
Masters in Informatics Engineering
Dissertation/Internship 2013/2014
Final Report

Integration of an iOS
App with Social
Networks and Cloud
Storages

Nuno Miguel Carvalho Caixeiro
caixeiro@student.dei.uc.pt

Supervisors:

Frederico Lopes
Hugo Gonçalo Oliveira

June 21th, 2014

Internship Final Report

ii

Integration of an iOS App with Social Networks and Cloud Storages

i

Abstract

Since its origin, the human being had the need to communicate with those around him.
Nowadays, society fully relies on telecommunications in order to communicate with the
ones they care, whether they are in the same city or in another continent.

With the massification of smartphones and tablets, and the proliferation of an easy mobile
access to the Internet, a new menace arose to the Mobile Network Operators (MNOs): the
Over-the-Top applications. Taking advantage of the high and worldwide usage of these
mobile devices that are always connected to the global network, they provide new and
different features that improve the way people communicate. Together with having no
associated cost in general, these applications led users to rely less on the MNOs for the
communication processes, which consequently affected their revenues.

In order to provide the MNOs with a solution that could deliver innovative value to the
consumers, the GSM Association created the Rich Communication Services platform. This
initiative is revealed in a product branded joyn, which aims to provide other features beyond
voice and SMS, namely enhanced calls, media content share and instant messaging.
Outsourcing companies, like WIT Software, develop RCS solutions for the mobile operators
so they can have their own joyn applications and thus provide new features to their
customers.

The purpose of this internship is to provide added value to WIT Software’s joyn client
application, so it can stand out from its direct competitors and thus be the first option for
operators. It can be accomplished by integrating WIT’s solution with social networks and
cloud storages. By integrating social networks, users will be able to share content received
during an instant messaging session, and enrich their contacts’ details with information from
their respective social networks profiles. In the other hand, integration with cloud storages
allows them to share any file that is in the cloud, store a received media file in order to make
it accessible anywhere and anytime, and create a safe backup of their conversations.

Keywords: Social Networks, Cloud Storage, Ephemeral Messaging, Real-time Location
Share, iOS, joyn, Rich Communication Services, Telecommunications

Internship Final Report

ii

Integration of an iOS App with Social Networks and Cloud Storages

iii

Acknowledgments

First and foremost, the present report represents the end of a five-year chapter as a student
of Informatics Engineering at the University of Coimbra that had not been possible without
the continuous effort and sacrifice of the person whom I owe everything I am and have
today – my mother. A special and eternal thanks.

A big thanks to all my friends that have always been there for me, independently of the
mood and situation I had.

I would like to express my gratitude to both my supervisors, Frederico Lopes and Hugo
Gonçalo Oliveira for their support and time spent along the entire internship.

Finally, I would like to thank to WIT Software for creating this opportunity and allowing me
to work with such a great iOS team that helped and taught me a lot.

Internship Final Report

iv

Integration of an iOS App with Social Networks and Cloud Storages

v

Table of Contents

1. Introduction ... 1	
1.1. Context ... 1	

1.1.1. New ways of communication ... 2	
1.1.2. The Rich Communications project .. 2	
1.1.3. RCS Specifications and Product Definition ... 3	
1.1.4. Social Networks .. 4	
1.1.5. Cloud Storages .. 4	
1.1.6. Communication trends .. 5	

1.2. Motivation ... 5	
1.3. Scope ... 6	
1.4. Goals ... 6	

1.4.1. Internship ... 6	
1.4.2. Project .. 7	

1.5. Document structure .. 7	
2. State of the Art ... 9	

2.1. Competitors .. 9	
2.1.1. New and powerful features ... 9	
2.1.2. Direct competitors ... 11	
2.1.3. Indirect competitors ... 14	

2.2. Social Networks ... 20	
2.3. Cloud Storage services .. 22	
2.4. Ephemeral Messaging applications .. 24	
2.5. Real-time Location Share applications ... 25	

3. Approach .. 27	
3.1. Methodology .. 27	
3.2. Planning ... 29	

3.2.1. User stories .. 29	
3.2.2. Product Backlog .. 29	
3.2.3. Sprint .. 30	
3.2.3. Burndown Chart ... 30	
3.2.4. Sprint Meeting ... 30	

3.3. Learning .. 31	
3.4. Risks .. 31	

4. Architecture .. 33	
4.1. iOS Fundamentals ... 33	

4.1.1. Model-View-Controller ... 33	
4.1.2. Application States ... 34	
4.1.3. Grand Central Dispatch .. 36	

4.2. WMC Global Architecture ... 36	
4.2.1. COMLib layer ... 37	
4.2.2. UI/UX layer .. 38	

4.3. Ephemeral Messaging ... 39	
4.4. Real-time Location Share .. 41	
4.5. Authentication ... 45	
4.6. Save and Share from Dropbox ... 47	
4.7. Backup and Restore of conversations ... 51	

4.7.1. Data models ... 51	
4.7.2. The Sync Module .. 52	

4.8. Contact Enrichment and Contact Timelines .. 55	
5. Implementation Challenges and Evaluation ... 61	

5.1. Challenges and Problem Solving ... 61	

Internship Final Report

vi

5.1.1. Ephemeral Messaging .. 61	
5.1.2. Real-time Location Share .. 62	
5.1.3. Save and Share from Dropbox ... 64	
5.1.4. Backup and Restore of conversations ... 65	

5.2. Evaluation .. 67	
5.2.1. Functional Testing .. 67	
5.2.2. Networking .. 68	
5.2.3. Usability .. 68	

6. Conclusion .. 71	
6.1. Contributions Overview ... 71	
6.2. Future Work .. 72	
6.3. Final Remarks ... 73	

References ... 75	

Integration of an iOS App with Social Networks and Cloud Storages

vii

Index of Figures

Figure 1 - PCs vs. mobile devices annual sales .. 2	
Figure 2 - RCS market status ... 3	
Figure 3 - Worldwide forecast for personal cloud subscriptions (in Millions) 4	
Figure 4 - Projects Complexity .. 27	
Figure 5 - Components of a user story ... 29	
Figure 6 - MVC communication flow inside an iOS application ... 34	
Figure 7 - State changes in an iOS application .. 35	
Figure 8 - WIT's RCS application in an IMS infrastructure .. 36	
Figure 9 - WIT RCS Stack .. 37	
Figure 10 - UI/UX high-level package diagram .. 38	
Figure 11 - Ephemeral Messaging communication flow ... 39	
Figure 12 - Ephemeral messaging high-level architecture ... 41	
Figure 13 - Real-time Location Share communication flow ... 42	
Figure 14 - Real-time Location Share high-level architecture ... 44	
Figure 15 - Authentication flow for both Dropbox and Facebook ... 46	
Figure 16 - Dropbox and Facebook authentication high-level architecture 47	
Figure 17 - Save to Dropbox flow .. 48	
Figure 18 - Share from Dropbox entry points .. 49	
Figure 19 - Share from Dropbox flow ... 49	
Figure 20 - Save and Share to/from Dropbox high-level architecture 50	
Figure 21 - Datastore structure within the RCS application ... 52	
Figure 22 - Information stored by the default datastore ... 52	
Figure 23 - Backup and Restore of conversations high-level architecture 53	

Internship Final Report

viii

Integration of an iOS App with Social Networks and Cloud Storages

ix

Index of Tables

Table 1 - Direct competitors' provided features ... 13	
Table 2 - Direct competitor's supported platforms .. 13	
Table 3 - Indirect Competitors' features .. 18	
Table 4 - Indirect Competitors' supported platforms .. 19	
Table 5 - Partial Product Backlog of the project .. 30	

Internship Final Report

x

Integration of an iOS App with Social Networks and Cloud Storages

xi

Glossary

API

An Application Programming Interface is a group of methods or
access points that a software provides so that external parties can make
use of their functionalities without any knowledge of the intrinsic
processes.

Burndown
Chart

A Burndown Chart is a graphical representation of a Team’s outcome
at a given point of a Sprint. It plots the evolution of the remaining
points – Sprint’s User Stories still opened – and the remaining hours –
corresponding to the Tasks still not closed inside each User Stories.

Contact
Enrichment

Contact Enrichment, in the scope of this project, consists in gathering
information about the contacts in the user’s mobile phone from social
networks, and use that content to update the contact profiles in the
user’s smartphone.

DoD The Definition of Done is a document that states the requirements
that must be met before a Backlog User Story is marked as done.

GSMA
The GSM Association (GSMA) is a group of mobile operators and
companies related to the mobile market, created in 1995, to define
standards for mobile communication systems.

joyn
joyn is the brand created by GSMA to identify the applications that
comply with their specifications in order to deliver Rich
Communication Services to the end user.

MNO

A Mobile Network Operator is both a provider and manager of the
technologies and infrastructures required to supply mobile
communication services for their users, such as messaging or
telephony.

Mockup
Regarding this project, a Mockup is both a graphical illustration of a
feature’s use cases and a proposal for the User Interface/User
Experience of that feature in the current product.

OTT
Application Over-the-Top refers to applications that deliver multimedia content

over the Internet, like audio and video calls between two end users.

PoC
A Proof of Concept is a demonstration of the feasibility of certain
feature inside a product, which is obtained through its successful
implementation.

Product
Backlog

Product Backlog is an artifact that contains all the ideas for the project,
in the form of User Stories. These stories are organized by the priority
given by the Product Owner, and are also assigned an effort that is the
estimate given by the Team Members.

Product
Owner

In Scrum, the Product Owner is the person responsible for defining
the User Stories that compose the Product Backlog and assign them a
priority in order to conduct the Scrum Team’s work. The Product
Owner can change the priority of those User Stories in order to
maximize the value of the work by the delivery date.

RCS
Rich Communication Services is a global initiative by GSM
Association (GSMA) to compete the Over the Top applications that
are penetrating the mobile communications market at a fast pace.

Internship Final Report

xii

Redmine

Redmine is a web platform for project management that includes
various tools to check the project state, such as charts and task boards.
This tool was used in the project because it is widely used inside WIT
Software and supports the Scrum framework.

Scrum
Scrum is an iterative and incremental agile development framework.
This process is task priority-oriented, meaning that it seeks to fulfill
tasks with higher priority first.

Scrum
Master

Scrum Master is the responsible to help both Product Owner and
Team Members. The Scrum Master helps the Product Owner to
manage the Product Backlog, and helps the Scrum Team to mark all
the User Stories in a Sprint as done, by removing impediments and
keeping them focused and productive.

Sprint

A development Sprint is a fixed implementation period, where the
Team Members focus their effort in developing the features that match
the User Stories they compromised to. Sprint duration is usually
between one to four weeks; in this project, each Sprint lasts two weeks.

Sprint
Backlog

Sprint Backlog is composed by the User Stories that are selected by the
Team Members to be accomplished along a Sprint. Each of these User
Stories is divided into smaller tasks, which detail the steps the Team
must take in order to fulfill a story.

Task

A Task is a smaller assignment, subset of a User Story, which states
something that must be implemented as part of that feature. The tasks
for each User Story may be defined when that story is assigned to a
development Sprint, defining specifically what needs to be done to
mark the story as closed.

Team
Member

The Development Team Members are responsible to create the
incremental changes on the product that match the User Stories
assigned to each development Sprint. Team Members forecast the
User Stories that they can deliver at the end of the Sprint, and also
decide how they will be implemented.

User Story

A User Story defines a possible user action with the product in order
to state a project requirement in the everyday language. A User Story
can comprise multiple Tasks that define meticulously what must be
created by the development Team Members in order to mark the story
as done.

VCard File format standard for electronic business cards. They can contain
name and address information, phone numbers, and email addresses.

Integration of an iOS App with Social Networks and Cloud Storages

xiii

Acronyms

AES Advanced Encryption Standard

API Application Programming Interface

CMS Central Message Storage

DoD Definition of Done

GSM Global System for Mobile Communication; originally Groupe Special
Mobile

GSMA GSM Association

IP Internet Protocol

MMS Multimedia Messaging Service

MNO Mobile Network Operator

OS Operating System

OTT Over-the-Top

PC Personal Computer

PoC Proof of Concept

REST Representational State Transfer

RCS Rich Communications Services

SIM Subscriber Identity Module

SMS Short Message Service

SSL Secure Sockets Layer

UI User Interface

URL Uniform Resource Locator

USA United States of America

UX User Experience

VoIP Voice over IP

WMC WIT Mobile Communicator

WWDC Apple Worldwide Developers Conference

Internship Final Report

xiv

Integration of an iOS App with Social Networks and Cloud Storages

1

1. Introduction

The present document, together with all the appendices, is part of the work done at WIT
Software during the one-year internship. The internship work was supervised by Hugo
Gonçalo Oliveira, PhD professor at the Department of Informatics Engineering of the
University of Coimbra, and Engineer Frederico Lopes, Project Manager at WIT Software.

This introductory chapter is organized in five sections. The first section presents the context
of this work in the area of telecommunications and its current trends. The second section
presents the grounds that gave origin to this internship and the reasons of its importance.
The third section contextualizes the proposed work in WIT Software’s roadmap. The goals
of this work are defined in the fourth section. The fifth section describes the purpose of
each chapter, describing as well all the documents that append this report.

1.1. Context

In 1983, Motorola released the first commercial portable cellular phone. This event
revolutionized the way people talked, allowing them to communicate on the move. Over the
following years, this kind of devices evolved: they got smaller, thinner, lighter, more
powerful, and their autonomy increased. This technological evolution was accompanied by
the release of new communication features provided by the Mobile Network Operators
(MNOs). The appearance of the Short Message Service (SMS) allowed people to exchange
short messages with their contacts, in a quicker and cheaper way than via the traditional
voice call communications. The evolution of the SMS originated the Multimedia Messaging
Service (MMS), allowing people to share multimedia contents (photos and videos). Both
these services were quickly adopted all over the world, becoming an important source of
revenue to the MNOs.

Smartphones, which are mobile phones built on a mobile operating system (OS), have
emerged less than a decade ago. This equipment has more advanced computing power and
connectivity than the typical cellular phone, providing a series of advanced features offered
by third party applications running on the OS, just like in a computer. These devices
revolutionized the way people communicate, allowing them to share easily any kind of
information with an Internet connection. The success of these devices is revealed in Figure
1: the sales of smartphones are increasing exponentially, unlike the PCs that are slowly
decreasing. In 2013, 1.81 billion mobile phones were sold, 55% of which are smartphones
[1]. At the moment, Android and iOS devices are the market leaders, with 32.1% and 12.1%
respectively.

Internship Final Report

2

Figure 1 - PCs vs. mobile devices annual sales [2]

1.1.1. New ways of communication

The proliferation of smartphones and mobile Internet access all over the world granted the
opportunity for the appearance of a new generation of mobile services. In the area of
communication, new ways of talking and messaging have emerged, which are threatening
the MNOs: the Over-The-Top applications (OTT). An OTT is “any app or service that
provides a product over the Internet and bypasses traditional distribution. Services that
come over the top are most typically related to media and communication and are generally,
if not always, lower in cost than the traditional method of delivery” [3].

Why are they threatening the MNOs? Generally, they are freemium services that provide the
basic communication features (voice and video calls, and chatting) free of charges. However,
users can access extra features or contents by purchasing plans or subscriptions inside the
application. Thus, they are the reason users make less traditional calls and send less
SMS/MMS, resulting on huge losses of revenues to the operators. According to [4], SMS
generated worldwide revenues of 15.3 million dollars per hour, against the only 2.6 million
dollars per hour generated by the OTTs, in 2013. This high difference is justified: OTTs are
only available to smartphones and not everybody has one, while everybody with a mobile
phone can send SMS. However, this article predicts that OTT messaging traffic will increase
exponentially in the next few years, reaching the 32 trillion messages exchanged annually
against the 7.89 trillion SMS by the end of 2017.

The OTTs are a real menace and the MNOs must innovate in order not to lose more market
share.

1.1.2. The Rich Communications project

Formed in 1995, the GSM Association (GSMA) “is an association of mobile operators and
related companies devoted to supporting the standardizing, deployment and promotion of
the GSM mobile telephone system” [5].

In order to provide a solution to the MNOs so they could deliver innovative value to the
consumers and, consequently, generate more revenues, GSMA defined a “platform that
enables the delivery of communication experiences beyond voice and SMS, providing
consumers with instant messaging or chat, live video and file sharing – across devices, on
any network” [6] – the Rich Communications Services (RCS). Following the adoption of

Integration of an iOS App with Social Networks and Cloud Storages

3

4G, “RCS marks the transition of messaging and voice capabilities from Circuit Switched
technology to an all-IP world” [6]. In other words, RCS allows the communication via
Internet, just like the OTTs, as well as via the typical technology used in the voice calls and
SMS exchange.

This project is of great importance and interest for the operators because it enriches their
services for the users, offering them new and competitive features, and ways of being
connected. “The scope and variety offered by RCS is a route to developing more targeted,
engaging customer propositions – for example via chat-based games, mobile learning, smart
ads and promotions” [6]. Besides the improvement of the user experience, MNOs have a
huge advantage comparing to the OTTs: while each of those communication services do
customer segmentation once they only allow the communication between users of that
service, the operators allow interoperability, meaning that their customers can communicate
with any person in the world that has a SIM card.

As shown in Figure 2, this platform is strongly supported by the MNOs and device
manufacturers, existing in 17 countries at the moment, and counting with commitment of 85
operators to launch it by 2015.

Figure 2 - RCS market status [6]

1.1.3. RCS Specifications and Product Definition

The presence of RCS services is identified through the joyn brand. The presence of this
brand’s logo informs that devices and applications have been accredited by GSMA.

In order for MNOs to implement the necessary infrastructures, and companies to develop
RCS-based client applications, the Global Specification Group within the RCS project,
composed by the leading operators, have design a set of specifications for the RCS platform.
These specifications are regularly updated and their objective is to “provide a framework for
discoverable and interoperable advanced communication services and functionality” [7]. The
most recent set of specifications is contained in RCS 5.1 v4.0 document.

Internship Final Report

4

joyn branded applications must follow the Product Definition documents. These documents
are directed to device manufacturers and application developers, with the following goals:

• Define the product and include some definition of the User Experience (UX), based
on the latest RCS feature specifications;

• Provide guidance on how the features should be implemented.

The two product definition documents that indeed define how the joyn applications must be
are joyn Hot Fixes and joyn Blackbird, the latest being the most recent release based on RCS
5.1 specifications. However, in the present year the Crane version will be publicly released,
with new features for the joyn branded products.

1.1.4. Social Networks

In these days, social networks are a fundamental part of almost everyone’s lives. Through
these communities people are able to communicate more easily, to share their thoughts and
feelings, and even to meet new people. They allow us to be more present in the important
events of our friends, to be constantly up to date about the news, and even to find that
friend from long time ago. Were they necessary ten or twenty years ago? Sure not! Although,
in the present days people are often required to leave their home locations, and
consequently their loved ones, for many reasons. This is where these communities play an
important role by keeping people in touch.

As there is no specification regarding the integration with social networks on the latest joyn
release – Blackbird -, and as social networks are of great importance to the users, WIT
Mobile Communicator (WMC) for iPhone would be highly enriched with the
implementation of this feature. Furthermore, WIT will have one more chance to suggest
new specifications if this feature is revealed successful, increasing even more its success and
worldwide recognition.

