

Digging deeper:
Hardware-supported
dynamic analysis of
Linux Programs

Rodrigo Oliveira Santos
rosantos@student.dei.uc.pt

Orientador:

Prof. Federico Maggi

Co-orientador:

Prof. Jorge Granjal

02 de Setembro de 2015

Mestrado em Engenharia Informática
Dissertação
Relatório Final

Examiners

Professor Edmundo Monteiro

Professor Marco Vieira

I would like to dedicate this thesis to my parents...

Acknowledgements

Firstly, I would like to express my gratitude to both my advisors, Prof.

Federico Maggi from Politecnico di Milano Prof. Jorge Granjal from

University of Coimbra for their continuous guidance, availability, sup-

port and motivation throughout this challenging project. A special

thanks to Prof. Federico Maggi for taking the risk of advising a master

thesis of a former Erasmus student.

Secondly, I thank my friends and colleagues which shared the experi-

ence of studying in Coimbra and made me go through one of the best

experiences of my life. This journey full of sleepless nights would not be

the same without the funny and bohemian moments which we shared.

Next, I would like to thanks to my girlfriend for her support and encour-

agement throughout this major and for understanding when I lacked

availability. In addition, I would like to thank her guidance and pa-

tience in all my challenges and for always being there for me.

Last, but not least, I would like to thank my parents for all the support

and comprehension in the hardest times. They always stood for me and

supported me during this adventure, even on tough decisions like being

without them for six months. I would like to thank them for allowing

me to make the most of this experience.

Abstract

Malware has been evolving and now, besides computers, is targeting

smartphones and tablets. This evolution has occurred because mobile

devices contain sensitive data and are becoming ubiquitous, which is a

substantial threat for users. Dynamic program-analysis techniques are

used to observe the actions taken by a malicious application, to recog-

nize signs of malicious sequences. Typically, dynamic tracing leverages

a virtualized or emulated environment to observe the execution while

being invisible to the malware. However, there are several techniques

that malware can exploit to figure out that it is running under a vir-

tual environment, and show no malicious behavior, such as to appear

benign to the observer.

We propose to eradicate the aforementioned problem, by creating an

hardware-based solution for runtime events reconstruction. The ratio-

nale is that, being running on real hardware, the existing environment-

fingerprinting techniques are less likely to succeed. Our idea is to lever-

age the availability of low-cost development boards and smartphones,

equipped with JTAG debugging interfaces, that run Android. Building

upon the introspection data that can be extracted via the JTAG inter-

faces (e.g., CPU instructions, hardware state, power consumption), we

will adapt existing techniques to reconstruct the runtime events (e.g.,

system calls) of a process from hardware-derived instruction traces,

which is the first step for creating a more robust dynamic analysis

tool.

Keywords: JTAG, Android, Dynamic Analysis, Debugging, Tracing,

OpenOCD, Pandaboard ES, Flyswatter2, Linux

Resumo

O malware, ao longo dos anos, tem vindo a evoluir e, atualmente,

alm de computadores, est a comear a alcanar dispositivos mveis como

smarphones e tablets. Esta evoluo ocorre porque os dispositivos mveis

contm dados sensveis e so cada vez mais ubquos, o que representa uma

enorme ameaa para os utilizadores. Tcnicas de anlise dinmica so us-

adas para observar as aes tomadas por uma dada aplicao maliciosa e

reconhecer as sequncias maliciosas nela inseridas. Tipicamente, estas

tcnicas instrumentam ambientes virtualizados ou emulados para obser-

var a execuo de uma aplicao sem que esta se aperceba que est a ser

analisada. No entanto, existem algumas tcnicas que permitem que o

malware se aperceba que est a executar num ambiente virtualizado, no

executando assim, as suas sequncias maliciosas para ludibriar o uti-

lizador.

Propomos, para erradicar o problema supracitado, a criao de uma soluo

baseada em hardware de modo a reconstruir chamadas ao sistema em

tempo de execuo. O raciocnio passa por assumir que ao executar a

anlise num ambiente real as tcnicas existentes de reconhecimento de

ambientes virtualizados tero menos hipteses de ser bem-sucedidas. O

objetivo do presente trabalho foca-se em tirar partido de placas de

custo reduzido equipadas com interfaces JTAG que suportem Android.

Ao reconstruir eventos de tempo de execuo de um processo, como

chamadas ao sistema, atravs de informao extrada a partir de interfaces

JTAG, estamos a adaptar tcnicas existentes com dados recolhidos di-

retamente do hardware. Este deve ser o primeiro passo para a criao de

uma ferramenta de anlise dinmica mais robusta.

Contents

1 Introduction 1

1.1 Objectives . 3

2 State of the Art and Motivation 4

2.1 Dynamic Analysis . 4

2.2 Virtual Machine Introspection overview 5

2.3 Available Approaches . 6

2.3.1 Android background . 6

2.3.2 DroidScope . 7

2.3.3 CopperDroid . 11

2.4 Evasion Techniques . 15

2.4.1 Evading Dynamic Analysis via Sandbox Detection 15

2.4.2 Anti-analysis Techniques . 20

2.5 Conclusions . 23

2.5.1 Problem Statement . 23

2.5.2 Goals . 24

3 Background on Debugging and Tracing Solutions 25

3.1 ARM Debugging and Tracing . 26

3.1.1 CoreSight . 26

3.1.2 Debug Access Port . 27

3.1.3 Software Tracing . 28

3.1.4 Program Flow Trace Macrocell 29

3.1.5 Embedded Trace Buffer . 30

3.1.6 Trace Port . 30

vi

CONTENTS

3.1.7 Hardware Breakpoints . 30

3.2 JTAG for ARM . 32

3.2.1 In-Circuit Emulator . 33

3.2.2 JTAG capabilities . 33

Debugging . 34

3.2.3 JTAG Debuggers . 34

3.2.4 Trace Hardware . 35

3.2.5 Software Debuggers . 36

3.3 Conclusions . 36

4 Approach 38

4.1 Approach Overview . 38

4.2 Phase 1: Code Generation . 39

4.2.1 Phase 1.1: System Call Data Reconstruction 39

4.2.2 Phase 1.2: Introspection Procedure Generation 40

4.3 Phase 2: Tracing . 41

4.3.1 Phase 2.1: Hardware Breakpoint Management 42

4.3.2 Phase 2.2: System Call Tapping 42

4.3.3 Phase 2.3: Process Data Structure Reconstruction 42

4.3.4 Phase 2.4: Memory Introspection & Argument Unmarshalling 43

4.3.5 Phase 2.5: Logging . 43

4.4 Phase 2: Conclusions . 43

5 Implementation Details 45

5.1 Phase 1: Code Generation . 46

5.1.1 Phase 1.1: System Call Data Reconstruction 46

Challenges . 48

5.1.2 Phase 1.2: Introspection Procedure Generation 50

Challenges . 54

5.2 Phase 2: Tracing . 55

5.2.1 Phase 2.1: Hardware Breakpoint Management 55

5.2.2 Phase 2.2: System Call Tapping 56

5.2.3 Phase 2.3: Process Data Structure Reconstruction 57

vii

CONTENTS

5.2.4 Memory Introspection & Argument Unmarshalling and Log-

ging . 58

6 System Details and Architecture 61

6.1 System Environment Architecture 61

6.1.1 Debugging Architecture . 62

6.1.2 Booting Schema . 62

6.2 System Requirements . 64

6.2.1 Board . 65

6.2.2 JTAG Debugger . 66

6.2.3 Software Debugger . 67

7 Experimental Validation 68

7.1 System setup . 68

7.2 Case Study . 68

7.3 Correctness . 70

7.4 Benchmarking . 71

7.4.1 Micro Benchmark . 71

7.4.2 Macro Benchmark . 73

7.5 Conclusions . 73

8 Discussion 75

8.1 Limitations . 75

9 Conclusions and Future Work 77

9.1 Future Work . 77

References 80

viii

List of Figures

2.1 Android abstraction level . 6

2.2 DroidScope Overview [Yan and Yin, 2012] 8

2.3 task struct’s list . 9

2.4 DroidScope APIs [Yan and Yin, 2012] 11

2.5 Binder Communication . 12

2.6 CopperDroid architecture [K. Tam and Cavallaro, 2015] 14

2.7 List of API methods employed for emulator detection [T. Vidas, 2014] 16

3.1 DAP Control Flow [ARM R©, 2012] 28

3.2 Breakpoint control register’s bits 31

4.1 Open SiliTracer . 38

4.2 Phase 1 . 40

4.3 Phase 2 . 41

6.1 System Architecture . 61

6.2 Debug Cycle . 63

6.3 Booting Schema . 64

7.1 System Setup . 69

7.2 Micro benchmarking on the target 74

ix

List of Tables

2.1 DVM execution context . 10

2.2 CPU benchmarks . 18

3.1 JTAG constraints . 32

7.1 Micro benchmarking results . 72

7.2 Macro benchmarking results . 73

x

Listings

5.1 Pahole output before instrumentation 47

5.2 Pahole output after instrumentation 48

5.3 Structures and typedefs used on clock gettime 51

5.4 clock gettime system call prototype 51

5.5 Memory introspection code of clock gettime 51

5.6 Dump integer from register . 53

5.7 Dump long integer from memory 53

5.8 Dump generic type’s value . 53

5.9 Dump structure timespec . 53

5.10 Implementation of Hardware Breakpoint Management 56

5.11 Implementation of Hardware Breakpoint Management 56

5.12 Process Data Reconstruction . 57

5.13 thread info definition [lxr FreeElectrons, 2012b] 57

5.14 current thread info definition [lxr FreeElectrons, 2012a] 58

5.15 Declaration of the array of function pointers 58

5.16 Populate the array of function pointers 59

5.17 System calls logging . 59

5.18 LOG SYSCALL macro definition 59

7.1 Connecting to Open SiliTracer . 69

7.2 Enable the CPU ticks count register 71

7.3 Read the CPU ticks count register 72

xi

Chapter 1

Introduction

Android OS is becoming more and more popular in a wide range of electronic de-

vices (smartphones, tablets, embedded systems, etc). On the smartphone market,

only in the third quarter of 2014, 283 million units were shipped, which represents

84% of the market share [IDC, 2014]. On top of that, there are over 1 million new

Android devices activations worldwide [Android-central, 2015]. This popularity,

its open model and the users sensitive data, positions Android OS on an high

threat level, since it is very attractive for cyber-attackers. Moreover, the easiness

of uploading malware to mobile marketplaces [W. Zhou and Ning, 2012] and the

highly delayed patches from producers worsen the users security. Furthermore,

according with mcafee [McAfee, 2014], the number of new malware, per quarter of

an year, is increasing over time. More precisely, more than 700 000 new malware

samples were found in the first quarter of 2014, which gives a total of, roughly, 4

000 000 malware samples at that time. And the trend is to increase even more.

Nowadays malware is mainly profit-motivate, more precisely, 88% of the all sam-

ples, in the first quarter of 2014 [F-SecureLabs, 2014], is targeting users sensitive

information, because it is highly valuable in the black market [Symantec, 2012].

Threats like sending SMS and dialing to premium numbers, billing of fake antivirus

(ransomware), bypassing two-factor authentication, among others are now real in

mobile devices. A recent study shows the monetization system, through mobile

malware, on the underground economy of China [trend micro, 2014].

1

Under such scenario, it was mandatory for security experts to create tools to

tackle the previous issues. Current tools, that detect hidden malicious activities,

are based in two techniques: static analysis [DEXLabs, 2012] and dynamic analy-

sis [InternationalSecureSystemsLab, 2012; K. Tam and Cavallaro, 2015; the hon-

eynet project, 2012; Yan and Yin, 2012]. Google has created Bouncer [Google,

2012], which tries to detect malicious Applications, but it can be fingerprinted and

evaded [Oberheide and Miller, 2012].

Research Gap However, cyber-atackers have techniques to evade current tech-

niques. Static analysis might be evaded by obfuscating code [V. Rastogi and

Jiang., 2013]. Additionally, it cannot record runtime information that may be

useful. Dynamic analysis tools overcome the limitations of static analysis. These

tools often rely on emulators or virtual machines and leverage the capabilities

of VMI [Garfinkel and Rosenblum, 2003] to analyze attacks even on the kernel.

Nevertheless, such environments can be fingerprinted, making it possible for the

malware to hide its malicious activities [Oberheide and Miller, 2012; T. Petsas and

Ioannidis, 2014; T. Vidas, 2014].

The project hereby presented intends to take the next step into dynamic analy-

sis tools. We are developing an automated tool that thwarts fingerprinting existing

techniques by recording informations directly from an ARM-based CPU, since it

is the most widely adopted standard for smartphones [ARM R©, 2015], and by

introspecting the main memory. This will basically raise the bar to existing finger-

printing techniques employed by malware, since the environment is not virtualized

or emulated. The recorded information will then be used to reconstruct the be-

havior of a given software.

The novelty of this approach lies in the reconstruction the runtime events,

like system calls, by observing directly a real CPU and the main memory, with

the aid of JTAG protocol and ARM’s debug IP 1, instead of instrumenting an

emulated CPU through virtual machine introspection techniques. Furthermore, it

1IP: Intelectual property

2

1.1 Objectives

will prevent most, if not all, the existing fingerprinting techniques, so that it will

be harder for malware to hinder analysis.

1.1 Objectives

This work aims to create a cost-effective automated solution which analyzes the

behavior of a specific Linux process. This solution should receive a program to

seamlessly install, execute and analyze a given program. The analysis should be

saved to a file so that an expert can read and infer the behavior of the program.

3

Chapter 2

State of the Art and Motivation

This chapter supplies information on the state of the art of dynamic analysis, its

benefits and its limitations. Additionally, it analyzes the used tools [K. Tam and

Cavallaro, 2015; Yan and Yin, 2012] based on this technique, that can be applied

on Android operating system, since they are the most interesting ones for this

work scope.

The first section provides an overview of dynamic analysis itself and virtual

machine introspection (VMI) [Garfinkel and Rosenblum, 2003]. Then it is divided

into two subsections: available approaches [K. Tam and Cavallaro, 2015; Yan and

Yin, 2012]; evasion techniques [T. Petsas and Ioannidis, 2014; T. Vidas, 2014]. The

first subsection provides additional information about the tools used to employ

dynamic analysis in Android OS. In the second subsection, the reader can have an

insight of the known existing techniques employed to evade dynamic analysis-based

existing tools.

