Mestrado em Engenharia Informatica
Dissertacao/Estagio
Relatério Final

Geracao Automatica de
Codigo Fonte a Partir de
Modelos Formais

Miguel Antonio Rodrigues Lopes Martins
marm@student.dei.uc.pt

Orientador:

Raul André Brajczewski Barbosa
Data: 4 de Setembro de 2013

DE ENGENHARIA INFORMATICA
FACULDADE DE CIENCIAS E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Abstract

The work presented/associated with this document relates to an area of computer science that
is described as the generation of source code from the specification of a formal model, which
shall be referred to as “Code Generation from Formal Models”. This area is associated with
two background areas, one of which being the area of “Model Checking”.

Model Checking, as described by Edmund M. Clarke et al.[I], is “a technique for verifying fi-
nite state concurrent systems such as sequential circuit designs and communication protocols”.
This technique is appropriate for distributed and concurrent systems, since it aids developers
in minimizing certain types of risks, such as the possibility that a deadlock will occur in the
system at some point in time, preventing further progress, or the occurrence of a race condition.

Given that only a model of a system is verified, but not the system itself, it naturally follows
that it would be useful to generate source code from the model specification. This work thus
encompasses the generation of source code from PROMELA models, verified by the Spin model
checker.

In its essence, this project attempts to answer the following question: is it possible to generate
runnable source code from PROMELA models related to round-based consensus protocols? The
short answer to it is “yes, with limitations”.

Keywords

“Java”, “JavaCC”, “Model checking”, “Network simulation”, “OMNeT++", “PROMELA”,
“PROMNeT++", “Round-based consensus protocols”, “Source code generation”, “Spin”

Contents

[3.1.1 Model checkingl o
[3.1.2 Parsing/language recognition| oo
B.1.3 Network simulationl oL
3.2 PROMNeT++"s main workflow|
[3.3 Software development methodology| L.
[3.3.1 Development tools]

[Unit testing frameworkl oL
[3.3.2 Development platforms/environments| L.
[SVN repository and tools|
[3.3.3 Quality Assurance Plan|
[Code style and conventions|
[Product development cyclef. 000

CONTENTS

3.0 PROMNeT++"s template system|
13.6 Work/experimentation methodology|.
[3.6.1 Eliminating non-determinism in PROMELA: pseudo-RNG substitution| .
[3.6.2 Obtaining results| o

[4 Requirements analysis|

4.1 Stakeholder identificationl. 0oL

[4.2.2 Specification|.
[4.3 Requirements listing|
[4.3.1 Technical requirements| oL
[4.3.2 Functional requirements| 0L
[4.4 Detailed requirements for the translation process|.

[A few 1important remarks about the protocol structurel

[Protocol routines and their implementations|
[4.4.2 PROMNeTH++’s annotations|.

Risk management|

[5.1 Defining “(thresold of) success” and “risk”|

[>.2.1 Risk response strategies|
[5.3 Reflecting over the risks] o

6 Work and results|

6.1 McCabe complexity for the generated source code|
[6.2 Verification by output comparison|.
[6.2.1 Producing output files| 0L
UsIng Spin|.

[Using PROMNeT+4 and OMNeT++

[6.2.2 Comparing the produced output files]

8.2 Actual work (February 2013 to June 2013)|
8.3 Actual work (July 2013 to September 2013)|

9__Conclusions

[A User feedback on PROMNeT++’s translation process

[B The OneThirdRule protocol, translated|

[B.1 The translation process, explained|.

35
35
35
37
38

40
40
42
42
42
43
43

45

48
49
20
20

51

55

56

Chapter 1

Introduction

It is widely known amongst software engineers today that distributed systems play an integral
role on delivering reliable services to real-life customers all around the globe. From ATMs
to government databases, these systems provide end users with enhanced reliability, shorter
response times, and decreased chances of downtime.

It is imperative that these systems not only function properly under normal circumstances,
but also be sufficiently robust to, in the terms of Avizienis et al., “deliver service that can
justifiably be trusted”.[2] To achieve this goal, developers must firmly ensure that they operate
under correct algorithms. “Correct”, in this context, means that, on one hand, for every possi-
ble input and execution, the resulting output must match the expected output. On the other
hand, the system must make progress, and not halt indefinitely. Threats such as deadlocks and
race conditions must, therefore, be taken into account while coding, as they impede that the
system is correct under this definition when present.

Algorithm correctness is, therefore, key to produce a high-quality distributed system. Fortu-
nately, a wide variety of techniques exist for this purpose. These include, but are not limited
to, unit testing, model checking, and software inspections. Unit testing, although widely used
in the software industry, is a technique that tests portions of the software under a very limited
(when compared to the state space of the entire application) set of test cases; it is, therefore,
classified as a non-exhaustive testing method. The main flaw with this method is, as pointed
out by E. Dijkstra [3], that “non-exhaustive testing can only show the presence of errors, not
their absence”. This is due to the fact that, typically, an application’s execution path possesses
a rather large branching factor, often resulting in millions or billions of possible combinations.

In contrast, Model Checking is a technique “developed independently by Clarke and Emerson
and by Queille and Sifakis in early 1980’s”, whose “verification procedure is an exhaustive
search of the state space of the design”. [4] This latter property is key to ensuring software
correctness, for it determines that every possible execution path does not yield a violation of
the intended protocol(s). Thus, Model Checking belongs to the category of exhaustive testing
techniques, and the aforementioned flaw does not apply to it.

Presently, several Model Checking tools exist, one of them being Spin E], an open-source, LTL

Ihttp://spinroot.com/

http://spinroot.com/

CHAPTER 1. INTRODUCTION 4

model checking tool written entirely in ANSI standard C, and thus highly portable. As demon-
strated in the work of Raul Barbosa and Johan Karlsson, a machine with a 3.2 GHz Pentium
4 processor and 1 GB of RAM is able to perform computation at a ratio over 10* states per
second, and have enough memory to accommodate over 10% states, on average, using Spin.[5]
These results date back to 2008; nowadays, machines with 4 GB of RAM are becoming more
common, but processor speeds are typically inferior to 3.2 GHz, with an average slightly above
2 GHz per core. Luckily, starting from version 5, Spin offers support for multi-core machines [
which, at this time, are very common. Thus, today, Spin should be able to compute at a ratio
of (close to) 107 states per second while still maintaining the total number of states at above
10%. Spin’s performance is, thus, quite high.

With Spin, a system is modelled using using PROMELA, a language which is both unambigu-
ous and clear. Unfortunately, while Model Checking is superior to unit testing with regard to
exhaustiveness, it has one main flaw of its own: performing Model Checking only guarantees
that a particular model complies with its specification; the system itself, and its code, remain
unverified, even if developers base the system’s code entirely on the model.

To overcome this flaw, this work deals with the automatic generation of runnable source code
from a model’s specification, and in particular, specifications written in PROMELA. This im-
plies, of course, that we need a software tool that translates PROMELA code to a given target
programming language, such as C, C++ or Java. The resulting runnable source code may then
be used to further ensure that the system works as desired.

To this end, Miguel Martins (this work’s author), has developed a Java-based tool that takes
a PROMELA specification (typically a file with a .pml extension) as input and attempts to
generate runnable C++ source code based on the specification’s PROMELA code, as part of
an internship at the University of Coimbra’s Department of Informatics Engineering, for the
academic year of 2012-2013. Said C++ source code can then be compiled and simulated via
OMNeT++ [| by the user.

This tool is named PROMNeT++, and is hosted over at Google Code, along with its source
code (main URL: https://code.google.com/p/promnetpp/|). Both PROMNeT++ itself, in
binary form, and its sources, are released under the well-known MIT License |7_f], which should
be permissive enough for anyone to modify and improve the tool as needed, free of charge.
Alternatively, if deemed more suitable, developers interested in this project’s area of research
should be able to construct their own tool from scratch, reusing PROMNeT++’s Java source
code as needed (again, free of charge).

More than just generating source code, however, PROMNeT++ was built for one primary
purpose, which was to come up with an answer to the following question: is it possible, for
a specific domain of protocols, round-based consesus protocols, to generate runnable code from
models pertaining to that domain? Given that PROMNeT++ is distributed with two round-
based protocols and successfully generates runnable C++ code from them, the answer to that
question certainly seems to be “yes”. However, it should be noted that PROMNeT++ is, by no
means, a flawless source code generation tool, and does, in fact, have its own set of limitations,

2http://www.spinroot.com/spin/multicore/V5_Readme.html
3http://www.omnetpp.org/
“http://opensource.org/licenses/mit-1license.php

https://code.google.com/p/promnetpp/
http://www.spinroot.com/spin/multicore/V5_Readme.html
http://www.omnetpp.org/
 http://opensource.org/licenses/mit-license.php

CHAPTER 1. INTRODUCTION)

which will be adequately described further in this document.

Ideally, we would like to have produced a tool that would translate any PROMELA specifica-
tion to C++ code, but restricting the specification domain to round-based consensus protocols
was ultimately necessary, given that, first and foremost, a model is a heavy abstraction of a
given system, meaning that a large amount of implementation details are either simplified or
even omitted.

Models of round-based consensus protocols were chosen (as opposed to other types of models),
due to the fact that:

e Round-based consensus protocols have a well-defined structure, with a very specific se-
quence of procedures; as will be shown further in this document, every node in the
protocol makes calls to procedures named begin_round, compute_message, send_to_all,
wait_to_receive, state_transition, and end_round within an infinite loop. This structure
remains constant across all protocols, and is derived from Eli Gafni’s pseudo-code within
his article on Round-by-Round Fault Detectors.[0]

e The literature on round-based consensus protocols is vast; Google Scholar alone yields
36 results on “round-based consensus” at the time of this document’s writing. Round-
based consensus protocols should, therefore, be specific enough for carrying out the task
of automatic source code generation, while being general enough to be useful to the
programming community as a whole.

This document attempts to detail the author’s research and methodology efforts. Chapter 2 lists
several candidates for software tools relevant to this project, and presents additional work on
the generation of source code from formal models. Chapter 3 enunciates this work’s objectives,
reveals the chosen software tools used to construct PROMNeT++, describes PROMNeT++s
architecture and mechanisms in greater detail, and shows how to collect experimental data.
Chapter 4 shows the requirements analysis for PROMNeT++, and shows which of the gath-
ered requirements have been met.

Chapter 5 defines PROMNeT—++"s risk analysis through the concept of “threshold of success”,
and what could have impeded success during the second semester of the internship. Chapter 6
details the results of translating the OneThirdRule and I-of-N protocols that come packaged
with PROMNeT++. Chapter 7 discusses PROMNeT++"s limitations as a software tool, and
proposes a few aspects to overcome them in the future. Chapter 8 compares the initial work
plan (drafted during the first semester) to the actual, real work the author carried out during
the second semester. Finally, chapter 9 captures the key points presented in the previous
chapters, and concludes this document.

Chapter 2

State of the art

It is no mere coincidence that PROMNeT++ is written in Java, operates on models writ-
ten in PROMELA (and thus, runnable in Spin), and generates C++ code that uses, in part,
OMNeT++’s API, and is meant to be compiled and run under OMNeT++ itself; prior to
PROMNeT++’s development (as is customary with projects developed by internship students
at University of Coimbra’s Department of Informatics Engineering), a considerable amount of
research was carried out.

This project encompasses three types of software tools:

e Model checking tools. Given that this project consists on generating runnable source code
from formal models, a model checking tool is inherently necessary. Typically, a model is
written in a certain modeling language, much like how a computer program is written in
a programming language. Of course, this implies that when one chooses a specific model
checking tool, they’re also inherently choosing a modeling language to work with. For
this project, Spin is the model checking tool of choice, meaning that PROMELA is the
language from which to generate runnable source code.

e Parsing/language recognition tools. It should come as no surprise that, to translate a
PROMELA specification to any other language, it is necessary to perform parsing on
said specification. This is, in fact, what many compilers today do: they take one or more
input files written in a certain programming language, and convert the source code into
a sequence of tokens (lexical analysis). Then, a parser attempts to match this sequence
with a set of grammar rules.

One approach to building a compiler is to associate each grammar rule with a semantic
action, and ultimately build an Abstract Syntax Tree out of the various semantic actions.
Finally, this Abstract Syntax Tree may be traversed, often multiple times, in order to
produce output, typically either assembly code or machine code.

PROMNeT++ operates under this methodology, building an Abstract Syntax Tree out
of PROMELA source code, then traversing it to produce C++ code as output. In this
sense, PROMNeT++ can be seen as a PROMELA to C++ compiler.

e Network simulators/network simulation environments. It should naturally follow that

CHAPTER 2. STATE OF THE ART 7

the generated source code, as described above, must be utilized in some way. Round-
based consensus protocols, which are within the scope of this project, essentially consist
of multiple nodes exchanging messages between each other, in order to reach a decision.
It is therefore of interest to see the various nodes interacting/exchanging messages with
each other. Thus, a network simulator or simulation environment becomes necessary.

Research efforts were conducted during the first semester of the internship to determine, for
each of the above three types, which tool is the most adequate for the project’s goals. Below is
the result of these efforts.

2.1 Software tools

2.1.1 Model checking
Spin

Spin is regarded as being amongst the most popular model-checking tools [7]. Designed for
“efficient verification system for models of distributed software systems”[§], it uses PROMELA
(Process Meta Language) as the language for the specification of formal models. In PROMELA,
it is possible to specify Linear Temporal Logic (LTL) properties by using its It/ statement. As
an example, the Spin distribution to date (version 6.2.5) comes with several examples written in
PROMELA, one of them corresponding to a model for a leader election protocol. This example
contains, among others, the statement

{1t1 p1 { <>[] (nr_leaders == 1) }}

where “nr_leaders” variable represents the number of leaders in the system. The meaning of
the above statement is that, eventually (i.e. at some point in time), the condition nr_leaders
== 1 should become true, and when it does, it should never evaluate to false at any further
point in time. In turn, this roughly means that, once a leader has been elected, this decision
cannot be revoked; furthermore, once a leader has been elected, no other process can be elected
for leadership.

Although Spin uses LTL properties for model correctness, assertions also exist in PROMELA.
In fact, the aforementioned example contains the following sequence of statements

printf ("MSC: LEADER\n");
nr_leaders++;
assert(nr_leaders == 1)

which are executed when it has been determined that a leader has been chosen. Naturally, this
means that when the “nr_leaders” variable is incremented by one unit, it must then immediately
be equal to 1, which in turn means that the value 0 must be the initial value for that variable.

SMV

SMYV (Symbolic Model Verifier) is “a tool for checking finite state systems against specifications
in the temporal logic CTL” [9] from the Carnegie Mellon University. Binaries for several plat-

CHAPTER 2. STATE OF THE ART 8

forms and source code are distributed in the official page [[] However, at present, the binaries
for Windows N'T-based operating systems date back to the year of 1998, the latest source code
distribution dating back to 2001; thus, both distribution formats could be considered as being
quite outdated.

