
Master’s Degree Dissertation
2014/2015

Final Report

Crowdplay - Crowdsourcing
Gameplay Data

Game Instrumentation

Author:
João Soares
jtalm@student.dei.uc.pt

Supervisor:
Dr. Lićınio Roque

lir@dei.uc.pt

July 5, 2015

Crowdplay - Crowdsourcing
Gameplay Data

Game Instrumentation

Author:
João Soares
jtalm@student.dei.uc.pt

Supervisor:
Dr. Lićınio Roque

lir@dei.uc.pt

Jury:
David Fonseca Palma
palma@dei.uc.pt

Marco P. Vieira
mvieira@dei.uc.pt

Abstract

This report describes the development project of an author centric procedural
content generation tool for videogames. The approach underlying this tool
is to provide human designers access to the capabilities of procedural content
generation techniques, whilst simultaneously affording them as much creative
control over the creative process as possible.

The goal of this project was to finish designing and developing the tool and
its procedural generation approach, and test it in a design scenario. To achieve
this, three different tasks were carried out: first, a new game prototype was
integrated into the procedural generation engine architecture; second, a user
interface was implemented in a web server to allow designers’ to use the tool;
and finally, the tool was tested and evaluated.

The report describes the development process, the design and architecture
of the tool, as well as all tests that were done. Usability test results show that
the tool is in a usable state and preliminary data from a designer case study
highlights the tool’s potential.

Resumo

Este relatório descreve um intuito de projeto de investigação para o desenvolvi-
mento de uma ferramenta de geração procedimental de conteúdo para jogos de
v́ıdeo. A abordagem subadjacente a esta ferramenta pretende disponibilizar o
acesso a técnicas de geração de conteúdo procedimental a humanos, enquanto
lhes permite tanto controlo sobre o processo criativo quanto posśıvel.

O objetivo deste projeto era terminar o design e a implementação da fer-
ramenta e a sua abordagem de geração procedimental, e testá-la num cenário
de estudo. De forma a o conseguir, três tarefas diferentes foram executadas:
primeiro, um novo protótipo de jogo foi integrado na architectura do motor de
geração procedimental; segundo, uma interface para os utilizadores foi desen-
volvida num servidor web de forma a permitir que os designer’s utilizassem a
ferramenta; e finalmente, a ferramenta foi testada e avaliada.

O relatório detalha o processo de desenvolvimento, o design e a architectura
da ferramenta e todos os testes realizados. Os testes de usabilidade demonstram
que a ferramenta se encontra num estado utilizável e os dados preliminares dum
caso de estudo sublinha o potencial da ferramenta.

1

Contents

1 Introduction 7
1.1 Objectives and Motivation . 7
1.2 Chapters Overview . 8

2 State of the Art 9
2.1 Procedural Content Generation 9

2.1.1 Experience-Driven Procedural Content Generation 9
2.1.2 Author-Centric Approach to Procedural Content Gener-

ation . 11
2.1.3 Comparison between EDPCG and ACPCG 12

2.2 New Proof of Concept . 14
2.3 The Value and Use of Gameplay Metrics 14

3 Methodological Approach 16
3.1 Objectives . 16
3.2 Process . 17
3.3 Scheduling . 18
3.4 Deliverables . 19
3.5 Plan and Actual . 19

4 Design 21
4.1 Design Process . 21

4.1.1 Results . 21
4.1.2 New Terminology . 22
4.1.3 Interfaces . 22

5 Architecture 28
5.1 Overview . 28
5.2 Web Server for Requests . 28

5.2.1 Web Server’s Data Model 29
5.2.2 User Interface for the Designer 32

5.3 Instrumenting Dune Legacy for Data Collection 35

6 Development Activities 39
6.1 Selection and Instrumentation of the Game Archetype 40

6.1.1 Candidate Game List . 40
6.1.2 Choosing Criteria . 42

6.2 Development of the Crowdplay Platform Interface for Designers . 49

2

CONTENTS 3

6.2.1 Paper Prototypes Adaptation to Web Interfaces 50
6.2.2 Technologies Used . 51
6.2.3 Developed Modules for Crowdplay 54

7 Evaluations 57
7.1 Usability Test . 57

7.1.1 Usability Test Walkthrough 58
7.1.2 Questionnaire . 59
7.1.3 Data Analysis . 60
7.1.4 Issues Found . 65
7.1.5 Proposed Corrections . 66

7.2 Game Design Case Study . 66
7.2.1 Completed Work . 67
7.2.2 Next Phases . 69

8 Further Work 71

Appendix A Remaining Interfaces Prototypes 76
A.1 Prototypes . 77

Appendix B Candidate Attributes table 78

Appendix C Entity-Relationship Diagram 79

Appendix D List of Archetype Game’s Features and Metrics 80

Appendix E Usability Tests 85

Appendix F Game Design Test 86

List of Figures

2.1 EDPCG components . 10
2.2 ACPCG algorithm . 12

3.1 Estimation of time taken for tasks 18
3.2 Actual time taken for tasks . 19

4.1 Design Problem Prototype . 24
4.2 Design Goals Prototype . 25
4.3 Artifact Qualities Prototype . 26
4.4 Result analysis Prototype . 27
4.5 Formulas management Prototype 27

5.1 Architecture overview . 29
5.2 Interface data exchange with data model 30
5.3 Database ER . 31
5.4 Project Controller centralization 33
5.5 MVC overview . 34
5.6 Registrations sequence diagram 36
5.7 Play sequence diagram . 38

6.1 Micropolis . 41
6.2 Dune Legacy . 41
6.3 BosWars . 42
6.4 FreeCiv . 43
6.5 Player Register message exchange 47
6.6 Original game sequence . 48
6.7 New game sequence . 49
6.8 Developed game variations interface 51
6.9 Developed design goals interface 52
6.10 Developed test setup interface . 53
6.11 Developed results interface . 54

7.1 User failed tasks . 61
7.2 Count of questions scored above 4 62
7.3 Count of questions answered correctly 62
7.4 User confidence in used terminology 63
7.5 User task completion times . 64

A.1 Prototype for the new user menu interface 77

4

LIST OF FIGURES 5

A.2 Prototype for the new project menu interface 77

List of Tables

2.1 Comparison between EDPCG and ACPCG 13

4.1 New Terminology . 23

7.1 Issues classification table . 65
7.2 Proposed issue solutions . 67
7.3 First CSI answers . 69

6

Chapter 1

Introduction

Over the years, designers have been creating custom content adapted not only
to the user’s needs, but also with the desire to stimulate certain emotions on
them. In the game industry, whose size has been considerably increasing along
the years, custom content importance is also rising as players are given more
and better content and are continually waiting for more. When it comes to
videogame content, methods that supply better information have risen over the
past years, such as gameplay metrics [Drachen and Canossa, 2009a, Marczak
et al., 2012]. This information can be used in various ways: to make gameplay
experience closer to the intended[Mirza-Babaei et al., 2013], to understand how
players are using the provided elements[Drachen and Canossa, 2009b] or how
predominant gameplay styles are[Tychsen and Canossa, 2008].

Although there is progress, even with the information given by the data
sources, there is the problem of how to make better content based on that in-
formation. One way of utilizing this data while aiming to improve videogames,
is by employing procedural content generation methods that can use gameplay
data to generate better content for players. This report describes the develop-
ment of one such method: an Author-Centric Approach to Procedural Content
Generation.

1.1 Objectives and Motivation

Whilst there are many novel procedural content generation approaches [Yan-
nakakis and Togelius, 2011], they focus on providing players a predefined gam-
ing experience, such as delivering game content that is fun and not frustrating.
The focus of the author-centric approach [Craveirinha et al., 2013] is distinct: to
provide game designers a powerful way to define and mediate their game agenda
for player experience, instead of a pre-packaged solution. Thus, Author-Centric
Approach to Procedural Content Generation aims to help game designers who
want to use procedural content generation methods without straying from their
intended game designs.

To use the method, a game designer first needs to have an agenda for player
experience in mind. This agenda has to be verifiable by looking at gameplay
data. For example: a game designer might want players not to die a lot during a
level; this can be tested by checking the average number of player deaths for that

7

CHAPTER 1. INTRODUCTION 8

level. Second, he needs to have a working prototype that can be iterated upon
so that, once coupled with the procedural generation system, it generates the
desired variety of content (levels, scenarios, agent behaviors and representations,
etc). To direct the generation of new content, the system must be capable
of defining key features of the generated content; this means designers forfeit
control of these features so as to achieve their end goal. For example, if the
designer wants to optimize the number of deaths in a level, he will have to allow
the system to define the number for that same level. Finally, the designers’
prototype has to be integrated into a metrics collection system, so as to provide
gameplay data for analysis, that will then be used to verify how close the system
is to achieving the designer’s agenda.

Being a new method, this still lacks intensive experimentation. Therefore,
our motivation is to aid this method’s development and help verify its appli-
cation and usage in real design cases. The drawback is that, as it is now, the
methodology is hard to use by designers, as it lacks a working user interface.

Our main objective is to give our contribution by:

• Creating a tool, in the form of a web platform, that can make the usage
of this method transparent and simple for the user

• Verifying the usability of said platform through usability tests

• Performing an actual case test for this procedural content generation
method, for validation purposes. This includes:

– the adaptation of a game to use in the test

– getting a game designer to use the platform, to adapt the prototype
to a design intent of his choosing

– draw a conclusion over this particular case

1.2 Chapters Overview

The following chapter contains the state of the art in procedural content gen-
eration, from which the main concepts of this project come from. It also draws
a conclusion on why this particular method was chosen over a more popular
one. Chapter 3 describes the used methodologies along with the hypotheses
the project wants to help prove. Although their development was not a part of
this project, in chapter 4 we describe the design process behind the used inter-
face prototypes. This is important to understand the assumptions and choices
behind their creation. Chapter 5 describes the architecture proposed for the
solution and the expected functionalities for the various elements developed.
Chapter 6 contains the information relative to the development activities: what
was done, how and why for each part of the project. It also describes the used
game’s choice, modification and connection to the methodology’s server. Details
of all the tests realized, the conclusions drawn and issues found are described in
chapter 7. Finally, chapter 8 contains the list of issues that need to be solved
after this project is over.

Chapter 2

State of the Art

In order to fully understand the concept of the experimentation, a deeper ex-
planation about the used methodologies is needed. In this chapter such an
explanation is given about how those methodologies came to be, in what they
were based and what they are used for, from the Procedural Content Generation
to the used Author-Centered Approach. Methods used in both the collection
and usage of metrics in video games are also explained and so is the actual proof
of concept for the proposed case.

2.1 Procedural Content Generation

Designing videogames is a complex job. For each different application, its author
has to come up with an idea, design the game and its components, and then tune
them so they fit into the desired play styles of many different types of players,
making this a very time consuming task. Tuning each parameter’s value requires
each configuration to be iteratively tested by several users, so as to make sure
that the results are as expected. This is why the use of procedural content
can be helpful, as content is created in an automatic or semi-automatic way.
There are several works based on procedural content generation [Togelius et al.,
2011a,b, Smith et al., 2010], but in this report two of them are given special
focus. These are the Experience-Driven Procedural Content Generation and the
Author-Centric Approach to Procedural Content Generation, each described in
the following sections.

2.1.1 Experience-Driven Procedural Content Generation

The EDPCG was a novel procedural content generation methodology developed
in which the generated content is directly connected the player experience [Yan-
nakakis and Togelius, 2011]. The methodology’s goal is to create high quality
content, with which the player experience would be near optimal. Of course this
would be highly dependent on the content type being developed, and would be
based on the designer’s content representation and each player’s gaming style.
The methodology creates a model based on the player experience in order to
evaluate content quality. As listed by the authors, this model can be created us-
ing three different approaches, as well as a combination of any of these, creating

9

CHAPTER 2. STATE OF THE ART 10

a hybrid approach [Yannakakis and Togelius, 2011].
The subjective player experience modeling uses data collected directly from

the players, through questionnaires, reports written by them or by registering
their speech during play. This approach has a few limitations such as the player’s
memory, in case of lengthy play sessions, or having to interrupt said sessions to
progressively collect data.

On the other hand, objective player modeling is based on a third party view
of the player. This can be achieved through play session recordings analysis or
physiological responses, referred as biometrics. ”The core assumption of such
input modalities is that particular bodily expressions are linked to basic emotions
and cognitive processes.”[Yannakakis and Togelius, 2011].

Gameplay-based player experience modeling is done based on the assumption
”player actions and real-time preferences are linked to player experience since
games may affect the player’s cognitive processing patterns and cognitive focus”.
Game-play based player experience models are created using elements from the
interaction between the player and the game. This approach can use collected
gameplay metrics as input data, since metrics are generated from the interaction
of the player with the game.

The main reason player experience models are used in EDPCG is to evaluate
the generated content’s quality, in order to generate new and improved content.
This evaluation can be done using three kind of functions: direct, simulation-
based and interactive.

Direct functions extract features from the generated content and directly
verify its quality value. This means that for a given content, its values are
directly mapped to a quality range, be it in a linear or non-linear way. For
instance, when creating mazes, the quality of said maze can be directly eval-
uated by the number of exits it has. This method is fast as, usually, it takes
little computational power, but needs to be personalized to a specific game and
content type.

Figure 2.1: The main components of the experience-driven procedural content
generator. Extracted from [Yannakakis and Togelius, 2011]

Simulation-based functions are used when content cannot be directly mapped

CHAPTER 2. STATE OF THE ART 11

into a quality value, as it takes several experimentations to reach an evaluation.
It uses an artificial agent that plays through the needed part of the game and,
based on its gameplay (speed, success, behavior, ...), calculates its quality value.
The used agent may or not vary during the evaluation. If it does, it is considered
a dynamic simulation-based function, otherwise it is static. Dynamic functions
are useful when creating content that stimulates the players learning curve or
to simulate user fatigue. Using simulation-based functions is computationally
expensive and, sometimes, very time consuming.