2.1 Dynamic Analysis

Dynamic Analysis is a technique that infers the behavior of a given software, in

an automated way, by analyzing its actions. Security tools leverage this analysis

as a data source to classify software behaviors as malicious (malware) or benign.

The way that the analysis is performed may vary on the behavior-based technique

4

2.2 Virtual Machine Introspection overview

employed. The next topics describe two different tools [K. Tam and Cavallaro,

2015; Yan and Yin, 2012] that are examples of those variations, none of which

is better than the other, so it really depends on what the security expert wants

to analyze or do. However, in general, dynamic-based techniques monitor events

that define the program’s flow, infer its behaviors from these events and detect

high-level malicious behaviors.

The major advantages of this technique are the resilience to code obfuscation,

via encryption of the source code or packing 1 and the easiness of the analysis.

Dynamic analysis tackles this because it inspects the software’s behavior and not

its source code. As for the downsides, dynamic analysis, in most of the cases,

cannot analyze all the code, since it can only see what is being executed by a given

software. Thus, the software (malicious or benign at the time) can have one or

more behaviors that are not seen at execution time. Additionally, instrumentation

can usually be detected, that is, it is possible for a malware to detect that it is

being debugged or analyzed.

2.2 Virtual Machine Introspection overview

There is a spectrum of different dynamic-analysis techniques to use, depending on

the level at which the observation of the events is performed (e.g. CPU, drivers,

operating system, application). Most of the modern tools [InternationalSecureSys-

temsLab, 2012; K. Tam and Cavallaro, 2015; the honeynet project, 2012; Yan and

Yin, 2012] employ out-of-the-box analysis, which performs dynamic analysis to

analyze a given malware by inspecting sandbox environments (virtual machines

or cpu emulators like QEMU [Bellard, 2005]) from the outside. Out-of-the-box

analysis is well known as virtual machine introspection.

VMI, as a dynamic analysis technique, inherits its benefits and limitations.

Furthermore, this kind of introspection leaves few, if none, artifacts that the mal-

ware can see. Thus, it is harder for the malware to fingerprint the presence of

1Packing refers to the application of different encryption methods on the source code

5

2.3 Available Approaches

the observation put in place. However, it might be heavier to do such analysis,

because it is creating another level of abstraction.

The following subsections present the two most important out-of-the-box dy-

namic analysis tools for Android OS: DroidScope and CopperDroid.

2.3 Available Approaches

2.3.1 Android background

Android OS (which is linux-based) creates a different process for each an applica-

tion (App). On its side, the App is within a runtime virtual machine also known as

Dalvik Virtual Machine (DVM). This virtual machine supplies a run-time environ-

ment for the Java components of the App. Furthermore, it is possible to execute

native code through the Java Native Interface (JNI). The figure 2.1 depicts this

abstraction level.

Figure 2.1: Android abstraction level

6

2.3 Available Approaches

2.3.2 DroidScope

DroidScope is a platform that that performs out-of-the-box (VMI-based) Android

malware analysis. Porting such analysis technique from desktop, even though that

Android OS is Linux-based on the lower level, is no easy task. This platform

relies on the Android’s abstraction levels 2.1 and reconstructs both OS-level and

Java-level semantics. While OS-level semantics are the behaviors of the malware

process and its native components, Java-level semantics are the behaviors of Java

components. DroidScope provides three tiered APIs that mirrors hardware, OS

and Dalvik VM, and which enables the possibility of building tools on top of it. In

order to demonstrate some of the capabilities of this platform, it supplies analysis

tools to collect native and Dalvik instruction traces, log applications’ interactions

with Android OS and perform taint analysis to check information leakage.

The API tracer monitors the malwares activities at the API level to reason

about how the malware interacts with the Android runtime environment. This

tool monitors how the malwares Java components communicate with the Android

Java framework, how the native components interact with the Linux system, and

how Java components and native components communicate through the JNI in-

terface. The DroidScope’s architecture is depicted in the figure 2.2

DroidScope is built on top of QEMU CPU emulator [Bellard, 2005], which pro-

vides an VMI-based analysis. Thus, the changes are made in the emulator and

not in the Android OS. Additionally, QEMU allowed the support of many devices

as well as different architectures (e.g. ARM and x86), after some alterations (e.g.

in the registers because they are different).

DroidScope reconstructs the OS-level view to analyze native components. To

achieve this reconstruction DroidScope performs some basic instrumentation simi-

lar to the existing VMI-based techniques on x86 architecture [Garfinkel and Rosen-

blum, 2003]. QEMU uses dynamic translation with the aid of an intermediate

representation named Tiny Code Generator (TCG). DroidScopes achieves anal-

ysis by inserting extra TCG instructions to retrieve additional information for

further analysis. In order to infer a user-level behavior, like file, network accesses

7

2.3 Available Approaches

and interprocess communication, some system calls its return values are fetched

as well. DroidScope leverages the capabilities of task struct ’s list (which contains

every task active and it is depicted in the figure 2.3) to trace information about

which processes and threads are active and which one of them is actually executing.

Lastly, since Dalvik VM, libraries and dex files are mapped in memory, Droid-

Scope gets access to the memory map of a process using mmap pointer, which is

accessible though task struct as well. It is worth noting that it also keeps track of

sys mmap2 system call to update memory map when it returns.

DroidScope reconstructs the Dalvik view (Dalvik instructions, current machine

state, Java objects) using low-level semantics and the mterp interpreter. In order to

access Dalvik instructions, this platform uses the mterp interpreter, that by using

an offset-addressing method, maps Dalvik opcodes to machine code blocks. Each

opcode has 64 bytes of memory to store the corresponding emulation code. Such a

design makes the reverse conversion straightforward: if the program counter(R15)

points to any of these code regions, then DVM is interpreting a byte-code instruc-

tion. DroidScope identifies the virtual address of rIBase (starting point of the code

Figure 2.2: DroidScope Overview [Yan and Yin, 2012]

8

2.3 Available Approaches

block) using information gathered from the OS-level view and then calculates the

opcode using the following formula:

R15 − rIBase

64

However, it is also possible to translate Dalvik bytecode instructions with the Just-

In-Time compilation (JIT), which increases the performance, because it caches the

most used blocks, but makes it harder the instrumentation. It was against the re-

quirements to disable JIT at build time, since it would require further changes to

the virtual device. The adopted solution was to selectively disable JIT at runtime.

DroidScope enables analysis plugins to select code regions for which they want to

disable JIT. Every analyzed Dalvik block will cause a performance penalty, since

it will not be cached for sure. As the analyzed code is not cached, it is possible

for the mterp interpreter to emulate the code.

Figure 2.3: task struct’s list

9

2.3 Available Approaches

Dalvik VM state is stored in the CPU registers. On ARM the used registers

goes from R4 to R8 and contain the following information:

Table 2.1: DVM execution context

Information

R4 Dalvik program counter

R5 Dalvik stack frame pointer

R6 glue

R7 First two bytes of the current Dalvik instruction

R8 base address of the mterp emulation code for the current DVM instruction

In the previous table, glue stands for InterpState data structure, which stores in-

formation like return value and thread information.

The reconstruction of Java Objects is done with the aid of two data structures:

ClassObject and Object. The ClassObject data structure contains a class type and

important information like the class name, where it is defined in a dex file, the

size of the object, the methods, and the location of the member fields within the

object instances. It is generic enough to describe the class types and its implicit

class types.

On the other hand, Object describes the contents of the instances created at

runtime. Each Object has a pointer to the ClassObject that represents its type

and stores further information about that instance’s contents.

For the sake of human readability, DroidScope manages a symbol database with

symbols like functions names, classes names, fields names. Furthermore it stores

a database of offsets so that it is possible to access symbols even when the system

has Address space layout randomization (ASLR). Finding a symbol at runtime

requires two steps: identifying the containing module using the shadow memory

map; calculating the offset to search the database. As for the Native libraries,

symbols are gathered with objdump. To ensure the best symbol coverage, dexdump

is employed when Dalvik or Java symbols cannot be retrieved dynamically, for

10

2.3 Available Approaches

instance, in the case that the corresponding page of a dex file is not loaded in

memory yet.

DroidScope offers basic hooking mechanisms by means of the APIs that supply

instrumentation on three different levels: native, OS and Dalvik. The following

figure presents its features:

2.3.3 CopperDroid

CopperDroid is a system call-centric tool built on top of QEMU [Bellard, 2005]

that performs out-of-the-box dynamic analysis and reconstructs the behaviors of

Android malware.

From the Android abstraction level figure 2.1, it seems that dynamic system-call

malware analysis systems on Android OS cannot be built as they are in desktop

environments. In fact, as a previous platform demonstrated [Yan and Yin, 2012], in

order to build such systems there are two levels of semantic information that must

be reconstructed: the high-level (application actions) and low-level (OS actions).

Additionally, the previous tool demonstrated that traditional system call-centric

dynamic analysis is not suited to analyze malware, since it lacks information on

the Android-specific semantics.

From a different perspective, CopperDroid relies on Binder protocol to infer all the

semantic information, needed (OS and Dalvik views) to reconstruct a malware’s

behavior. In a nutshell, binder protocol is an optimized synchronous inter-process

communication (IPC) and remote procedure call (RPC) mechanism. On Android

Figure 2.4: DroidScope APIs [Yan and Yin, 2012]

11

2.3 Available Approaches

OS, every process has a binder thread so they can communicate with the its driver

module. The communication processes as follows: For every transaction that a

component A of an App wants to send to a component B (whether that component

is located in the same App, in a different App or in the kernel), an ioctl system

call is raised. The ioctl system call is then handled by the Binder kernel driver.

Every transaction sends a Parcel, which is a container for a message of mar-

shalled 1 data and meta-data. The receiver process must unmarshall the data in

order to get the Parcel ’s contents.

Processes must understand the communication through binder protocol, that

is, they should have a way to access an interface that allows applications to commu-

nicate with each other through services. Services are defined by Android Interface

Definition Language (AIDL), that defines which methods can be invoked and what

parameters’ type they receive.

A naive analysis of system calls on Android OS does not provide enough se-

mantic information to reconstruct the malware’s behavior, however CopperDroid

leverages the capabilities of Binder protocol to reconstruct the Android-specific se-

mantics, since every request and data exchange go through Binder. Additionally,

even when passing-by-reference the data itself is sent through IPC channels in a

flattened Binder. Thus, CopperDroid enables the reconstruction of behaviors of

1Marshalling refers to the procedure for converting high-level Android-specific data structures

into parcels

Figure 2.5: Binder Communication

12

2.3 Available Approaches

Android Apps at multiple levels of abstraction from the observation of system calls.

CopperDroid is Android version independent, that is, it is a generic solution

that does not need to keep in sync Dalvik and OS views. The best example of

this abstraction is the successful analysis with Android Runtime (ART) instead

of DVM without changing the instrumentation. Lastly, in order to enhance the

analysis, a stimulation application 1 is used with stimulation techniques that are

known to trigger malicious events.

1Monkeyrunner: http://developer.android.com/tools/help/monkeyrunner concepts.html

13

2.3 Available Approaches

The following figure provides an overview of CopperDroid architecture: CopperDroid

is composed by the following components: CopperDroid emulator, CopperDroid

behavior reconstruction analysis, vanilla android emulator. The CopperDroid em-

ulator is built on top of QEMU and it is instrumented to trap ioctl system calls

(Binder transactions) for ARM-based and x86-based processors. CopperDroid

parses the Binder transaction, extracting the interface token and the arguments.

Afterwards, it sends the marshalled arguments and its types to the vanilla android

emulator (unmarshalling oracle). This oracle unmarshalls the received arguments

and sends them back for further analysis. It is worth noting, that this process is

not very intrusive, in the way that it only needs to trap syscalls from the Copper-

Droid emulator. The syscalls are then sent to the out-of-the-box analysis.

Figure 2.6: CopperDroid architecture [K. Tam and Cavallaro, 2015]

14

2.4 Evasion Techniques

2.4 Evasion Techniques

Dynamic analysis techniques and, in particular, VMI-based techniques, as a com-

plementary and important analysis, have become a standard for security experts.

Tools like the ones described in the last section have emerged and corporations

are using them to inspect malicious behaviors on Android Apps. This trend led

malware writers ways to fight back this tools. On this line of reasoning they cre-

ated evasive malware. This kind of malware has the ability to detect virtualized

environments [R. Paleari and Bruschi, 2009] and allows the malware to hide its

malicious behavior. There are two ways used to evade dynamic analysis: red pill ;

blue pill. The first one detects whether the Application it is running on a virtu-

alized environment, or not. The second one is a virtualized rootkit that creates a

thin hypervisor, so that the all OS is virtualized, which makes the malware impos-

sible to with analysis tools because it can fool them [Rutkowska, 2006]. Currently,

malware writers use red pills to detect the kind of environment where they are

running on. Thus, they can hinder such environments by crashing themselves or

obfuscate their behavior. The assumption is as follows: if the malware is running

on a virtual machine it is probably being analyzed.

This subsection supplies the existing known techniques that are employed by

Android malware writers in order to fingerprint the environment (red pills) and

evade analysis. These techniques are employed to evade virtualized or emulated

systems, by obfuscating their malicious behaviors.

2.4.1 Evading Dynamic Analysis via Sandbox Detection

This topic will cover several techniques that can be employed to detect dynamic

analysis systems in Android. These techniques detect differences based in: behav-

ior, performance, hardware and software components. Furthermore, they require

minimal or no privileges, so they can be invoked from normal applications of the

market.

15

2.4 Evasion Techniques

Behavioral differences

Android API

Behavioral differences are found using the API that Android provides. This topic

will give some examples of what can be done with Android API to detect if

the malware is running on a device or on an emulator. One typical example

of what a malware writer can do is to extract the IMEI number (through an-

droid.telephony.TelephonyManager.getDeviceId()). Every Android device should

return its IMEI, however, an emulator returns all 0’s. The following image shows

more examples of the potential of the Android API for detection: Some of the

previous methods instantly detect the emulation environment, while others might

need a combination of other factors to successfully detect the emulated environ-

ment. Two examples of that are the Mobile Country Code (MCC) and the Mobile

Network Code (MNC) values which return values associated with T-Mobile USA

on the emulator. However, real devices can actually output those values as well.

