

DEI Supervisor:

Prof. Dr. Fernando Barros

Wit-Software Supervisor:

Eng. Paulo Sousa

Date: 4th September 2013

João Miguel Montenegro dos Santos Barroso
Penetra

jpenetra@student.dei.uc.pt

Development of Corporate
Collaboration Functionalities for
Communication Services

Masters in Informatics Engineering
Internship
Final Report

Development of Corporate Collaboration Functionalities for Communication Services

 ii

Development of Corporate Collaboration Functionalities for Communication Services

 iii

Abstract

Nowadays, due to globalization, increase of competitiveness and organizational structure,
people are required to move around the globe in order to achieve their goals. The need to
commute is based on the necessity to meet with collaborators, clients, prospect clients or
any other person that is on a different location. Since this need for travelling consumes a
large amount of money and time resources, it is necessary to find an alternative that allows
people to meet and collaborate anywhere. Consequently, this internship attempts to
overcome this collaboration need with two prototypes. The first one is a Web Application
that is interoperable with other types of devices in order to maximize the opportunity to
collaborate. Although it is not possible to implement all functionalities in every type of
device, joining a video conference from a cell phone only with audio is still more valuable
than not joining at all. The only way of making all of this possible is using a mature
architecture such as the IP Multimedia Subsystem. The second one is an Android
Application capable of communicating with XMPP Networks.

Keywords

“Android”; “Audio Calls”, “Business Collaboration Service”, “Conference Calls”, “Instant
Messaging”, “IP Multimedia Subsystem”, “File Transfer”, “SIP”, “Video Calls”, “Web
Browser”, “XMPP”

Development of Corporate Collaboration Functionalities for Communication Services

 iv

Development of Corporate Collaboration Functionalities for Communication Services

 v

Table of Contents

Abstract ... 3

Keywords .. 3

Table of Contents .. 5

Index of Figures ... 7

Index of Tables .. 9

Acronyms .. 11

Section 1 - Introduction .. 1

1.1. Internship Presentation ..1

Section 2 - Collaboration Service .. 5

2.1. State of the Art ...5

2.2. Platform Design .. 13

2.3. Implementation ... 27

2.4. Quality Assurance ... 31

2.5. Work Accomplished ... 35

Section 3 - Android XMPP Client ... 37

3.1. State of the Art .. 37

3.2. Platform Design .. 39

3.3. Implementation ... 47

3.4. Quality Assurance ... 51

3.5. Work Accomplished ... 51

Section 4 - Methodology ... 53

4.1. Scrum .. 53

4.2. Artifacts .. 53

4.3. Team ... 53

4.4. Events ... 53

4.5. Implemented Methodology ... 54

4.6. First Semester Work ... 55

4.7. Second Semester Initial Plan ... 56

4.8. Second Semester Final Plan .. 57

Section 5 - Conclusions... 59

5.1. Future Work .. 59

Section 6 - References ... 60

Development of Corporate Collaboration Functionalities for Communication Services

 vi

Development of Corporate Collaboration Functionalities for Communication Services

 vii

Index of Figures

Figure 1 - Collaboration Service Architecture ... 19

Figure 2 - OpenIMSCore Component Diagram ... 20

Figure 3 - Collaboration Service - WCAS Architecture ... 21

Figure 4 - Collaboration Service - Web Browser Client Architecture .. 22

Figure 5 - Collaboration Service - Client Library - Modules Description 23

Figure 6 - Collaboration Service - User Interface flow for Login .. 24

Figure 7 - Collaboration Service - Session Growth .. 32

Figure 8 - Collaboration Service - CPU Utilization .. 33

Figure 9 - Collaboration Service - Memory Consumption .. 33

Figure 10 - Collaboration Service - One to One Chat ... 35

Figure 11 – Collaboration Service – One to One Audio Call ... 36

Figure 12 - Collaboration Service - Project Chat .. 36

Figure 13 - Android XMPP Client - High-Level Architecture.. 41

Figure 14 - Android XMPP Client - Client Architecture ... 41

Figure 15 - Android XMPP Client – Client Library Architecture .. 42

Figure 16 - Android XMPP Client - Package Diagram .. 44

Figure 17 - Android XMPP Client - Registration Sequence Diagram 46

Figure 18 - Android XMPP Library - Registration State Machine Diagram 47

Figure 19 - Android XMPP Client - Client Library Class Diagram ... 48

Figure 20 - Android XMPP Client - Contact List Class Diagram .. 49

Figure 21 - Android XMPP Client - Application outcome ... 51

file:///C:/Users/joaopenetra/Dropbox/Wit/final%20report/final_report_0.3.docx%23_Toc366058913

Development of Corporate Collaboration Functionalities for Communication Services

 viii

Development of Corporate Collaboration Functionalities for Communication Services

 ix

Index of Tables

Table 1 - Travel expenses from 227 US Small and Medium Enterprises 1

Table 2 - Collaboration Service - Competitors Functionalities Comparison 10

Table 3 - Collaboration Service - Competitors Market Analysis .. 12

Table 4 – Collaboration Service - User Management Requirements ... 13

Table 5 - Collaboration Service - Project Management Requirements 14

Table 6 - Collaboration Service - Instant Messaging Requirements .. 14

Table 7 - Collaboration Service - File Transfer Requirements .. 15

Table 8 - Collaboration Service - Conferencing Requirements .. 15

Table 9 - Collaboration Service - Client Requirements .. 15

Table 10 - Collaboration Service - IMS Requirements ... 16

Table 11 – Collaboration Service - Gateway Requirements .. 16

Table 12 - Collaboration Service - Application Server Requirements 16

Table 13 - Collaboration Service - Performance Requirements ... 17

Table 14 - Collaboration Service - Security Requirements .. 17

Table 15 - Collaboration Service - Gateway Server Translators ... 28

Table 16 – Collaboration Service – Performance Results ... 32

Table 17 - Collaboration Service – Work Accomplished .. 35

Table 18 - Android XMPP Client - Functionalities Comparison ... 37

Table 19 - Android XMPP Client - General Requirements .. 39

Table 20 - Android XMPP Client - Account Management Requirements 39

Table 21 - Android XMPP Client - Instant Messaging Requirements....................................... 40

Table 22 - Android XMPP Client - Business Logic Layer Components 43

Table 23 - Android XMPP Client - Data Access Layer Components 44

Table 24 - Android XMPP Client – Android User Interface Components 45

Table 25 - Android XMPP Client - Work Accomplished ... 51

Table 26 - Work developed on 1st Semester ... 55

Development of Corporate Collaboration Functionalities for Communication Services

 x

Development of Corporate Collaboration Functionalities for Communication Services

 xi

Acronyms

3GPP 3rd Generation Partnership Project

AAA Authentication, Authorization and Accounting

AJAX Asynchronous JavaScript And XML

API Application Programming Interface

CS Circuit Switched

CSCF Call Session Control Function

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

I-CSCF Interrogating Call Session Control Function

IETF Internet Engineering Taskforce

IMS IP Multimedia Subsystem

IMS-MGW IMS Media Gateway Function

IP Internet Protocol

JCP Java Community Process

JMS Java Message Service

JNI Java Native Interface

JSF JavaServer Faces

JSP JavaServer Pages

LTE Long Term Evolution

Mbps Megabits per second

MCU Multipoint Control Unit

MMS Multimedia Messaging Service

MMTel Multimedia Telephony Services

MSS Mobicents SIP Servlets

MRF Media Resource Function

MSRP Message Session Relay Protocol

NIO New Input/Output

NGN Next Generation Networking

Development of Corporate Collaboration Functionalities for Communication Services

 xii

PCM Pulse-code Modulation

P-CSCF Proxy Call Session Control Function

POJO Plain Old Java Object

RCS Rich Communication Suite

RCS-e Rich Communication Suite Enhanced

REST Representational State Transfer

RTP Real-time Transfer Protocol

S-CSCF Serving Call Session Control Function

SDP Session Description Protocol

SIP Session Initiation Protocol

SMS Short Message Service

TCP Transmission Control Protocol

VoIP Voice over IP

UE User Equipment

URI Uniform Resource Identifier

Development of Corporate Collaboration Functionalities for Communication Services

1

Section 1 - Introduction

1.1. Internship Presentation

The main purpose of this document is to describe the work that was developed during the
subject of Dissertation/Internship, constituent of the Masters in Informatics Engineering.
The internship took place at the company WIT-Software and its main objective was to
develop Corporate Collaboration functionalities for Communication Services.

1.1.1. Institution

WIT is a software company that develops solutions for mobile telecommunications
operators. These solutions are based on IP Multimedia Subsystem (IMS) and include voice
(VoIP, Mobile VoIP and Voice over LTE), messaging (SMS and MMS), Rich
Communication Suite (RCS2.0 and RCS-e) and Multimedia Telephony Services (MMTel).
The company was founded in 2001 and it has costumers in more than 15 countries [1].

1.1.2. Motivation

The world we live in, due to its increasing globalization and competitiveness, requires people
to be in constant commuting. The purpose of this commuting may be meeting with clients
or prospect clients, working with colleagues, attending conferences and several other
reasons. This need to move people around the globe is one of the most important
motivations that support the development of a service that enables people to collaborate.
That said, the platforms that are being developed will help people inside organizations
achieve their goals by providing a means of communication between the people on the same
team or between the teams and their clients. In addition to providing a means of
communication, it is also important that the collaboration service allows teams to have a
secure place to keep their work organized and easily accessible.

Although it is difficult to find how the need for travelling impacts companies’ expenses and
how much can be decreased with collaboration tools, it is important to research this with the
aim of supporting the development of this tool. A study done in 2012 by Business Travel News
[2] interviewed 227 Small and Medium Enterprises in the United States and comprises
expenses from air and ground transportation, hotels, meals, parking, etecetera. The study
concluded that in 2011, the minimum spent, was half a million U.S dollars and the maximum
twelve million U.S. dollars. The following table demonstrates the percentage of companies
in a certain interval.

Table 1 - Travel expenses from 227 US Small and Medium Enterprises

Cost in
Millions of
U.S. dollars

[0.5,1[[1,2[[2,3[[3,4[[4,5[[5, 6[[6,7[[7,8[[8,9[[9,10[[10,11[[11,12[

Percentage
of
Companies

41% 14% 15% 7% 6% 5% 2% 4% 2% 2% 1% 1%

Ideally these expenses should be compared with the profits that each company had in order
to take valuable conclusions. However, it was not possible to access those values.

Development of Corporate Collaboration Functionalities for Communication Services

2

1.1.3. Objectives

The objectives can be divided into two subsets: Project and Personal.

1.1.3.1. Project

Considering the motivational aspects that were presented the main functionalities offered
are: User Presence, Instant Messaging, Audio and Video Conferencing, File Transfer and
Project Management. The User Presence allows users to maintain a contact list with
information about contacts’ availability. Instant Messaging will be available in the form of
group chat and one to one chat. Audio and Video conferencing will help people having a
richer form of communication in order to make decisions and solve problems. File Transfer
enables teams to share documents between their members. Finally, Project Management will
consist of creating tasks and associating them to someone in order to keep work organized.

After the intermediate presentation, a necessity from the company emerged which resulted
in a change of plans. Besides what was initially planned, it was decided that it would be
useful to extend an Android Application created by the company using another protocol.
This protocol is named eXtensible Messaging and Presence Protocol (XMPP [3]) and as its
name suggests, it focuses on the development of functionalities related with the exchange of
Instant Messages and User Presence. These features have the same purpose of the ones
present in the Collaboration Service and they will be the focus of this prototype. Although it
would be possible to connect the prototype with the main service this route was not
followed due to time limitations. Though, during the architecture phase, it will be explained
how is this convergence possible.

The Android application that is going to be extended is an application developed by the
company that brings SMS, MMS and Rich Communication Services [4] (Chat, File Transfer,
VoIP, etc) to the same platform with the purpose of merging the most used communication
services into a whole application. Therefore, the objective of this prototype is adding
another protocol that increases even more the amount of different ways to communicate
with other people.

1.1.3.2. Personal

Besides all the technical knowledge that was acquired in new fields such as IMS architecture,
SIP or XMPP this project also allowed improving skills acquired in the past and gaining
experience working with agile methodologies in an enterprise environment.

1.1.4. Contextualization

As it was highlighted previously, one of the most important objectives of having a
collaboration service is the opportunity of working together independently of the current
localization. Therefore, one of the most important requirements is portability. Besides being
presented as a web application that can be accessed from any Web Browser around the
globe, it is very important that there can be other equipment that can be used to put people
in contact. This way, it is essential that the architecture chosen lets users in a Web Browser
communicate with any kind of Smartphone, Tablet, Cell Phone, Soft Phone and etcetera. To
achieve this, and considering the company’s clients, it was decided that the most appropriate
architecture for the collaboration service is the IP Multimedia Subsystem (IMS). IMS is a
network architecture designed by the 3rd Generation Partnership Project (3GPP) commonly
used by telecommunication providers who offer multimedia services. It is a standard of the
Next Generation Networks (NGN) and the deciding factor to use it in the collaboration
service is the fact that it enables establishing multimedia sessions between different

Development of Corporate Collaboration Functionalities for Communication Services

3

platforms. For example, it is possible to have a normal cell phone joining a conference call
that is happening between a Web Browser and a Desktop Application. In order to make this
possible, the Internet Engineering Taskforce (IETF) built a highly specified infrastructure
on top of open Internet Protocols (IP). The main protocol that is used is named Session
Initiation Protocol (SIP) and its purpose is to start, alter and terminate media sessions
between users. Once this connection has been established, IMS mainly uses Real-time
Transfer Protocol (RTP) to exchange the audio or video and it uses Message Session Relay
Protocol (MSRP) to exchange instant messages and files. The Annex A (Technical
Background) describes this architecture more thoroughly.

Like it has already been mentioned, XMPP is the protocol chosen for the Android
Application. Besides fulfilling the portability requirement that is vital for a communication
platform, this protocol is also highly specified by the XMPP Standards Foundation [3] and
the IETF. These specifications are ideal because they allow developers to implement
interoperable solutions without any additional effort. The fact that this protocol is used by
well-known companies like Google [5] and Facebook [6] on their messaging systems can
also be a great advantage. With the same protocol, it is possible to create an application that
also aggregates two of the most used messaging systems. Furthermore, the fact that protocol
is built on top of XML gives another great advantage: unlimited extensibility. XMPP
supports the implementation of major features such as Instant Messaging, Contact List and
Presence Information using XML which is also used as a signalling protocol to enable File
Transfers and Audio and Video Calls. XMPP is supported by Client-Server and Server-to-
Server architectures. The Client-Server architecture is used when clients need to
communicate with the server of their own domain while Server-to-Server is used when
clients communicate with clients of other domains. In order to obtain a more thorough
description please consult the Annex A.

1.1.5. Risks

Any software project always has its own risks associated. The risks for this project are
described below.

1.1.5.1. Learning curve of new technologies

This internship presents several new technologies to the intern. Although the intern has
previous knowledge of SIP during the subject of Internet Applications, the IMS architecture
represents a whole new world. The familiarization with this architecture and with other new
technologies represents a risk because it might cause delays and change the implementation
plan.

In order to fight this risk, it was decided that the first semester would consist mostly in
researching and implementing prototypes that allowed the familiarization with the new
technologies.

1.1.5.2. Inexperience of the intern

This project is, undoubtedly, the biggest challenge that the author has faced throughout the
five years of the course of Informatics Engineering. The challenge of planning and
implementing a year-long project represents new ground to the author which increases the
risk of failure. Hopefully all the support that is available from the company and from the
University will be a great help to achieve the desired success.

Development of Corporate Collaboration Functionalities for Communication Services

4

1.1.5.3. Divergences and necessities

Sometimes it is possible that divergences between the choices of the intern and the
company’s necessities occur. These divergences can cause alterations and delays in what was
initially planned.

This risk became real after the intermediate presentation. The company’s necessity to create
an Android prototype using the XMPP protocol obliged the intern to alter his plans which
also caused the delay of the project delivery.

1.1.6. Structure of the Document

This document is divided in 5 distinct sections.

Section 1 – Introduction – This first section presents the institution where the internship is
taking place, the motivation that supports the project, its objectives and it ends with a brief
contextualization.