1.1.5. Cloud Storages

Mobility is one of the principles that rule the world nowadays, leading people to be always in
movement. Due to that, people started to adopt cloud storage services as their main
repository of information in order to access it anywhere in the world. Users won’t have to
worry anymore about having that pen drive with them all the time or buying a larger hard
disk in order to save all their data. There are cloud storage services for everyone’s needs.

As revealed in Figure 3, the market for cloud storage services has grown notoriously,
reaching 625 million Internet users until the end of 2013. It’s predicted that more users will
start using this kind of services, surpassing the 1 billion users mark in 2016.

Figure 3 - Worldwide forecast for personal cloud subscriptions (in Millions) [8]

Integration of an iOS App with Social Networks and Cloud Storages

5

This way, the integration of a cloud storage service with the WMC for iPhone is of great
importance once it will greatly improve the way a user shares contents: they will be able to
send photos and videos that are not on their mobile devices (which is usual nowadays), and
to store received contents on a cloud, making them accessible anytime and anywhere.

1.1.6. Communication trends

Until the previous decade, the communication was all about voice calls and SMS exchange.
Nowadays, with all the capabilities provided by the smartphones, the communication
process has evolved, wrapping a whole new set of possibilities. Presently, there are two
communication features that are very popular among the smartphone users: the exchange of
ephemeral messages, and the share of location in real-time location.

Ephemeral Messaging

One of the usages of the Internet is for communication purposes. Although it is extremely
useful and versatile, any action we have on the Internet leaves a digital footprint that stays
stored in third-party servers across the globe. This issue did arise concerns regarding the loss
of privacy. This way, the concept of ephemeral messaging appeared in order to allow the
Internet users to have privacy while communicating. It consists of the exchange of messages
and media files that have a short life span and are not stored in the servers. After the validity
of the message expires, it is erased from the device, leaving no trace of their existence.

Real-time Location Sharing

Today’s smartphones are equipped with GPS chips, making it possible to determine the
current position of the device. This capability allows the existence of location-based
contents inside the smartphone, such as navigation, and sport and fitness applications.

“How long until the taxi arrives?”, “I’m hungry! How long will that pizza take to be
delivered?” are some of the stressful questions that the society faces nowadays. Both of
them have in common the desire of knowing the location of something at a certain moment.
This problem can be solved using a real-time location solution, which mainly relies on the
smartphone’s GPS chip. The device determines periodically its location in order to share it
with someone and, consequently, enable the receiver to keep track of the sender’s route.

The implementation of these features on WIT’s RCS-based solution plays an important role
on its innovative process once it will equip the application with new communication
capabilities that are desired and applauded by the consumer market. Thus, this will provide
more reasons for this solution to be attractive for the MNOs once it will be well received by
their clients.

1.2. Motivation

As stated in the previous section, the OTTs are threatening the MNOs due to their
innovative features. These features attract hundreds of millions users worldwide, providing
them with other ways of communication, mostly free of costs. This way, users decreased
their high dependency on the MNOs to communicate which led to lower revenues by the
MNOs.

Internship Final Report

6

In order to fight this menace and provide a solution to the operators, GSMA created a
service capable of providing similar features to those provided by the OTTs: the Rich
Communication Services. This initiative is promoted under the brand “joyn” for both
accredited applications and mobile devices, meaning that they fulfill all the defined
specifications once they are approved by GSMA.

At the moment, some MNOs already provide joyn branded applications, which were
produced by outsourcing companies specialized on the development of mobile applications
and experienced in the Telco business. WIT Software is one of these companies, and this
internship aims to contribute for the enrichment of its joyn application for iPhone: WIT
Mobile Communicator. Besides enriching the product, this internship aims for the
innovation its innovation as it focuses on features that are not present on any of the current
specifications: integration with social networks and cloud storage and, more recently,
ephemeral messaging and real-time location share. The implementation of these features will
provide business advantage to WIT Software because none of its competitors has publicly
revealed to provide such features.

All these features are believed to be a success and highly desired by the final consumers. On
the one hand, hundreds of millions of people use social networks on a daily basis for the
most varied purposes. We can say that social networks are becoming essential tools in
people’s lives. On the other hand, cloud storages are widely used as they represent a secure
and centralized storage of information, ending with the common situation where people
forget or lose their pen drives full of important documents. Regarding ephemeral messaging
and the sharing of real-time location, both these features are considered to be successful
because they provide great solutions for real-life problems that are shared by the population,
namely the privacy issues while messaging and the impossibility of following someone’s
route, respectively.

1.3. Scope

The internship is taking place at WIT Software, a software company headquartered in
Coimbra, Portugal, that is specialized in advanced solutions for mobile telecommunications
companies. Since December 2011, WIT is a member of GSMA and, consequently, of the
RCS project, where it helps to improve the specifications and develops joyn branded client
applications.

1.4. Goals

The goals of this work can be divided into two major interconnected parts:
• Internship, which focus on the experience and knowledge gained by the intern;
• Project, which corresponds to the implementation of all the proposed features.

1.4.1. Internship

From the internship angle, the goals are to consolidate the knowledge about Software
Engineering, learn and master the Objective-C language used in the development of iOS
applications, and gain experience on developing software in a corporate environment where
commitment and team work are essential to produce an excellent piece of software, which
will be delivered to an actual client.

Integration of an iOS App with Social Networks and Cloud Storages

7

1.4.2. Project

Regarding the project, the main goal is to contribute for the enrichment of WIT’s WMC for
iPhone during the internship. To accomplish this, the following features must be fully
implemented and tested to guarantee the existence of zero bugs in the product:

• Integration with Social Networks: allow the user to interact with a social network
within WMC in order to share contents, and enrich its contacts’ details with
information from their respective social networks profiles;

• Integration with Cloud Storages: provide the user with access to cloud storage
services, so that they can retrieve any hosted file and share it, store a received video
in order to make it accessible anytime and anywhere, or do a safe backup of their
conversations.

• Ephemeral Messaging: allows the user to send text messages and share images,
videos and audio clips that are only visible for a small amount of time. After the
message has been previewed, it is erased, leaving no trace of its existence.

• Real-time Location Share: provides a way of sharing the user’s location in real-time
with someone, allowing the receiver to track the sender’s route on a map.

These two last features were added during the internship in order to embrace the current
trends. The main goal for both these features was to be demonstrated at the world's largest
exhibition for the mobile industry, the Mobile World Congress. This way, they were the first
features to be designed and implemented by the trainees because they needed to be ready in
time for that event.

Furthermore, it is required to do planning job before the implementation, namely the
following tasks:

• Requirements analysis – identify, discuss and prioritize all the product requirements;
• Mockuping – create a visual design draft that represents the structure of information,

visualizes the content and demonstrates the features in a static way. This way, it
encourages the team to review the UI/UX side of the features.

• Architecture definition – define how the features will work internally; understand
which components must be created or modified, and how they will communicate
with each other within the application.

1.5. Document structure

Besides this introductory chapter, the document is divided according to the following
chapters:

• 2. State of the Art: presents the analysis of both direct and indirect competitors, as
well as the most popular social networks and cloud storages at the moment;

• 3. Approach: describes the approach followed in the internship, from the
development methodology to the risks that may affect the project;

• 4. Architecture: presents the architecture of the proposed features, and provides an
overview of some technical decisions made;

• 5. Implementation Challenges and Evaluation: analyzes the implementation stage,
specifically the problems and challenges found, and the validation of all the work
along the internship;

• 6. Conclusion: concludes this report by providing an overview of all the work done,
suggesting the work that can be done in the near future, and presenting a personal
insight about the internship.

Internship Final Report

8

The work described in this report is complemented with the following appendices, which
contain more sensitive contents for the company, in terms of confidentiality:

• Appendix A – State of the Art: contains the complete study of the State of the Art,
including all the studied features and the 24 OTTs analyzed;

• Appendix B – Approach: provides information about the methodology used in this
project. Complements Chapter 3 by detailing some aspects that were only briefly
address;

• Appendix C – Architecture: contains the complete study of the necessary
Application Programming Interfaces (APIs) and definition of both high and low
level architectures for the various implemented features;

• Appendix D – Evaluation: contains the complete and detailed set of different kind
of tests performed to the implemented features.

Integration of an iOS App with Social Networks and Cloud Storages

9

2. State of the Art

This chapter is a summary of the complete study of the State of the Art, which is consisted
by the following analyses:

• Competitors of the WIT Mobile Communicator by WIT Software, whether direct or
indirect ones, in section 2.1;

• Most popular social networks, in section 2.2;
• Most popular cloud storage services, in section 2.3;
• Most popular ephemeral messaging applications, in section 2.4;
• Most popular real-time location share applications, in section 2.5.

For each of these analyses a brief description of the applications/services is provided, as
well as some information about its users, main features and rating in the main mobile stores.
Each of the following sections contains only the most important and remarkable services or
applications in the corresponding area, sorted in alphabetical order. For the complete study,
which even contains even the services and applications that are less known by the general
public, refer to Appendix A – State of the Art.

It is important to clarify two aspects before proceeding to the next sections:

• Whenever possible, the Monthly active users are used as the main success metric,
once they show how many users actively use the service per month. Although, when
such information is not available, we relied on the Registered users metric. This one
isn’t so accurate since it only reveals the amount of accounts created, which
considers the number of accounts used actively and those that are barely or never
used;

• In order to analyze what users think about the services’ mobile applications, both
Apple’s App Store USA and Google Play Store ratings were extracted from the
official websites, once they are the most used mobile application stores. The chosen
App Store was USA’s because it is considered a reference worldwide. Although,
there are some occasions where it is relevant to present App Stores from other
countries, mainly when the application is directed to a specific country or region.

2.1. Competitors

WIT Software and its competitors provide features that hugely increase the user experience
while communicating. Section 2.1.1 describes these new features.

Section 2.1.2 and 2.1.3 contain the analysis of WMC’s direct and indirect competitors,
respectively.

2.1.1. New and powerful features

Nowadays, the typical voice calls, SMSs and MMSs are no longer sufficient for the general
population. The following listing contains some of the features that enrich the
communication process and that are highly valued by the users. A complete listing of the
analysed features can be found in section 1.1 of Appendix A.

• Contact Discovery: identification of contacts from the native address book that use the
intended application.

Internship Final Report

10

• Network Address Book: capability of organizing and managing all the contacts through a
single interface that makes them available in a wide range of services and devices.

• Chat: instant messaging session between two people.

• Group Chat: chat with more than two people simultaneously. In this type of messaging, all
the users belonging to the conversation can see everything that is written there.

• Message State Notifications: show the state of the messages sent, that is, if they were sent,
delivered or read.

• Typing Notifications: show when a contact is typing a message.

• File Transfer: exchange of multimedia files, either stored on the device or captured in the
moment. This can be done either inside a chat or group chat.

• Location Sharing: share information about the user’s location. This information is
represented by latitude and longitude, which may have associated text data relating to the
location’s name.

• Contact Share: ability to share vCards stored in the device.

• VoIP Calls: voice calls between two people that run over the Internet instead of being
conducted through the traditional copper lines. The only cost is the one associated with
the Internet access.

• Video over IP Calls: calls with voice and video between two people. The shared video is
from one of the device’s cameras.

• Voice Messages: send audio clips during a chat session.

• Video Messages: send video clips during a chat session.

• Stickers: send and receive “illustrations or animations of characters” [9] during a chat
session.

• Emoticons: send and receive emoticons during a chat session.

• Emojis: send and receive emojis during a chat session.

• Presence: information that describes the status of a certain contact. It can assume many
values: “online”, “busy”, “offline”, etc.

• Profile Picture: associate a photo to a contact profile.

• Themes/Skins: change the layout and appearance of the application.

The following features are the core of the internship. It is of extreme importance to define
them and to verify if they are present in any of the applications/services under analysis.

• Integration with Social Networks: ability to authenticate, share contents, access timelines
or enrich contacts using a social network.

• Integration with Cloud Storages: ability to interact with a user’s cloud account in the
application. This can be useful for sharing a photo stored in the cloud, save a received file,
or even backup and restore existing conversations.

Integration of an iOS App with Social Networks and Cloud Storages

11

• Ephemeral Messaging: ability to exchange media with a short lifetime. After its expiration,
the message are erased from the devices, being no longer accessible.

• Real-time Location Share: ability to share its geo-location position continuously with
someone during a defined amount of time. The set of shared positions can be seen on
map, which is updated in real-time.

2.1.2. Direct competitors

WIT Software is the only Portuguese company that develops RCS-based client applications.
However, there are other international companies that do the same. What is their goal? To
develop, in the least time possible, the most complete RCS client with, at least, all the
features defined in the latest GSMA specification. This way, they are considered to be direct
competitors because they compete directly against WIT Software. Those are:

The following list contains the companies that are considered as direct competitors.
• Jibe Mobile, Inc. – California, USA;
• Nable Communications, Inc. – South Korea;
• Neusoft Corporation – China;
• Summit Tech Communications – Montreal, Canada.

More information about these companies, as well as a comparison with all the studied
features, are available in section 1.2 of Appendix A.

Comparative Analysis

We have compared each direct competitor in terms of provided features (Table 1) and
supported operating systems (Table 2). This comparison is of great important once it allows
to discover what are the strengths and weaknesses of WMC against its competitors, as well
as to know if anyone already implements the proposed features of this internship.

Before starting the comparison, it is important to clarify the meaning of the symbols that
appear on both tables:

• ✓ - feature is provided;
• � - feature is not provided;
• ? – there is no public information about this feature. This occurs when we did not

managed to get access to some applications and we only know about the publicly
documented features.

Internship Final Report

12

 WIT Software Jibe Mobile Nable
Communications

Neusoft Summit
Tech

Contact Discovery ✓ ✓ ✓ ✓ ✓

Network Address
Book ✓ ? ? ? ✓

Chat ✓ ✓ ✓ ✓ ✓

Chat Message
State Notifications ✓ ✓ ✓ ✓ ✓

Chat Typing
Notifications ✓ ✓ ✓ ✓ ✓

Group Chat ✓ ✓ ✓ ✓ ✓

Group Chat
Message State
Notifications

✓ ✓ ✓ ✓ ✓

Group Chat
Typing
Notifications

✓ ✓ ✓ ✓ ✓

Chat File Transfer ✓ ✓ ✓ ✓ ✓

Group Chat File
Transfer ✓ ✓ ✓ ✓ ✓

Location Sharing ✓ ✓ ✓ ✓ ✓

Contact Share ✓ ✓ ✓ ✓ ✓

VoIP Calls ✓ ✓ ✓ ✓ ✓

Video over IP Calls ✓ ✓ ✓ ✓ ✓

Voice Messages ✓ ? ? ? ?

Video Messages ✓ ? ? ? ?

Stickers ✓ ✗ ✗ ✗ ✗

Sticker Store ✗ ✗ ✗ ✗ ✗

Emoticons ✓ ✓ ✓ ✓ ✓

Emojis ✓ ✓ ✓ ✓ ✓

Integration of an iOS App with Social Networks and Cloud Storages

13

 WIT Software Jibe Mobile Nable
Communications

Neusoft Summit
Tech

Presence ✗ ✗ ✓ ✓ ✓

Profile Picture ✓ ✗ ✓ ✓ ✓

Themes/Skins ✓ ✗ ✗ ✗ ✓

Integration with
Social Networks ✓1 ✗ ✗ ✗ ✓2

Integration with
Cloud Storages ✗ ✗ ✗ ✗ ✗

Ephemeral
Messaging ✗ ✗ ✗ ✗ ✗

Real-time Location
Share ✗ ✗ ✗ ✗ ✗

Table 1 - Direct competitors' provided features

 WIT Software Jibe Mobile Nable

Communications
Neusoft Summit

Tech

Android ✓ ✓ ✓ ✓ ✓

iPhone ✓ ✓ ✓ ✓ ✓

iPad ✓ ✗ ✓ ✓ ✓

BlackBerry ✗ ✗ ✗ ✓3 ✗

Windows Phone ✗ ✗ ✗ ✓3 ✓

Symbian ✗ ✗ ✗ ✓3 ✗

Windows ✓ ✗ ✗ ✓ ✓

Mac ✗ ✗ ✗ ✓ ✓

Table 2 - Direct competitor's supported platforms

This analysis shows that WIT Software is very well placed in the production of RCS-based
client applications. Besides providing many differentiating features, its application supports

1 only posts an advertising message on Facebook
2 has extensions that give social networks presence information
3 produced only if requested by a client

Internship Final Report

14

the major mobile operating systems. However, it can’t stop the development and
enrichment of its RCS product once the competition, namely Summit Tech, is pretty
powerful as well. This way, the internship plays a big role on WMC’s enrichment process: all
the features that compose it are an unexplored area in this kind of services, so it is of the
most importance to implement these functionalities in a way that it highly privileges the user
experience.

2.1.3. Indirect competitors

The current section presents the OTT applications. Why are they indirect competitors of
WIT Software? Although they aren’t RCS-based applications, their success “steals” clients
from the MNOs. Once the joyn branded applications are developed to the operators,
companies like WIT Software consider the OTTs as indirect competitors, having to
implement more and better features in order to reach the users and bring them back to the
mobile operators.

In order to keep it short, this section will only approach the 5 more popular applications.
The analysis of the 24 studied OTTs can be read in Appendix A – State of the Art: Indirect
Competitors.

Facebook Messenger

Facebook Messenger is the instant messaging mobile application
from the most used social network in the world - Facebook. In
order to make the chatting more friendly and easier on mobile
devices, Facebook Messenger was initially released on August 9,
2011 for iOS and Android, having only chat functionalities.
Currently, the support has been extended to many other mobile
operating systems and VoIP calls are now possible between
Facebook users. Moreover, in some countries, users can use their
phone number and name in order to log in and send SMS [10]. This way, Facebook intends
to compete with the mobile network operators and to “recruit” more people for its social
network.

Monthly Active Users on Facebook Mobile products: 874 million [11].

Monthly Active Users on Facebook Messenger: 56.7 million [12].

Main Features: [13]
- Get to your messages without opening Facebook;
- Bring your conversations to life with stickers;
- Send photos privately;
- Have group conversations and make plans on the go;
- Text your phone contacts, even if you’re not Facebook friends;
- Share your location so people know when you’re nearby;
- Record voice messages;
- Make free calls, even to friends in other countries;
- Know when people have seen your messages;
- See who’s available on Messenger and who’s active on Facebook;

App Store Rating (USA): 4.5/5 stars (136241 Ratings) [13]

Google Play Store Rating: 4.3/5 stars (1963758 Ratings) [14]

Integration of an iOS App with Social Networks and Cloud Storages

15

iMessage & FaceTime

Both iMessage and FaceTime are proprietary communication
services by Apple, Inc. They allow Apple device owners to
communicate with each other using their iCloud accounts.

FaceTime was announced by Steve Jobs during the WWDC 2010
[15]. Initially, it only allowed Video over IP calls and was only
supported by iOS devices. Nowadays, it allows VoIP calls as well.

iMessage, Apple’s instant messaging service, was announced one
year later at the WWDC 2011 keynote [16] by Scott Forstall. It
allows cost-free chatting using an Internet connection. Although,
the message can be sent via SMS or MMS if the recipient isn’t an
iCloud user or doesn’t have an Internet connection. As FaceTime,
it is currently available for the entire Apple device family.