If one of the both returns another value, it means that the returning values might

being spoofed by the emulator.

Figure 2.7: List of API methods employed for emulator detection [T. Vidas, 2014]

16

2.4 Evasion Techniques

Emulated networking

The emulator has a quite different networking configuration, with respect to real

smartphones. The emulated network always reserves the 10.0.0.2/24 address space.

Additionally, DNS resolvers will always assign the same address to the emulator

(1, 2, 3-6 and 15). It is possible that a real device has this same network con-

figuration, but is highly unlikely. However, if this is the only check made, the

assumption makes it safe to have a device connected to a network with that exact

configuration1.

Underlying emulator

To emulate Android devices, it is used the QEMU emulator [Bellard, 2005]. It

is possible to detect the emulator by its virtual address allocation [Matenaar and

Schulz, 2012] or the CPU bugs [T. Raffetseder and Kirda, 2007]. This approach,

has however two drawbacks. The first one is the mandatory usage of native code,

which is not commonly used in Android Apps, therefore any App that uses native

code can be considered as suspicious. The second drawback is the need of root

privileges to access the CPU. Android sandboxing architecture makes it really

difficult to gain those privileges [T. Vidas and Christin, 2011], so it is better to

rely on other methods.

1it is safe because we are assuming that the malware will hide its malicious behavior

17

2.4 Evasion Techniques

Differences in performance

Using CPU emulators have an inherent performance penalty, since they need to

translate instructions for execution. However, desktop CPUs are considerably

better than the CPUs used in smartphones. Therefore it is worth testing if the

performance of the emulator is equivalent to the performance of the smartphones

themselves. A performance benchmark 1 taken by the researchers [T. Vidas, 2014],

proves that the performance penalty caused by the emulators is enough to distin-

guish the running environment (an emulator or a real device).

Table 2.2: CPU benchmarks

Device
Average Round

Duration (Seconds)

Standard

Deviation

PC (Linux) 0.153 0.012

Galaxy Nexus (4.2.2) 16.798 0.419

Emulator 4.2.2 68.872 0.804

On a different perspective, the graphical performance can also be tested. The

results obtained on the graphical performance tests show [T. Vidas, 2014] that the

physical devices are more consistent (few variations of the FPS2) and have high

frame rates (between 57 and 60 FPS). Conversely, the same case does not happen

with emulators that, regardless the Operating System, are either inconsistent or

have low frame rates. Thus, it is possible to create an heuristic such that, by mea-

suring the frame rate and continuously sampling the FPS values, it is possible to

infer whether it is running on a physical device or on an emulator. More precisely,

if a frame rate, v, is higher than 30 FPS and 80% of the samples are within the

interval v-1 and v+1, then it is running on a physical device.

1Pi calculation round duration on tested devices using AGM technique (16 rounds)
2frames per second

18

2.4 Evasion Techniques

Differences in components

Hardware components

There are several values for hardware components on Android. One good example

is the CPU serial number that, as it is in our case, ARM CPUs return a unique

string. However, CPU emulators always show sixteen zeros. Likewise, it is also

possible to retrieve current CPU frequencies on a real device, contrarily to the

4.2.2 emulator, for instance. Lastly, the sensors are a good way to distinguish

a smartphone from an emulator. A way to do this is by getting the number of

sensors that the device supports. This is a naive approach since the SDK can

be easily modified to return the expected value. To address this, it is possible to

inspect sensor by sensor. For instance, the Android emulator return always the

same values for the accelerometer sensor (0.0, 9.77622, 0.813417), which is quite

different from its usual behavior.

Software components relating to Hardware

Verifying the battery status over time can be used to detect an emulated environ-

ment. Contrarily to a real device, the emulator usually keeps its battery status

at the same level. Furthermore, vendors often add special hardware to the smart-

phones or implement kernel modules to use hardware not supported by Android.

It is possible to exploit this by requesting the list of the kernel modules. This ap-

proach can, obviously be more complex if one wants to inspect modules themselves.

Software components

At the Software components level, it is possible to check which applications, that

are usually installed in all Android devices, are not present. Examples of those

applications are: Google Play, Google Maps API and Google Talk. One way that

one can use to perform these checks is by using Android API to query the installed

applications. Lastly, as the emulator does not have Google Services Framework,

it is possible to query it. If the return value is null, then the malware is running

inside an emulated environment.

19

2.4 Evasion Techniques

Differences due to system design

The number of malware samples is growing everyday. Security experts must take

some decisions like the timespan that each malware will run inside the emulator

(in order to be analyzed). This timespan cannot be too high, since it will be

nearly impossible to process every malware that way. So, malware can circumvent

analysis if it starts its malicious activities after the timespan defined by the security

expert. In case of Android, malware writers typically inspect the data stored in the

smartphone (like messages, contacts, installed applications) and uses a heuristic

to verify if it will execute its malicious code or not.

2.4.2 Anti-analysis Techniques

Malicious Android apps apply anti-analysis techniques to evade detection. Ac-

cording to one study [T. Petsas and Ioannidis, 2014], these techniques can fall into

three distinct categories as follows:

• static heuristics, which analyze fixed values in the emulated environment;

• dynamic heuristics, that focus its analysis on the sensor’s behaviors;

• hypervisor heuristics, which focus its analysis on the lack of emulated hard-

ware

Static Heuristics

Static heuristics detect emulated environments by analyzing unique identifiers,

such as the device ID, the current build version, or the layout of the routing table.

The device ID makes it possible to uniquely identify a smartphone using the IMEI

(International Mobile Station Equipment Identity) or the IMSI (International Mo-

bile Subscriber Identity). The first one, is an unique number that identifies a device

in the GSM (Global System for Mobile Communications) network. The IMEI is

indeed applied by malicious Android Apps to evade out-of-the-box analysis [VRT,

2013]. The second one identifies the SIM card of smartphones. Static heuristics

are the most simple heuristics used to evade analysis. Even though relatively easily

to overcome, these techniques are proven to be effective [T. Petsas and Ioannidis,

2014; T. Vidas, 2014]. In order to perform these checks, one needs to require the

20

2.4 Evasion Techniques

READ PHONE STATE permission in the Android Manifest file.

The current build also leaks information about the kind of environment where

the Android App is executing, because it is extracted from the system properties.

This information is gathered using the Android API which supplies a class Build

that has the fields PRODUCT, MODEL and HARDWARE that can be used to

detect the execution environment.

The routing table refers to the static network configuration of the virtual router

which provides address space within 10.0.2/24. By default the emulated network

interface has the IP address 10.0.2.15. Once again it is possible to use these fixed

values to detect the kind of environment.

Dynamic Heuristics

Dynamic sensor information, as it name suggests, refers to the analysis of the out-

put of the sensors. Besides the hardness to recreate faithful output for each sensor,

the number of sensors is growing, therefore it is a good differentiator factor between

emulators and physical devices. Android emulator is quite limited in the device

in terms of sensors. As it by default cannot simulate sensor traces, the way that

that data can be generated is by using other sensor simulators [OpenIntents, 2007].

Current sensor’s simulation of Android emulator is naive, generating always the

same data, at equal sample intervals, or with some negligible standard deviation.

Furthermore, not all the sensors that exist in the physical device are emulated by

virtual environment. A possible way to detect the emulated environment is by

checking whether the collected values and the sampling intervals are the same or

not. This can be applied to every sensor of the device. There are some works

that show these techniques employed to a reasonable set of sensors [T. Petsas and

Ioannidis, 2014].

Hypervisor Heuristics

Scheduling on QEMU does not work in the same way as it does on physical de-

21

2.4 Evasion Techniques

vices. While in a physical device the scheduling can occur at any time, on QEMU

it typically occurs after a basic block execution. This happens because the virtual

program counter (PC) is not update at every instruction execution. Updating the

PC would require another instruction, so deleting that instruction will improve

performance. However, since the PC is not being updated at the basic block exe-

cution time, it is impossible to know for sure its value. Therefore, the scheduling

events can only be treated when the PC gets updated again (at the end of the

block). A technique that exploits is already implemented [Matenaar and Schulz,

2012].

The second technique that can be employed relies on self-modifying native

code [Bramley, 2010]. On ARM-based smartphones, the cache does not guarantee

consistency. Thus, it is possible to execute old instructions, since in some cases

they must be explicitly invalidated. A code snippet that changes itself might lead

to the execution of the cached code. On the other hand, as QEMU discards the

previous blocks and then retranslates the newly generated code, as it tracks code

pages modifications. Hence, QEMU does not have the risk of executing old in-

structions. As the behavior of the CPU and of the emulator difer, it is possible

to infer the executing environment. To implement and use these two heuristics, a

new folder named lib needs to be created inside the top level directory with the

desired native code in the form of shared libraries. Additionally, the virtualized

environment should support JNI.

Countermeasures

Hereby it will be present some countermeasures that could be employed to enrich

analysis and prevents malware evasion.

At the static level, it is possible to easily modify the Android emulator in order

to be resilient to the proposed static heuristics. QEMU enables the configuration

of IMEI and IMSI so that these techniques will basically fail. Additionally, as for

the build checking, it is possible to change the build.prop file that sets that value.

Similarly to the other static heuristics, network configuration can also be changed

22

2.5 Conclusions

as other tools 1 do.

Dynamic heuristics rely on sensors to evade analysis. The solution is to support

most or all of the existing sensors. Furthermore, sensors must reproduce faithful

outputs based on realistic user interactions, for instance. In order to attain this,

external simulators might be used [OpenIntents, 2007]. This is no easy task and

needs a deeper analysis.

The scheduling QEMU issue can be addressed by always updating the vir-

tual program counter of the emulator. This will, however, produce a performance

penalty that leads to an easier detection technique based on performance compar-

ison.

Another prevention technique that could be employed is Hardware-Assisted

Virtualization. In the ARM case, it is possible to use their virtualization technolo-

gies [ARM R©, 2010]. This way, the virtualized environment will be easier to build

and more suited for the processor. The substitution of QEMU for this technology

would prevent any hypervisor heuristic.

The most robust solution is the development of an hybrid application execution,

that is, use the previous solutions for the emulator and only allow the native code

execution on a real device. This way, it could not detect that the malware is being

analyzed.

2.5 Conclusions

2.5.1 Problem Statement

This chapter described the existing tools which analyze the software behaviors. As

referred in the subsection 2.2 of this chapter, most modern tools rely on emulated

environments to perform analysis. Dynamic analysis can be performed through a

sophisticated inspection of the system calls and its parameters or by performing a

1APK Analyzer: http://www.apk-analyzer.net/

23

2.5 Conclusions

two-level VMI. However, as the analysis relies on VMI, it inherits the disadvantages

of using an emulated runtime environment, that is, the possibility of detection and

evasion of such systems. There were several methods depicted in this chapter for

detecting its execution on emulated environments, hence enabling the possibility

to evade them.

2.5.2 Goals

Existing evasion techniques rely on the assumption that the analysis is VMI-based

and, thus that it is performed using an emulated environment. Therefore, we

propose an hardware-supported dynamic analysis tool which performs hardware-

based memory introspection with the aid of a physical device which is able to debug

and introspect the target’s memory. We believe that by using a real environment to

perform the analysis it will be harder for the malware writters to evade the analysis.

In practice, real devices have more features like IMEI, network configurations and

sensors, that QEMU does not support at all or supports with naive outputs (e.g.

sensors may output nearly the same values).

24

Chapter 3

Background on Debugging and

Tracing Solutions

The popularity of embedded devices encouraged the provision of good tracing and

debugging technologies. Tracing solutions automatically log informations about a

target’s execution. Targets might be software programs, for instance, or a piece of

electronic device like a System-On-Chip (SoC). The recorded information is mainly

used as a debugging aid in order to find and eradicate parts of a target where it is

misbehaving with respect to its original design. These program faults are vulgarly

known as bugs or vulnerabilities.

Tracing and debugging solutions might explore two ways of getting information

of the target system: intrusive, non-intrusive. Debugging techniques are intrusive

because they change the program’s flow on the developers’ will, through break-

points, watchpoints, or by halting the system. As for the tracing techniques, it is

possible to classify them as intrusive and non-intrusive, as well, but in a different

perspective. Tracing is a technique that aims to act transparently enough so that

it does not influence the system’s execution, which is a requirement for real-time

systems, for instance. However, tracing techniques might also be intrusive when

they insert code on applications - software tracing. The second tracing method

(hardware tracing) collects required information at run-time transparently for the

software, at regular intervals for further analysis. Considering the main goal of this

thesis - collecting runtime information from a running process of a Linux-based

25

3.1 ARM Debugging and Tracing

OS to reconstruct runtime events -, it is mandatory to inspect these solutions and

conclude with which ones it is possible to gather and inspect data from system

calls.

This chapter contains the analysis of the available technologies for debugging ARM

architecture, since as aforementioned it is the mostly used architecture on smart-

phones [ARM R©, 2015].

3.1 ARM Debugging and Tracing

The debugging process is composed by three elements that communicate with each

other:

• Debug host;

• Protocol converter;

• Debug target

The debug host is a computer, running a software debugger such as Open on-

chip debugger (OpenOCD [Rath, 2005]). It is possible, from the debug host to

issue high-level commands such as setting a breakpoint at a certain address or

examining the registers’ values at some point of the program’s execution. The

debug host connects to the target using an interface like JTAG. The target is

typically a system with an ARM-based processor, like Cortex-A9 processor.