Section 2 – Collaboration Service – This second section describes the several phases of
development of this project. It starts with the State of the art of the competitors. After this,
it presents the platform design where requirements, high-level prototypes, technologies and
the architecture of the system are described. Furthermore, this section contains the
description of how was the system implemented and what was done in order to assure its
quality. Finally, it presents the outcomes of this service.

Section 3 – Android XMPP Client – This section presents an analysis of the development
of the Android client. Although it possesses a structure similar to Section 2, it was decided
that it would be better to separate them to achieve maximum clarification. The other
alternative was sub-dividing each chapter (state of the art, platform design, implementation
and etcetera) in two (Collaboration Service and Android XMPP Client) but this route would
break the normal reading flow and would probably confuse the reader.

Section 4 – Methodology – This section describes the methodology that was used in this
project and presents what was done during the internship.

Section 5 – Conclusions – This chapter presents a conclusion of the work developed
during the internship, the future work and the lessons learned.

Development of Corporate Collaboration Functionalities for Communication Services

5

Section 2 - Collaboration Service

2.1. State of the Art

The Web Collaboration Market has been around for more than a decade. During this period,
there were a large number of companies that released significantly different products but
always with the goal of succeeding in this market. There are well-known companies such as
Adobe, Cisco, IBM, and Microsoft that attempt to create complete solutions for companies
of the same stature but there are other companies such as 37signals or Atlassian that focus
on helping smaller companies. This first subsection starts with a description of the state of
the art of these Collaboration tools. In this description, high-level features such as Instant
Messaging or Audio/Video Conference might be present in all but they will always be
described because they comprise smaller features that differentiate tools. The second
subsection creates comparison between each of the tools and the third and last contains a
market analysis.

2.1.1. Competitors

2.1.1.1. Adobe Connect

Adobe Connect [7] is a web conferencing platform created with the objective of improving
productivity inside organizations. Its most important features are: High Quality Video
Conferencing, File Transfer, Animated Presentations, Instant Messaging and Portability.
Adobe claims that their Conferencing provides DVD quality and it also indicates who is
speaking at any moment. File Transfer enables transferring and storing any kind of files.
Animated Presentations include sharing data such as images, audio, video and also
collaborate on whiteboards and polls. Instant Messaging allows interaction between the
meeting participants but it also integrates with users using the Microsoft Live
Communications Server or Microsoft Office Communications Server. Adobe Connect is
available in Web Browsers that have Adobe Flash-Plug-in installed, in Mobile Devices such
as Android, the Blackberry Playbook and iOS and in teleconferencing systems that support
SIP and H.264. H.264 is a video codec that is considered a standard for video compression.

2.1.1.2. BlueJeans

BlueJeans [8] is a video conferencing service created with the purpose of providing
interoperability between the maximum type of devices. Instead of offering a vast amount of
functionalities, this product focuses on one of the biggest problems of collaboration
services: interoperability. The service supports devices such as Room Systems, Desktop
Systems, Desktop Video Software (Skype, Google Video Chat), Mobile Video Software
(Skype, Google Video Chat), Multipoint Control Units, Web Browsers and normal
Telephones.

2.1.1.3. Campfire

Campfire [9] is a tool created by 37signals to help teams achieve their goals. It possesses a
real-time communication system using both written messages and voice messages. It is
available in form of a web application and in devices that run the iOS operating system. The
written messages are updated automatically without the need to refresh the page and this is
only possible by using AJAX. This application only supports group communications and it
does not let the user create a chat room without creating a group. In order to make voice
calls possible, it is necessary that the one person creates a conference call and everyone is

Development of Corporate Collaboration Functionalities for Communication Services

6

sent or asks for a number and a code. After this, they can join the call by calling the given
number and authenticate themselves by using the given code. It is also possible to send files
to the members of the group, know the status (Available, Busy or Away) of the members,
check the chat and file history and invite people who do not belong to the group. This is
extremely useful because people can invite clients or other third parties to participate in a
discussion without being registered on the service. Finally, this tool provides a REST API
that allows developers to enrich their chat rooms with content from external applications or
feeds.

2.1.1.4. HipChat

HipChat [10] is another tool that was created by Atlassian and is intended to help teams
collaborate on their tasks. It has desktop applications for the 3 major platforms (Windows,
Linux and Mac OS) and mobile applications for the two biggest platforms (Android and
iOS). The main focus of this application is instant messaging. It is possible to chat in group
or privately, share files and invite people that are not registered on the system. Though,
these external people who enter the conversation cannot see what was written before. To
conclude, this tool also has the opportunity to integrate with external services using a REST
API and with other messaging applications through XMPP/Jabber.

2.1.1.5. Flowdock

Flowdock [11] is an online collaboration tool that is available as a web application. Its main
focus is the exchange of instant messages in group chat rooms. These rooms are called
flows. Besides being able to upload files to the system, the users can integrate their flows
with other platforms in order to facilitate the access to new information. It is possible to
make Flowdock search for a certain keyword in Twitter or subscribe RSS feeds. There are
several other platforms that can provide great value for this application. There are
applications for Version Control like Git, SVN and Mercurial, Project Management tools
like JIRA and Redmine and finally applications like Google Calendar that allows teams to
keep track of everyone’s schedule.

2.1.1.6. FuzeBox

FuzeBox is tool dedicated to Collaboration and Video Conferencing [12]. This away, besides
connecting up to 12 users in High Definition Video Conferences, it supports other features
such as: File Transfer, Desktop or Application Sharing and Instant Messaging. One great
innovation that this tool provides is having the system call you to join a certain meeting. File
transfer allows participants to upload several different types of files in order to make rich
presentations. It is also possible to show presentations without transferring files by using
Desktop or Application Sharing. Finally, private or public chats with other participants are
also available. If it is necessary, participants can also record meetings to watch them later.

This tool is available in Desktop Applications for Mac and PC, Mobile Applications for
Android and iOS, in any major Web Browser and with Room Systems.

2.1.1.7. GoToMeeting

GoToMeeting [13] is a web conferencing software created by Citrix. The most important
features of this software are: High Definition Video, Animated Presentations and Instant
Messaging. This product includes HDFaces™ which enables video conferencing with up to
6 attendees with High Definition Video. These conferences are also available through IP
Phones or normal telephones and can be recorded. Animated Presentations allow users to
share screens, highlight parts of the screen, collaborate on whiteboards and provide remote

Development of Corporate Collaboration Functionalities for Communication Services

7

control when necessary. Instant Messaging allows exchanging messages between the
participants. GoToMeeting is available as a Desktop Application (Mac or PC) and as a free
Mobile Application (Android and iOS).

2.1.1.8. Huddle

Huddle [14] is a collaboration tool that has a different approach from the three tools that we
have seen before. Although it has the same purpose of helping teams in their work tasks,
this tool does not favor the exchange of instant messages. There is a place where members
can keep their discussions but it takes form of internet forums. Members can create topics
and others can post their answers. Like every application that we have seen, it is possible to
share files with the other members of the team. The differentiating functionality that this
application has that is not available in the others is the possibility to create Word and Excel
files to be edited by the team. Although this option is not as valuable as using Google
Documents because it is not possible for people to edit the same file at the same time, it is
highly better than downloading, making changes and uploading the file every time a change
is made. To make this possible, a lock is created when a user is modifying the file.

This tool also allows its members to schedule meetings with audio conference but these
meetings were programmed the same way as Campfire. After the creation of the meeting the
invitees receive a notification with the number they should call and a certain code to
authenticate themselves.

Finally, the last functionality that is worth mentioning is the ability to create tasks. It is
extremely useful having a centralized place where people can create tasks and assign them to
a certain member. These tasks have a start and finish date and the task list can be exported
to a CSV file.

2.1.1.9. IBM Lotus Sametime

IBM Lotus Sametime is another collaboration solution that focuses on integrating data,
video and audio on the same platform [15]. The most relevant features of this solution are:
Enterprise Instant Messaging, Rich User Presence, Rich Presentations, File Transfer and
Audio/Video Conferencing. Enterprise Instant Messaging has features such as chat history,
rich text formatting and emoticons. Rich User Presence indicates the availability of the users
as well as a custom status message. Rich Presentations allow sharing Applications or
Desktop with other participants. File Transfer enables participants to share files between
themselves. Audio and Video Conferencing allow users to communicate when they are on
different locations. This tool allows participants to see who is talking at a certain moment, it
allows moderators to lock rooms and eject participants. This tool is available for PC, Mac,
Android, BlackBerry and iOS devices.

2.1.1.10. iMeet

iMeet is a collaboration tool created by PGi, short name for Premiere Global Services, Inc
[16]. The most important features of this tool are: Desktop Video Conferencing, Instant
Messaging, File Transfer and Social Networking. Video Conferencing allows conferences
with up to 15 participants and has the functionality of having the tool call you by clicking a
single button. Once it has been established, it is possible to view who is the active talker to
avoid misunderstandings. The tool also allows inviting external clients that are not registered
on the platform. Instant Messaging enables side conversations with one or more
participants. File Transfer allows users to share files in the platform but it also lets users add
new files by emailing them to the room. Social Networking shows more information about
one participant and enables participants to connect and interact with each other on other

Development of Corporate Collaboration Functionalities for Communication Services

8

platforms such as LinkedIn, Facebook, Twitter and etcetera. This tool is available for PC,
Mac and iOS devices.

2.1.1.11. Microsoft Lync

Microsoft Lync [17] is a communication platform developed by Microsoft that is intended to
the enterprise world. The main features include: Instant Messaging, User Presence,
Conferencing, Enterprise Voice Capabilities and Portability. Instant Messaging includes
features such as individual and group chat, message persistence, notifications and search.
User Presence offers information about whether users are using mobile device or IP Phones,
allows tagging to facilitate notifications and privacy settings. Lync Meetings is the codename
for conferencing. The most important features that are available during conferencing are:
High Definition or VGA Video, Desktop or Application Sharing, Whiteboard, Polling and
File Transfer .This platform also attempts to maximize interoperability by supporting several
different devices. These devices include: Room Systems, PC Applications, HTML5
compliant Web Browsers, Mobile Clients (Android, iOS and Windows Phone) and IP
Phones. It also allows people to include Skype Users and normal Lync Users.

2.1.1.12. Saba Meeting

Saba Meeting is a Collaboration tool created by Saba Software [18]. The most important
features are: Audio/Video Conferencing, Application and Desktop Sharing, Instant
Messaging, Rich Presentations and File Transfer. Audio/Video Conferencing allows users to
communicate with co-workers, clients and prospect clients. To smooth organization during
meetings with several people, the system shows who is talking in a certain moment.
Application and Desktop Sharing allows people to collaborate on tasks. Instant Messaging
provides fast and easy communication. Rich Presentations include slideshow preview,
whiteboards and real-time annotations. File Transfer allows users to share any type of files
with other participants. This tool is available for PC, Mac, Linux, all major Web Browsers,
and Android and iOS devices.

2.1.1.13. Spontania

Spontania, created by Dialcom, is a Collaboration tool that focuses on video conferencing
[19]. Other important features that the tool includes are: User Presence, Instant Messaging,
Application and Desktop Sharing, Rich Presentations, File Transfer and Session Recording.
User Presence allows participants to determine who availability of other users. Instant
Messaging provides a fast and easy way to communicate. Application and Desktop Sharing
allows users to share their computer and also adds Remote Control to facilitate support.
Rich Presentations include polls, whiteboards and allows users to notify the presenter that
they would like to interrupt. File transfer allows participants to exchange any kind of files.
Participants are also allowed to record sessions in two types of files: WMP and Spontania’s
proprietary file. The last feature is the opportunity of inviting external users to participate in
any session. This tool is available for PC, Mac, Android and iOS and it also works with
legacy Room Systems like Polycom.

2.1.1.14. Teambox

Teambox [20] is an online collaboration tool that is highly complete and comprises an
appealing interface. Its main functionalities are group chat, project creation, discussions,
tasks, notes and files. The group chat is still in development; therefore, it only has the
content of the messages and the time when they were written. Although it is possible to
create projects to optimize organization, group chats are not available for each of the
projects. This way, project discussions are made, by now, in the form of forums. Because

Development of Corporate Collaboration Functionalities for Communication Services

9

each task possesses a start and finish date, Teambox, creates a Gantt Diagram to assist
members in keeping track of the progress of the project. Each user also has a separate tab
where he can identify which tasks were assigned to himself or herself and if they are finished
or not. Finally, it is also possible to update the numbers of hours that have been spent in a
certain task.

Teambox also has integration with other platforms. The most valuable are Dropbox and
Google Documents. The integration with Dropbox is extremely useful because every file
that is uploaded to the platform is sent to the team folder. Due to the fact that Google
Documents provides one of the best live editing experiences, it makes sense that the
application tries to take advantage of this. What happens is that a member can create a
document directly from the web site and the link to that document is stored under the files
directory.

2.1.1.15. Voxeet

Voxeet is a Web Conferencing tool created with the purpose of eliminating confusing
conference calls [21]. The three most important features of this tool are: High Definition
Audio, High Speaker Recognition and High Mobility. High Definition Audio is achieved by
reducing noise and echo. High Speaker Recognition consists in informing the participants
who is talking by showing a visual cue. This feature also allows participants to reposition
others in certain places in order to take advantage of surround sound. High Mobility allows
participants to transfer calls from one device to another. This tool has a Desktop
Application for PC and Mobile Applications for Android and iOS.

2.1.1.16. WebEx

WebEx [22] is a collaboration tool created by Cisco. The main purpose of this tool is to help
people inside organizations achieve their goals without the need to travel. Their motto is
“Less travel, more green”. The most relevant specialized product is denominated
Collaborate Solutions and its main features are: Audio and Video Conferencing, Instant
Messaging, File Transfer, Desktop or Application sharing and Portability. Audio and Video
Conferencing allow enriched meetings with up to seven webcam feeds simultaneously. This
product also differentiates itself from some others on call setup. While most of the others
require users to call a certain number in order to join a conference, this one allows people to
be invited automatically. Instant Messaging allows participants to check who is online and
chat with those users. File transfer enables transferring files at any time and the tool also
stores all files so they can be viewed later. Participants who are using the conferencing
option also have the opportunity to share their desktop or a certain application with the
other attendees. Finally, this tool increases its value by providing support for several
systems. Besides being available in all Desktop Platforms (Linux, OS X and Windows), it has
Mobile applications for: Android, BlackBerry and iOs.

Development of Corporate Collaboration Functionalities for Communication Services

10

2.1.2. Functionalities Comparison

Table 2 - Collaboration Service - Competitors Functionalities Comparison

Adobe

Connect
BlueJeans Campfire HipChat Flowdock FuzeBox GoToMeeting Huddle

IBM
Lotus

iMeet Lync
Saba

Meeting
Spontania TeamBox Voxeet WebEx

Audio Calls
   1 to 1            

Video Calls
   1 to 1            

Active
Speaker                

Call Me
               

Manage
Surround                
Record
Calls                

Instant
Messaging                

IM History
               

User
Presence                

File
Transfer                
Desktop
Sharing                
Remote
Control                

Whiteboards
               

Polls
               

Tasks
               

Post by
Email                

Development of Corporate Collaboration Functionalities for Communication Services

11

Guest
Access                
Social

Network                

Gantt
Diagram                
3rd Party

Apps                

SMS
               

Platforms

PC

Mac

Android
BlackBerry

iOS

Room
Systems

PC

Mac

Linux

Web
Browser

Android,

iOS

Telephone

Room
Systems

Web
Browser

iOS

PC

Mac Linux

Firefox

Chrome

Safari

Internet
Explorer

8+

Android

iOS

Mac

Chrome
Web App

iOS

Web
Browser

Mac

Web
Browser

Android

iOS

PC

Mac

Android

iOS

Android

BlackBerry

iOS

Android

BlackBerry

iOS

Symbian

Windows
Mobile

PC

Mac

iOS

PC

HTML5
Browsers

Android
iOS

Windows
Phone

IP
Phones

Room
Systems

PC

Linux

Mac

Major
Web

Browsers

Android

iOS

PC

Mac

Android

iOS

Room
Systems

Web
Browser

iOS

Chrome
Web App

Gmail Web
App

PC

Android

iOS

PC

Mac

Linux

Android

BlackBerry

iOS

This comparison table illustrates the different functionalities that each tool provides. The analysis of this table leads to the conclusion that almost all
tools focus their development in features such as Audio and Video conferences, Instant Messaging, User Presence and File Transfer. After providing
the basic features they try to enrich their tools with smaller features that help create valuable differences. These features are: showing the active speaker
in an audio or video call, share and control an Application or Desktop from another user, enabling guest access in order to collaborate with clients or
prospect clients, collaborating on whiteboards and create polls to help make decisions. Moreover, companies try to add value to their products with
totally distinctive features. This includes features such as managing the position of the participants in order to make use of surround sound, having the
system call the participants in order to join a meeting, allowing users to participate in discussions via email, SMS notifications, Task creation and
assignment and automatically draw Gantt Diagrams based on tasks to improve planning and organization. In terms of platforms, with few exceptions,
almost all tools support the three most common types of devices: Desktop computers, Mobile devices and Web Browsers but only a few support room
systems and IP phones. This list is very complete and it possesses some truly innovative functionalities. Ideally, it would be necessary to implement a
great amount of these and create new ones in order to stand a chance of entering this market. However, because this is a proof of concept created by
just one person and the methodologies and learning are more important than the final product, it won’t be possible to develop a product as rich as
WebEx or Adobe Connect.