Despite this, extensions of Carnegie Mellon’s SMV tool have been produced, in particular
NuSM VE] and Cadence SM VE] The license for CMU’s SMV is not known; in contrast, NuSMV
is fully open source, and is distributed under the GNU Lesser General Public License 2.1
(LGPL). NuSMV has been successfully used to model and verify the well-known Sliding Win-
dow Protocol (which is used, for instance, in TCP for delivering packets in the correct order),
which is shown in a paper by Sinha et al. [10] Interestingly, NuSMV has also been used in the
domain of Artificial Intelligence: Vishal, Gugwad and Singh have modelled and verified a Multi
Agent System related to the management of traffic flow [I1].

Cadence SMV, unlike NuSVM, is closed source, and is instead distributed as a Cadence Berkeley
Labs Research Software tool, with its own License Agreement; to obtain it, a registration form
must be filled accordingly, and one must agree to the License Agreement’s terms by pressing
the “I Agree” button, located on the bottom of the formlz_f]. Presently, the latest release is dated
October 11, 2002. Despite not being as outdated as CMU’s SMV, it is by far more outdated
than NuSVM, which dates back to the year of 2011P}

UPPAAL

Development efforts between Sweden’s Uppsala University and Denmark’s Aalborg University
gave origin to UPPAAL, a “toolbox for verification of real-time systems”, which “has been
applied successfully in case studies ranging from communication protocols to multimedia ap-
plications” [12]. The tool itself is written in C++, with a graphical user interface written in
Java.

Interestingly, UPPAAL has been used, in conjunction with SPIN, to verify aspects of the
Lightweight Underlay Network Ad-hoc Routing protocol (LUNAR), as per the work of Wibling
et al. [13]; the authors of this work constructed an UPPAAL model “in order to check timing
requirements of LUNAR”, one of their objectives being “to achieve an optimal balance that
keeps the data packet delivery times as low as possible”.

Alloy

Alloy is the name given to not only to a declarative modeling language, but also to the symbolic
model checking tool itself. Nimiya et al. have published a paper where they describe the Alloy
language as “a simple structural modelling language supported by Alloy analyzer”, “used to
express complex structural constraints and behaviour” and “based on the first-order logic that
allows a user to model a system by abstracting key characteristics of that system”; in the very

http://www.cs.cmu.edu/~modelcheck/smv.html

’http://nusmv.fbk.eu/

3http://www.kenmcmil . com/smv.html

“http://w2.cadence.com/webforms/cbl_software/index.aspx

SNuSVM ChangeLog 2011-10-31 12:00:00 NuSMV team <nusmv@fbk.eu>* === Released version 2.5.4

http://www.cs.cmu.edu/~modelcheck/smv.html
http://nusmv.fbk.eu/
http://www.kenmcmil.com/smv.html
 http://w2.cadence.com/webforms/cbl_software/index.aspx

CHAPTER 2. STATE OF THE ART 9

same paper, they use Alloy to check the consistency of UML diagrams [14].

Possibly one of the most interesting used of the Alloy framework, however, is contained in
a paper by Pai et al., where the well-known OAuth 2.0 protocol, used by the popular social
network Facebook, is formally verified [15].

Similar tools - KeY

Unlike the tools presented so far, K eYﬁ is not classified as a model checker, but rather as a
deductive verification tool. KeY allows for formal verification of Java programs/code fragments,
using either JML or OCL annotations present in the code. For example, a method for computing
the factorial of an integer could be given by[}

public class Fac {
/* @preconditions n >= 0
O@postconditions result > O

*/

public static int fac(int n) {
if (n == 0) return 1;
else return (n * fac(n - 1));

1}

Extensions and /or adaptations of KeY exist, one of them being KeYmaera, “an automated and
interactive theorem prover for a natural specification and verification logic for hybrid systems”ﬁ.

2.1.2 Parsing/language recognition
Flex and Bison

Flex and Bison were used in the past to implement an ASN.1 (Abstract Syntax Notation One)
to C/C++ module compiler, as per the work of Michael Sample and Gerald Neufeld[17]. Ac-
cording to said work, this compiler, which goes by the name of snacc, successfully implements
a vast set of types and features, from basic data types such as BOOLEAN, INTEGER and
REAL, to structured types such as SET OF and SEQUENCE OF, going even as far as gener-
ating code for memory and error management. Also worth mentioning here, Flex and Bison
can also be used to parse the well-known relational database language, SQL, as demonstrated
in John Levine’s book flex € bison [18], and thus are powerful enough to translate SQL to
another language.

JavaCC and JJTree

JavaCC, also as mentioned above, can also be used for source code generation, and it was, in
fact, “initially developed by Sun Microsystems” [19], the company formerly behind the design

Shttp://www.key-project.org/

"Example taken from “A comparison of tools for teaching formal software verification”, by Ingo Feinerer and
Gernot Salzer [16].

8http://symbolaris.com/info/KeYmaera.html

 http://www.key-project.org/
 http://symbolaris.com/info/KeYmaera.html

CHAPTER 2. STATE OF THE ART 10

and maintenance of the Java programming language, before merging with Oracle Corporation
in 2010. Moreover, it is also regarded as “the most popular parser generator for Java” [19].
The work of Mamas and Kontogiannis shows that the Java programming language itself can
be parsed using JavaCC, going as far as translating Java classes into XML: a markup language
they call “JavaML”.[19] This is further proven true due to the fact that the latest JavaCC
version to date (version 5.0) is distributed with a grammar for Java 1.5 (located in javacc-
5.0/examples/JavaGrammars). Finally, JavaCC also supports the building of Abstract Syntax
Trees, through the aforementioned JJTree preprocessor.

SableCC

Another Java-based tool for generating compilers and interpreters is SableCC. Its authors,
Etienne Gagnon and Laurie Hendren, published a rather short, yet concise paper that describes
it, provides an overview of its features, and shows how a subset of the BASIC language can
be parsed using it.[20] Some key issues are mentioned in said paper, including the fact that
most modern compilers are generally multi-pass, and also the fact that many compilers work
on Abstract Syntax Trees, built from the source code.

ANTLR

Also written in Java, ANTLR is a tool for the generation of LL(*) parsers. Both Parse Trees and
Abstract Syntax Trees can be constructed using ANTLR ﬂ, and in fact, the latter feature has
been used in the work of Ning Li et al. to generate ASTs for the C programming language, for the
purposes of detecting structural changes in code; ANTLR was praised in this work as a tool that
“provides excellent support for tree construction, tree-walking, multi-languages” [21]. Wulf et al.
have also opted to use ANTLR’s AST construction feature to perform the transformation from
C# code to OMG’s Knowledge Discovery Metamodel, referring to the tool itself as “popular
and matured” [22].

PLY

Python Lex-Yacc, otherwise known as PLY is, like Flex and Bison, an implementation of Lex
and Yacc, though implemented in pure Python. A few projects use PLY, most notably py-
cparser m No direct support is provided, by PLY, for constructing ASTs, but the official
documentation describes how to (easily) do so[]

Ricardo Martin Brualla has used PLY to translate C++ code into other programming lan-
guages, namely Pascal, Java and Python; his work’s main purpose was to evaluate execu-
tion times for these programming languages, in order to make adjustments to time limits, if
needed[23]. Interestingly, PLY was also used for biological research purposes, in particular to
write LipidXplorer [T_ZL a “software that supports the quantitative characterization of complex
lipidomes by interpreting large datasets of shotgun mass spectra”, as per the work of Herzog
et al.[24]

%http://www.antlr.org/wiki/display/ANTLR3/Interfacing+AST+with+Java
Ohttp://code.google.com/p/pycparser/
Uhttp://www.dabeaz.com/ply/ply.html#ply_nn34
?https://wiki.mpi-cbg.de/wiki/lipidx/index.php/Main_Page

 http://www.antlr.org/wiki/display/ANTLR3/Interfacing+AST+with+Java
 http://code.google.com/p/pycparser/
 http://www.dabeaz.com/ply/ply.html#ply_nn34
 https://wiki.mpi-cbg.de/wiki/lipidx/index.php/Main_Page

CHAPTER 2. STATE OF THE ART 11

2.1.3 Network simulation
The ns series

ns-2 is a discrete-event simulator, designed to perform simulations at protocol level. This in-
cludes specifying whether a node shall send data using TCP or UDP, whether links between
two given nodes are half-duplex or full-duplex, as well as the bandwidth and delay associated
with those links. Furthermore, ns-2 contains a mobile wireless simulation model, for creating
wireless scenarios. OTecl, an object-oriented version of Tcl, is ns-2’s main programming lan-
guage, and is the one that is used as the scripting language to model the simulation scenario.
Additionally, C++ can be used to extend ns-2’s functionality.

In fact, ns-2 is part of a series of discrete-event simulators which, at the present time, consists
of ns-1, ns-2 and ns-3. Development for ns-1 and ns-2 has ceased, and so has maintenance for
the former of which. However, ns-2 is still being maintained and has, in fact, been used fairly
recently (September 2012) to simulate a scenario where a Denial of Service attack — named
“Gray Hole Attack” — occurs, as per the work of Kanthe, Simunic and Prasad [25].

ns-3, unlike its predecessors, is still being actively developed and maintained, and drops the
use of OTcl for scripting, using either C++ or Python for that purpose instead. However, as
mentioned in the official tutorial for ns-3 [¥] “ns-3 does not have all of the models that ns-2
currently has”, hence it is sometimes preferable to use ns-2 instead.

GloMoSim

GloMoSim is “a scalable simulation environment for wireless and wired network systems” []
It is backed by Parsec [a simulation language based on the C programming language. The
latest version of GloMoSim to date (2.03) is quite outdated, as it was released on December
19, 2001. Nevertheless, it was recently used for the purpose of comparing two routing related
protocols by Sivaganesan and Venkatesan. [20]

GloMoSim is not limited to Network (Routing) protocols, however, as its library provides a vast
range of protocols, associated with different layers. These include the well-known transport
protocols TCP and UDP and even protocols at the application layer such as FTP, HT'TP and
Telnet. It is also possible to develop new protocols for GloMoSim, even though doing so requires
some knowledge of Parsec.

TOSSIM

The popular, open-source operating system TinyOS includes its own simulator, TOSSIM, as
part of its standard release. A wiki-based tutorial for TOSSIM is available m In reality,
TOSSIM should not be regarded as a simulator on its own, but rather a library that can
be used for writing simulation code. This code can be written in either Python or C++, as

3http://www.nsnam.org/docs/release/3.15/tutorial/ns-3-tutorial . pdf
“http://pcl.cs.ucla.edu/projects/glomosim/
Yhttp://pcl.cs.ucla.edu/projects/parsec/
http://docs.tinyos.net/tinywiki/index .php/TOSSIM

http://www.nsnam.org/docs/release/3.15/tutorial/ns-3-tutorial.pdf
http://pcl.cs.ucla.edu/projects/glomosim/
http://pcl.cs.ucla.edu/projects/parsec/
http://docs.tinyos.net/tinywiki/index.php/TOSSIM

CHAPTER 2. STATE OF THE ART 12

TOSSIM provides interfaces for both.

Writing extensions for TOSSIM seems to be fairly common: Derhab et al. designed and im-
plemented MOB-TOSSIM to include support for mobility in WSNs and WSANSs [27]; back
in 2008, Perla et al. ported the PowerTOSSIM extension to TinyOS 2.0, giving this port the
name of PowerTOSSIM-Z [2§]; Landsiedel et al. introduce TimeTOSSIM as an extension to
TOSSIM associated with the concept of “Time Accurate Simulation” [29].

OMNeT++

Finally, network simulations may also be written in C4++ using the OMNeT++ framework
(although OMNeT++ itself is not limited to this class of simulations). OMNeT++ is “free
for academic and non-profit use”, and is advertised as a “widely used platform in the global
scientific cornmunity”E]. OMNeT++ is distributed as a source code + IDE bundle; this bundle
may also include MinGW, for source code compilation under Windows machines ﬁ A PDF
document with detailed installation instructions is also available [} Moreover, OMNeT++’s
IDE is based on Eclipse, making the process of creating, compiling, and running projects rela-
tively easy. OMNeT-++ also possesses an extensive, documented API[] a rich Tkenv graphical
simulation environment, a tutorial for a simple messaging protocol (named “TicToc”) m and
comes with a wide range of examples/preset projects (currently 17), each with its own, detailed
README file.

Like GloMoSim, OMNeT++ has also been used to perform simulation on routing protocols.
Draxler et al. used OMNeT++ for network-based power consumption optimization, choosing
OMNeT++ due to “its modularity and the built-in features to dynamically set up a simula-
tion” [30]. Comsa et al. used OMNeT++ to simulate the “Floyd-Warshall all-paths routing
algorithm” [31].

OMNeT++ is not limited to routing and low-level network protocols, however. In fact, during
the first semester of the academic year of 2012-2013, this document’s author carried out an
experiment in OMNeT++ related to a simple, application-level protocol which he wrote in
PROMELA (and thus, accepted by Spin), as will be shown further in this document.

2.2 Related work

Generating source code from a formal model is an area of computing that has not been yet sig-
nificantly explored. Nevertheless, some work has already been done in it. Iliasov has published
a paper on the generation of source code from an Event-B model [32]. The work mentioned
in that paper includes the implementation of a tool that takes an Event-B model as input and
outputs either pseudo-code or a subset of Java with JML annotations. This tool is denominated

Y"http://www.omnetpp.org/
¥http://www.omnetpp.org/omnetpp/cat_view/17-downloads/1-omnet-releases
Yhttp://www.omnetpp.org/doc/omnetpp/InstallGuide. pdf
2Onttp://www.omnetpp.org/doc/omnetpp/api/index.html
2http://www.omnetpp.org/doc/omnetpp/tictoc-tutorial/partl.html

http://www.omnetpp.org/
http://www.omnetpp.org/omnetpp/cat_view/17-downloads/1-omnet-releases
http://www.omnetpp.org/doc/omnetpp/InstallGuide.pdf
http://www.omnetpp.org/doc/omnetpp/api/index.html
http://www.omnetpp.org/doc/omnetpp/tictoc-tutorial/part1.html

CHAPTER 2. STATE OF THE ART 13

B2H5, and is available for the Rodin Platform [

Perhaps of more interest is the fact that there is also research associated with NASA on the
subject at hand. More specifically, there is a report by Lensink et al. on the generation of Java
source code from a formal model whose specification is written in PVS (Prototype Verification
System) [33]. The translation process from PVS to Java is not direct, however, as the report’s
authors mention that an intermediary language is used in-between both languages: the Why
language ﬁ The use of such language has one key benefit, as mentioned in the report: “in the
future, the generator may be extended to support other functional and imperative program-
ming languages”.