3.1.1 CoreSight

Embedded Systems debugging is quite different from desktop debugging since they

have fewer components (they lack keyboard, monitor, etc). They are also harder

to debug since it might involve testing the hardware components themselves. Ad-

ditionally, multicore increased their complexity which enhanced the complexity of

provide stable systems. Such problems coupled with the increasingly use of ARM

processor-based SoCs made it crucial to provide good debug and trace solutions. It

is essential for SoCs designers to provide systems that work well. In this context,

26

3.1 ARM Debugging and Tracing

ARM decided to create CoreSight IP, which is an on-chip debug and real-time

trace solution for the entire SoC. This solution provides the following capabilities

for system-wide trace:

• Debug and trace visibility of the whole system;

• Cross triggering support between SoC subsystems;

• Multi-source trace in a single stream;

• Standard programmer’s models for standard tools support;

CoreSight is meant to be generic enough to provide many different components,

so it can be possible for the SoCs designers to define the set of functions provided

for debugging and tracing. This flexibility is quite important since the integration

of such components has a cost attached. Additionally, different ARM processor-

based architectures can have slightly different CoreSight specifications. Exactly for

that reason, it is better to focus on the architecture used for this work. As one can

see in the chapter 4, the SoC that we are using is OMAP4460 - an ARM Cortex-

A9-based processor. The processor also adheres to the ARMv7 architecture.

The following topics will describe the CoreSight Design Kit for Cortex-A9 series

processors ??), since it will be the one adopted to the SoC that is in our embedded

device. Moreover, the following topics’ purpose is to give an overview of the most

important components for this work rather than explaining the whole architecture

exhaustively.

3.1.2 Debug Access Port

The Debug Access Port (DAP) is an implementation of ARM Debug Interface

(ADI), that is inherited by ARMv7 architecture. It allows debug access to the

whole SoC using master ports. These master ports are from two categories: De-

bug Ports(DPs) and Access Ports(APs). While Debug Ports are used to access

DAP from external debugger, Access Ports are used to access the on-chip system

resources. In order to get access an control the components externally, one should

use SWJ-DP (Serial Wire and JTAG Debug Port). The components that are seen

and controlled afterwards are the following:

27

3.1 ARM Debugging and Tracing

• AHB-AP (Advance High-performance Bus AP), which will grant access to

the System Bus Access Port;

• APB-AP (Advanced Peripheral Bus AP), which will grant access to the

Debug Bus Access Port and a block memory (ROM) through APB-Mux;

• JTAG-AP, which will grant access to JTAG scan chains.

The SWJ-DP allows two ways of connection: via Serial Wire Debugging; via

JTAG dongle. Then, through an external hardware tool, for instance RealView,

it is possible to communicate and perform operations to the DP. The following

figure resumes this process:

Figure 3.1: DAP Control Flow [ARM R©, 2012]

3.1.3 Software Tracing

Software tracing is the cheapest and simplest way of tracing that CoreSight ar-

chitecture provides. It generates data from software that is running on the cores

themselves. That information is then written to the Coresight Instrumentation

Trace Macrocell (ITM) which will stream data to the trace buffer. This form of

tracing is known as SoftWare Instrumentation Trace (SWIT). Its main uses are:

28

3.1 ARM Debugging and Tracing

• printf style debugging;

• Trace OS and application events;

• Emit diagnostic system information.

By analyzing its main uses it is possible to see that it is quite intrusive with respect

to the insertion of code into the application. In order to output this traces it is

needed to compile with some specific toolchain for ARM processors. Our aim is to

debug without compile applications with some toolchain or debug flags, because

malware can detect debugging environments 1, which represents a huge drawback

for this work.

3.1.4 Program Flow Trace Macrocell

The Program Trace Macrocell (PTM) allows real-time instruction flow tracing

based on the Program Flow Trace (PFT) architecture. The data recorded this

way by trace tools can be used to reconstruct the execution of all or part of

a program. The PFT architecture traces only at certain moments in the pro-

gram’s flow, called waypoints. PFT was designed this way because ETM pro-

tocol [ARM R©InformationCenter, 2011] would generate big amounts of data that

were not easy to process. Waypoints occur when there are changes of the program

flow or events, such as an exception. Trace tools are able to get up to the following

PTM traces:

• Indirect branches, with target address and condition code;

• Direct branches with only the condition code;

• Instruction barrier instructions;

• Exceptions, with an indication of where the exception occurred;

• Changes in processor instruction set state;

• Changes in processor security state;

1Anti-debugging and Anti-VM techniques and anti-emulation:

http://resources.infosecinstitute.com/anti-debugging-and-anti-vm-techniques-and-anti-

emulation/

29

3.1 ARM Debugging and Tracing

• Context-ID changes;

• Entry to and return from Debug state when Halting Debug-mode is enabled.

Moreover, it is possible to configure the PTM to trace:

• Cycle count between traced waypoints;

• Global system timestamps;

• Target addresses for taken direct branches.

3.1.5 Embedded Trace Buffer

The embedded trace buffer (ETB) receive data from the Trace Bus (ATB), which

might send it directly or not. It is a small on-chip component where trace infor-

mation is stored. It contains the data recorded from the ETM. The buffer can be

read through the JTAG port of the device once the capture has been completed.

Hence, it is not required a special trace port. If the buffer is full, the information

captured will overwrite the existing one.

3.1.6 Trace Port

The TPIU is the component where the trace hardware connects to in order to

collect traces. Data that is being streamed from ATB will be sent directly to this

component. This way, it is possible for the tracer to collect data continuously. It

is possible that the data generated is more than the port can output. Under such

scenario, the trace from ETM is sent accordingly to the capacity of the port.

3.1.7 Hardware Breakpoints

Hardware breakpoints are a type of breakpoints which is integrated into the SoC.

In general, breakpoints enable to stop the target’s execution when the program

reaches a certain address. As it is implemented in hardware, these kind of break-

points are a set of programmable comparators that can be set with a specific

address value. When the program address bus matches the previously set bits, a

signal to halt the target’s CPU is sent.

30

3.1 ARM Debugging and Tracing

In Cortex-A9, a breakpoint register pair(BRP) must have its bits programmed in

order to set a breakpoint. Each BRP is composed by one breakpoint register

control(BRC) and one breakpoint register value(BRV). While the BRV holds an

address or a context ID, the BCR holds the possible options of the breakpoint

triggering which are the following:

Figure 3.2: Breakpoint control register’s bits

The previous register has many options which can be used, but I will explain how

to set an hardware breakpoint, both on an address and on a context ID, because it

will be used by the proposed tool on this work. As the BVR can only store either

an address or a context ID, two BRP must be used and linked. The key factor

lies on bits [20:22] and bits [16:19] of BCR, because they hold the meaning of the

BVR value and the linked BRP number1. The meaning of the BVR is set to b011

on one of the BRP’s, specifying that its BVR has a linked context ID while the

other will have it set to b001, which means that it matches on a linked address.

Each of the BRP’s will have its linked BRP bits set to the other. The [5:8] bits

are set to b1111 so it compares the 4 bytes of BVR. This setup ensures that the

breakpoint only matches when both the address and the context ID are the same.

This kind of breakpoints has a good performance since it is integrated on the

hardware, but has a small number of breakpoints. For what matters the proposed

tool, it is only needed one hardware breakpoint, so the limiting number being 6 is

more than enough (even though only 2 of them support context ID comparison).

Note that these kind of breakpoints have an additional required feature for this

work: not traceable. In order these registers are only accessed with privileged

mode or through JTAG.

1each BRP is designed to an id, for instance, BRP0

31

3.2 JTAG for ARM

3.2 JTAG for ARM

In this section the reader will firstly read about JTAG and its facilities. Af-

terwards, there are lists of the JTAG debuggers, hardware tracers and software

debuggers available in the market. For the sake of simplicity, the term dongle

will be employed whenever it is needed to use a generic word for JTAG debuggers

and hardware tracers, i.e., dongle is a piece of hardware that debugs a target and

communicates with the host computer. In order to choose some specific dongle, it

was fundamental a list of features. The selected features are the following:

Features Importance

Support ARM processors 3

Ability to inspect memory 3

Support interrupts 3

Someone has reportedly used it successfully 3

Support GDBServer 7

Support adaptive clocking (RTCK) 7

Table 3.1: JTAG constraints

Legend
3 Mandatory feature

7 Not mandatory

As one can check on the previous table, there were six constraints with two impor-

tance levels (mandatory feature,not mandatory). As for the level of importance, it

is used ”mandatory feature” if the feature is crucial, and ”not mandatory” if the

feature represents a help but it is not essential for the objective of this work. For

the sake of clarity, features will be explained in the following paragraph.

Support of ARM processors is an obvious mandatory feature, since we want to

debug a SoC that look the most with the ones present on smartphones (which are

mostly ARM-based). The ability to inspect memory should be available on all

the dongles already. Supporting interrupts is important as well, because it will

be with the interrupts that we will try to reconstruct the system calls. In order

to avoid some problems that might occur at configuration /development time, the

32

3.2 JTAG for ARM

selected dongle is one that had reportedly been used successfully. The way that

this was verified was by finding tutorials, as updated as possible, for each dongle

- if we have an updated tutorial, it will be less likely that we hit undesired bugs.

The last two features are a plus since they are not really needed, i.e. they are a

differentiating factor. GDBServer serves to debug the target remotely. It is possi-

ble to debug it with and without any compilation flag. Debugging an application

without any compilation flag is harder, because the debugger does not have access

to the code nor to its layout. GDBServer has also a monitor that lets it run JTAG

commands remotely as well. The environment will only work properly if the don-

gle and the CPU target are synchronized. This constraint typically implies that

the JTAG clock is changed to match the CPU clock. Adaptive clocking (RTCK)

automates the process of changing the clock frequency of the dongle, so it adapts

to the frequency used by the target CPU.

3.2.1 In-Circuit Emulator

Debugging of Embedded systems can be achieved with in-circuit emulators (ICE).

In-circuit emulators are hardware devices that emulate the target CPU in order to

add debugging facilities to it. In-circuit emulators are adapters that are inserted

between the host computer (which is running a debugger software) and the target.

This allowed to have a non-intrusive analysis of the program flow as well as to

control it and to inspect CPU state, CPU registers and physical memory. However,

costs of these equipments were getting prohibitively high because chips were getting

faster which would require higher speed logic, hence more expensive adapters. This

trend led vendors to provide better debug facilities to their chips. These facilities

were then named as on-chip debug circuit.

3.2.2 JTAG capabilities

Joint Test Action Group (JTAG) stands for the IEEE 1149.1 Standard Test Ac-

cess Port and Boundary-Scan Architecture. Nowadays, systems use the target

system’s CPU directly, with special JTAG-based debug access, which are low cost

solutions with respect to in-circuit emulators. Actually, in-circuit emulator has

then extended its definition to include JTAG based hardware debuggers as well,

33

3.2 JTAG for ARM

even though they are not the same thing. In fact, instead of emulating the target,

JTAG hardware debuggers leverage on-chip debug (OCD) capabilities to debug

targets - which is an advantage since they are able to debug the target itself. On-

chip debug circuit is the target’s architecture for debugging and tracing purposes.

A downside of this approach is that the debugger is tightly connected to the tar-

get’s architecture, hence connected to and limited by its features.

JTAG is a standard that was designed to assist with device, board, and system

testing, diagnosis, and fault isolation. It is an essential way of debugging embed-

ded systems, since it can access to the sub-blocks of integrated circuits (ICs). It is

possible to debug the wiring of the embedded system through boundary scan test-

ing. Generally, smartphones’ processors do not supply another way of debugging.

JTAG enables the possibility of debugging even the early boot software which

runs before anything is set up. Many silicon vendors provided new architectures,

like ARM CoreSight, that enabled software debug, instruction tracing, and data

tracing around the JTAG protocol.

Debugging

JTAG is widely used for IC debug ports. Embedded systems development relies on

debuggers communicating with chips via JTAG to perform operations that act on

the processor. Processors can be halted, single stepped, or run freely. One can set

code breakpoints for code in RAM (often using a special machine instruction), in

ROM/flash or set data breakpoints. It is also possible to use ARM Program Trace

Macrocell to trigger debugger (or tracing) activity on complex hardware events.

3.2.3 JTAG Debuggers

JTAG Debuggers, also known as JTAG adapters, can access to the target proces-

sor’s on-chip debug modules through JTAG protocol. Those modules grant access

to the debug of an embedded system directly at the machine instruction level. This

topic contains a small description about the table of JTAG debuggers ??, which

helped to analyze the market of these debuggers. The features were modified, with

respect to the ones present in the table 3.1 to enlarge the number features that we

34

3.2 JTAG for ARM

could compare. Choosing the JTAG debugger was no easy task. In most of the

cases it was not clear the difference amongst each debugger and the prices are quite

different. To make things even worse, some of the vendors may request additional

information in order to get access to some specifications. It was a time consuming

task. In the end, we have chosen the Flyswatter 2, because it was mandatory to

use a cheap solution and, among all of them, the flyswatter2 was the one that met

the requirements of table 3.1. On top of that, this JTAG debugger has a good

clock frequency (upto 30MHz) for its price.

3.2.4 Trace Hardware

Trace hardware may have the same features that JTAG-based probes have. On

top of that, these dongles leverage the open-chip debugger capabilities of the tar-

get’s processor to trace applications in a completely non intrusive way, that is,

without getting changing the application’s code (to include printf’s, for example)

or changing the program execution flow. In the ARM example, trace hardware

will get access to one or all the ETM modules through the trace port interface unit

(TPIU). This port accepts trace from the trace bus (ATB) directly or through a

trace funnel, which may send the trace data to other component like ETB.

Trace hardware is too expensive for this work and, thus, it would not fit our cost-

effective necessities. Additionally, it is possible to collect the same traces from

ETB, which achievable with JTAG Debuggers. Even in this unfavorable scenario,

these solutions were also analyzed. The table ?? shows the units analyzed in this

work. As with the JTAG debuggers, the search was based on the requirements re-

ferred in the table 3.1. Furthermore, every evaluated tracer supports 1.8V (voltage

of OMAP4460). When a tracer supports ARMv7 but does not support explicitly

Cortex-A9, it is written that it supports ARMv7. Note that the table has more

features than the ones shown in the requirements table. That is because we con-

sidered more features in order to compare between tracers.

35

3.3 Conclusions

3.2.5 Software Debuggers

A Software debugger is installed on the host computer and used to communicate

with the target through the dongle. The features of some dongle and SoC might

be limited by the software and vice versa. Depending on its features, the software

can be the most expensive part of our system.

Some examples of software debugger are: Chameleon Debugger, MULTI IDE,

SourcePoint for ARM and IAR embedded workbench and OpenOCD. Over the

all possibilities, the only one which is opensource is OpenOCD. Although it lacks

some features like multicore debugging, it is quite complete.