Development of Corporate Collaboration Functionalities for Communication Services

12

2.1.3. Market Analysis

In order to understand who is most successful in the corporate collaboration market, a high
level market analysis was conducted by the author. With more resources it would be possible
to analyze all competitors in terms of strategy, innovation and financial results but this path
would consume too much time. This way, the analysis consisted in three parameters: Web
Site Ranking, Gartner distinction and User review. The Web Site Ranking will allow
determining the amount of visitors that each tool has on their website and it will be done
using Alexa [23]. There are some tools that will not be classified because Alexa cannot
determine page views if the website does not possess its own domain. Gartner is a well-
known research company that focuses their work on information technology and attempts
to select the best companies in certain market sectors. The sector that was chosen is Web
Conferencing [24]. It is extremely difficult to find a valuable method to review tools that are
bought in a traditional and enterprise way. This way, the solution found was including the
average rating and the number of reviews in the mobile application stores.

Table 3 - Collaboration Service - Competitors Market Analysis

 Alexa Rank Gartner Android BlackBerry iOS

Adobe Connect   4.4 (891) 3.0 (48) 3.5 (295)

BlueJeans 220,209    

Campfire 19,965  3.8 (17)  3.0 (123)

HipChat 32,426  2.7 (229)  3.0 (75)

Flowdock 68,280    3.5 (9)

FuzeBox 123,710  3.7(332)  2.5 (1,345)

GoToMeeting 631  2.3 (4,008)  3.5 (865)

Huddle    2.5 (2) 4.5 (59)

IBM Lotus
Sametime   3.4 (289) 3.0 (3) 3.5 (90)

iMeet 490,399    4.0 (35)

Microsoft Lync   3.4 (1,932)  3.5 (329)

Saba Meeting 251,329  5.0 (12)  0 reviews

Spontania 4,572,912  4.2 (6)  0 reviews

Teambox 13,186    4.0 (105)

Voxeet 980,233  4.1 (29)  4.5 (16)

WebEx 1,926  4.2 (2,148) 4 (55) 3.0 (6,319)

Development of Corporate Collaboration Functionalities for Communication Services

13

2.2. Platform Design

This chapter describes the steps that were necessary in order to design the whole
Collaboration Service.

2.2.1. Analysis of Requirements

This first section will present the requirements of the collaboration Service. This list was
based on the first internship proposal, the state of the art of the competitors and the
meetings that occurred with the Product Owner and the Scrum Master during the
internship.

2.2.1.1. Functional Requirements

There are three types of requirements in this section: User requirements, Client requirements
and System requirements. User requirements specify actions that the user executes and
Client requirements specify actions that the client must execute as a consequence of User
actions. System requirements identify the system’s responsibilities in order to make every
user requirement possible.

2.2.1.1.1. User Requirements

In most cases, each user will be required to create an account before using the system. The
only exception will be when an external user is asked to join a chat group or a conference
call. This way, User Management requirements include all functionalities that are related to
the accounts that most users create.

Table 4 – Collaboration Service - User Management Requirements

Id Title Description Priority

CS_FR_UM_01
Create User
Accounts

Users must be able to create new accounts. Critical

CS_FR_UM_02
Edit User
Account

Users must be able to edit the details of their
accounts.

High

CS_FR_UM_03
Delete User
Account

Users must be able to delete their account. Critical

CS_FR_UM_04
User
Authentication

Users must be able to authenticate themselves after
having completed the registration process in the past.

Critical

CS_FR_UM_05
User Session
Termination

Users must be able to terminate their session after
authentication has occurred.

Critical

CS_FR_UM_06 User Presence
Users must be able to communicate their availability
(Available, Busy, Offline) to the system.

Critical

CS_FR_UM_07 Contact List
Users must be able to keep a contact list. This list
should include all the employees of the organization.

High

CS_FR_UM_08
Receive
Notifications

Users should be notified when they are not online. Low

Development of Corporate Collaboration Functionalities for Communication Services

14

Project Management requirements allow users to manage a certain Project. These projects
possess a list of people who are working on that project and they also provide ways to keep
work organized. This organization is made by separating chats that are associated with the
project and also through the usage of tasks. Tasks allow users to delegate work to another
user and have a start date and when it should be finished. When a task is finished the person
who did it should change its status to complete.

Table 5 - Collaboration Service - Project Management Requirements

Id Title Description Priority

CS_FR_PM_01 Add Project Users must be able to add new projects. Medium

CS_FR_PM_02 Edit Project Users must be able to edit project details. Medium

CS_FR_PM_03
Manage
Project

Users must be able to manage project members. Medium

CS_FR_PM_04
Remove
Project

Users must be able to remove projects. Medium

CS_FR_PM_05
List
Projects

Users must be able to access a list with all the projects in
which he or she is participating.

Medium

CS_FR_PM_06
Add new
Task

Users must be able to add new tasks to a certain project. Medium

CS_FR_PM_07 Assign Task Users must be able to assign tasks to a certain user. Medium

CS_FR_PM_08
Complete
Task

Users must be able to set tasks as complete. Medium

CS_FR_PM_09 Delete Task Users must be able to delete tasks. Medium

CS_FR_PM_10
List User
Tasks

Users must be able to list their tasks. Medium

CS_FR_PM_11
List Project
Tasks

Users must be able to see a list of tasks assigned to a
project.

Medium

CS_FR_PM_12
Download
Information

Users must be able to download tasks to be visualized
while offline.

Low

Instant Messaging Requirements include all the requirements that are related to Instant
Messaging. Instant Messaging allows people to have discussions in real time.

Table 6 - Collaboration Service - Instant Messaging Requirements

Id Title Description Priority

CS_FR_IM_01
One to one
IM

Users must be able to have private chats with another
user.

Critical

CS_FR_IM_02 Group IM
Users must be able to group chat with a group of users
of their choice.

Critical

CS_FR_IM_03 IM History
Users must be able to view the messages that were sent
in previous conversations.

Critical

CS_FR_IM_04
Import
from email

Users must be able to forward an email to the service in
order to include previous discussions in a new chat.

Medium

CS_FR_IM_05

Invite
External
Users

Users must be able to invite external Users (e.g. Clients)
to participate in a chat conversation.

High

Development of Corporate Collaboration Functionalities for Communication Services

15

File Transfer requirements allow users to share files with other participants.

Table 7 - Collaboration Service - File Transfer Requirements

Id Title Description Priority

CS_FR_FT_01
Private File
Transfer

Users must be able to send files privately to a certain
user.

Critical

CS_FR_FT_02
File
Transfer

Users must be able to send files in any of the chats that
exist. These files will be associated with the chat and
with the project if applicable.

Critical

CS_FR_FT_03 File History
Users must be able to download files that were
uploaded in the past or when they were offline.

High

Conferencing requirements include all the requirements that are connected to the possibility
of creating audio and video conferences.

Table 8 - Collaboration Service - Conferencing Requirements

Id Title Description Priority

CS_FR_CR_01
One to one
Audio Call

Users must be able to make private audio calls with
another user.

Critical

CS_FR_CR_02

Audio
Conference
Call

Users must be able to make audio conference calls
with a group of users of their choice.

High

CS_FR_CR_03
One to one
Video Call

Users must be able to make private video calls with
another user.

Critical

CS_FR_CR_04

Video
Conference
Call

Users must be able to make video conference calls
with a group of users of their choice.

High

CS_FR_CR_05

Invite
External
Users

Users must be able to invite external users to
participte in conferences.

Medium

CS_FR_CR_06
Download
Conferences

Users must be able to download conferences that
were held in the past.

Low

2.2.1.1.2. Client Requirements

Client requirements are related to the all the responsibilities that the Web Client will need to
execute in order to make everything work as expected.

Table 9 - Collaboration Service - Client Requirements

Id Title Description Priority

CS_FR_C_01
SIP
Registration

The Web Client must register the user in IMS after a
registration or an authentication is done.

Critical

CS_FR_C_02
SIP
Deregistration

The Web Client must deregister the user in IMS before
terminating or when the user requires a session
termination.

Critical

Development of Corporate Collaboration Functionalities for Communication Services

16

2.2.1.1.3. System Requirements

As it was mentioned in the beginning of this chapter, System requirements describe all the
responsibilities that the System has in order to make everything work as expected. These
requirements describe actions that are to be executed as a consequence of User actions or
Client actions. They are divided in IMS requirements, Gateway requirements and
Application Server requirements.

Table 10 - Collaboration Service - IMS Requirements

Id Title Description Priority

CS_FR_IMS_01
SIP
Registration

The IMS core must be able to receive and process
the register requests from the clients and challenge
them to complete registration.

Critical

CS_FR_IMS_02
SIP
Deregistration

The IMS core must be able to receive and process
the unregister requests from the clients and
challenge them to complete unregistration.

Critical

CS_FR_IMS_03
Initial Filter
Criteria

The IMS core must be able to interpret the requests
made by the clients in order to redirect these
requests to the correct Application Servers.

Critical

Table 11 – Collaboration Service - Gateway Requirements

Id Title Description Priority

CS_FR_WS_01
Back To Back
User Agent

The Gateway Server that serves the Web users must
be able to mediate every request and response sent to
or from the Web Browsers.

Critical

CS_FR_WS_02
HSS
Provisioning

System must be able to provision new users in the
HSS database when they register their accounts.

Critical

CS_FR_WS_03
Delete HSS
information

System must be able to delete users in the HSS when
they delete their accounts.

Medium

Table 12 - Collaboration Service - Application Server Requirements

Id Title Description Priority

CS_FR_AS_01
SIP
Compliance

The Application Server must be able to interpret SIP
messages in order to execute all the necessary
business logic and store all the necessary data.

Critical

CS_FR_AS_02
User
Information

The Application Server must be accessible to persist
any kind of information related to the user that is not
related to SIP.

Critical

Development of Corporate Collaboration Functionalities for Communication Services

17

2.2.1.2. Non-functional Requirements

Non-functional requirements describe how the system should be built in order to ensure
performance, scalability, security, usability and robustness. These requirements are important
because they provide guarantees that the system is feasible to implement and that it
possesses a great building block in order to make scalability possible.

2.2.1.2.1. Performance

Performance requirements are highly important because they are one of the decisive factors
to achieve clients’ satisfaction.

Table 13 - Collaboration Service - Performance Requirements

Id Title Description Priority

CS_NFR_P_01
Response
Time

For most of the actions, the response time should
not be larger than one second. For longer actions
like login and history fetching, a progress bar must
be shown.

High

CS_NFR_P_02
Memory
Consumption

The memory consumption should always be kept
low on all the system’s components.

Critical

2.2.1.2.2. Scalability

Scalability is defined in two different ways: vertically and horizontally. In order to scale
vertically it is required to increase the capacity of the machines available. In order to scale
horizontally, it is necessary to increase the number of machines to distribute the available
work. The vertical scalability is easy to achieve but has greater costs while the horizontal is
much more difficult but brings lesser costs. One of the challenges that horizontal scalability
brings is how the association between users and their data is created. If there is a centralized
database the horizontal scalability will eventually create a serious bottleneck. If the database
is distributed it has to be ensured that the user will always be served by the same machine.
To achieve this, it is required to have some kind of load balancer that decides which
machine serves each user.

2.2.1.2.3. Security

Security is possibly the most important non-functional requirement of this application. This
happens because the content that will be shared inside the application may be very sensitive
and extremely valuable to the organization. That said, the following set of requirements will
define what is necessary to implement in order to ensure that all the communications are
secure and cannot be exploited by third parties. Furthermore, all the stored data must only
be accessible to the people who are supposed to access it.

Table 14 - Collaboration Service - Security Requirements

Id Title Description Priority

CS_NFR_SEC_01
Client Secure
Connection

The connection between the Web Browser and
the Gateway Server must be encrypted to protect
data transmission.

Critical

CS_NFR_SEC_02

Gateway
Secure
Connection

The connection between the Gateway Server and
the IMS Core must be encrypted to protect data
transmission.

Critical

Development of Corporate Collaboration Functionalities for Communication Services

18

CS_NFR_SEC_03
IMS Core
Connection

The connection between the IMS Core and the
Application Servers must be encrypted to protect
data transmission.

Critical

CS_NFR_SEC_04
Session
Credentials

All components must avoid storing sensitive
credentials while user sessions are inactive.

Critical

Depending on the type of connection used the form of encryption will have to be different.
When the architecture is described, more information will be provided on this matter.

2.2.1.2.4. Usability

Usability requirements are also important because they may also define the success rate of an
application. Besides having an attractive design, all the available actions must be easily and
intuitively accessible. Because it is difficult to quantify these requirements, during the
development phase discussions will occur in order to take the best decisions possible. These
discussions include implementation of asynchronous tasks in order to avoid blocking the
User Interface, retry mechanisms to avoid repetitive tasks and correct illustration of errors.

2.2.1.2.5. Robustness

Robustness requirements are important in order to improve even more the usability of the
system. In order to keep the user satisfied the system’s availability will have to be larger than
99%. Furthermore, because the system will have several components, it is important that
some or all of them implement retry mechanisms. This way, if any component fails during
the execution of an action, it will be repeated without informing the user. Only if the
number of retries reaches a pre-defined maximum amount will the system notify the user
about the failure.

2.2.2. High-level Prototypes

In order to truly understand what the final application should be before the development
phase starts, some high-level prototypes were created. These high-level prototypes allow
stakeholders to sketch the ideas that they have about what the application should look like
and how actions should be available to the end user. These prototypes are described in the
Annex B.

2.2.3. Technologies

Researching technologies is another important aspect of the platform design phase. This
research allows determining which technologies are more appropriated for each component
that the system will comprise. Considering that this project deals with several different types
of components, the research conducted is described in the Annex C. This document should
be consulted whenever questions arise.

Development of Corporate Collaboration Functionalities for Communication Services

19

2.2.4. Architecture

This chapter describes the architecture of the Collaboration Service. Firstly, a high level
architecture is presented with a brief description of the purpose of the main components.
Then, each component will be described in terms of subcomponents and how they interact
with each other.

2.2.4.1. High Level Architecture

Figure 1 - Collaboration Service Architecture

The figure 1 illustrates the implemented architecture. The components that have a blue
colour indicate that they will require contribution from the author.

The system has its core located on IMS. Its usage enables interoperability between different
devices and it also provides an easy integration with other systems due to its highly specified
architecture. This core is built using the open source project named OpenIMSCore which
implements a CSCF and a HSS (see Annex A – Technical Background). Moreover, there are
Application Servers that are responsible for executing all the necessary business logic upon
the reception of client requests. The Conference Server enables audio and video
conferencing with the use of WebRTC and RTP. The Collaboration AS is a central point
that contains the majority of the functionalities. It is accessible through the IMS for
everything related to SIP: chat messages, file transfers and user presence. It is also accessible
from HTTPS in order to provide user account registrations, conference management,
remote contact list and project and task management. Finally, there is a Message Store that is
responsible for storing the users’ messages and files that were exchanged on the platform.