Regarding KeY, the theorem prover that we mentioned before, some research work has ad-
dressed the problem of verifying C code. A variant of KeY for a subset of the C programming
language has been developed, and is described in the work of Miirk, Larsson and Hahnle [35].

2.3 Choosing the adequate tools

From the various software tools presented in this chapter, we chose Spin, JavaCC and
OMNeT++ as the components related to PROMNeT++. For reasons presented in the next
chapter, we have determined that they are the most adequate tools for reaching this project’s
goals.

2Znttp://iliasov.org/b2h5/
23Please note that the original Why platform, although still maintained, is no longer actively developed. It
is available at http://why.lri.fr/

http://iliasov.org/b2h5/
http://why.lri.fr/

Chapter 3

Objectives and methodology

As mentioned in Chapter 1, the main objective of this work was to ascertain the possibility of
generating runnable source code from models pertaining to the domain of round-based consen-
sus protocols. This was indeed proven to be possible, as PROMNeT++ ships with two distinct
round-based consensus protocols, and generates C++ code that can be successfully compiled
and simulated via OMNeT++ and its IDE. In fact, a tutorial on how to do this is available on
PROMNeT++'s Wiki, provided by Google Codd]

It was also in this project’s interest to determine the generated source code’s level of quality
and reusability. First and foremost, there was the need to guarantee that the generated code
is an implementation of the original model. In other words, the generated source code must
be guaranteed to correspond to the formal description provided by the model. As described
later in this chapter, after translating a model, we simulated the resulting code with the same
set of scenarios (test cases) as the original model, in order to ensure that the output is the same.

Regarding the problem of ensuring the code’s reusability, our approach was to design the trans-
lation process so as to avoid generating unnecessary or superfluous code. Since the PROMELA
language has many similarities with C, we chose to maintain the structure of blocks of code (for
instance, “if” statements in PROMELA are translated into “if” statements in C++4, “inlines”
in PROMELA are translated into C++ functions). The intention with this approach was to en-
sure that the generated code has roughly the same complexity as the original PROMELA model.

To validate the aforementioned design choices, we reviewed the generated code manually, in
order to ensure that the result did not add unnecessary complexity, and we computed the
McCabe complexity for the various routines in order to make sure that the numbers were within
the expected values. Given that it would also be of interest to researchers to run the generated
code in real systems, Raul Barbosa (this internship’s supervisor) held an informal meeting, with
researchers from another institution, who found no obstacles related to the generated code itself
that would prevent this from running in a real system.

"https://code.google.com/p/promnetpp/wiki/CommandLineWorkflowl

14

 https://code.google.com/p/promnetpp/wiki/CommandLineWorkflow1

CHAPTER 3. OBJECTIVES AND METHODOLOGY 15

3.1 Chosen software tools

3.1.1 Model checking

Spin was already defined as the model checking tool of choice, even before the
beginning of this project, and was thus used. Firstly, Spin is free and open-source unlike,
for instance, Cadence SMV. Furthermore, as its official website states, Spin “was developed at
Bell Labs in the original Unix group of the Computing Sciences Research Center, starting
in 1980”7, making it highly mature and, as shown in chapter 1, highly performant as well.
More importantly, this internship’s supervisor, Raul Barbosa, has worked extensively with
Spin before, and thus possesses the know-how on the model checking tool; he was, in fact, able
to supervise the project’s development, and able to provide additional knowledge on Spin.

3.1.2 Parsing/language recognition

The parsing tools listed in the previous chapter are all very mature, despite the fact that, when
PROMNeT++ was being designed/developed, the latest stable release of JavaCC dated back
to 2009, as well as the latest revision for PLY (according to its Google Code repository E[)

Our goal was to implement PROMNeT++ in the Java programming language, despite the fact
that non-Java alternatives such as Flex + Bison and PLY would be perfectly suitable for our
project’s needs. We anticipated the possibility of integrating our translator with the popular
Eclipse IDE (in which OMNeT++ is based on, OMNeT++ being another tool of choice, as
described below), and given that plug-in development for Eclipse is done in Java, choosing it
as a programming language facilitated the integration between PROMNeT++ and Eclipse; in
fact, a plug-in for PROMNeT++ was indeed developed, along with the tool itself, and is avail-
able at the project’s download page in Google Code ﬂ under the name “PROMNeT++ Plugin,
version 0.0.2”. Using Java also provides the benefit of passing on the project to a wide selection
of future Internship/Thesis students over at the Department of Informatics Engineering, who
will likely have the know-how in Java to maintain and expand the project.

Amongst the Java-based alternatives, JavaCC was determined to be the most adequate for the
job. JavaCC has a large user community, which can be reached through several mailing lists,
most notably the “Users” mailing listff] which can be resorted to should there be a need for help
using the tool in general. Several JavaCC books are also available, including Tom Copeland’s
“Generating Parsers with JavaCC, 2nd edition”, available at
http://www.generatingparserswithjavacc.com/, complete with a large collection of code
examples available for download, free of charge. Additional books related to JavaCC are also
readily available at the Department of Informatics Engineering’s library, to which the author
had access, if needed.

Given the above benefits, JavaCC was used as one of the building blocks for PROM-
NeT++4. Using JJTree, which is bundled with JavaCC, a PROMELA parselﬂ was constructed,

2http://code.google.com/p/ply/source/list
3https://code.google.com/p/promnetpp/downloads/list
‘http://java.net/projects/javacc/lists/users/archive

5This is not a fully fledged PROMELA parser, and it most likely does not parse the entirety of PROMELA;

 http://www.generatingparserswithjavacc.com/
http://code.google.com/p/ply/source/list
https://code.google.com/p/promnetpp/downloads/list
http://java.net/projects/javacc/lists/users/archive

CHAPTER 3. OBJECTIVES AND METHODOLOGY 16

whose code is available at https://code.google.com/p/promnetpp/source/browse/trunk/
promnetpp/src/com/googlecode/promnetpp/parsing/Parser. jjt.

3.1.3 Network simulation

ns-2 and its successor, ns-3, although very popular in the area of network simulation, weren’t
suitable for this project’s purposes, as they were designed for protocols below the application
layer such as TCP and UDP. It is possible to extend their functionality by writing modules in
C++; however, there are alternatives which don’t require this.

GloMoSim, despite being able to (and it does) simulate protocols at the application layer, re-
quires some knowledge in Parsec in order to write new protocols of the same class. TOSSIM,
on the other hand, provides both Python and C++ interfaces for writing simulations. Unfor-
tunately, TOSSIM restricted to the TinyOS platform.

Out of all the listed alternatives, OMNeT++ came out on top. First and foremost, OM-
NeT—++ itself is very easy to deploy, especially in Windows platforms, as one of its distributions
comes pre-packaged with MinGW. Step by step instructions are available in the official instal-
lation guidd] In fact, compiling OMNeT++ under Windows requires very little effort. All it
takes is to open the “mingwenv.cmd” file that comes with the distribution, and execute the
following commands:

./configure
make

After executing the above commands in Windows, OMNeT++ became fully ready to use. Its
Eclipse-based IDE can be opened by simply issuing the “omnetpp” command.

Furthermore, OMNeT++ uses C++ code for simulation. Worth mentioning here is the fact
that C++ is ranked amongst the top 5 programming languages of 2012, according to TIOBE [}
Also important is the fact that OMNeT++ possesses a graphical simulation environment, which
is rather flexible. In particular, it is possible to adjust the speed of a particular simulation, as
well as customizing the icons for each node in the network. Additionally, OMNeT++’s IDE
is based on Eclipse, making it easier to create and run simulation projects, and featuring code
completion for its C++ API. Additional features include a message compiler (“opp_msgc”) and
a makefile generator (“opp_-makemake”).

To sum up, OMNeT++ has a set of advantages to the other network simulation alternatives
that made it the strongest candidate for a tool of choice. Due to this set of advantages,
OMNeT++ was chosen as the software for network simulation.

nonetheless, it works perfectly for the protocols listed in this document. Also, it extends PROMELA’s grammar

by including comments in the specification, which are necessary for annotations in PROMELA code.
Shttp://www.omnetpp.org/doc/omnetpp/InstallGuide.pdf
"http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

https://code.google.com/p/promnetpp/source/browse/trunk/promnetpp/src/com/googlecode/promnetpp/parsing/Parser.jjt
https://code.google.com/p/promnetpp/source/browse/trunk/promnetpp/src/com/googlecode/promnetpp/parsing/Parser.jjt
http://www.omnetpp.org/doc/omnetpp/InstallGuide.pdf
 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

CHAPTER 3. OBJECTIVES AND METHODOLOGY 17

3.2 PROMNeT++’s main workflow

Given the choice of tools above, a software stack was assembled using them. The figure below
is a diagram that illustrates the corresponding high-level specification.

Figure 3.1: The software stack, at a glance

Roughly put, PROMNeT++ takes a PROMELA model as input (a text file, typically with a
.pml extension), invoke Spin for the purposes of checking the correctness of the specification,
and (if it is correctﬂ) generate a set of files containing, for the most part, C++ code (some will
contain code specific to OMNeT++, such as the network’s layout).

3.3 Software development methodology

3.3.1 Development tools
IDE
To facilitate the whole development process of the translator tool, a Java Integrated Develop-

ment Environment (IDE) should be used. Several choices for Java IDEs exist, the most notable
being NetBeans, Eclipse and IntelliJ IDEA. Out of these, this work’s author (Miguel Martins),

80r if the user has chosen to skip the verification procedure, which PROMNeT++ does by default.

CHAPTER 3. OBJECTIVES AND METHODOLOGY 18

has much more experience with NetBeans than the remaining alternatives, and uses its code
completion feature quite extensively. Moreover, NetBeans integrates well with JUnit, a popular
unit testing framework for Java, and the one that was used for this purpose, as will be described
later. NetBeans is, therefore, the IDE of choice.

Unit testing framework

JUnit is chosen here for unit testing purposes. When installing NetBeans, the user (developer)
is prompted to install JUnit alongside it. Once installed, the user may easily create unit tests
and/or test suites from within the IDE; the user may also run the tests they have created by
simply right-clicking on the respective project and choosing the “Test” option (or by using the
Alt+F6 keyboard shortcut).

3.3.2 Development platforms/environments
SVN repository and tools

Since the beginning of the project, an SVN repository had been assigned to both the project’s
author and its supervisor. This SVN repository is provided by University of Coimbra’s Depart-
ment of Informatics Engineering’s Helpdesk, and is (privately) accessible via web at
https://svn.dei.uc.pt/usvn/login/. PROMNeT++’s code was, at first, committed to said
repository, before migrating to its current repository, at Google Code/]

Regarding software tools to manage said SVN repository, TortoiseSVN was used by the
project’s author. Firstly, it must be taken into account that the author frequently uses Windows
(usually, Windows 7) for development (as well as for everyday tasks), and has used it extensively
in the past. TortoiseSVN integrates well with Windows Explorer, bringing a Context Menu for
folders marked as SVN repositories, which provides options for several SVN tasks (commands),
including options for updating and committing, creating branches, locking and unlocking the
repository (useful for binary files), and reverting to previous revisions if needed. Lastly, if
more flexibility is needed, TortoiseSVN still offers the possibility of using the respective SVN
command-line tools.

3.3.3 Quality Assurance Plan

Code style and conventions

Despite the fact that only a single person (the author) coded PROMNeT++, it is still of
importance to keep a consistent coding style, to promote the code’s maintainability. The
quality assurance plan below was established during the internship’s first semester for this very
purpose; the guidelines are as follows:

1. Indentation shall be done using spaces only; using tabs will be avoided, unless strictly
necessary.

(a) Four (4) spaces per indentation level.

9http://promnetpp.googlecode. com/svn/trunk/

https://svn.dei.uc.pt/usvn/login/
 http://promnetpp.googlecode.com/svn/trunk/

CHAPTER 3. OBJECTIVES AND METHODOLOGY 19

(b) Many IDEs (NetBeans included) already support the conversion from tabs to spaces.

2. No line (whether it’s part of a comment or actual code) should exceed 80 characters
(excluding line terminators, since they’re not visible) unless strictly necessary.

(a) Line breaking can and should be used extensively (but not excessively) for this
purpose.

3. Variable names and identifiers shall be kept short, yet concise.

(a) More objectively, each variable name/identifier should be as descriptive as possible,
without going over 30 characters in length.

(b) As per Oracle’s Code Conventions, class names shall use upper camel case (exam-
ple: “MyClass” instead of “Myclass” or “myclass”), while variable names, func-
tion identifiers and function parameters shall use lower camel case (examples: “int
lineNumber”, “void someFunction(int somelnteger Argument)”.

(¢) Acronyms in identifiers should not have their case altered (example: “ASTFactory”
instead of “AstFactory”).

4. Javadoc comments (documentation comments) and respective annotations should be used
extensively, in particular for classes and methods.

Product development cycle

Standard SVN procedure for development, for text files, is as follows:
1. SVN update.
2. Make changes to the code.
3. SVN update, followed by SVN commit when finished.
For binary files:
1. SVN update.
2. SVN lock.
3. Make changes to the files in question.
4. SVN commit.
5. SVN unlock.

The planned development cycle roughly consisted in the creation of artifacts (text/binary files),
committing the corresponding changes to the SVN repository as described above, and repeating
the whole process until either a milestone or the solution has been reached. It was also proposed,
during the first semester, that for each new feature, a set of tests would be written (using JUnit)
to enhance the feature’s correctness. Unfortunately, this proposition ended up not taking effect.

3.4 Round-based model

Round-based consensus protocols essentially consist of a set of nodes which repeatedly call a
very specific list of routines, in a perpetual loop. The pseudocode below illustrates this loop.

CHAPTER 3. OBJECTIVES AND METHODOLOGY 20

1: loop
2: begin_round()

3: compute_message(my_message)
4: send_to_all(my_message)
5 wait_to_receive()
6: state_transition()
7. end_round()

8: end loop

This structure was proposed by Raul Barbosa himseli{:G], in an attempt to unify all round-based
consensus protocols in a simple, generic pattern. There are six routines in total, as shown
above. begin_round and end_round signal the beginning and the end of a particular round,
respectively. Once a particular round has begun, each process computes its own message via
compute_message, before sending it to all processes (including itself) via send_to_all. Processes
must then wait for all messages to arrive by calling wait_to_receive. Finally, before ending a
particular round, processes must update their own state via state_transition, according to the
norms of the particular protocol they’re following. This structure is described in greater detail
in the next chapter.