Interactive functions evaluate the quality of a content based on the inter-
action between a player and that content. Again, the data concerning the
interaction can be collected based on the player’s physiology, questionnaires or
behavior. Interactive functions are especially useful if used to create content for
a specific player or a specific play style.

2.1.2 Author-Centric Approach to Procedural Content Gen-
eration

When it comes to games, basing the content on the player experience alone
can have unwanted results, such as altering the game’s difficulty or not focus-
ing several key components, leading to a potential loss of intended gameplay
experience.

This led to the experimentation of another kind of Procedural Content Gen-
eration: an Author-Centric Approach to Procedural Content Generation (or
ACPCG for short) [Craveirinha et al., 2013]. The point of the ACPCG is to
give designers the ”choice to lead the end-result for gameplay, as opposed to
subjective experience aspects”[Craveirinha et al., 2013].

The first step in this methodology is for the designer to supply a game
Archetype along with a definition of parameters and Target Indicators. The
parameters are a ”set of design elements, implemented by designers, that they
forfeit direct control of”[Craveirinha et al., 2013], for which new values will be
generated. The Archetype game is a version of the game deprived of the defined
parameters, which will be filled with the generated values of each generation.
Target indicators are the values expected for the content, although not the exact
resulting values. This will consequently create variations of the base game, each
called candidate games, ready to be tested.

Using the parameter definitions, the ACPCG uses a genetic algorithm to gen-
erate parameter sets, which will be combined with the Archetype to be tested.
As players playtest the candidate game, gameplay metrics are collected and will
help evaluate the quality of the generated content. Gameplay metrics are used
because they are objective, direct and can be gathered in large quantities with-
out interrupting gameplay sessions. The collected metrics are then converted
to gameplay indicators and the quality of the content is evaluated based on
the difference between the obtained and the target gameplay indicators. This
process is repeated until the obtained gameplay indicators are near the target
indicators. In order to avoid unnecessary repetition and to speed up the process,
new generations use the previous values as base, giving them a fitness based on
their quality. [Craveirinha et al., 2013]

Another modification done to the usual Procedural Content Generation
methods is that when a feature set is evaluated as with good quality, both
the candidate game and its indicators are returned to the designer for further

CHAPTER 2. STATE OF THE ART 12

Figure 2.2: The ACPCG algorithm proposed in [Craveirinha et al., 2013]

evaluation. The process is interactive and only semi-automatic. If the resulting
candidate game is accepted by the designer, the process is considered concluded;
otherwise a new iteration of the whole process starts, where the system may
continue to improve the generated games, or where the designer re-thinks the
problem and tells the system to optimize a new set of target indicators. This
last step makes it so that the process result is always in accordance with the
designer’s initial idea. [Craveirinha et al., 2013]

2.1.3 Comparison between EDPCG and ACPCG

While there are several Procedural Content Generation methods, not all of them
are intended to be used in the same contexts, nor do all have the same degree
of experimentation. If we are going to choose a Procedural Content Generation
method to use in the project, a comparative analysis is needed. For that reason,
this section makes a comparison between two distinct methods, analyzing both
the usage and usefulness of the EDPCG and the ACPGC. The game used in both
cases the same, the ’Infinite Mario Bros’, and their full analysis can be found in
[C. Pedersen and Yannakakis] and in [Craveirinha et al., 2013] respectively.

For the EDPCG, the most important aspect of the content is the player
experience. The first step in the methodology was to create a representation
for the playing level. This was achieved by using a vector with the amount of
holes, their sizes and their positions. The vector was later used to construct the
actual map simply by creating the map from right to left. To create the player
experience model, a survey was made to players after they played groups of two
levels. This survey asked them to evaluate which map was better to induce the
following affective states: fun, boredom, challenge, frustration, predictability
and anxiety. The game also collected gameplay metrics, like jumping, shooting
and dying, and its data was used to train a neural network to predict the
affective states. Each affective state was linked to a set of metrics, creating a
connection between a certain event and the generated emotion on the player.
By using these experience models, a level can be optimized to elicit the required
emotions on any player.

CHAPTER 2. STATE OF THE ART 13

EDPCG ACPCG

Methodology Focus Player Experience Designer’s Intent
+

Player Experience

Experience Model Static Personalizable

End Result
Influenced by

Chosen Model
Player Experience

Target Indicators
Parameter Ranges
Player Experience

Table 2.1: Comparison between EDPCG and ACPCG

On the other hand, the ACPCG tries to adapt a game to the concept the
designer wants for it. On the ’Infinite Mario Bros’ case, the designer must first
decide what are the gameplay indicators he wants for the game and create a
connection between them and the collected metrics. For instance, the number of
tries on each level relates directly to that level difficulty and challenge, while the
time elapsed in a level determines the play-speed of the run. For this example,
the following parameters were varied: the game speed, the number of cannons,
koopas and goombas, the number of holes and the number of item blocks and
coins. For each indicator, a mean value and a range must be defined, in order
to define a suitable variation of these values. Using these ranges and the fitness
value of the current generation, the genetic algorithm creates the parameter
values for the next one. This way, the methodology can elicit player experience
while maintaining the designer’s target gameplay experience.

As seen from the examples, the methodologies have different objectives. The
EDPCG is mainly concerned about giving the player a level fit for his gameplay
style. If a player has fun collecting coins but does not enjoy hard challenges,
a level that promotes coin collection over jumping holes is created. But if a
player enjoys the challenge of traversing a difficult map, the generated level will
be filled with large and challenging gaps. The ACPCG tries to deliver a good
player experience but restricted by the designer’s intent. If the designer wants
to create a game based on the concept of a challenging speed run, the generated
parameters will try to fit the player experience in that concept. Concerning the
used models, the EDPCG uses preprocessed models while ACPCG models can
be personalized. This means that the result of the EDPCG model can only be
influenced by the type of model used and by the player interaction. ACPCG
models, however, can be adapted and modified, since each parameter’s variation
is defined by a function controlled by the designer.

CHAPTER 2. STATE OF THE ART 14

2.2 New Proof of Concept

Regarding the ACPCG, a proof of concept has already been developed in [Craveir-
inha et al., 2013] to sustain the proposed model. This first proof was done using
a platform type game, in particular, a version of the ‘Infinite Mario Bros’, where
a total of eight parameters varied: the game speed, the number of cannons, the
number of Goombas, the number of Koopas, the number of holes, the number
of item blocks, the number of coins and the number of hills. Having obtained
positive results in the former case, this project will now test the methodology in
a different genre –a strategy game–, as this another step in the giving credence
to the approach utility for a wider range of design problems.

Strategy games are well known and popular games, their gameplay have
many variations and usually have a wide range of actions to perform. Since
their game play can vary so much, their content must be well balanced, support
various play styles and still instill the required emotions on the player. This is
why a strategy game is a good genre to test the ACPCG, and it is also why this
project uses a strategy game as the prototype for a new proof of concept. The
new proof of concept will also feature a game designer working with the ACPCG,
adapting the prototype in order to achieve his intended gameplay experience.
At a later point, other game designers will be added to the proof of concept,
since a single designer cannot be seen as a valid population of users for this
type of tests. The objective of creating a new proof of concept is to increase
the method’s credit on aiding game designers reach their intended game design
and the differences between the new and the the previous proof of concept are
further detailed in section 3.1.

2.3 The Value and Use of Gameplay Metrics

A game quality depends on the quality of its components. This is why there
has been such an increase in the user’s opinion importance in the last years,
leading to an increase in the quality of the processes behind user testing. In
fact, several techniques to verify the quality of both the components and the
end result have been developed over the years. These techniques vary in data
gathering methods, its analysis and purposes.

Although not considered gameplay metrics, one of the most basic methods is
the use of gameplay questionnaires. After playing the game, players are posed
a survey where they are asked to answer a certain amount of questions regard-
ing their point of view on several game components. Another possibility is the
use of recordings and their analysis but, the data gathered by these methods is
subject to personal views and interpretations. ”However, these approaches are
limited in that information is often hand-coded (surveys, analysis of audio-visual
recording), meaning that getting highly detailed data about user behavior is ei-
ther incredibly time consuming or downright impossible.”[Drachen and Canossa,
2009a]

By gathering metrics, they can be used to analyze and recreate player ex-
perience [Drachen and Canossa, 2009a]. This way, it is possible to understand
aspects such as the game’s difficulty variation. If there is a certain point in the
game where the players need a lot more attempts to succeed than the rest of the
game, then the players might experience frustration when playing it. Gameplay

CHAPTER 2. STATE OF THE ART 15

recreation is a deeper form of analysis, usually used to verify whether the players
actions stray too far from the designer’s intent.

Another way to analyze player behavior using gameplay metrics is to cre-
ate play-personas. As seen in [Tychsen and Canossa, 2008], it is possible to
determine several game play styles by analyzing player behavior. These can
be defined by verifying several metrics: the players usual locations, actions, re-
sponse time and so on. By finding and understanding these play styles, it is
possible to adapt the game, rewarding or punishing players using them. The
authors also pointed that the collected data can be used to improve gameplay
and/or to redirect the design back to the designer’s original intent. As seen
before, a player belonging to a certain persona might find some aspects of the
game lacking or unbalanced, while others might find them fun or exciting since,
as stated in [Tychsen and Canossa, 2008], a persona may comprise different play
styles. The example given for this event is described based on the game ‘Hit-
man: Blood Money’. One of the possible personas developed for this game is
the ’Silent Assassin’ and it is detailed as a player that leaves no trace and rises
no suspicion. Despite the player choosing a close combat or far away sniper like
play style, as long as he maintains these traits, he still fits the ‘Silent Assassin’
persona.

On the other hand, more objective and detailed data about user game-
play can be gathered through the automated collection of gameplay metrics.
As previously described, this data can be used to verify the players behav-
iors and verify whether the gameplay estimations were correct and if not, help
understand what went wrong. ”Where methods such as usability-testing and
playability-testing focus on establishing whether a player can interact with a
game effectively, and if doing so is fun, gameplay metrics-analysis is targeted
at clarifying what the player is actually doing, and sometimes why the behavior
indicated arises.”[Drachen and Canossa, 2009a]. Gameplay metrics alone might
not suffice to understand the why, and sometimes it requires a combination of
other techniques more user-oriented, such as surveys or more specific methods.

Another form of metrics researched and developed is the use of physiolog-
ical measures, or biometrics [Mirza-Babaei et al., 2013]. This approach uses
indicators such as skin-conductance level, facial electromyografy, heart rate and
electroencephalografy to verify the user’s state while playing the game. Al-
though it tends to have good results, the measurements have to be supervised
and registered because they might be caused by a stimulus other than the game
itself, sometimes even something that cannot be tracked. One of the biggest
downsizes of this method is that it requires complex machinery and people that
understand how to operate such machinery. The methodology itself is hard to
use as it requires the analysis of very specific data types. One of the conclusions
of the study, however, supports that games that use some sort of user testing
in their development tend to yield better results, both in content quality and in
gameplay experience.

Chapter 3

Methodological Approach

The described project is composed of two intertwined goals. On one hand
there is a research agenda we are pursuing, and on the other hand, there is a
development schedule that had to be fulfilled in order to advance said research.
Therefore, these two steps need to be addressed in a particular order and each
has its distinct way of evaluation.

3.1 Objectives

The main goal of this project is to help answer the research questions of if and
how ACPCG can aid game designers in their creative design process. To do
so, one must study the active use of this method by game designers, which in
turn requires a working prototype of an ACPCG application, complete with
an interface developed for said designers, and a working videogame prototype
connected to the ACPCG application.

To research the ACPCG method in a creative context, an actual use case
with a game designer was needed, and that required a prototype connected to
the platform. Thus, in the early phases of development, instrumentation of an
open-source game was carried out. This required connecting the game to the
existing ACPCG server, so that it could provide the supplied game parameters
to evolve each new game-prototype and also collect gameplay metrics referent
to play sessions. Because this had already been done for the ‘Infinite Super
Mario Bros’ (see chapter 2.2), a new game in a new genre was chosen for this
new test, so as to provide diversity to the cases tested.

In a second phase, the ACPCG interface was developed. This phase was
crucial because users currently had no way to easily configure the ACPCG,
as it required editing complex configuration files. The interface was developed
using already existing paper prototype mockups (described in chapter 4.1.1)
as models. The objective of this phase was to grant target users an easy way
to manage the ACPCG’s definitions for their games. This required a good
understanding of the existing code, as well as a good comprehension of the
current database schema. Also, because the platform uses the Play framework,
with which we had no experience, a required investment in learning how to use
the technology was needed.

Once the user-interface and prototype were developed, a usability test was

16

CHAPTER 3. METHODOLOGICAL APPROACH 17

conducted to discover flaws in the designed interfaces. The usability tests were
planned so as to validate the interface’s adequateness to the task it was meant
to fulfill, and to map out a plan for future revisions and additions needed to
improve the application. Usability tests were video recorded, and data from
videos was analyzed to find issues with the interface; these were complemented
with System Usability Scale [Brooke, 1996] questionnaires, as well as with task
and concept-based inquiries on complexity of the interface and its workings.

Finally, the actual research agenda was carried out by experimenting with a
game designer. He was given the task of taking the game prototype and ACPCG
application and using them to create a novel design. To acquire data during the
procedure, the ACPCG interface was instrumented with UI metrics and several
questionnaires were posed to the designer. Data was analyzed to help test three
hypotheses held in this case-study:

• Designers can define game design problems using the ACPCG application
and its underlying ontology.