Both these services are available for any Apple equipment, either
mobile device or Macintosh computer.
Monthly Active Users: 250 million [17].

Main Features:
- Contact Discovery;
- Video over IP calls;
- Single and Group chat;
- Typing and Message Delivery Notifications
- File, location and vCard share;
- Contact block.

Skype

Skype was created by a group of Estonian developers, the same
that developed Kazaa. On August 2003, Skype had its first release
for Windows desktop. This application was, and still is, a huge
success once it allowed not only VoIP/Video over IP calls and
conferences, but VoIP calls to mobile and landline numbers all
over the world. This last functionality was a revolution on the
telecommunication market because it made possible to call
anywhere paying much less than doing a traditional call via MNOs.
All this success brought the attention of many multinational companies, leading Microsoft to
buy Skype for 8.5 billion dollars, in 2011 [18]. Currently, Skype supports every major mobile
OS, as well as Windows, Mac and Linux computers.

Monthly Active Users: 299 million [19].

Main Features: [20]
- “Calling”: make free Skype to Skype calls or call mobiles and landlines home and

abroad at low rates;
- “Video”: catch up face to face or get a whole group together on a video call;
- “Messaging”: you’re always in the loop with instant messaging, voice messaging and

sending texts;
- “Sharing”: send photos, videos and files of any size.

App Store Rating (USA): 3.5/5 stars (355038 Ratings) [21]

Google Play Store Rating: 4/5 stars (1942897 Ratings) [22]

Internship Final Report

16

Viber

On February 2010 Talmon Marco founded Viber Media, a
company located in Cyprus. It is responsible for the creation and
development of Viber, an instant messaging and VoIP application
that aimed to compete with Skype. It was initially launched for
iPhone on December 2, 2010, followed by a pre-release version for
Android on May 2011. Nowadays, it supports all the major mobile
operating systems, as well as PC running Mac OS or Windows.

Registered users: 200 million [23].

Main Features: [24]
- Free text, calling, photo messages and location-sharing with Viber users;
- No registration, alias or invitations required;
- Instantly integrates with your own contact list;
- Best-quality mobile calls using 3G or Wi-Fi.

App Store Rating (USA): 4.5/5 stars (95054 Ratings) [25]

Google Play Store Rating: 4.4/5 stars (2027710 Ratings) [26]

WhatsApp

Brian Acton and Jan Koum, both former Yahoo engineers,
founded WhatsApp, Inc. in 2009. This California-based company
developed the instant messaging application named WhatsApp. It
has always been growing since the beginning, even though having
fierce competitors based in Asia (KakaoTalk, WeChat). It provides
support for all the major mobile operating systems. However, it
fails on the iOS support once it only works on iPhone. Currently,
the service is free for the first year, and $0.99 for each following
year. This application is such a well succeed phenomenon that even Financial Times wrote
about it: WhatsApp “has done to SMS on mobile phones what Skype did to international
calling on landlines” [27].

Monthly Active Users: 400 million [28].

Main Features: [29]
- Group chat up to 50 participants;
- Send photos, videos, and audio messages;
- Share locations;
- Ads free.

App Store Rating (USA): 4.5/5 stars (120726 Ratings) [30]

Google Play Store Rating: 4.5/5 stars (6291278 Ratings) [31]

Integration of an iOS App with Social Networks and Cloud Storages

17

Comparative Analysis

After identifying and describing the main indirect competitors, follows a comparison
between them in terms of provided features (Table 3) and supported operating systems
(Table 4). This comparison is of extreme importance once it allows to conclude what are the
features users like the most, and what must be implemented in WMC in order to get
leverage against these popular services. Morevoer, this study allows checking the degree of
integration these applications have with social networks and cloud storage services. This
way, it is an opportunity to verify how important this internship is for the enrichment of
WMC product, once it allows the implementation of features that may be differentiating.

Before proceeding to the comparisons, it’s important to point two issues:
• Table 4 only considers the access via an official application, excluding any kind of

web browser interaction;
• An asterisk (*) appearing on the feature “Integration with Social Networks” refers to

a partial integration (e.g. authenticate with Facebook account, publish an
advertisement, etc.).

Contact Discovery ✓ ✓ ✓ ✓ ✓

Network Address Book ✓ ✓ ✓ ✓ ✓

Chat ✓ ✓ ✓ ✓ ✓

Chat Message State
Notifications ✓ ✓ ✓ ✓ ✓

Chat Typing
Notifications ✓ ✓ ✓ ✓ ✓

Group Chat ✓ ✓ ✓ ✓ ✓

Group Chat Message
State Notifications ✓ ✗ ✓ ✓ ✓

Group Chat Typing
Notifications ✓ ✗ ✗ ✓ ✗

Chat File Transfer ✓ ✓ ✓ ✓ ✓

Group Chat File
Transfer ✓ ✓ ✓ ✓ ✓

Location Sharing ✓ ✓ ✗ ✓ ✓

Internship Final Report

18

Contact Share ✗ ✓ ✓ ✓ ✓

VoIP Calls ✓ ✓ ✓ ✓ ✗

Video over IP Calls ✗ ✓ ✓ ✗ ✗

Voice Messages ✓ ✗ ✗ ✗ ✓

Video Messages ✗ ✗ ✓ ✓ ✗

Stickers ✓ ✗ ✗ ✓ ✗

Sticker Store ✓ ✗ ✗ ✗ ✗

Emoticons ✓ ✗ ✓ ✓ ✓

Emojis ✓ ✓ ✓ ✓ ✓

Presence ✓ ✗ ✓ ✓ ✓

Profile Picture ✓ ✓ ✓ ✓ ✓

Themes/Skins ✗ ✗ ✗ ✗ ✓

Integration with Social
Networks ✓ ✗ ✓* ✓* ✓*

Integration with Cloud
Storages ✗ ✓ ✗ ✗ ✗

Table 3 - Indirect Competitors' features

Android ✓ ✗ ✓ ✓ ✓

iPhone ✓ ✓ ✓ ✓ ✓

iPad ✓ ✓ ✓ ✓ ✗

BlackBerry ✓ ✗ ✓ ✓ ✓

Windows Phone ✗ ✗ ✓ ✓ ✓

Integration of an iOS App with Social Networks and Cloud Storages

19

Symbian ✗ ✗ ✗ ✓ ✓

Windows ✗ ✗ ✓ ✓ ✗

Mac ✗ ✓ ✓ ✓ ✗

Table 4 - Indirect Competitors' supported platforms

It is easy to understand why these OTTs are a menace to the MNOs and rule the
communications market: they provide features to the users that couldn’t be found elsewhere
before the existence of RCS-based applications. Users only needed the mobile operators to
have a data plan in order to access these services anywhere. The texting, chatting and calling
are done via these OTTs once most of them are cost free to the end user. By supporting all
the major and, in some cases, minor mobile operating systems, these services have a very
high rate of adoption. Although some are more complete than others, all these OTTs have a
huge market share according to the amount active users.
In terms of the proposed features for the internship, there is already some offer:

• iMessage is integrated with Apple’s cloud storage iCloud, allowing users to have all
their messages and contacts synchronized between all their Apple devices;

• Facebook Messenger is naturally integrated with its social network. Users can
seamlessly talk with their Facebook friends, share contents and view their profiles;

• Skype provides Facebook authentication, giving Facebook users the possibility to
use its features without creating a Skype account. While logged in with a Facebook
account, users can see the Facebook feed in Skype’s main screen, as well as to invite
and talk with their Facebook friends;

• Viber and WhatsApp have a poorer integration with Facebook: they only allow
getting Facebook information in order to complete the user’s profile of the
application.

In addition to the different integration degrees of these OTTs with social networks, they all
have something in common: the integration is done with Facebook. This shows that
Facebook must be the first candidate social network to be integrated with WMC. However,
a deeper analysis will be done in the next chapter in order to validate this conclusion.

Finally, besides iMessage, all these services lack integration with cloud storages. Most of
them don’t need it in order to have the messages synchronized between devices.
Nevertheless, the presence of cloud storages in these services would be good so the users
could access and share photos, videos and documents that are not on their mobile devices.

Internship Final Report

20

2.2. Social Networks

The popularity of the social networks varies from country to country. For example, a social
network may be a huge success and have millions of active user in United States of America,
but be considered a flop in an Asian country. Should this be seen as a problem? Usually no,
it just means that the fashions are different according the world region, just like the cultures.

This section describes and analyzes the three most popular social networks in the world in
order to check if they fit in the proposed internship, and to prioritize them. In order to read
about the seven most used social networks, go to chapter 2 of Appendix A.

Facebook

Mark Zuckerberg, together with some of his colleagues, while
studying in Harvard University, created Facemash: a web site that
compiled photos from students of the Harvard campus and,
placing two photos side by side, asked users about which was
‘hotter’. This website was such a success that it started to include
more universities and high schools. In February 4, 2004, it was
launched as “Thefacebook”. Nowadays, known as Facebook, this
social network is a huge success worldwide. Besides being
Accessible through any web browser, it is also accessible via its official social application for
iOS and Android.

Monthly active users: 1.19 billion [11].

Main Features: [32]
- “Groups”: Share and keep in touch with the important groups in your life;
- “Search”: Find people and content on Facebook;
- “Events”: Organize gatherings, respond to invites, and keep up with what your

friends are doing;
- “Locations”: Share where you are and find friends nearby;
- “Gifts”: Buy real gifts for friends to celebrate birthdays, new jobs and other big

moments.

App Store Rating (USA): 4/5 stars (2755659 Ratings) [33]

Google Play Store Rating: 3.8/5 stars (10462196 Ratings) [34]

Google+

Google’s social network, named Google Circles while in
development, was publicly release on September 20, 2011. Its
launch follows the retirement of many failed Google social
network platforms: Google Buzz, Google Friend Connect and
Orkut (which only operates in Brazil). It is considered by many,
including The New York Times [35], as Google’s biggest attempt
to compete against Facebook. Although it has way less users than
Facebook, Google+’s growth has been notorious.
Nowadays, its official app is available for both iOS and Android mobile devices.

Monthly active users: 300 million [36].

Main Features: [37]
- “Profile”: helps you control how you appear within Google+ and all across Google;
- “Circles”: Easily manage whose updates you see and choose who you’d like to share

Integration of an iOS App with Social Networks and Cloud Storages

21

with;
- “Communities”: Join public communities around shared interests, or create private

communities to get together with just the right people;
- “Photos”: Keep your photos safely backed up online, where they’re accessible from

any device;
- “Hangouts”: brings conversations to life with photos, emoji, and even group video

calls for free.

App Store Rating (USA): 4/5 stars (53729 Ratings) [38]

Google Play Store Rating: 4.1/5 stars (627669 Ratings) [39]

Twitter

Jack Dorsey, Evan Williams, Biz Stone and Noah Glass created in
March 2006 a social network called Twitter. It is mainly
characterized by the transaction of short text messages, limited to
140 characters, called “tweets”. Twitter is highly adopted
worldwide mainly because most of celebrities and other public
figures use it, making the common citizens to join it in order to
keep in touch with their everyday life moments and events. Besides
being accessible using a web browser, it provides an official
application for all the major mobile operating systems.

Monthly active users: 232 million [40].

Main Features:
- “Tweet”: send and receive short text messages up to 140 characters;
- “Follow”: subscribe to other users in order to see their tweets;
- “Retweet”: share someone’s tweet;
- “Hashtag”: associate your tweet to a category or keyword by prefixing it with #;
- “Direct Messages”: send messages and share media with users that follow you”.

App Store Rating (USA): 3.5/5 stars (257477 Ratings) [41]

Google Play Store Rating: 4/5 stars (1536008 Ratings) [42]

Summary

With more than 1 billion users, it is clear that Facebook is the main and most popular social
network at the moment. Together with a powerful set of APIs that allow integration with
websites and iOS and Android mobile applications, this analysis confirms the conclusion
made in the previous chapter: Facebook must be the first social network to be integrated
with WMC.
However, Google+ is growing very quickly and getting an important position in the social
networks market. Along with a very good and complete set of APIs, Google’s social
network was assigned the second place in WMC’s integration with social networks roadmap.
Twitter is considered as a low priority social network. It is more limited in terms of features,
and the provided APIs are poorer and badly documented.

Internship Final Report

22

2.3. Cloud Storage services

By these days, there are lots of offer in terms of free cloud storage size. Although, these
services have to provide more than that to be successful and popular: security, multi-
platform support and availability are some important variables in this equation.

This subtopic will do a brief description of the most popular cloud storage services that use
a freemium business model, being then compared in terms of user adoption, features and
API quality. Chapter 3 of Appendix A contains the full study regarding the most popular
cloud storage services.

With this analysis we intend to draw conclusions on which is the most popular and used
cloud storage service, in order to choose the one that must be implemented in first place.

Dropbox

This worldwide famous service was designed when one of the
founders, while studying in the MIT, kept forgetting his flash drive.
This way, Drew Houston and Arash Ferdowsi, with the seed
funding from Y Combinator, founded Dropbox, Inc. in 2007.
They developed a file hosting service called Dropbox, which offers
cloud storage and file syncing through a client application. Besides
being accessible using any recent web browser, it provides an
application for all the major desktop and mobile operating systems.

Registered users: 200 million [43].

Main Features:
- Starting at 2GB, free accounts can go up to 16GB by inviting friends;
- Premium solutions for single users (Dropbox Pro) and for enterprises (Dropbox

Enterprise);
- Files always available from the secure Dropbox website;
- Only transfers the changed parts of a file while synchronizing;
- Share viewable photo galleries;
- Uses Secure Sockets Layer (SSL) and AES-256 encryption;
- Keeps one-month history, allowing changes to be undone and files to be undeleted;
- Public API that allows the integration with third-party apps.

App Store Rating (USA): 5/5 stars (42040 Ratings) [44]

Google Play Store Rating: 4.6/5 stars (411667 Ratings) [45]

Google Drive

On April 24, 2012, Google released its own file storage and syncing
service, providing cloud storage, file sharing and document editing
by multiple users simultaneously. This last feature is possible by the
presence of their office productivity suite, Google Docs, allowing
the creation and editing of text documents, spreadsheets and
presentations. The Google Drive syncing client is available for
Windows, Mac OS, iOS and Android.

Monthly Active Users: 120 million [46].

Main Features:
- Free accounts have 15GB of storage space;

Integration of an iOS App with Social Networks and Cloud Storages

23

- There is a great variety of paid plans that increase the storage limits;
- Fast search by recognizing objects in images and text in scanned documents;
- View over 30 file types in the browser, even if the program isn’t installed on the

computer;
- Edit documents even while there’s no network connection;
- Chat with other users that are editing the same file;
- Revision History that lasts for 30days, allowing to restore previous versions of files.

App Store Rating (USA): 3/5 stars (7102 Ratings) [47]

Google Play Store Rating: 4.4/5 stars (187911 Ratings) [48]

SkyDrive

Skydrive is the file sharing service from Microsoft. It was released
in a beta version in 2007, with the name of Windows Live Folders,
being available at the time for a small group of people to test it.
Since then it was progressively expanded to the worldwide
audience, having its name changed to the one it has nowadays. If it
was difficulty to use and had a bad UX in the past, it has been fully
revamped with the native integration with Windows 8 and Office
2013 Suite, having lots of new features and better User Interface
(UI). At the moment, the client application supports Windows and Mac OS desktop
platforms, as well as Windows Phone, iOS and Android.

Registered users: 250 million [49].

Main Features:
- Work seamlessly with Microsoft Office across Windows, Mac and web;
- Edit online documents simultaneously with other people;
- File version tracking;
- Post SkyDrive content on Facebook and Twitter;
- Share files with non-SkyDrive users.

App Store Rating (USA): 3.5/5 stars (2890 Ratings) [50]

Google Play Store Rating: 4.2/5 stars (25877 Ratings) [51]

Summary

As shown in the previous overview, Dropbox and Google Drive are the most powerful
cloud storage services in terms of functionalities and user experience. The high number of
users that actively use them reveals the huge success of these services. The existence of
powerful and documented APIs lead developers to integrate their applications with these
services.
SkyDrive has become an impressive player in the last years as well, having more registered
user than Dropbox and GoogleDrive. Although, as claimed in [52], this official value is kind
of suspicious because it raises the question “How many of these users are active?”.
Nowadays, Microsoft provides many ways for users to sign up for SkyDrive accounts (e.g.,
the first sign in in Office 365 suite), but most of those accounts are not actively used.
The conclusion taken from this analysis is that the main focus must be Dropbox due to its
popularity, powerful features and great APIs. Google Drive is considered as the second
implementation option due to be less popular than Dropbox but still having a high quantity
of active users. SkyDrive is low priority due to be way less actively used and having a poorer
API.

Internship Final Report

24

2.4. Ephemeral Messaging applications

The society highly depends on the communication process to interact within itself. Phone
calls, business meetings, and chats over coffee and meals are some of the situations we
communicate on a daily basis. On any of these situations, people say what they think; they
are honest and genuine because they are having off-the-record conversations. What about
conversations we have online, such as SMS and Internet chats? All these conversations
heavily rely on web servers, most of which store the conversation records. The storage of
these digital footprints is translated in loss of privacy.

In order to solve this issue and allow the users to say digitally what they’re willing to say in
person, the concept of ephemeral messages arose and has been well embraced by the
modern digital community. Online off-the-record conversations are now possible because of
the messages are exchanged with end-to-end encryption and they are not permanently stored
in servers. Furthermore, these messages have associated a short lifespan, after which they
eliminated from the devices of both sender and receiver.

This subtopic presents a brief analysis of the two most popular ephemeral messaging
applications. It is important to understand how these services work and what are their
features in order to implement a feature that can compete with them. Chapter 4 of
Appendix A contains the full study regarding the most popular cloud storage services.

Confide

In 2014, John Brod, a former AOL executive, and Howard
Lerman, CEO of Yext, developed and released Confide. Their
ambition was to create a free ephemeral messaging application that
could be used by professional business users. In other words,
“What LinkedIn is to Facebook, Confide aspires to be to
Snapchat — a grown-up, professional alternative for business
users” [53]. One hundred days after its release for iOS, they
launched an Android client application in order to make Confide a
cross-platform messenger and, consequently, increase its amount of users.

User: N/A.

Main Features: [54]
- “Go off the record with self-destructing messages”: Messages you send are private

and encrypted, and they disappear forever once they’re read;
- “Screenshot protection”: Swiping prevents screenshots;
- “Works with any email or phone number”: Instantly send messages to any email

address or phone number;
- “Locations”: Share where you are and find friends nearby;
- “Read receipts”: Read receipts tell you when your message is read.