3.5 PROMNeT++’s template system

PROMNeT++ does not fully generate C++ code on its own; instead, it uses pre-written C++
templates and fills in portions of those templates accordingly. “Template”, here, is defined as
a text file with one or more template parameters; a template parameter is a string such as
“{0}7, “{1}7, “{2}”, and so forth. In other words, a template parameter is simply a string that
contains the representation of an integer greater than zero, enclosed in curly brackets, like so:

{n},n>0

Template parameters are replaced, at some point during translation, with real C++ code, and
can thus be regarded as placeholders for it; replacement is done via Java’s MessageFormat class
M Files that contain template parameters have the entirety of their contents read to memory,
as String objects, then have its template parameters replaced, and are finally written back to
disk, as output. A simple example of this is the types.h file, which holds PROMELA’s user

types:

#ifndef TYPES_H_
#define TYPES_H_

#include "global_definitions.h"

typedef unsigned char byte;

{0}

0A minor variant of it can be seen in a draft document hosted at Chalmers University of Technology’s
Computer Science and Engineering website. Said document can be found here: http://www.cse.chalmers.
se/~johan/publications/TR2013.pdf

Hhttp://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html

http://www.cse.chalmers.se/~johan/publications/TR2013.pdf
http://www.cse.chalmers.se/~johan/publications/TR2013.pdf
 http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html

CHAPTER 3. OBJECTIVES AND METHODOLOGY 21

#endif /x TYPES_H x*/

In this case, there is only a single template parameter (“{0}”). PROMNeT++ replaces this
parameter with typedef struct statements derived from PROMELA’s own typedef. For instance,
in the PROMELA model for the OneThirdRule protocol, the following typedefs are present:

/* NOTE: This is PROMELA code, not C/C++ code */
typedef message {
byte value;

b

typedef process_state {
bool received_message [NUMBER_OF_PROCESSES];
byte received_message_count;

byte local_value;
byte decision_value;
byte values [NUMBER_OF_PROCESSES]

PROMNeT++ internally maps each of PROMELA'’s typedef statements into a C/C++ typedef
struct statement, and replaces the above template parameter with the result. The resulting
output is as follows:

#ifndef TYPES_H_
#define TYPES_H_

#include "global_definitions.h"
typedef unsigned char byte;

typedef struct {
byte value;
} message_t;

typedef struct {
bool received_message [NUMBER_OF_PROCESSES];
byte received_message_count;
byte local_value;
byte decision_value;
byte values [NUMBER_OF_PROCESSES];
} process_state;

#endif /x TYPES_H x*/

3.6 Work/experimentation methodology

To test the accuracy of PROMNeT++'s translation process and produce verifiable results, our
PROMELA models need to follow a very specific set of rules. PROMELA models are, by

CHAPTER 3. OBJECTIVES AND METHODOLOGY 22

nature, non-deterministic, meaning that whenever a point of non-determinism is reached, Spin
(when running a random simulation) uses its own pseudo-RNG to decide which path it should
take. Given that the translation process has no knowledge of said pseudo-RNG, it was nec-
essary to embed, within the PROMELA model itself, a simple linear congruential generator,
and then rewrite any points of non-determinism to use said generator, thereby bypassing Spin’s

pseudo-RNG.

3.6.1 Eliminating non-determinism in PROMELA: pseudo-RNG sub-
stitution

As mentioned before, most PROMELA models are inherently non-deterministic. Consider the
following piece of PROMELA code (simplified from the OneThirdRule protocol) as an example:

#define NUMBER_OF_PROCESSES 3
typedef process_state {
bool received_message [NUMBER_OF_PROCESSES];
byte received_message_count;
byte local_value;
byte decision_value;
byte values [NUMBER_OF_PROCESSES]

process_state state [NUMBER_OF_PROCESSES];

inline system_init () {

=1

for(i : O0..(NUMBER_OF_PROCESSES-1)) {
state[i].local_value = j;
/ *

This is a non-deterministic if statement; there’s a 50%
chance it will choose the "j++" statement, and a 50% changde
it will choose the "skip" statement ("skip" statements do
absolutely nothing).
*/
if

j++

skip
fi;
printf ("MSC: PJ%d has initial value x=%d\n", i+1,

state[i].local_value)

init {
int 1, j;
system_init ()

CHAPTER 3. OBJECTIVES AND METHODOLOGY 23

In the above scenario, each process inherits the value of the j variable, which has an initial
value of 1. When simulating this code via Spin, Spin has to determine whether it will execute
the first or the second set of statements (delimited by “::”) that belong to their corresponding
“if” block (delimited by “if ... fi”). Since both sets (“j++" and ”skip”) are executabld™?} they
have each a 50% probability of being executed. Effectively, this means that it is possible that
the j variable might not be incremented at all, as it’s also possible that it could be incremented
just once. Possible outputs for this scenario include:

C:\spin>spin temp.pml

MSC: P1 has initial value x=1
MSC: P2 has initial value x=1
MSC: P3 has initial value x=1
1 process created
C:\spin>spin temp.pml
MSC: P1 has initial value x=1
MSC: P2 has initial value x=2
MSC: P3 has initial value x=2

1 process created

C:\spin>spin temp.pml
MSC: P1 has initial value x=1
MSC: P2 has initial value x=2
MSC: P3 has initial value x=3
1 process created

A possible C++ implementation for this scenario consists in using OMNeT++’s Mersenne
Twister, and in particular, OMNeT++'s intrand(n) function, which produces a random integer
in the interval [0, n[. Since there’s only 2 sets of statements (“j+-+" and ”skip”), one could make
n equal to 2, thus obtaining either 0 or 1 as a possible value for intrand(n); if 0 is obtained,
then execute “j+-+7; if 1 is obtained instead, execute “skip” (i.e. do nothing). In C++ code,
this would be as follows:

void system_init () A{

j =1
for(i = 0; i <= (NUMBER_OF_PROCESSES-1); ++i) {
state[i].local_value = j;
int decision = intrand(2);
if (decision == 0) {
jt+,
} else if (decision == 1) {
//skip
// (note that there is no "skip" statement in C++)
//(this block does absolutely nothing, just like
// "“skip")
}

printf ("MSC: PJ%d has initial value x=%d\n", i+1,
state[i].local_value)

b

12More on the concept of “executability” at http://spinroot.com/spin/Man/Manual . html

http://spinroot.com/spin/Man/Manual.html

CHAPTER 3. OBJECTIVES AND METHODOLOGY 24

}

While this implementation works perfectly, it poses a problem: we are, in fact, using OM-
NeT++’s Mersenne Twister via intrand(n), while Spin uses its own pseudo-RNG. Thus, using
this approach would make it unfeasible to carry out experiments such as comparing Spin’s out-
put to OMNeT++’s, which are later shown in this document for the purpose of determining if
the translation process produces a correct implementation of the original PROMELA model.

We solve this problem by embedding a user-defined pseudo-RNG in the PROMELA model,
and rewriting it to become fully deterministic. We opted for a linear congruential generator,
due to its simplicity in implementation and use. The Wikipedia article for linear congruential
generators lists over 10 distinct sets of LCG parameterﬁ. Given that we were looking for sim-
plicity over randomness, we opted for an LCG known as MINSTD, used in Apple’s CarbonLib.
The recurrence relation for this LCG is as follows:

Xpi1 = (X, x 16807) mod 2147483647

Like most pseudo-RNGs in existence, we need to declare a variable that will initially hold the
seed and the pseudo-random value at any later point in time. Secondly, we also need a routine
that can be repeatedly called to get the next number in the pseudo-RNG sequence. For our
convenience, we also created a routine that converts the aforementioned pseudo-random value
into a boolean value; this helps with binary decision if statements such as the one described
above. All of these are implemented in PROMELA as follows:

/* Please note that, while this code also works for C/C++, this 1ifg
actually embedded into the PROMELA model. */
/* Random number generation */

int rnd = 1234; /* 1234 is the seed for our LCG; we can change it
if we so desire. x*/

#tdefine next(r) (r *x 16807) % 2147483647

#define boolean(r) ((r >> 30) & 1)

Using this technique, we can rewrite our system_init routine as follows:

inline system_init () {

j=1
for(i : 0..(NUMBER_OF_PROCESSES-1)) {
state[i].local_value = j;
rnd = next(rnd); /* "rnd" refers to the global variable
that we previously declared */
if
boolean(rnd) -> j++
else -> skip
fi;

printf ("MSC: PJ%d has initial value x=%d\n", i+1,
state[i].local_value)

3https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use

https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use

CHAPTER 3. OBJECTIVES AND METHODOLOGY 25

By rewriting our PROMELA models so that any binary decision points (such as the one above)
are actually dependant on the above custom pseudo-RNG, we are effectively making them
completely deterministid™} we are now in complete control of the execution of our models, and
we're only required to change our LCG’s seed if a different execution is desired. Additionally,
PROMNeT++ parses and translates the definitions for our custom pseudo-RNG.

3.6.2 Obtaining results

Using what has been described so far in the current section (3.4), we can perform a very simple,
yet necessary experiment. To ensure that PROMNeT++ generates source code that is faithful
to the original PROMELA model (i.e. the generated code is a valid implementation of the
model), we can choose a seed, and compare the output from simulating the model via Spin to
the output that results from running a simulation in OMNeT++. The latter, of course, implies
that we use PROMNeT++ to perform a translation from PROMELA to C++, then compile
the generated source code using OMNeT++’s compiler tools into an executable file, and finally
run this executable file to obtain the output from OMNeT++’s simulation. If there is a match
between both outputs (“PROMELA/Spin” and “C++/OMNeT++"), then we claim that the
generated source code is a valid implementation of the model.

As an example, consider Spin’s output for the OneThirdRule protocol that’s distributed with
PROMNeT++, using the value 1234 as the LCG’s seed:

MSC: P1 has initial value x=1
MSC: P2 has initial value x=1
MSC: P3 has initial value x=1
MSC: new round, id=1
rnd=892703006

MSC: P1 decides 1 on round 1
MSC: new round, id=2
rnd=1896731518

MSC: P3 decides 1 on round 2
MSC: P2 decides 1 on round 2
MSC: P1 decides 1 on round 2
MSC: new round, id=3
rnd=1896731518

MSC: P3 decides 1 on round 3
MSC: P2 decides 1 on round
MSC: P1 decides 1 on round 3
MSC: new round, id=4
rnd=1896731518

MSC: P3 decides 1 on round 4
MSC: P2 decides 1 on round 4

w

4There is actually one other source of determinism in PROMELA; at any given point in time, any given
process may be switched out for another, akin to how a multi-threaded application would swap out one thread
for another. This source of non-determinism is irrelevant, however, as it only changes the order of the printf
statements per process.

CHAPTER 3. OBJECTIVES AND METHODOLOGY 26
MSC: P1 decides 1 on round 4

MSC: new round, id=5

rnd=1896731518

MSC: P3 decides 1 on round 5

MSC: P2 decides 1 on round 5

MSC: P1 decides 1 on round 5

(output truncated for brevity...)

Now, consider the output that is obtained if we translate the model via PROMNeT++, then
perform an OMNeT++ simulation:

(output truncated

MSC: P1 has initial value x=1
MSC: P2 has initial value x=1
MSC: P3 has initial value x=1
MSC: new round, id=1
rnd=892703006

MSC: P1 decides 1 on round 1
MSC: new round, id=2
rnd=1896731518

MSC: P2 decides 1 on round 2
MSC: P1 decides 1 on round 2
MSC: P3 decides 1 on round 2
MSC: new round, id=3
rnd=1896731518

MSC: P2 decides 1 on round 3
MSC: P1 decides 1 on round 3
MSC: P3 decides 1 on round 3
MSC: new round, id=4
rnd=1896731518

MSC: P2 decides 1 on round 4
MSC: P1 decides 1 on round 4
MSC: P3 decides 1 on round 4
MSC: new round, id=5
rnd=1896731518

MSC: P2 decides 1 on round 5
MSC: P1 decides 1 on round 5
MSC: P3 decides 1 on round 5

for brevity...)

We can clearly see that both outputs are practically identical, only differing in the order that
processes P1, P2 and P3 are executed. For example, in round 5, P3 is the first process to
decide the value 1 in Spin, while being the last process to decide the same value under OM-
NeT++’s simulation. Process execution order, however, is unimportant for our experiments,

and is merely the result of Spin and OMNeT++ scheduling processes differently.

Later on in this document, we repeat this experiment for 29 more seeds, and observe that the

outputs from both Spin and OMNeT++ are, in fact, identical.

Chapter 4

Requirements analysis

4.1 Stakeholder identification

The stakeholders for this project consist of, essentially, every person who is interested in the
formal verification of distributed algorithms and wants to be able to execute runnable, ready
to be used code in real systems. An example of two such people would be Tatsuhiro Tsuchiya
and André Schiper, as they have published a paper on the verification of consensus algorithms
through (bounded) model checking [34].

Raul Barbosa, this internship’s supervisor, acts in this project as a “proxy” for that large group
of stakeholders; in a way, he represents this group, as he has also expressed his interest in this
project’s area of computing. In fact, he, along with Johan Karlsson, have worked on the subject
at hand, as per the work in their article previously cited in this document. [5]

4.2 User stories

4.2.1 Rationale

As with most software projects, requirements are gathered here by derivation from a set of
scenarios and/or interactions. Given that there aren’t many ways for a user to interact with
PROMNeT++, a few user stories will be presented in this section. The construct to be used for
the user stories is described in Kelly Waters” “All About Agile” blog’s entry on “User Stories”E],
and is presented as follows:

As a [user role], I want to [goal], so I can [reason].

4.2.2 Specification

1. As a user of the PROMELA to C++ translator application and developer for critical
systems, I want to be able to invoke the tool from the command line, passing only the
name or path to a PROMELA (.pml) specification file as the sole argument, so I can let

Ihttp://www.allaboutagile.com/user-stories/

27

http://www.allaboutagile.com/user-stories/

CHAPTER 4. REQUIREMENTS ANALYSIS 28

the tool choose any other parameters for me and reuse the generated C++ source code
(if any).

2. As a user that must work with a machine with limited memory, I want to be able to invoke
the tool from the command line, passing not only a PROMELA file as an argument, but
also an indication to use a memory saving profile, so I can reuse the generated C++
source code (if any) while avoiding the need to upgrade my machine’s RAM.

3. As a user, I want to be able to invoke the tool from the command line, passing both a
PROMELA file and a configuration file as arguments, so I can adapt the tool’s behavior
to machines with different hardware configurations (namely CPU and RAM).

4. As an Eclipse IDE user/developer, I want to be able to right-click on my project’s
PROMELA file and choose the option to translate it to C++4, so I can avoid interacting
with the tool’s command line interface while benefiting from the comfort provided by a
graphical environment.

5. As a cross-platform developer, I want to be able to invoke the tool under a Windows,
Linux, or OS X environment, so I can reuse the generated C++ code (if any) without
worrying about operating system restrictions.

