes evolved with Haar classifier.

Figure 3.10: Examples of flowers evolved with LBP classifier.

58



Figure 3.11: Examples of flowers evolved with Haar classifier.

Figure 3.12: Examples of leaves evolved with LBP classifier.

Figure 3.13: Examples of leaves evolved with Haar classifier.

These results suggest that regardless the object and the classifier chosen, the GP

engine was able to generate positive images that can actually look like the desired

objects. This can also be considered as a confirmation that the approach used is in

fact a proposal can be applied to several objects. In this experimentation, one used

objects with di↵erent degrees of complexity and distinct characteristics.

In order to prove that these images were the result of an evolution process per-

formed during a certain number of generations and not only some images obtained
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fortuitously, the GP engine was analysed in terms of fitness change through genera-

tions. For each classifier, mean fitness and best fitness of each generation were stored

and used them to plot graphics. Figure 3.14 shows the evolution of fitness using a

LBP face classifier, figure 3.15 shows the graphic concerning a Haar face classifier,

figure 3.16 shows the same situation with a LBP face silhouette classifier, figure 3.17

uses a Haar face silhouette classifier, figure 3.18 uses a LBP flower classifier, figure

3.19 uses a Haar flower classifier, figure 3.20 uses a LBP leaf classifier and figure 3.21

uses a Haar leaf classifier. Since one executed 30 runs per classifier, the metrics shown

are averages of 30 runs and they are normalized according to the maximum global

fitness obtained.

Figure 3.14: LBP faces classifier. Figure 3.15: Haar faces classifier.

Figure 3.16: LBP face silhouettes classifier. Figure 3.17: Haar face silhouettes classi-
fier.
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Figure 3.18: LBP flowers classifier. Figure 3.19: Haar flowers classifier.

Figure 3.20: LBP leaves classifier. Figure 3.21: Haar leaves classifier.

These results show that the GP engine was able to evolve objects with any classifier

used, in the sense that the fitness rises substantially until in the beginning of the

algorithm execution and it stabilizes in the final generations. These results will be

analysed in detail in section 3.4.3.

3.4.3 Analysis

From the graphics shown in figures 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20 and

3.21, the first conclusion which can be drawn is that the GP engine is able to evolve

figurative images that resemble the objects used to train the respective classifiers,

using a few number of generations. This fact can be seen because the fitness con-

tinues to increase after the first object detection performed during the evolutionary

run. In particular, figures 3.16 and 3.17, which show the fitness variation using faces

61



silhouettes classifiers deserve a particular note, because they show that in these cases,

the evolutionary algorithm converged more quickly, initializing with fitnesses substan-

tially above when compared to the other results. This fact suggests that the problem

of evolving face silhouettes is simpler than evolving any of the other three objects,

which can be confirmed by observing simpler and generic shapes in the generated face

silhouettes.

It is also relevant to mention that evolution towards figurative images does not

imply that positive generated images will resemble objects from a human point of

view. This fact stresses the importance of the classifier within the approach, in order

to produce interesting results. In this case, it seems that the GP algorithm was

able to somehow, exploit shortcomings of the classifier and discover unrelated images

that were classified as positive. One can conclude that using these datasets, the

achievement of good classification results is a necessary condition to the success of the

used approach, but not a su�cient condition. Although it is beyond the scope of this

work, similar results obtained in other works were a motivation to use this approach

to generate images considered as false positives in order to integrate them in a new

negative dataset and train new cascade classifiers with an improved generalization

ability [94].

Regarding the visual analysis, figures 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12 and 3.13

shows the some of the images gathered from the subjective test performed. Because

it is a subjective test, it is possible to argue whether the chosen images resemble in

fact an object or not.

Analysing faces figures 3.6 and 3.7, the results obtained look like robot, alien or

cartoon faces. It is possible to identify the eyes in most of the cases. Mouths and

noses can be identified in some faces although it is harder.

Face silhouettes are simpler objects and therefore, easier to evolve. What is pos-

sible to deduct from figures 3.8 and 3.9 is that results are more similar, the most

distinctive evidence in those images is the nose, which can be smaller, bigger, or even

a “pinocchio” nose.

Flowers (figures 3.10 and 3.11) and leaves (figures 3.12 and 3.13) in their turn are

harder to evolve, but the GP engine seemed to have found several interesting positive

generated examples which are characterized by symmetry. It is possible to find many

similarities between those images, with slight changes between them. All the images

have a minimalist flavour, in the sense that they only vary in terms of size and shape.

In general, images that are able to resemble the desired object from a human

point of view are iconic and evolved according to the most evident characteristics
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detected by classifiers. In faces, they focus in the eyes, in face silhouettes they focus

in the nose, in flowers they focus in petals and in leaves they tend to generate cordate

ones. This evolution seems to focus only in the most important features of images

and sometimes represent them in a exaggerated way, like they were cartoons.

3.5 Synthesis

The work done in this chapter can be summarized in two main tasks: the devel-

opment of a tool, named norBErT, inspired on previous works, and the use of this

tool to assess its ability to evolve images that resemble di↵erent objects, depending

on the object classifier used.

The architecture used in norBErT involved mainly mechanisms already imple-

mented in ECJ, concerning EC. Thus, it was necessary to construct a customized

primitive set, a rendering process to generate images from trees, and integrate OpenCV

API with ECJ in order to allow an external classifier to evaluate all the individuals.

These classifiers were trained with two types of features: LBP and HAAR. For

each type of classifier, a training process was performed with datasets created from

scratch, involving the following objects: flowers, faces, leaves and face silhouettes.

A fitness function was specifically designed taking into account the architecture

of the classifier, which is a cascade of simple classifiers, each one filtering positives

examples to the next stage and discarding negative ones.

The results proved that the proposed approach is able to evolve di↵erent types of

objects, although it converges sometimes to search spaces where the classifier detects

the object in the images generated despite they have no resemblance from an human’s

point of view. Furthermore, it is also noticeable that images generated from a single

run are quite similar, as a result of the converging property of the GP algorithm over

generations.

63



64



Chapter 4

Evolving Ambiguous Images

This chapter intends to study the evolution of ambiguous images through com-

putational means using norBErT. Using several object classifiers, in a similar way

when compared to the approach followed in Chapter 3, norBErT tries to attain this

goal. The remainder of the chapter is organized as it follows: section 4.1 explains

what ambiguity is from two di↵erent points of view, the human perspective and the

computational perspective. Section 4.2 describes how the information provided by

the object classifiers is used to measure the quality of the images assessed for this

particular task. Then, section 4.3 contains information regarding the experimentation

performed in order to evolve ambiguous images. This section is divided into section

4.3.1, which contains relevant parameters of the experimentation, section 4.3.2 that

shows the results obtained and section 4.3.3 that analyses the results shown before.

Finally, section 4.4 contains a synthesis of the whole chapter.