App Store Rating (USA): 4/5 stars (96 Ratings) [55]

Google Play Store Rating: 3.8/5 stars (2818 Ratings) [56]

Integration of an iOS App with Social Networks and Cloud Storages

25

Snapchat

In September 2011, Evan Spiegel and Robert Murphy, two
Stanford students at the time, developed a photo and video
messaging application called Snapchat. There were already many
applications and social networks where people could share their
moments, but this one had a different concept: those moments,
named Snaps, were only visible for a limited amount of time.
“Snapchat isn’t about capturing the traditional Kodak moment.” It
is “a photo app that doesn’t conform to unrealistic notions of
beauty or perfection but rather creates a space to be funny and honest (…) at the moment
you take and share a Snap” [57].
This concept is a huge success and that is confirmed by the amount of messages transacted
every day: 400 million [58]. This success bothered the big players, such as Facebook who
developed the Poke application in order to ”kill” Snapchat [59]. Although, that was a failed
attempt once users hated it. Following, Facebook and Google tried to buy Snapchat for 3
and 4 billion dollars respectively, which were both refused [60]. At the moment, its
application is only officially available for iOS and Android.

Monthly active users: 30 million [58].

Main Features:
- Send image and video snaps visible up to 10 seconds;
- Add short text descriptions to your snaps;
- “Snapchat Stories”: snap that is visible to all your friends for 24 hours;
- “Replay”: view one of your incoming snaps again, at time of your choosing;
- “Image filters”: customize your photos applying the available filters.

App Store Rating (USA): 3/5 stars (44334 Ratings) [61]

Google Play Store Rating: 4/5 stars (303814 Ratings) [62]

2.5. Real-time Location Share applications

One of the characteristics of today’s society is its mobile lifestyle. The applications that share
location in real-time appeared in order to ease the process of locating the ones we are
meeting. There is no need to ask “Where are you?” via call or text, and try to provide
directions anymore. These applications reveal a user’s position in a dynamic map that
updates his whereabouts in real-time.

The current subtopic approaches the two applications that provide this kind of feature at the
moment. As in the previous section, the study of these applications has a big impact on the
way the Real-time Location Share feature will be implemented on the WIT’s product.

Find My Friends

Apple released its proprietary real-time location share application
on October 12, 2011, which is available, for free, for any Apple
mobile device with iOS5 or later. Using the device’s built-in GPS
chip, the location is obtained and shared to whom the user desires,
either permanently or temporarily.

Users: N/A. Although, any of the more than 700 million [63] iOS
devices sold may use this application.

Internship Final Report

26

Main Features: [64]
- Easily locate friends and family;
- Temporary sharing option;
- Location-based notifications;
- Simple privacy controls;
- Parental restrictions;

App Store Rating (USA): 3/5 stars (7245 Ratings) [64]

Glympse

In 2008, two former Microsoft employees that worked together for
more than fifteen years grouped up and founded Glympse. Besides
sharing the location of a user in real-time, they managed to develop
a concept different than any other in the market: there is no need
to create an account to exchange Glympses, and they can be sent
to any contact in the user’s contact list. The receiver will receive
the invite, via a notification if he has the application, or via SMS if
he doesn’t. This last feature, together with such reliable results,
made possible for Glympse to become the leader in location-sharing.
Glympse is available for iOS, Android, and Windows Phone users in order to share the
location. Although, the receiver can see the location shared in any web browser, besides the
official applications.

Monthly active users: 10 million [65].

Main Features: [66]
- “Easy”: no sign-up required or friend lists to manage;
- “Safe”: your Glympse automatically expires
- “Live”: share location in real-time
- “Open”: share with anyone – no app required to view
- “Passive”: runs in the background
- “Global”: works anywhere you have GPS and a data connection
- “Connected”: with support for Ford AppLink, BMW Apps and Mini Connected

systems

App Store Rating (USA): 4/5 stars (4079 Ratings) [66]

Google Play Store Rating: 4.5/5 stars (45445 Ratings) [67]

Integration of an iOS App with Social Networks and Cloud Storages

27

3. Approach

As stated earlier, this project aims at the enrichment of WIT’s joyn application by
implementing various features: integration with social networks and cloud storages,
ephemeral messaging, and real-time location share. An approach was followed in order to
accomplish this goal, which consists on a development methodology that is used during the
whole project, namely in the planning phase. As in any project, there are risks that may
affect its outcome. This way, it is important to identify them and create mitigation plans in
order to minimize or eliminate them.

This chapter presents the approach followed in the internship in four sections. The first
section identifies and describes the product development methodology used in the
internship. The second section presents the planning process and explains all its stages and
concepts. The third describes all the process followed in order to learn the required
programming languages used in the product. Finally, the last one presents the risks identified
during the internship, as well as some mitigation plans.

It is recommended the reading of Appendix B – Approach in order to complement the
information provided in this chapter.

3.1. Methodology

The current section provides an overview on the methodology used for the product
development, Scrum.

What is Scrum?
According to Figure 4, there are three well-defined kinds of projects, in terms of complexity:

• Simple: projects with low complexity, where there is 100% certainty about the
requirements and technologies for the solution;

• Complicated: projects with low-medium complexity. There is still some good degree
of certainty regarding the solution’s requirements and technologies to be used;

• Anarchy: projects where there is no consensus about the necessary requirements and
a complete uncertainty about the technologies to be used. With all that uncertainty,
they are hardly named projects.

Figure 4 - Projects Complexity

Internship Final Report

28

Besides these three areas illustrated in Figure 4, there is a big empty space that corresponds
to the complex projects. This kind of projects occurs when the intended solution has a great
number of different components involved, there are many possible requirements that
demand a very thorough study in order to get them minimally defined, and there is a huge
variety of complex technologies that may be used. In short, these projects are feasible but,
due to their complexity, they do not allow a fixed planning with all the requirements and
technologies well defined. They require flexibility along their development though.

Scrum makes the difference in projects of the last type. “Scrum is a framework for
developing and sustaining complex products. A framework within which people can address
complex adaptive problems, while productively and creatively delivering products of the
highest possible value” [68]. Among other things, Scrum provides the necessary agility for
projects like the one this internship is focused on: projects, directed for products of big
dimensions (like WMC), where the features can have a wide spectrum of possible
requirements, and the technologies that are used are very complex.

Scrum roles
One component that is essential to Scrum’s success is the work in teams. Although this
internship is intended to be a one-man job, it correlates with another internship that goes in
the very same area. While this internship focuses on the iOS application, the other one focus
on the Android application. Both of them target the very same goal: to have both
applications with the same features and appearance. This way, besides working for different
operating systems, Paulo Santos, another MSc student, and me are working together as a
team on the project planning, requirements definition, architecture, and UI designs.

The following roles are implemented in this project, each serving a specific purpose:
• Product Owner: “person responsible for maximizing the value of the product and

the work of the Development Team” [68]. He is responsible for ordering the items
in the Product Backlog, by prioritizing them in the best way to achieve the goals, and
ensuring that the Scrum Team understands all the necessary Product Backlog items.
The product owner can have the Scrum Team do his work. However, he still has
responsibility;

• Scrum Team: set of professionals of different areas who do the work of delivering a
potentially releasable increment of the product at the end of each Sprint. The
Design, Development and Testing teams compose the Scrum Team.

• Scrum Master: supports the Scrum Team by eliminating any impediments to their
progress, facilitating Scrum events whenever necessary, and easing the
communication with the Product Owner. At the same time, he evaluates the Scrum
Team’s performance.

Supervisor Frederico Lopes has the Product Owner role, being responsible for the
prioritization of the requirements. Since he considers important for the trainees to learn
properly the Scrum methodology, he delegates some of its work to the Scrum Team, namely
the definition of the requirements.

Paulo and I constitute the Scrum Team. Although we are developing for different platforms,
the project is the same. This way, most of the tasks are done side-by-side in order to keep an
equitable progress on both platforms. It is important to notice that we are the Scrum Team
and not only the Development Team once we do more than developing: designing the UIs
and testing the developed product are some of the other tasks that we are responsible for.

At the same, these two trainees also play the Scrum Master role in this project. One example
of our activity as Scrum Master is regularly create meetings to check the progress of the

Integration of an iOS App with Social Networks and Cloud Storages

29

project, and solve impediments. However, only one person is responsible for this role in a
pure Scrum approach.

3.2. Planning

The project planning on Scrum, like in any other development methodology, starts with the
definition of the requirements. However, a requirement in this methodology has different
name and motivations.

3.2.1. User stories

A user story (Figure 5) is one or more sentences, in the everyday language of the end user,
that describes the ‘who’, ‘what’, and ‘why’ of a requirement in a simple and concise way. It is
a quick way of handling the product requirements without creating formal requirement
documents or performing administrative maintenance tasks. In short, the goal of a user story
is “to be able to respond faster and with less overhead to rapidly changing real-world
requirements” [69], without wasting precious time in the creation or maintenance of the
typical formal requirement documents.

WHO WHAT WHY

As a user I want to select a received movie in order to upload it to my Dropbox account
Figure 5 - Components of a user story

Typically, the user stories are created and managed by the Product Owner. Yet, for the
reasons explained in the previous section, and together with the importance of learning this
methodology, the Scrum Team does that task in this project.

It is usual to assign a user story to a certain category, mainly if there are many different
features to implement in the product. This eases both development and management entities
once it is easier to find the user stories regarding a certain feature. For the categories used in
the project, refer to Chapter 1 of Appendix B.

3.2.2. Product Backlog

Each of the created user stories is an entry of an ordered list of everything that would be
great to be in the product: the Product Backlog. This is the single source of requirements for
the product and is never complete, once it is updated as the product and the environment in
which it will be used evolves. In other words, its dynamism makes it constantly changing in
order to identify the product needs at a specific moment. The Product Owner has an
important role here: he prioritizes the user stories in the Product Backlog according to the
product needs. He can also insert new user stories, for example, in case the product must
incorporate another feature.

Table 5 contains a sample of the Product Backlog of this project. For the full Product
Backlog, refer to Chapter 3 of Appendix.

Category Sub-category User Story

Prototyping Facebook As a developer I want to see the profile information of a
contact through his number or email

Prototyping Facebook As a developer I want to merge my native contacts with
my Facebook friends

Internship Final Report

30

Category Sub-category User Story

Documentation Sharing Mockup As a developer I want to create a mockup of the sharing
screen in order to create a sharing UI proposal

Documentation Timeline Mockup As a developer I want to create a mockup of the timeline
screen in order to create a timeline UI proposal

Authentication Dropbox As a user I want to authenticate with my Dropbox
account

Cloud Storage Dropbox As a user I want to access my Dropbox file listing in order
to select a file to be sent

Table 5 - Partial Product Backlog of the project

3.2.3. Sprint

After the project is minimally defined, it is time for the Scrum Team to work on the
product. This will be done in Sprints, which are short duration milestones that allow the
team to develop a small portion of the project and produce a demonstrable product
increment, the deliverable. In this project, the defined sprint duration is 2 weeks because it is
a period of time that allows a visible increment on the project, as well as regular sprint
meetings in order to evaluate the work done and reflect about what must be improved.

The work to be performed in a Sprint is listed in the Sprint Backlog. The Sprint Backlog is
the set of Product Backlog items selected for the Sprint. This way, it is a forecast by the
Scrum Team about what functionalities should be done in the end of the Sprint, in order to
present a deliverable. A user story is only considered “Done” when it adheres to the team’s
Definition of Done (DoD), meaning that all the team members recognize it as finished. For
details about the definition of “Done” followed in this project, refer to Chapter 2 of
Appendix B.

Chapter 4 of Appendix B contains an analysis of each completed sprint, providing a deeper
context of what has been done during the first semester.

3.2.3. Burndown Chart

It is extremely important to monitor the progress of the sprint. There is a useful tool for
that: the Burndown chart. The Burndown chart is the number one reason for Scrum’s
popularity, and one of the best project visibility tools to ensure a project is progressing
smoothly. This chart proves a day-by-day measure of the amount of work that remains in a
given sprint.

Using the Burndown chart, the team can quickly calculate their Burndown Velocity: average
rate of productivity for each day. Knowing that, it’s possible to calculate an estimated
completion date for the sprint based on the amount of work remaining and, consequently,
know if the work is late or on time.

3.2.4. Sprint Meeting

In the last day of the Sprint, the Scrum Team and the Scrum Master gather in order to
discuss some aspects:

• Sprint Review: the Scrum Teams shows what has been “Done” in the current Sprint,
and what is the status of the stories that are not finished. The provided Sprint
deliverable is evaluated in order to provide feedback to the team;

Integration of an iOS App with Social Networks and Cloud Storages

31

• Sprint Retrospective: together with the team, the Scrum Master analyzes the
Burndown Chart in order to verify how the Sprint went. This way he can identify the
major positive items and the potential improvements.

• Sprint Planning: it defines which user stories are going on the next Sprint Backlog. It
is possible that they are re-prioritized in order to reflect the current product needs.

As Scrum is a flexile agile development methodology, it’s important to do this reflection
frequently in order to continuously improve the Scrum team and the way they work.

Regarding to this project, both trainees and supervisor Frederico gather every Tuesday in
order to do a Sprint Meeting with all the described stages.

3.3. Learning

This internship approaches various programming languages that were unexplored to me. In
first place, as can be seen by the name of the internship, the core programming language
that will be used is Objective-C, language that must be used in order to use the public APIs
provided within Apple’s framework. Secondly, it is necessary to acquire knowledge of C++
in order to develop parts of some features that will “live” inside WIT’s communications
stack – COMLib.

Objective-C
In order to properly use the language, it is necessary to understand all its fundamentals. This
way, the reading of [70] and [71] were crucial for having a complete first theoretical contact
with this language.

After understanding the theoretical components, I read [72] in order to understand and try
practical examples where the concepts acquired previously were applied.

Acquired these basis, I felt ready to start developing for the internship. However, it is
completely usual that some doubts and questions appear along the development. This way,
there are two websites that have always been by my side:

• iOS Developer Library [73], which is Apple’s official documentation. It is a must in
order to understand how the operating system mechanisms work and how the public
APIs interact with it. It is also useful in order to understand which methods can be
called for each type of property, as well as if they are instance or class methods;

• Stack Overflow [74], which is a collaborative question and answer site design for the
developers. In other words, it is a website where developers help each other by
providing answers and suggestions regarding someone’s problems.

C++
In order to understand C++ rules and structure, I relied on “The C++ Programming
Language “ [75], one of the books written by the creator of this language, Bjarne Stroustrup.
This book provides a comprehensive coverage of all C++ language features and standard
library components, from namespaces to the I/O streams.

Once Boost C++ Libraries are extremely used in the project, their official website [76] was
also consulted many times in order to understand some of the libraries that were required.

3.4. Risks

“A project risk is an uncertain event that, if occurs, has a positive or negative effect on the
prospects of achieving project objectives” [77]. It is important to anticipate such uncertain

Internship Final Report

32

events that may affect the project in order to be able to prevent or overcome them. This can
be achieved by a periodical risk analysis.

The following listing contains the risks identified during the internship, which may affect
this project, as well as some mitigation plans:

Offline APIs
Once the proposed features rely on third party APIs, it is not possible to guarantee that
those services will be available all the time.

• This risk cannot be eliminated.
• Mitigation plan: the application will monitor the state of the APIs. In case one of

them is offline, the dependent feature will be disabled in order not to occur any kind
of application crash or malfunction.

Modifications on the APIs
Since the features depend from external APIs, there is a risk of those APIs being
modified/updated/deprecated without further notice.

• This risk cannot be eliminated.
• Mitigation plan: the application will analyze all the responses provided by those APIs

before processing them. In case an error code is returned, the application will disable
the correspondent feature. In case some API is deprecated, the feature must be
disabled permanently until some alternative solution is found.

No Internet connection
An Internet connection is required to make requests to the APIs for the feature to work
properly.

• This risk cannot be eliminated.
• Mitigation plan: the application periodically checks for the Internet connection

status. If it is down, the application will temporarily disable the features until the
connection is up again.

New RCS specifications
These proposed features are innovative and are not defined in any RCS specification at the
moment. But they can be hereafter defined while the development of the features is on
course.

• This risk can be eliminated.
• Mitigation plan: since WIT Software is a member of GSMA, it helps on the

definition of the next specifications. This way, the features must be developed
according the current suggestions of these new future RCS features, seeking for a
future accreditation without any refactoring.

Integration of an iOS App with Social Networks and Cloud Storages

33

4. Architecture

The architecture is an essential component of any software project because it defines the
structure and behavior of the different components of the system, while being a guideline
for its implementation. It is important that this information is well detailed and represented
in order to allow other team and company members to easily understand the system’s
workflow, whether they want to know its specifications or need to extend a certain module.

The current chapter is divided in the following nine sections:
• iOS Fundamentals: provides an overview the most important architectonical

aspects of iOS that must be considered upon the architecture designing and
implementation of each feature;

• WMC Global Architecture: gives an overview about the WIT’s RCS application,
namely its role within the network infrastructure, and its internal architecture;

• Ephemeral Messaging: provides a succinct architecture of Ephemeral Messaging
feature;

• Real-time Location Share: presents a concise architecture about the Real-time
Location Share feature;

• Authentication: contains a summary architecture about the authentication with
both Dropbox and Facebook services within the application;

• Save and Share from Dropbox: provides a concise architecture about the “Save to
Dropbox” and “Share from Dropbox” features;

• Backup and Restore of conversations: presents a succinct architecture about the
“Backup and Restore of conversations” feature;

• Contact Enrichment and Contact Timelines: contains a summary architecture
about the “Contact Enrichment” and “Contact Timelines” features.

As stated previously, this chapter only provides an overview of the features’ high-level
architectonical aspects. Once the project code is proprietary, all the information regarding to
it, including the low-level architecture details, cannot be published. This way, it is highly
recommended to read the Appendix C – Architecture, which provides the complete version
of the defined architectures, as well as some details about the APIs that are used.

4.1. iOS Fundamentals

Before defining the architecture of the proposed features, it is important to study and
understand various architectonical aspects of iOS. They are of great importance once they
are the key to develop an application that is designed to fully operate with the system in all
situations.

4.1.1. Model-View-Controller

The project’s source code is written in Objective-C, with some small C++ chunks that allow
the connection to the COMLib. The UI part of the project follows the MVC pattern, which
assigns one of three roles to each object of the application: model, view, or controller.
Figure 6 illustrates the interactions between these three components.

• Model – objects that encapsulate the data specific to the application and define the
logic that manipulates and processes that data.

• View – object in an application that is seen by the user. Its main purpose is to
display to the user data from the application’s model objects.

Internship Final Report

34

• Controller – object that acts as an intermediary between models and views. This
way, controllers are responsible for notifying the views about modifications on the
models, and vice-versa.

Figure 6 - MVC communication flow inside an iOS application

Using the MVC pattern in an application contributes for the reusability of its objects, while
their interfaces tend to be better defined.

4.1.2. Application States

One of the extremely important while developing for iOS is the states change of an
application. Since iOS devices have more limited system resources than a PC, this operating
system limits the application differently according if it is in background or in foreground.
These limitations improve battery life and the user’s experience with the foreground
application.

According to [78], there are five different application states:
• Not running – The application has not been launched or was running but was

terminated by the system;
• Inactive – The application is running in the foreground but is currently not

receiving events. An application usually stays in this state only briefly as it transitions
to a different state;

• Active – The application is running in the foreground and is receiving events. This is
the normal mode for foreground applications;

• Background – The application is in the background and executing code. Most
applications enter this state briefly on their way to being suspended. However, an
application that requests extra execution time may remain in this state for a period of
time;

• Suspended – The application is in the background but is not executing code. The
system moves applications to this state automatically and does not notify them
before doing so. While suspended, an application remains in memory but does not
execute any code.