6. As a user of the PROMELA to C++ translator application, I want to be able to visualize
the interaction and/or results of my algorithm /protocol, so I can further ensure that my
system works as I intend it to.

4.3 Requirements listing

The technical and functional requirements listed here were gathered and established during the
first semester of the internship. Some of the requirements are labelled as “optional”, meaning
that their completion is not strictly necessary to fulfill the internship’s objectives. Finally, any
given requirement is either labelled as “met” or “not met”, depending on whether its fulfillment
was reached or not.

CHAPTER 4. REQUIREMENTS ANALYSIS

4.3.1 Technical requirements

29

written for the command-
line tool.

Requirement Optional? | Met? | Notes

The tool must be cross- No Yes | It must, at least, be runnable under

platform. all major operating systems (Windows,
Linux, OS X).

The tool must verify the No Yes | PROMNeT++ was indeed pro-

model specification, using grammed to verify its input file, a

Spin, prior to translation to PROMELA model, prior to its trans-

C++ code. lation phase, and report any errors
within said model. This feature is
turned off by default, but can be
turned on by editing PROMNeT++"s
main configuration file.

The tool must be written in No Yes

pure Java.

The tool must generate No Yes

C—++ source code, ready to

be executed in OMNeT++.

4.3.2 Functional requirements

Requirement Optional? | Met? | Notes

The tool must give its users No Yes | PROMNeT++ can be executed

the option to specify a by performing a simple “java -

single command-line argu- enableassertions -jar promnetpp.jar

ment, which is the name or mymodel.pml” command. Aside

path to a PROMELA spec- from Java’s command-line switches,

ification file. and the path to PROMNeT++'s
JAR file, “mymodel.pml” is the sole
command-line argument.

The tool must allow its Yes No | It is only compulsory that the tool pro-

users to create and use pro- vides a single command-line argument,

files, to tweak the tool’s be- as mentioned in the above requirement.

havior to match their needs.

A plugin for the Eclipse Yes Yes | An Eclipse plugin for PROMNeT++

IDE must be written, so does indeed exist, and is available

that users can, for instance, at the project’s “Downloads” page at

translate a PROMELA Google Code; source code for this plu-

specification directly from gin is also available.

OMNeT++’s IDE.

A GUI wrapper must be Yes No

CHAPTER 4. REQUIREMENTS ANALYSIS 30

4.4 Detailed requirements for the translation process

It had been planned that PROMNeT++ would translate PROMELA models that follow a very
specific structure. In this section, we describe this structure in more detail, and promptly show
PROMNeT++'s annotations.

4.4.1 Round-based model

Round-based consensus protocols have a well-defined structure in PROMELA. There are two
types of nodes in the whole system: the init node, and the Process node. In PROMELA,
both nodes are actually designated as “processes”, and can also thus be referred to as the init
process, and the Process process, respectively:

e The init process serves as the system’s coordinator, and is responsible for starting all other
processes and keeping them synchronized between rounds; there is only one instance of
this process in the whole system.

e The Process process communicates, via message passing, with other processes of its kind,
and is responsible for performing all necessary computations in order to reach a decision,
as any round-based consensus protocol mandates; there is always more than one instance
of this process in the whole system.

The init process is defined, in PROMELA, as follows:

init {
/* Variable declarations go here. Below is a typical example.
*/
byte i, j;
bool synchronous = false;

/* system_init MUST be init’s first called routine */
system_init ();

/* Required, so that the actual processes run */
atomic {
for(i : 1..(NUMBER_OF_PROCESSES)) {
run Process ()

+
X
/* Process synchronization between rounds (Raul Barbosa’s
implementation via token passing; "token" is a global
variable, of the byte type) */
do

(token == 0);

system_every_round () ;

token = NUMBER_OF_PROCESSES;

(token == 0);

token = NUMBER_OF_PROCESSES
od

CHAPTER 4. REQUIREMENTS ANALYSIS 31

The Process process, on the other hand, is coded as shown below:

proctype Process() {
/* Variable declarations go here. Below is a typical example.
*/
message _message;
byte 1, j;

/* Processes are STRICTLY REQUIRED to call the routines below
in the order they’re shown: begin_round, compute_message,
send_to_all, wait_to_receive, state_transition, end_round */

do
begin_round () ;
compute_message (_message) ;
send_to_all(_message);
wait_to_receive ();
state_transition();
end_round ()
od

Finally, the overall structure for a round-based consensus protocol in PROMELA is established
like so:

/* @UsesTemplate (name="round_based_protocol_generic") x/

/* @TemplateParameter (name="numberO0fParticipants") */

#define NUMBER_OF_PROCESSES 3 /* Can be any value greater than 1
* /

inline compute_message(_message) {

/* Code for compute_message */

inline state_transition() {
/* Code for state_transition */

inline system_init () {
/* Code for system_init x*/

inline system_every_round () {
/* Code for system_every_round */

/* @BeginTemplateBlock (name="generic_part") x/
inline begin_round () {

/* Code for begin_round x*/

}

CHAPTER 4. REQUIREMENTS ANALYSIS 32

inline end_round () {
/* Code for end_roundx/

inline send_to_all(_message) {
/* Code for send_to_all x*/

inline wait_to_receive () {
/* Code for wait_to_receive x*x/

inline receive(_message, id) {
/* Code for receive x*/

proctype Process() {
/* See above */

}
init {

/* See above x/
}

/* @EndTemplateBlock */

A few important remarks about the protocol structure

As shown in the overall structure above, round-based consensus protocols are divided into a
into two parts: a specific part and a generic part. The generic part is delimited by the
@Begin TemplateBlock(name= “generic_part”) and @EndTemplateBlock annotated comments,
which are used internally by PROMNeT++; any code not enclosed within the generic part is
considered to be part of the specific part. The rationale for having these two parts is quite
simple: any code contained within the generic part remains constant across all pro-
tocols, with very few (if any) variations. Thus, PROMNeT++ does not translate any
such code, and can (and does) instead re-use pre-written C++ code for all generic elements.

The annotated comments used in the PROMELA models are described later in this chapter,
in more detail.

Protocol routines and their implementations

e begin_round Generic routine. Ensures, via synchronization, that all processes are ready
to start a new round. Called from Process.

inline begin_round () {
(token == _pid)
}

CHAPTER 4. REQUIREMENTS ANALYSIS 33

e end round Generic routine. Performs all the required actions to declare that a particular
round is over. This includes any action required so that all processes can be synchronized
before calling begin_round once again. Called from Process.

inline end_round () {
token--

e send_to_all Generic routine. Sends the process’ own message to all processes in the
system (including itself, but excluding the init process). Called from Process.

inline send_to_all(_message) {
messages [_pid-1].value = _message.value

by

e wait_to_receive Generic routine. Waits for all messages to be sent, before calling receive
next. Called from Process.

inline wait_to_receive () {
token--;
(token

-

= _pid)

e receive Generic routine. Performs a “receive” operation, which typically means taking a
message from some queue/array/data structure, and storing it in the process’ local state.
Called from Process.

inline receive(_message, id) {
_message.value = messages[id].value

by

e compute _message Protocol-specific routine. During each round, each process calls this
routine to compute (i.e. alter the contents of, whenever necessary) its own message object.
Called from Process.

inline compute_message () {
/* Protocol-specific; no implementation is shown here x*/

by

e state_transition Protocol-specific routine. Performs the main computation(s) before
ending the current round, usually by taking messages from the other processes and com-
paring them to its own; typically calls receive in a conditional loop; any consensus-related
decisions are made in this function too. Called from Process.

inline state_transition() {
/* Protocol-specific; no implementation is shown here x/

e system_init Protocol-specific routine. Initializes the system’s state, typically by setting
individual parameters in process’ states via pseudo-RNG. Called from init.

inline system_init () {
/* Protocol-specific; no implementation is shown here */

by

CHAPTER 4. REQUIREMENTS ANALYSIS 34

e system_every_round Protocol-specific routine. Executes once before each round. Used
to set the system’s state for a particular round. Called from init.

inline system_every_round () {
/* Protocol-specific; no implementation is shown here x/

by

4.4.2 PROMNeT++’s annotations

To meet the technical requirements above and construct a powerful software tool, PROM-
NeT++ was built with support for annotated comments. An annotated comment is defined
as a C-style comment whose contents begin with the @ symbol. These are inspired by Java
annotations, and in particular, annotations used in the Java Persistence APIE].

There are currently four annotations in total, extensively described in PROMNeT++’s wik{}
Below is a concise summary of what each of them does.

e @UsesTemplate(name=“round_based_protocol _generic”) indicates PROMNeT++
that the input file is to be treated as a model for a round-based consensus protocol. It
must be the very first annotation in the PROMELA model.

e @TemplateParameter(name=*“numberOfParticipants”) indicates PROMNeT++
that the next #define directive is the number of participants in the round-based consensus
protocol (excluding the init process). PROMNeT++ uses this numeric value to generate
the appropriate network layout file for OMNeT++-.

e @BeginTemplateBlock(name=*generic_part”) indicates PROMNeT++ that the
model’s generic part begins at this point. It must be used in conjunction with
@EndTemplateBlock.

e @EndTemplateBlock(name="*“generic_part”) indicates PROMNeT++ that the model’s
generic part ends at this point. It must be used in conjunction with
@BeginTemplateBlock.

2A good example of this is JPA’s @Table annotation. See: http://www.objectdb.com/api/java/jpa/
Table.
Shttps://code.google.com/p/promnetpp/wiki/PROMNeTppAnnotations

http://www.objectdb.com/api/java/jpa/Table
http://www.objectdb.com/api/java/jpa/Table
 https://code.google.com/p/promnetpp/wiki/PROMNeTppAnnotations

Chapter 5

Risk management

5.1 Defining “(thresold of) success” and “risk”

The notion of “risk”, as known by modern software engineers, depends on the software project
at hand. To define “risk” for this project, one must define its threshold of success first. The
threshold of success for this is defined below.

“Success”, in this project’s context, is achieved if, and only if, all of the following conditions
are met:

1. The translation process, from PROMELA code to C++ code, works for every round-based
consensus protocol that is to be studied. Every protocol is regarded as a test case for the
translator tool, and the tool must produce C++ code from the protocol’s PROMELA
specification without fail [T

2. The resulting C++ code and miscellaneous OMNeT++ specific files (such as OMNeT++s
network layout file) must allow the user to perform one or multiple error-free simulations
in OMNeT++. That is, the user, after waiting for the tool to finish the source code
generation process, must have all the necessary files to run a simulation in OMNeT++-.

Given the above threshold of success, “risk” is, thus, defined as any foreseeable problem that
might impede success.

5.2 Risk list

The following tables describe several risks associated with either the project’s nature or its
development phase. The template used here is adapted from OpenUP’sE].

Some of the risks listed here have been preemptively mitigated during the first semester of the
internship, so as to establish a suitable course of action towards achieving the aforementioned
threshold of success. Also, due to technical restrictions, only 4 columns at a time can be visible;

Do note, however, that the tool may still fail before the actual translation phase, for instance, if Spin reports
that there is not enough memory to verify the PROMELA model.

’http://epf.eclipse.org/wikis/openup/core.mgmt . common.extend_supp/guidances/templates/
risk_list_33A6AE1E.html

35

http://epf.eclipse.org/wikis/openup/core.mgmt.common.extend_supp/guidances/templates/risk_list_33A6AE1E.html
http://epf.eclipse.org/wikis/openup/core.mgmt.common.extend_supp/guidances/templates/risk_list_33A6AE1E.html

CHAPTER 5. RISK MANAGEMENT

36

as such, it was necessary to split the original template’s table into multiple tables.

Risk
ID

Date identified
(DD-MM-
YYYY)

Headline

Description

27-01-2013

Development is not pro-
ceeding as scheduled

Only one person (Miguel Martins)
would be actively working on this
project, and as such, there is always
the possibility that he won’t work at
an adequate pace, increasing the risk
of finishing the second semester with
an incomplete tool.

22-01-2013

Absence of a suitable net-
work simulator

A network simulator that is capable
of simulating protocols at an appli-
cational level is either unknown or
does not exist at all.

27-01-2013

JavaCC proves to be diffi-
cult to use

The author had little to no expe-
rience with JavaCC prior to this
project, and thus JavaCC’s learning
curve was unknown to him.

27-01-2013

Artifacts and/or source
code files for the project
are lost

As with any software project, there
is always the concern about losing
files; the SVN repository provided
by Helpdesk may be inaccessible for
the purpose of committing and/or
retreiving files. Software/hardware
failures on the developer’s side may
also result in file loss.

27-01-2013

Implementing /translating
a specific Spin feature/be-
havior proves to be either
difficult or very complex

Spin/PROMELA has certain fea-
tures or behaviors whose mapping to
C++ code is not direct/trivial. The
most notable of these is the fact that
there is non-determinism in Spin,
such as do/if statements with mul-
tiple guards. In some cases, there
is one particular guard that overlaps
with another, and in other cases no
guard is executable, in which case
the process should block until at
least one guard becomes executable.

22-01-2013

Learning how to effec-

tively use Spin proves to
be a difficult task

Spin, like most software tools, has
a learning curve associated with
it; knowing how to work with
Spin is crucial to determine how
PROMELA code should be trans-
lated.

CHAPTER 5. RISK MANAGEMENT
Risk ID Type Impact (1-5) | Probability
1 Organizational 5 0.2
2 Technical 5) 0.05
3 Technical) 0.04
4 Technical 5 0.03
5 Technical 4 0.1
6 Organizational 2 0.01

5.2.1 Risk response strategies

37

Risk ID

Strategy

Strategy’s description

1

Mitigate

Commit artifacts/code frequently to the SVN repository, at least
once a day. Revise the personal work schedule, and allocate more
hours of work per day as deemed necessary.

Mitigate

Analyze network simulation alternatives via web; this has already
been done, as it has been determined that OMNeT++ seems to be
the most suitable alternative.

Mitigate

Search and read tutorials for JavaCC; various tutorials are read-
ily available online, such as Theodore Norvell’s. Several JavaCC-
related books are also available, most notably Tom Copeland’s
“Generating Parsers with JavaCC, Second Edition”; the De-
partment of Informatics Engineering’s library also has books on
JavaCC, readily available. Also, JavaCC’s mailing lists can be used
as necessary.

Mitigate

Use suitable backup schemes to minimize the chances of file loss.
One possible way of doing this is to have the directory for an SVN
repository in the cloud so that, should the SVN repository be inac-
cessible, files can still be read/written to without ceasing develop-
ment. Services like Dropbox (which the author frequently uses, and
has used for this project as well) are often organized so that files
are distributed across multiple geographical locations. In addition,
a manual backup policy could be applied to further minimize file
loss: for instance, archive and compress the contents of the entire
SVN repository to a 7-zip file, and copy it to a USB flash drive, or
even to a second cloud storage service such as Google Drive.