3.3 Conclusions

In this chapter several existing debugging and tracing solutions were analyzed. It is

the intent of this work to employ such techniques to create an hardware-supported

dynamic analysis environment avoiding the use of VMI-based techniques. More-

over, our solution must not have access to the source code of the Application nor

insert debugging flags. Traditional debugging techniques are then excluded from

our approach, because they need access to the source code of an Application in

order to properly debug it (e.g. set breakpoints). In the same line of reasoning,

software tracing techniques are not suited for this work, because they perform

printf debugging by including code on the source code of an Application. Finally,

the only solutions that fit this approach are hardware tracing techniques and hard-

ware breakpoints, because they do not change neither the source code of a Linux

program nor any component of the OS itself. The aim of this work to inspect

memory to reconstruct system calls and respective parameters. Using CoreSight

for that is too hard in the sense that there are some components (PTM, Cross

Trigger Interface, TMC) which need configuration that are not implemented or

have a less reliable implementation(obsolete code) on OpenOCD. On top of that

it would be needed to get knowledge about proprietary formats of the information

that can be read from ETB. Given this time-consuming tasks, I selected the hard-

ware breakpoints, because they already work on the OpenOCD.

After the analysis of the existing solutions it was possible to infer that JTAG

36

3.3 Conclusions

debuggers and hardware tracers can both have access to the tracing mechanisms

provided by the on-chip tracing and debugging techniques. The trade-off between

these technologies is the ratio between their trace speed and price. For this work,

the choice of this technology was biased towards the cost-effective solutions, so it

will be used a JTAG debugger. The final choice was the Flyswatter2 because it is

one of the cheapest debuggers analyzed that has a decent frequency of 30MHz.

37

Chapter 4

Approach

4.1 Approach Overview

This section intends to explain the approach used on OpenST(Open SiliTracer),

which is the tool proposed on this work.

OpenST represents the very first effort taken on tracing runtime events by per-

forming a fine-grained hardware-based memory introspection. OpenST leverages

the capabilities of external hardware(subsection 3.2.2) and the capabilities of ex-

isting hardware debugging facilities(subsection 3.1.7) to analyze the memory of

the target at runtime. This feature makes it possible to faithfully reconstruct sys-

Kernel Image

ELF
System call
trace

Phase 2

Tracing

Phase 1

Code Generation

Open ST

Figure 4.1: Open SiliTracer

38

4.2 Phase 1: Code Generation

tem calls - and their respective parameters - issued by a Linux program relying

on hardware and not on hypervisors as the existing techniques do [K. Tam and

Cavallaro, 2015; Yan and Yin, 2012]. Therefore, it is a technique which acts trans-

parently to that target in the sense that it does not instrument its environment.

In order to get a better overview, check figure 4.1 that characterizes the high-level

approach employed on OpenST. The first phase(Code Generation) is character-

ized by the code generation based on a kernel image. The output of that phase is

a library to be used on tracing phase(Tracing). As the kernel image remains the

same on the target, the first phase just needs to be executed once. On the other

hand, the second phase(Tracing) may be executed any number of times. Each

execution receives a Linux program as an input and traces its execution on the

target at runtime. Finally it logs the traced data as depicted in section 4.3.5.

Throughout the following sections, the reader will get a better understanding of

each component of this approach.

4.2 Phase 1: Code Generation

The code generation phase can itself be divided in into two other separate phases

as shown in figure 4.2. At the first phase, (phase 1.1: System Call Data

Reconstruction), OpenST reconstructs the data needed from the system calls

present in the kernel image. This information is, then, sent to the (phase 1.2:

Introspection Procedure Generation) where the tool generates the introspect

procedures, based on that received information, to be included as a library in the

second phase(Tracing).

4.2.1 Phase 1.1: System Call Data Reconstruction

This sub-phase refers to the collection of all the information needed of the kernel

image. Overall, the goal of this phase is to gather information about the system

call prototypes and about the kernel structures and respective layouts in memory

from the kernel image. In order to reconstruct the system calls, one needs to

firstly know every parameter of it. Secondly, it is important to know the layout

39

4.2 Phase 1: Code Generation

of every struct, typedef and union, since it will be with that information that the

code can be generated in the next phase. The concrete output of this phase are

two C generated files that are sent to the phase 1.2: introspection procedure

generation.

4.2.2 Phase 1.2: Introspection Procedure Generation

Introspection procedure generation phase is where the memory dumping functions

are generated. This phase receives the two previously generated files from the last

phase. Holding the information about the system calls prototypes and about the

structures and other non-basic types, it is possible to parse the parameters of the

system call and apply a reflection technique on the most complex parameters to

understand its inner declarations. Moreover, as this phase receives the memory

layout of each non-basic data type, it is possible to generate the introspection

procedures for each system call and data type. The output of this phase is the C

library to be included in the next phase (Tracing).

Phase 1: Code Generation

Phase 1.2

Introspection
Procedure Generation

Phase 1.1

Syscall Data Reconstruction

Figure 4.2: Phase 1

40

4.3 Phase 2: Tracing

4.3 Phase 2: Tracing

The tracing phase, as previously stated, can be executed any number of times. In

the following subsections I will explain all the components of this phase, depicted

in figure 4.3. In general, this phase traces the issued system calls by an executing

Linux program and logs that information to the user. In the first phase, OpenST

sets a hardware breakpoint so that the target halts its CPU when it issues a

system call. Then, when the target is halted, the system call tapping triggers

the components needed to reconstruct the process data structures and the system

call’s parameters by means of memory introspection. Finally, when it holds all the

data needed, it logs to the user and to a file in disk for further analysis.

Phase 2.3

Process Data Structure
Reconstruction

Phase 2.5

Logging

Phase 2.4

Memory Introspection
&

Arguments Unmarshalling

Phase 2.2

System Call Tapping

Phase 2: Tracing

Phase 2.1

Hardware Breakpoint Management

Figure 4.3: Phase 2

41

4.3 Phase 2: Tracing

4.3.1 Phase 2.1: Hardware Breakpoint Management

This Management system deals with the hardware breakpoints’ insertion so that

the target’s CPU halts its execution when the breakpoint’s conditions are met.

The conditions are, for this approach, the execution flow arrival at a specific ad-

dress(software interrupt handler) and that the process identification of the issued

system call is the one which is being traced. Additionally, this component unsets

the breakpoints so that the target does not halt right after its execution resuming.

To address this issue, a new breakpoint is set at the next word’s address and the

older breakpoint is unset. After arriving at the next word’s address, the same

process is employed and the current breakpoint is unset a the old breakpoint is

reseted. This way, OpenST simulates a stepping mechanism.

4.3.2 Phase 2.2: System Call Tapping

System call tapping is a component that waits for the target to reach specific

conditions set by the hardware breakpoint management. When the conditions

are met, this component receives the information that the CPU is halted due to

a breakpoint and calls the components responsible for reconstructing the system

call and its arguments.

4.3.3 Phase 2.3: Process Data Structure Reconstruction

Process data structure reconstruction is the phase where OpenST reads the process-

specific information from the memory and the registers. The collected informa-

tion on this phase is the process identification(pid), the thread group identifi-

cation(tgid) and the executable name(comm). These informations are stored in

thread information structure, which can be accessed through the stack pointer(SP)

register. It is worth noting that every process should be able to access this infor-

mation.

42

4.4 Phase 2: Conclusions

4.3.4 Phase 2.4: Memory Introspection & Argument Un-

marshalling

This is the phase where the previously generated library code is used. The intent

of this code is to introspect registers and memory to generate the system call

arguments. As some of the arguments may be more complex(pointers, non-basic

data types), a depth level is introduced to OpenST. This depth level limits the

level of inspection of the system call parameters. Therefore, if a given system call

has a pointer to integer as a parameter, and the depth level is set to 0, it will print

the integers’ address. However, if the depth level is set to 1, it will print the integer

itself. In this basic example, if the depth level was higher than 1, it should behave

in the same way. The same line reasoning can be applied to complex structures,

which can have inner declarations which are pointers to other structs, or to the

same struct. In other words, it performs a recursive approach of inspecting the

parameters receiving a depth level as a limit.

4.3.5 Phase 2.5: Logging

After gathering all the information related to the system call and respective argu-

ments, OpenST just logs the information to the standard output and for a newly

created file with the sample name. The latter log can be accessed afterwards, thus,

permitting further analysis.

4.4 Phase 2: Conclusions

OpenST is a dynamic analysis automated tool, which allows perform a fine or

coarse-grained analysis of the system calls and its parameters depending on the

analyst needs. The novelty of this approach relies on this variable-depth intro-

spection of the memory, since it can understand the contents of the memory and

reconstructs them. By performing this reconstruction on the hardware level, can

make that it is less likely for executing application to understand the difference

between this new analysis environment and non-analyzed smartphone. The reason

43

4.4 Phase 2: Conclusions

for this to happen is because the existing evasion techniques assume that the anal-

yses environments are built on top of emulators, so checks like reading the IMEI,

network configurations or even sensors data will basically fail.

44

Chapter 5

Implementation Details

This chapter presents the implementation details of Open SiliTracer.

Every approach phase of Open SiliTracer described on chapter 4 had code changes

and I will describe all of them in the following sections. In the first two sections it

is possible to get information on how the code is generated(phase 1: Code Gen-

eration).. The third section will provide to the reader all the changes performed

on OpenOCD(Open on-chip debugger) [Rath, 2005], thus on phase 2: Tracing.

Note: Due to limitations of the configuration file of the SoC(System-on-a-

chip) used on this work 6.2.1, I changed the configuration file of the kernel image

provided by linaro, so it would disable SMP (Symmetric Multiprocessing). This

modification disabled the multi-core of the target board.

45

5.1 Phase 1: Code Generation

5.1 Phase 1: Code Generation

This section holds the required knowledge about the code generation to be in-

serted in phase 2: Tracing. The phase 1: Code Generation has clear issues

because it is time-consuming to write the hardware introspection code needed for

each system call present in the kernel image1. In fact, the automatically produced

code of this phase has 12707 lines of code, which is a good indicator of how time-

consuming it would be to write the code and to debug it. Moreover, it is hard to

have a deep understanding of all the data types passed as parameters and their

layout in memory.

In order to address the aforementioned issues, I found Pahole [pro, 2007] and py-

cparser [eliben, 2015]. To summarize, I am using pahole as an aid to retrieve the

the system calls prototypes and the information of structs, typedefs and unions

related to their members and organization in memory. On its side, pycparser plays

an important role as well by taking the pahole’s generated information and auto-

matically generating all the system call dumps and respective parameters.

This approach, besides having the direct advantage of working in an automated

way, ensures less implementation errors on the final code. The following subsec-

tions provide a deeper analysis of these tools.

5.1.1 Phase 1.1: System Call Data Reconstruction

This subsection provides the implementation details of this phase. It presents an

overview of the tool used and the modifications performed to make it useful to

OpenST.

Pahole [pro, 2007] is a tool that leverages the debugging information on standard

formats like DWARF and shows the data structures layout in memory. The initial

aim of this tool is to inspect structures and optimize its size in memory, since the

ordering of the structures’ members matters. However, it is still possible to gather

information on other data types and on functions.

Regarding what concerns this phase, OpenST takes advantage of the previous

1There are 377 system calls in the target’s architecture

46

5.1 Phase 1: Code Generation

features to generate two C files. One of them holds the information about the

system calls’ prototypes in the form shown in the snippet 5.4. The other file holds

the information about the structures, typedefs and unions of the kernel. The

only requirement of this tool is that the ELF (executable linked file) has been

generated with the flag -g. In terms of kernel compilation, this means enabling

CONFIG DEBUG INFO. The kernel source tree which I am using to compile the

kernel has that configuration enabled by default.

In order to make pahole useful to this work, I made some modifications to this

tool so it would output the information on a format that pycparser understood.

It is possible to output the structs of the kernel with and without some comments

with further information. It is of paramount importance to delete the comments

from the final ouput, since pycparser does not understand comments. However,

if the comments are deleted, pycparser will lose the data regarding the memory

alignment as it is possible to check in the next image.

1 struct thread_info {

// ...

struct task_struct *task; /* 12 4 */

struct exec_domain *exec_domain; /* 16 4 */

__u32 cpu; /* 20 4 */

6 __u32 cpu_domain; /* 24 4 */

struct cpu_context_save cpu_context; /* 28 48 */

// ...

__u8 used_cp[16]; /* 80 16 */

long unsigned int tp_value; /* 96 4 */

11 struct crunch_state crunchstate; /* 100 184 */

/* XXX 4 bytes hole, try to pack */

union fp_state fpstate; /* 288 140 */

16

/* size: 752, cachelines: 12, members: 16 */

/* sum members: 740, holes: 3, sum holes: 12 */

/* last cacheline: 48 bytes */

};

Listing 5.1: Pahole output before instrumentation

At the rightmost part of each structure member, there is the information about

the offset and size, respectively, of that specific member. The modification taken

on pahole refers to the switching of the comments by new struct members with

the information on the offset and size of each struct member.

47

5.1 Phase 1: Code Generation

struct thread_info {

// ...

struct task_struct *task;

int arm_tracing_offset[12];

5 int arm_tracing_size[4];

struct exec_domain *exec_domain;

int arm_tracing_offset[16];

int arm_tracing_size[4];

__u32 cpu;

10 int arm_tracing_offset[20];

int arm_tracing_size[4];

__u32 cpu_domain;

int arm_tracing_offset[24];

int arm_tracing_size[4];

15 struct cpu_context_save cpu_context;

int arm_tracing_offset[28];

int arm_tracing_size[48];

// ...

__u8 used_cp[16];

20 int arm_tracing_offset[80];

int arm_tracing_size[16];

long unsigned int tp_value;

int arm_tracing_offset[96];

int arm_tracing_size[4];

25 struct crunch_state crunchstate;

int arm_tracing_offset[100];

int arm_tracing_size[184];

union fp_state fpstate;

int arm_tracing_offset[288];

30 int arm_tracing_size[140];

};

Listing 5.2: Pahole output after instrumentation

The previous output is the one which is received by pycparser. Note that the offset

and size have a prefix(arm tracing), to distinguish the metadata inserted from the

real structure members. This metadata will be processed by pycparser in the next

phase(Introspection Procedure Generation). Overall, the novelty introduced

in pahole is the dumping of typedefs, functions, unions and enums.