Integration of an iOS App with Social Networks and Cloud Storages

35

Figure 7 - State changes in an iOS application [78]

In general, these state transitions are accompanied by a corresponding method call inside the
application. These methods give the opportunity to run chunks of code that respond
properly to those state changes. The following list briefly describes each of the methods that
may be triggered upon a state change:

• application:willFinishLaunchingWithOptions: This method is the application’s
first chance to execute code at launch time;

• application:didFinishLaunchingWithOptions: This method allows the developer
to perform any final initialization before the application is displayed to the user;

• applicationDidBecomeActive: This method informs the application that it is about
to become the foreground application. This should be used for any last minute
preparation;

• applicationWillResignActive: This method informs the application that it is
transitioning away from being the foreground application. This should be used to
put the application into a quiescent state;

• applicationDidEnterBackground: This method informs the application that it is
now running in the background and may be suspended at any time;

• applicationWillEnterForeground: This method informs the application that it is
moving out of the background and back into the foreground, but that it is not yet
active;

• applicationWillTerminate: This method informs the application that it is being
terminated. This method is not called if the application is suspended.

Internship Final Report

36

4.1.3. Grand Central Dispatch

iOS applications are known for offering good user experience (UX). To achieve this, it is
necessary to make all the API calls asynchronous in order to give the user a better UX.
This way, an asynchronous request is made and when the response arrives an event is fired
in order to notify the interested party. All the operations related to this request are running
in secondary thread, which are called queues.

However, if we are talking about an UI operation (i.e. modifying a visible value from
certain table cell, updating a contact details view), the operation has necessarily to be
performed in the main thread in order to the modifications to be displayed. Dispatching a
block of code to the main queue is usually done from a background queue, which signal that
some background processing has finished (i.e. asynchronous API call). By convention, the
main thread is responsible for updating the UI. If the UI update is not dispatched for the
main thread, the UI update will never be visible to the user.

In short, all the API calls are done in a secondary thread, so that the main thread doesn’t get
locked and, consequently, the UI stays fluid. When a response arrives, the processing is
switched to the main thread in order to update the user view.

All these dispatching operations are possible using the Grand Central Dispatch (GCD):
Apple’s proprietary technology that optimizes application support for systems with multi-
core processors and other symmetric multiprocessing systems.

4.2. WMC Global Architecture

Before proceeding to the architecture design of each of the proposed features, it is
important to both situate the application in its real-life scenario, and illustrate and explain all
the layers that constitute this complex project. These layers will be subject of modifications
and additions in order to successfully implement the features that compose this internship.

Figure 8 illustrates an IMS network from a certain Mobile Network Operator (MNO). In
short, this is an architectural framework for delivering IP multimedia services. WIT Mobile
Communicator for iPhone connects to this kind of networks to provide such content.

Figure 8 - WIT's RCS application in an IMS infrastructure [79]

WIT’s RCS application lives upon the operating system of the mobile device. As shown in
Figure 9, it is composed by two layers: the COMLib and UI/UX layers.

Integration of an iOS App with Social Networks and Cloud Storages

37

Figure 9 - WIT RCS Stack

4.2.1. COMLib layer

The application makes use of a proprietary communications library – designated COMLib –
whose main purpose is to provide all the communications the application needs, such as
messaging, voice and video calls, and content share. Additionally, it includes many public
libraries that are required to process media or to provide secure communications.

In short, COMLib provides all the core services of the application in a Service-Oriented
Architecture (SOA). This architectonical choice is justified by two main reasons:

In first place, it eases the way to enable and disable library functionalities by configuring the
services that may run or not, depending on simple configuration files. Furthermore, it allows
the application to keep its UI always responsive by providing services that schedule jobs to
run on independent threads. This application layer is implemented in C++, meaning that
one single version of the code can run on totally different platforms. For example, it can run
on iOS because that system accepts any kind of C language. But it can also run on Android
by using a Java Native Interface (JNI) layer that exposes the native code to the UI layer.

Secondly, this RCS application requires a strong interaction with tools that vary from
platform to platform, such as the access to the Internet connection state, location sensors,
or even radio signal strength. In order to keep the UI side cleaner, the access to platform
utilities is executed at the very same level of the communications, and then a specific
implementation is applied according the platform.

To enable the communication between the UI layer and the communication stack, COMLIb
has a sub-layer – named COMLib API – that provides a set of APIs that enable the access
to different modules of the application, as well as to register callbacks necessary to receive
information after the completion of internal jobs.

Internship Final Report

38

4.2.2. UI/UX layer

This layer stands on top of the communications library, representing all the views and
components visible to user, the controllers of those views, and a set of managers that
execute tasks that may involve interaction with the COMLib.

The high-level package diagram illustrated in Figure 10 provides an overview of the internal
architecture of the UI/UX layer. For the sake of simplicity, it only displays the packages that
are most relevant for the internship, which will be modified in order to implement the
proposed features.

Figure 10 - UI/UX high-level package diagram

In most of the cases, the packages in this layer are divided in four different sub-groups:
controllers, managers, models, and views. Some may ask why the packages are divided in
four groups instead of the three corresponding to the MVC. The answer is simple: managers
are controllers, but they are considered a different type for two reasons. First of all, they are
the only objects that interact directly with COMLib in order to retrieve information;
secondly, they are instantiated only once upon the launch of the application – they are
singletons – in order to be accessed by “normal” controllers via their shared instance. This
way it avoids the assignment of a specific instance to each class that needs to access that
manager, which would be very inefficient due to the size of this project.

The Chat module contains all the views regarding the chat windows and chat list. These
views are commanded by controllers, which will contact with the manager in situations like
sending a message or a file transfer, and even deleting a chat entry. All these operations are
directed to the manager that will interact with the COMLib in order to start the respective
communication process.

The Contacts module is responsible for all the management of the contacts, which come
from both native and network address books. The models retain the contact information,
controllers command the views to display the necessary information from the models, and
the managers are responsible for any operation regarding contacts.

The CoreData module provides generalized and automated solutions to common tasks
associated with object life-cycle and object graph management, including persistence. A
database model, a set of models that represent the objects that can be manipulated and
persisted, and managers that implement all the logic necessary for the retrieval and
persistence of those objects in the database compose this module.

Integration of an iOS App with Social Networks and Cloud Storages

39

The Location module is responsible for all the tasks regarding location services. By
implementing the CLLocationManagerDelegate protocol, the manager is able to access the
location services, such as start updating the device’s location, and set the desired GPS
accuracy. The controllers process the places and location models in order to tell the map
views what data and when it should be displayed.

The Settings module is composed by a set of models that contain information about each
setting of the application. The controllers will check the configuration of the application in
order to tell the views which setting options shall be displayed by the views. When there’s a
modification of a setting value (e.g, turning off auto-accept of file transfer), the manager is
responsible for the persistence of the new user preference for the specific setting.

The Share module refers to all the accesses to external files, such as Gallery photos, and
their respective preview inside the application.

Finally, the Utils module contains a set of public libraries and frameworks that are required
for some features to work on the UI/UX layer. One of these libraries is SSZipArchive,
which is a utility class for zipping and unzipping files on iOS and Mac.

Provided this overview about the RCS application, it is now time to proceed to the next
chapters, which will approach the architecture for each of the features this internship is
focused.

4.3. Ephemeral Messaging

The ephemeral messaging feature was introduced in the intership’s scope on the end of the
first semester. This feature requires only implementation on the UI/UX layer of the
application.

This feature consists of the transaction of messages and file transfers that have an associated
lifetime. After the expiration of its lifetime, the corresponding message will be deleted
automatically.

Figure 11 illustrates the communication process used by the ephemeral messaging feature.

Figure 11 - Ephemeral Messaging communication flow

In order to send and ephemeral message (Figure 12), the A Party enables the “Ephemeral
Messaging Mode” and defines a short lifetime for them. After setting up, the sender is now
ready to select any media file: image, video, or audio asset. The selected media file, together
with a file that contains the asset’s lifetime, is then compressed in a .zip file in order to be
sent to the B Party. This exchange of media is done via a typical file transfer via HTTP or

Internship Final Report

40

MSRP, depending on the technology that is available in both parties. When the B Party
receives the file transfer, the file is unzipped and, consequently, a new generic balloon (that
doesn’t reveal if the received file transfer is an image, video or audio) is displayed on the
respective chat windows. Afterwards, it still replies with a “Delivered” notification so the A
Party knows it has been successfully delivered and, consequently, deletes both the respective
media and entry from the device.

Figure 12 - Send Ephemeral Message: enable mode, send content, and automatically erase records

In order for the B Party to preview the content of the file (Figure 13), it is necessary to press
the respective generic balloon. This single tap gesture triggers a mechanism responsible for
the preview of the resource, which makes a whole new screen appear that shows the
received media. This also starts a countdown timer that decreases after each second. After it
reaches zero, meaning that the media lifetime has expired, the B Party is automatically
redirected to the chat windows, and that entry, together with the respective media file, are
erased from the device.

Figure 13 - Receive Ephemeral Message: press balloon, preview content, and automatically erase the

record

Integration of an iOS App with Social Networks and Cloud Storages

41

Figure 14 shows a high level architecture of this feature. For a detailed diagram that shows
and explains all the involved classes, as well as all the additions and modifications, refer to
Appendix C – Architecture: Ephemeral Messaging.

Figure 14 - Ephemeral messaging high-level architecture

A new settings section was added for the user to define the lifetime of each ephemeral
message. In order to do that, a new identifier was created and added to the XML file used to
set the active settings. Furthermore, this identifier was assigned to a list cell model for the
user to be able to select one of the three lifetimes available. Each time the user defines the
duration of the ephemeral messages sent, that new value will be persisted inside a supporting
file.

The Chat module was modified for the user to be able to enable/disable the Ephemeral
Mode within the chat window; for the chat window to display a new balloon type that
represents an ephemeral message; and for the application to send a compressed zip file with
both the file and its lifetime.

The added Ephemeral Message group is responsible for the new cell types that are displayed
in the chat window.

Finally, the Preview group was modified in order for the preview screens to display a
countdown timer that shows the remaining lifetime of the received ephemeral message.

4.4. Real-time Location Share

As the name says, this features allows the sharing of A Party’s location with a B Party, in
real-time. This location is shown on a map that keeps track of the most recent position of
the sender, presenting as well all the previous positions received in that session which
constitutes the shared route.

Figure 15 illustrates the communication process used by the ephemeral messaging feature.
For the sake of simplicity, this feature will be referred by its acronym: RTL (Real-time
Location).

Internship Final Report

42

Figure 15 - Real-time Location Share communication flow

In order to share real-time location (Figure 16), the A Party selects “Share location” and
then “Real-time location”. This entry point will lead to a modal view that asks the user to
select one of the available durations for the share session, as well as its mode (Walking or
Driving). As will be seen later, the session mode influences how the routes are drawn in the
map. After setting up these preferences, the sender may now send the invite to the B-party.
This invite consists of a JSON file with the timestamp of the invite, the user’s latitude and
longitude, and the session state (which for default is IDLE). This file will be sent to the B-
party using file transfer over HTTP or MSRP, depending on the available technology. This
file is of huge importance for the persistence of current state and date of the session. For
example, the JSON file will be updated every time a new position is received or the RTL
session state changes.

Figure 16 - Send Real-time Location: define settings, wait for a response to the invite, and share

location

When the invite is received, the session is established and all the communications will be
done via Generic Message: text messages, just like chat messages, but that have different
media type in order not to be interpreted as usual chat messages. These messages are a way
of powering this feature and are not intended to be directly displayed in the chat window.

At this point, the B-party must answer the invite (Figure 17): either accepts it and the sender
starts sharing its locations periodically, or rejects and the session is terminated. In order to
explain the remaining flow, lets assume the B-party accepts the invite. This acceptation will

Integration of an iOS App with Social Networks and Cloud Storages

43

be translated in the sending of a generic message to the A-party saying that the invite has
been accepted. Upon the reception, the A-party will start sending its location periodically via
generic message, which will be stored on both sender and receiver in order to be displayed
on the map.

Figure 17 - Receive Real-time Location: receive invite, accept the real-time location session, and

receive the shared location

The map view is the way the user can see the sharer’s current position and route. In order to
display the route, the logic behind the map’s controller will read all the stored points and
draw a line over the map. However, that line’s aspect will vary according the session mode:

• Driving mode: as the name suggests, this mode is intended for sharing location while
driving on roads. For the routes to precisely match the roads in the map, requests
with the received points must be made to the Apple’s Map API in order to receive
the corresponding map positions.

• Walking mode: this mode is intended as a free-style and off-road mode. In other
words, there is no need for the routes to exactly match the roads in the map. It is
suitable for walks in the woods or traveling inside tiny roads within a city, for
example. This way, the locations coordinates are used to draw a line directly in the
map, without requesting any directions to external APIs. However, this process is
not straightforward. In order to present smooth lines in the map, Bezier curves [80]
are calculated and then displayed in the map.

Every time a new location arrives, the route line will be updated in order to present the most
up-to-date state of the share session, as shown in Figure 18. This process will terminate
when the session is terminated by one of the users, or its duration expires.

Internship Final Report

44

Figure 18 - Evolution of the shared route until finishing the session

Figure 19 shows a high level architecture of this feature. For a detailed diagram that shows
and explains all the involved classes, as well as all the additions and modifications, refer to
Appendix C – Architecture: Real-time Location Share.

Figure 19 - Real-time Location Share high-level architecture

In order to implement this feature is necessary to create the Real-time Location group,
which contains all the logic that makes it work, such as creating the session invites and send
them via the COMLib’s File Transfer module; sending the locations periodically via the
Generic Message module; or even to process all the shared points according to the session
mode and present the resulting route on a map. However, many groups of the UI layer must
be modified as well.

Integration of an iOS App with Social Networks and Cloud Storages

45

The Communicator group must initialize the Real-time Location module upon the
initialization of the RCS application.

Besides fetching more accurate positions, the Location module must include the necessary
logic to empower the Real-time Location group.

The Chat module must now present new conversation balloons that are specific for RTL
sessions, and trigger specific notifications that warn about the reception of new RTL invites.

Finally, the Setting Cells group must suffer some modifications in order for some of its
models and views to be reused by the Real-time Location module, such as the RTL invite
setup menu.

4.5. Authentication

In order to deploy features that depend on third-party services, it is necessary to implement
the respective authentication mechanisms, which will grant access to the respective user’s
account. Regarding the proposed features, it is necessary to implement authentication
mechanism for all the social networks and cloud storages that will be integrated with this
RCS application. The present scope of the internship is focused on Facebook and
Dropbox. Both these services provide official SDKs for iOS, which contain a set of
methods that ease the interaction with the respective services.

As the architecture for the authentication with these two services is very similar, the current
chapter will merge both services in one only architecture design for the sake of simplicity.

The authentication with both Facebook and Dropbox was developed mainly at the UI/UX
level. The entry point for authentication is through the application settings, as illustrated in
Figure 20. Once social networks and cloud storages are different kind of services, two
different menus were created in order to wrap them accordingly.

Internship Final Report

46

Figure 20 - Authentication flow for both Dropbox and Facebook

The application settings are populated with base on the content of the AppConfig.xml file.
It contains a set of identifiers, each of them accompanied by an active parameter that allows
enabling/disabling each setting easily.

These identifiers are assigned to a setting type according to the intended behavior. The
application already has set of setting models that have its specific behavior and design.

Figure 21 represents a high-level architecture for the authentication with both these services.
For a detailed diagram that shows and explains all the involved classes, as well as all the
additions and modifications, refer to Appendix C – Architecture: Authentication.

Integration of an iOS App with Social Networks and Cloud Storages

47

Figure 21 - Dropbox and Facebook authentication high-level architecture

In order to add Cloud Storage and Social Network settings, two new identifiers were created
and added to the XML file used to set the active settings. Furthermore, these identifiers
were assigned to a custom cell model because it is intended to run a custom block
implementation that contains all the necessary logic to connect the application with both
Facebook and Dropbox SDKs, as well as to display a specific view for each service. The
content displayed by this view varies according to the session state, i.e., the view presents a
login button if there is no valid session, or presents a set of service options in case there is a
valid session.

4.6. Save and Share from Dropbox

The current topic is responsible for defining the architecture for the features “Save to
Dropbox” and “Share from Dropbox”. Both these features rely on the previously defined
authentication architecture, once they will only be available if the user is logged in to its
Dropbox account.

Both these features have many similarities in terms of classes, and they only rely on
Dropbox Core API. Their architecture will then be designed together in order not to
overflow this topic and to provide their shared context. However, each of the flows is
explained separately in order to fully understand each of the features.

Internship Final Report

48

Save to Dropbox

This feature allows saving any receive file (e.g. image, video, audio, document) from a single
or group chat session to the user’s Dropbox account.

Figure 22 - Save to Dropbox flow

Figure 22 briefly shows how this feature works. After receiving a file transfer, the user long
presses on the respective balloon in order to see the possible interactions for that file. One
of them is “Save to cloud”, which will present a new view with all the clouds the user is
logged in within the application. After selecting the desired cloud service, the user may
browse through all the folder hierarchy of their cloud account by interacting with the
presented folder explorer. After navigating to the intended folder, the user needs to press
the “Save” button in order to start the uploading process. Pressing that button will display
back the previous chat window to the user, where he can see a progress bar below the
balloon he selected. After the upload is completed successfully, a local notification will be
triggered in order to inform the user about the conclusion of the process. If any error occurs
during that process, a local notification will warn the user about the problem that prevented
the file to be saved to their cloud account.

Integration of an iOS App with Social Networks and Cloud Storages

49

Share from Dropbox

A user can share a file from their Dropbox account via two entry points within the
application: a chat window or the share menu within the application’s main screen. Figure 23
displays both these entry points.

Figure 23 - Share from Dropbox entry points

Both the available entry point will start the feature’s flow illustrated in Figure 24. A list with
all the media sources pops up, which includes the clouds the user is logged within the
application. Selecting the Dropbox entry will once again present him a browser where he
can navigate through his account’s hierarchy. However, unlike the previous feature, the
browser displays all the available content, both files and folders. The user may then select
files and, after the selection is terminated, press the “Send” button in order to send those
files. Pressing that button will display the respective chat window where the user can see the
outgoing balloons with the intended files.

Figure 24 - Share from Dropbox flow

Figure 25 represents a high-level architecture for this feature. For a detailed diagram that
shows and explains all the involved classes, as well as all the additions and modifications,
refer to Appendix C – Architecture: Save and Share from Dropbox.

Internship Final Report

50

Figure 25 - Save and Share to/from Dropbox high-level architecture

This feature was mainly developed at the Chat, Cloud Storages and Share levels. Once the
files are exchanged via chat, there was a need to modify this group in order to support a new
File Transfer mechanism via cloud storages services.

The Share group contains all the logic regarding the listing of the media sources upon a
share, such as native gallery albums. This way, it had to be modified in order to include the
cloud storages that have a valid session within the application.

The Cloud Storages group is responsible for all the methods that interact with the Dropbox
SDK in order to empower both features.