Around the IMS there can be any type of device that uses SIP to connect to the IMS.
Although the functionalities that are available might differ depending on the device in use,
the opportunity to collaborate will always be present. The usual SIP clients such as VoIP
phones, VoIP desktop applications or legacy Room Systems are already compatible with
IMS but the same does not happen with Web Browsers. As it was mentioned during the
analysis of the technologies (see Annex C – Technologies), it is mandatory to have a
component capable of linking the Web Browsers to the IMS Network. This component can
be seen as a Gateway Server that is also responsible for serving the Web Clients on tasks
they cannot perform as a result of their inability to work with protocols different than
HTTP.

Development of Corporate Collaboration Functionalities for Communication Services

20

In a real IMS environment, all the data that is exchanged between the Gateway Server and
the CSCF and the Application Servers, should be exchanged with a component named
Session Border Controller (SBC). This component should be the only point of entry of the
IMS Network in order to have more control on what enters the network. However, this
component was not used on this internship because it would introduce unnecessary
complexity.

2.2.4.2. IMS Core

Figure 2 - OpenIMSCore Component Diagram

The Figure above describes all the subcomponents that compose OpenIMSCore. The ISC,
Sh and Cx interfaces enable communication between the several subcomponents of IMS.
However, there are two external interfaces that are also required. The Gm interface is the
standard for incoming and outgoing SIP from the P-CSCF but it is also necessary to create a
new interface that enables direct access to the HSS. This direct access to the HSS is required
because it is necessary to register users before they attempt to interact with the system. This
process of registering users for the first time in the HSS can also be called provisioning. The
section below describes the research that was made in order to decide how the provisioning
should be implemented.

2.2.4.3. Gateway Server

The Gateway Server is in charge of assisting the Web Clients in tasks they cannot perform
by themselves given their inability to work with protocols different from HTTP. This fact
makes this component extremely valuable because it can be seen as a complement of the
Web Client. Without it, it would be way more difficult to achieve interoperability with IMS
Networks. Apart from all the SIP/WebSocket negotiation that will be relayed by the
Gateway Server between the Web Client and the OpenIMS Network, there are some heavy
load operations that are also performed by the Gateway Server. To be exact, the chat
Session using MSRP over TLS and the Audio/Video session using SRTP requires that the
Gateway Server establishes a connection between the user and its destination and then relay
the data between the two endpoints. The fact that it stands between two users indicates that
this component requires high resources and may become a bottleneck when serving a
considerable amount of users. To assure confidentiality and authenticity the SIP connections
between the Gateway and the OpenIMS should be done over TLS and the connection
between the Gateway and the Web Clients should use WebSocket Secure (WSS).

As it was mentioned during the research of the technologies the Gateway Server is WCAS,
the Application Server developed at WIT that can also be used to serve HTTP Clients.

Development of Corporate Collaboration Functionalities for Communication Services

21

2.2.4.3.1. WCAS Architecture

WCAS is a converged server built with the
aim of supporting the maximum amount of
clients with several different protocols. At the
moment it supports Flash Clients using
RTMP, HTTP Clients, SIP Clients and
WebSocket clients. This section describes
how WCAS was designed to allow the
support of these protocols and to be flexible
in terms of configuration and mode of
operation.

Figure 3 - Collaboration Service - WCAS Architecture

The figure above shows that this component is separated in three different layers: the Data
Access Layer, responsible for establishing the connection with the several supported
protocols; the Protocol Layer, in charge of translating the content received to a uniform
request that the upper layer can understand and responsible for translating the content that
comes from the upper layer to the specific protocol; the Service Layer, which comprises all
the business logic of the server.

Data Access Layer

This layer comprises the necessary libraries that the several protocols require. Just like the
SIP Clients oblige the use of SIP Servlets and a SIP container to be able to communicate,
the WebSocket Clients oblige the use of the jWebSocket framework on the server.
Furthermore, the Socket Gateway Module is responsible for invoking the required
translators for the incoming requests and calling the outgoing translators before the
responses are sent.

Protocol Layer

The Protocol Layer contains the aforementioned translators. These translators can be Server
Translators and Client Translators. The Server Translators are necessary to construct the
Uniform Requests that will be sent to the Service Layer. For example, it might be needed to
decode a Base64 String into a Java byte array, or a JavaScript Object into a Java HashMap.
The Client translators are used to translate outgoing requests to the specific protocol that
the client uses. Both types of translators possess methods capable of translating the
responses made to the initial request.

Service Layer

The Service Layer contains all the server logic that enables the features available. This logic
is separated into Signalling Delegates and Managers. In order to enable different modes of
operation, the core of the server is configured using the Spring framework. With this
framework, the configuration is done on XML files which are read before the initialization
of the server components. For example, when WCAS is operating as a Gateway Server, it
should load a proxy signalling delegate capable of forwarding all the requests from the users
to another server. On this project, the OpenIMS is the target server. When WCAS is
operating as an Application Server, it will load a signalling delegate that acts as if all the
clients that reach the AS through the S-CSCF are local clients.

Development of Corporate Collaboration Functionalities for Communication Services

22

2.2.4.4. Web Browser Client

The Web Browser Client is the component that is responsible for establishing the
connection between the Web Users and the rest of the system. This component
communicates with the Gateway Server using the jWebSocket framework for most of the
functionalities and uses WebRTC to be able to communicate using audio and video calls. It
is extremely important to state that this should not be seen as a traditional web site where
user navigation results in HTTP requests and responses. This Client should be seen as a fat
Web Client that downloads all the Javascript logic on the first access and then it is capable of
interacting with the server without the need to refresh the page.

Once more, the architecture of this component is divided in layers with the aim of providing
flexibility. This flexibility favours the creation of different clients using the same underlying
structure. The figure below describes the several layers that are part of this component.

Figure 4 - Collaboration Service - Web Browser Client Architecture

The figure above indicates that there is a clear separation between the UI and the Javascript
Library. Additionally, the architecture of the Web Browser Client is divided in three layers:
the Presentation Layer, the Business Logic Layer and the Data Access Layer. The
Presentation Layer is developed using AngularJS and it is in charge of managing the
interaction with the user and presenting the data that comes from lower layers. The Business
Logic Layer is comprised by Services and Managers that together can be viewed as Modules
for each of the features available. Finally, the Data Access Layer is composed by the
ComLayer and the WebRTC API which are responsible for establishing connections with
the desired endpoints.

Client Library

Similarly to what happened with other components of this internship, the use of
asynchronous calls was highly preferred given its ability to avoid blocking the User Interface
while the Client Library is working. However, this requires the existence of event

Development of Corporate Collaboration Functionalities for Communication Services

23

subscription and promises. The subscription of events allows maintaining a list of entities
that are interested in a certain type of resource. This way, when newly arrived content
matches one of those resource types, all the entities that subscribed that event are notified.
For example, when the Call Manager receives a call invite it will process that invite and
notify the Call Service. In its turn, the Call Service will iterate through the list of controllers
that subscribed the call invite event and notify those controllers. Promises are, as the name
suggests, something that will be executed in the future. These promises are extremely useful
on the Presentation Layer. Almost all public methods exposed by the Services return a
promise to the Controllers. When the Service receives the answer it will mark the promise as
successful or unsuccessful and the controller is informed.

Business Logic Layer

The Business Logic Layer possesses several modules that are deeply connected with all the
features available. Each module is separated into a Service and a Manager. The Services are
responsible for managing the subscription of events, avoiding a direct access between the
User Interface and the Managers by exposing a public API and storing all the data that will
be accessed by the Presentation Layer. The Managers are in charge of interacting with the
Data Access Layer and storing data that enables the communication with the lower layer.
For example, the SIP headers that allow identifying a single session must be kept in memory
while the session is active. Another concept that is important on this layer is the creation of
Commands. These commands are identified by a name and are used to communicate with
the Gateway. For instance, to create a session the SessionManager creates a command
named SESSION_CREATE that is sent to the server through the ComLayer. When this
command reaches the Socket Gateway Module on the server, it will invoke the respective
Server translator to create a Uniform Request.

The table below describes all the Modules available.

Name Description

SessionModule
Module responsible for initiating the interaction with the Gateway Server.
It allows creating and terminating User Sessions.

AddressBookModule
Module accountable for the contact list and the project list. Possesses all
the methods necessary to manage these two entities.

ChatModule
Module in charge of the exchange of instant messages privately or inside
projects. Also responsible for the delivery, display and composing
notifications and for the subscription of the state of project chats.

CallModule
Module responsible for establishing and terminating the calls that the
users make. It also manages the subscription of the state of conference
calls.

ContentShareModule
Module that makes possible sharing files between users. It comprises all
the logic that splits or joins the file chunks and encodes and decodes the
Base64 data.

CapabilitiesModule
Module that makes possible sending and receiving the presence of the
user as well as the capabilities that the client possesses.

MessageStoreModule
Module responsible for interacting with the server that possesses the
chats and files that were shared on the platform.

Figure 5 - Collaboration Service - Client Library - Modules Description

Data Access Layer

The Data Access Layer is composed by the ComLayer and the WebRTC API. The
ComLayer is responsible for instantiating the jWebSocket framework. The reason behind
the creation of this object is the fact that the jWebSocket framework does not support

Development of Corporate Collaboration Functionalities for Communication Services

24

several responses to the same request. Considering that the SIP protocol is rich in
provisional answers it was necessary to create this class to be capable of matching the several
responses with the initial request. The WebRTC API can be viewed as all the functionalities
that the supported browsers provide in order to establish audio and video calls.

User Interface

The User Interface is responsible for the interaction with the user. This component is
developed using the AngularJS framework which is normally associated with the Model-
View-Controller Design Pattern. This framework is perfect for the type of client that is
being developed given its ability to synchronize the Model and the View automatically. This
synchronization is achieved with a technique named two-way data binding. What happens is
that all the views that are connected to one controller are also connected with the Models
that are associated with that controller. This way, the changes done in the Model affect the
View and the user input inside one view also changes the value inside the Model.

This framework also provides directives which facilitate the programmer’s job on converting
some model types to HTML. For example, a directive was created to convert timestamps to
a specific time format and another one was created to scroll to the bottom of a chat
conversation when necessary.

The figure below describes the steps executed during the registration of the user in a
sequence diagram. These steps make clear how the components are connected. However, in
order to avoid increasing complexity, the Services and the Managers were merged into
Modules.

Figure 6 - Collaboration Service - User Interface flow for Login

This sequence diagram presents a sample flow of execution but the last step of setting the
user as connected introduces two concepts that are important to understand: watchers and
digests. The AngularJS framework provides a way of creating watchers of certain Model
variables. These watchers are useful to be able to determine if certain changes occurred.
Each watcher receives two functions as arguments. The first one compares the current value
of the variable with the value that the variable had on the previous call. The second function
contains the code that should be executed when the current value is different from the
previous value. For example, the component that is responsible for managing the views of
the application watches the connected variable that is present on the SessionService. This

Development of Corporate Collaboration Functionalities for Communication Services

25

way, when the SessionService inside the SessionModule is notified that all the needed
content was fetched, it sets the user as connected. However, in order to inform the watchers
of the change it is necessary to call a method name digest. What this method does is
triggering all the compare functions that are passed to the watchers. If there are any changes
on the watched variable the second function is executed.

2.2.4.5. Collaboration AS

The Collaboration AS is the core component responsible for the business logic of almost all
the features available. Besides being accessible through SIP in order to coordinate
functionalities such as chats, user presence and file transfers, this Application Server is
accessible using HTTP/XCAP to enable contact list and project list, it exposes a Web
Service in order to enable account registration and it is responsible for persisting the data
exchanged on the service to the Message Store. To accomplish this persistence there has to
be a shift in what is a traditional setup and creation of a media session such as a chat or a file
transfer. Normally, media sessions are established with the help of the IMS Network but
once they are established the media is sent directly between the participants. However, if this
route was followed it would be necessary to put the clients in charge of the persisting the
desired messages. The alternative found was obliging the SIP Invites to pass through the
Collaboration AS, as if this session was a conference with multiple participants. This way,
each participant establishes a connection with the Application Server which is responsible
for relaying the messages or the files between the participants and sending them to the
Message Store.

If it was present on the requirements, this Application Server would provide the
convergence between the IMS network and the XMPP network. This would require the
capability of initiating different sessions with the two protocols and associating them with
each other as it is made with WebSockets and MSRP.

As it was also mentioned during the research of the technologies, the Collaboration AS will
be built on top of another instance of WCAS. Although it has the same name, the server is
configured to be inside an IMS Network. To understand how WCAS works please consult
the section 2.2.4.3.1 - WCAS Architecture.

Database

Besides the information that is stored in the Home Subscriber Server, it was decided that it
would be necessary to have another database that contained all the information that was not
related with the IMS core. This approach allows us to decrease the access load on the HSS
and makes it easier to create an API that can be used by third parties. Examples of these
third parties are Conference Servers or Instant Messaging Servers. Because the Entity
Relationship would be illegible inside this document, only the main classes are described.

Subscribers - The SUBSCRIBER table contains information about the users registered on
the system.

Contacts – The CONTACT table stores personal and information about the contacts in the
subscriber’s contact list.

Projects – The PROJECT table stores information about a certain project and which
subscribers belong to that project.

Development of Corporate Collaboration Functionalities for Communication Services

26

2.2.4.6. Message Store

The Message Store is a crucial component that enables the persistance of instant messages
and files exchanged on the platform. During the initial plan of this internship, this server
was supposed to be present in another internship and the only development that would be
necessary was the integration between the client and the Message Store. However, given that
this was an extremely useful component that provoked a big differentiation from what
already exists, it was decided that the intern would develop what was necessary to store the
messages and files and also to fetch them.

Considering that this component is not available at the company it was also decided that the
implementation should be able to integrate with the existing servers and clients that the
company possesses. That said, the most correct way to do this was following the RCS 5.1
specification [26] along with the OMA CPM Message Store [27]. These two specifications
state that the Message Store should be implemented with the use of a server capable of using
the IMAP protocol [28].

As the High-level architecture showed, this server is accessible by the Collaboration AS and
the Gateway Server. The Collaboration AS is responsible for storing all the media that
passes by this component while the Gateway Server is responsible for fetching the content
when the Web Clients request it. Both these interactions with the Message Store Server
should be done over TLS.

2.2.4.7. Conference Server

During the first semester the research conducted on Conference Servers led to the
conclusion that the best option was using the MCU Media Server. However, when the
implementation phase started it was decided that another route would be more challenging
and more valuable. Considering that another intern at the company was developing a
conference server to enable audio and video conference calls using SIP it made sense to
interlink the two internships and produce something worthy.

This Conference Server can be seen as another Application Server that is reachable through
the OpenIMS using SIP and SRTP. The SIP protocol is used to negotiate the terms of the
media session and then the media is passed using SRTP. This Conference Server is built on
top of JAIN SLEE, one of the researched Application Servers, and Mobicents Media Server.

Development of Corporate Collaboration Functionalities for Communication Services

27

2.3. Implementation

Considering that the author of this document worked with several different existing clients
and libraries in order to develop this internship, it is extremely important to make clear
which components were developed by the intern and which decisions were necessary to
accomplish the pre-defined objectives.

Throughout the development of this service, one of the biggest concerns was reaching
maximum interoperability between devices. This way, there were several functionalities that
required several hours of studying in order to make sure that the existing specifications were
being followed correctly.

2.3.1. Web Client

The Web Client is the most important component of the system as it is responsible for
interacting with the user. Consequently, this was the component that required more effort
by the author. The development was done on all the layers but it focused primarily on the
Presentation Layer and the Business Logic Layer. The Presentation Layer was entirely
created by the author and so were the services present on the Business Logic Layer.
Furthermore, it was also necessary to add or extend some of the Managers that are used by
the Services.

2.3.1.1. Remote Configuration

One of the first tasks that were executed was the ability to work with WCAS when it is
running as a Gateway Server. To achieve this, the Web Client must send to the server a set
of parameters when it tries to create a new session. For example, it is necessary to inform
that the contact list should be fetched remotely and pass to the server the URL of the
remote server and the credentials that should be used to complete authentication. Or that
the Instant Messaging will also be done remotely.