Challenges

There were some challenges addressed during the instrumentation of pahole, which

are the following:

• Uniqueness of data types;

48

5.1 Phase 1: Code Generation

• Ordering of data types;

• Limitations of pycparser

Throughout the default output, there were some data types repetitions which made

the code more verbose. Additionally, there were dependencies from some typedef ed

types to the others, that is, one typedef that it is dependent from another which,

by default is found later in the file. The instrumentation part solved the latter

one by adding a component which orders dependencies in the output. As for the

code repetitions, there is now an hashmap which checks whether the data type is

already in the output or not. Overall, pahole’s issues were related with pycparser

limitations, so the instrumentation of these tools was tightly coupled.

49

5.1 Phase 1: Code Generation

5.1.2 Phase 1.2: Introspection Procedure Generation

The implementation of Phase 1.2: Introspection Procedure Generation uses

a C99 parser written in python, namely pycparser [eliben, 2015]. As explained in

the phase System Call Data Reconstruction, this phase receives the system

call prototypes and the memory alignment of structures, opaque types1 and unions

present on the kernel image. By the end of this phase, OpenST should have all

the code, in form of a library, needed to perform hardware-based memory intro-

spection. This subsection clarifies the details of the implementation, specifically

the main changes performed on pycparser.

OpenST uses pycparser to generate the AST of the kernel structures and of the

system call prototypes. Furthermore, it stores the metadata needed to understand

the kernel structures, unions and opaque types. This metadata is the information

of the unions’ size, structures’ members and respective offsets and sizes and the

same information of opaque types that hide structs and unions. In order to avoid

undefined references by typedef ed types passed as arguments, OpenST merges

both C files, inserting the content of the structures on the top. At this point, py-

cparser generates the AST for the merged file and it starts visiting all the system

call prototypes. For each system call prototype, this tool generates a system call

definition and, depending on the parameters, it generates memory introspection

code. Parameters can be basic or complex and, for that reason, this tool supports a

depth level. The first level generates the dumping code directly from the registers.

The next levels, if the parameter is not a basic type, are introspect the physical

memory. The final introspection code aims to read the system call’s parameters

directly from memory. So, as the tool contains the required metadata regarding

the offsets and the sizes, it is not needed to have the structs on the final code.

Therefore, the last step is to remove the structs from the previously merged code.

1Opaque types refers to the typedefs

50

5.1 Phase 1: Code Generation

The following snippets show the inputs(listings 5.3 and 5.4) and the output of

this phase.

typedef long int __kernel_time_t;

typedef int __kernel_clockid_t;

typedef __kernel_clockid_t clockid_t;

4 struct timespec {

__kernel_time_t tv_sec;

int arm_tracing_offset[0];

int arm_tracing_size[4];

long int tv_nsec;

9 int arm_tracing_offset[4];

int arm_tracing_size[4];

};

Listing 5.3: Structures and typedefs used on clock gettime

long int sys_clock_gettime(clockid_t const which_clock, struct timespec * tp);

Listing 5.4: clock gettime system call prototype

When the parser is generating the code and it reads the first parameter, it tries to

translate that value in a complex data type or in a basic data type. Therefore, in

this case, clock id is decoded to int.

char *dump_sys_clock_gettime(int depth, struct target *target)

{

char **dumped_params;

4 char *param_str;

int len = 0;

if (depth < 0)

{

param_str = malloc(0);

9 return param_str;

}

unsigned int arm_tracing_which_clock = get_uint32_t_register_by_name(target->reg_cache,"r0");

unsigned int arm_tracing_tp = get_uint32_t_register_by_name(target->reg_cache,"r1");

14 dumped_params = malloc(2 * (sizeof(char *)));

if (depth == 0)

{

len += dump_int(arm_tracing_which_clock, &dumped_params[0]);

len += dump_ptr(arm_tracing_tp, &dumped_params[1]);

19 param_str = copy_params(dumped_params, 2, &len);

free_dumped_params(dumped_params, 2);

return param_str;

}

51

5.1 Phase 1: Code Generation

24 if (depth >= 1)

{

len += dump_int(arm_tracing_which_clock, &dumped_params[0]);

len += dump_timespec(depth-1, arm_tracing_tp, &dumped_params[1], target);

}

29

param_str = copy_params(dumped_params, 2, &len);

free_dumped_params(dumped_params, 2);

return param_str;

}

Listing 5.5: Memory introspection code of clock gettime

The code organization of Phase 2: Tracing(section 5.2) influences generated

code, since it expects that every system call dumping function returns a string(param str)

with the format of the dumped parameters, that is, “(arg1, arg2, ..., argn)”. Over-

all, the dumping code starts by reading the parameters from the registers, and then

it enters in the depth level block. In this block, the contents of the parameters are

written to the auxiliary variable, dumped params, depending on the depth level,

dereferencing, in between the if statements, the arguments if needed. Right after

returning, it writes the contents of dumped params to param str.

52

5.1 Phase 1: Code Generation

int dump_int(unsigned int value, char **param_str)

{

int len = dump_generic(param_str, NUM_CHARS_INT, "%d", value);

return len;

5 }

Listing 5.6: Dump integer from register

Dumping the value from the register follows the same principle, whether the value

is a pointer, an integer, or another data type. The only thing that changes is the

number of characters of the string and the format specifier, which would be 0x%x

for the pointer. An additional placeholder which worths being referred is the one

used on enum, because it may not be intuitive that it can be dumped as an integer.

int dump_long_int_from_mem(unsigned int addr, char **param_str, struct target *target)

{

unsigned int *value = get_address_value(target, addr, SIZE_OF_LONG);

4 int snprintf_n_read = dump_generic(param_str, NUM_CHARS_LONG, "%li", *value);

free(value);

return snprintf_n_read;

}

Listing 5.7: Dump long integer from memory

The previous snippet uses a procedure which is created in Phase 2: Trac-

ing(section 5.2), get address value to read from memory the contents of an address

with variable size. Then, the value read is written as a string on dump generic

procedure.

int dump_generic(char **param_str, unsigned int size, char *format, unsigned int value)

{

*param_str = malloc(size);

int snprintf_n_read = snprintf(*param_str, size, format, value);

5 return snprintf_n_read;

}

Listing 5.8: Dump generic type’s value

The previous procedure just dumps a given value to a string and returns the

number of bytes written. As shown in the dumping code of the system call, the

written string may be merged with others in order to display the value in the

required format, which is “(arg1, arg2, ..., argn)”.

int dump_timespec(int depth, unsigned int addr, char **dumped_params, struct target *target)

{

53

5.1 Phase 1: Code Generation

3 char **dumped_type_params;

unsigned int arm_tracing_tv_sec = addr;

unsigned int arm_tracing_tv_nsec = addr+4;

int len = 0;

if (depth < 0)

8 {

*dumped_params = malloc(0);

return len;

}

13 dumped_type_params = malloc(2 * (sizeof(char *)));

if (depth >= 0)

{

len += dump_long_int_from_mem(arm_tracing_tv_sec, &dumped_type_params[0], target);

len += dump_long_int_from_mem(arm_tracing_tv_nsec, &dumped_type_params[1], target);

18 }

*dumped_params = copy_params(dumped_type_params, 2, &len);

free_dumped_params(dumped_type_params, 2);

return len;

23 }

Listing 5.9: Dump structure timespec

The way that the dumping of a struct works is similar to the way that the system

call works. The main difference is that the first level reads the contents from

memory and not from registers. Note that the declarations of the variables which

hold the addresses to be read have an offset (addr + offset) embedded in the code.

That offset comes from the metadata previously stored.

Challenges

There were some challenges encountered throughout the instrumentation of pyc-

parser. Hereby it is the three more important challenges:

• Recursive dumping of each structure;

• Translation of typedef ed data types;

• Metadata of anonymous structure

The complex data types, like structures need to have a recursive approach of gen-

erating the dumping functions. This happens because there may be the case where

the structure has structures as its members, whether that structs are different from

54

5.2 Phase 2: Tracing

the original one or not. The translation of typedefs is time-consuming even though

it applies a dynamic approach, storing intermediate values. The third problem was

the hardest to deal with. In Linux kernel, it is possible (and gcc accepts) to create

structs without a name inside other structs. This possibility made it harder to

store a name for dumping that struct. The way our tools addresses this issue is

by concatenating the type of each of ist structure members.

5.2 Phase 2: Tracing

This section describes how this phase performs analysis on an executable linked

file(ELF). In order to do it, OpenST uses a open source tool that allows to handle

all the JTAG communication between a host device and a target board running

Linux. That tool is named Open On-Chip-Debugger(OpenOCD) [Rath, 2005] and

hereby there is an explanation on how it is instrumented.

5.2.1 Phase 2.1: Hardware Breakpoint Management

In Linux ARM it is possible to invoke a system call by means of the swi instruc-

tion1, which stands for software interrupt. The only purpose of this instruction

is to make a system call to the operating system. After reading such instruction,

the CPU generates a software interrupt exception and the control flow changes to

swi vector. This procedure is a wrapper function for every system call.

OpenST leverages the debugging capabilities of the CPU 3.1.7 to halt the target’s

execution when the control flow reaches the swi vector address. In order to do it,

OpenST inserts an hardware breakpoint on the swi vector ’s address2. When the

CPU halts, the breakpoint must be removed, because otherwise it would halt the

CPU right after the target resumed. OpenST addresses this issue by inserting a

different breakpoint on a second address(swi vector ’s address + 4) and alternating

between adding and removing the breakpoint on those addresses. This is the way

it simulates the stepping mechanism:

1Nowadays, the term has changed to SVC (supervisor call). I employed the old term because

the kernel version which I am using still uses the swi instruction
2One can know this information by the System.map file generated after the kernel compilation

55

5.2 Phase 2: Tracing

1 /* pc_value holds the address of the current breakpoint */

breakpoint_p->address = pc_value;

breakpoint_remove(target, breakpoint_p->address);

breakpoint_p->address = (pc_value==SWI_ADDR) ? SWI_ADDR+4 : SWI_ADDR;

6 if (!contextid && !breakpoint_p->asid) {

breakpoint_add(target, breakpoint_p->address, BKPT_LENGTH, BKPT_HARD);

} else if(contextid) {

breakpoint_p->asid = contextid;

hybrid_breakpoint_add(target, breakpoint_p->address, breakpoint_p->asid, BKPT_LENGTH, BKPT_HARD)

;

11 } else {

arm = target_to_arm(target);

arm->mrc(target, 15, 0, 1, 13, 0, &contextid);

breakpoint_p->asid = contextid;

hybrid_breakpoint_add(target, breakpoint_p->address, breakpoint_p->asid, BKPT_LENGTH, BKPT_HARD)

;

16 }

Listing 5.10: Implementation of Hardware Breakpoint Management

Furthermore, as OpenST aims to analyze a specific Linux process, the context ID

register must be read to insert hybrid breakpoints (trigger on context ID and on

address). It is possible to access this register by the co-processor15 CONTEXTIDR

register, c13 as ARM documentation indicates(line 12 of the previous snippet).

Otherwise, OpenST performs a system-wide analysis.

5.2.2 Phase 2.2: System Call Tapping

OpenOCD has already implemented a callback system which triggers its execution

whenever a debug event occurs. OpenST takes advantage of this system and just

checks whether the debug event is a breakpoint or not as it is possible too see in

the next snippet.

if(event == TARGET_EVENT_HALTED && target->debug_reason == DBG_REASON_BREAKPOINT)

2 {

//...

Listing 5.11: Implementation of Hardware Breakpoint Management

As the hardware breakpoint is only set at the swi vector ’s address, whenever the

control flow enters this statement, it should be because the target’s CPU is pro-

cessing a system call.

56

5.2 Phase 2: Tracing

5.2.3 Phase 2.3: Process Data Structure Reconstruction

The way that the kernel stores and manages its processes information is worth doc-

umenting in order to provide a general overview to the reader. The main structure

that holds all the information about each process is named task struct and it is

known as process descriptor. This structure is a double-linked list with every pro-

cess in the operating system. Among other information, this struct contains the

process identification, pid, the thread group identification, tgid and the executable

name, comm, which is the information that OpenST collects from the processes

which issue system call. This information allows the proposed to associate system

calls to processes. The way that OpenST collects that information is by reading

the memory of the emphtask struct at specific offsets, which were gotten by the

kernel image and are hardcoded in the proposed tool. The following snippet shows

how this information is read.

/* mdw task_struct_addr */

2 task_struct_value = *((uint32_t*) get_address_value(target, task_struct_addr, WORD_SIZE));

pid_addr = task_struct_value + PID_OFFSET;

comm_addr = task_struct_value + COMM_OFFSET;

7 /* mdw pid_addr */

pid_value = *((uint32_t*) get_address_value(target, pid_addr, WORD_SIZE));

/* mdw tgid_addr */

tgid_value = *((uint32_t*) get_address_value(target, pid_addr+4, WORD_SIZE));

Listing 5.12: Process Data Reconstruction

However, in order to access the task struct at runtime, one should go through the

thread info struct first. The latter one is a struct, located at the bottom of the

stack1, that holds the following information:

struct thread_info {

unsigned long flags;

int preempt_count;

4 mm_segment_t addr_limit;

struct task_struct *task;

struct exec_domain *exec_domain;

__u32 cpu;

__u32 cpu_domain;

9 struct cpu_context_save cpu_context;

1for stacks that grow down

57

5.2 Phase 2: Tracing

__u32 syscall;

__u8 used_cp[16];

unsigned long tp_value;

struct crunch_state crunchstate;

14 union fp_state fpstate __attribute__((aligned(8)));

union vfp_state vfpstate;

#ifdef CONFIG_ARM_THUMBEE

unsigned long thumbee_state;

#endif

19 struct restart_block restart_block;

};

Listing 5.13: thread info definition [lxr FreeElectrons, 2012b]

As it is possible to see in the previous snippet, OpenST can access the task struct if

it has access to the thread info. Fortunately, it is also possible to access thread info

just by having the information of the stack pointer(SP), that it is depicted bellow

and it is used on the kernel:

static inline struct thread_info *current_thread_info(void)

{

register unsigned long sp asm ("sp");

return (struct thread_info *)(sp & ~(THREAD_SIZE - 1));

5 }

Listing 5.14: current thread info definition [lxr FreeElectrons, 2012a]

The size of the thread is 8192, thus, the previous snippet masks out the least signif-

icant 13 bits from the stack pointer(SP), since 8191 in hexadecimal is 0x00001FFF.