• Games resulting from a design process supported by the ACPCG applica-
tion are adequate solutions that fulfill game designers’ agenda.

• Using the ACPCG application aids designers in finding new design prob-
lems and solutions.

3.2 Process

For production of the ACPCG prototype and its interfacing with an existing
game, an agile development methodology was adopted. The reason for an agile
method is that this project is strongly connected to an ongoing development
process and, as such, it was very likely for changes in requirements to repeat-
edly appear. The method was both iterative and incremental where, for each
component, there would be an initial planning about how its elements should
be developed. Afterwards, the development of said elements would start and,
once finished, evaluated. The evaluation was based on whether the elements had
the expected behaviors and, if they did, they would be considered as finished,
otherwise they would be fixed. Given the fact that we used the Play framework,
the deployment phase is integrated with the development, because every time a
file is changed, the framework deploys a new version of the project.

Every time we finished a new component, we asked our “client” to check its
functionalities and to report us any wanted changes on them. Our client is the
PhD student currently working on and researching the ACPCG methodology.
Contact with the “client” was frequent, allowing for design and implementation
to be discussed and adjusted dynamically, almost on a real time basis, instead
of over long periods of time. This fact is strongly related to our workspace being
the same as our “client’s”.

Besides the informal requests from us to clarify architecture related doubts,
we had contact with the client in a weekly basis, in the form planned meetings.
The meetings duration ranged from 20 to 30 minutes and consisted on progress
updates from us and requirements changes from him. We would often use these
meetings to clarify how some elements on the prototypes should behave, or how

CHAPTER 3. METHODOLOGICAL APPROACH 18

they should interact with the ACPCG platform, as he was the one behind its
development.

Being in the lead of the ACPCG development, our “client” was the one to
supply us with documentation regarding the connection requests for the proto-
type adaptation, as well as the metrics desired format and the database structure
in the web server.

Due to the fact that practically every element in the interfaces was required
for it to be functional (except the data filtering in the results screen), we focused
on making everything work, before making any special adjustments. The order
by which we developed the various interface parts was the same order that the
game designers take in their process of creation: design problems, test setup
and results. This order made clear what users would be expecting when moving
from one interface to the other.

3.3 Scheduling

In this section, we will draw a comparison between the estimated schedule at
the end of the first semester and the actual schedule taken to realize all of the
activities planned for the second semester. Figure 3.1 represents the Gantt chart
created and delivered in the last report, having the estimated times taken for
each of the new semester’s required activities. When comparing them to the
actual time taken and order of activities (in figure 3.2), we can conclude that
the estimations were greatly off target.

Figure 3.1: Task time estimation realized in the first semester

We were optimistic about all of the required tasks, mostly because of the lack
of experience with the used tools, but also because of the work inexperience in a
project of this kind, one that requires integration, constant testing and analysis,
specially with a development team so small.

Not only did the estimations failed in terms of time, they also failed in
terms of task ordering, as the original estimation had a sequence of tasks and
the actual order has several parallel tasks being taken care at the same time.

CHAPTER 3. METHODOLOGICAL APPROACH 19

Figure 3.2: Actual time taken for the second semester activities

In the end, due to the delay from the first semester and the failed estimations,
not all tasks were finished until this delivery but they will be finished after it.

3.4 Deliverables

At the end of the dissertation, the following elements should be made available:

• The working prototype game developed, compiled and ready to play with
all required functionalities.

• The source code for the adapted prototype game

• The web platform ready to be accessed and utilized by the game designers

• The documentation regarding the web platform development activities
and choices taken

• The data gathered from the usability tests, its analysis, the list of issues
found and proposed corrections.

• The data collected from the design case test and its analysis.

3.5 Plan and Actual

The plan for the project was to instrument the prototype game and, as soon as
it was over, start implementing the paper prototypes for the interfaces. Once
the development phase was over, the designer’s interface usability tests would
be conducted through which its prominent issues would be found. After fixing
the most urgent problems, the design case test would begin. In the test, a
game designer would use the developed interface to adapt our archetype game
to his novel game design, at which point the archetype game would be played
by a group of players. After the players were done, the game designer would

CHAPTER 3. METHODOLOGICAL APPROACH 20

evaluate the processed experience indicators, verifying whether the game was
being played as he expected. Depending on this evaluation, the process of
redefining the the experiment parameters, playing the game and its reevaluation
would all have to be repeated as a new iteration. In the end, conclusions would
be drawn from this test, confirming or not the utility of the developed tools for
this case.

In reality, the instrumentation of the prototype took longer than anticipated,
leaving less time for the remaining tasks. After the instrumentation, and before
starting to implement the interfaces, the available paper prototypes had to be
converted into web mockups, as the behaviors in the paper prototype and in
the web are identical but not quite the same. The usability tests took place as
expected, and its conclusions drawn, but there was no time to fix any urgent
issues before beginning the design case test. Instead, the most problematic
issues were solved during the design case phase, in the periods of time when
the designer was not using the interface. Due to all delays in the development
phases, the design case test could not be finished in time for this report, so no
conclusions can be reached at this point, other than the designer chose a very
uncommon game design.

Chapter 4

Design

In this chapter we describe the design of the ACPCG interface. Although the
design process that resulted in the ACPCG interface is not an integral part
of this dissertation, an understanding of how it came to be is still important,
given that it influenced design and development decisions that were taken during
this project (for example, the new terminology). Hence, it will be described in
this chapter, as a synthesis of a paper that is pending publishing, written by
Craveirinha and Roque [Craveirinha and Roque].

4.1 Design Process

The ACPCG interfaces were created via a set of two Participatory Design(PD)
sessions. PD is an approach where the target users take a leading role in the
design process; given that the game creators are the interface’s target audi-
ence/users and that they know their requirements and preferences, it made
sense that the design process involved them. This made it possible not only to
design an interface from the perspective of the target users, but also to provide
insight on how they would interact with the new PCG approach and ideas.

By engaging the game designers in the creation of the prototypes, they
were able to interact with and discuss them, leading to improvement in a much
faster fashion than user testing. Another advantage of using this approach
was that user intentions and expectations became clearer as they advanced in
the development, even more while analyzing audio recordings taken from the
development sessions.

4.1.1 Results

Besides the resulting interfaces, the two PD sessions resulted in a series of
observations that were then used to incorporate new user requirements into
the ACPCG application and interface. After careful analysis of the collected
contents, the Participatory Design process had two major issues that needed to
be addressed.

The first was that game designers actually want to test their game’s varia-
tions with no target values before they decide what these are going to be. This
can be seen as an ‘exploration’ of the game before the ‘optimization’ of its pa-

21

CHAPTER 4. DESIGN 22

rameters, leading to an unforeseen use case: the generation of game variants
that had no target indicators. More than an option, this comes as a need, since
participants had difficulties defining the design problems and solutions needed.
A possible solution to this situation can be the use of a first exploration and
result visualization before designers commit to a design agenda. This way, the
designers can better understand the possible design paths available and how
well defined they need to be.

The second was the fact that the overall concept behind PCG and its utility
remained hard to understand to new designers. There are several aspects in
which the current ACPCG is lacking; being the most troublesome its termi-
nology. In an approach where there are so many terms, and where some are
mere small variations, it became hard to find suitable and intuitive names for
everything. When added to the already complex way of the application’s work-
ing, this became a serious limitation to new users. Based on this information,
several revisions to the UI’s metaphor were then made.

Instead of merely having to define each of the PCG approach’s varibales, a
Test metaphor was inserted into the logic of the application. The metaphor is
simple: each generated game candidate is evaluated according to tests. Each
test is comprised of an “if-then-else” logic. If a given candidate has an experience
metric inside a test’s boundaries, then the candidate passes the test and gets
a score, if not, it gets either zero score or a penalty. For example: if game
candidate has the number of level tries between zero and three it gets 100 points,
else, it gets 0. Score attribution, besides making it clearer how the system judges
games candidates quality, allows designers to give different weights to different
target metrics. The test logic, hopefully, would help users understand the PCG
approach, as it mirrors how games work.

4.1.2 New Terminology

In complex applications, terminology must be as direct and clear as possible,
especially if the amount of used terms is high. Results from the PD sessions
indicated that this was a major hurdle for the potential users of this application,
made worse due to the complexity of the algorithm and how intertwined some
concepts are. Thinking of this, we met with the client for a brainstorm session
with the objective of replacing some parts of the original terminology with new
terms. In the end, we achieved a list of more intuitive expressions, described in
table 4.1, that would be easier for users to understand. The adequacy of the
new terms was then tested in the Usability test, with specific questions directed
at validating this new terminology.

4.1.3 Interfaces

As another result of the PD, the final paper prototypes are listed here; these
include revisions done by the client before we developed them. These paper
prototypes are the base for the ACPCG platform interface and are part of the
development phase of this dissertation. They will be the connection between the
users and the actual ACPCG algorithm, so they were made as a clean and easy
to use as possible. In this section we describe the most important prototypes,
the rest being available in Appendix A.

CHAPTER 4. DESIGN 23

Old Term New Term Description
Project Experiment The set of all definitions done with the intent of

achieving a game design
Feature Game Variable One of the game’s registered parameters
Game Quality Game Variation The parameter set by which a game variable varies

in the experiment
Candidate Game Permutation A set of Game Variations values to be used by the

Archetype game
Best Candidate Best Permutation The Game Permutation with the best overall score

for the experiment
Domain Test Range Values between which a design goal can be com-

prised without being penalized
Score Test score The score given for a design goal when its indica-

tor is processed
Minimum Evaluations Minimum Play Sessions The minimum number of times the prototype

game has to be played for an evaluation to be
drawn

Optimization Testing Represents if the design goal is being used for scor-
ing candidates

Active Vary Represents if the game variation is set to vary in
the experiment’s candidates

Table 4.1: List of terms changed with the new terminology

The design problems interface (Figure 4.1) allows an overview over the arti-
fact qualities and design goals of a project. This interface also allows the user
to navigate to the design goals (Figure 4.2) and the artifact qualities (Figure
4.3) interfaces.

Accessing the design goals interface (Figure 4.2) allows further detailing of
a single design goal (translatable into target indicator), either on creation or
while editing it. As such, the user is able to change its configuration, from the
scoring function, used for the goal’s test condition, to its domain and formula.
This formula is the way that the ACPCG has to process experience indicators,
assigning a score to a candidate’s design goal depending on the formula’s final
value and the scoring function.

CHAPTER 4. DESIGN 24

Figure 4.1: Prototype for the interface to manage design problems

CHAPTER 4. DESIGN 25

F
ig

u
re

4.
2:

P
ro

to
ty

p
e

fo
r

th
e

in
te

rf
a
ce

to
m

a
n

a
g
e

d
es

ig
n

g
o
a
ls

CHAPTER 4. DESIGN 26

The artifact qualities interface (Figure 4.3) is similar to the design goals
interface but is used to manipulate artifact qualities, or game parameters varia-
tions. Again, the user can define the various parameters, their value ranges and
the probability function used to generate them.

Figure 4.3: Prototype for Artifact Qualities management

The results interface (Figure 4.4) is where the user can analyze and filter the
results referent to the gameplay data collected. There are several layouts that
can be used, such as having one, two or four analysis tools and using various
charts or tables to display the information. The data present in the interface
should be dynamic, meaning that it can be filtered by either using the filter
data tool on the left or by changing the attributes of the charts if they allow it.

During development, it was verified that the prototypes for one of the ele-
ments was missing: the formula management interface. Since this element is of
high importance, we had to design it and implement it. Given that it is one of
the most complex components of the whole platform, its interface should be as
simple as possible while still giving the user as much options and power over
them as they need. Notice that, although the used guidelines were very similar,
this prototype was developed completely apart from the PD stated above and
is not one of its results. Instead it falls under work and responsibility of this
dissertation.

CHAPTER 4. DESIGN 27

Figure 4.4: Prototype for result analysis visualization

The formula management interface features a list of already existing formulas
and the possibilities to: a) choose an existing formula to add; b) create a new
formula; c) delete a formula from the list. When creating a formula, a new
interface module is opened where the user can input the desired formula name,
the function to use, the variable which the formula will target and any number
of conditions to be met by it. As stated before, the interface layout and elements
were chosen based on the already developed interfaces.

Figure 4.5: Prototype for the formulas management interface

Chapter 5

Architecture

This project is part of an already existing and functional system, meaning that
it compromises both the development of some components and the integration
of others. This chapter describes the initially existing architecture and the final
achieved architecture while providing essential information about each of its
modules and components. Notice that some modules might not be described in
detail since they were already existing black boxes. However, all of their used
functionalities will be listed and explained.

5.1 Overview

As seen in Figure 5.1, the project is divided in three major components. The
candidate game, in this case the instrumented DuneLegacy, the web server and
ACPCG platform to generate feature sets and to manage the collected informa-
tion and the developed web interface to access and use the ACPCG platform.

The web server is located at the center of the Architecture. It supplies
the ACPCG with parameter data, used to generate feature sets, and collected
metrics, needed to process gameplay indicators. The readied feature sets are
passed to the game and, after being played, it returns the gathered metrics to
the server. After being processed, these metrics are transformed into gameplay
indicators and serve as the feature set quality measurement. Through the web
interface, the designers can manage the ACPCG’s definitions and visualize the
current available results. This way, the designer can control the process man-
agement so it can be done in real time instead of having to wait for the process
to end, enabling a more efficiency and smother optimization.