2.3.1.2. Project List

The project management was also implemented from scratch. It was decided that the
AddressBook Module that contains the contact list would be extended to support the
project management. This module now supports the creation, edition and deletion of
projects.

2.3.1.3. Project Chat and Project Call

The possibility to chat and call a group of users inside a project was also developed by the
author. These features required changes throughout the whole Client. In addition to the
necessity of passing the identities of the participants to start the conference (chat or call), it
is crucial that the Client is capable of subscribing its state and invite new users while it is
already taking place (SIP Subscribe/Notify). That said, the ChatManager and CallManager
were extended to pass the desired participants, subscribe a conference, parse the received
updates about that conference and referring (SIP Refer) new participants.

2.3.1.4. Interaction with the Message Store Server

The integration with the Message Store with the help of the Gateway Server was also
designed and built by the author. It was necessary to develop three types of interaction
between the Web Client and the Gateway Server. Firstly, after fetching the contacts and the

Development of Corporate Collaboration Functionalities for Communication Services

28

projects, the Client can fetch the most recent history that is stored on the Message Server.
Secondly, when the user is reading through the messages and the files that were shared, it
will reach the last fetched message. When this happens, the Client lets the user click a button
to fetch more content. This content will always be related to the user or the project that is
open. Finally, the last interaction is connected with the opportunity to fetch remote files that
are stored on the platform. This route was followed because it did not make sense to pre-
fetch large files that the user might not want to download. This way, the user can see that a
certain file with a certain name was shared and if it is his or her desire, it is possible to fetch
that file.

For the first type of interaction, the implementation on the client side is simple because no
parameter has to be passed onto the Gateway but the same is not true to the interaction of
fetching more content. In order to achieve maximum performance, the IMAP protocol was
designed to facilitate the synchronization of different devices. To facilitate this
synchronization, the messages stored on the server are associated with an increasing Unique
Identifier Message Attribute. This identifier allows informing the server which content the
client already possesses by sending the first and the last identifier. This way, when initial
history is returned by the Message Store, these unique identifiers are parsed on the client
side and are associated with the respective users or projects. Finally, the process of fetching
a remote file also makes use of this unique identifier by sending the one that is associated
with the desired file.

These interactions obliged the creation of several components. The MessageStoreManager
on the Business Logic Layer was created to send the commands to the ComLayer and
returning the content to the MessageStoreService. This service is responsible for parsing the
content and persist it on the TimelineService. The TimelineService is different from the
other services because it has no manager associated. Its purpose is holding the several events
that are associated with a certain contact or a project with the aim of centralizing the
content. By having it all centralized, the necessity of ordering the content after fetching it
from different sources disappears.

2.3.2. Gateway Server

The capacity to serve Web Socket clients while in proxy mode had not been tested before
the start of this internship. This way, it was necessary to implement several Client and Server
Translators that enabled some core functionalities that were already present, as well as
implementing translators for new functionalities. These translators are described on the table
below.

Table 15 - Collaboration Service - Gateway Server Translators

Module Description

AddressBook
Add, delete, edit, get and list project. The main effort on these translators is spent
on the translation of the responses back to the client. They receive a List of
contacts and create a set of JSON objects to be sent to the client.

Call
Extend Invite translators (Server and Client) to include the desired participants
on a conference call. Implement Server Conference Referral translator to enable
inviting participants to an ongoing call.

Chat
Extend Invite translators (Server and Client) to include the desired participants
on a conference chat. Implement Server Conference Referral translator to enable
inviting participants to an ongoing call.

Event
Implement Server Subscribe translator that enables the subscription of
conference calls and conference chats.

Development of Corporate Collaboration Functionalities for Communication Services

29

MessageStore Implement Server translator to fetch recent messages and files.

2.3.2.1. Fetching Content from Message Store

The Gateway Server is responsible for fetching the content from the Message Store so it can
be delivered to the users. As it was mentioned on the description of the Web Client, there
are three use cases that were necessary to implement: fetch recent history, fetch older history
and fetch remote file. But the first step to enable these three use cases is the creation of the
IMAP connection between the Gateway and the MessageStore. When a Web Client creates a
session, it will pass the aforementioned parameters that define the configuration that should
be used. If that configuration specifies the MessageStore that the user wants to use, the
information is passed onto a class named MessageStoreManager. However, the connection
to the IMAP Server is not created automatically. This Manager is also responsible for
receiving the commands of the three use cases and for launching a new thread to fetch the
desired content. The first step of this thread is establishing the connection with the server.
After this, the execution depends on the use case that was requested.

On the first use case that fetches recent history, the Gateway iterates through the last
messages that were persisted and analyses its headers to determine the content type. If the
content type is textual, the content is fetched, if not, only the headers are returned to allow
identifying the file.

The second and third use cases required a different approach. Considering that the Gateway
receives the lower unique identifier from the client or the identifier of the message that
contains a desired file, the first step is finding the message that matches that identifier. To
speed up this process, it was decided that a binary search would be appropriated. After
finding the searched message, the Gateway just needs to iterate backwardly to load previous
content or fetch the desired file.

2.3.3. Collaboration AS

After understanding how the client requests the content and how the Gateway Server
fetches it, the only thing left is understanding how the content shared on the platform ends
up on the Message Store. The architecture chapter described how the session must be setup
in order to put the Collaboration AS as the receiver and transmitter of the messages and
files. Considering this, what was left to implement was finding an efficient way of receiving,
relaying and storing the content. It is easy to understand that this task has to be executed
asynchronously or the delivery of the messages would be delayed considerately. This way,
when the content reaches the Collaboration AS, it has to be processed and kept in memory
in order to be persisted later. The several messages and files that reach the server are
associated with their session. Furthermore, since the files are sent in several MSRP chunks,
the Collaboration AS is responsible for joining them before the persistence is made. When
the chat session or the file transfer session terminates, this Server will construct and persist
the messages on the server.

2.3.4. Web Services

The Web Services were developed with the aim of provisioning the several components of
the system. From the Web Client’s perspective, there is only one Web Service that is used to
register the account but this Web Service is responsible for spreading the provisioning. The
other components that require the provisioning are the Home Subscriber Server, for the
communication using SIP, the Application Server, for the use of the contact list and the

Development of Corporate Collaboration Functionalities for Communication Services

30

project management and finally the Message Store that holds the information about the
messages and files.

The separation in different databases obliges extreme care in terms of database consistency.
Ideally, it would be important to implement a two-phase commit algorithm that enabled the
synchronization of the several databases before committing to the databases. However, what
was implemented was a mechanism that rolls back the previously executed actions if one of
them fails. The decision to take this route was based on a trade-off in terms of complexity
and available time resources and it would certainly be something that would require revision
when launching a product based on this system.

Finally, the author also implemented a Web Service capable of managing the creation,
edition and termination of Conference Calls. This Web Service is used by the
aforementioned Conference Server developed by another intern.

Development of Corporate Collaboration Functionalities for Communication Services

31

2.4. Quality Assurance

The design and the development of the platform are important phases of a project’s lifecycle
but the quality assurance is equally important. This chapter can be divided into three
subsections: Unit Integration Testing, Acceptance Testing and Performance Testing.

2.4.1. Integration Testing

The Integration tests are normally executed by grouping individual units to be tested as a
group. For example, during the development of the Web Service that enables account
registration and provisioning of the other components, it was extremely important to
confirm that the addition, edition and deletion of new information maintained the
consistency of the databases. If, for example, the HSS provisioning failed after the user had
already been stored on the Collaboration database it would be necessary to rollback the
executed action. These tests were executed using the framework JUnit [32] and they helped
find some edge cases that were not being accounted initially. Furthermore, given that the
HSS provisioning is a complex process that involves the creation of several different
identities (IMSU, IMPI, IMPU) it was necessary to attest if the creation of these identities
would not perturb the expected behaviour of the OpenIMS framework. To accomplish this,
the following tests were executed: user equipment registration, voice calls and navigating on
the administration pages of the OpenIMS.

2.4.2. Acceptance Testing

The Acceptance tests assure that the application meets the requirements elicited during the
design phase of the platform. In order to achieve this, it was necessary to create a test
specification with test cases that could be executed with the features developed. Given its
length, the test specification is present on the Annex E – Acceptance Testing. In addition to
the Test specification, this document presents the report of the tests ran with that
specification and the encountered issues.

2.4.3. Performance Testing

Performance testing helps determining how the system behaves under a certain workload
and in certain conditions. The primary objective of the tests that were conducted was
finding the maximum capacity of the system. In order to simulate a real environment it
would be necessary to possess a cluster and a load balancer to distribute the workload but
this could not be achieved due to time and resource limitations. Nevertheless, the tests were
executed with the best resources available.

Before the start of the tests it was necessary to modify the Web Client developed for the
Collaboration Service. Basically, the login procedure was changed so it could be possible to
have several sessions running simultaneously but independently. Furthermore, most of the
Presentation Layer was deleted because it did not make sense to show the test information
and a new View was added to present some statistics of the tests. It was also decided that
the tests would consist in sending chat messages and presence information between users
and that the load would be increase incrementally. In order to assess how the system was
behaving, a Python script was created to measure memory consumption and processor
utilization. Finally, it was decided that the tests would be considered terminated when a
certain number of sessions failed consecutively.

In order to find the maximum capacity of the system it was necessary to reconfigure the
development environment to a production environment. The changes involved resetting the

Development of Corporate Collaboration Functionalities for Communication Services

32

log level, increasing the maximum memory available, increasing the pools of threads and
increasing the number of processors available. This was a lengthy process which involved
numerous tests but in order to keep this document short only the final conclusions are
presented. Furthermore, the several servers were spread, as much as possible, into several
different computers to achieve better performance. The Gateway Server was installed on a
machine with an Intel Core i7-3615 Quad-core Mobile @ 2.3GHz, 8 GB of RAM and
running Windows 7 64bit. The OpenIMS, the Collaboration AS and the Conference Server
were running on a Virtual Machine with the following specifications: 4 Processors Intel
Xeon X3363 @ 2.83GHz, 4 GB of RAM and with Ubuntu 12.04. The Message Store ran on
the machine provided by the company. This machine possesses the following specifications:
Intel Core Duo P8400 @ 2.26GHz, 3 GB of RAM and Windows Vista 32-bit. Finally, it is
important to state that the Web Browser that executed the tests was running on the machine
of the Gateway Server.

The best scenario is characterized by the creation of ten different sessions every fifteen
seconds and that the test would be considered as terminated when five sessions were denied
or timed out. In terms of messages and presence status, it was decided that each session
would send them randomly with intervals of at least three and five seconds. This scenario
ran five times and the average results are described on the following table.

Table 16 – Collaboration Service – Performance Results

Sessions Sent Messages Sent Presence

Failed
Messages

Failed
Presence

Average 619 100914 40852 4267 158

Worst 600 103553 37566 4924 160

The results show that it was possible to reach more than six hundred simultaneous clients
sending an average bigger than one hundred thousand messages and forty thousand
presence requests. The following figure describes the growth of the number of sessions of
the worse case.

Figure 7 - Collaboration Service - Session Growth

As the figure above demonstrates, the growth of the sessions is steady for the majority of
the test but it starts to slow down when the system reaches its maximum capacity. To figure
out which component was causing the increase of the responses it was necessary to analyze
the memory consumption and the processors’ utilization.

0

100

200

300

400

500

600

700

0 365 730 1095

N
u

m
b

e
r

o
f

Se
ss

io
n

s

Sessions

Seconds

Development of Corporate Collaboration Functionalities for Communication Services

33

Figure 8 - Collaboration Service - CPU Utilization

The figure above clearly demonstrates that the bottleneck is located on the Gateway Server.
There are several reasons that justify this bottleneck. Firstly, for each chat session between
two participants, four connections have to be established on the Gateway Server. Two of
them using jWebSocket to communicate with the clients and two more using MSRP to
communicate with the Collaboration AS. Furthermore, the machine where the Gateway was
running was also hosting the clients that were executing the tests.

The last figure that is important to show is the memory consumption. This figure shows that
Gateway Server also consumes more memory but it does not reach the maximum that had
been defined: 3072 MB. On the contrary, the Collaboration AS maintains a steady amount
of memory consumption. It is important to remind the reader that these are average values
taken from the five tests that were run.

Figure 9 - Collaboration Service - Memory Consumption

0

10

20

30

40

50

60

70

80

90

100

1

6
3

1
2

5

1
8

7

2
4

9

3
1

1

3
7

3

4
3

5

4
9

7

5
5

9

6
2

1

6
8

3

7
4

5

8
0

7

8
6

9

9
3

1

9
9

3

1
0

5
5

C
P

U
 P

e
rc

e
n

ta
ge

% CPU
Gateway

% CPU AS

Seconds

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1

6
6

1

3
1

1

9
6

2

6
1

3

2
6

3

9
1

4

5
6

5

2
1

5

8
6

6

5
1

7

1
6

7

8
1

8

4
6

9

1
1

9

7
6

1

0
4

1

M
e

m
o

ry
 in

 M
e

ga
B

yt
e

s

Gateway

Collaboration
AS

Seconds

Development of Corporate Collaboration Functionalities for Communication Services

34

Development of Corporate Collaboration Functionalities for Communication Services

35

2.5. Work Accomplished

This section describes what was accomplished during the internship. Firstly, a table resumes
what was done and then some screenshots are presented to illustrate the final product.

Table 17 - Collaboration Service – Work Accomplished

Features Status

User Management 

Project Management 

Task Management 

One-to-One Chat 

Project Chat 

Chat History 

The development of the Task Management, the Project File Transfer and Video Call were
scoped out of the project. The Task Management would have a structure similar to the
contact list and project list but it had a lower priority. The Project Video Call was scoped out
of the internship that developed the Conference Server on the second semester which made
impossible the integration with this feature. Finally, the Project File Transfer was postponed
because it is not supported yet by WCAS. At the time of writing, the One-to-One Video call
was developed on the client side but the Gateway Server was not working correctly when
relaying the video.

Figure 10 - Collaboration Service - One to One Chat

Features Status

One-to-One File Transfer 

Project File Transfer 

One-to-One Audio Call 

One-to-One Video Call partial

Project Call 

Project Video Call 

Development of Corporate Collaboration Functionalities for Communication Services

36

The figure above shows the Contact Chat View on the left and the middle and the contact
list and the project list on the right. The contact list possesses the contacts and their
presence status. The left panel shows information about the user. Finally, the dashboard on
the middle shows the messages and files that were shared on the platform. The last message
indicates that a file was shared previously and that this file can be fetched.

Figure 11 – Collaboration Service – One to One Audio Call
The figure above shows a call that is taking place between two users. It is important to note
that the left and right panel are the same but the dashboard represents an audio call that is
happening. This flexibility in terms of content organization is provided easily by AngularJS.

Figure 12 - Collaboration Service - Project Chat

This last figure shows a project chat that is happening between three users and another one
is offline. This view differs from the normal chat because it shows who is participating and it
is possible to invite more people using the plus sign. There is also a button to fetch previous
messages of this conversation.

Development of Corporate Collaboration Functionalities for Communication Services

37

Section 3 - Android XMPP Client

3.1. State of the Art

The XMPP protocol was first released in 1999 and since then a substantial number of
different clients using this protocol have been released [25]. The first idea behind the
analysis of the state of the art was finding clients that merged RCS features with the XMPP
protocol. However, this search proved to be ineffective because no results were found. This
way, it was decided that the scope would be reduced to Android Applications that use
XMPP as their main signalling protocol.

3.1.1. Functionalities Comparison

This section creates a comparison of the several applications that were reported as Android
Messaging Applications that use XMPP.