Mitigate

Discuss implementation issues with the supervisor, Raul Barbosa,
who has extensive knowledge on Spin. Alternatively, post questions
on Spinroot.com’s forums.

Mitigate

Study Spin as intensively as needed; this has been done, in part,
as the author started to familiarize himself with Spin towards the
end of September 2012. Additionally, the author has also attended
Raul Barbosa’s Model Checking classes at the Department of Infor-
matics Engineering, which are part of the “Dependable Computer
Systems” PhD. subject, during the first semester.

CHAPTER 5. RISK MANAGEMENT 38

5.3 Reflecting over the risks

None of the six risks presented in the previous section have truly impeded “success”, as defined
in section 5.1. However, risk number 5 has manifested itself on occasion, in the form of technical
implementation details. At one point in development, the receive routine was being treated as a
blocking routine, requiring each process to save its own progress in the state_transition routine
(which calls receive internally). Moreover, receive was being called within a loop, making the
following code unsuitable:

void Process::state_transition() {

(...

for (i = 0; i <= (NUMBER_OF_PROCESSES - 1); ++i) {
if (my_state.received_messagel[i]) {
receive (_message, i); /* Suspends the execution of this
process , making it so that, when re-entering this routine,
it must enter the for loop again. */

my_state.values[i] = _message.value;
my_state.received_message_count ++;

Initially, this was solved by using a mechanism known as a step map, which stores every step
(an integer value) for every routine, for all processes

void Process::state_transition() {

C...)

int step = step_map["state_transition"];

if (step == 0) {
i = 0;
++step_map["state_transition"];
++step,;

}

if (step == 1) {

if (my_state.received_messagel[i]) {
receive (_message, i); /* May block and suspend the
routine */

step_map["state_transition"] = 2;
} else {
step_map["state_transition"] = 3;
+
+
if (step == 2) {
my_state.values[i] = _message.value;

my_state.received_message_count++;

CHAPTER 5. RISK MANAGEMENT 39

if (i <= (NUMBER_OF_PROCESSES - 1)) {

++step;

+
}
if (step == 3) {

++1;

step_map["state_transition"] = 1;
}
C...)

The above code essentially breaks down the “for” loop into a sequence of steps, so that even if
receive is called, state_transition can be re-entered from the point where it left off. Naturally,
this would not only make the translated code less appealing to read, it would also intro-
duce complexity in the routine. This problem was eventually solved by turning receive into
a non-blocking routine, and storing incoming messages via a special, separate routine named
enqueue_message.

Chapter 6

Work and results

Using what’s been described in this report so far, PROMNeT++ was incrementally developed
until it reached its current version to date: PROMNeT++ Beta 6. This version is, of course,
downloadable at its respective Google Code pagd'], packaged as a ZIP file. It is distributed with
two distinct round-based consensus protocols.

One of the round-based consensus protocols that PROMNeT++ is distributed with goes by
the name of OneThirdRule. This protocol was implemented, in PROMELA, by Raul Barbosa,
and later adapted for use with PROMNeT++ by Miguel Martins; the PROMELA imple-
mentation for this protocol is contained within the NewOneThirdRule.pml file. This protocol
originates from Charron-Bost and Schiper’s article on “The Heard-Of model”, and is described,
in their terms, as “a very simple algorithm that does not require any coordinator election
procedure” [36].

The other round-based consensus protocol found inside the ZIP file is named 1-of-N, and
was also adapted for use with PROMNeT++ from Raul Barbosa’s original implementation of
it, much like the OneThirdRule protocol; the file I-of-n.pml contains its implementation in
PROMELA. It originates from Negin Fathollahnejad et al.’s work on a “probabilistic Analysis
of a 1-of-N selection algorithm”.[37]

Thus, we had two distinct PROMELA models (one per protocol) to work with. Our main
goal was to ensure that both of them were translated to valid C++ implementations. As
mentioned in chapter 3, we can compare the output from PROMELA /Spin to the output from
C++/OMNeT++, to assert the validity of the translation process; if, for 30 different seeds,
there is always a match between outputs, then we can confirm that the generated C+-+ code
is an implementation of the PROMELA model.

6.1 McCabe complexity for the generated source code

As expected, PROMNeT++ does not add a significant amount of complexity to the original
PROMELA models; on the contrary, any complexity, if it exists, is minuscule. This is evidenced
by the cyclomatic complexity values presented in the table below. These values were obtained

Ihttps://code.google.com/p/promnetpp/downloads/detail ?name=promnetpp-beta-6.zip

40

https://code.google.com/p/promnetpp/downloads/detail?name=promnetpp-beta-6.zip

CHAPTER 6. WORK AND RESULTS 41

with the aid of Metriculatoi] an Eclipse plug-in that gathers metrics for C++ source code.
Fortunately, the OMNeT++ IDE is Eclipse-based, and this plug-in can be installed and run
inside the IDE without errors.

Protocol Routine McCabe value
OneThirdRule | compute_message 1
OneThirdRule state_transition 11
OneThirdRule | system_every_round 6
OneThirdRule system_init 3

1-of-N compute_message 2
1-of-N state_transition 21
1-of-N system_every_round 6
1-of-N system_init 3

Do note that any other routines (such as begin_round, and end_round), although part of the
PROMELA structure for round-based consensus protocols, are included in the generic part of
the models, and are thus not dynamically translated to C++ code. We can clearly see, in
the table above, that McCabe’s complexity seldom exceeds the value of 10 units. It is known
that McCabe himself had proposed the value of 10 as a “reasonable (...) upper limit” [38]; even
OneThirdRule’s state_transition routine does not greatly exceed said limit (only by 1 unit).

The only “critical” instance here is 1-0f-N’s state_transition routine, with a McCabe value of 21.
However, by simply observing the original code for 1-of-N’s state_transition, we can clearly see
that most of the complexity comes from the original routine, and not the translation process.
Consider, for instance, the following “if” block in 1-of-N’s PROMELA specification, part of its
state_transition inline:

if
round < (R-1) ->
round++;
for(i : O0..(NUMBER_OF_PROCESSES-1)) {
if
my_state.received_message[i] ->
receive (_message, 1);
if
my_state.local_value < _message.value ->
my_state.local_value = _message.value
else -> skip
fi;
for(j : O0..(NUMBER_OF_PROCESSES-1)) {
my_state.view[j] = my_state.view[j] ||
_message.view[j]
+
:: else -> skip
fi
+
C...)
fi;

’http://marketplace.eclipse.org/content/metriculator

http://marketplace.eclipse.org/content/metriculator

CHAPTER 6. WORK AND RESULTS 42

We can clearly see that there’s a “for” loop, within an “if” block, which in turn is contained
within an outer “for” loop, which in turn is contained within the outermost “if” block. And
thus, it becomes clear that 1-of-N’s state_transition is, on its own, a complex routine.

6.2 Verification by output comparison

Earlier in this document, in chapter 3, we have described an experiment that consists on choos-
ing a seed for the custom pseudo-RNG contained within the PROMELA model, then attempting
to match Spin’s output with that of OMNeT++. An example was shown, using the value 1234
as the LCG’s seed, for the OneThirdRule protocol. Both outputs match, and thus we consider
that the translation process for the OneThirdRule protocol, with a seed of 1234, produces a
valid implementation of the model.

From a statistical point of view, however, one experiment alone (i.e. one seed, one protocol)
should not be regarded as sufficient to validate PROMNeT++’s translation process. Given
that we have another protocol at our disposal, and that we can change the value of the seed as
necessary, the very same experiment was performed on 30 distinct seeds, for both the OneThir-
dRule and the I-of-N protocols. The values for the seeds are as follows:

1234, 71337, 749464, -252392, -355723, 960103, 905902, 634195, -807626, 453852,
-438956, 521259, -231442, 615387, 392039, -456988, 144748, 685910, 115335,
-481879, -145600, -20244, 569789, 980987, 916986, 560451, 868386, 568700,
-165345, -47588

In total, 120 text file’| have been produced, both via Spin and OMNeT++. They are not
shown in this document, and are instead distributed as attachments, in CD-ROM format. It is
entirely possible to produce them on one’s own, however, as the following subsection describes.

6.2.1 Producing output files
Using Spin

Producing output with Spin is trivial for both the OneThirdRule and 1-of-N protocols. Using
the file 1-of-n.pml as an example, we may open a terminal (such as Windows 7’s command
prompt), navigate to where it is located, and issuing the following command:

spin 1-of-n.pml > output.txt

Then, we edit the I-of-n.pml with a text editor (such as Notepad++), and replace the current
seed with a new one. For example, if the initial seed was 1234, and we wish to test the seed
71337 next, we replace the following line

int rnd = 1234;
with
int rnd = 71337;

3There are 60 output files per protocol; there’s 30 seeds, 2 distinct applications for producing the output
(Spin and OMNeT++), and 2 distinct protocols, making a total of 30 x 2 x 2 = 120 text files in total.

CHAPTER 6. WORK AND RESULTS 43

We may then repeat the first command (using a different file name for the output), and continue
doing this process until all seed values are exhausted.

For the OneThirdRule protocol, the first command needs a small tweak; since the protocol never
terminates (unlike 1-of-N, which terminates due to “timeout”, by design), we must limit Spin’s
number of steps. This is done by passing -uN as a command-line argument for Spin, where N
is the number of steps, and can be integer value greater than zero. During our experiments, we
observed that 10000 (ten thousand) steps are more than enough for this purpose, as it allows
all processes to reach consensus, regardless of what seed is used. Thus, for the OneThirdRule
protocol, output is produced as follows:

spin -ul0000 NewOneThirdRule.pml > output.txt

Using PROMNeT++ and OMNeT++

The procedure here is nearly as straight-forward as it is when using Spin, since PROMNeT++
is entirely command-line based. The first step is to translate one of the PROMELA models to
C++ code. Using the NewOneThirdRule.pml file as an example:

set PROMNETPP_HOME=C:\promnetpp
java -enableassertions -jar "}PROMNETPP_HOME)\promnetpp.jar" NewOneThirdRule.pml

Or, for Linux/OS X users:

export PROMNETPP_HOME=/Users/yourusername/promnetpp
java -enableassertions -jar $PROMNETPP_HOME/promnetpp.jar NewOneThirdRule.pml

Then, assuming PROMNeT++ did not report any errors, the next step is to copy the generated
files to an existing OMNeT++ project (which can be created from within the IDE, by selecting
File—New—OMNeT++ Project...). This can usually be achieved by manually dragging the
files over to OMNeT++’s IDE, and dropping them on the project’s folder.

The final step is to build the OMNeT++ project (Right Click—Build Project), and performing
a simulation (Right Click—Run As—OMNeT++ Simulation). Unfortunately, no automated
process was discovered for producing output here, so simulations in OMNeT++ are manually
started and stopped, after a few rounds (10 rounds are enough for any of the two protocols to
reach consensus). A file with the name simulation-output.tzt is created and written to during
the simulation process, containing the output from the translated printf statements.

This procedure is described in more detail at PROMNeT++’s Wiki, in a page labelled “Com-
mandLineWorkFlow1”[]

6.2.2 Comparing the produced output files

Using the procedure described in the previous section, we can produce two distinct output files:
one related to PROMELA /Spin, and another related to PROMNeT++/OMNeT++. We need
to compare them to each other, meaning that we must determine if their contents are equal.
Note, however, that “equality” here does not account for the order of which some of the lines

‘https://code.google.com/p/promnetpp/wiki/CommandLineWorkflowl

 https://code.google.com/p/promnetpp/wiki/CommandLineWorkflow1

CHAPTER 6. WORK AND RESULTS 44

appear; as mentioned in chapter 3, processes may execute in a certain order when simulating via
Spin, while executing in a different order in OMNeT++4. This makes it so that, when looking
at both outputs side by side, it is likely that some of the text lines appear to be “swapped”.

As such, we define that both files are equal if their sorted contents are equal. By submitting
both files to a command-line tool for sorting lines of text, such as GNU’s sort or Windows’ sort
command, and then computing the difference between sorted outputs, via GNU’s diff, one can
effectively determine is there is a match between both files; if diff does not produce output,
both files are equal; otherwise, they are not. Miguel Martins has written a batch script for
Windows for this very purpose, aptly named sort and compare.bat. The batch code for it is as
follows:

Q@echo off
set GNUWIN32_HOME="C:\Program Files (x86)\GnuWin32"
set PATH=Y,PATHJ,; %GNUWIN32_HOME%\bin
set SORT_AND_COMPARE_HOME="C:\sort and compare"
REM 77777/ -
sort %1 > %SORT_AND_COMPARE_HOME%\templ.txt
sort %2 > %SORT_AND_COMPARE_HOME%\temp2.txt
cd %SORT_AND_COMPARE_HOMEY,
diff templ.txt temp2.txt > diff.txt
del templ.txt
del temp2.txt
for %%A in (diff.txt) do set SIZE=)%"zA
del diff.txt
if %SIZEY, EQU 0 (
echo Files are equal.
) else echo Files are not equal.
pause

The above script uses Windows 7’s built-in sort command, as well as GnuWin32’s dzﬁﬂ the
latter being a port of GNU’s diff to the Windows family of operating systems. Using the above
script, the procedure becomes clear: one has to merely submit two text files as arguments, one
resulting from Spin, one resulting from OMNeT++; the script automates the work for the user,
and either outputs one of “Files are equal” or “Files are not equal”. Fortunately for us, when
experimenting with the 30 seed values above, for both round-based consensus protocols, the
above script has always reported equality, thus validating PROMNeT++s translation process.

Shttp://gnuwin32.sourceforge.net/packages/diffutils.htm

 http://gnuwin32.sourceforge.net/packages/diffutils.htm

Chapter 7

Limitations and future work

It is of the most importance to note that PROMNeT++ should not (and is not) regarded as a
flawless PROMELA to C++ translation tool. It is, in fact, associated with a set of limitations
described in this chapter.

First and foremost, PROMNeT++ is restricted to translating PROMELA models pertaining
to round-based consensus protocols, rather than every single possible PROMELA input, mean-
ing that any user is limited to said type of models when using it. As shown in the previous
chapter, PROMELA models for PROMNeT++ have a very specific, well-defined structure that
must be followed; PROMNeT++ will not attempt to perform an accurate PROMELA to C++
translation for any model that does not comply with said structure.

Furthermore, PROMNeT++ is built with a parser for PROMELA that was written from
scratch during the second semester of this work’s internship, using JJTree. This parser does
not implement the entirety of the PROMELA grammaif] leaving out, for instance, keywords
such as zs and zr (exclusive send and exclusive receive, respectively). In fact, this JJTree-
based parser was incrementally coded with only the sufficient grammatical elements so that
our round-based consensus protocol PROMELA models would be parsed without errors. Thus,
said parser can be seen as a “best-effort” solution for the purposes of this project.