4.1 Human Ambiguity and Computational Ambi-
guity

Ambiguity is a well-explored concept in visual art, in which the artist builds an

artwork piece that is able to be perceived in multiple and stable ways by the human

brain (multistable perception). Usually, ambiguity has a negative connotation per se,

as it is associated with uncertainty or doubt. However, when applied to the visual

art field, ambiguity can increase the interestingness of an artwork, causing these

ambiguous images to be more pleasant, despite they are harder to be analysed by the

human brain [95]. Examples of some well-known ambiguous images are presented in

figure 4.1.
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(a) Duck/Rabbit (b) Rubin’s vase (c) My Wife and My
Mother-in-Law

Figure 4.1: Some well-known examples of ambiguous images.

When presenting such an artwork to a human user, he assimilates basic features

from an image, such as edges or contours, and then tries to recognise something that

he already knows from the set of features collected. It is relevant to mention that

this recognition phase is influenced by user’s memory and experience. Thus, it is

possible that the image’s interpretation and main deduction diverge from human to

human. When an image induces the phenomenon of multistable perception in the

human brain, that image is considered human ambiguous one.

Such a concept can be extended to the computational domain using norBErT,

allowing the definition of computational ambiguous images. Built into the findings

of Chapter 3, computational ambiguous images can be evolved with a very similar

architecture, which is represented in figure 4.2.

Figure 4.2: Architecture used to evolve ambiguous images.

An evolutionary algorithm is used to create these kind of images. The popula-
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tion is initialized, and in each generation the following process is performed: images

are created from individuals’ genotypes and then submitted in a recognition phase,

where several classifiers assess images, providing essential information (the internal

values) to assign fitness to individuals. Then, individuals are selected according to

their fitness values, and mated together, creating the next generation which will be

submitted to the same process all over again.

The main di↵erence from figure 4.2 to figure 3.1 is the way images are assessed.

Instead of using one classifier, as it is presented in figure 3.1, the approach used in

this chapter uses two di↵erent object classifiers to assess images. Given this approach

and restricting to figurative art, a computational ambiguous image can be defined

as an image from which several objects can be perceived, within the same region. A

computational ambiguous image exists when both object classifiers are able to detect

their respective object within the same image region.

4.2 Aggregated Fitness Functions

Given that one is coping with several classifiers to help in the fitness assignment

task, and those classifiers provide a binary output, it is important not only to gather

internal information from them in order to have a suitable fitness landscape but also

to merge quality measures from both object classifiers. This step is needed in order

to determine which individuals will survive.

Recall from chapter 3 that these classifiers have a cascade architecture, where each

step of the cascade is a di↵erent stage. Images are analysed in each stage, where they

can pass to next stages if they deserve further analysis and eventually get the end of

the cascade if an object was detected, or they can be discarded.

As this new task has increased complexity, fitness assignment of potentially am-

biguous images is divided into two phases.

The first phase consists in measuring a degree of resemblance of the image with

each object desired, using the respective object classifier. This process is very similar

to the fitness assignment scheme explained in 3.2.

f(x) =
cstages

xX

i

(beststagedifference
x

(i) ⇤ i) + cstages

x

· 100 + detected · 2000 (4.1)

Variables cstages

x

and beststagedifference

x

(i) are extracted from the classifi-

cation intermediate information. The rationale is that an image that passes several
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stages has a higher cstages value and is likely to be closer to being recognized as

having a object than one that passes fewer stages. Images that are clearly above the

thresholds associated with each stage have higher beststagedifference values. As

such, these images are preferred over ones that are only slightly above the threshold.

Additionally, the detected variable is set to 1 if it was detected an object within the

image, otherwise it is set to 0. This allows norBErT to favour the selection of images

which actually contain an object.

The second phase can be interpreted as a multiobjective optimization problem

resolution, where each objective is the resemblance to an object, using a plain ag-

gregation technique. As one is interested in evolving ambiguous images where two

objects can be equally identified, equal weights are associated to both objectives. The

final fitness function is described in equation 4.2

combined(x) =
Y

log2(fi(x) + 2), (4.2)

where f
i

(x) is the ith single fitness function (4.1), per classifier of the combination.

4.3 Experimentation

This study covers the evolution of leaves and faces simultaneously, in a trial to

evolve ambiguous images. A similar study was performed using faces and flowers,

and despite it is not covered in this chapter, there was some work done using these

two objects, which can be observed in appendix E.

The experimentation performed in this chapter shares more similarities with the

one performed in chapter 3. In a preliminar phase, new classifiers were trained, in

slightly di↵erent conditions, in order to assess the influence of classifiers’ robustness in

the results. However, in this chapter one uses the same datasets gathered in chapter

3 to train classifiers. The type of classifiers adopted to this study was merely LBP,

since it was prooved in chapter 3 that the evolution of interesting images was possible

with both Haar and LBP classifiers and the latter ones are quicker in the training

process.

In a second phase these leaf and face classifiers are applied in norBErT’s approach,

as described in figure 4.2, in order to assess the capability of evolving ambiguous im-

ages. Section 4.3.1 describes the parameters chosen in each step, section 4.3.2 presents

relevant results concerning this study and section 4.3.3 interprets and analyses them.
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4.3.1 Setup

The setup planned for this study can be quite complex to understand given that

there are a considerable number of parameters regarding distinct parts needed to

enable the image evolution task. For this reason, the setup is divided by each one of

these parts.

Classifier creation

In this approach, the classifiers used play the role of supervisor by helping in the

fitness assignment task. In order to create these classifiers it is necessary to train and

validate them.

The process followed to create new classifiers has many things in common when

compared to chapter 3. In this study one intends to obtain classifiers which are more

robust, using the same datasets to train them. For further information about the

datasets, check section 3.4.1.

The cascade classifiers, originally proposed by Viola and Jones [6], were again

the choice as the classifier to integrate in norBErT’s approach. The training process

was the same, using the same tool provided by OpenCV to create the classifier.

The parameter set used to train these classifiers is described in Table 4.1. Further

explanation about each parameter can be found in section 3.4.1, or alternatively, in

OpenCV documentation1 or in [6].

Table 4.1: Training parameters used to evolve ambiguous images.

Parameter Setting
Input width 40
Input height 40
Number of stages 30
Number of splits 1
Min. Hit Rate 0.999
Max. False Alarm 0.5
Adaboost Algorithm Gentle Adaboost

Comparing to table 3.3, all the parameters remain the same but one, the number

of stages. The rationale behind the increase of the number of stages (changed from 20

to 30) is the following. Considering that in each stage an image can be discarded or

it can advance to the next stage if it deserves further analysis, increasing the number

of stages will increase the probability of discarding the image before it gets the end

1
http://docs.opencv.org/doc/user_guide/ug_traincascade.html

69

http://docs.opencv.org/doc/user_guide/ug_traincascade.html


of the cascade. Therefore, the risk of having a negative sample classified as positive

(contains an object) is lower (recall that the main concern identified in previous works

is the high false positive rate).

As in the experimentation performed in chapter 3, the classifiers were validated

within the same conditions. The result of this process is presented in Table 4.2. Note

that an additional flower classifier was trained and validated. Albeit it is not used in

this study, it is useful in other experimentations.