5.2 Web Server for Requests

The server uses the Play Framework, mainly using Java as programming lan-
guage and Scala for web development. There is also a mySql database used to
store all the ACPCG related information.

Due to the size of the application, the server architecture follows a Model
View Controller pattern where the controllers manage the information in the
models and pass it to the views for visualization. In the current architecture,

28

CHAPTER 5. ARCHITECTURE 29

Figure 5.1: Architecture overview

Models are the database entities, Controllers are the actual Play controllers and
Views are the web pages built using HTML and Scala.

The Web Server communicates with the ACPCG platform that, as seen in
figure 5.1, is a black box in the architecture. Its functions are to process experi-
ence indicators based on the collected metrics, and to use a Genetic Algorithm
to generate new candidates for the prototypes. The indicated HTTP interface
is the developed user interface that designers use to interact with the method-
ology, defining their experiment’s parameters and viewing the results obtained.
On the other side, there is the candidate game, which is our prototype game
after been given a set of generated features. The main communications with
the server are requests for feature sets and the return of gameplay metrics.

5.2.1 Web Server’s Data Model

The web server’s database is structured as shown in Figure 5.3. For a clearer
and broader view of the Entity-Relationship diagram, its full version is available
in Appendix C. All data exchange between the interfaces and the Data Model
are illustrated in figure 5.2.

The central entity in the diagram is the Project. It uses a single game as its
prototype but there can be several projects using the same game simultaneously.
This enables the possibility of creating different projects with different goals
and parameter variations for the same game. To each project is associated an
experiment, each having any amount of Design Goals and Game Qualities.

An experiment is also composed of an end condition and a GA (genetic al-
gorithm). The end condition contains the kind of end condition (max number
of evaluations, target score or manual), along with the corresponding target val-
ues. The GA represents the used genetic algorithm and contains its definitions,

CHAPTER 5. ARCHITECTURE 30

Figure 5.2: The main data exchanges between the interfaces and the data models

such as the crossover and mutation types and selection method.
The Game Quality entity represents the variation details of each feature,

which represents a game parameter that can be modified. The variation is
regulated by a domain, a step value, a probability function and, depending on
the chosen function, a mean value and a standard deviation.

Design goals are the objectives that the designer seeks to achieve, defined in
the form a formula and bound to a domain. The formula representation in the
database was designed in a joint effort between us and the client, in order to
find a dynamic and efficient method that could be used for as many situations
as possible. The result was the Formula Block entity, which works as a formula
tree, having a first and a second Formula Block, along with an operator, a
function and a value. While a formula block that has a value field represents a
number, one that has a function represents a user created function, for example,
a function for counting the appearances of an event. The various blocks are then
united blocks that have a left and right block, along with the operation (sum,
difference, multiplication or division) to be applied to them, and so the formula
tree is connected. For instance, using the formula 2 + $selects will result in the
following 3 formula blocks:

1. one with null in the first and second blocks, null operator, null function
and value 2

CHAPTER 5. ARCHITECTURE 31

2. one with null in the first and second blocks, null operator, null value and
the function relative to $selected (count in this case)

3. one with number 1 in the first and with 2 in the second blocks, sum as
the operator, null function and null value.

Figure 5.3: Compacted version of ER diagram for the Database. The complete
version can be found in Appendix C

In order to transform a formula in the form of a string into an actual for-

CHAPTER 5. ARCHITECTURE 32

mula tree, we needed to parse it and create the corresponding Formula Blocks.
When parsing and creating its formula tree, we were faced with the problem of
building the tree in accordance with operation priorities. Given that operation
priorities and ambiguity are an Infix notation problem, we used the Shunting
Yard algorithm1 to change the formula to an unambiguous Reverse Polish No-
tation. Not only does this transformation remove any operation priority issues,
it also allows a more simple and linear construction of the tree.

When a feature set is generated, it is stored in the Candidate entity and the
Feature Set entity stores the current iteration of each candidate.

The Play Session entity contains the existing play sessions and their infor-
mation. A Play Session is compromised of various Sessions and are associated
to a player in the Player entity, which contains the registered player’s infor-
mations. The Session has its basic informations (start time, end time, ...) as
well as the id of the candidate used in said session. While the Play Session is
comprised of the full play time, the Session is a block of that played time. For
instance, playing a campaign can be seen as a Play Session and each mission
of that campaign is a different Session. Each Session also has its corresponding
Logs (metrics) that will later be compiled into the used candidate’s Indicator
Measurements. Indicator Measurements are the scores given to Design Goals
for each session and are also compiled into the averages for each candidate and
stored in the Candidate Indicators entity.

Each entry in the Game entity corresponds to an archetype game. A game
has a set number of registered game objects, events and features. The game
objects and events exist for the purpose of registering metrics (On the log en-
tity). Game Objects represent the in-game objects such as a unit type and
are used in the Logs subject and predicate fields. Events represent something
that happens in the game, such as the player taking an action or a unit being
destroyed/defeated.

5.2.2 User Interface for the Designer

The user interfaces were developed according to the previously mentioned MVC
architectural pattern.

The interfaces data flow is done in a simple way. After the user uses an
address, the Play routing system verifies which controller is supposed to call
and what function of that controller is to be executed. The interface related
addresses are all directed to the Project Controller and, based on this address,
it returns the corresponding page rendering back to the user, as seen in figure
5.4. When creating the interfaces, the need for data structures that could store
information and be transfered to the views arose. The solution was the use
of Data Transfer Objects (DTOs), classes made specially to hold the desired
information and that can be manipulated at will.

Since there were no security requirements, there was not much concern about
protecting the system against most kind of attacks. The only protections imple-
mented were the use of an authenticator and query builders. All function calls
on all controllers are protected by the Authenticator controller, which verifies
if the session has a user logged in and, if not, returns to the login page. The
query builder provides an easy way to create queries to the database and, at

1https://en.wikipedia.org/wiki/Shunting-yard algorithm

CHAPTER 5. ARCHITECTURE 33

Figure 5.4: Centralization of Project Controller for DTOs creation and Views
rendering

the same time, is a way to prevent some forms of SQL injection.
Figure 5.5 displays the MVC elements referent to the interfaces. Since the

login interface operations are simple, that view was not included in the diagram.
Besides the login, all other 5 interfaces are present, along with their DTO’s, their
respective controllers and the accessed models.

The New Project view corresponds to the interface for the creation of a
new project (figure A.2) and is managed by the new Project Controller. When
creating the page, the list of designers is presented to chose which will have
access to the new project, this way requiring the DTO with the list of available
Designers. Given that the project needs to use one of the registered prototypes,
the DTO with the list of currently available prototypes is also sent. When the
user creates a new project, the request is sent to the Project Controller, that
will then proceed to add the new project to the Project entity and will also
create its entry on the Experiment entity.

The New User view uses the New User controller to add new designers into

CHAPTER 5. ARCHITECTURE 34

Figure 5.5: The MVC for interface related elements

the system. When creating the user, the option of adding permissions to new
projects is present and their information is passed through the project DTO.

The Design Problem view is composed by two different parts of the project:
the design goals and the game qualities (previously called artifact qualities).
For this reason, instead of using a single controller, its functionalities were split
across two different controllers. The Design Goals and Game Qualities DTOs
are used to store the information that will fill the tables seen in figure 4.1.

The Artifact Qualities Controller is the responsible for the possible opera-
tions in the interface corresponding to figure 4.3, such as adding and editing
artifact qualities and making them vary or not. Any of these actions need to
take place as soon as the user requests them, so they are all done using AJAX
to trade JSON messages. Similarly, when choosing the wanted feature, a Json
message is sent to the server and its response contains all the possible features
for the project along with their categories. This way, any modification done to
them while using the interface will be dynamically updated instead of waiting
for the user to refresh the page.

The Design Goals controller offers all the functionalities related with the
design goals management as well as formulas management. Just as with the
artifact qualities, the design goals management actions are done using JSON
messages through AJAX. Although the management of the Design Goals ba-

CHAPTER 5. ARCHITECTURE 35

sic parameters is simple and straightforward, the formulas are a bit harder to
manage. When a formula is created, the controller simply creates a Formula
Block tree with the corresponding expression. The edition of a formula is not as
linear as the addition, because the formula can be altered by adding or removing
blocks or by completely rewriting it. Since the formula can be edited in so many
ways, the controller clears the tree as much as possible by deleting all Formula
Blocks in it except for the custom formulas created by designers. A new tree
is then built, just as if it was the first time adding it to the design goal. This
simplifies the process and clears unwanted unused Formula Block nodes from
the database.

The Test Setup DTO contains the information needed to display the Test
Setup view. It contains all the information about the test (number of play ses-
sions, state, ...) as well as the definitions of the currently used genetic algorithm
(selection type, crossover type and mutation, ...) and its end condition (type
of end, ...). The Test Setup also uses the information from Design Goals and
Game Qualities as they are displayed for the user to use as reference. When
saving the changes made or when changing the state of the experimentation
(start, pause, stop and restart), a JSON message is sent in a AJAX request.
Just like in previous cases, this is done to enable real time requesting to the
server, without the need to refresh or change pages.

The Results view is a mere display of gathered information from the database.
it initially uses no data from the server so it does not need any kind of DTO.
When a chart or table is requested, a JSON request is sent via AJAX to the
Results controller, which will collect and compile the asked data. Once this
is done, the controller sends back the information for visualization. The used
visualization methods are fully described in section 6.2.2.

5.3 Instrumenting Dune Legacy for Data Col-
lection

Since Dune Legacy’s purpose was redefined as an archetype goal with the goal
of gathering data, its structure had to be slightly changed. Given that a full
developed game was used, the architectural changes are few, but some affect
the game at multiple different points. The only quality requirement for the
archetype game was that the process of fetching the feature sets, applying them
and that the collection of metrics and their submission were transparent to the
user.

The connection to the server was achieved using sockets to send and receive
HTTP requests and responses. As C++ does not have a built-in support to
manage HTTP requests, all the messages sent to the server were created by us.
The standard used was HTTP 1.1, so we had to manage all the required headers,
such as the message length and the message type. The creation of all messages
was managed by a class created solely for that purpose, the ConnectionManager.

The metrics collection was done creating a class that would manage their
creation and their writing to the metrics file. By doing so, whenever a metric
had to be collected, we would just call said class and pass the arguments to its
respective method. This was the simplest and cleanest way found because the
metrics collections are done in tens of places scattered across the game’s source

CHAPTER 5. ARCHITECTURE 36

code.

Figure 5.6: sequence diagram for the event, game objects and features register
in the ACPCG platform

To use the archetype game with the ACPCG, we needed to register all of
the game variables to be generated, along with all events and game objects that
were going to be present in the metrics files, into the web server’s data model.
In this project, we decided to have the prototype registering all of the required
information, because the game needed a relation between its objects and their
Ids in the database. Figure 5.6 show the sequence of steps done by the game in
order to register all needed components. The game starts by register all events
and saving the id of the first registered event. This first Id will later be used
as an offset between the Ids used by the game and the Ids in the database.
For example, a game uses 3 events (a, b and c) and their Ids in the game are
0, 1 and 2. If, when registering them in the database, we get Ids 3, 4 and 5,
the offset between them will be 3, meaning that any metrics sent must have
the game’s event id +3. The reason behind saving only the first Id is that, at
the moment, there is no concurrency in the system, therefore the registered ids
are in sequential order. The game objects registration happens exactly like the
described event registration. When registering features, there is no need to save
their ids because they are always passed to the game as an ordered list.

The actual expected sequence for the game is illustrated in figure 5.7. When
starting the game, the player inserts a username and it is registered in the web
server’s models, returning the id of the new or existing user for that username.
At this point, the player’s play session is registered, bound to the player by his

CHAPTER 5. ARCHITECTURE 37

id. A play session will be composed of one or more sessions, each corresponding
to a mission in our archetype game. The game then fetches a Feature set from
the web server and registers a session associated to it. While the player plays
the game, the game is collecting gameplay metrics and, when the mission is
over, the game registers the session’s end followed by the metrics file’s upload.
The cycle of fetching feature sets, registering the session’s start and end and
uploading the metrics file continues until the user leaves the game, at which
point, the game registers the play session end.

CHAPTER 5. ARCHITECTURE 38

Figure 5.7: sequence diagram for 2 maps played by player

Chapter 6

Development Activities

This chapter describes the development activities done regarding both the Archetype
Game and the Web Interface. It contains the used approaches, as well as the
used tools to achieve the architecture proposed in chapter 5.

The first phase was the selection of the game to transform into an archetype
game, followed by the actual development activities. The development activities
were done in the following order:

• Selection and Instrumentation of the Game Archetype:

– Game Archetype Selection

– Metrics Collection

– Feature Set Usage

– Connection to Server

• Development of the Crowdplay Platform Interface for Designers

– Login and Register

– Paging System

– New Project

– Design Problem

– Test Setup

– Results

The listed interface development activities refer to the creation of all ele-
ments necessary for them to work, including the respective Scala/HTML pages,
Javascript files and controllers.

Considering that an agile methodology is being used, the fix for any problem
found with already developed elements can be scheduled between the current
and the next activity or even, depending on the effort needed to fix it, during
the current one.

The next sections describe the process behind the development activities as
well as the archetype game selection.