Table 18 - Android XMPP Client - Functionalities Comparison

Agile

Messenger
BeeJive IM BEEM Gibber IM+ Octrotalk

Talkona
ut

Xabber

Manage
Contact list        

Instant
Messaging        

Group
Messaging        

Message
History        

Message
Composing        

Custom
Status        

Share Files        

Presence        
SIP

compatible
(Audio or

Video)

       

Multiple
Accounts        

Price Free Free/$9.99 Free Free $4.99 Free Free Free

Platforms

Android,

BlackBerry,
iOS, Nokia,

Palm,

Sony
Ericcson,
Windows
Mobile

Android

BlackBerry

iOS

Android Android

Android

BlackBerry

iOS

J2ME

Windows
Phone

Android

iOS

BlackBerry

Windows

Phone

PC

OS X

Android

iOS

J2ME

Symbian

Window
s Phone

Android

The research demonstrated unexpected results. Although it is not fully connected with RCS
and the GSMA, there were two clients capable of using SIP to establish audio and video

Development of Corporate Collaboration Functionalities for Communication Services

38

calls: Octrotalk and Talkonaut. Furthermore, the analysis of these applications led to the
conclusion that most of them were prototypes with poor design and basic functionalities. In
terms of pricing and platform support, the applications offer mostly free Android
applications interoperable with other operative systems such as iOS, BlackBerry and WMP.

Development of Corporate Collaboration Functionalities for Communication Services

39

3.2. Platform Design

This chapter describes the design of the Android XMPP Client. Because it is just a small
prototype that is implemented on top of a pre-existing client it was not necessary to design it
so thoroughly. Additionally, because the pre-existing client already has its own requirements
and definitions force this client to follow those requirements and definitions.

3.2.1. Analysis of Requirements

The meetings that occurred with the stakeholders and the analysis of the pre-existing client
originated the following requirements. They are separated in two categories: General
Requirements and Functional Requirements.

3.2.1.1. General Requirements

Table 19 - Android XMPP Client - General Requirements

Id Title Description Priority

XAC_GR _01
Extend Pre-
existing Client

The Client must be implemented on top the pre-
existing Android Client developed by Wit-Software.

Critical

XAC_GR _02
Compatibility of
Technologies

The Client must use technologies compatible with
the ones being used by the pre-existing Android
Client.

Critical

XAC_GR _03
Compatible
UI/UX

The implemented User Interface and User
Experience of the Client must be compatible with
the rest of the pre-existing Client.

High

XAC_GR_04
Follow XMPP
Specification

The Client must follow the XMPP protocol
specification in order to support any existing server.

Critical

XAC_GR_05 Security

The Client must use SASL or OAUTH2 security
mechanisms in order to assure the confidienciality
of the users’ credentials during the authentication
phase.

Critical

XAC_GR_06
Pre-
Configuration

The Client must be pre-configurable with well-
known XMPP Servers to avoid asking the users for
this information.

High

3.2.1.2. Functional Requirements

The functional requirements describe the actions that the user can execute. These
requirements are divided in two categories: Account Management and Instant Messaging.

 Table 20 - Android XMPP Client - Account Management Requirements

Id Title Description Priority

XAC_AM _01 Add Accounts
Users must be able to add multiple accounts to the
client.

Critical

XAC_AM _02 Edit Accounts
Users must be able to edit multiple accounts present
in the client.

Critical

XAC_AM _03 Delete Accounts
Users must be able to edit delete accounts present
in the client.

Critical

XAC_AM _04 Create Session
Users must be able to create a session by
authenticating accounts that were added previously.

Critical

XAC_AM_05
Terminate
Session

Users must be able to terminate created sessions. Critical

Development of Corporate Collaboration Functionalities for Communication Services

40

XAC_AM_06 Contact List
Users must be able to access the Contact List
received by the XMPP Server after the account
authentication.

Critical

Table 21 - Android XMPP Client - Instant Messaging Requirements

Id Title Description Priority

XAC_IM _01
One-to-One
Chat

Users must be able to create one-to-one chat
sessions with users present in their Contact List.

Critical

XAC_IM _02
Typing-
notifications

Users must be able to send and receive typing
notifications.

Medium

XAC_IM _03 Message History
Users must be able to see a list of previous
conversations with their contacts and its respective
content.

Critical

3.2.2. Technologies

In order to implement the desired prototype, it was necessary to find the most appropriate
XMPP library to communicate with XMPP Servers. Considering that the logic layer of the
pre-existing client was programmed in C and C++, it was necessary to find a library
developed using one of the two programming languages. It was also necessary that the
library was under a free license. This task proved to be a great challenge due to the low
number of libraries available and because most of them were not under a royalty-free
license. The research conducted is present in the Annex C (Technologies) and it concluded
that the best library is named Libjingle. This library in C++ was developed by Google which
assured before-hand the compatibility with their XMPP Servers. Although most of the
Android Applications are developed using Java as its programming language, the developers
of this Client make use of the Java Native Interface (JNI) [29] to be able to run native code
developed in C++. Besides boosting the performance of the application because native code
runs faster than the code ran in the JVM, it allows sharing code with the iOS application.

What proved to be another great challenge was compiling this library to work with the pre-
existing Android Client. The first challenge was cross-compiling the library. Cross-compiling
can be defined as compiling a certain piece of code when the host architecture is different
from the build architecture. In this case the host architecture was ARM (typical in Android
devices) while the host architecture was x86. The other challenge was linking the XMPP
library with the pre-existing library because there were duplicate libraries used by both of
them. To overcome this difficulty, it was necessary to alter the compilation process of the
XMPP library to use the same libraries that were already in the pre-existing library.

Development of Corporate Collaboration Functionalities for Communication Services

41

3.2.3. Architecture

This section describes the architecture where the Android XMPP Client is inserted. Firstly, a
high-level view of the system is shown with the aim of comprehending which components
are present. Secondly, the client is separated in several layers to demonstrate how each one
works and how they connect with each other.

3.2.3.1. High-Level Architecture

The figure below presents the main components of the system with a clear separation of the
components of the client and the server. It is possible to see that the Client side is composed
by the Android User Interface, the Client Library and a database and the Server side includes
any XMPP Server available.

Figure 13 - Android XMPP Client - High-Level Architecture

Given that the main focus of this section will be on the Client side, the next figure provides
a separation of the Client side in different layers.

Figure 14 - Android XMPP Client - Client Architecture

Development of Corporate Collaboration Functionalities for Communication Services

42

The figure demonstrates that the Android Client is composed by the Presentation Layer
while the Client Library possesses the Business Logic Layer and the Data Access Layer.

One big advantage of this separation is allowing multiple applications with different
Presentation layers using the same Client Library. The reutilization of the Client library can
be extremely important to decrease the development cost of new applications and it allows
enriching the Client Library when new requirements arise from new clients. It is also
important to have a clear separation between the Business Logic and the Data Access Layer
in order to avoid being dependent of a single library such as Libjingle.

3.2.3.2. Client Library

The Figure below illustrates the architecture of the Client Library. For the sake of simplicity
only the main components that are useful for this client are shown. This decision was made
because the pre-existing client is much more complex and possesses a large amount of
different components.

Figure 15 - Android XMPP Client – Client Library Architecture

Before describing the two layers there are some important concepts that, given their extreme
importance, should be presented before-hand. These concepts are: Asynchronous calls,
Event Subscriptions and Callbacks. The Asynchronous Calls are critical to provide a better
User Experience because the User Interface is not blocked while a desired action is being
executed. However, the use of Asynchronous Calls requires the existence of an
extraordinary method of getting the result for the executed action. The Event Subscriptions
and Callbacks are able to solve this problem.

The subscription of events is the best mechanism to guarantee fast and reliable
communication between the User Interface and the Client Library. For example, before
attempting to create a new session, the application should subscribe an event named
RegistrationState. This way, when the user commands the application to register, an
asynchronous call is made. Then, after the registration is complete, the application is notified
through the change of the RegistrationState. Finally, if the application happens to lose
connectivity to the network, the application is immediately notified through this event.

Callbacks are a traditional programming technique where a certain piece of code is passed as
an argument to the called method. After that method has finished, the passed piece of code
is executed. Contextualizing, if the action that is being executed is not associated with a

Development of Corporate Collaboration Functionalities for Communication Services

43

common task and therefore, not available by subscribing an event, the caller function can
pass a piece of code that will be executed when the asynchronous call has finished its course.

Business Logic Layer

The Business Logic Layer plays a central role on the Client Library and is composed by the
COMLib API and the COMLib Core. This layer is responsible for receiving all the actions
from the user and for alerting the user when new content arrives from the Data Access
Layer. Considering this, when the Client Application invokes a method on the COMLib
API, the API is in charge of forwarding that request to the respective Service. After this, the
Service will schedule an asynchronous job through the Scheduler class to accomplish the
task. The advantages of using this Scheduler are: avoiding blocking the application with the
usage of asynchronous calls, scheduling Jobs to be ran more than once for periodic tasks
and trying to reschedule Jobs when errors occur. The type of the execution of the Job differs
from action to action. It might be necessary to launch a Job that registers the user when the
application is started, it might be necessary to fetch the contact list from the server or fetch
previous message history from the local database. The table below provides more
information about this layer.

Table 22 - Android XMPP Client - Business Logic Layer Components

Name Description

COMLib API – C++ Exposes public interfaces to all the available Services.

SessionService
Exposes internal interfaces that allow Account Management and Session
Management and subscription of events.

ChatService
Exposes internal interfaces to manage the exchange of instant messages
and subscription of events.

ConfigurationService
Exposes internal interfaces to change the configuration of the application
and subscription of events.

Scheduler Module that allows the creation and scheduling of Jobs.

XMPPUserAgent
UserAgent that exposes internal interfaces to enable the communication
with the XMPP Server.

Storage Module used by Services to persist and fetch content.

Logs Module used by Services to enable logging management.

Data Access Layer

The Data Access Layer is in charge of connecting the upper layers of the Client Library with
the needed third-party libraries. While this prototype requires the usage of Libjingle to
communicate with XMPP servers, the pre-existing client uses other libraries to communicate
with SIP, MSRP or RTP.

In order to establish the connection with the server, this layer is responsible for creating an
abstraction to what lies below but also implement the necessary operations to translate the
data that comes from the XMPP server. Once again, the use of asynchronous calls obliges
the use of Callbacks to communicate with the upper layers of the application. Therefore,
before the start of any interaction with the Server, the XMPPUserAgent registers a set of
Callbacks on this layer. After that, when the upper layers request something or new content
reaches this layer the callbacks are executed.

Development of Corporate Collaboration Functionalities for Communication Services

44

Table 23 - Android XMPP Client - Data Access Layer Components

Name Description

XmppPump

XmppPump handles the connection with the server. It possesses
methods to login, logout and send stanzas. Because some of these actions
also work asynchronously, the object that creates this XmppPump should
implement the interface XmppPumpNotify and pass itself to the
constructor of the XmppPump. This way, when the result reaches the
XmppPump it knows what needs to be executed afterwards.

XmppTask

Base Class for asynchronous XMPP tasks. The classes that derive from
this class are able to act as stanza senders and stanza listeners. They are
responsible for receiving and translating the content and alert the
registered listeners.

PingTask
PingTask extends XmppTask and runs on a separate thread to perform
periodic pings to the server. Alerts the upper layer when it does not
receive a any response to configurable number of consecutive pings.

ChatReceiveTask
ChatReceiveTask also extends XmppTask in order to be able to receive
chat messages and composing notifications.

XmppRosterModule
This Module is responsible for sending and processing stanzas that
contain presence information.

3.2.3.3. Android Client

The Presentation Layer is the only layer of the topmost component that is responsible for
displaying to the user the content that comes from the lower layers. This layer is composed
by the Android User Interface and the COMLib API in Java. Both components are
developed using Java and the COMLib API requires the use of the Java Native Interface to
communicate with the public API present in the Client Library. In order to function
properly, it is also necessary to instruct the JNI how the parameters passed to the Java API
should be translated to the C++ API and vice versa. Although the COMLib API in Java is
an adapter of the COMLib API in C++ it should be seen as a component of the
Presentation Layer. If for example we want to integrate the Client Library with an iOS
application, the Java API will not be used. The next figure describes the packages and their
relationships of the Android User Interface in a UML 2.0 Package Diagram.

Figure 16 - Android XMPP Client - Package Diagram

Development of Corporate Collaboration Functionalities for Communication Services

45

The following table provides a description of each package and its elements. Once again,
only the most important components for this prototype are shown due to the complexity of
the component.

Table 24 - Android XMPP Client – Android User Interface Components

Package Name Description

entry

The Login Activity is the main entry point when the application is started for the
first time. This activity is responsible for checking the actual configuration of the
device. If needed be, the activity may prompt the user for credentials before
interacting with COMLib to finish the configuration procedure. After this, the
LoginActivity launches the TabNavActivity and is destroyed.

tabnav

The TabNavActivity is the only component of this package and it is in charge of
loading all the necessary UI modules. The architecture of this Client also favours
reusability due to its ability to load UI modules based on a configuration. For
example, the normal application is separated in three distinct tabs: Contact List,
Chat List and Settings. But if a new client only wants to possess the chat list only,
this can be easily done by changing the XML configuration files and recompiling
the application.

control

This package contains the ModuleManager and the ControlManager. The
ModuleManager is responsible for interacting with the aforementioned XML
configuration files so the UI modules are loaded correctly. The ControlManager
is in charge of managing the sessions of the application. This is the manager that
is responsible for registering the client on XMPP servers with the assistance of
the COMLib and Libjingle.

module

This package contains several different types of modules that are connected with
the available features. There are modules for the Contacts, Chats, Settings and
Storage. Each module is then comprised by different components. There are
managers responsible for the interaction with the COMLib, adapters responsible
for the conversion of the data sent from the COMLib and User Interface
components that receive and display content from and to the user.

util
This package contains classes that are helpful to several components of the
system. For example, the IntentCreator class allows the creation of new
Activities.

COMLib

Library developed in C/C++ by WIT-Software that is able to use several
different types of technologies with the aim of putting people in contact. These
technologies include SIP/IMS, SMS and MMS. This prototype adds the XMPP
protocol to this list.

Libjingle
XMPP library developed in C++ by Google responsible for the interaction with
the XMPP Servers.

For a better understanding of how the architecture of the application works, the next
diagram illustrates an example sequence diagram from the Android User Interface to the
bottom of the Data Access Layer. This example portraits what is necessary to register the user
on the XMPP Server.

Development of Corporate Collaboration Functionalities for Communication Services

46

Figure 17 - Android XMPP Client - Registration Sequence Diagram

As it was mentioned, before the registration starts, the ControlManager should subscribe the registration state. After that, it invokes the registerSession
method that will schedule a XMPPRegistrationJob with the help of the JobScheduler. This Job is responsible for initializing the XMPPUserAgent with
a set of callbacks if necessary and then it should pass the user credentials to the XmppPump which will proceed with the registration. When the server
completes or denies the registration, the previously registered callbacks are invoked to alert the User Interface of the result. From the moment that the
ControlManager subscribes the registration state, if there is any change, the ControlManager is notified.

Development of Corporate Collaboration Functionalities for Communication Services

47

3.3. Implementation

The first step of the implementation phase was extending the Client Library to enable the
communication with XMPP Servers. Secondly, the modified library was integrated with the
Android Client. Finally, the Android Client was extended to use the new functionalities
provided by the new Client Library.

3.3.1. Client Library

This required cross compiling the selected XMPP library as it was already mentioned during
the platform design phase. This task was extremely enriching because it allowed revisiting
concepts that were lectured during the subject of Compilers and learning new concepts such
as linking dynamic and shared libraries. This task also required familiarization with a tool
named Generate Your Projects (GYP) which facilitated the creation of the static library that
would be appended to the Client Library. This tool provides an easy way to specify the
source code, the dependencies and the flags that are necessary to process, compile and link
the desired code to a target operating system. Besides creating the library that was used on
Android, this tool was capable of generating the library that was used to build a simple
command line application capable of invoking the public API exposed by the Business
Logic Layer.

3.3.1.1. SessionService

The SessionService is a crucial component that is responsible for managing the registration
in XMPP servers. Moreover, since this component also holds the registration states of the
users, it is accessed by several other components that require this information before
proceeding with their tasks. This fact obliges a clear notion of which states exist and which
transitions are possible from state to state. The state diagram below illustrates the several
states and transitions possible.