Table 4.2: Classifiers’ accuracy using a training dataset and a validation dataset

Training dataset Validation dataset
Classifiers Positives Negatives Positives Negatives
LBP Leaf Classifier 77.46% 69.44% 99.80%
LBP Face Classifier 85.70% 99.13% 85.23% 99.80%
LBP Flower Classifier 70.61% 99.62% 69.15% 99.61%

Object Detection Algorithm

As it is presented in figure 4.2, the evolution of ambiguous images implies the

existence of classifiers that are able to detect the presence (or absence) of an object

within a given image. For further information about the object detection algorithm,

check section 3.2. The relevant parameters regarding the object detection algorithm

are presented in Table 4.3.

Table 4.3: Detection parameters used to evolve ambiguous images.

Parameter Setting
Min. window width 90
Min. window height 90
Image Width 128
Image Height 128
Scale Factor 1.1
Image pre-processing Otsu’s Binarization

Comparing to the experimentation performed in chapter 3, there are noticeable

changes in some parameters values.

The size of the images generated is increased from 64x64 to 128x128. This allows

the creation of larger objects, favouring the detail of the images generated. Besides,

the minimum window size used in this experimentation is also increased, from 42x42

to 90x90. This enforces di↵erent objects to be located in overlapped regions within

the image. It is also relevant to mention that images are transformed before they are
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analysed, using the Otsu’s binarization algorithm, which causes images to be analysed

and evolved with only black and white colours. The main reason behind this decision

is that binarized images tend to have an easier an clearer interpretation to humans.

Evolutionary Algorithm

In order to run the evolutionary algorithm that will be responsible to create the

ambiguous images autonomously, some parameters need to be set as well. Following

the reasoning of the experimentation in chapter 3, the set of parameters chosen is

presented in Table 4.4.

Table 4.4: GP engine’s parameters used.

Parameter Setting
Population Size 100
Generations 1000
Crossover Probability 0.8
Mutation probability 0.05
Initialization Method Ramped Half-and-Half
Initial Maximum Depth 5
Mutation max tree depth 3
Elite size 1

Regarding the evolutionary algorithm, the number of generations was increased

from 100 to 1000 when compared to the experimentation of chapter 3. Also, the

best solution of each generation is preserved and automatically passed to the next

generation. These two changes are justified by the increasing di�culty of evolving

images which contain several several objects instead of just one. As an aggravating,

these objects should appear in overlapped regions of the image.

4.3.2 Results

In this experimentation two di↵erent situations are tested: the use of permissive

classifiers (created during the experimentation in chapter 3) and the use of robust

classifiers, specified in table 4.2. For each situation, 30 runs are performed, using two

classifiers at the same time to guide evolution: a leaf classifier and a face classifier.

Figure 4.3 depicts the fitness of the best individuals (average of 30 runs). The fitness

that is taken into account for evolution purposes is the combination of the fitnesses

from the two classifiers. Additionally, each partial fitness (regarding each object)

is shown. Dashed lines correspond to the situation where permissive classifiers are
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used whereas solid lines correspond to the evolution of objects using robust classifiers.

Each fitness value is normalized according to each maximum value obtained with the

respective classifier.

Figure 4.3: Evolution of the fitness of the best individual along the evolutionary run
(results are averages of 30 runs).

Figure 4.4 shows the average detection rate of the best individuals in each genera-

tion. It contains the percentage of best individuals which contains an object detected

by the classifier.

Figure 4.4: Best individual’s detection rate along the generations.

These results show that the fitness function favours the appearance of images

which contain simultaneously leaves and faces. This conclusion was obtained due to

the similar characteristics of the red line in both figures 4.3 and 4.4. Both tend to

increase and converge towards a given value.

Considering a successful run as a run that is able to evolve as least one image
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where a leaf and a face detected on that image, the robust situation was able to

produce 60% of successful runs whereas the permissive case was able to produce

83.3% of successful runs. Continuing the comparison between the permissive and

robust experimentations, and using the 100th generation as a reference, the robust

situation produced less than 10% of successful individuals, whereas the permissive

situation produced nearly 35% of successful individuals.

Comparing the di↵erent components of the fitness functions, for both situations,

two main results can be extracted. From figure 4.3, the fitness values from the

individual components are lower than the combined fitness value. Regarding figure

4.4, the number of detections over the best individuals considering a single object

(face or leaf) is higher than the number of detections considering the combination of

both components.

4.3.3 Analysis

From the results observed in section 4.3.2, the first conclusion drawn by the results

obtained is that the problem of evolving images containing two overlapping objects

is harder than evolving images which resemble a single object. Not only the final

combined detection rate (red line from figure 4.4) is lower than the single components’

detection rate (blue and green lines from figure 4.4), but also it sounds logical that

a multiobjective optimization problem is harder to solve than a simple optimization

problem.

There are two factors identified that can influence the added di�culty of evolving

ambiguous images. First, the classifiers’ characteristics can influence the success of

this approach. From figures 4.3 and 4.4, it is possible to observe that more permis-

sive classifiers ease the resolution of this problem (all the dashed lines are above the

correspondent solid lines in terms of fitness values and detection rate). However,

permissive classifiers are less accurate which makes the probability of generating im-

ages that do not resemble the desired object(s) from a human perspective higher.

The other aspect is the pair of objects chosen to evolve together. The di�culty of

evolving ambiguous images depend also on the graphical compatibilities evidenced

by the two images. Considering this problem as a multiobjective evolution problem,

one can deduct that the higher are the single fitness components of this problem, the

easier is the task of evolving them assembled, because the set of objectives are not so

conflicting between them. In this particular case, for the permissive case, the single

components (leaves and faces) have higher detection rates values when compared to

a side-study which is depicted in appendix E and uses faces and flowers.
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Another interesting aspect to observe is that it seems easier to evolve leaves than

faces in the beginning. Observing figure 4.3, in the first 100 generations fitness values

from the leaf component achieve higher values when compared to the face component.

Then, the aggregated fitness function favours the quality improvement of the weakest

component, and around the 400th generation both components achieve similar values.

From that moment on, improving the combined component is an harder task.

Analysing the images obtained, although a substantial number of runs produced

images which are computationally ambiguous, they fail to induce the same ambiguity

from a human perspective. Examples of these images are presented in figure 4.5.

Figure 4.5: Images that are ambiguous from the computational perspective, but were
not considered as ambiguous from a human perspective.

However, there were cases where it was possible to detect ambiguity from both

human and computational perspective. Examples presented in figure 4.6 depicts these

kinds of images. It should be noted that the choice of these images is arguable and

subjective and their human ambiguity identified from the author’s point of view.

Figure 4.6: Images considered as ambiguous from both computational and human
perspective.

The images presented in figure 4.6 have di↵erent shapes and contours. However,

the ambiguity e↵ect produced is similar in all the cases. The face object seems easier

to detect because, as a human, we are trained to recognize faces. All the faces look
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like masks where a white-shaped are has a face contour and the black areas which

penetrate in the white part look like eyes or eyebrows. The leaf object can be detected

by looking only in the white area under the eyes zone. Besides, the leaf stalk is present

in all the images’ bottom region.