Likewise, PROMNeT++ itself was written from scratch, and is the result of the development
efforts of one single person (Miguel Martins). Ultimately, PROMNeT++ is not guaranteed
to accurately map every single PROMELA feature or behavior to C++ code. Perhaps the
most notable example of this is the absence of blocking primitives/mechanisms that exist in
PROMELA, but do not exist in PROMNeT++. Consider the following:

/* This is PROMELA code x*/
proctype MyProcess () {

C...)

if
conditionl -> printf("Action 1.\n");
condition2 -> printf ("Action 2.\n");
condition3 -> printf ("Action 3.\n");

fi

Ihttp://spinroot.com/spin/Man/grammar.html

45

http://spinroot.com/spin/Man/grammar.html

CHAPTER 7. LIMITATIONS AND FUTURE WORK 46

}

Unlike what happens in either C or C++, when all of the above conditions are evaluated as
“false”, MyProcess becomes blocked within the “if” block until any of the conditions becomes
“true”. PROMNeT++ would translate the above “if” block like so:

/* This is the C++ code that PROMNeT++ would generate */
if (conditionl) {
utilities::printf ("Action 1.\n");
} else if (condition2) {
utilities::printf ("Action 2.\n");
} else if (condition3) {
utilities::printf ("Action 3.\n");

Note that, in the above generated code, nothing happens when all three conditions are “false”.
A hypothetical solution to this problem would be:

while (true) {

if (conditionl) {
utilities::printf ("Action 1.\n");
break;

} else if (condition2) {
utilities::printf ("Action 2.\n");
break;

} else if (condition3) {
utilities::printf ("Action 3.\n");
break;

} else {
block(); /* Block until any of the above conditions
becomes true */

While it may look like an appealing solution, implementing a block() routine during development
ultimately proved to be impossible, if not extremely complex. Languages such as C, or in this
case C++, do not possess any blocking mechanisms, unless executing within a multi-threaded
environment, such as the well-known pthread-cond_wait() routine from POSIX Threads. For
this project, this option was entirely unavailable, due to the fact that OMNeT++, much like
the vast majority of simulation environments, is single-threaded.

Thus, as future work, we hereby propose that, whenever possible:
e PROMNeT++ be extended to more kinds of communication protocols.

e PROMNeT++'s JJTree-based parser be augmented to accommodate the full PROMELA
grammar.

e PROMNeT++ be extended (or possibly re-written) to target a pure multi-threaded
environment, eliminating the need for OMNeT++ entirely; for example, using POSIX
Threads, each node in the communication protocol could be mapped to a thread; threads

CHAPTER 7. LIMITATIONS AND FUTURE WORK 47

would communicate either via pipes or shared memory, with the appropriate synchroniza-
tion mechanisms.

We hereby remind the reader here that, as mentioned in chapter 1 of this document, all of
the source code for PROMNeT++ may be obtained, modified and re-used completely free of
charge, under the MIT License, and encourage any developers interested in the topic to come
up with their own solutions to the above limitations.

Chapter 8

Planned work versus actual work

During the first semester of the internship, a work plan had been formed, as the Gantt chart
below illustrated. Product development was divided into 3 phases. Phase 1 would consist in
writing code templates for OMNeT++: pre-made C++ code containing the basic structure and
functionality for round-based consensus protocols. Phase 2 would deal with the actual coding
of PROMNeT+, using the templates produced in phase 1. Finally, phase 3 would consist of
the integration of the translator tool with the Eclipse IDE, and was marked as optional, as
integration with Eclipse is not mandatory for this project, but is rather a “bonus feature”;
therefore, if needed, phase 2 could have been extended 2 weeks further and phase 3 may not
have taken place at all.

Due to technical restrictions, some abbreviations for the below Gantt charts’ labels are used,
namely “RBCP” for “Round-Based Consensus Protocol”, “arch.” for “architecture”, and
“depl.” for “deployment”.

48

CHAPTER 8. PLANNED WORK VERSUS ACTUAL WORK 49

8.1 Planned work

Months (2013)
February March April May June
112[3]a]1]2]3]a]1]2]3]4]1]|2]3]4]1]2]3]4

System /arch. design Ej

Development phase 1
Development phase 2 []

1st prototype testing [j Ej

1st prototype completion F
Development phase 2 (cont.)
Product QA: testing + depl. | R Ej
Product completion | R EE
Development phase 3 (optional) E]

Unit testing + General QA

Development for PROMNeT++ started during the second semester, on February 12, 2013.
Preliminary code for PROMNeT++ was hosted on the SVN repository provided by the De-
partment of Informatics Engineering, before migrating to its current repository provided by
Google Code. The Gantt charts below are a representation of Miguel Martins’ actual effort.

CHAPTER 8. PLANNED WORK VERSUS ACTUAL WORK 50
8.2 Actual work (February 2013 to June 2013)
Months (2013)
February March April May June
112[3]4a]1]2]3]a]1]2]3]4]1]|2]3]4]1]2]3]4

Preliminary code writing (part 1)
Manual writing of a very basic RBCP
Manual translation of OneThirdRule
Preliminary code writing (part 2)
Migration to Google Code

Writing PROMNeT++ Eclipse plugin
Writing PROMNeT++
Documentation on the Wiki

1st prototype completion

Writing PROMNeT++

Eclipse plugin (new version)

Unit testing + General QA

8.3 Actual work (July 2013 to September 2013)

Final version of the PROMNeT++ Eclipse plugin
Writing PROMNeT++

Writing final report /thesis

Months (2013)

July August |September
1]2]3]4]1]2]3]4]1]2]3]4

¢

Chapter 9

Conclusions

Throughout this document, we have presented PROMNeT++, an open-source tool developed
by Miguel Martins, to ascertain whether or not it is possible to generate runnable source code
from round-based consensus protocols modelled in PROMELA. For the OneThirdRule and
1-0f-N protocols distributed with PROMNeT++’s latest version to date [[] this is certainly
possible. Since these are two distinct protocols which make use of the typical constructs avail-
able in the PROMELA language, we believe that many other round-based protocols can be
translated using this tool.

All the essential requirements (i.e. those that have not been labelled as “optional” in chapter
4) have been met. A functional Eclipse plug-in that uses PROMNeT++, which was one of the
non-essential requirements (a “bonus feature”), is also available at PROMNeT++’s Download
page. We believe we are now in possession of a tool that will promote future research on the
topic of the automatic generation of source code from formal models. In fact, we encourage
future internship students and/or outside developers to modify and/or extend PROMNeT++
as necessary.

As a small reminder on the importance of this project’s research topic, it is important to
mention here that said automatic generation of source code is a powerful technique to deliver
software with very high quality standards, overcoming the defects of more common techniques
such as unit testing. In a way, PROMNeT++ is a step towards encouraging software developers
to use this technique, and produce less faulty software.

An extensive effort was made to guarantee the quality of the code generated by the tool. We
have, at our disposal, the simulation output of the model and the respective code we compared
in numerous test scenarios, so as to ensure that the generated code is an implementation of the
model. Furthermore, the generated code was reviewed and analysed in order to ensure that
its complexity remains similar to the original models. This gives us some confidence that the
generated code can be useful not only for performing simulation with OMNeT++ but also for
execution in real systems.

'https://code.google.com/p/promnetpp/downloads/detail 7name=promnetpp-beta-6.zip

51

https://code.google.com/p/promnetpp/downloads/detail?name=promnetpp-beta-6.zip

Bibliography

1]
2]

[11]

[12]

[13]

[14]

[15]

Edmund M. Clarke, Orna Grumberg, Doron A. Peled. Model Checking, MIT Press (2000)

A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr Basic Concepts and Tazonomy of De-
pendable and Secure Computing, IEEE Transactions on Dependable and Secure Computing
(2004), pages 12-13

Dahl O.J, Dijskstra E.W., Hoare C.A.R.. Structured Programming, Academic Press (1972)

Edmund M. Clarke Assuring Software Quality by Model Checking, Carnegie Mellon Uni-
versity (2002) (presentation URL: http://laser.inf.ethz.ch/2011/Elba/clarke/New}
20Lecture%201.pdf)

R. Barbosa, J. Karlsson Formal Specification and Verification of a Protocol for Consistent
Diagnosis in Real-Time Embedded Systems, Chalmers University of Technology (2008),
pages 222-223

E. Gafni Round-by-Round Fault Detectors: Unifying Synchrony and Asynchrony, ACM
(1998)

W. Visser, M. B. Dwyer, M. Whalen The hidden models of model checking, Springer (2012),
page 2
G. J. Holzmann The Model Checker SPIN, IEEE Transactions on Software Engineering

K. L. McMillan The SMV system for SMV wversion 2.5.4, Carnegie Mellon University
(2000)

A. Sinha, A. Ry, S. Singh Modeling & Verification of Sliding Window Protocol with Data
Loss and Intruder Detection using NuSMYV, Manipal Institute of Technology, Manipal
University (2012)

V. Vishal, S. Gugwad, S. Singh Modeling and Verification of Agent based Adaptive Traffic
Signal using Symbolic Model Verifier, arXiv (2012)

G. Behrmann, A. David, K. G. Larsen A Tutorial on Uppaal 4.0, Department of Computer
Science, Aalborg University (2006)

O. Wibling, J. Parrow, A. Pears Automatized Verification of Ad Hoc Routing Protocols,
Department of Information Technology, Uppsala University (2004)

A. Nimiya, T. Yokogawa, H. Miyazaki, S. Amasaki, Y. Sato, M. Hayase Model checking
consistency of UML diagrams using Alloy, World Academy of Science, Engineering and
Technology (2010)

S. Pai, Y. Sharma, S. Kumar, R. M Pai, S. Singh Formal Verification of OAuth 2.0 using
Alloy Framework, 2011 International Conference on Communication Systems and Network
Technologies (2001)

52

http://laser.inf.ethz.ch/2011/Elba/clarke/New%20Lecture%201.pdf
http://laser.inf.ethz.ch/2011/Elba/clarke/New%20Lecture%201.pdf

BIBLIOGRAPHY 93

[16]

[17]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[32]

[33]

[34]

I. Feinerer, G. Salzer A comparison of tools for teaching formal software verification, Formal
aspects of computing (2009)

M. Sample, G. Neufeld Snacc 1.1: A high performance ASN. 1 to C/C++ compiler, Van-
couver: University of British Columbia (1993)

J. Levine flex & bison, O’Reilly Media (2009), pages 81-117

E. Mamas, K. Kontogiannis Towards Portable Source Code Representations Using XML,
University of Waterloo (2000), pages 6-7

E. M. Gagnon, L. J. Hendren SableCC, an Object-Oriented Compiler Framework, McGill
University (1998)

N. Li, M. Shen, S. Li, L. Zhang, Z. Li STVsm: Similar Structural Code Detection Based
on AST and VSM, Springer (2012)

C. Wulf, S. Frey, W. Hasselbring A Three-Phase Approach to Efficiently Transform C#
into KDM, University of Kiel (2012)

R. Martin Brualla Automatic translation of programs for evaluation of execution times,
Universitat Politecnica de Catalunya (2011)

R. Herzog, K. Schuhmann, D. Schwudke, J. L. Sampaio, S. R. Bornstein, M. Schroeder, A.
Shevchenko LipidXplorer: a software for consensual cross-platform lipidomics, PLoS One
(2012)

A. M. Kanthe, D. Simunic, R. Prasad A Mechanism for Gray Hole Attack Detection in
Mobile Ad-hoc Networks, International Journal of Computer Applications (2012)

D. Sivaganesan, R. Venkatesan Dynamic Cluster Routing Protocol for Broadcasting in
Clustered Mobile Ad Hoc Networks, European Journal of Scientific Research (2012)

A. Derhab, F. Ounini, B. Remli MOB-TOSSIM: An Extension Framework for TOSSIM
Sitmulator to Support Mobility in Wireless Sensor and Actuator Networks, IEEE 8th In-
ternational Conference (2012)

E. Perla, A. o) Cathain, R. S. Carbajo, M. Huggard, C. Mc Goldrick PowerTOSSIM z:
realistic energy modelling for wireless sensor network environments, ACM (2008)

O. Landsiedel, H. Alizai, K. Wehrle When Timing Matters: Enabling Time Accurate and
Scalable Simulation of Sensor Network Applications, IPSN’08. International Conference on
[EEE (2008)

M. Draxler, F. Beister, S. Kruska, J. Aelken, H. Karl Using OMNeT++ for Energy Opti-
mization Simulations in Mobile Core Networks, ACM (2012)

A. Comsa, A. B. Rus, V. Dobrota Simulation of the Floyd-Warshall Algorithm Using
OMNeT++ 4.1, 9th International Conference on Communications (COMM) (2012)

A. Tliasov Generation of certifiably correct programs from formal models, Software Certifi-
cation (WoSoCER), 2011 First International Workshop on. IEEE (2011)

L. Lensink, C. Munoz, A. Goodloe From Verified Models to Verifiable Code, NASA, Langley
Research Center, Hampton VA 23681-2199, USA (2009)

T. Tsuchiya, A. Schiper Using Bounded Model Checking to Verify Consensus Algorithms,
Springer (2008)

BIBLIOGRAPHY 54

[35] O. Miirk, D. Larsson, R. Hahnle KeY-C: A Tool for Verification of C' Programs, Automated
Deduction-CADE-21 (2007)

[36] B. Charron-Bost, A. Schiper The Heard-Of model: computing in distributed systems with
benign faults, Springer (2009), page 69

[37] N. Fathollahnejad, E. Villani, R. Pathan, R. Barbosa, J. Karlsson Probabilistic Analysis
of a 1-of-N Selection Algorithm Using a Moderately Pessimistic Decision Criterion, 19th
IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2013), to
appear

[38] T. McCabe A Complexity Measure, IEEE Transactions on Software Engineering (1976)

Appendix A

User feedback on PROMNeT++’s

translation process

Raul Barbosa, this internship’s supervisor, had arranged an informal meeting with researchers
Fatemeh Ayatolahi and Behrooz Sangchoolie, to determine how feasible it would be to re-use
PROMNeT++’s generated source code, and ultimately run a round-based consensus protocol
on their system, without resorting to OMNeT++.

It is important to note, first and foremost, that their system is setup to compile and run C code,
rather than C++ code (which OMNeT++ uses). Thankfully, most of the generated source code,
and in particular the source code for the compute_message, state_transition, system_every_round
and system_init routines, is backwards compatible with C, with minor adaptations (such as us-
ing “printf()” instead of “utilities::printf()”).