39

CHAPTER 6. DEVELOPMENT ACTIVITIES 40

6.1 Selection and Instrumentation of the Game
Archetype

In order to test the platform and the investigation hypothesis, an archetype
game was needed. Although these tests could have been performed with the
already developed Infinite Mario Bros archetype game, as a way to increase the
range of tests done to the ACPCG, a different game was chosen. Being that
the last archetype game belonged to the Platform genre, and that the tests
reflect a positive result, the new game should belong to a completely different
genre, such as the Strategy genre. The reason behind the Strategy genre is
tied to the amount of available data that can be collected about the player’s
gameplay. Not only that but strategy games are one of the types of games
with the most complex mechanics, putting together resource and population
management at the very least. If the set system can balance a game with so
many different elements, it is likely to be able to produce good results in other
games as well. Since the new game would have to suffer changes to its structure,
the list of possible games had to only include open-source games, leaving us with
the following list.

6.1.1 Candidate Game List

Micropolis1 is one of the oldest city building games and was based on the original
SimCity code. In this game, the player takes the role of Mayor and City Planner
in order to build and maintain a city, which is populated by Sims (short for
simulated citizens). These Sims work as the player’s population so it is the
player’s job to take care of them and make them prosper. If the player is unable
to do so, the citizens will become unhappy, leaving the city and reducing the
amount of taxes that can be collected. Lower taxes means less money, leading
to less options for the player. Besides having to provide the population with the
needed buildings and services (such as fire departments, power stations, ...), the
player also has to deal with several incidents such as explosions or malfunctions.

Dune Legacy2 is a game based in the Real Time Strategy game, Dune II.
Dune II was one of the first Real Time Strategy games to be launched, and the
first to use the mouse as a mean to control the player’s units. This established
a new way to play strategy games, leading the way to the development of new
games such as Command & Conquer. The game is set in planet Arrakis, also
known as Dune for being a planet covered mostly by deserts. Planet Arrakis
is the only source of the most important resource of the universe, the melange
spice. Arrakis is being contested by 3 houses that are competing for its control:
Ordos, Harkonnen and Atreides. The player is set as a commander of one of
the houses and is given several missions to expand the house’s influence on
the planet. The missions objectives vary along the lines of defeating all other
present houses or collecting a given amount of spice.

BosWars3 is a futuristic game in which the sole propose is to beat every
enemy unit on the map. In order to accomplish this, the game is based in
a strong economy and resource management. The players have two different

1http://www.micropolisweb.com/
2http://dunelegacy.sourceforge.net/website/
3http://www.boswars.org/

CHAPTER 6. DEVELOPMENT ACTIVITIES 41

Figure 6.1: Micropolis game screenshot

Figure 6.2: Dune Legacy game screenshot

resources at their disposal: Energy and magma. While energy can be produced
by power plants, magma needs to be pumped from hot spots spread across the
map, meaning that controlling a larger portion of the map will grant the player
a better economy to play with.

Although not a Real Time Strategy game, the opensource version of Sid
Meier’s Civilization franchise, Freeciv4, was also thought of as a candidate and
added to the list. As a Turn Based Strategy Game, the players take turns giving
orders and assigning actions to their units. Most of the desired components are

4https://play.freeciv.org/

CHAPTER 6. DEVELOPMENT ACTIVITIES 42

Figure 6.3: BosWars game screenshot

still present in the game: resource management, player economy, military power
and strategy. FreeCiv is, probably, the most complex game in the list, featuring
many different perspectives in a nation management. While other games focus
mainly in warfare(BosWars) or resource management(Micropolis), Freeciv has a
good balance in all elements, leaving the players with several different ways to be
successful and much more diverse strategies. The player is set as the leader of a
chosen civilization in the beginning of history and is given a few units, including
a settler used to create a city. During the game, the player will be confronted
with other civilizations who can be interacted with. The objective of the player
is to manage the scientific, military and economic growth of the nation while
keeping the citizens happy and managing the diplomacy with other civilization
leaders. The ending conditions contain victory by conquest, in which the last
standing civilization is the winner; by being the first nation to send a spacecraft
to Alpha Centurion, once the civilization technology level allows it; or by being
the civilization with highest score at the end of 5000 turns.

6.1.2 Choosing Criteria

In order to choose a Strategy game for this work, there were some development
related criteria the games should fulfill.

The code structure and clarity was an important aspect since the available
time for learning it was short, resulting in games with a very complex structure
being left out. A second aspect was how much of the code could be changed,
or rather, what kind of changes could be made? Is it possible to make big

CHAPTER 6. DEVELOPMENT ACTIVITIES 43

Figure 6.4: FreeCiv game screenshot

game changing modifications or simply slight changes to behaviors? A concern
associated with these two criteria was the game’s development language, since
it can both limit the possible modifications and affect the comprehension of
the existing code. The chosen game should also be checked for stability issues
that could compromise the data gathering and, consequently, the results of the
experimentation. On the other hand, the chosen game should have a good
parameter variety and the possibility to gather as much information as possible
in the form of metrics. Given these restriction, a number of candidate games
were promptly readied and analyzed.

Candidate Game Criteria Evaluation

In order to choose which game to use, a table was created and filled with the
characteristics mentioned before: code clarity, modifiable code, stability, possi-
ble features and extractable metrics. Although some of the table’s fields were
not completely filled (metrics and features), it shows the main notions for each
game, which is enough to make a supported choice on which game to use. Since
the game is part of the strategy genre, metrics such as unit movement and build-
ing creation are common to all the games. Following is a description of that
table, which can be found in Appendix B.

Freeciv’s code was clear and easy to read, having intuitive variables and
built-in functions to manipulate the game’s lists (units list, cities list, players
list, ...), but the main issue was finding the locations of such elements in the
game’s files, making it a time-consuming task. Considering the HTML5 version
of the game, it uses the same engine as the regular version, leaving the same
structural problems. This game uses ruleset files, similar to .ini configuration
files, to load game parameters, making it easy to use the needed feature sets.

CHAPTER 6. DEVELOPMENT ACTIVITIES 44

The rulesets are separated through several different files, having files specifically
for units, terrain, technologies, government and so on. Documentation for the
game comes in the form the Freeciv Wiki webpage which contains information
about some module locations, coding style and structure. As for stability issues,
the game may crash while creating a new play session and there are some known
bugs when automating the units behavior, but is otherwise stable. The following
parameters were thought as possible features: unit requirements and prices,
technology requirements, map visibility, city growth rate and unit promotion
probability. Retrieved gameplay metrics can take form in the amount of units,
the amount of resources, the game year (works as turn counter), the amount of
resources spent and the number of promoted units.

Micropolis had its interface coded in TCL which, when added to the non-
existent experience with the language, made it hard to read and comprehend.
Micropolis also had several file types, such as the .cty files, that could not be
directly manipulated outside the game or were not intuitive, making it hard to
verify their manipulation easiness and, on top of the low intuitive code, only
a few possible modifications were seen as easy or fast. Regarding the game’s
stability, no problems were found in the game’s development documentation
that could cause serious consequences. The tax rates, the game speed and the
initial funds were all seen as possible features. Taken gameplay metrics for
Micropolis would be the city population, the citizens happiness, the money in
the treasury and the public opinion, among others.

DuneLegacy’s code was well structured, hierarchically divided into folders
and its variables had intuitive names. Being well structured and divided, it is
easy to find elements that need modifications besides having a good support on
both the game engine and the project deployment. The game is fully developed
in C++ and a CodeBlocks project file was also supplied to ease the compilation
process. The game engine is stable and the most worrying stability problem
is related to very long periods of gameplay, although this problem could not
be replicated while testing the game itself. Possible features are the harvesting
speed, how much slower a full harvester moves, units and buildings attributes
(such as health and damage resistance), game speed and Starport’s prices update
delay. Metrics for DuneLegacy can be the time spent in each map, the amount
of harvested resources and the amount of built/lost units or buildings.

BosWars was very similar to DuneLegacy in terms of code structure and
clarity. It has a clear structure, hierarchic division, seemed easy to parame-
terize and the source code contains documentation to help development. The
game engines are built in C++, but most components are coded in LUA lan-
guage which, even with no experience, is easy to understand. Modifying unit
parameters can be easily done since each unit has its own file where they are
stored, but changing engine related aspects (such as game speed and resources
production) might need more effort to find. All known bugs in the game do not
seem to compromise its stability or performance. Besides modifying the units
parameters, the amount of initial units, the amount of starting resources and
game speed seem good features to influence the gameplay. Extracted metrics
are also similar to DuneLegacy, varying from unit count, resources usage and
game time.

CHAPTER 6. DEVELOPMENT ACTIVITIES 45

Criteria Evaluation Results

Given the above details on each game, Micropolis was the first to be excluded
because it did not seem to have the same content quality as the rest, for its
lack of intuitive code and due to the lack of experience using TCL. Although
Freeciv was a very complete game with varied elements, this also made it a very
complex game and difficult to fully manage in the alloted time. The chosen
game was then either BosWars or DuneLegacy. Since their elements are so
similar it became a matter of preference rather than a technical comparison
and so, DuneLegacy was chosen because it offered different styles, other than
military dominance and because its elements were all developed in the same
language.

Candidate Features

With the Candidate Game chosen, a list of features to be generated by the
ACPCG was readied and analyzed. Since the game is compromised of several
different units and each has various parameters, all of those parameters were
set as an individual features. This means that, for each of the existing 40
units/buildings, a total of 12 parameters can be modified every game. Although
buildings do not usually have parameters such as Weapon Reload Time and
Damage, these were still counted as they are present for all objects in the game
engine, and they might be useful for certain game designs.

Besides the units and the buildings parameters, there were also selected
parameters related with the game engine itself, such as the game speed and the
mission to play. The fact that the mission to be played is a feature means that
the player can no longer choose his preferred house, removing some menus from
the player’s interaction.

Counting 12 parameters for each of the 40 units/buildings, along with the
11 game engine values, each feature set contains a total of 491 parameters.
For reference, the complete list of units and their parameters can be found in
Appendix D.

Candidate Metrics

The metrics taken from the game are mostly from interactions from the player
with the game. The collected metrics follow the ACPCG’s pattern for knowing
where, when, who, what and to whom the actions were taken. For this, each
metric contains the x and y (z is always 0), the time and engine time, the subject
and its value, the event and the predicate and corresponding value. They are
taken in several occasions, such as moving a unit, ordering to attack, placing
buildings, and so on. Each interaction uses its own event and, when keeping
info about a unit, the subject and/or predicate fields refer to the unit type and
their values is the unit’s in-game object id. The only exceptions to this rule are
the Resources and Health whose value represents their respective amount. All
of the collected metrics and their descriptions are listed in Appendix D.

Second phase of features and metrics

The initial list of features and metrics were filled with the general requirements
a designer could want but, since we did not know what kind of game design

CHAPTER 6. DEVELOPMENT ACTIVITIES 46

were going to be chosen, it proved to be incomplete.
When realizing the first use case with the actual game designer, he showed

the intention of changing the game’s playability in an unpredictable way (de-
scribed in section 7.2). To do this, he required a set of features that were not
initially thought of, some of which were not even in the game to begin with and,
for these, new game mechanics had to be implemented.

First of all, he required that standing units would lose health points, forcing
the player to move them about as much as possible. The units health points
would have to be restored in two ways: by moving and by being attacked by
the enemy. While the enemy attacking would restore health, the designer also
said that the player attacks would have to continue inflicting damage, as in the
original game. The designer also asked if there was a way to easily define the
same value for a parameter in all units, so we created an override system that
contained all unit parameters, allowing the designer to manipulate the player’s
and the opponent’s parameters separately.

Along with the new features, and in order to create a specific indicator, the
designer also asked for a new metric: a state collection of all units, that would
represent whether the unit was stopped or moving. This new metric is collected
every second, along with the existing units health and the player’s resource
count.

Candidate Game Modifications

To be used along with the ACPCG, to be able to use the feature sets received
from it, and to enable the collection of gameplay information, a series of changes
must be made to the original game. These changes compromise the creation of
a connection to the ACPCG, the communications with it, the needed modifi-
cations to change the original variable values, the automatic collection of the
information needed to create metrics logs and some minor changes to the game
interface flow.

Connection To ACPCG The connection on the ACPCG server side was
already developed, meaning that, in order to create a connection and commu-
nicate, the archetype game should follow its model.

The first problem encountered was that c++ language (pre c++11) does not
have a built in library to create HTTP requests. This led to two options: either
use an existing library to manage the requests or create a module that creates
and manages the requests.

After exploring the first option, a few different libraries were found such
as Qt, Boost and curlpp (libcurl’s c++ wrapper). After further analysis and
experimentation, problems or limitations were found on all of them. All that
was needed was a connection manager but, to use the one of Qt or Boost, their
whole libraries and packages had to be added for them to work. On the other
hand, curlpp is a library dedicated to create and manage connections and, on top
of that, it was also the tool used to test the server’s requests in the connection’s
supplied documentation. When trying to integrate curlpp with the project
and setup a simple test, problems related to compatibility and dependencies
appeared and so it was also put aside.

Given the tight schedule and the fact that the base connection should be
done within 1 or 2 days of work, the second option was chosen. This approach

CHAPTER 6. DEVELOPMENT ACTIVITIES 47

was thought of as better for 2 reasons: it was not dependent on other libraries,
as it only used built in functions; and there was a deep understanding of how it
works, given that it was a module created solely for this project. On the other
hand, the development process is more complex than using an existing library
and could take more time than expected. Since the game was originally bound
to Windows operating systems only, the connection was implemented using the
c++ built-in library winsock2 to create and manage connections using sockets.
The major development issue was that, using this method, all the messages
had to be manually created, from the headers to the actual messages, using the
HTTP 1.1 specification.