4.4 Synthesis

The work performed in this chapter consisted in extending the approach explored

in chapter 3 to evolve images towards several objects. This is done by using two

object classifiers, instead of one, to classify images and detect the presence of both

objects. The final objective of this work was to force both objects to appear in over-

lapping regions of the produced images and analyse whether they could be detected

as ambiguous to the human eye.

As each classifier produced an independent fitness component, the solution found

to evolve both objects was to merge each component’s information using a combining

fitness function.

The experimentation done involved a pair of robust and a pair of permissive classi-

fiers. The study performed involved the evolution of faces and leaves simultaneously.

The results obtained show that this problem is harder to solve than the problem

depicted in chapter 3, and its hardness depends on the classifiers’ robustness. There-

fore, there is a drawback between the images’ ability to resemble the desired objects

and the approach’s ability to solve the problem successfully. The approach is able

to solve the problem and create some interesting where both objects can be detected

by the human eye and they can even be considered ambiguous images from a hu-

man perspective. However, in most of the cases, images can hardly be considered as

ambiguous from a human point of view, in the sense that they do not resemble the

desired objects.
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Chapter 5

Evolving Images through Novelty
Search

This chapter intends to attain one of the main goals of this work, evolve a wider

range of objects, building a set of object images which are visually di↵erent from each

other.

Based on the findings of chapter 3, the problem of getting similar object images

is tackled by promoting an evolution mechanism which rewards the uniqueness of an

individual when compared to others, inspired by novelty search.

The remainder of this chapter is organized as it follows. Section 5.1 highlights the

changes performed on the original approach, in order to be able to enable evolution

according to several criteria. Section 5.2 provides an insight into how novelty is com-

puted, so that the fitness of each individual could be measured in terms of uniqueness.

Then, section 5.3 explains how fitness and novelty are combined in order to promote

a multiobjective approach, called hybrid evolution in the remainder of this chapter.

The exploration and study of the various mechanisms were applied to the evolution

of figurative images, in section 5.4, and the evolution of ambiguous images, in section

5.5. Finally, an overview of this chapter is presented in section 5.6.

5.1 An evolutionary engine with uniqueness re-
ward

In section 3.1, a general purpose approach was proposed in order to evolve figu-

rative artworks. This evolution was performed with a fitness-based approach, using

internal values from an object classifier to help in the fitness assignment task. In

this section, a modified version of the architecture used in section 3.1 is suggested.

These modifications allow the evolution of figurative images taking into account both
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fitness and their uniqueness when compared to other images. This new architecture is

shown in figure 5.1. Note that only the components marked in red are new or su↵ered

modifications for novelty purposes.

Figure 5.1: Architecture with novelty reward used for the experimentation work.

Despite the architecture described in figure 5.1 including components which en-

able evolution guided by novelty, the old fitness-based evolution was not discarded.

This decision was made for two reasons. First, because it made possible to evolve

images according to three di↵erent modes: a fitness-based one, which was already

explored in chapter 3, a novelty-based evolution, which evolves images according to

their uniqueness, and a third mode called hybrid mode, which considers novelty and

fitness as two di↵erent objectives and performs evolution trying to maximize both.

The second reason, which also explains the existence of a hybrid evolution mode, is

that novelty search, when applied per se, is not very e↵ective in problems with large

search spaces, as it is mentioned in the literature [96].

Briefly explaining, in the architecture described in figure 5.1, a given number of

individuals are randomly created for the initial population. Then, an iterative process

is started with the transformation of the genomes into images (the rendering process).

Images are then evaluated externally by an object classifier, which is responsible to

assess whether the candidate image contains the object or not, and more importantly,

it provides internal values which help to the determinine resemblance degree of the

candidate image to a given object in the fitness assignment phase. Moreover, the

object classifier has a new role within the architecture described in figure 5.1, by

filtering the images in which an object is detected to an archive. Before being admitted

into this archive, images are assessed in order to verify if they are novel enough to

be part of the archive. In short words, each new image is compared to the ones
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that already exist in the archive. If its uniqueness degree remains above a threshold,

the image is added to the archive, otherwise, it is discarded. Detailed information

about novelty archive assessment is provided in section 5.2. The archive has two

functions, it helps evolving images in terms of novelty and it can be used to analyse

norBErT’s ability to evolve di↵erent images. The remainder of the process is followed

by a tournament selection, which selects the parents that will be used to generate the

o↵spring by applying genetic operators, and finally, the children individuals will be

used to fill the new population, by replacing the old one.

In terms of novelty, the tournament selection deserves special focus, because nov-

elty is computed in this phase, depending on the individuals selected to be part of the

tournament. Besides, each tournament winner can be selected in this phase according

to three di↵erent criteria: best individual in terms of fitness, best individual in terms

of novelty, and best individual tanking into account both fitness and novelty (hybrid

selection). More information about this novelty assignment is described in section

5.2.

5.2 Computing novelty in norBErT

Observing figure 5.1, there are two steps which involve novelty mechanisms, the

archive assessment and the customized tournament selection. To provide better un-

derstanding about norBErT’s working mode with novelty, two di↵erent concepts will

introduced: archive novelty and evolving novelty. The first one is used to verify

whether an image should be added to the archive (archive assessment phase), while

the other one is used to determine the uniqueness degree of an individual, for selection

purposes.

Archive Novelty

An archive is used to evaluate norBErT’s capability of generating content in terms of

quantity and diversity. The point of archive novelty is to assess whether an evaluated

image meets the requirements needed to be a unique solution. Bearing this idea in

mind, any image where an object is detected by the object classifier is evaluated in

terms of archive novelty. One can denominate any image in this situation a candidate

image.

Archive novelty computation relies on distance comparisons, using dissimilarity

measures, between a candidate image and a set of images already in the archive. If

a candidate image is found by the classifier and there are no images in the archive
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yet, the candidate image is automatically added. If there are any images in the

archive, archive novelty archnov for a given candidate image i is calculated according

to equation 5.1

archnov(i) =

P
n

j=1 d(i, j)

n

(5.1a)

n =

⇢
sizearchive if sizearchive < max

max if sizearchive � max

(5.1b)

where d(i, j) is a dissimilarity measure between the candidate image i and the jth

image in the archive. In order to compute archnov, the n most similar comparisons

between the candidate image and the images in the archive are used. Consequently,

the computation of archive novelty implies a sorting between all the pairwise dis-

tances between a candidate image and the images in the archive. The number of

n comparisons also varies depending on the size of the archive and it is calculated

according to equation 5.1b. This number will be equal to the archive size, denoted

by sizearchive, unless it reaches a predefined parameter value, denoted by max. In

that case n = max. After computing the archive novelty of a candidate image, if its

value passes a given threshold, the image is added to the archive. The entire process

of novelty archive assessment is described in algorithm 2.