After having access to the thread info, the tool is able to access all the needed in-

formation as previously explained.

5.2.4 Memory Introspection & Argument Unmarshalling

and Logging

OpenST uses an array of function pointers to organize the previously generated

code in Phase 1: Code Generation(section 5.1). That array declaration can be

seen in the following snippet:

static char* (*sys_ptr[NUM_SYSCALLS])(int depth, struct target *target);

Listing 5.15: Declaration of the array of function pointers

58

5.2 Phase 2: Tracing

Given that the code is already generated, the only step that it needs to be per-

formed is to populate this array by assigning each system call id to the pointer of

the introspection procedure, which is done as follows:

static void insert_dump_functions_references(void)

2 {

sys_ptr[66] = &dump_sys_setsid;

sys_ptr[2] = &dump_sys_fork;

sys_ptr[120] = &dump_sys_clone;

sys_ptr[190] = &dump_sys_vfork;

7 sys_ptr[11] = &dump_sys_execve;

sys_ptr[270] = &dump_sys_arm_fadvise64_64;

// ...

sys_ptr[365] = &dump_sys_recvmmsg;

sys_ptr[102] = &dump_sys_socketcall;

12 }

Listing 5.16: Populate the array of function pointers

In the end, the only thing that is still missing is the system calls logging to the

user and to a file. The code organization previously explained makes it possible

to read the parameters as follows:

if(sys_ptr[syscall_id])

{

param_str = sys_ptr[syscall_id](depth_level, target);

4 LOG_SYSCALL(pid_value, tgid_value, comm_value, syscall_id, param_str);

if (fp_trace)

fprintf(fp_trace, "[pid:%d tgid:%d comm:%s] %s(%s)\n", pid_value, tgid_value, comm_value,

syscalls_map[syscall_id], param_str);

free(param_str);

}

Listing 5.17: System calls logging

The sys ptr reads the system call parameters accordingly to the depth level passed

as parameter1. The parameters string is then logged, along with the other infor-

mation gotten about the process data from the registers, to the user command

line and then appended to a file. The LOG SYSCALL is a macro included on

OpenOCD to allow OpenST to print colored logs.

#define LOG_SYSCALL(pid_value, tgid_value, comm_value, syscall_id, expr ...) \

LOG_INFO("["GREEN"[pid]%d [tgid]%d [comm]%s" \

DEFAULT"] "RED"%s"DEFAULT"(%s)", \

pid_value, tgid_value, comm_value, \

1depth level can be set before or during analysis

59

5.2 Phase 2: Tracing

5 syscalls_map[syscall_id], expr)

Listing 5.18: LOG SYSCALL macro definition

60

Chapter 6

System Details and Architecture

6.1 System Environment Architecture

This section presents the final architecture of OpenST and further information

about its protocols and components. Moreover, it explains the actions that are

automated to have a final working dynamic analysis tool. The final architecture

is depicted on figure 6.1

adb service

Linux kernel

Android

CPU

MEM
JTAG

pinout

Target Board

Flyswatter2

TracesOpenST

NFS/TFTP

Host Device

JTAG

RS232

ETHERNET

PUSH
EXECUTE

USB

BOOT

Figure 6.1: System Architecture

61

6.1 System Environment Architecture

6.1.1 Debugging Architecture

The host device has four running processes: OpenOCD, NFS server, TFTP server

and adb1 server.

OpenOCD, as previously mentioned, is the software debugger which enables the

possibility to issue JTAG commands to debug the target. These commands are ex-

ecuted with the aid of the JTAG debugger (Flyswatter2) that will send them to the

target through JTAG protocol. Afterwards, it will receive the requested informa-

tion. Flyswatter2 also allows the host device to communicate with the PandaBoard

through UART2. This feature is useful for booting purposes explained in the next

subsection 6.1.2. It is worth noting that it was crucial to debug the configurations

employed in the bootloader’s (u-boot) configuration. Lastly, adb server is used to

install and run Linux programs and Android Apps using the USB OTG3 Pand-

aBoard’s port.

The automation of this debugging process will leverage the capabilities of OpenOCD

scripting language and adb shell to automatically initiate the tracing mechanisms,

install a malware, and trace its execution. The next figure depicts the debug cycle:

Traces are collected using OpenOCD and stored in the host PC. Afterwards there

is an offline reconstruction of the Android malware, based on techniques like the

ones employed in CopperDroid [K. Tam and Cavallaro, 2015], from the collected

traces during runtime.

6.1.2 Booting Schema

One mandatory requirement is to restore the filesystem and the Android image to

guarantee a non-infected device before every run. For that purpose, it was needed

to create a booting schema. In order to automatically boot the PandaBoard, one

needs to have:

• a bootloader that supports network operations;

• a NFS server with the android root filesystem;

1Android Debug Bridge
2Universal asynchronous receiver/transmitter
3USB on-the-go

62

6.1 System Environment Architecture

• a TFTP server that contains Android kernel and the device tree blob of

PandaBoard ES

Embedded systems, like Pandaboard ES, have an universal bootloader Engineer-

ing [1999] that supports network operations. In order to properly boot Android

over Ethernet in PandaBoard, it is used an SD card with a boot partition that

contains the uboot image (uboot.img), the first level bootloader((MLO)) and a

bootscript(boot.scr). The MLO will boot u-boot that, on its side, will try to ex-

ecute the boot script file (if existent). The boot script automatizes the booting

process, which works as depicted in figure 6.3. In order to boot properly the de-

vice, u-boot needs two files: uImage; device tree. The uImage contains the kernel

image and the device tree file which describes the hardware layout. Furthermore,

the kernel needs a filesystem to boot. So, as depicted in figure 6.3, u-boot requests

those files over the network (Ethernet connection). The first two files (uImage

and device tree) are located on a TFTP server that is running in the host device.

The root filesystem is provided by the NFS server which also runs on the host

device. Since the host device is isolated from the environment that runs the linux

programs, it will be very unlikely or even impossible that a malware infects the

NFS server, the TFTP server, their files or even the host device. The uImage and

tree.dtb are gathered with the tftp command of u-boot. Booting the kernel requires

Figure 6.2: Debug Cycle

63

6.2 System Requirements

bootm, which requires bootargs. The bootargs will define booting arguments like

the mounting point (devnfs), its type (nfs) and its location (ip address of the nfs

server).

6.2 System Requirements

In this section, the reader will get information about the system requirements of

every component used for this work. Firstly, there is a brief description containing

all the features that the system must have to perform the intended tasks. Lastly,

there is a description of the system requirements of each component (the board

and the other ones described in the subsection 3.2.3).

The objective of this project is to reconstruct the behavior of Android malicious

Apps by analyzing its runtime traces. It is worth noting that the key point of

this analysis is that it won’t be allowed to used debugging flags nor have access

to the malware source code. This way, it will be harder for the malware to un-

Figure 6.3: Booting Schema

64

6.2 System Requirements

derstand that it is being analyzed. In order to develop an hardware-based debug

environment for a given target SoC 1, the environment needs to have:

• a host device;

• a low-cost board based on one SoC that supports Android;

• a JTAG in-circuit debugger/programmer for ARM processors;

• a Software that interfaces with a hardware debugger’s JTAG port.

The host device connects to the board through the JTAG debugger, so it can

debug the target CPU. Additionally, it should be possible, for the host device, to

seamlessly and automatically install Android Apps and Linux programs into the

target board, that is running a slightly modified Android OS version. In order to

make sure that the system is not infected after each application execution, two

features must be added: download the Android OS image from the host and boot

the board every run; maintain an unchanged remote filesystem. The host device

does not have any special requirement as long as it supports the software used to

retrieve traces with some specific JTAG debugger, Ethernet port and two USB

ports. On the other hand, the JTAG debugger, the board and the software have

some restrictions that should be followed in order to select them.

The following sections contain the analysis of those restrictions to choose wisely

the technologies for the environment.

6.2.1 Board

The market offers us many boards. For the sake of simplicity, the reader can see

the table ?? with the board’s minimum requirements (plus the CPU clock speed).

We inserted in the table every board that:

• supports an unmodified or slightly modified AOSP2 version;

• has an Ethernet port;

• has JTAG pinout;

1System on a chip
2Android Open Source Project

65

6.2 System Requirements

• has an ARM based CPU;

• supports UART (like RS232)

Supporting AOSP and being an ARM based CPU is mandatory in order to recre-

ate as close as possible a real environment. As previously referred ARM-based

processors are the most common ones in the smartphones market [ARM R©, 2015].

The support of an Ethernet port is related with the process of booting and main-

taining a remote filesystem, which was previously explained. JTAG pinout is also

essential since it is the standard that it is used to debug the target SoC. Lastly,

the UART port makes possible to have an independent port from the JTAG port

to communicate with the target device.

Furthermore, it is of paramount importance to restore the all system between ev-

ery run, to guarantee the same conditions to every application.

The aforementioned restrictions were not enough to make a straightforward choice

- which the reader can check in the table ??. The processor’s clock rate is just

displayed to possibly differentiate boards between each other. As we are in the

cutting edge, we searched tutorials to connect the board with the JTAG debugger

and, in the end, we gave preference to the board which was mostly used in terms

of JTAG debugging: Pandaboard ES. The selected board has a TI OMAP4460

OMAPTMprocessor, which is based on ARM Cortex-A9 architecture.

6.2.2 JTAG Debugger

First of all, between, the JTAG debugger and the hardware tracers, typically, there

is a huge gap between their prices. The reason is simple: hardware tracers need

to support ETM tracing with TPIU 1, which implies the support of higher clock

frequencies. So, as having a low price is indispensable, we narrowed our choice

only to cheaper technologies (even in the JTAG debuggers table ??, which have

some costly devices). Note that JTAG debuggers have the prerequisites to this

project, however, they perform a slower analysis. Besides the prices (which leaves

some options to choose), similarly to the board’s selection, we searched tutorials

1Trace Port Interface Unit

66

6.2 System Requirements

that in order to know which of the debuggers would best fit with given boards. We

concluded that Flyswatter2 is a debugger that has a decent frequency (considering

JTAG specification), is cost-effective and it has good references.

6.2.3 Software Debugger

A Software debugger is installed on the host device and is used to communicate

with the SoC target through the JTAG debugger. For what matters to this work,

the software just needs to support a way of showing the interrupts generated

by applications on Android and introspect system calls parameter’s. Any JTAG

debugger should be able to do that. However, since it is required that the software

debugger can be modified, the choice should be biased toward an open source tool.

Chameleon Debugger, MULTI IDE, SourcePoint for ARM and IAR embedded

workbench are complete expensive tools, but they are not open source. For that

reason, OpenOCD1 is the software debugger used on this project.

1Open On-Chip Debugger

67

Chapter 7

Experimental Validation

7.1 System setup

The figure 7.1 shows the system setup, which will have its components specifica-

tions detailed in this section.

The setup environment uses a Raspeberry Pi2, model B with a quad-core ARM R©

CortexTM-A7 900MHz CPU and 1GB of RAM as the host device(A). The JTAG

debugger(B) is Flyswatter2 which has clock frequency upto 30MHz. The tar-

get(C) is a Pandaboard ES rev B3 with a dual-core ARM R© CortexTM-A9 MPCoreTM

with Symmetric Multiprocessing (SMP) at upto 1.2 GHz each. Finally, the setup

has a router(D) which enables the possibility of accessing the host remotely with a

ssh client, which is not a requirement of the tool, but it was employed for comfort

purposes, since it enables the access to the tool from everywhere without the need

to set it up over and over.

7.2 Case Study

OpenST can be used to perform analysis on Linux processes, whether they are

Android applications or native Linux programs. This tool tracks the OS-specific

behavior by displaying all the contents of the system calls issued by the given

Linux process. This tool can be used by someone which wants to understand the

behavior of a Linux process.

68

7.2 Case Study

In this example, a given analyst wants to analyze the system calls issued by an

calculator and he uses OpenST to perform the analysis. The analyst connects to

OpenST over telnet(localhost on port 4444) and type the following:

> systrace bench /path/to/program/executable_name

Listing 7.1: Connecting to Open SiliTracer

This command seamlessly installs and executes the binary with adb and then

traces the behavior of executable name. The output is shown on the terminal and

it is sent to a file named trace executable name.

As it analyzes the OS-specific behavior of a Linux process, it can analyze any

native program or Android application. This tool can be used to understand the

system calls issued by a Linux process or to analyze the OS-specific behavior of a

malware.

Figure 7.1: System Setup

69

7.3 Correctness

7.3 Correctness

This section presents the correctness of the results of OpenST. The correctness

validates the tool on its output showing whether OpenST tracks all the system

calls or it fails some of them. In order to check that, I made an Assembly program

for ARM which receives the system call number by parameter and issues the

system call with all the arguments set to 0. Then, with another program made in

C, a given set of system calls was issued. The output is in the listing ?? of the

Appendices. It is possible to note that there are other system calls there due to

printing functions, the exit of the program and the starting of the program. The

set of the system calls used to test the correctness was the following:

• 5 - sys open;

• 6 - sys close;

• 10 - sys unlink;

• 11 - sys execve wrapper;

• 20 - sys getpid;

• 26 - sys ptrace;

• 39 - sys mkdir;

• 40 - sys rmdir;

• 41 - sys dup;

• 54 - sys ioctl;

• 63 - sys dup2;

• 125 - sys mprotect;

• 146 - sys writev;

• 199 - sys getuid;

• 201 - sys geteuid;

• 202 - sys getegid;

70

7.4 Benchmarking

• 210 - sys setresgid;

• 212 - sys chown;

• 213 - sys setuid;

• 214 - sys setgid;

• 217 - sys getdents64;

• 281 - sys socket;

• 283 - ABI(sys connect, sys oabi connect)

As it is possible to see from the result, OpenST traces every system call perfectly.