The requests done to the ACPCG server all use JSON messages as a means
of communication. These JSON messages must always contain 3 key elements
that serve the double propose of security and experiment identification: the
archetype name registered in the ACPCG and the login and password associated
to a specific experimentation that uses this archetype. Aside from these, the
message must contain the specific fields for the given request. For instance, the
request used to register a player (figure 6.5) must contain the player’s username
to be registered, along with the previously mentioned elements. Due to the
limitations of using sockets to upload files to the ACPCG and the need for the
3 key elements stated above, the file contents are also sent in a JSON message.
Although this approach has not been throughly tested, there has been no signs
of unwanted behavior, such as long waiting times or data loss.

For every request done to the ACPCG server, it sends a response back with
the appropriate status (Ok, BadRequest, ...), a status message and a any addi-
tional fields depending on the done request.

Figure 6.5: Message exchange example for registering a player

Game Flow While modifying the original game, there was a need to not only
add new elements to its structure but also to change the players access to certain
elements.

To play a campaign game in the original game, the player starts at the
main menu and then proceeds to the single player menu, where he can choose
the campaign mode. After selecting it, the player has to choose a house to
represent and then proceeds to play that house’s 9 missions in sequence. At the
beginning of each mission there is a briefing of the objectives, followed by the
gameplay and finally a debriefing of the players achievements. After the debrief,

CHAPTER 6. DEVELOPMENT ACTIVITIES 48

and if the player cleared the mission, the game statistics window is shown and
the player advances to the next one, otherwise the mission stays the same and
returns to its briefing.

Figure 6.6: The original game sequence to play a campaign

With the new game flow (depicted in figure 6.7), the player also starts at the
main menu and still chooses the single player option to go to the respective single
player menu. The first change is when the player clicks the campaign button.
Instead of going to the house selection menu, the player is taken to a menu
where the desired username must be chosen. Using this username, the player is
registered in the ACPCG server and a play session associated to that player is
also registered. Given that the house and respective mission are both part of the
features sent by the ACPCG, the house selection menu is skipped and instead
the game asks the server for the next feature set. A session, that is bound to
both the feature set and to the current play session, is then created and the
game loads the received features into the respective parameters. The mission
given by the respective feature is then briefed to the player and its gameplay
starts. In the end, the session’s end is registered and the player watches the
mission debrief. If the player won, the statistics window is displayed and the
metrics file is uploaded to the server. If the player lost the statistics window is
not displayed but the file is still uploaded. If there are still more feature sets to
be tested, the game will ask the server for the next one and repeat the process,
otherwise the game will return to the player name choose screen.

CHAPTER 6. DEVELOPMENT ACTIVITIES 49

Figure 6.7: The new game sequence to play a campaign

6.2 Development of the Crowdplay Platform In-
terface for Designers

Once the archetype game development phase was over, the web interface started
to be developed.

Given the lack of experience with the used framework, the first task was a
simple one: the creation of a login screen. This simple task had the secondary
intent of understanding the framework’s working process. After this screen was
finished, it was expected that there would be enough experience to move on
to the development of more complex components. As expected, after finishing
the login screen, the main Play functionalities were understood and doing the
register page took no effort.

The order by which the rest of the pages were developed is related to the
dependencies between their elements. The first was the new project page, which
has no dependencies with the other ones and is also straightforward. After
that one, the development continued to the design problem page, as it is a
requirement for the test setup page.

The design problem page is the page with the most user interactions and, as
such, is also the one where the Javascript code is more predominant. Since the
page is divided into two parts, the design goals and the artifact qualities, the
Javascript was also divided into two files with the design goals functions in one
and the artifact qualities in another. This was done so that the elements are
dependent only of the corresponding file, giving the future development some
freedom for changes.

After finishing the design problem page, the development followed to the
test setup page, as its requirements were already fulfilled and it needed little

CHAPTER 6. DEVELOPMENT ACTIVITIES 50

Javascript effort.
The last page to be developed was the results page. This is due to the fact

that it seemed the most complex of all pages, meaning that having the others
completed would grant the rest of the time for its conclusion. The page features
a series of charts and tables that are built dynamically and their layout can be
changed at any time. There should also be the option to filter the charts and
table data using filters but, due to the lack of time and the complexity of the
task, it was canceled. Although missing this functionality will affect the final
quality of the interface, it will still work properly.

6.2.1 Paper Prototypes Adaptation to Web Interfaces

The process of converting a paper prototype into its digital version can be
complex. Expected behaviors on the paper prototype may, sometimes, not be
possible to completely replicate when developing them. Even those that can be,
sometimes take added effort to adapt, requiring a longer time span to achieve.

The game variations interface final aspect (figure 6.8) is very similar to its
prototype counterpart. All of its requirements were fully implemented, with the
exception of showing the used function in the game variation table and of being
able to directly edit the table parameters.

The development of the design goals interface (figure 6.9) was identical to
the game variations, making the development of one much faster once the other
was finished. The few differences between them are the use of a formula in the
design goals, instead of the game variations choice of a game variable; and the
score and penalty associated with the scoring function, which were not needed
in the probability function.

The current experiment can be defined and started/stopped from the test
setup interface (figure 6.10). This interface features all the parameters that
can be changed in an experience. The current state shows the state of the
experiment: setup if it is not yet running and the user is able to change the
experiment’s parameters; running if the genetic algorithm is generating candi-
dates and/or waiting for gameplay metrics; and complete if the process is over.
The type of experiment determines the generated candidates. In complete type
all possible candidates are generated, in sample a number of candidates are ran-
domly generated and in procedural the platform uses the genetic algorithm for
the candidates generation. Since the procedural type is the only that uses the
genetic algorithm, its parameters (the genetic algorithm details box) is hidden
when another type is selected. Also, depending on the chosen end type, the
respective box also shows the target score, the number of maximum evaluations
or nothing (if manual is selected).

The results interface (figure 6.11) is the one that looks less with the paper
prototype due to the missing data filters and the added status box in the bottom
part of the screen. The Current Status box was one of the final requirements
of the client, and it shows details on the current experiment’s statistics, such
as the best score achieved, the id of the best candidate and the current cycle
for Genetic Algorithm generations. There are a total of three different layouts:
4 charts, 2 charts and 1 chart. To swap layouts, simply click one of the upper
right icons symbolizing the respective chart distribution. To create a chart, we
have to drag one of the chart symbols on the upper left corner to one of the plus
signed boxes, and then choose the chart axis’s data. All charts can be sorted by

CHAPTER 6. DEVELOPMENT ACTIVITIES 51

Figure 6.8: Snapshot of the developed game variations interface

dragging them to the desired slot, being the others repositioned to obey that
order.

6.2.2 Technologies Used

All of the pages use the following technologies:

• HTML - for the elements creation and page layout;

• Scala - to manipulate the variables passed at the creation of the page,
namely the DTOs and their lists;

CHAPTER 6. DEVELOPMENT ACTIVITIES 52

Figure 6.9: Snapshot of the developed design goals interface

• CSS - for styling and element formatting

• Bootstrap - Most of the CSS present was achieved using Bootstrap, as it
provides easy to use classes that can achieve a clean layout.

• Javascript and Jquery - used when the wanted behaviors couldn’t be
achieved by any of the other tools.

In the design problems page, in the adding/editing forms for both design
goals and artifact qualities, there was the need to create a visual representation
of the selected function. This was achieved by using two different libraries: C3Js

CHAPTER 6. DEVELOPMENT ACTIVITIES 53

Figure 6.10: Snapshot of the developed test setup interface

and ChartJs. Initially, ChartJS was used to create the triangular and gaussian
functions, but it did not give any support to generate a step probability function.
The solution was using C3Js to create the step function but, instead of redoing
the triangular and gaussian functions, kept the ChartJs as the C3Js did not
offer a gaussian approximation.

In the results page, the chart selectors were supposed to be dragged and
dropped and, for that purpose, the JqueryUI was used. JqueryUI is an API
that offers several methods, between them some for dragging and dropping,
leaving the work cut out to deciding what to drag and where to drop. The page
layout changes were done using simple Javascript and Jquery to alter the classes
of the displayed elements. This page also needed charts but, unlike the design
problems page, the D3Js library was used. The reason behind this choice was
that, although the learning curve of D3Js is much steeper than the other already
used libraries, there was a Javascript library for filtering data, the Crossfilter,
which could be used with D3Js. So, in an attempt to use this library to create
our filters, we decided to use D3Js as the charts creation library.

CHAPTER 6. DEVELOPMENT ACTIVITIES 54

Figure 6.11: Snapshot of the developed results interface

6.2.3 Developed Modules for Crowdplay

This section presents a quick list, describing all the functionalities, ordered by
development, that were implemented in this project.

A. Instrumentation of the Game Archetype

(a) Development of the module for creating and writing metrics to a file

(b) Metrics extractions added on the needed game actions

(c) Development of the module for receiving and saving the game variations

(d) Replacement, in the game’s source code, of the original variables for
the saved game variations

(e) Development of the connection module

CHAPTER 6. DEVELOPMENT ACTIVITIES 55

i. creation of the request and response manager, responsible for build-
ing the requests headers and managing the responses status

ii. creation of the needed request methods for:

A. register game objects

B. register events

C. register players

D. register game variations

E. register play session and its end

F. register session and its end

G. get game variations

H. metrics file upload

B. Development of the Crowdplay Platform Interface

(a) Development of the login and register interfaces and respective con-
trollers

(b) Development of the page template used for the remaining interfaces

(c) Development of the Design Goals interface and its controller:

i. creation of the page layout (table, parameters, chart positioning,
formulas modal, ...)

ii. creation of the scripts responsible for the page behavior (table se-
lection, details box hide/show, chart visualization, ...)

iii. development of controller method for adding, removing and editing
design goals

iv. development of controller method for formula creation

(d) Development of the Game Variations interface and its controller:

i. creation of the page layout (table, parameters, chart positioning,
game variables modal, ...)

ii. creation of the scripts responsible for the page behavior (table se-
lection, details box hide/show, chart visualization, ...)

iii. development of controller method for adding, removing and editing
game variations

(e) Development of the Test Setup interface and its controller:

i. creation of the page layout

ii. creation of the scripts responsible for the page behavior (GA and
end condition details hide/show, state changing, ...)

iii. development of controller methods for starting, stopping, pausing
and saving the experiment

(f) Development of the Results interface and its controller:

i. creation of the page layout

ii. creation of the scripts responsible for the page behavior

• selection of chart type or table

• layout change between 4, 2 or 1 chart

• chart sorting

CHAPTER 6. DEVELOPMENT ACTIVITIES 56

iii. development of controller method for returning chart data

iv. development of the various D3js charts

C. issues fixing on previously developed interfaces

D. addition of results page current status details

E. second phase of archetype game instrumentation

(a) added new mechanics needed by the designer for his game design

(b) added new features requested by the game designer

(c) added new metric for the designer’s experience indicators

F. minor interface issues fixing

Due to the lack of time, there were still some interface features pending for
implementation, namely, the data filtering on the results page and the correction
of the issues found at the usability tests, described in table 7.2.

Chapter 7

Evaluations

After having a functional system with the required qualities, the testing phase
began. Given the context of the project and that the platform was fully de-
veloped during the course of this dissertation, two kinds of evaluations were
needed.

The first is an usability test, to determine whether or not the developed
interfaces had issues for the new users and if so, which elements needed to be
altered and which would stay the same. The second was a case study, done
with a game designer in order to verify if the ACPCG can be used with this
particular candidate game. Both tests will allow us to reach our goal of helping
getting an answer to the posed research question.

7.1 Usability Test

Usability tests vary in many ways, from the development phase that they are
introduced, to the place of testing and the actions required, every aspect related
to the test can influence its outcome, and so, this section serves to describe the
realized test.

When developing a platform, usability tests are essential, as they can show
us where the platform is lacking, be it in its layout or simply in the used terms.
For this project’s usability test, informal invites were done to students present
in the Computer Science Department of the University of Coimbra.

8 subjects accepted, and although the group did not have the ideal distri-
bution, we managed to get individuals with as much varied traits as possible.
The ages of the subjects were comprised between 23 and 42 years (average 26.87
and standard deviation 6.31), with 5 being male and 3 female, with occupations
ranging from Bachelor students to working professionals. There were a total
of 4 individuals with Computer Sciences Engineering backgrounds, 4 with De-
sign, 1 with both and 1 with Educational Sciences; all had experience designing
videogames, though some more than others. Game designers usual backgrounds
include Design or Computer Science Engineering, hence, the sample being some-
what representative.

The tests were done in an isolated space to avoid interruptions and external
influences and took 45-60 minutes each. Since the individuals had little knowl-
edge of the ACPCG, at first they were presented with the ACPCG concepts

57

CHAPTER 7. EVALUATIONS 58

and working process, in order to create a base of understanding. They were ex-
plained the step by step process, the logic behind the use of design goals along
with the usefulness of the algorithm. Given the complexity and specificity of the
formulas, the individuals were shown how they are created and a part of their
interface. As the part of the interface shown was small and it did not reveal
how to reach it, the usability test was not compromised.

7.1.1 Usability Test Walkthrough

After the presentation, the individuals were presented with the following script
and asked to follow it while we recorded the individuals and their screens, re-
vealing their actions during the test.

Usability Walkthrough

Please execute these steps one by one. After each step, contact the Experi-
menter.