Evolving Novelty

The concept of evolving novelty is computed during the selection phase, at the tour-

nament level. As this process may be harder to understand, the explanation of this

novelty type is based on an example. Consider a population of 10 individuals, a tour-

nament size of 5, and 4 individuals in the novelty archive. For a tournament, 5 indi-

viduals are selected randomly from the population, in order to determine which one

is the winner. Then, for each individual picked ind, comparisons using a dissimilarity

metric are made between ind and the other individuals picked for the tournament.

The same measure is retrieved using ind and the images from the novelty archive. All

these distances are sorted and the nearest 4 are used to compute the evolving novelty

of ind (evolnov(ind)) according to equation 5.2.

Regarding the evolving novelty computation, it requires that individuals must be

rendered again. As the dissimilarity metric processing time depends on the number

of pairs compared of images being compared and the size of the images, one chose
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Procedure: NoveltyArchiveAssessmentAlgorithm

input:
– A candidate image (candidate);

– An archive (archive) containing previously added entries;

– A threshold (threshold) to decide if candidate is added to archive;

– A max parameter to look up for the max most similar images;

begin
distances ;;
archnov 0;
foreach image j 2 archive do

dissimilarity dissimilaritymetric(candidate, j);
add dissimilarity to distances;

end
distances sort(distances) ; // in ascending order

if length(archive) � max then
n max;

else
n length(archive);

end
for j  1 to n do

archnov archnov + distances[j];
end
if archnov � threshold then

add candidate to archive;
end

end
Algorithm 2: Archive Novelty Assessment Algorithm.

to render images in the tournament selection phase with a lower resolution (20x20).

This allows the algorithm to run faster, without losing too much detail.

evolnov(i) =
tournsize�1X

j=1

d(i, j) (5.2)

To provide a better understanding of the whole process, algorithm 3 describes how

evolving novelty is computed for each individual, and figure 5.2 illustrates the same

process for this example. In the latter, it is also showed which distances were chosen

to compute evolving novelty using dashed lines.

81



Procedure: EvolvingNoveltyComputationAlgorithm

input :
– An individual whose respective image will be calculated in terms of evolving
novelty (ind);

– The archive containing all the distinctive images found so far (archive);

– The set of individuals picked for the tournament (tournament);

output: The evolving novelty evolnov of individual ind

begin
distances ;;
evolnov 0;
remove ind from tournament;
foreach individual j 2 tournament do

dissimilarity dissimilaritymetric(ind, j);
add dissimilarity to distances;

end
foreach image j 2 archive do

dissimilarity dissimilaritymetric(ind, j);
add dissimilarity to distances;

end
distances sort(distances) ; // in ascending order

for j  1 to length(tournament) do
evolnov evolnov + distances[j];

end
return evolnov;

end
Algorithm 3: Evolving Novelty Computation Algorithm.
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Figure 5.2: Schematic representation of how evolving novelty is computed.

Some decisions regarding evolving novelty should be highlighted and justified, be-

cause they are slightly di↵erent when compared to the original novelty search proposal

[45].

The archive is an utility both used in this proposed approach and in the original

novelty search approach. Both are useful to help in (evolving) novelty computation

and precluding the algorithm from performing a search similar to “random search”,

by ensuring that solution in the archive are not visited repeatedly. However, the

archive from the original novelty search proposal saves any solution whose (archive)

novelty value (which takes into account the population and the archive) attains a given

threshold, whereas this approach is used to store only feasible solutions (containing

an object) which are novel enough when compared only to that archive. Within these

conditions, this work’s archive can help in the (evolving) novelty calculation task,

while being an useful performance evaluation tool, as it will contain feasible and novel

solutions, which allows to assess the quantity and diversity of the produced images.

Besides, the number of entries in the archive will be lower, which consequently saves

time and computational burden.

The exploitation of tournament selection in order to compute (evolving) novelty

is a distinctive procedure as well. While in the original version, (evolving) novelty

is computed picking the n nearest distances taking into account the whole popula-
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tion and the archive this approach uses only individuals from the tournament and

the archive. This decision was made due to time restrictions in terms of algorithm

execution, allowing to save time and computational burden.

5.3 Combining fitness and novelty

Among the literature about novelty search, there is some reluctance in applying

only novelty search to solve any problem [61]. These works argue that the use of

only novelty search in problems with big search spaces would not be a good way to

tackle the problem because it could take a long time until it gets satisfactory solu-

tions. In fact, in these situations, novelty search characteristics induce that finding

an interesting solution without a goal can be di�cult as the solutions have to dis-

perse throughout the search space to find any interesting solution. Furthermore, if

an almost interesting solution is found, novelty search is not aware of that and it will

find solutions based on individuals’ novelty only. Within these conditions, there has

been a tendency to choose an evolution which combines both fitness and novelty.

In this work, novelty and fitness are treated as two di↵erent objectives. They

are conciliated in an evolutionary algorithm through a multi objective evolutionary

algorithm, which uses a Pareto-based approach at the tournament level. In essence,

all the dominated individuals are excluded from the set of possible winners, and in

this final set of possibilities one has all the non-dominated individuals. From this

set, the winner is chosen randomly. Algorithm 4 describes the process of choosing

a winner in each tournament using this approach. For more information, concepts

related with Pareto-based approaches are explained in section 2.1.3.

5.4 Experimentation - Evolving figurative images

This experimentation covers the search for a proper mechanism which uses novelty

search and its application on the evolution of figurative objects. In order to perform

this study, one used object classifiers concerning flowers, faces and leaves (the ones

trained and validated as it is presented in table 4.2).

As in previous chapters, section 5.4.1 presents the parameters used in this exper-

imentation, giving more relevance to the ones who were created or modified in this

phase.
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Procedure: HybridTournamentSelection

input : A set containing the eligible individuals of being selected
(tournament)

output: The winner (winner) of the tournament (tournament)

begin
for i 1 to length(tournament) do

for j  i+ 1 to length(tournament) do
if tournament[i] � tournament[j] then

remove tournament[j] from tournament;
else if tournament[j] � tournament[i] then

remove tournament[i] from tournament;
end

end
winner random(tournament);
return winner;

end
Algorithm 4: An hybrid tournament selection which takes into account novelty
and fitness

Due to novelty search behaviour in large search spaces, there was a need to perform

a deeper study of its application in this particular problem. Only then, a direct

comparison between fitness and novelty was made, in order to assess the phenotypic

range and diversity provided by each mechanism. Section 5.4.2 depicts these results

in a clear and neat way. Then, these results are analysed in section 5.4.3.

5.4.1 Setup

As described in previous studies, the setup phase inolves several parameters re-

garding di↵erent parts of the whole approach. For this reason, the parameters pre-

sented are divided in four main parts.

Classifiers

In opposition to previous experimentations, there were no new classifiers created.

Instead, the ones trained and presented in table 4.2 were used. In a first phase,

during the search for a proper novel mechanism, only a flower classifier was used.

Then, the experimentation was extended to faces and leaves as well.