• Regarding the “Save to Dropbox” feature, it contains all the methods responsible for
the file uploading, including one to fetch the current upload progress in order to be
displayed to the user.

• In terms of the “Share from Dropbox”, it contains the methods responsible for
obtaining the public links. Public links are downloaded instead of the files in order to
reduce the amount of mobile data plan consumed during the File Transfer process.
This way, the sender won’t need to download the file to the device, and then upload
it in order to be sent to the B-party.

• Common to both features are all the methods regarding the metadata fetching and
session validity control. This is crucial for the file explorer mechanism since it
provides the hierarchy of each folder, as well as information of each of its files.

The Core Data group allows the caching of the files thumbnails used in the file explorer, and
the persistence of the upload progress of each file in order to be displayed in the
corresponding balloon.

Finally, each time the upload process finishes, whether with success or not, a notification
will be displayed to the user informing him of the final status of the upload.

Integration of an iOS App with Social Networks and Cloud Storages

51

4.7. Backup and Restore of conversations

The “Backup and Restore of conversations” feature intends to allow a user to do a safe
backup of all its conversations within the RCS application to Dropbox, as well as to restore
any stored conversation back to the application.

This section approaches the “Backup and Restore of conversations” feature and is divided
in two subsections: the first approaches the data models that will be used in order to store
the information of the messages, while the second is responsible for briefly talking about the
modifications and additions that must be done on the COMLib level.

The COMLib is the foundation of this feature, a layer where most of the implementation
must take place. Once this communications stack is the most important component of
WIT’s RCS product, it is extremely important not to give details about its internal structure
in a public document. This way, this topic will be very vague regarding the architecture of
this feature. Thus, it is highly recommended to read Appendix C – Architecture: Backup and
Restore of conversations, where everything regarding the COMLib is deeply explained,
approaching in a very detailed way both the architectures before and after the
implementation of this feature.

4.7.1. Data models

The backup and restore of conversations is achieved by recurring to the Dropbox Datastore
API. This is possible by maintaining a local cache that contains the changes performed by
the application in the datastore. When the application wants to commit these local changes to
the remote datastores, it performs a sync call. Fortunately, the Dropbox Datastore SDK for
iOS handles that sync process internally, without any possible interference by the developer.

However, there are some issues that may arise when saving the RCS application messages in
the datastores. These problems are related with the limits applied by Dropbox.

1) If there are more than 10 MB of raw data in these messages, it won’t be possible to save
all in the same datastore. Fortunately, there is not a limitation on the maximum number
of datastores that can be created by an application.
Solution: When one datastore is full, create another one and save the remaining messages
there.

2) The maximum record size allowed is very small to store the media files from a file
transfer. To address this situation, the Dropbox Sync API will be used in conjunction
with the Datastore API.

The Sync API allows for an application to use a folder created under its name inside the
Apps folder. That folder can then be accessed and modified freely by the application, and the
API provides the access to a mechanism similar to the Datastore API’s one that
synchronizes folders across several devices: a local cache for the file system modifications is
kept; when the files are synchronized, the changes are committed to the remote folder. That
said, the strategy is to save the file transfer’s media file inside this folder, and keeping its
path inside a record that represents that history entry.

As the entries inside the RCS application are ordered by type, it makes perfect sense to keep
that simplicity in the remote datastore. This way, each datastore will contain entries of a
single type within a single table that is identified by the kind of records it contains: File
Transfers, Locations, or Chat Messages. When a datastore is about to get full, another one

Internship Final Report

52

of the same type is created in order to store the next entries. This concept is illustrated in
Figure 26.

Figure 26 - Datastore structure within the RCS application

When the user’s account is linked for the first time within the application, it contains no
local datastores. In order to have it accessible locally, the SDK automatically fetches the
remote information. However, there is a datastore that is created automatically for any
application – the default datastore. In the scope of this feature, this datastore will be used in
order to store relevant information about the current backup in the user’s Dropbox, as
illustrated in Figure 27. For example, it will allow the application to keep track of the
datastores that are being used and which kind of entries they store, or the remaining size and
records that any of the current datastores can still hold. In short, besides the control that it
provides to the application, this information allows a performance improvement on the
datastores accesses.

Figure 27 - Information stored by the default datastore

4.7.2. The Sync Module

After introducting all the aspects regarding the organization of the datastores and respective
data, it is now time to address some architectonical aspects. As explained in the beginning of
this chapter, this topic is going to be, to some extent, vague and brief about the feature’s
architecture. This way, it is important to once again advise the reading of Chapters 8.2 and
8.3 of the Appendix C – Architecture: Backup and Restore of conversation.

Integration of an iOS App with Social Networks and Cloud Storages

53

This feature is built on top of an already existing COMLib’s module: the Sync module. This
module constantly synchronizes the RCS application messages with the native messaging
application, and vice-versa, in order to always keep the device’s messaging history
synchronized. Until the implementation of this feature, it was only useful for Android once
it is the only platform that grants access to the native messaging application.

Figure 28 illustrates a high-level architecture of this feature in the COMLIb’s context.
Besides being mainly developed in the COMLib, there is some interaction with the UI/UX
layer. This layer calls the methods in the API in order to start the backup or restore process,
or even to enable or disable the automatic backup mode. It also receives event status
updates via callbacks, in order to inform the layer of the conclusion on the backup process.
This is useful in order to trigger the necessary mechanisms in order to display notifications
to the user, which inform them of the status of each process.

Besides the APIs, the COMLib layer has many components that were implemented in order
to make this feature work properly. A new service was created – the Remote Sync – in order
to power this feature. This service contains multiple implementations (iOS and Android) in
order to be available on different operating systems.

Figure 28 - Backup and Restore of conversations high-level architecture

Internship Final Report

54

This service is connected to the Remote Sync Controller, which processes both existing and
new messages in order to be backed up. These messages are then redirected to the handlers,
one for each service used for remote synchronization. At the moment, only one exists which
is associated with the Dropbox cloud service. On the other hand, each handler redirects
those messages for its specific logic for the corresponding platform. In this case, the
DropboxSync contains specific logic for both iOS and Android platforms. For the
application I developed, the iOS-specific logic will be called in order to properly process this
data.

This logic is responsible for converting the received messages and adding them to the local
datastores, starting the backup process, and triggering the restore mechanism that retrieves
all the messages that exist remotely. In order to do this, there is a continuous interaction
with the Datastore/Sync SDK.

As one can see on Figure 28, there is a module named “Unified Dropbox SDK”, which
contains both Core and Datastore/Sync SDKs. Because of this feature, the Core SDK had
to be moved from UI/UX to the COMLib layer and join the Datastore/sync one. However,
they can’t be used together in the same project once they generate various conflicts, such as
duplicate symbols. This way, a unified SDK had to be created in order to manage to keep
using these two SDKs simultaneously in the same application. All the process discovered
and implemented by me in order to generate the unified SDK is described in the following
chapter of this document.

Regarding the UI layer, it uses the settings architecture presented section 4.5. Authentication
for the “Save to Dropbox” and “Share from Dropbox” features. The entry points that
trigger this feature are in the Dropbox settings screen, as illustrated in Figure 29. Notice that
the user must be logged in in order to access those options. That screen allows the user to
manually start the backup or restore process. Furthermore, they can activate the auto-
backup option, which will periodically do an automatic backup of their conversations to
Dropbox. In order to set the frequency of the automatic backup, the user needs to select the
“Auto Backup Frequency” option so they can select one of the multiple frequencies
available.

Figure 29 - Backup and Restore entry points (on the left) and Auto backup frequency options (on the

right)

Integration of an iOS App with Social Networks and Cloud Storages

55

Besides the creation of the entry points, it is necessary to provide the feature with
mechanisms that inform the user of the progress of the backup or restore task. This way,
whether the backup or restore ends successfully or with an error, a local notification is
always displayed to the user in order to inform them of the status of the operation. The
restore process contains more than a local notification on the UI layer, as proved by Figure
30.

Figure 30 - Restore of conversations flow

When the user triggers the restore process by clicking on “Restore Conversations” option, a
modal view appears in order not to allow them to take any action. After the process is
completed, a local notification is displayed informing about the final status of the restore.
After that, all the messages restored from an existing backup are in the application’s
database and displayed in the “Messages” tab menu.

4.8. Contact Enrichment and Contact Timelines

“Contact Enrichment” and “Contact Timelines” are the features that integrate with
Facebook. They have different purposes but their architecture is very similar, as they share
most of the added and modified components. Therefore, this section approaches these two
features together, using the very same approach used in section 4.6. Save and Share from
Dropbox. However, both of the features are explained separately in order to provide an
overview of their purpose, as well as their intended flow inside the RCS application.

Contact Enrichment

Most of the contacts in our mobile phone’s address book contain only its name and phone
number. If we send emails frequently, it is common to have some vCards with the emails on
its respective field. However, all the other fields are empty because people just don’t want to
spend time filling them, or they do not know which is the updated information. For
example, users discard fields like birthday or birthplace once they represent accessory
information. On the other hand, people highly rely on social networks these days. They have
many details about themselves on their profiles, like birthday date, current job, or even the
city they live in.

This situation originated the perfect context for this feature within the RCS application:
enrich the contacts’ information by extracting the necessary information from their
respective Facebook profiles. This way, it is possible to have a contact detail with many
information that otherwise would not be there, as illustrated in Figure 31. Furthermore, this

Internship Final Report

56

new information provides the necessary means for a whole new set of alerts, such as
birthday notifications during a call or chat session.

Figure 31 - Contact detail before and after the Contact Enrichment process

Two major steps compose this feature. First of all, it is necessary to extract the complete
friends list of the user, and match each of them with the user’s native contacts. This
matching is done using phone number and/or email. After those matches have been
correctly made, it is then time to gather information from the Facebook profiles that were
matched and update each vCard.

Contact Timelines

The “Contact Timelines” feature works upon the previous feature once it requires the
matching between Facebook profiles and native contacts in order to work. This feature
provides additional information inside the contact details page in the RCS application. In
other words, it is an easy and fast way to check all the updated Facebook information about
a certain contact without leaving the application.

While the “Contact Enrichment” feature matches the contacts with Facebook profiles and
obtains only the necessary information in order to fill or update each of vCards fields, the
“Contact Timelines” provides an easy way of accessing all the contact’s Facebook
information within the contact detail page in the RCS application. It is useful once the user
does not need to leave the application in order to see the Facebook profile information of a
certain contact. Figure 32Error! Reference source not found.illustrates this feature and its
entry point.

Integration of an iOS App with Social Networks and Cloud Storages

57

Figure 32 - Entry point (on the left) and Contact Timeline screen (on the right)

Figure 33 represents a high-level architecture for both these features. For a detailed diagram
that shows and explains all the involved classes, as well as all the additions and
modifications, refer to Appendix C – Architecture: Contact Enrichment and Contact Timelines.

The Social group contains all the logic necessary to query Facebook in order to obtain both
the user’s Facebook friends and their respective information. This information is then
passed to the Contacts group, where it is processed in order to find a match between the
user’s Facebook friends and the contacts that were loaded from the native address book. If
there is a match, the necessary fields are created or modified inside that contact in order to
persist that new information in the native address book.

In order for the user to see details about a certain person, the loaded contacts are passed to
the Contact Detail group where all the information is displayed, including that obtained
from Facebook. If the user wants to access that contact’s timeline, the Contact Detail must
gather updated Facebook information in order to be displayed. This way, the Social group
will call the necessary APIs in order to obtain all the information. This is then redirected
back to the Contact Detail group, which will then present it in a totally new view.

Internship Final Report

58

Figure 33 - Contact Enrichment and Contact Timelines high-level architecture

In order for these features to work, it is required to grant permissions for the application to
get the necessary information about the Facebook users. In the login process, a set of
permissions must be defined in order to obtain the necessary information about the users in
a future phase. This way, the permissions required to load the Facebook friends and their
information are:

• “friends_photos”: permission required to get the users’ published photos;
• “friends_status”: permission required to get the latest status that the user ponted on

Facebook;
• “friends_work_history”: permission required to get the friends’ work history

indicating the current company, role, and time period;
• “friends_education_history”: permission required to get the friends’ educational path

indicating the institute, concentration, and finishing year;
• “friends_birthday”: permission required to get the users’ birthday data;
• “basic_info”: permission required to get the user’s name, birthplace, and current

location.

In order to obtain the previously described fields, a multi-query is used to get the
information and, since the operation is asynchronous, it should be performed in a
secondary thread (background) in order to maintain the UI fluid. When the response arrives
an event is fired from the manager and the provider is notified. After retrieving the
information, it is parsed into WMCContacts and inserted in a cache, avoiding constant API
calls. The photo’s cache mechanism is provided by a third-party library named as
SDWebImage [81]. This library provides an asynchronous image downloader with cache
support that allows a better abstraction to the developers.

When a user selects a contact from the contact list, its Facebook details are displayed –
Contact Enrichment. This view shows the contact name in the social network and a set of
basic information, including the current city, their birthday, the last posted status, and their
last posted photo. These last two fields are followed by the respective publication date.

However, Facebook provides much more information than indicated above. This
information can also be displayed in the contact details. If a user intends to see more

Integration of an iOS App with Social Networks and Cloud Storages

59

information about the contact, they should press the “more options” button and select the
option “more info”, in order to access that contact’s timeline. A new view is displayed with
less relevant information. This includes their biography, work history, educational path,
religion, political view, and relationship status.

Internship Final Report

60

Integration of an iOS App with Social Networks and Cloud Storages

61

5. Implementation Challenges and Evaluation

This chapter addresses the two stages encompasses by the development process: the
implementation and validation each feature.

The first section presents some implementation details about each feature, mainly challenges
and problems that were faced.

The second section contains all the validation steps performed regarding each feature, in
order to evaluate the final solution of the product that integrates all the implemented
features.

5.1. Challenges and Problem Solving

Some problems were faced during the development stage. Most of them were predicted
during the designing of the architecture, being the features designed in a way that solved
those problems. However, some other problems appeared during the development of the
features. Some of them were minor, requiring only some small changes, while others were
critical enough to require a reformulation of some parts of the feature.

This section explains the most important details of the implementation phase for each
feature, while focusing on the main challenges that they brought to the project, along with
the alternatives found in order to overcome them.

5.1.1. Ephemeral Messaging

The ephemeral messaging feature was the first feature implemented in the internship. This
implementation contributed highly for the trainees acknowledgement of the internal
structure of the application, as well as all the communication processes used. This feature
relies on the File Transfer module of the existing communication stack. In order to
implement it, various different developments were required.

In first place, a new kind of file transfer was created. This file transfer type had a new media
type, which allowed the RCS application to detect if a received file transfer corresponds to
an ephemeral message in order to apply the necessary correct logic.

Secondly, an ephemeral message has not the same composition as a typical file transfer, once
it is not straightly composed by its corresponding media. Once an ephemeral message has an
assigned lifetime, it is necessary to send that information together with the respective media.
The solution found was to insert the lifetime value in a JSON formatted file, which was then
wrapped together with the respective media in a zip file. After the creation of this file, the
file transfer mechanism could be executed in order to send the ephemeral message to the B-
Party.

One of the requirements of this feature was the deletion of the message’s content from the
device, as well as its corresponding entry from the chat window. In the sender’s side, the
content needed to be deleted as soon as the message was sent. This way, the application
listened to the states of the corresponding file transfer in order to detect when it was sent to
the B-party. When that happened, the communication stack was commanded to delete that
message’s media from the device. Furthermore, the corresponding entry was also deleted in
order to provide the user with an experience of deletion, which in fact happened internally.

Internship Final Report

62

Finally, the last challenge was to implement a decrementing timer on the view responsible
for the preview of a ephemeral content. The NSTimer native class had an important role
here, once it provided a timer-like behavior. When it reached zero, an action could be
executed. In this features case, it was intended to delete the media from the device, as well as
its respective entry, and return to the chat window. This was relatively easy to do. However,
there was a non-deterministic bug: sometimes the timer on the preview view was not
decrementing, revealing always the same value. After the defined time passed, the view was
dismissed. After reading much documentation, the reason of that problem was found:
“currentLoop: Returns the NSRunLoop object for the current thread” [82]. In other words,
the timer was being dispatched for one of the available threads, which isn’t necessarily the
main queue. When it was dispatched for a thread other than the main one, the timer action
was set and triggered but the UI was never redrawn. In order to solve this problem, the
mainLoop was used.

5.1.2. Real-time Location Share

The Real-time Location feature was introduced in the beginning of the current year and it
was aiming to be ready in time for the Mobile World Congress 2014, in Barcelona.
Fortunately, the developments were ready in order the demonstrate it there. However, this
simple-looking feature turned out to be very complex in many aspects. The algorithm
behind the calculation of routes for driving mode; protect the feature against network-loss
when in driving mode; and selecting the valid points read by the GPS are some of the areas
that turn out to be more time consuming than initially imagined.

For this feature, two session modes are provided: the Driving and Walking modes, which
correspond to a road-based session or not, respectively. These modes have a huge impact on
the way the shared routes are displayed in the map.

Regarding the Walking mode, the successive positions shared are connected using a Bezier
curve, which will then be displayed in the map. The main idea behind this choice is that
walks and runs are usually not on a straight line, but more likely to contain zones with
curves. By calculating the intermediate points for a Bezier curve, a more realist path is
created once there are no sudden changes of directions, but rather smooth curves. This
concept is illustrated in Figure 34

Figure 34 - Straight line (in red) vs Bezier curve (in orange)

For the Driving mode, it is intended that the route matches the existing roads. In order to
guarantee that both more and less accurate points match a road, the Apple Maps API is used

Integration of an iOS App with Social Networks and Cloud Storages

63

for requesting driving directions between two consecutive positions. This way, it managed to
draw routes that exactly match with roads in the map.

Driving Mode

This mode requires a specific section once many challenges were faced in order to produce a
feature that could correctly display routes that corresponded to the reality and that could be
used by anyone.

First of all, the mobile data plan from the user is used in order to request directions once
they are simple HTTP requests. In order to mitigate this problem, all the returned directions
are saved in the corresponding JSON file. This way, when the user opens the map in order
to view a previously shared route, there is no need to do duplicated requests once the
necessary route information is inside the corresponding local file.

“What happens if there is a network loss when the feature is about to request a direction
between two points?”. That was one of the questions we faced in order to create a
mechanism that controlled the network-loss in this feature. If there is no Internet
connection, that request is saved in a queue along all the others in the same state. When the
Internet connection is recovered, all these requests are process in a First-In First-Out
(FIFO) order so that the results are obtained in the correct order and, consequently, that the
route is correctly drawn in the map. In case new positions arrive when the requests queue is
being processed, those points are added to the end of that queue in order to guarantee the
necessary correct order. The atomic access (synchronized) to this queue makes it thread-safe
and thus no crash will occur when a new request is added to the queue at the same another
is being retrieved for processing.

The last problem regarding the Driving mode is related with the accuracy of the positions
read by built-in GPS chip. Even a good reading from the iPhone’s GPS sensor has an error
radius of four to six meters. These errors have a huge influence when matching the points
with roads. A slight error can point to a zone of the road that totally disrupts the calculation
of the correct zone. One situation that is highly affected by these errors is when calculating
routes near roundabouts, as illustrated in Figure 35.