Raul Barbosa was also inquired as to how we guarantee that the generated code is a valid imple-
mentation of a PROMELA model, which was adequately answered by referring to the output
comparison experiment in this document. Lastly, it was noted that, in order to make use of
the generated source code, a runtime environment for their system would have to be built from
scratch. Said runtime environment would be responsible for handling low-level events, such as
sending and receiving messages, as well as ensuring that each node in the system is correctly
initialized and runs the appropriate routines in the correct order. This was to be expected, due
to the fact that OMNeT++ provides its users with a high-level API for message handling and
node initialization, which would normally not exist in a real-time system.

Fortunately, it was noted that doing the above is “not very complex”, and as such, all that’s
truly required is that the generated code for the various round-based consensus protocol rou-
tines functions correctly. Additionally, they have mentioned that they would like to map one
process to one node, while all remaining processes are mapped to another node, allowing them
to monitor the state of the single-process node. A simple solution to this problem would be to
insert multiple instances of the same code in each node.

Overall, PROMNeT++ seems to generate source code without requiring a considerable amount
of effort to be re-used in “OMNeT++-less” environments.

95

Appendix B

The OneThirdRule protocol, translated

To better understand how PROMNeT++ operates, this appendix shall illustrate how the
OneThirdRule protocol is translated, from PROMELA to C++4. The starting PROMELA
code is as follows:

Copyright (c) 2013, Raul Barbosa
Use 1is subject to license terms.

licensing terms should be available in the form of text files.
The standard source code distribution provides a LICENSE.txt

*
*
*
* This source code file is provided under the MIT License. Full
*
*
* file which can be consulted for licensing details.

*

OneThirdRule in PROMELA
Author: Raul B. Barbosa <rbarbosa@dei.uc.pt>
Modified by Miguel Martins <marm@student.dei.uc.pt>

Modifications were done on the specification provided on April 23
2013:

-More descriptive variable names

-Indentation of 4 spaces per tab

-Annotations for PROMNeT++

*/

/* Q@UsesTemplate (name="round_based_protocol_generic") x/
/* @TemplateParameter (name="numberOfParticipants") */
#define NUMBER_OF_PROCESSES 3

#define NUMBER_OF_ASYNCHRONOUS_ROUNDS 1

/* Random number generation */

int rnd = 1234;

#define next(r) (r * 16807) % 2147483647
#define boolean(r) ((r >> 30) & 1)

/* End random number generation */

26

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED

int round_id = O;

typedef message {
byte value;

}

typedef process_state {
bool received_message [NUMBER_OF_PROCESSES];
byte received_message_count;

byte local_value;
byte decision_value;
byte values [NUMBER_OF_PROCESSES]

process_state state [NUMBER_OF_PROCESSES];
#define my_state state[_pid-1]

inline compute_message(_message) {
_message.value = my_state.local_value

}

inline state_transition() {
d_step {
my_state.received_message_count = 0;
for(i : 0..(NUMBER_OF_PROCESSES-1)) {
if
my_state.received_message[i] ->
receive (_message, 1i);
my_state.values[i] = _message.value;
my_state.received_message_count++
else -> skip
fi

if
my_state.received_message_count > (2 x*
NUMBER_OF_PROCESSES/3) ->

1 = 0;
for(i : 1..(NUMBER_OF_PROCESSES)) {
k = 0;
for(j : O0..(NUMBER_OF_PROCESSES-1)) {
if
my_state.values[j] == i -> k++
else -> skip
fi

57

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED

k >1 -> my_state.local_value = i; 1 = k
else -> skip
fi
}
else -> skip
fi;
if
1 > (2 *x NUMBER_OF_PROCESSES/3) ->
assert ((my_state.decision_value ==
my_state.local_value)
|| (my_state.decision_value == 0));
my_state.decision_value = my_state.local_value;
printf ("MSC: P%d decides %d on round %d\n", _pid,
my_state.decision_value, round_id)
else -> skip
fi
}
+
inline system_init () {
j =1,
for(i : 0..(NUMBER_OF_PROCESSES-1)) {
state[i].local_value = j;
rnd = next(rnd);
if
boolean (rnd) -> j++
else -> skip
fi;

printf ("MSC: PJ%d has initial value x=%d\n", i+1,
state[i].local_value)

inline system_every_round () {
round_id++;
printf ("MSC: new round, id=%d\n", round_id);
printf ("rnd=%d\n", rnd);

if

remaining_asynchronous_rounds == 0 -> synchronous = true

else -> remaining_asynchronous_rounds --
fi;

for(i : O0..(NUMBER_OF_PROCESSES-1)) {
for(j : O0..(NUMBER_OF_PROCESSES-1)) {
if
synchronous || i == j ->
state[i].received_message[j] = true
else ->

o8

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED

rnd = next(rnd);
state[i].received_message[j] = boolean(rnd)
fi

/* @BeginTemplateBlock (name="generic_part") */
message messages [NUMBER_OF_PROCESSES];

byte token;

inline begin_round () A{

(token == _pid)
+
inline end_round () {
token--
+
inline send_to_all(_message) {
messages [_pid-1].value = _message.value
}
inline wait_to_receive() {
token--;
(token == _pid)

inline receive(_message, id) {
_message.value = messages[id].value

by

proctype Process() A{
message _message;
byte i, j, k, 1;
do
begin_round () ;
compute_message (_message) ;
send_to_all(_message);
wait_to_receive ();
state_transition ();
end_round ()
od

init {
byte i, j, remaining_asynchronous_rounds =
NUMBER_OF_ASYNCHRONOUS_ROUNDS ;
bool synchronous;

99

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED 60

system_init ();

atomic {
for(i : 1..(NUMBER_OF_PROCESSES)) {
run Process ()

}
+
do
(token == 0);
system_every_round () ;
token = NUMBER_OF_PROCESSES;
(token == 0);
token = NUMBER_OF_PROCESSES
od

}
/* @EndTemplateBlock */

When submitting the above PROMELA code as input for PROMNeT++, several header /source
files are produces. Translated code relative to the Process nodes is stores in a file named
_process.cc, whose code (in this case) is as follows:

#include " _process.h"
#include "types.h"
#include "utilities.h"

#include "message_m.h"
#include <omnetpp.h>

extern int rnd;
extern int round_id;
extern process_state state [NUMBER_OF_PROCESSES];

void Process::initialize () {
ProcessInterface::initialize ();
_pid = getlIndex() + 1;
received_message_count = 0;
//Variable initialization
i = 0;

J 0
k = 0;
1 0

void Process::handleMessage (cMessage* msg) {
if (msg->isSelfMessage ()) {
/*

* Messages whose class is '"Message" are messages that a

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED 61

* process sent to itself. If we encounter these, we must
* queue them, as if any other process sent them.

* /
if (strcmp(msg->getClassName (), "Message") == 0) {
enqueue_message (msg) ;
}
else if (strcmp(current_location, "main") == 0) {
int step = step_map["main"];
if (step == 0) A
begin_round () ;
}
if (step == 1) A
compute_message (this->_message);
send_to_all(this->_message);
+
if (step == 2) {
state_transition ();
end_round () ;
}
}
} else {
const char* sender_name = msg->getSenderModule ()->
getName () ;
//Messages from init process
if (strcmp(sender_name, "init") == 0) {
//"init" message
if (strcmp(msg->getName (), "init") == 0) {
//Placeholder
}
//"new_round" message
else if (strcmp(msg->getName (), "new_round") == 0) {
step_map["main"] = 0;
scheduleAt (simTime (), empty_message);
}
//"begin" message
else if (strcmp(msg->getName (), "begin") == 0) {
step_map ["main"] = 1;
scheduleAt (simTime (), empty_message);
+
delete msg;
+
//Messages from another process
else if (strcmp(sender_name, "process") == 0) {
enqueue_message (msg) ;
}

void Process::finish() {
ProcessInterface::finish ();

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED

void Process::enqueue_message (cMessage*x msg) {

Message* message = check_and_cast<Message*>(msg);

Process* sender = check_and_cast<Process*>(
message ->getSenderModule ());

int sender_pid = sender->_pid;

received_messages [sender_pid - 1] = message;

++received_message_count;

if (received_message_count == NUMBER_OF_PROCESSES)
++step_map ["main"];
scheduleAt (simTime (), empty_message);

//Generic functions
void Process::begin_round () {
send (ready_message->dup (), "init_gate$o");

}

void Process::end_round () {
for (int i = 0; i < NUMBER_OF_PROCESSES; ++i) {
delete received_messages[i];

+
received_message_count = O;
send(finished_message->dup(), "init_gate$o");

void Process::send_to_all(message_t& msg) {
Message* message = new Message ();
message->set_message (msg) ;
for (i = 1; i <= NUMBER_OF_PROCESSES; ++i) {
if (i == _pid) {

scheduleAt (simTime (), message->dup());
} else {
send (message->dup(), "process_gate$o", 1i);
}
}
delete message;
+
void Process::receive(message_t& msg, byte id) {
Message* message = received_messages/[id];
msg = message->get_message ();

//Specific functions
void Process::compute_message(message_t& _message) {
_message.value = my_state.local_value;

{

62

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED

void Process::state_transition() {
my_state.received_message_count = O;
for (i = 0; i <= (NUMBER_OF_PROCESSES - 1); ++i) {
if (my_state.received_messagel[i]) {
receive (_message, i);
my_state.values[i] = _message.value;
my_state.received_message_count++;

+

else {
//Skip

+

}

if (my_state.received_message_count > (2 x
NUMBER_OF _PROCESSES / 3)) {

1 = 0;
for (i = 1; i <= (NUMBER_OF_PROCESSES); ++i) {
k = 0;

for (j = 0; j <= (NUMBER_OF_PROCESSES - 1); ++j) {

if (my_state.values[j] == i) {
k++;
}
else {
//8kip
}
}
if (kx > 1) {
my_state.local_value = 1ij;
1 = k;
}
else {
//Skip
}
}
+
else {
//Skip
}
if (1 > (2 * NUMBER_OF_PROCESSES / 3)) {
ASSERT ((my_state.decision_value == my_state.local_value)
|| (my_state.decision_value == 0));
my_state.decision_value = my_state.local_value;
utilities::printf (this, "MSC: P%d decides %d on round
%d\n", _pid, my_state.decision_value, round_id);
+
else {
//Skip

63

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED 64

‘ ¥

B.1 The translation process, explained

Like the vast majority of C+-+ source code, _process.cc starts with the inclusion of the appro-
priate header files. A few external variable declarations follow, as they are variables that are
initializes in other source code files. We are then presented with OMNeT++'s basic routines:
witialize, handleMessage and finish. Every node in OMNeT++ must have these routines, by
design: initialize performs all necessary operations for initializing the node’s internal state; we
can clearly see that every process initializes its own PID (process ID), and an extra variable
for counting how many messages that process has received, as well as its own PROMELA byte
variables, i, 7, k, [. handleMessage dictates what should happen when this process has received
a message, whether its a message it sent to itself (via scheduleAt), or a message from another
process (including the init process). Finally, finish performs the necessary clean-up operations
when a simulation is terminated.

We then notice there’s yet another function that doesn’t originate in the PROMELA model,
but is necessary nonetheless. enqueue_message stores any incoming messages for this process,
after they’ve been sent, in a message array (“received_messages”). This allows processes to call
the receive routine later, without blocking.

The PROMELA routines then follow. They’re divided, as the comments indicate, into “generic
functions” and “specific functions”. Generic functions are PROMELA routines that belong to
the PROMELA model’s generic part (enclosed within the

@Begin TemplateBlock(name= “generic_part”) and @EndTemplateBlock

annotations in the model).

Notice, however, that none of the generic functions are direct translations from their PROMELA
counterparts. This is due to, in part, the usage of OMNeT++’s API, and the presence of
a different synchronization mechanism between rounds. The PROMELA implementation of
OneThirdRule, as shown above, synchronizes processes via token passing. The corresponding
implementation in OMNeT++4, on the other hand, uses simple messages such as “new_round”,
“begin”, “ready”, and “finished”, exchanged between the init process and the Process processes:

1. The init process sends a “new_round” message to all other processes, indicating the
beginning of a new round.

2. The other processes reply to wnit with a “ready” message, indicating they’re ready to
commence the round.

3. init replies with a “begin” message, instructing all processes to perform their operations.

4. When the round is over, all processes (excluding init) clear their internal message array,
send a “finished” message to init, and await for the next “new_round” message.

5. Repeat from step 1 above.

Finally, the specific functions are directly translated to C+-+ code, and are nearly identical
to their PROMELA counterparts. Notably, PROMELA’s d_step block is omitted, as it’s only

APPENDIX B. THE ONETHIRDRULE PROTOCOL, TRANSLATED 65

relevant for simulating the PROMELA model via Spin. if blocks are translated here as C++
if-else statements (a common pattern here is “if, else skip”). Likewise, for loops in PROMELA
are directly mapped to their suitable C++ implementations; a loop in the form for(variable :
START..END) is translated as for (variable = START; variable <END; ++variable) in C++.

	Introduction
	State of the art
	Software tools
	Model checking
	Spin
	SMV
	UPPAAL
	Alloy
	Similar tools - KeY

	Parsing/language recognition
	Flex and Bison
	JavaCC and JJTree
	SableCC
	ANTLR
	PLY

	Network simulation
	The ns series
	GloMoSim
	TOSSIM
	OMNeT++

	Related work
	Choosing the adequate tools

	Objectives and methodology
	Chosen software tools
	Model checking
	Parsing/language recognition
	Network simulation

	PROMNeT++'s main workflow
	Software development methodology
	Development tools
	IDE
	Unit testing framework

	Development platforms/environments
	SVN repository and tools

	Quality Assurance Plan
	Code style and conventions
	Product development cycle

	Round-based model
	PROMNeT++'s template system
	Work/experimentation methodology
	Eliminating non-determinism in PROMELA: pseudo-RNG substitution
	Obtaining results

	Requirements analysis
	Stakeholder identification
	User stories
	Rationale
	Specification

	Requirements listing
	Technical requirements
	Functional requirements

	Detailed requirements for the translation process
	Round-based model
	A few important remarks about the protocol structure
	Protocol routines and their implementations

	PROMNeT++'s annotations

	Risk management
	Defining ``(thresold of) success'' and ``risk''
	Risk list
	Risk response strategies

	Reflecting over the risks

	Work and results
	McCabe complexity for the generated source code
	Verification by output comparison
	Producing output files
	Using Spin
	Using PROMNeT++ and OMNeT++

	Comparing the produced output files

	Limitations and future work
	Planned work versus actual work
	Planned work
	Actual work (February 2013 to June 2013)
	Actual work (July 2013 to September 2013)

	Conclusions
	User feedback on PROMNeT++'s translation process
	The OneThirdRule protocol, translated
	The translation process, explained