Classifiers are important to help in the fitness assignment task. Regarding the

fitness function, the one in section 4.2 (namely, equation 4.1) was adopted.
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Object Detection Algorithm

The parameters concerning the object detection algorithm are the same as the ones

used in the experimentation in 3. For further information regarding these parameters,

observe table 3.5.

Evolutionary Algorithm

In order to be able to generate images, norBErT parameters need to be set up re-

garding its evolutionary algorithm. For this experimentation in particular, there are

a few parameters added or changed. Nevertheless, most of them were already used in

the experimentation performed in chapter 4. The parameters of this experiment are

presented in table 5.1.

Table 5.1: GP engine’s parameters used

Parameter Setting
Population Size 100
Generations 500
Crossover Probability 0.8
Mutation probability 0.05
Initialization Method Ramped Half-and-Half
Initial Maximum Depth 5
Mutation max tree depth 3
Elite size 1
Tournament Size 5
max parameter 5
Dissimilarity Metric Root Mean Squared Error
Archive Threshold 100

The new parameters, namely the tournament size, parameter max, the dissim-

ilarity metric and the archive threshold were added to this table due to the new

parameters demanded by novelty techniques. Recall that the max parameter de-

notes the the maximum number of individuals from the archive taken into account

for archive novelty computation (described in detail in 5.2) and the archive threshold

is equal to 100. Given that an image is rendered with the resolution 20x20 for novelty

purposes, this means that an image needs to have 20% of di↵erent pixels to enter in

the archive.

86



Tests Setup

In order to find the ideal way to evolve images with the aid of novelty search, di↵erent

types of evolution were tested in norBErT. These range of tests can be be summarized

to five di↵erent strategies.

Fitness only evolution This is the strategy already used in chapters 3 and 4.

The evolution is performed according to the resemblace of each individual to a given

object.

Novelty only evolution The evolution is performed according to an uniqueness

degree which is calculated at the tournament level with a pairwise dissimilarity metric.

For further details, consult section 5.2.

Hybrid evolution This type of evolution consists in considering fitness and novelty

as two di↵erent objectives at the tournament level. For further information about

this multiobjective approach, see section 5.3.

Two-phases evolution Approach 1 This approach consists in applying a fitness

evolution in a first phase, until an object is detected by the object classifier. From

that moment on, the hybrid evolution is applied to norBErT.

Two-phases evolution Approach 2 This approach consists in switching between

fitness and hybrid evolution according to some criterion. For the instance, this ap-

proach starts with fitness evolution until 15% of the population is detected as contain-

ing an object. If it passes this threshold, there is a switch to the hybrid evolution.

This hybrid evolution is maintained until the percentage of the population which

contains the desired object drops below 5%. In this case, norBErT changes back to

fitness evolution.

5.4.2 Results

This experimentation is divided in two parts. The first one consists in running nor-

BErT using only a flower classifier, but with the di↵erent evolution techniques de-

scribed in the setup. Figures 5.3, 5.4 and 5.5 depict the results obtained in the first

part as an average of 30 runs. Figure 5.3 presents a chart of how the fitness of the

best individual varies along the generations. As for figure 5.4, it shows in the same

30 runs how the detection rate of the best individual varies along the generations.
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Fitness results are normalized by dividing their raw results by the maximum value

achieved.

Figure 5.3: Evolution of the fitness of
the best individual along the evolu-
tionary run (results are averages of 60
runs).

Figure 5.4: Best individual’s detection
rate along the generations

Observing figure 5.3, the most noticeable fact is that the fitness of the best individ-

ual does not increase significantly along the generation, in the novelty-only evolution

case. In contrast with this test, the hybrid evolution case achieved higher fitnesses

values in later generations by converging towards the fitness value of 0.95 in the

500th generation. The other three cases achieved the same values and their lines are

overlapped. Their best fitness achieved a value around 0.97, which mean that the

evolution in these three cases resulted in the increase of the fitness towards higher

values, when compared to the hybrid case.

Interpreting figure 5.4, the first noticeable result is that the number of objects

detected in the novelty case is 0. The hybrid evolution achieves values around 0.25 at

the end of the run, which means that in roughly 25% of the runs, the best individual

from the last generation was able to contain an object detected by the flower classifier.

Concerning the remaining three cases in 5.4 they have overlapped values of detection

rate, which are generally higher than the hybrid case. As for figure 5.3, the same
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three approaches, they have very similar values.

Mainly due to the similar results between the fitness evolution and both two-

phases approaches, a new perspective was considered in terms of average detection

rate per generation. Thus, figure 5.5 depicts how the average detection rate of each

generation varies, instead of considering only the best individual.

Figure 5.5: Average detection rate along the generations

In this case, it is possible to notice that in all the generations, making a com-

parative interpretation between the approaches depicted, this fitness-only evolution

achieves always the highest values. For the instance, in the last generation, 22% of

the population, in average, is detected as containing an object.

The two-phase approach 2 is the approach which achieves the second highest

values, with values around 5% during most the execution time of the algorithm.

In its turn, the two-phase approach 1 line is always under the last one, with fewer

individuals detected as containing an object. Finally, the hybrid approach seems to

get values of average detection rate which are a bit higher than 0%.

The second part of these results chooses the two approaches which are able to

detect more objects. For the remaining tests one chose the fitness-only evolution and

the two-phases evolution approach 2. For the sake of simplicity, in the remainder of

this section this last approach will be denominated novelty evolution, because it was

the chosen approach, which contains novelty mechanisms, to compare with the fitness

evolution.
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These two approaches were used to compare the number of images which are able

to enter in the archive. Recall that the archive contains images in which the object

classifier detected an object and at the same time, achieved an archive novelty value

that passed a given threshold. Bearing this idea in mind, figure 5.6 depicts how the

archive size varies, in average, along the generations. In this figure, three classifiers

were used: a flower classifier, a face classifier and a leaf classifier. Besides, 60 runs

were performed for each test.

Figure 5.6: Archive size progress throughout the generations evolving figurative im-
ages

Two interesting facts can be extracted from figure 5.6. The first one is that

the chosen novelty approach is able to insert more images into the archive than the

fitness approach, for all the objects tested. Considering the last generation, in faces,

novelty achieves in average roughly 9 images against 8 images, regarding fitness. In

the leaves case, novelty had 7 images per run against nearly 6 images achieved with

fitness evolution. Finally, in the flowers case, novelty had almost 6 images whereas

fitness achieved achieved a bit more than 4 images per run.

The second fact extracted from figure 2 is that, comparing for each object fitness

and novelty approaches, it is possible to see that the existent gap between both tends

to increase as we get newer generations.

In order to assess how many images generated were considered as diverse, the

images that entered in the archive, for each run, were submitted to the DBSCAN

algorithm [97]. Using RMSE as a distance metric, the more clusters were detected

by the algorithm, the more images were considered as diverse. With these results,

a pairwise comparison using the same seed for both fitness and the chosen novelty
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approach was performed. Table 5.2 depicts the results obtained from the pairwise

comparison. They present, for each seed, the percentage of runs in which novelty

was able to get more diverse images, the same number of images or less diverse

images, when compared to fitness. Objects mentioned in bold mean that the results

were statistically significant after applying the Wilcoxon statistical test with 95% of

confidence. The statistical test was applied to the number of clusters generated by

the DBSCAN algorithm.