Figure 35 - Wrongly determined route caused by the P5 position

Internship Final Report

64

The P5 point contains a slight error as the figure shows. When requesting routes from P5 to
P6, the result obtained will say to circumvent all the workaround until reaching the P6 point.
However, that is not intended once it produces a route that was not traveled by the user.
This way, in order to ignore such situations, the speed associated with GPS fetched point is
also used. The average speed between two readings is calculated by the average speed on the
start and end points. By multiplying that average speed for the time elapse between readings,
a rough estimate of distance traveled by the user is calculated. In addition, a small factor is
added to the obtained value in order to establish the maximum length that a route obtained
from the Maps API can have. This way, when an obtained route is too long, it is ignored, as
well as the last obtained position. When the next location update arrives, the same process is
repeated in order to guarantee a precise and correct route.

5.1.3. Save and Share from Dropbox

Unlike the Android platform, the iOS operating system does not allow any communication
between third-party applications. In other words, the RCS application cannot invoke the
Dropbox application in order to, for example, display its file explorer, select the intended
files, generate the respective public links, and finally receive them so they can be sent to
another contact. This way, the most challenging part of both these features was the creation
of a generic file explorer that allowed browsing through the Dropbox folder hierarchy, just
like in the Dropbox application. I say generic because it must work with any cloud storage
other than Dropbox, in order to be reused if other integration of that kind takes place.

Both these features rely on the File Explorer for the user to browse the cloud’s folder
hierarchy and select the intended media. The only difference is that it displays only folders
for the “Save to Dropbox” feature because the user must only select the destination folder,
while for the “Share to Dropbox” feature it displays both folders and files in order for the
user to select files inside any folder.

In order for the File Explorer to display the files and folders from Dropbox, a HTTP
request is made for the metadata from a certain directory. The response contains all the
information regarding each of its folders and files. That information is then processed into
the necessary data models and then presented to the user. Two different flows may occur
regarding the feature:

• Share from Dropbox: the user selects the files he wants to send. After he is done,
each of the selected files are sent using COMLib’s File Transfer API. Downloading a
file from Dropbox and then uploading the file in order to be sent to the B-party
represents a relatively high usage of mobile data. However, this process was not
good enough and was optimized in order to reduce the amount of data exchanged.
Instead of downloading the files from Dropbox, the public links of each of them
was retrieved and then sent to the user. In order to provide a great UX, the
necessary logic was created to display to both sender and receiver a balloon with the
file’s thumbnail instead of a text with the link.

• Save to Dropbox: the user browses the folder they want to save the file to. When
they are done, that directory name is retrieved and a method from Dropbox Core
SDK is called in order to upload the intended file to Dropbox. While the file is being
uploaded, a progress bar shows the progress of the uploading process for a better
UX.

As said previously, when in “Share from Dropbox” mode, the file explorer displays all the
files inside a certain folder. All the image and video files have a thumbnail associated, which

Integration of an iOS App with Social Networks and Cloud Storages

65

is useful in order to provide a quick overview to the user when seeing the files in a list. This
way, it is a must to download these files’ thumbnails in order to provide a great UX.
However, the download of these small images have a downside: they consume the user’s
mobile data plan. Thus, it is necessary to optimize this in order to consume as less data as
possible. A mechanism was implemented in order to solve this downside using Core Data –
a way of persisting data on iOS which increases the responsiveness of applications. In short,
for each file in the listing, it is verified if they have an available thumbnail. If so, it is
downloaded and persisted in a Core Data entity. After that, each time the user returns to
that same directory screen, the thumbnail is directly loaded from the database instead of
being downloaded once again. This process brings two major advantages to the feature: it
reduces the consuming of mobile data and increases the responsiveness of the file explorer
once the thumbnails are already available to be displayed.

Regarding network-loss, the Dropbox SDK returns an error any time there is loss of
connectivity during one activity. This way, it was necessary to listen for those notifications in
order to present the necessary informative notifications and dialogs to the user.

5.1.4. Backup and Restore of conversations

As shown in 4.7. Backup and Restore of conversations and Appendix C – Architecture: Backup
and Restore of conversations, the UI side of this feature is minimalist. However, it is the entry
point to all the logic that empowers the backup and restore feature.

In order to implement this feature, I faced multiple challenges and difficulties. Some of
those were already know since the beginning, such as developing in WIT’s communication
stack, but others were unpredicted until the implementation of the feature, like the
incompatibility of both Core and Datastore/Sync SDKs when working together. This way,
the current section will be divided in multiple topics in order to individually detail each of
the faced challenges.

Unified SDK

There are three features that are possible due to the integration with Dropbox: “Save to
Dropbox”, “Share from Dropbox”, and “Backup and restore of conversations”. The first
two require the Core SDK, while the last uses the Datastore/Sync SDK to interact with
Dropbox Servers. It is intended that all these features may be simultaneously available inside
the same application. This way, both Core and Datastore/Sync SDK frameworks must be
inside the application at the same time.

These SDKs are not designed to interact simultaneously within the same application. First
of all, the framework files for each SDK have the same name, meaning that one is replaced
when adding the other one to the same project. Once Dropbox provides the source code of
Core SDK, adding the Datastore/Sync SDK framework and the Core SDK source code can
solve this problem. However, there are many issues that were discovered when compiling
the code:

• The Core SDK source code cannot be compiled using ARC – a compiler feature
that provides automatic memory management of Objective-C objects;

• There are several duplicate symbols because both the SDKs have some common
parts that use the very same variables and constants;

• Both SDKs have classes with the same but with different logic.

Internship Final Report

66

In order to find a way of working with both SDKs simultaneously, the Dropbox Forums
[83] were the first place to be consulted. Someone had already had the same problem as me,
but the posts were not the answer (at least not completely). Guided by the compiler errors
and by some answers already provided, I managed to integrate both the SDKs inside the
same application. However, not everything was fully working. There was an error
(“[ERROR] unable to verify link request.”) occurring during the authentication process.
After questioning around the forums and analyzing the Core SDK’s class used on the
authentication process, the problem was found: after authenticating, the SDK removes a
value from the database file. Once both the SDKs are now using the same database, that
value is removed after the authentication of one of the SDKs, not being available for the
other and thus failing. The solution found involved editing that Core SDK’s class in order
not to erase that value from the file. This way, the Core SDK must be authenticated first
and only then the Datastore/Sync can run its authentication process. When the
authentication request is made, the value is created and added to the database. Then, the
Core SDK does its authentication process without deleting that value. Finally, the Datastore
SDK does that same process but erases the value from the database. This way, everything
works fine and the final state of that internal database is the intended one.

Once there was no guide with all the steps required for this unification in the Internet, I
produced a list of steps and shared it online in order to ease the job of anyone else that
needs to do same task I did. This guide was published on Stack Overflow by answering to
two questions regarding a related issue.

In order not to extend even more this section, the unification guide won’t be detailed.
However it can be consulted on the first answer for the questions [84] and [85].

Approach

The chosen approach for the backup mechanism was active synchronization, meaning that
the only change that occurs to the application’s database (e.g. new message) is promptly
persisted in the local datastore. This guarantees the best performance because there is no
need to collect all the data on a very big chunk when the user wants to perform the backup,
this way avoiding a period where the device’s resources are largely consumed. This would
make the application slower and thus decrease the UX.

There was an easier way of implementing this feature: when the user wants to backup, all the
data is collected from the database, zipped into a single file, and sent to their Dropbox
account. However, this would shutdown the changes of creating a real-time synchronization
mechanism between multiple devices.

A real-time synchronization mechanism is easily implemented by doing slight modifications
to the current active synchronization mechanism. In first place, the history changes had to
be synchronized to the remote datastore when they occurred, which is not happening
currently. Finally, the synchronization manager had to be listening for remote changes on all
the datastores in order to download them and add them on the device.

Backup of file transfers

The “Backup and Restore of conversations” was designed in order to manage the backup of
restore of chat messages, file transfer, and locations. As stated in Appendix C – Architecture:
Application Programming Interfaces, the maximum size of a datastore record is 100KB, being
extremely small to store the media file. This way, it was necessary to use the Sync SDK in
order to synchronize the files, just like the Datastore SDK synchronizes the datastores.

Integration of an iOS App with Social Networks and Cloud Storages

67

All the structure is ready for that, once the SDKs are now unified and the authentication
process is working properly. However, an unexpected problem related to the Dropbox
permissions arose. The RCS application is registered in Dropbox with full permissions mode
because of the “Share from Dropbox” feature, once it is necessary to access any directory
and any kind of file inside the user’s Dropbox. However, this mode is only compatible with
the Core API, meaning that no other API may have this amount of permissions. In other
words, the Sync API does not work with the amount of permissions that are required, which
makes it impossible to synchronize the media file and, thus, the complete file transfers.
Once the “Share from Dropbox” is a feature that is highly appreciated by operators, the
only solution was to implement the “Backup and Restore of conversation” for chat
messages and locations only.

5.2. Evaluation

The validation of the developed solution is a fundamental step on any software project. It is
desired that the application is delivered to the user with zero bugs, and with the best UI/UX
possible in order to make them enjoy and, consequently, use it.

Various tests were designed and executed in order to validate the implemented features. All
the types of testing that took place in this internship are described in the following sub-
sections. The reading of Appendix D – Evaluation is highly recommended once it contains the
complete set of functional and non-functional tests that were designed and performed.

5.2.1. Functional Testing

Functional testing is a quality assurance process. In this type of testing, the use cases are
tested by giving an input and analyzing its output. In the current context, the user interacts
in some way with the application, and it must produce the desired result in order for the
feature to work properly and the user to have the intended user experience. Once most of
the features that compose this internship are visual, meaning that they present visual
information to the user upon the intern logic, it is of the most importance to guarantee that
all the developed use cases produce the output that was planned.

A total of ninety functional tests were designed and executed in order to check the behavior
of all the implemented features within the RCS application. Forty-two of those tests apply to
the “Real-time Location Share” feature because it is the feature that provides more
interaction with the user and, thus, a various set of outputs are expected.

The testing process has been continuous, meaning that it went along all the implementation.
This way, it is natural that the tests were executed multiple times until all the bugs were
corrected. Table 6 shows the functional testing results of the first and last runs for all the
implemented features.

 First run Final run
Feature Failed Passed Failed Passed

Ephemeral Messaging 2 14 0 16

Real-time Location Share 5 37 0 42

Save and Share from Dropbox 1 19 0 20

Backup and Restore of conversations 2 10 0 12

Table 6 - Function testing results per feature for both first and last runs

Internship Final Report

68

As it can be seen, the testing process allowed the discovery of bugs and problems in the
features, which were iteratively solved until the last run, where none remained.

The functional tests that were designed and executed for each feature are described in
Appendix D – Evaluation: Functional Testing.

5.2.2. Networking

All the implemented features rely on an internet connection in order to operate correctly.
This way, it is imperative that these features properly handle network losses during the
execution of any of its use cases. Disabling the feature or delaying the execution of its
operations are some of the mechanisms that are used in situations like this.

Regarding network-based testing, twelve tests were executed in order to validate the
implemented features, which can be seen in Table 7.

 First run Final run
Feature Failed Passed Failed Passed

Ephemeral Messaging 0 1 0 1

Real-time Location Share 1 4 0 5

Save and Share from Dropbox 0 3 0 3

Backup and Restore of conversations 0 3 0 3

Table 7 - Network testing results per feature for both first and last runs

As the results show, the only feature that had a network-related problem was the Real-time
Location Share. The issue was related to the test case N.4.3, in Appendix D – Evaluation:
Networking, where there were some minor problems with the algorithm regarding the
fetching of directions when the connection was restored.

Once again, it is highly recommended to read Appendix D – Evaluation: Networking in order to
better understand the executed network tests.

5.2.3. Usability

The User Experience is one of the most important components in an application nowadays.
An application can provide many features to the user, but nobody will use it if it has a bad
UX. This way, it is important to provide this application to different kinds of people in
order to collect feedback about their sensation when interacting with the implemented
features.

After ending the development phase, usability tests were performed to the implemented
features. To achieve this, a total of 17 people from WIT Software exectued these tests.
Unfortunately, it was not possible to collect feedback from people outside the company
once these features are not yet officially presented by the company and must remain as
private as possible.

The sample used to execute these tests was chosen randomly, containing users from several
mobile operating systems. However, the most important factor is if they had already
interacted with the RCS application for iOS. Unfortunately, eleven people from this testing
sample had previously had some sort of contact with the application.

Integration of an iOS App with Social Networks and Cloud Storages

69

The following topics provide some comments about the usability tests executed to each
developed feature, which are listed, described, and analyzed in Appendix D – Evaluation:
Usability.

Ephemeral Messaging

In order to tests this feature, the trial set was challenged to change the lifetime of outgoing
ephemeral messages to a specific value, and then to send an existing image in ephemeral
mode to a specified contact. This task could be executed with thirteen actions.

The obtained results show that the UX of this feature needs to be improved, once only 29%
of the users managed to execute it in the minimum required actions. By analyzing the
interactions of each user upon the execution of this task, three major problems were
identified:

• It is not clear which setting options must be chosen in order to define the ephemeral
messages lifetime;

• The options button is some times confused with the “Share” button inside the chat
window;

• Some users choose to take a photo instead of picking one from the gallery.

The execution of this kind of test allowed the identification of multiple UX aspects that
must be further improved in order for this feature to be accepted by the final users. This will
constitute part of the future work.

Real-time Location Share

Regarding this feature, the trial set was challenged to share real-time location in driving
mode for five minutes with a specified contact. This task can be executed with only six
actions.

The results from this test are quite pleasant, once 65% of the users performed this task with
the minimum amount of required action. The average number of steps taken by the trial set
was seven, which is very near the desired amount.

Save and Share from Dropbox

A task related to the “Share to Dropbox” feature was selected to this usability test. Once the
flow of both features converge in a part, there is no need to test both of them. This time,
the trial set was challenged to send a file from the root folder of a specified Dropbox
account to a certain contact.

The results from this test showed that this is the feature with best UX, once eleven users
managed to execute this with only six actions. The remaining six already did all the correct
flow. However, they selected files with a size that displayed a warning, requiring their action
to dismiss it.

Backup and Restore of conversations

In order to test this last feature, the trial set was challenged to log in to a specified Dropbox
account, and then restore the conversations from an existing backup. In order to perform
this task, only seven actions were necessary.

Internship Final Report

70

The results obtained are very satisfactory because the average of steps done by the trial set
was only eight. Once again, watching the users executing the task helped to identify the
reason of taking more actions. In this case, the users did all the required flow in the
minimum amount of steps, but some misclicked the keyboard’s keys and entered the wrong
credentials. It is assumed that this had to do with those users being accustomed to different
keyboards than the iOS’s one.

Integration of an iOS App with Social Networks and Cloud Storages

71

6. Conclusion

This final chapter marks the end of this report and the end of the one-year internship at
WIT Software.

The first section presents an overview of all the work done during the internship.

The second section provides explains the work that can still be done after the end of the
internship, underlining the existing opportunities to improve certain features.

Finally, the third section presents some personal thoughts about the internship.

6.1. Contributions Overview

Since the beginning of the internship, the goal was to enrich WIT’s RCS application for
iPhone with features that could differentiate it from its competitors. With this goal in mind,
the initial proposal was composed by features that required the integration with social
networks and cloud storages. In order to embrace the new trends, both “Ephemeral
Messaging” and “Real-time Location Share” were added to the scope of the internship.
These additions, together with features suggested by the trainees (such as the “Backup and
Restore of conversations”) made this internship even more complete, for both the company
and me.

The current section provides an overview of all the implemented features. Now that the
work is finished, it is time to reflect and analyze each of the features.

Ephemeral Messaging

This feature was introduced at request of WIT’s CEO, PhD Professor Luís Silva, at the end
of the year of 2013. This was the first challenge I faced once I did not know much about
Objective-C nor the complex internal structure of the product. This way, this was an
important stage on my growth as an iOS developer that let me deeply increase my
knowledge.

The concept behind this feature seems straightforward. However, details such as presenting
a decreasing timer or erasing the corresponding entry from the chat window are important
to provide a good UX to the user. The concept of this feature is fully functional, but there
are some issues regarding the UX that need to be improved, as concluded in the usability
tests reported in section 5.2.3. Usability.

Real-time Location Share

This feature was introduced in the beginning of the current year in order to be developed in
time for the Mobile World Congress 2014. What we thought to be a relatively easy feature to
develop, turned out to be a very complex one, from all the aspects related to the UI, to all
the logic behind the calculation of the correct route for Driving mode. The degree of
complexity of this feature can be seen by the time that was spent developing it, and the
number of iterations spent in order to obtain the desired final result.

This feature was a huge success on that conference, which is revealed the number of
operators that showed interested on it to compose their RCS applications.

Internship Final Report

72

Save and Share from Dropbox

This feature consisted of the initial internship proposal. Its development is not just an
integration with Dropbox. Once all the components were designed to be completely generic,
any other cloud storage can be added effortlessly to the application with just a small amount
of specific logic.

Personally, this feature was extremely enriching once it taught me the importance of the
reutilization of components, between many other aspects.

Backup and Restore of conversations

This feature, suggested by my colleague Paulo Santos and I, was probably the most complex
feature once it required descending to a lower level of abstraction and a whole new level of
complexity. The COMLib is with no doubt a beautiful piece of multi-platform software that
contains a various set of services. Although only developing on a single module, the
complete refactor of the Sync Module was a totally enriching task. Exploring and
understanding a module that was not made by yourself, and trying to change it in order to
adapt it to what you need is really hard. However, it was successfully managed to refactor
that whole module in order to contain the new remote sync sub module, but still
maintaining all of its original functionalities.

This feature subjected me to a very hard growth and learning process, but with no doubt
made me a better software engineer.

6.2. Future Work

The WIT’s RCS solution is an evolving application, which means that this project does not
end here.

Firstly, the “Contact Enrichment” and “Contact Timelines” features were not yet
implemented. They were part of the initial internship proposal but, given the introduction of
the “Ephemeral Messaging” and “Real-time Location Share” features, there was no time to
conclude them on schedule. However, their architecture and UI proposals were done during
the internship, which eases and speeds up the future implementation process.

In second place, there are some features that need or may be improved. The “Ephemeral
Messaging” feature needs to be highly improved at the UI level in order to produce a better
UX. The “Backup and Restore of conversations” feature may evolve to a multiple device
synchronization mechanism with some few changes.

Finally, iOS 8 was recently presented [86] and contains multiple new features that give
developers new possibilities during the implementation of their applications. There are two
that constitute great opportunity for the RCS application: “App Extensions” – binary that
extends custom functionality and content beyond a certain application, making some of its
features available to users while using other apps – and “CloudKit” - framework that
provides interfaces for moving data between applications and iCloud.

App Extensions can allow, for example, to request files directly to Dropbox applications
instead of using a custom browser. This will allow the application to be even more fluid and
natively integrated.

Integration of an iOS App with Social Networks and Cloud Storages

73

CloudKit finally provides an easy way to use iCloud to synchronize content, including both
application data, like Dropbox datastores, and media files, like any usual cloud service. This
opens doors to two new possibilities:

• Save and Share files from iCloud, just like it is done with Dropbox;
• Easily synchronize the existing conversations across all the iOS devices. This is

useful, for example, to synchronize a certain user’s iPhone with its iPad, allowing
them to have both applications always with the most recent chat history.