Figure 18 - Android XMPP Library - Registration State Machine Diagram

To accomplish registration the SessionService is responsible for creating and scheduling an
asynchronous RegistrationJob. The following class diagram describes the classes that were
developed in order to enable the start of the registration and the cascade of callbacks that
allow the return of the result. This class diagram completes the sequence diagram that was
presented on the description of the architecture.

Development of Corporate Collaboration Functionalities for Communication Services

48

Figure 19 - Android XMPP Client - Client Library Class Diagram

Besides the creation of Registration jobs, the Session Service implements the
XMPPRegistrationCallbacks which binds itself on the XMPPUserAgentCallbacks when
instantiated. Similarly, the XMPPMessagingCallbacks will be implemented by the Chat
Service and the XMPPContactCallbacks by the Contact Service. This way, the
XMPPUserAgentCallbacks is seen as the class that knows which Services should be alerted
when certain events occur. But this class also needs to be informed by the lower
components. That said, before the UserAgent starts the registration, it is necessary that the
XMPPUserAgentCallbacks passess a set of Callbacks to the XMPPAccount that is being
registered. These Callback functions iterate through the bound XMPPRegistrationCallbacks
and alert the Services. Finally, because the XMPP library also works asynchronously, the
XMPPAccount implementes the XmppPumpNotify and passes itself to the constructor of
the XmppPump in order to be notified when the registration is done.

3.3.2. Integration between Android Client and Client Library

The integration between the Android Client and the Client Library is done through the use
of the Java Native Interface (JNI). This integration requires the conversion of the C++ API
to the Java API and the translation of the C++ data structures to Java data structures and
vice versa. The conversion was done using a python script developed by the team who built
the Client Library. What this script does is parsing the C++ code and producing the
equivalent Java code that is included on the Android Client. For example, a function that
returns a std::vector in the C++ API will be converted to a Java.List. The translation of the
objects, however, is not done automatically. Considering the same example where it is
necessary to return a vector with the Contact List, it was necessary to create two different
translators. The first one receives a JNIEnv object which allows the interaction with the Java
environment and a std::vector that contains the contacts. What this translator does is
creating a new Java.ArrayList and then for each member of the std::vector it calls the second
translator that will translate a single Contact. This second translator also receives the
JNIEnv object and it will create a Java Contact based on the content of the C++ Contact.

3.3.3. Android Client

The Android Client represents the last step necessary to accomplish the final objective of
the prototype. This step represented another challenge since it was the first time that the
author was developing for the Android Operative System. The majority of the work
involved integrating the existing application with the new Services that were available

Development of Corporate Collaboration Functionalities for Communication Services

49

through the new Public API. The feature that required more effort to integrate was the
contact list.

Figure 20 - Android XMPP Client - Contact List Class Diagram

The figure above illustrates what is necessary to present the contact list to the user. Once
again, this example makes use of several event subscriptions and callbacks in order to
function asynchronously. Firstly, the ContactXMPPManager uses the ControlManager to
subscribe the RegistrationState of the application. Once the registration has been completed,
the ContactXMPPManager is notified and starts the process of fetching the contact list by
invoking the ContactAPI. When the contact list has been fetched, the COMLib will notify
the ContanctXMPPManager which will notify the AbstractContactListAdapter. This adapter
is responsible for making the bridge between the model objects and the presentation view.

Development of Corporate Collaboration Functionalities for Communication Services

50

Development of Corporate Collaboration Functionalities for Communication Services

51

3.4. Quality Assurance

The Android prototype was also object of quality assurance but comprehensively not as
much as the Collaboration Service. During the development of the Data Access Layer and
the Business Logic Layer, it was necessary to develop a command line application capable of
interacting with the XMPP Server. This command line application isolated the Client Library
from the Android Application which detecting the source of the encountered issues.

3.5. Work Accomplished

The following table describes what was accomplished on the Android Client.

Table 25 - Android XMPP Client - Work Accomplished

Features
Account

Management
Contact

List
1-to-1 Chat Chat

History
Composing

Notifications

Result     

The following figures demonstrate the screens of the application that the author worked on.

The first screen is the splash screen of the application and it shows the several ways that the
user can use to communicate with other people. On this screen it was necessary to add the
XMPP button and the logic necessary to navigate to the next screen. The second screen
contains the several contacts that the user possesses. To provide a better User Experience,
the contacts are ordered and separated by their first letter. Finally, the third screenshot
displays the chat view with a certain user. This third screen also shows the composing
notification that is received when the other user is composing a message.

Figure 21 - Android XMPP Client - Application outcome

Development of Corporate Collaboration Functionalities for Communication Services

52

Development of Corporate Collaboration Functionalities for Communication Services

53

Section 4 - Methodology

This chapter describes the methodology that was followed during this project. It is extremely
important to understand how the chosen methodology works and explain why it was
chosen.

4.1. Scrum

The chosen methodology is based on Scrum [30]. Scrum, which aims to improve the
profession of software development, is a development framework intended to manage
software projects. This framework is based on an iterative and incremental process that
defines that there should be repeated cycles in which the development is focused on
different small parts of the final product. Each one of these iterations, which are called
Sprints in Scrum, can be divided in four major tasks: requirements analysis, design,
implementation and testing. As soon as each sprint is finished, the product is shown to the
client to minimize the risk of having to redevelop something very complex. This way,
besides having frequent demonstrations that enable quick changes without losing a large
amount of time and resources, the several iterations allow teams to take advantage of what
was learned previously and act accordingly. Scrum consists of artifacts, teams and events.

4.2. Artifacts

The main purpose of the artifacts is representing the work related to the project. The most
important artifacts are the product backlog and the sprint backlog. The Product Backlog is
an ordered list of all the tasks related to the project. With the evolution of the project, the
product backlog is constantly updated with new items or with item reorganization. The
Sprint Backlog contains the list of the requirements that are planned to be implemented
during a sprint. This type of backlog is also very dynamic because the development team
may learn that a new feature is needed or that their initial predictions were incorrect and the
backlog needs to be adjusted.

4.3. Team

Scrum teams have three different types of members: Product Owner, Development Team
and Scrum Master. The Product Owner is the person responsible for the product and for
the content that is present on the Product Backlog. During the several sprints, the Product
Owner is also responsible for assuring the quality of the work that is being developed. The
Development Team is constituted by a varying number of members and it is suggested that
this number should be between three and nine. This team is responsible for forecasting what
is going to be accomplished during the next Sprint. The Scrum Master is the person
responsible for ensuring that all the theories, practices and rules are followed in order to
maximize the value created by the team. This person might be required to work with the
Product Owner in order to find effective techniques to manage the Product Backlog or to
develop a long-term plan for the product. Finally, this person is also responsible for
coaching and leading the Development Team to create high-value products.

4.4. Events

There are several types of events that allow the development to be as inspective and as
transparent as possible. The heart event of Scrum is the Sprint. A Sprint represents one of
the iterations and it should not exceed the period of one month. During each Sprint there

Development of Corporate Collaboration Functionalities for Communication Services

54

are other events such as the Sprint Planning, Daily Scrum, Sprint Review and Sprint
Retrospective. The Sprint Planning allows the team to forecast what is going to be done and
who will be responsible for achieving it. The Daily Scrum is a 15-minute daily event that
allows the Development Team to synchronize the work that has been accomplished since
the last meeting and plan what is going to be done in the next 24 hours. The Sprint Review
occurs at the end of each Sprint and its purpose is to determine what was done and what
was not, discuss what went well and what went wrong during and how were the problems
solved. The conclusions of these review meetings also bring valuable inputs to the next
Sprint Planning. Finally, the Sprint Retrospective is an event that has the purpose to
complement the conclusions that may be taken for the previous sprint. While the Sprint
Planning attempts to plan what is going to be accomplished, the Sprint Retrospective
inspects the relationships between members, the processes and tools used in order to
implement team improvements on the next Sprint.

4.5. Implemented Methodology

Although there are some differences, the methodology used is highly based on Scrum. The
members of the team are: Paulo Sousa, the Product Owner, João Costa, the Scrum Master
and the author of this report is the only member of the Development Team. The fact that
there is only one member on the Development Team obliges that there is more interaction
with the other members in order to increase productivity and constructiveness. This way, it
was decided that each Sprint would take two weeks. The rest of the events and processes
will occur as suggested.

Development of Corporate Collaboration Functionalities for Communication Services

55

4.6. First Semester Work

It is important to mention that the internship plan presented was substantially altered.
During the first semester, work consisted in researching and planning everything while the
second semester comprised the implementation.

Table 26 - Work developed on 1st Semester

Sprint # From To Tasks

1 03/09/2012 17/09/2012

 Planning Internship meetings

 Scrum Session

 State of the Art

2 17/09/2012 01/10/2012

 State of the Art

 Requirements elicitation

 Research IMS and implementations

 Installing and configuring OpenIMS

3 01/10/2012 15/10/2012

 First Meeting DEI Supervisor

 Research HSS Provisioning

 Prototype HSS Provisioning

4 15/10/2012 29/10/2012

 Architecture Draft Research

 Research SIP Servlets vs JAIN SLEE

 Prototype SIP Servlets and JAIN SLEE

5 29/10/2012 12/11/2012

 Research Application Servers

 Second Meeting DEI Supervisor

 Internship Report

6 12/11/2012 26/11/2012
 Research WebSockets

 Research Interaction between Browser and Server

7 26/11/2012 10/12/2012
 Resarch JavaScript SIP and MSRP Stacks

 Prototype SIP Registration in from JAIN SIP JS

8 10/12/2012 24/12/2012

 Research RIA

 Research Media Server

 Third Meeting DEI Supervisor

9 24/12/2012 07/01/2013
 Architecture Specification

 Review State of the Art

10 07/01/2013 21/01/2013  Internship Report

11 21/01/2013 04/02/2013
 Internship Report

 Presentation

Development of Corporate Collaboration Functionalities for Communication Services

56

4.7. Second Semester Initial Plan
Sprint # From To Tasks

12 04/02/2013 18/02/2013

 Intermediate Presentation – 16 hours

 Application Mockups - 24 hours

 HSS Provisioning and WS Registration – 32 hours

 Research/Configure WCAS – 16 hours

13 18/02/2013 04/03/2013

 Research XMPP – 24 hours

 Build COMLib and Libjingle for linux – 16 hours

 Build COMLib and Libjingle for Android – 16 hours

 XMPPUserAgent – 24 hours

14 04/03/2013 18/03/2013

 XMPPUAAccount – 16 hours

 Ping Task – 12 hours

 Chat Receive Task – 12 hours

 Roster and Presence – 16 hours

 SessionService – 24 hours

15 18/03/2013 01/04/2013

 SessionService – 16 hours

 Contact List in COMLib – 24 hours

 ContactList API - 8 hours

 Chat 1-1 in Android – 24 hours

 Research/Configure WCAS – 8 hours

16 01/10/2013 15/04/2013

 Research AngularJS – 8 hours

 Edit Account details – 16 hours

 IMS Registration through WCAS – 16 hours

 WCAS as an Application Server – 40 hours

17 15/04/2013 29/04/2013

 WCAS as an Application Server – 24 hours

 Research Message Store – 8 hours

 WCAS AddressBook Translators – 12 hours

 WCAS AddressBook Web Client – 12 hours

 Project Support in JavaScript Client – 16 hours

18 29/04/2013 13/05/2013  Chat one-to-one – 80 hours

19 13/05/2013 27/05/2013
 Call one-to-one – 56 hours

 Project Call – 24 hours

20 27/05/2013 10/06/2013
 Project Call – 32 hours

 Project Chat – 48 hours

21 10/06/2013 24/06/2013

 Project Chat – 16 hours

 File Transfer one-to-one – 24 hours

 Composing Notifications – 16 hours

 MessageStore on Collaboration AS – 24 hours

22 24/06/2013 08/07/2013  MessageStore on Collaboration AS – 80 hours

23 08/07/2013 22/07/2013

 MessagesStore on Gateway Server – 32 hours

 Fetch Recent History in JavaScript– 24 hours

 Fetch Older History in JavaScript – 24 hours

24 22/07/2013 05/08/2013
 Bug fixing – 40 hours

 Acceptance Tests – 40 hours

25 05/08/2013 19/08/2013  Performance Tests – 80 hours

26 19/08/2013 02/09/203  Internship Report – 80 hours

Development of Corporate Collaboration Functionalities for Communication Services

57

4.8. Second Semester Final Plan
Sprint # From To Tasks

12 04/02/2013 18/02/2013

 Intermediate Presentation – 18 hours

 Application Mockups - 15 hours

 HSS Provisioning and WS Registration – 28 hours

 Research/Configure WCAS – 18 hours

13 18/02/2013 04/03/2013

 Research XMPP – 8 hours

 Research XMPP C++ Library – 16 hours

 Build COMLib with Libjingle – 32 hours

 Compile Libjingle for linux – 10 hours

 Build libjingle for android – 16 hours

14 04/03/2013 18/03/2013

 XMPPUserAgent – 20 hours

 XMPPUAAccount – 20 hours

 Ping Task – 12 hours

 Chat Receive Task – 12 hours

 Roster and Presence – 16 hours

15 18/03/2013 01/04/2013

 SessionService – 40 hours

 Contact List in COMLib – 15 hours

 ContactList API - 5 hours

 Chat 1-1 in Android – 20 hours

16 01/10/2013 15/04/2013

 Research/Configure WCAS – 12 hours

 Research AngularJS – 8 hours

 Edit Account details – 16 hours

 IMS Registration through WCAS – 15 hours

17 15/04/2013 29/04/2013

 WCAS as an Application Server – 54 hours

 Research Message Store – 8 hours

 WCAS AddressBook Translators – 12 hours

 WCAS AddressBook Web Client – 12 hours

18 29/04/2013 13/05/2013
 Project Support in JavaScript Client – 20 hours

 Chat one-to-one – 60 hours

19 13/05/2013 27/05/2013
 Call one-to-one – 48 hours

 Project Call – 32 hours

20 27/05/2013 10/06/2013
 Project Call – 32 hours

 Project Chat – 48 hours

21 10/06/2013 24/06/2013

 Project Chat – 16 hours

 File Transfer one-to-one – 24 hours

 Composing Notifications – 16 hours

 MessageStore on Collaboration AS – 24 hours

22 24/06/2013 08/07/2013  MessageStore on Collaboration AS – 80 hours

23 08/07/2013 22/07/2013

 MessagesStore on Gateway Server – 32 hours

 Fetch Recent History in JavaScript– 24 hours

 Fetch Older History in JavaScript – 24 hours

24 22/07/2013 05/08/2013
 Bug fixing – 40 hours

 Acceptance Tests – 40 hours

25 05/08/2013 19/08/2013  Performance Tests – 80 hours

26 19/08/2013 02/09/203  Internship Report – 80 hours

Development of Corporate Collaboration Functionalities for Communication Services

58

Development of Corporate Collaboration Functionalities for Communication Services

59

Section 5 - Conclusions

The work developed during this internship was the biggest challenge that the author has
ever faced throughout his academic life. On a personal level, it contributed greatly to the
growth as a person and as a software developer. On the view of the company, it resulted in a
product that extends what already exists on the company with new functionalities and new
technologies.

One of the biggest advantages of this internship was the possibility to work with the several
products of the company and with its developers. These products are immensely different
from each other which was great in terms of getting in contact with new technologies,
different programming languages as well as new software paradigms. In order to work with
products such as WCAS, the JavaScript Client Library, COMLib and the Android Client, it
was necessary to study their infrastructure, interpret decisions and understand how they
could be extended. This extensibility also required a high interaction with other developers
which was incredibly invaluable.

Considering the work developed on the Collaboration Service, the opportunity to work in an
SIP environment represented a unique professional opportunity and allowed reaching a
great specialization in this area. Furthermore, the contact with technologies such as Web
Sockets and WebRTC was extremely valuable to the author.

The development of the Android Client supported the need to learn the basics of
developing to this operative system and it allowed learning how to work with the Java
Native Interface.

Finally, the technical knowledge and the experience that the author obtained during this
internship along with the several lessons learned will certainly help him throughout his
future as a Software Engineer.

5.1. Future Work

The work developed during this internship enabled the creation of two products capable of
shortening the distance between people that have the necessity or wish to communicate with
others. These products were fully functional but the opportunity to extend them will enrich
the final result even more.