Table 5.2: Pairwise comparison results between the diverse figurative images gener-
ated by fitness and novelty

Probabilities considering successful runs
Object Successful runs Beneficial Neutral Detracted
Faces 73.33% 52.27% 31.82% 15.91%

Flowers 68.33% 43.90% 31.71% 24.39%
Leaves 78.33% 46.81% 38.30% 14.89%

5.4.3 Analysis

From the results presented regarding the first part of the experimentation, namely

figures 5.3 and 5.4, it is possible to conclude that the novelty-only approach is in fact

a failure because it is not able to promote evolution and it does not detect a single

object during the 30 runs. This result is consistent with previous studies about novelty

and their problem performing in problems with bigger search spaces.

The hybrid evolution, although it achieves higher detection rates, it evolves with

more di�culty and its detection rates are not the highest. The most important

factor that contributes to the object detection rate is the elitism. Saving the best

individual in terms of fitness assures that the solution which is closer to be considered

as containing an object is not lost.

However, a problem persists, because the desired scenario is to obtain diversity

considering only the feasible individuals (individuals whose correspondent image con-

tains an object) and hybrid evolution considers novelty taking into account the closest

neighbours, whether they contain an object or not. Therefore, hybrid evolution will

somehow get lost from the objective of getting images which resemble objects by

favouring novelty exclusively.

The other three solutions have the exact same values in figure 5.4 and very similar

values in figure 5.3. This fact is again explained with the elitism choice. Maintaining

the best individual has the consequence of assuring the value of the best individual.
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Therefore, when the best individual contains an object, no matter what type of

evolution is used, the use of elitism assures that from that moment, the results will

be the same in terms of best individual detection rate. Despite the same fact cannot

be generalized to the fitness, it has a big influence and explains the similarity of the

three curves.

Given that the results were so similar between those three approaches, the analysis

in terms of average detection rate gave a di↵erent insight to assess the capability of

generating feasible individuals by those three approaches. Therefore, analysing figure

5.5, the main conclusion that can be drawn is that the hybrid mechanism, the more

time it is applied, the more probable it is to get lost in zones of the search space

which do not contain feasible individuals.

This thought led to the idea that what matter may not be the number of in-

dividuals per se, but instead assessing the capability of generating di↵erent feasible

individuals when they appear. Bearing this idea in mind, 60 runs were executed using

the most successful novelty mechanism and the fitness evolution.

Analysing figure 5.6, the results are clear, because no matter the desired object

chosen, the novelty mechanism will generate more feasible ans distinct individuals

than the fitness evolution. The interpretation of these results improved results was

the following. Hybrid evolution favours the appearance of new individuals but the

probability of moving towards infeasible regions of the search space is high. On

the other hand, fitness evolution can converge to feasible zones of the search space.

However, its probability of generating diverse content is lower (one used the word

converge to characterize how fitness evolves). Therefore, one uses fitness evolution to

get towards feasible zones as quick as possible. When a certain number of individuals

is classified as containing an object (in this case, 15), the evolution type switches

to hybrid, in order to work using novelty as one of the criteria. Using this method

increases the probability of getting more images into the archive than fitness, but at

the same time, increases the probability of moving towards infeasible search spaces.

For the instance, when less than 5 individuals are detected as containing an object,

it a sign that fitness needs to be adopted as the evolution method, in order to evolve

again towards feasible zones of the search space, whether they are the same or not.

In fact, analysing table 5.2, the pairwise comparison showed that, with this novelty

mechanism, it is more likely to improve in terms of the number of diverse images

than degrading. The probability of degrading is considerably low, and the chances of

getting at least the same number of images is very high (> 70%).

92



5.5 Experimentation - Evolving ambiguous images

This experimentation covers the use of the same novelty mechanism, discovered in

section 5.4, but applied to the evolution of ambiguous images. Recall that the novelty

mechanism adopted consists in switching between a fitness evolution and an hybrid

evolution, according to the number of individuals which resemble a given object. To

assess novelty capabilities of promoting diversity in ambiguous images, one used the

same set of classifiers utilized in the experimentation done in chapter 4 (namely in

section 4.3). Therefore, this study involves the use of two pairs of classifiers: a robust

pair of faces and leaves classifiers and a permissive pair of faces and leaves classifiers.

The relevant parameters used in this experimentation are presented in section

5.5.1. Then, the results of a direct comparison between fitness and novelty mecha-

nisms using the two pairs of classifiers are presented in section 5.5.2. These results

are then analysed in section 5.5.3.

5.5.1 Setup

This parameter setup shares similarities with the experimentation performed in

chapter 4 and the experimentation performed in section 5.4. In the one hand, as this

study addresses the evolution of ambiguous images, one used the sets of classifiers

when compared to chapter 4: a pair of robust classifiers (faces and leaves) and a pair

of permissive classifiers (faces and leaves). On the other hand, this study addresses

the introduction of novelty. For this reason, this experimentation focuses on the

comparison between fitness and novelty mechanisms in terms of quantity and diversity

of the images.

Once again, the relevant parameters are explained by breaking them down in

di↵erent components.

Classifiers

As it was referred in section 5.5.1, two sets of classifiers are used in this study. As

the classifiers influence the fitness function and this study follows the steps of the

experimentation done in chapter 4, the same fitness functions are used.

Object Detection Algorithm

The parameters concerning the object detection algorithm are same as the ones used

in chapter 4. For further details, consult section 4.3.1.

93



Evolutionary Algorithm

Concerning the evolutionary algorithm, the parameters chosen are a crossover between

previous studies. They are described in table 5.3.

Table 5.3: GP engine parameters used

Parameter Setting
Population Size 100
Generations 1000
Crossover Probability 0.8
Mutation probability 0.05
Initialization Method Ramped Half-and-Half
Initial Maximum Depth 5
Mutation max tree depth 3
Elite size 1
Tournament Size 5
max parameter 5
Dissimilarity Metric Root Mean Squared Error
Archive Threshold 60

Briefly explaining, all the parameters adopted from chapter 4 are the same, for the

sake of consistency. Regarding the parameters added due to the novelty mechanisms,

the majority of the parameters were also maintained. However, as it is predicted that

the number of distinct images produced would be lower, the archive threshold was

reduced, in order to accept the introduction of more images.

5.5.2 Results

The results presented in this section cover the comparison between the two approaches

chosen in the previous section: the fitness one and the novelty one. Instead of using

a single classifier, two pairs of classifiers are used, and for each pair, 60 runs are

performed.