6.3. Final Remarks

To conclude this report, it is now time to present some personal thoughts and experiences
about the internship.

This one-year internship has been a whole new experience, full of challenges and lessons
learned. Fortunately, I was given the freedom to suggest and contribute to the improvement
of WIT’s RCS application for iPhone. Having the possibility to implement features that I
suggested – the Backup and Restore of conversations – reveals that the company listens to
everybody who wants it to grow, including the interns.

The initial plan for the internship contained multiple suggestions for integration with social
networks and cloud storage service. Some of them are not completed by now, as stated
previously. However, I think the balance could not be better: the implementation of two
completely different features – “Ephemeral Messaging” and “Real-time Location Share” –
allowed me to explore totally different areas of Objective-C programming. For example, the
“Real-time Location Share” feature required me to learn multiple different aspects: how to
interact with the Apple Maps API, how to fetch and process geo-location positions from the
built-in GPS chip, and even to build an algorithm that had to be iteratively improved in
order to produce the desired and acceptable results. All of these requirements are not simple
but are necessary steps to produce a great feature that arouses the interest of MNOs. That is
quite rewarding!

In the end, this was a great enriching experience and I would not go back if I had the
chance. Was it tough? Yes it was! But it allowed me to grow both personally and
professionally in a way I never thought to be possible.

Internship Final Report

74

Integration of an iOS App with Social Networks and Cloud Storages

75

References

1 Lunden I. Gartner: 456M Phones Sold In Q3, 55% Of Them Smartphones; Android At
82% Share, Samsung A Flat Leader. [Internet]. 2013 [cited 2014 January 19]. Available
from: http://techcrunch.com/2013/11/14/gartner-456m-phones-sold-in-q3-55-
smartphone-android-at-82-share-samsung-a-flat-leader/.

2 Evans B. Mobile is eating the world. [Internet]. 2013 [cited 2014 January 14]. Available
from: http://www.slideshare.net/bge20/2013-11-mobile-eating-the-
world?utm_source=slideshow01&utm_medium=ssemail&utm_campaign=share_slidesh
ow_loggedout.

3 Janssen C. What is an Over-the-Top Application (OTT)? [Internet]. [cited 2013 October
24]. Available from: http://www.techopedia.com/definition/29145/over-the-top-
application-ott.

4 Whitfield K. 17 Incredible Facts about Mobile Messaging that you should know.
[Internet]. 2013 [cited 2014 January 19]. Available from:
http://www.portioresearch.com/en/blog/2013/17-incredible-facts-about-mobile-
messaging-that-you-should-know.aspx.

5 Wikipedia. GSM Association. [Internet]. [cited 2014 January 19]. Available from:
http://en.wikipedia.org/wiki/GSM_Association.

6 GSMA. Rich Communications | Future Communications. [Internet]. [cited 2014 January
19]. Available from: http://www.gsma.com/futurecommunications/rcs/.

7 GSMA. Specs and Product Docs | Future Communications. [Internet]. [cited 2014
January 19]. Available from: http://www.gsma.com/futurecommunications/rcs/specs-
and-product-docs/.

8 Lardinois F. Report: Cloud Storage Services Now Have Over 375M Users, Could Reach
500M By Year-End. [Internet]. 2012 [cited 2013 December 24]. Available from:
http://techcrunch.com/2012/10/15/report-cloud-storage-services-now-have-over-
375m-users-could-reach-500m-by-year-end/.

9 Facebook. What's a sticker and how do I send one? [Internet]. [cited 2014 January 4].
Available from: https://www.facebook.com/help/333033546818929.

10 Geron T. Facebook Messenger Takes On SMS, With No Account Needed. [Internet].
2012 [cited 2013 October 28]. Available from:
http://www.forbes.com/sites/tomiogeron/2012/12/04/facebook-messenger-takes-on-
sms-with-no-account-needed/.

11 Facebook. Key Facts - Facebook's latest news, announcements and media resources.
[Internet]. [cited 2013 December 27]. Available from: http://newsroom.fb.com/Key-
Facts.

12 Constine J. Facebook Mobile User Counts Revealed: 192M Android, 147M iPhone, 48M
iPad, 56M Messenger. [Internet]. 2013 [cited 2013 October 28]. Available from:
http://techcrunch.com/2013/01/04/how-many-mobile-users-does-facebook-have/.

13 iTunes. Facebook Messenger on the App Store on iTunes. [Internet]. [cited 2014 January
4]. Available from: https://itunes.apple.com/us/app/facebook-messenger/id454638411.

14 Google Play. Facebook Messenger - Android Apps on Google Play. [Internet]. [cited
2014 January 4]. Available from:
https://play.google.com/store/apps/details?id=com.facebook.orca&hl=en.

15 Topolsky J. Steve Jobs live from WWDC 2010. [Internet]. 2010 [cited 2013 October 28].
Available from: http://www.engadget.com/2010/06/07/steve-jobs-live-from-wwdc-

Internship Final Report

76

2010/.
16 Murph D. WWDC 2011 liveblog/ Steve Jobs talks iOS 5, OS X Lion, iCloud and more!

[Internet]. 2011 [cited 2013 October 28]. Available from:
http://www.engadget.com/2011/06/06/wwdc-2011-liveblog-steve-jobs-talks-ios-5-os-
x-lion-icloud-an/.

17 Smith J. Apple's popular iMessage and FaceTime services are suffering downtime
[Update: back]. [Internet]. 2013 [cited 2013 October 28]. Available from:
http://www.pocket-lint.com/news/120411-apple-imessage-down-april.

18 Protalinski E. Microsoft confirms Messenger will be retired and users migrated to Skype
on March 15. [Internet]. 2013 [cited 2013 October 28]. Available from:
http://thenextweb.com/microsoft/2013/01/09/microsoft-emails-messenger-users-to-
let-them-know-the-service-is-retiring-on-march-15-and-to-upgrade-to-skype/.

19 Swider M. Microsoft highlights 299M Skype users, 1.5B Halo games played. [Internet].
2013 [cited 2013 October 28]. Available from:
http://www.techradar.com/news/software/operating-systems/xbox-live-upgrade-
includes-%20300-000-servers-600-times-more-than-its-debut-1161749.

20 Skype. Skype Features - Call, video, instant message, text & share more online. [Internet].
[cited 2013 October 28]. Available from: http://www.skype.com/en/features/.

21 iTunes. Skype for iPhone on the App Store on iTunes. [Internet]. [cited 2014 January 4].
Available from: https://itunes.apple.com/us/app/skype-for-iphone/id304878510.

22 Google Play. Skype - free IM & video calls - Android Apps on Google Play. [Internet].
[cited 2014 January 4]. Available from:
https://play.google.com/store/apps/details?id=com.skype.raider&hl=en.

23 Wauters R. 200.000.000 mobile users, for starters – Q&A with Viber CEO Talmon
Marco. [Internet]. 2013 [cited 2013 October 26]. Available from:
http://thenextweb.com/insider/2013/05/07/viber-ceo-talmon-marco-
interview/#!rm52G.

24 Viber. Viber - Free calls, Free text messages, photo and location sharing. [Internet]. [cited
2013 October 26]. Available from: http://www.viber.com.

25 iTunes. Viber on the App Store on iTunes. [Internet]. [cited 2014 January 4]. Available
from: https://itunes.apple.com/us/app/viber/id382617920.

26 Google Play. Viber - Android Apps on Google Play. [Internet]. [cited 2014 January 4].
Available from: https://play.google.com/store/apps/details?id=com.viber.voip&hl=en.

27 Bradshaw T. WhatsApp users get the message. [Internet]. 2011 [cited 2013 October 26].
Available from: http://www.ft.com/intl/cms/s/2/30fd99a2-0c60-11e1-88c6-
00144feabdc0.html.

28 Newton C. WhatsApp now has over 400 million monthly users. [Internet]. 2013 [cited
2014 January 4]. Available from:
http://www.theverge.com/2013/12/19/5228656/whatsapp-now-has-over-400-million-
monthly-users.

29 WhatsApp. WhatsApp : Home. [Internet]. [cited 2013 October 26]. Available from:
http://www.whatsapp.com.

30 iTunes. WhatsApp Messenger on the App Store on iTunes. [Internet]. [cited 2014
January 4]. Available from: https://itunes.apple.com/us/app/whatsapp-
messenger/id310633997.

31 Google Play. WhatsApp Messenger - Android Apps on Google Play. [Internet]. [cited
2014 January 4]. Available from:
https://play.google.com/store/apps/details?id=com.whatsapp&hl=en.

Integration of an iOS App with Social Networks and Cloud Storages

77

32 Facebook. Facebook Help Center. [Internet]. [cited 2013 December 27]. Available from:
https://www.facebook.com/help/393277774048285.

33 iTunes. Facebook on the App Store on iTunes. [Internet]. [cited 2013 December 27].
Available from: https://itunes.apple.com/us/app/facebook/id284882215.

34 Google Play. Facebook - Android Apps on Google Play. [Internet]. [cited 2013
December 27]. Available from:
https://play.google.com/store/apps/details?id=com.facebook.katana&hl=en.

35 Miller CC. Another Try by Google to Take On Facebook. [Internet]. 2011 [cited 2014
January 2]. Available from:
http://www.nytimes.com/2011/06/29/technology/29google.html.

36 McGee M. Google+ Hits 300 Million Active Monthly “In-Stream” Users, 540 Million
Across Google. [Internet]. 2013 [cited 2014 January 2]. Available from:
http://marketingland.com/google-hits-300-million-active-monthly-in-stream-users-540-
million-across-google-63354.

37 Google+. Get the most out of Google+ - Google+. [Internet]. [cited 2014 January 2].
Available from: http://www.google.com/+/learnmore/features.html?hl=en.

38 iTunes. Google+ on the App Store on iTunes. [Internet]. [cited 2014 January 2].
Available from: https://itunes.apple.com/us/app/google+/id447119634.

39 Google Play. Google+ - Android Apps on Google Play. [Internet]. [cited 2014 January
2]. Available from:
https://play.google.com/store/apps/details?id=com.google.android.apps.plus&hl=en.

40 Edwards J. Twitter's 'Dark Pool': IPO Doesn't Mention 651 Million Users Who
Abandoned Twitter. [Internet]. 2013 [cited 2014 January 3]. Available from:
http://www.businessinsider.com/twitter-total-registered-users-v-monthly-active-users-
2013-11.

41 iTunes. Twitter on the App Store on iTunes. [Internet]. [cited 2014 January 3]. Available
from: https://itunes.apple.com/us/app/twitter/id333903271.

42 Google Play. Twitter - Android Apps on Google Play. [Internet]. [cited 2014 January 3].
Available from:
https://play.google.com/store/apps/details?id=com.twitter.android&hl=en.

43 Constine J. Dropbox Hits 200M Users, Unveils New “For Business” Client Combining
Work And Personal Files. [Internet]. 2013 [cited 2013 December 24]. Available from:
http://techcrunch.com/2013/11/13/dropbox-hits-200-million-users-and-announces-
new-products-for-businesses/.

44 iTunes. Dropbox on the App Store on iTunes. [Internet]. [cited 2013 December 24].
Available from: https://itunes.apple.com/us/app/dropbox/id327630330.

45 Google Play. Dropbox - Android Apps on Google Play. [Internet]. [cited 2013
December 24]. Available from:
https://play.google.com/store/apps/details?id=com.dropbox.android&hl=en.

46 Gannes L. With 120M Users, Google Drive Gets Tighter Integration With Gmail.
[Internet]. 2013 [cited 2013 December 24]. Available from:
http://allthingsd.com/20131112/with-120m-users-google-drive-gets-tighter-integration-
with-gmail/.

47 iTunes. Google Drive on the App Store on iTunes. [Internet]. [cited 2013 December 24].
Available from: https://itunes.apple.com/us/app/google-drive/id507874739.

48 Google Play. Google Drive - Android Apps on Google Play. [Internet]. [cited 2013
December 24]. Available from:
https://play.google.com/store/apps/details?id=com.google.android.apps.docs&hl=en.

Internship Final Report

78

49 Shahine O. Over 250M people using SkyDrive. [Internet]. 2013 [cited 2013 December
24]. Available from:
http://blogs.windows.com/skydrive/b/skydrive/archive/2013/05/06/over-250m-
people-using-skydrive.aspx.

50 iTunes. SkyDrive on the App Store on iTunes. [Internet]. [cited 2013 December 24].
Available from: https://itunes.apple.com/us/app/skydrive/id477537958.

51 Google Play. SkyDrive - Android Apps on Google Play. [Internet]. [cited 2013
December 24]. Available from:
https://play.google.com/store/apps/details?id=com.microsoft.skydrive&hl=en.

52 Gohring N. Is Microsoft's claim of 250 million SkyDrive users fuzzy math? [Internet].
Available from: http://www.infoworld.com/t/microsoft-windows/microsofts-claim-of-
250-million-skydrive-users-fuzzy-math-218090.

53 Newton C. Confide brings its beautiful self-destructing messages to Android | The
Verge. [Internet]. 2014 Available from:
http://www.theverge.com/2014/4/24/5644238/confide-brings-its-beautiful-self-
destructing-messages-to-android.

54 Confide. Your off-the-record messenger. [Internet]. 2014 Available from:
https://getconfide.com.

55 iTunes. Confide on the App Store on iTunes. [Internet]. [cited 2014 Jun 15]. Available
from: https://itunes.apple.com/us/app/confide/id779883419.

56 Google Play. Confide - Android Apps on Google Play. [Internet]. [cited 2014 Jun 15].
Available from:
https://play.google.com/store/apps/details?id=cm.confide.android&hl=en.

57 Snapchat. Snapchat. [Internet]. [cited 2014 January 4]. Available from:
http://blog.snapchat.com/page/3.

58 Shontell A. Snapchat active users exceed 30 million. [Internet]. 2013 [cited 2014 January
3]. Available from: http://www.businessinsider.com/snapchat-active-users-exceed-30-
million-2013-12.

59 Keller J. Facebook's Poke Is a Wild Success—for Rival Snapchat. [Internet]. 2012 [cited
2014 January 3]. Available from: http://www.businessweek.com/articles/2012-12-
28/facebooks-poke-is-a-wild-success-for-rival-snapchat.

60 Souppouris A. Google reportedly tried to outbid Facebook for Snapchat with $4 billion
offer. [Internet]. 2013 [cited 2014 January 4]. Available from:
http://www.theverge.com/2013/11/15/5106950/google-snapchat-4-billion-buyout-
rumor.

61 iTunes. Snapchat on the App Store on iTunes. [Internet]. [cited 2014 January 3].
Available from: https://itunes.apple.com/us/app/snapchat/id447188370.

62 Google Play. Snapchat - Android Apps on Google Play. [Internet]. [cited 2014 January
3]. Available from:
https://play.google.com/store/apps/details?id=com.snapchat.android&hl=en.

63 Mathis J. Cook: More than 700 million iOS devices sold | Macworld. [Internet]. 2013
[cited 2014 Jun 15]. Available from: http://www.macworld.com/article/2048491/cook-
more-than-700-million-ios-devices-sold.html.

64 iTunes. Find My Friends on the App Store on iTunes. [Internet]. [cited 2014 Jun 15].
Available from: https://itunes.apple.com/us/app/find-my-friends/id466122094.

65 Bolton M. Press Release. [Internet]. 2013 [cited 2014 Jun 15]. Available from:
http://www.glympse.com/news/press/15.

66 iTunes. Glympse - Share location with friends on the App Store on iTunes. [Internet].

Integration of an iOS App with Social Networks and Cloud Storages

79

[cited 2014 Jun 15]. Available from: https://itunes.apple.com/us/app/glympse-share-
location-friends/id330316698.

67 Google play. Glympse - Share your location - Android Apps on Google Play. [Internet].
[cited 2014 Jun 15]. Available from:
https://play.google.com/store/apps/details?id=com.glympse.android.glympse&hl=en.

68 Schwaber K, Sutherland J. The Scrum Guide - The Definitive Guide to Scrum: The
Rules of the Game. [Internet]. [cited 2014 January 22]. Available from:
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2013/Scrum-
Guide.pdf#zoom=100.

69 Wikipedia. User story. [Internet]. [cited 2013 January 23]. Available from:
http://en.wikipedia.org/wiki/User_story.

70 Neuburg M. iOS 7 Programming Fundamentals. O'Reilly Media; 2013.
71 Neuberg M. Programming iOS 7, 4th Edition. O'Reilly Media; 2013.
72 Nahavandipoor V. iOS 7 Programming Cookbook. O'Reilly Media; 2013.
73 Apple. iOS Developer Library. [Internet]. Available from:

https://developer.apple.com/library/ios/navigation/.
74 StackOverflow. [Internet]. Available from: http://stackoverflow.com.
75 Stroustrup B. The C++ Programming Language: Special Edition (3rd Edition). Addison-

Wesley Professional; 2000.
76 Boost Community. Boost C++ Libraries. [Internet]. Available from:

http://www.boost.org.
77 ProjectFuture2. What is a project risk. [Internet]. [cited 2014 January 19]. Available from:

http://www.projectfuture.net/uk/projectfuture-software/frequently-asked-
questions/what-is-a-projectrisk.

78 Apple. iOS App Programming Guide/ App States and Multitasking. [Internet]. [cited
2014 Jun 19]. Available from:
https://developer.apple.com/library/ios/documentation/iphone/conceptual/iphoneosp
rogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.ht
ml.

79 WIT Software. WIT Software | RCS Suite. [Internet]. [cited 2014 Jun 19]. Available
from: https://www.wit-software.com/products/rcs-suite/.

80 Wikipedia. Bézier curve. [Internet]. [cited 2013 June 25]. Available from:
http://en.wikipedia.org/wiki/Bézier_curve.

81 Poplauschi B. SDWebImage. [Internet]. [cited 2014 Jun 28]. Available from:
https://github.com/rs/SDWebImage.

82 Apple. NSRunLoop Class Reference. [Internet]. [cited 2014 Jun 15]. Available from:
https://developer.apple.com/library/ios/Documentation/Cocoa/Reference/Foundatio
n/Classes/NSRunLoop_Class/Reference/Reference.html.

83 Dropbox. Dropbox Forums. [Internet]. [cited 2014 Jun 25]. Available from:
https://forums.dropbox.com.

84 Stack Overflow. linker error when using dropbox core api and its datastore api together
in ios. [Internet]. Available from: http://stackoverflow.com/questions/19294594/linker-
error-when-using-dropbox-core-api-and-its-datastore-api-together-in-
ios/23867651#23867651.

85 Stack Overflow. ios - Dropbox Core API and Sync API. [Internet]. Available from:
http://stackoverflow.com/questions/21930557/dropbox-core-api-and-sync-
api/23867763#23867763.

Internship Final Report

80

86 Swider M. iOS 8 release date, news and features | News | TechRadar. [Internet]. 2014
[cited 2014 June 29]. Available from: http://www.techradar.com/news/phone-and-
communications/mobile-phones/ios-8-10-things-we-want-to-see-1166133.