7.4 Benchmarking

This section describes the benchmarking employed to measure the performance

hit of OpenST. To summarize, there are two levels of performance hit: micro

and macro. In the micro level(subsection 7.4.1), the finest level of OpenST is

tested - system call. On the other hand, the macro level(subsection 7.4.2) is the

benchmarking of well known programs.

7.4.1 Micro Benchmark

Micro benchmarking is meant to measure OpenST the performance hit on every

system call. In order to accurately measure the time that each system call takes

to execute on the target, one cannot use the system call clock gettime since it

introduces the system call overhead of the system call itself. Therefore, I had to

perform the measurement based on the CPU ticks count from the processor, that

is multiplied for the maximum CPU clock frequency. As I had a JTAG debugger,

enabling the access to the CPU is straightforward1:

> halt

> arm mcr 15 0 9 14 0 1

> resume

Listing 7.2: Enable the CPU ticks count register

1Otherwise it would be needed to create a kernel module

71

7.4 Benchmarking

Then in the assembly code, it is only needed to reset the ticks counter and then

read the CPU ticks before and after the system call, which achieved as follows:

mov r11, 0x17

2 mcr 15, 0, r11, c9, c12, 0 @reset the counter

mrc 15, 0, r8, C9, C13, 0 @read the CPU ticks

svc 0 @issue syscall

mrc 15, 0, r9, C9, C13, 0

Listing 7.3: Read the CPU ticks count register

Furthermore, it was tested the performance impact of the JTAG speed, running

the analysis with three levels of frequency speed: 290kHz, 2900kHz and 29Mhz,

which are shown in table 7.1. The results of that table clearly show that OpenST

generates a great overhead on each system call. Moreover, it seems that, even if

the JTAG clock frequency would be greater (with another JTAG debugger), the

performance hit would not be much lower, since the gain is low switching from

2900Khz to 29Mhz. Therefore, I presume that the bottleneck of this approach is

the latency of the communication channel.

The micro benchmarking performed is measured in three figures 7.2. The first

one(Micro Bench Native) depicts the time spent for each system call on the target.

The second figure(Micro Bench with Instrumentation) shows the instrumentation

performance hit. The timing related with the instrumentation is almost the same

because the operations performed on OpenST are almost the same on each system

call. Lastly, the figure(Micro Bench Slowdown) presents the overall time spent on

each system call.

Table 7.1: Micro benchmarking results

Execution time(ms)

Average Time Standard Deviation

Native 7.46e-04 5.78e-04

OpenST@29Mhz 178 21

OpenST@2900Khz 201 30

OpenST@290Khz 402 20

Slowdown@29Mhz

4.41e+05 2.99e+05

72

7.5 Conclusions

7.4.2 Macro Benchmark

The macro benchmark, as stated before, aims to compare the execution time of a

widely known programs(7zip, ps, nestat) natively and with the analysis of OpenST.

The table 7.2 shows the results of that benchmark. The results of this benchmark

are better, in the sense that, overall, the performance hit is lower. Such behavior

is expected since the programs have many instructions that do not issue system

calls (as opposed to the one used on micro benchmark).

7.5 Conclusions

OpenST is able accurately trace all the system calls issued by a specific Linux pro-

cess, which makes it possible to understand the OS-specific behavior of it. This

works for every native program or Android application. However, the performance

hit of the analysis is significant and the hardware setup should be optimized. Nev-

ertheless, the tool fulfills its purpose of porting accurately a VMI-based technique

to Hardware, raising the bar for malware writers to evade this dynamic analysis

tool.

Table 7.2: Macro benchmarking results

Execution time(s)
Slowdown

Average Time Standard Deviation

7za
native 2.55 1.3

69.1 ± 140
OpenST 176 31

ps
native 0.699 0.56

243 ± 833
OpenST 121 25

netstat
native 0.0192 0.0035

635 ± 253
OpenST 116 31.4

73

7.5 Conclusions

System Call Number
 5 6 10 11 20 26 39 40 41 54 63 125 146 199 201 202 210 212 213 214 217

In
st

ru
m

en
ta

tio
n

Sl
ow

do
wn

#10 5

0

2

4

6

8

10

12

Micro Bench Slowdown

System Call Number
 5 6 10 11 20 26 39 40 41 54 63 125 146 199 201 202 210 212 213 214 217

Sy
st

em
 C

al
l T

im
e

(n
s)

#10 8

1.2

1.4

1.6

1.8

2

2.2

2.4

Micro Bench With Instrumentation

System Call Number
 5 6 10 11 20 26 39 40 41 54 63 125 146 199 201 202 210 212 213 214 217

Sy
st

em
 C

al
l T

im
e

(n
s)

0

500

1000

1500

2000

2500

3000

3500

Micro Bench Native

System Call Number
 5 6 10 11 20 26 39 40 41 54 63 125 146 199 201 202 210 212 213 214 217

Sy
st

em
 C

al
l T

im
e

(n
s)

0

500

1000

1500

2000

2500

3000

3500

Micro Bench Native

Figure 7.2: Micro benchmarking on the target74

Chapter 8

Discussion

8.1 Limitations

This section provides the limitations of OpenST and some discussion around them.

The main limitation of OpenST is related to the performance of the analysis. As

previously analyzed in table 7.1, the speed of the clock frequency of the JTAG

debugger influences the overall performance of the analysis. Even though, the

maximum frequency of the Flyswatter2 is 30Mhz, it seems that even if it would

support the maximum speed of JTAG protocol(100MHz), the performance im-

provement would not be significant. Thus, I presume that the performance hit

is related with the latency of the whole communication. Additionally, there is a

performance hit that depends on the target’s scheduler. The analysis starts by

breakpointing just the address of swi vector and, thus, performs a system-wide

analysis until it finds the process context ID to set a hybrid breakpoint(address

and context ID).

The lack of support of SMP on Pandabord ES on OpenOCD is also a limitation

of this approach. As referred before, this the only change made on the kernel so

that it is ensured that it runs on a single CPU.

OpenST, even though it can record information on Android Applications, do not

get specific information on Android behavior. So, a security expert just can eval-

uate an application considering its OS-specific behavior.

Overall, as existing approaches it does not support real-time. The comparison of

75

8.1 Limitations

the performance of OpenST with VMI-based approaches is not straightforward,

since the benchmarks provided by the literature do not take into consideration the

overhead of the emulator. Moreover, it is still possible to evade our analysis. As

referred in one of the analyzed studies [T. Vidas, 2014], the analysis of our system

will have a fixed timespan to trace the runtime events of each malware sample,

so it is possible to evade our system by starting the malware’s malicious activities

only after that defined timespan. It is worth mentioning though, that even in that

case, the malware is not distinguishing our environment from a another which is

not being analyzed.

76

Chapter 9

Conclusions and Future Work

This work achieved its purpose on performing dynamic analysis on Linux processes

with the aid of the created tool, Open SiliTracer. This automated tool uses hard-

ware memory introspection to perform dynamic analysis on Linux processes. It is

the very first effort on this kind of analysis using open source solutions, because it

does not rely on hypervisors. However, this tool needs some future work regarding

the limitations presented in the previous chapter.

9.1 Future Work

The novelty of the approach is implemented on OpenST, however, for the tool

to move to the next stage it should record not only OS-specific but also Android

specific information so that a security expert can use it for tracing Android appli-

cations. It can do it so if it further inspects the ioctl system call. The reason for

not introducing this on this work is two-fold:

• It is already implemented on the literature [K. Tam and Cavallaro, 2015] so

it does not constitute novelty;

• It is a matter of coding; there is nothing new in our approach

In order to increase overall performance other system setups(target, host, dongle)

should be employed. Finally, OpenST needs to be tested with multicore and

against existing fingerprinting techniques.

77

References

(2007). Proc. of the Linux Symposium(SYMP 2007), volume 2. 46

Android-central (2015). Daily android activations. 1

ARM R© (2010). Arm virtualization extensions. 23

ARM R© (2012). Coresight components. x, 28

ARM R© (2015). Arm popularity. 2, 26, 66

ARM R©InformationCenter (2011). Embedded trace macrocellTM. 29

Bellard, F. (2005). Qemu, a fast and portable dynamic translator. In USENIX

ATC. 5, 7, 11, 17

Bramley, J. (2010). Caches and self-modifying code. 22

DEXLabs (2012). Dexter. 2

eliben (2015). pycparser. 46, 50

Engineering, D. S. (1999). U-boot. 63

F-SecureLabs (2014). Mobile threat report. 1

Garfinkel, T. and Rosenblum, M. (2003). A virtual machine introspection based

architecture for intrusion detection. In NDSS. 2, 4, 7

Google (2012). Google bouncer. 2

IDC (2014). Smartphone os market share. 1

78

REFERENCES

InternationalSecureSystemsLab (2012). Anubis. 2, 5

K. Tam, S. J. Khan, A. F. and Cavallaro, L. (2015). Copperdroid: Automatic

reconstruction of android malware behaviors. In Network and Distributed System

Security (NDSS) Symposium, San Diego, CA, USA. x, 2, 4, 5, 14, 39, 62, 77

lxr FreeElectrons (2012a). Get current thread info. xii, 58

lxr FreeElectrons (2012b). Thread info struct. xii, 58

Matenaar, F. and Schulz, P. (2012). Detecting android sandboxes. 17, 22

McAfee (2014). Mcafee labs threats report. 1

Oberheide and Miller (2012). Dissecting the android bouncer. 2

OpenIntents (2007). Sensorsimulator. 21, 23

R. Paleari, L. Martignoni, G. F. R. and Bruschi, D. (2009). A fistful of red-pills:

How to automatically generate procedures to detect cpu emulators. In WOOT.

15

Rath, D. (2005). Open on-chip-debugger. 26, 45, 55

Rutkowska, J. (2006). Blue pill. 15

Symantec (2012). Norton cybercrime report. 1

T. Petsas, G. Voyatzis, E. A. M. P. and Ioannidis, S. (2014). Rage against the

virtual machine: Hindering dynamic analysis of android malware. In EuroSec.

2, 4, 20, 21

T. Raffetseder, C. K. and Kirda, E. (2007). Detecting system emulators. In

Springer, editor, international conference on Information Security, 10, pages

1–18. 17

T. Vidas, D. V. and Christin, N. (2011). All your droid are belong to us: A survey

of current android attacks. In WOOT. 17

79

REFERENCES

T. Vidas, N. C. (2014). Evading android runtime analysis via sandbox detection.

In ASIA CCS. x, 2, 4, 16, 18, 20, 76

the honeynet project (2012). Droidbox. 2, 5

trend micro (2014). The mobile cybercriminal underground market in china. 1

V. Rastogi, Y. C. and Jiang., X. (2013). evaluating android anti-malware against

transformation attacks. In ASIA CCS. 2

VRT (2013). Changing the imei, provider, model, and phone number in the android

emulator. 20

W. Zhou, Y. Zhou, X. J. and Ning, P. (2012). Detecting repackaged smartphone

applications in third-party android marketplaces. In CODASPY. 1

Yan, L.-K. and Yin, H. (2012). Droidscope: Seamlessly reconstructing os and

dalvik semantic views for dynamic android malware analysis. In USENIX Se-

curity. x, 2, 4, 5, 8, 11, 39

80

	1 Introduction
	1.1 Objectives

	2 State of the Art and Motivation
	2.1 Dynamic Analysis
	2.2 Virtual Machine Introspection overview
	2.3 Available Approaches
	2.3.1 Android background
	2.3.2 DroidScope
	2.3.3 CopperDroid

	2.4 Evasion Techniques
	2.4.1 Evading Dynamic Analysis via Sandbox Detection
	2.4.2 Anti-analysis Techniques

	2.5 Conclusions
	2.5.1 Problem Statement
	2.5.2 Goals

	3 Background on Debugging and Tracing Solutions
	3.1 ARM Debugging and Tracing
	3.1.1 CoreSight
	3.1.2 Debug Access Port
	3.1.3 Software Tracing
	3.1.4 Program Flow Trace Macrocell
	3.1.5 Embedded Trace Buffer
	3.1.6 Trace Port
	3.1.7 Hardware Breakpoints

	3.2 JTAG for ARM
	3.2.1 In-Circuit Emulator
	3.2.2 JTAG capabilities
	Debugging

	3.2.3 JTAG Debuggers
	3.2.4 Trace Hardware
	3.2.5 Software Debuggers

	3.3 Conclusions

	4 Approach
	4.1 Approach Overview
	4.2 Phase 1: Code Generation
	4.2.1 Phase 1.1: System Call Data Reconstruction
	4.2.2 Phase 1.2: Introspection Procedure Generation

	4.3 Phase 2: Tracing
	4.3.1 Phase 2.1: Hardware Breakpoint Management
	4.3.2 Phase 2.2: System Call Tapping
	4.3.3 Phase 2.3: Process Data Structure Reconstruction
	4.3.4 Phase 2.4: Memory Introspection & Argument Unmarshalling
	4.3.5 Phase 2.5: Logging

	4.4 Phase 2: Conclusions

	5 Implementation Details
	5.1 Phase 1: Code Generation
	5.1.1 Phase 1.1: System Call Data Reconstruction
	Challenges

	5.1.2 Phase 1.2: Introspection Procedure Generation
	Challenges

	5.2 Phase 2: Tracing
	5.2.1 Phase 2.1: Hardware Breakpoint Management
	5.2.2 Phase 2.2: System Call Tapping
	5.2.3 Phase 2.3: Process Data Structure Reconstruction
	5.2.4 Memory Introspection & Argument Unmarshalling and Logging

	6 System Details and Architecture
	6.1 System Environment Architecture
	6.1.1 Debugging Architecture
	6.1.2 Booting Schema

	6.2 System Requirements
	6.2.1 Board
	6.2.2 JTAG Debugger
	6.2.3 Software Debugger

	7 Experimental Validation
	7.1 System setup
	7.2 Case Study
	7.3 Correctness
	7.4 Benchmarking
	7.4.1 Micro Benchmark
	7.4.2 Macro Benchmark

	7.5 Conclusions

	8 Discussion
	8.1 Limitations

	9 Conclusions and Future Work
	9.1 Future Work

	References