In similarity with the previous section, the results are presented in terms of vari-

ation of the archive size along the generations and they can be observed in figure

5.7.
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Figure 5.7: Archive size progress throughout the generations evolving ambiguous
images

Looking to that chart, and observing only the green lines, which refer to the

robust set of classifiers, it is possible to notice that the fitness approach is able to

insert more images to the archive, in average, than the novelty approach, throughout

the generations. This phenomenon contrasts with the facts detected in the previous

section, where novelty achieved more images in the archive than fitness.

As for the permissive set, the number of images in the archive seems to be higher

in the novelty case. However, the gap between novelty and fitness does not seem

to increase in newer generations. Moreover, the number of images generated using

permissive classifiers are considerably higher than the case where robust classifiers

are used.

Similarly to previous section, the final archive contents were submitted to the

DBSCAN algorithm clustering algorithm, seed by seed. Then, the percentages of

occurrences in which novelty improves, degrades, or runs with the same performance

as the fitness approach is traced, and their values are presented in table 5.4. The

Wilcoxon test was applied again using the number of images in the archive, but this

time, the results were not statistically significant.

5.5.3 Analysis

The results obtained in the previous section can be analysed from two di↵erent

perspectives. Comparing the sets of classifiers used, and using figure 5.7 to analyse,

it is clear that the types of classifiers used influence the number of diverse images
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Table 5.4: Pairwise comparison results between the diverse ambiguous images gener-
ated by fitness and novelty

Probabilities considering successful runs
Classifiers set Successful runs Beneficial Neutral Detracted
Robust Set 41.67% 0.00% 88.00% 12.00%

Permissive Set 80.00% 41.67% 25.00% 33.33%

generated. The higher number of images in the permissive set can be interpreted in

the following way. The classifiers do not influence the search space size, but they

influence in the choice and distinction between feasible and infeasible zones. Thus,

robust classifiers tend to restrict the search space in the sense that finding feasible

individuals in a harder task. With restricted search spaces, it is harder to find images

and mainly, to find images which can be considered as diverse. This analysis can also

be made in terms of comparison fitness vs. novelty.

Observing figure 5.7 and table 5.4, it seems that the classifiers’ robustness influence

the e↵ectiveness of novelty mechanism. With robust classifiers the search space gets

restricted, and these constraints are consequently incompatible with the employment

of novelty techniques. On the other hand, permissive classifiers tend to have larger

feasible zones of the search space, where novelty can in fact act, and increase the

probability of getting better results.

5.6 Synthesis

In this chapter one extended previous norBErT approaches, in order to promote a

di↵erent type of evolution where the uniqueness of each solution is valued instead of

considering (only) the fitness function. This study was performed, in order to pursue

the goal of getting a higher range of distinct images.

The novelty mechanism was employed in norBErT by adding a component and

modifying an existent one. In order to filter which images could be considered as

diverse, it was added an novelty archive component which was responsible to hold

the images which was considered as containing an object by the object classifier(s)

and at the same time, achieved an archive novelty value higher than a given threshold.

This value was computed using a dissimilarity metric between the candidate image to

enter in the archive and the ones that were already there. The modified component

was the tournament selection. It was adapted to select the best candidates based on

fitness, evolving novelty or both. Evolving novelty is calculated using a dissimilarity
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between each image and the nearest neighbours selected from the tournament and

the archive.

The results showed that, in the case of evolving figurative images, novelty mech-

anisms outperforms mechanisms based on fitness only, in terms of number of images

considered as distinct from the others. Nevertheless, when making a pairwise compar-

ison using running the algorithm with the same seed number, there is a small inherent

risk of degrading the results instead of improving them. This risk is higher when one

tries to use novelty mechanisms in the evolution of ambiguous images, and it depends

on the characteristics of the classifier: robust classifiers shape the search space to be

more constrained, which in its turn, complicates the task of finding a large number

of diverse images when the search space size is large. On the other hand, permissive

classifiers allow the appearance of more diverse images and is are more compatible

with the employment of novelty mechanisms.
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Chapter 6

Conclusions and Future Work

The field of evolutionary art is rooted in the seminal works of Dawkins [69] and

Sims [2], who established the foundations for subsequent approaches.

Correia and Machado [5] used a general purpose approach which they proven to

be able to evolve figurative images of any object desired. Their approach (or more

exactly, the object desired to evolve) depended solely on an object classifier, which

was used to help assigning fitness to the images.

In the current work, three main objectives were achieved. First, based on the

work of Correia and Machado, their method was reimplemented in order to allow

the evolution of figurative images with a set of classifiers created using datasets built

manually. Then, this work was adapted to perform evolution taking into account

multiple classifiers, in order to enable the evolution of ambiguous images. Finally,

the method was extended in order to allow the generation of more images containing

the desired object(s) and at the same time distinct, by employing novelty search

mechanisms.

In this work, a tool called as norBErT was created, in order to attain the objectives

defined. This tool generates images using an evolutionary algorithm, using single or

multiple object classifiers to help in the fitness assignment task, and dissimilarity

metrics to calculate uniqueness values.

The development of such a tool involved the study of the state of the art in Evolu-

tionary Computation (namely genetic programming and multiobjective evolutionary

algorithms), Evolutionary Art and mechanisms which are able to improve diversity

in Evolutionary Computation.

From the experiments performed, the approach adopted was able to evolve figu-

rative images that resemble faces, face silhouettes, flowers and leaves. However, it

should be noted that what is computationally or humanly considered as an object is

99



di↵erent sometimes. This fact is even more visible when one tries to evolve ambigu-

ous images, as the evolution of these type of images requires the same image to be

evaluated by several classifiers (in this case leaves and faces) instead of just one. The

approach is able to evolve ambiguous images of leaves and faces, and these ambiguous

images can be recognized by humans, identifying both objects at the same time.

Regarding the employment of novelty techniques, the novelty mechanism devel-

oped consisted in changing between a fitness-only evolution and an hybrid evolution,

depending on the percentage of feasible individuals.

It was concluded that the constraints in the search space play an important role on

the e↵ectiveness of applying novelty search. Search spaces which are very constrained

are not favourable to the employment of novelty search techniques. On the other

hand, permissive classifiers (or at least using less classifiers to guide evolution) are

compatible with the use of novelty search. In these cases, the novelty mechanism

adopted outperformed the fitness based evolution in terms of number of diverse images

generated, although they have an associated risk of, sometimes, degrading the results

instead of improving them.

Given this drawback, future work can build on this study and attempt to lower

the risk of degrading the results using novelty mechanisms. To study this subject,

it would be important to assess in what conditions this deterioration happens, and

use the relevant data to find a di↵erent criterion to switch between novelty and fit-

ness evolutions, or develop an adaptive scheme of switching evolution types. Another

interesting topic to tackle is the exploration of the classifier component. Training

these classifiers involves choosing a good dataset and a lot of parameters. Therefore,

it would be interesting to explore the tuning of these parameters through self evolu-

tionary means. Another interesting topic to explore is the way fitness functions from

di↵erent classifiers are aggregated. Only one was chosen for this work, but it would

be interesting to assess whether the final ambiguous images generated would benefit

using a paretto-based approach.
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