I. Register a new Account and login into the “Usability” experiment.

II. Create a new Game Variation

1. Give it the name “Troopers BP”

2. Select the Game Variable referent to Troopers Build Time

3. Choose a ‘Step Probability Function’

4. Make the Variation oscillate between 100 and 200

5. Activate ‘Troopers Bp” variation

III. Create a new Design Goal

1. Give it the name “Level Time”

2. Change the score function to Triangular

3. Assign it the Score 200

4. Create an Indicator Formula that calculates the time needed to complete
a level (this is the maximum value of engine time)

5. Establish Score boundaries between 20.000 and 30.000

6. Establish mean at 25.000

7. Make it so this is optimized during the experiment

IV. Edit the ‘Test Design’ Goal

1. Create a new Indicator Formula for it that calculates the double of the
number of unit selections in a game (a unit selection is tracked by an
event of type ‘unit selection’)

2. Make it vary between 200 and 300

3. Delete this Design Goal

V. Setup the Experiment to:

CHAPTER 7. EVALUATIONS 59

1. Have 15 Game Permutations per Cycle

2. Define number of minimum Play Sessions as 5

3. Set the experimentation type as “Sample”

4. Setup the Termination Condition

i. Set Condition as Target Score

ii. Define the target score of 95

5. Save the Data.

6. Run the Experiment.

7. Pause it.

8. Stop it.

9. Start it again.

VI. Check Experiment Results

1. Log out

2. Log in with the following account “asd@asd.asd” and password “asd”,
experiment ‘firstdemo’

3. Set Dual Chart View

4. Create Line Chart in the upper section

i. Plot Sum of Scores in terms of play sessions

5. Create Table in the lower section

i. Average and Standard deviation of Score, and Average and Stan-
dard Deviation of Indicator “Selects” per Generation Cycle

The script is divided in large tasks (numbered from I to VI) containing
smaller steps and each individual was asked to do one of the larger at a time and
notify us when each was finished. Every time one of the larger tasks was finished,
we would mark the time taken, following with a small usability questionnaire
about both the realized operations and the terms involved in it. This test was
tailor made for the application. After doing this for all the steps in the script,
the user would be asked to fill a S.U.S. questionnaire [Brooke, 1996], which is a
basic usability questionnaire used to evaluate the global application.

All user’s tests were video-recorded (both the screen and facial capture), and
this data was compiled and analyzed. The analysis was made in several different
scopes and the found issues were ranked based on how problematic they were
for the user. The issues ranking can be found further in this report, in table
7.1, and the used questionnaire can be found in Appendix E.

7.1.2 Questionnaire

As stated before, in each usability test, two different questionnaires were posed
to the users, each with its own purpose and with different timings.

The tool evaluation questionnaire was done during the test, between every
larger task, and its questions were mainly focused in determine the difficulty
felt by users while doing them. It also contained questions that would allow us
to perceive if the used terminology was confusing or hard to understand, and if

CHAPTER 7. EVALUATIONS 60

the users understood what repercussions the tasks had in the experiment. Each
of the larger tasks was created with the objective of testing a component of
the interface and its available functionalities, covering all of the development
process in the test.

On the other hand, the S.U.S. questionnaire, filled at the end of the test,
was intended to o self-assess the users experience, so it was filled by each of
them without supervision. Not only did this method make users feel less pres-
sured about their answers, it also brought some closure to the usability test,
allowing them to feel more comfortable while answering. S.U.S. questions relate
to usability principles, gathering information about the system’s ease of use,
enjoyment, complexity, consistency and learnability.

7.1.3 Data Analysis

Based on the goals set for this test, the results were analyzed in three core
aspects. In order of importance, these are: the amount of successful task com-
pletions, the reported difficulties and the amount of time taken to finish the
tasks.

The amount of tasks failed is the most important analysis because, if the
users cannot do a task, they will not understand the difficulties associated and
we will not know how long they take. For this analysis, we did not operate based
on how many actions a user can fail in each task but rather if the user failed any
action at all. Optimally, the values for failed tasks would be zero for all tasks,
meaning that every user understood how to do all of the tasks. However, and
as seen in figure 7.1, this is only true for tasks I - Register and Login, V - Setup
the Experiment and VI - Check Experiment Results, being that the other tasks
had from 2 to 3 users failing.

In task II - Create a new Game Variation, all of the failures were related to
the activation of the game variation. After careful revision, we concluded that
one of the users who missed was looking for the option inside the game variation
details sub-screen, while the other activated a design goal optimization instead
of the variation (since both these elements are mirrored in the design problem
screen). Thus, a possible solution is to make the flow between editing the game
variation and activating it clearer, by giving users the option of activating game
variations and optimizing design goals inside their respective sub-screens.

In task III - Create a new Design Goal, it was verified that every user that
failed at least a task was not successful at creating the required formula. The
reasons for this problem were various and some were repeated in more than one
user:

• 1 user tried to create the formula directly in the text box

• 2 of the users did not notice the button to create a new formula

• 2 of the users thought that the function domain would be placed in the
formula

• 2 of the users added unneeded conditions to the formula

• 1 user created a wrong formula

• 1 user forgot to optimize the design goal

CHAPTER 7. EVALUATIONS 61

Figure 7.1: The chart shows the amount of sub-tasks failed by the users in each
larger task.

Similarly, in task IV - Edit the ‘Test Design’ Goal - the same problems emerge
as in task III - which is to be expected given their similarities. Besides the
already described issues, users had trouble applying the double to the formula,
trying to create a formula that would count two times the value instead of
multiplying a simple formula by two in the text box. These errors highlight
that the formula part of the usability test was where users most stumbled,
making it a critical component for improvement.

The user reported difficulties were analyzed based on the questionnaire done
between larger tasks. These had questions in which the user would have to
rate a series of sentences from 1 to 5 but also had questions, about concept and
functionalities, that were classified as right or wrong. As an indicator of success,
the answers were compiled and then, depending on the question, we counted the
users who gave at least a score of 4 or got the question answered right. The
threshold of success was set when this count of users was at least 20% (6 users)
and the results can be seen in figure 7.2 for score above 4 and figure 7.3 for right
answers given.

Usually the threshold of success would be placed at 10% but we raised it a
bit to the 20% due to the complexity and specificity of the platform and the
inherent terminology. The first question of each task was whether the user found
the task easy to complete and, as can be seen, only task I - Register and Login,
V - Setup the Experiment and VI - Check Experiment Results were thought of
as easy; this means that no problems are perceived in these particular screens.

Noticeably, task III - Create a new Design Goal and IV - Edit the ‘Test
Design’ Goal had no user classifying them with 4 or above in the scale for
ease, being the common element between them the use of formulas. Once again
this reinforces the problems that task resolution already hinted at. One must,

CHAPTER 7. EVALUATIONS 62

Figure 7.2: The chart shows the results of the questionnaire done during the
test, representing the amount of users who gave a score equal or higher than 4
in each question.

Figure 7.3: The chart shows the results of the questionnaire done during the
test, representing the amount of users who answered the questions correctly.

however, take into account the complexity of what was being asked to users: to
be able to define and use a formula editor on the level of complexity of an excel
formula in a small window of time is no easy feat, even with a brief introduction
to its working. Besides overall improvement to the screen, this signals that extra

CHAPTER 7. EVALUATIONS 63

effort must be placed on the learnability aspect of it. What was found interesting
was the fact that, although no user thought about formulas as easy, the majority
of them thought of them as a tool capable of creating any Experience Indicator.
So, functionality wise, there does not seem to be any problem.

Questions II.3, II.4, II.6, III.7, V.3, and V.5 are questions intended on assess-
ing how well users understood critical terms of the method – Game Variation,
Probability Function, Game Variable, Design Goal, Score, Game Permutation
and Session respectively. In each, users were required to define, without ambi-
guity, each of these concepts; if not entirely clear, they would be queried with
trick questions to determine whether their understanding was correct or not.
This was intended to verify the conceptual adequateness of these new terms, as
they had been reported as problematic beforehand. The terms that did not pass
the set threshold were Probability Function and Game Permutation. The first
is not a critical component needed to use the PCG method; however, clearer
presentation of it in the interface can surely be forwarded to users. The second
however, needs to be fully understood for proper operation of the method, and
thus, a new term should be found that is more readily apprehended by users.
Another aspect regarding the terminology is that, when asked if they are confi-
dent if they know what a term means, users did not show much confidence (see
figure 7.4), even in the terms they correctly answered.

Figure 7.4: The chart shows the amount of users, in a total of 8, who showed
confidence in the system’s terminology. The line in red shows the success thresh-
old.

Given that the interface is supposed to be an easy to use tool that facilitates
the creation process, users should not have to spend long periods of time to finish
simple tasks. Before starting the test sessions, we had decided on an acceptable
time in which the users were supposed to finish each of the larger tasks. To do
this, we followed the created script ourselves, not rushing the completion of each
task, and marked the time needed for each task. Taking that time into account,

CHAPTER 7. EVALUATIONS 64

we set that the time needed to complete each task should not be higher than
twice that amount. As before, the success threshold was set at 20% of the users
not taking more than the reference time (twice the estimated time) to finish
each task. Figure 7.5 shows the number of individuals who took less than the
reference time and, while some tasks are right on the threshold, others are still
lacking.

Figure 7.5: The chart shows the amount of users, in a total of 8, who finished
each task in less than two times the alloted time for that task. The line in red
shows the success threshold.

As can be seen, the two tasks in which the success threshold was not achieved
are task II - Create a new Game Variation and IV - Edit the ‘Test Design’ Goal.
In both cases, the main cause for this time difference was that the interface
was not as intuitive as we first thought it would be. In task two, users tried to
write several times in the disabled text box instead of using the search function
located besides it. When searching the parameters, several users made remarks
about how the categories should be in alphabetic order and not in the given
order (in this case buildings followed by units and game engine parameters).
This seems like a critical component to change in all list objects of the UI. The
last sub task, activating the game variation, was also a point where most users
lost a considerable amount of time, as they were looking for the option in the
game variation form and not in the table. The main issue in task IV - Edit the
‘Test Design’ Goal was choosing the X and Ys data for the charts. While the
first chart asked was simple, as the default form values were the ones asked, the
second required a bit more effort to accomplish. This signals a problem in the
way these are presented to the user, with an excess of options that are grayed
out in the dropdown lists; a better solution would be to present only the options
available at a given time to users.

To better understand the problems found by the users, table 7.1 was readied
listing user reported and observed problems during the usability test, along with

CHAPTER 7. EVALUATIONS 65

Issue Count Imp. Comp. Description
Alphabetic order 6 3 2 Features are not in alphabetic order
Activate/Optimize 6 3 2 Activate/optimize not in form
Add Formula 9 5 5 Problems related to adding new formula
Axis Label 2 3 1 Lack of axis information in charts
Back from Formula 2 2 1 Formula back button not intuitive
Button Setup 2 2 2 Test setup States are confused with buttons
Chart Buttons 7 3 2 Layouts and charts selection is confusing
Chart Plus 4 2 1 User tried to click the + sign to add chart
Dynamic Boxes 2 3 2 Some boxes sizes should scale dynamically
Edit Delete Chart 4 4 2 Missing edit and delete chart options
Filter 2 3 4 Filter is not implemented
Formula Flow 2 5 5 The steps needed to manage formulas is not clear
Function Selection 2 2 1 Select the new formula in the list on creation
help 4 2 3 On hover help is not intuitive or easy to use
Incomplete Fields 2 4 1 Lack of feedback on incomplete fields
Login Mail 2 1 1 The use of Login instead of email is confusing
Login Register Data 2 1 1 Register data should be saved for login
Login Register Flow 2 4 2 Login and Register pages are too similar
Mean Label 2 2 1 Mean has no label
Min / Max 17 5 1 Domain values verification is troublesome
Small Formula Buttons 2 3 2 Buttons on formulas are not big enough
State 4 3 3 Test setup State is not visible enough
Y disabled items 7 2 1 First Y select disabled items should not appear
Y disabled selects 7 2 1 No options on second Y select confused users

Table 7.1: List of issues reported repeatedly (count greater than 1) by the users,
their importance (imp.) and fixing complexity(comp.). The importance ranges
from 1 to 5, where 1 is of little importance and 5 is a serious issue that highly
confuses the users. The fixing complexity also ranges from 1 to 5, being 1 easy
and fast to fix and 5 needs new planning and/or structuring. This data was
created through video-analysis of users’ tests.

the number of times they occurred and how important and complex it is to fix
them.

This table will be the base to choose what issues will be solved first, having
in consideration their occurrences, their importance and how difficult they are
to fix. While the fixing complexity rating was given based solely on the work
developed in this dissertation, the ratings given to the importance of each issue
was discussed with the client because it was a decision too important to be
taken alone.

7.1.4 Issues Found

After analyzing the previous data, it was time to take the final conclusions about
the interface usage by the users.

The system component with which the users struggled the most is also the
one with most issues: the formulas editor in the design goals. This is by far
the most pressing problem in terms of usability as users feel that the formulas

CHAPTER 7. EVALUATIONS 66

creation is too complex and requires too much effort to comprehend. In order
to fix the formula problems, a new approach is advised, although no solutions
have been thought of yet, it should present the users with a more automatized
way of creating formulas.

A problem in which all users stumbled upon was the verification of the
minimum, maximum and mean values in functions. The warning that appeared
when the individuals were trying to set the functions domain was troublesome
and made the users feel stressed. Since this problem was so consistent (17
reported cases) and its fixing was so simple, it is already solved and now works
properly.

In general, the found issues can be directly solved. The only reported in-
stance where a different solution is needed is the formula related problems. Due
to the complexity of their elements, these problems require a better and more
simple way of interaction with the users, which must be studied and analyzed
before committing to a solution.

7.1.5 Proposed Corrections

Thanks to the list of detected issues previously compiled, we can now create
a list of proposed corrections for those issues. Some of the most common and
easy to solve issues have already been solved and will not be present in the list.
These issues and the performed corrections are:

• Missing label on results charts - Labels for all charts in the results page
have been added

• Charts Filter not doing anything - The result’s page section for filtering
data was removed until filters are functional

• Lack of feedback on incomplete fields - incomplete fields now have a red
border along with the message

• Verification of min and max values - removed the verification on the client
side, leaving only on server side. The request is done via Ajax so the
verification is transparent to the user

The rest of the issues have their correction propositions on table 7.2. How-
ever, there is no proposition for the correction of the formula related problems
(the only problems with complexity level 5), as these are issues that should be
revised with the client first.