Development of Corporate Collaboration Functionalities for Communication Services

60

Section 6 - References

[1] Wit-Software, “Wit-Software,” [Online]. Available: http://wit-software.pt/.

[2] Business Travel News, “Small and Medium Enterprise Report,” [Online]. Available:
http://businesstravelnews.texterity.com/businesstravelnews/20120416#pg9.

[3] XMPP Standards Foundation, “The XMPP Standards Foundation,” [Online].
Available: http://xmpp.org/.

[4] GSMA, “Rich Communications,” [Online]. Available: http://www.gsma.com/rcs/.

[5] Google, “Google Developers,” [Online]. Available:
https://developers.google.com/talk/talk_developers_home.

[6] Facebook, “Facebook Developers,” [Online]. Available:
https://developers.facebook.com/docs/chat/.

[7] Adobe, “Web conferencing software - Conference services | Adobe Connect 9,”
[Online]. Available: http://www.adobe.com/products/adobeconnect.html.

[8] BlueJeans, “Video Conferencing Service - Interoperable, Cloud-based, Affordable |
Blue Jeans,” [Online]. Available: http://bluejeans.com/.

[9] 37signals, “Business group chat, file sharing, group decision making: Campfire,”
[Online]. Available: http://campfirenow.com/.

[10] HipChat, “Private group chat and IM, business and team collaboration - HipChat,”
[Online]. Available: https://www.hipchat.com/.

[11] Flowdock, “Flowdock,” [Online]. Available: https://www.flowdock.com/.

[12] FuzeBox, “FuzeBox,” [Online]. Available: https://www.fuzebox.com/.

[13] Citrix, “Citrix GoToMeeting,” [Online]. Available:
http://www.citrix.com/products/gotomeeting/overview.html.

[14] Huddle, “The Enterprise Content Collaboration Platform,” [Online]. Available:
http://www.huddle.com/.

[15] IBM, “IBM Sametime,” [Online]. Available: http://www-
01.ibm.com/software/lotus/sametime/.

[16] PGi, “iMeet,” [Online]. Available: http://www.pgi.com/us/en/conferencing/iMeet/.

[17] Microsoft, “Unified Communications - Lync 2013,” [Online]. Available:
http://lync.microsoft.com/en-us/Pages/unified-communications.aspx.

[18] Safa Software, “Saba Meeting,” [Online]. Available: http://www.sabameeting.com/.

[19] Dialcom, “Spontania,” [Online]. Available: http://www.dialcom.com/en/.

Development of Corporate Collaboration Functionalities for Communication Services

61

[20] Teambox, “Collaboration Software - Online project management tool for teams,”
[Online]. Available: http://teambox.com/.

[21] Voxeet, “Voxeet,” [Online]. Available: http://www.voxeet.com/index.html.

[22] Cisco, “Cisco WebEx Web Conferencing, Online Meetings, Desktop Sharing, Video
Conferencing,” [Online]. Available: http://www.webex.com/.

[23] Alexa, “Alexa - The Web Information Company,” [Online]. Available:
http://www.alexa.com/.

[24] Gartner, “Magic Quadrant for Web Conferencing,” [Online]. Available:
http://www.gartner.com/technology/reprints.do?id=1-
1D78VS4&ct=121212&st=sb#.

[25] Slashdot, “Open Real time Messaging System,” [Online]. Available:
http://slashdot.org/story/99/01/04/1621211/open-real-time-messaging-system.

[26] GSMA, “RCS,” [Online]. Available: http://www.gsma.com/rcs/.

[27] Open Mobile Alliance, “CPMMSGSTORE,” [Online]. Available:
http://member.openmobilealliance.org/ftp/public_documents/COM/COMCPM/P
ermanent_documents/OMA-TS-CPM_MessageStorage-V1_0-.

[28] IETF, “RFC3501 - IMAP,” [Online]. Available: http://tools.ietf.org/html/rfc3501.

[29] Google Android, “JNI - Android Developers,” [Online]. Available:
http://developer.android.com/training/articles/perf-jni.html.

[30] K. Schwaber and J. Sutherland, “Scrum Guide,” [Online]. Available:
http://www.scrum.org/ScrumGuide.aspx.

[31] J. Sutherland, “Ban Gantt charts,” [Online]. Available:
http://scrum.jeffsutherland.com/2006/02/why-gantt-charts-were-banned-in-
first.html.

[32] Kent Beck, “JUnit Web Page,” [Online]. Available:
https://github.com/kentbeck/junit/wiki.

[33] Cisco. [Online]. Available:
http://www.cisco.com/en/US/prod/collateral/voicesw/ps6788/vcallcon/ps6562/p
roduct_data_sheet0900aecd80396990.html.

[34] Alcatel-Lucent. [Online]. Available: http://www.alcatel-
lucent.com/wps/portal/!ut/p/kcxml/04_Sj9SPykssy0xPLMnMz0vM0Y_QjzKLd4w
3MfQFSYGYRq6m-pEoYgbxjgiRIH1vfV-
P_NxU_QD9gtzQiHJHR0UAAD_zXg!!/delta/base64xml/L0lJayEvUUd3QndJQSE
vNElVRkNBISEvNl9BXzNBRC9lbl93dw!!?LMSG_CABINET=Solution_Product_
Catalo.

[35] F. C. Torralba, T. Johansson, H. Österlund and . M. E. T. Díaz-Chirón. [Online].
Available: http://www.faqs.org/patents/app/20120096162#b.

Development of Corporate Collaboration Functionalities for Communication Services

62

[36] O. I. Core. [Online]. Available: http://www.openimscore.org/.

[37] Orange, [Online]. Available: http://www.orange.com/en/home.

[38] PT Inovação, [Online]. Available: http://www.ptinovacao.pt/.

[39] Open IMS Core, [Online]. Available: http://www.openimscore.org/quotes.

[40] “OpenHSS,” [Online]. Available: http://sourceforge.net/projects/openhss/.

[41] G. University of Patras, “OSIMS,” [Online]. Available:
http://nam.ece.upatras.gr/ppe/?q=node/2.

[42] H. L. Raether and M. J. Rudolph. [Online]. Available:
http://www.google.com/patents?id=CPuVAAAAEBAJ&printsec=abstract&zoom=
4#v=onepage&q&f=false.

[43] Red Hat, [Online]. Available: http://www.redhat.com/.

[44] Java Community Process, “JSR 311,” [Online]. Available:
http://jcp.org/en/jsr/detail?id=311.

[45] Java.net, “Jersey,” [Online]. Available: http://jersey.java.net/.

[46] Red Hat, “RESTEasy,” [Online]. Available: http://www.jboss.org/resteasy.

[47] Apache, “Apache CXF,” [Online]. Available: http://cxf.apache.org/docs/jax-rs.html.

[48] “Celtix and XFire merge,” [Online]. Available:
http://xfire.codehaus.org/XFire+and+Celtix+Merge.

[49] “Atmosphere,” [Online]. Available: https://github.com/Atmosphere/atmosphere.

[50] IETF, “WebSocket Protocol,” December 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6455.

[51] Opera, “Opera Mini,” [Online]. Available: http://www.opera.com/mobile/.

[52] Google, “Android Browser,” [Online]. Available: http://www.android.com/.

[53] Microsoft, “Internet Explorer,” [Online]. Available:
http://windows.microsoft.com/en-US/windows-8/internet-explorer.

[54] Springsource, “Groovy Main Page,” [Online]. Available:
http://groovy.codehaus.org/.

[55] Oracle, “Java Web Page,” [Online]. Available: http://www.java.com/en/.

[56] C. Nutter, T. Enebo, O. Bini and N. Sieger, “JRuby Web Page,” [Online]. Available:
http://jruby.org/.

[57] M. Odersky, “Scala Web Page,” [Online]. Available: http://www.scala-lang.org/.

Development of Corporate Collaboration Functionalities for Communication Services

63

[58] W3C, “HTML5 Server Sent Events Page,” [Online]. Available:
http://www.w3schools.com/html/html5_serversentevents.asp.

[59] “FlashBridge Web Page,” [Online]. Available:
http://sourceforge.net/projects/javaflashbridge/.

[60] “Jetty Web Page,” [Online]. Available: http://jetty.codehaus.org/jetty/.

[61] Netty, “Netty Web Page,” [Online]. Available: https://netty.io/.

[62] Apache Software Foundation, “Tomcat Web Page,” [Online]. Available:
http://tomcat.apache.org/.

[63] Red Hat, “JBoss Web Page,” [Online]. Available: http://www.jboss.org/.

[64] Alcatel-Lucent, “Alcatel-Lucent Web Page,” [Online]. Available: http://www.alcatel-
lucent.com/wps/portal.

[65] IBM, “IBM Web Page,” [Online]. Available: http://www.ibm.com/us/en/.

[66] Sun Microsystems, “Sun Web Page,” [Online]. Available:
http://www.oracle.com/us/sun/index.htm.

[67] BEA Systems, “BEA Systems Web Page,” [Online]. Available:
http://www.oracle.com/us/corporate/acquisitions/bea/index.html.

[68] Java Community Process, “JCP Web Page,” [Online]. Available:
http://jcp.org/en/jsr/detail?id=339.

[69] W3C, “W3C Web Page,” [Online]. Available: http://www.w3.org/Submission/wadl/.

[70] Apache CFX, “Apache CFX Testing Web Page,” [Online]. Available:
https://cwiki.apache.org/confluence/display/CXF20DOC/JAXRS+Testing.

[71] “3Gdb Web Page,” [Online]. Available: http://code.google.com/p/hss/.

[72] Apache CFX, “Apache CFX JAX-RS Web Page,” [Online]. Available:
http://cxf.apache.org/docs/jaxrs-services-description.html.

[73] java.net, “Grizzly Web Page,” [Online]. Available: http://grizzly.java.net/.

[74] Java.net, “Jersey Web Page,” [Online]. Available:
http://jersey.java.net/nonav/documentation/latest/test-framework.html.

[75] JBoss Community, “RESTEasy Web Page,” [Online]. Available:
http://www.jboss.org/resteasy.

[76] JBoss Community, “RESTEasy Asynchronous details,” [Online]. Available:
http://docs.jboss.org/resteasy/docs/1.0.0.GA/userguide/html/Asynchronous_HTT
P_Request_Processing.html.

[77] Java.net, “GlasshFish Web Page,” [Online]. Available: http://glassfish.java.net/.

Development of Corporate Collaboration Functionalities for Communication Services

64

[78] Apache Software Foundation, “Struts Web Page,” [Online]. Available:
http://struts.apache.org/.

[79] Google, “Google Web Toolkit Web Page,” [Online]. Available:
https://developers.google.com/web-toolkit/.

[80] Oracle, “JavaServer Pages Web Page,” [Online]. Available:
http://www.oracle.com/technetwork/java/javaee/jsp/index.html.

[81] Oracle, “Facelets Web Page,” [Online]. Available:
http://docs.oracle.com/javaee/6/tutorial/doc/giepx.html.

[82] Java.net, “Facelets vs JSP,” [Online]. Available:
http://today.java.net/pub/a/today/2006/08/29/developing-with-facelets-jsf-
jsp.html.

[83] Zenexity, “Zenexity Web Page,” [Online]. Available: http://www.zenexity.com/.

[84] SpringSource, “SpringSource Web Page,” [Online]. Available:
http://www.springsource.org.

[85] Mobicents, “Mobicents SIP Presence Service,” [Online]. Available:
http://www.mobicents.org/sip-presence/intro.html.

[86] Kamailio, “Kamailio SIP Server,” [Online]. Available: http://www.kamailio.org/w/.

[87] Kamailio, “Kamailio SIP Server,” [Online]. Available: http://www.kamailio.org/w/.

[88] OpenSIPS, “openSIPS,” [Online]. Available: http://www.opensips.org/.

[89] IETF, “XML Configuration Access Protocol (XCAP),” [Online]. Available:
http://tools.ietf.org/html/rfc4825.

[90] OpenXCAP, “OpenXCAP,” [Online]. Available: http://openxcap.org/.

[91] SylkServer, “SylkServer, A state of the art, extensible SIP Application Server,”
[Online]. Available: http://sylkserver.com/.

[92] AG Projects, “SIP Thor,” [Online]. Available: http://www.ag-projects.com/sip-thor-
products-291.

[93] AG Projects, “SylkServer, A state of the art, extensible SIP Application Server,”
[Online]. Available: http://sylkserver.com/.

[94] AG Projects, “MSRP Relay,” [Online]. Available: http://www.msrprelay.org/.

[95] NEXCOM, “littleIMS,” [Online]. Available:
http://confluence.cipango.org/display/LITTLEIMS/Home.

[96] NEXCOM, “Cipango,” [Online]. Available: http://www.cipango.org/.

[97] Mobicents, “SIP Servlets,” [Online]. Available:
http://www.mobicents.org/products_sip_servlets.html.

Development of Corporate Collaboration Functionalities for Communication Services

65

[98] java.net, “GlassFish - Open Source Application Server,” [Online]. Available:
http://glassfish.java.net/.

[99] Ars Technica, “Web Browsers market share November 2012,” [Online]. Available:
http://arstechnica.com/information-technology/2013/01/internet-explorer-ends-
the-year-on-a-high-windows-8-slow-to-get-noticed/.

[100] IETF, “The WebSocket Protocol as a Transport for the Session Initiation Protocol
(SIP),” [Online]. Available: http://tools.ietf.org/html/draft-ietf-sipcore-sip-
websocket-06.

[101] OverSIP, “OverSIP - the SIP framework you dreamed about,” [Online]. Available:
http://www.oversip.net/.

[102] IETF, “ Managing Client-Initiated Connections,” [Online]. Available:
http://tools.ietf.org/html/rfc5626#section-3.4.

[103] JsSIP, “JsSIP the Javascript SIP library,” [Online]. Available: http://www.jssip.net/.

[104] WebRTC, “WebRTC,” [Online]. Available: http://www.webrtc.org/home.

[105] JAIN SIP, “JAIN SIP JS,” [Online]. Available: http://code.google.com/p/jain-sip/.

[106] SIP-JS, “SIP-JS,” [Online]. Available: http://code.google.com/p/sip-js/.

[107] IETF, “The WebSocket Protocol as a Transport for the Message Session Relay,”
[Online]. Available: http://tools.ietf.org/html/draft-pd-msrp-websocket-02.

[108] Crocodile-RCS, “Crocodile RCS,” [Online]. Available: http://www.crocodile-
rcs.com/.

[109] Doubango Telecom, “sipML5,” [Online]. Available: http://sipml5.org/.

[110] IETF, “SIP RFC 3261,” [Online]. Available: http://tools.ietf.org/html/rfc3261.

[111] Adobe, “Adobe,” [Online]. Available: http://www.adobe.com/.

[112] JavaFx, “JavaFx,” [Online]. Available:
http://www.oracle.com/technetwork/java/javafx/overview/index.html.

[113] IETF, “SDP: Session Description Protocol,” [Online]. Available:
http://tools.ietf.org/html/rfc4566.

[114] Statowl, “Rich Internet Application Market Share,” [Online]. Available:
http://www.statowl.com/custom_ria_market_penetration.php?1=1&timeframe=last
_3&interval=month&chart_id=13&fltr_br=&fltr_os=&fltr_se=&fltr_cn=&timefram
e=last_12.

[115] Microsoft, “CU-RTC-WEB,” [Online]. Available:
http://html5labs.interoperabilitybridges.com/cu-rtc-web/cu-rtc-web.htm.

[116] Medooze, “Medooze,” [Online]. Available:
http://www.medooze.com/products/mcu.aspx.

Development of Corporate Collaboration Functionalities for Communication Services

66

[117] IETF, “RFC 4975,” [Online]. Available: http://tools.ietf.org/html/rfc4975.

[118] M. Wuthnow, M. Stafford and J. Shih, IMS A New Model for Blending Applications,
Auerbach Publications, 2009.

[119] Google, “Google Play Store,” [Online]. Available: https://play.google.com.

[120] QT Project, “Signals & Slots | QtCore 5.1,” [Online]. Available: http://qt-
project.org/doc/qt-5.1/qtcore/signalsandslots.html.