7.2 Game Design Case Study

After the usability tests were over, we could finally start realizing a test with
an actual game designer, with the intent of gathering data that would help
answer the project’s research goal. Although a bulk of tests is needed to draw
a conclusion about this case, and the time available for this phase was shorter
than expected, we decided to do as much as possible before the dissertation
delivery, to help the client with the system evaluation. At this point, a single
test case is currently underway, being that the design process is not over and
there are no conclusive results to analyze.

CHAPTER 7. EVALUATIONS 67

Issue Solution
Features not in alphabetic order Order feature categories in client side to reduce

performance impact in server
Activate/Optimize button not in form Add the choice to activate/optimize in the cre-

ation form
Back button in formula not intuitive Change the button’s icon to be more intuitive
Setup states confused with buttons Change buttons for a bar or a single box with the

current state
Layouts and chart selection confused Change page layout and new icons to distinguish

the 2 functionalities
Plus sign on chart divisions Change the plus sign for a symbol representing

”Drop here”
Static boxes make ”dead space” in the interface Make the possible boxes size change dynamically

based on their content
Charts cannot be deleted or edited Add the functionality to remove the chart or edit

its parameters
Newly created functions are not directly selected
in list

When adding a new function to the list, make it
selected

Help messages are hard to perceive and use Make new system for help using question marks
and hand made text boxes

Login Register Data Pass the registered email to login screen
Login Register similarity Change the two pages designs to distinguish them
Mean has no label Make the mean more intuitive or place a label

near the value
Small Formula Buttons Make the buttons in formula related interfaces

bigger
Experiment state not visible enough Place the experiment’s current state and the but-

tons that change it closer
Y disabled items Hide the disabled items to avoid confusing the

users
Y disabled selects Hide the second Y select box when there is no

option available and remove the NONE option

Table 7.2: List of proposed solutions for most of the found interface issues

However, this section describes the test so far, how the rest of the process is
expected to continue and how the results will be analyzed.

7.2.1 Completed Work

In order to gather as much useful data as possible, we had to select a user for the
test who was related to game design and knew the process behind conventional
game designing. After finding such user, and to simulate as much as possible
that the prototype was his making, we presented him with the archetype game,
explaining the details behind the game’s mechanics and what modifications had
been made. This explanation was supplemented with remarks regarding any
doubt the user had.

In our first meeting with the user, he came up with a game design, in which
player units would gain health when being attacked or when moving and would

CHAPTER 7. EVALUATIONS 68

lose health while not moving. According to the designer, the player’s game style
would “resemble that of a parasite”, and the games should last about 5 minutes.
This design and its verification is something that could not be achieved with
the current archetype so, in order to simulate the designer’s development effort
and to enable the collection of the extra required metrics, we had to make a
second development phase on the archetype. This second phase was faster and
easier because, in the first phase, we had left dynamic functions to take care of
the registrations and implementations, and due to our deeper knowledge of the
game’s architecture.

After the modifications were ready, we scheduled a second meeting with the
designer, video recorded for later analysis, which started with a status update
on the finished requirements. When we finished the status update, we asked
the designer some questions related with the intended game design (available in
Appendix F) so that he could express:

• What design he was trying to achieve

• If during the creative process he had thought of other designs

• Why he chose that design in particular

• If the design was adapted to the method used or if it was originally as he
wanted it

Once the questionnaire was over, the designer proceeded to use the platform
to input the wanted game variations and desired design goals, as well as to
specify the test setup variables, leaving candidates ready to be tested. The
designer was then posed with a new set of questions, this time trying to answer
some platform usage related questions:

• If the wanted design had been successfully translated to the system

• How the result would be like

• If the platform usage influenced the design intent in any way and how

• If the usage of the platform made him want to try new design intents

Lastly, the designer was asked fill a Creative Support Index (CSI), containing
two questions to evaluate the system for each of the following dimensions:

• Collaboration

• Enjoyment

• Exploration

• Expressiveness

• Immersion

• Results worth effort

CHAPTER 7. EVALUATIONS 69

Tool Evaluation Questionnaire 1- Highly Disagree
Select a number between 1 and 10 10 - Highly Agree

1. The system or tool allowed other people to work with me easily. 1-2-3-4-5-6-7-8-9-10
2. It was really easy to share ideas and designs with other people inside
this system or tool.

1-2-3-4-5-6-7-8-9-10

3. I would be happy to use this system or tool on a regular basis. 1-2-3-4-5-6-7-8-9-10
4. I enjoyed using the system or tool. 1-2-3-4-5-6-7-8-9-10
5. It was easy for me to explore many different ideas, options, designs, or
outcomes, using this system or tool.

1-2-3-4-5-6-7-8-9-10

6. The system or tool was helpful in allowing me to track different ideas,
outcomes, or possibilities.

1-2-3-4-5-6-7-8-9-10

7. I was able to be very creative while doing the activity inside this system
or tool.

1-2-3-4-5-6-7-8-9-10

8. The system or tool allowed me to be very expressive. 1-2-3-4-5-6-7-8-9-10
9. My attention was fully tuned to the activity, and I forgot about the
system or tool that I was using.

1-2-3-4-5-6-7-8-9-10

10. I became so absorbed in the activity that I forgot about the system or
tool that I was using.

1-2-3-4-5-6-7-8-9-10

11. I was satisfied with what I got out of the system or tool. 1-2-3-4-5-6-7-8-9-10
12. What I was able to produce was worth the effort I had to exert to
produce it.

1-2-3-4-5-6-7-8-9-10

Table 7.3: The answers given by the game designer on the first CSI questionnaire

Notice that the evaluation based on the CSI is still incomplete, as the de-
signer will have to fill a new one every time he uses the platform and the results
are dependent on all filled CSIs. Nevertheless, the answers of the designer’s CSI
are listed in table 7.3, grouped by the above dimensions. Notice that, although
the questions were posed in a random order, the designer’s answers are similar
in the questions of most of the referred dimensions. Although not conclusive,
the results so far show great potential and are very positive.

This was the last finished step in the process, leaving the players able to
play the archetype game to gather results as to continue the ACPCG’s iterative
process.

7.2.2 Next Phases

Having the first iteration of the test ready and the candidates generated, the
next step will be putting players playing and collect their metrics. Once enough
sessions have been played, the designer will have to use the platform again to
verify the extracted indicators and analyze their meaning. If he sees fit, he will
redefine the design problem, allowing for better results and the players will have
to play new candidates. This cycle will continue until the designer is satisfied
with the best produced candidate and, in every cycle, he will fill a CSI based
on the new interaction with the platform.

When the final candidate is reached, the designer’s role will be over and
his game finalized, at which point, we will only be missing the analysis of all
collected elements from the game design case. They will be compiled and verified

CHAPTER 7. EVALUATIONS 70

against the three hypotheses placed in chapter 3.
A result on whether designers can define game design problems using the

platform will be drawn based on the game designer’s expectations, on the final
game and on the platform logs containing his actions. To verify whether or
not the solution resulting of the design process fulfills the designer’s agenda, we
will analyze his satisfaction with the system, through the filled questionnaires,
interviews and his design process. In order to check if the platform helped the
designer finding new design problems and solutions, we will use the recorded
platform logs, along with the saved recordings, to compare the initial and final
intent and design. Using the platform logs and the recordings, we will also be
able to identify the problems encountered while using the system, pointing us
to the main struggles and issues during the design process.

Chapter 8

Further Work

Most of the planned activities for this project were carried out and finished but
there are still issues pending.

First of all, the pending use case needs to be finished. Without it, no con-
clusion can be reached on whether this approach can be used for the case at
hand or if the developed platform aids designer’s in their creative process.

When that is done, there is a list of issues detected from usability tests,
some more urgent than others, that need fixing, after which, a new usability
test should be realized.

Finally, new tests with game designers are needed, as a single test is not
enough to verify the usefulness of the developed tools and to answer the research
question posed for this project.

71

Glossary

Archetype game: a prototype game without the parameters that are to be
generated. Its game design is still not finalized.

ACPCG: Author-Centric Approach to Procedural Content Generation. A
PCG methodology that is more focused on the designer’s intended gameplay
experience. See chapter 2.1.2.

Artifact Quality: same as game variation.

Best Candidate: The candidate with the best overall score in the experi-
ment at a given time.

Candidate: The set of values for all game variables that will be used by the
archetype game.

Candidate game: a version of the archetype game that uses a set of pa-
rameters generated by the genetic algorithm.

Design Goal: An objective to be achieved by designer in the archetype game.
Defined by a formula and bound to a domain.

Design Problem: The aggregation of all design problems and game variations
of a project. Represents the restrictions and tests applied to the experiment.

EDPCG: Experience Driven Procedural Content Generation. A PCG method-
ology that gives special focus and tries to optimize the player experience. See
chapter 2.1.1.

Experience Indicator: A measurement of a player’s experience aspect that
can be extracted from gameplay metrics.

Experiment: The set of all definitions done with the intent of achieving a
game design.

Feature: same as game variable.

Feature set: same as Candidate.

GA: See Genetic Algorithms.

72

CHAPTER 8. FURTHER WORK 73

Gameplay session: Interaction between a candidate game and the player
playing it.

Game Variable: A parameter in a game that will be given a value in each
session.

Game Variation: The set of parameters by which a game variable can be
varied for candidates.

Genetic algorithms: Nature inspired, sub-optimal search algorithm. Em-
ployed as a Feature Selection method.

Gameplay Metrics: Raw, unprocessed data collected from a gameplay session.

PCG: Procedural Content Generation. Process of automatically creating con-
tent using algorithms. See chapter 2.1

Play-Persona: ”larger-order patterns that can be defined when a player uses
one or more play-styles consistently throughout the game play session.” [Tych-
sen and Canossa, 2008]

Play Session: The time lapse associated with consecutive sessions by the same
player.

Project: redefined to experiment.

Session: the time lapse associated to the player playing the game using a
candidate.

Bibliography

Anders Drachen and Alessandro Canossa. Towards gameplay analysis via game-
play metrics. In Proceedings of the 13th International MindTrek Conference:
Everyday Life in the Ubiquitous Era, MindTrek ’09, pages 202–209, 2009a.

Raphaël Marczak, Jasper van Vught, Gareth Schott, and Lennart E. Nacke.
Feedback-based gameplay metrics: Measuring player experience via auto-
matic visual analysis. In Proceedings of The 8th Australasian Conference
on Interactive Entertainment: Playing the System, IE ’12, pages 6:1–6:10,
2012.

Pejman Mirza-Babaei, Lennart E. Nacke, John Gregory, Nick Collins, and Geral-
dine Fitzpatrick. How does it play better? exploring user testing and bio-
metric storyboards in games user research. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’13, pages 1499–
1508, 2013.

Anders Drachen and Alessandro Canossa. Analyzing user behavior via game-
play metrics. Proceedings of the 2009 Conference on Future Play on @ GDC
Canada, pages 19–20, 2009b.

Anders Tychsen and Alessandro Canossa. Defining personas in games using
metrics. In Proceedings of the 2008 Conference on Future Play: Research,
Play, Share, Future Play ’08, pages 73–80, 2008.

Georgios N. Yannakakis and Julian Togelius. Experience-driven procedural con-
tent generation. IEEE Transactions on Affective Computing, pages 147–161,
2011.

Rui Craveirinha, Lucas Santos, and Lićınio Roque. An author-centric approach
to procedural content generation. Advances in Computer Entertainment,
pages 14–28, 2013.

Julian Togelius, Emil Kastbjerg, David Schedl, and Georgios N. Yannakakis.
What is procedural content generation? mario on the borderline, 2011a.

Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. Search-based procedural content generation: A taxonomy and sur-
vey. IEEE Transactions on Computational Intelligence and AI in Games
Issue 3, pages 172 – 186, 2011b.

Gillian Smith, Jim Whitehead, and Michael Mateas. Tanagra: A mixed-
initiative level design tool. In Proceedings of the Fifth International Con-
ference on the Foundations of Digital Games, FDG ’10, pages 209–216, 2010.

74

BIBLIOGRAPHY 75

J. Togelius C. Pedersen and G. N. Yannakakis. Modeling player experience for
content creation. IEEE Transactions on Computational Intelligence and AI
in Games, vol. 14.

John Brooke. Sus-a quick and dirty usability scale. Usability evaluation in
industry, 189:4–7, 1996.

Rui Craveirinha and Lićınio Roque. Studying an author-oriented approach to
procedural content generation through participatory design. Pending Pub-
lishing.

Appendix A

Remaining Interfaces
Prototypes

76

APPENDIX A. REMAINING INTERFACES PROTOTYPES 77

This Appendix refers to the interfaces elements not included in the main
body of the document, namely the rest of the prototypes.

A.1 Prototypes

The new user interface (Figure A.1) is used to create a new user on the platform.
The user must choose a username and a password and should also check the
projects that needs access to. Access to some projects might be limited or
restricted.

Figure A.1: Prototype for the new user menu interface

With the new project interface (Figure A.2), users can create new projects
based on existing prototypes and manage its permissions for other users. By
creating various projects that use the same prototype, it becomes possible to
test several different game variations.

Figure A.2: Prototype for the new project menu interface

Appendix B

Candidate Attributes table

78

llllllllllllllllll

 s s s s s s s s

s s s

 s s)))
e s

 n s n s

r s s

 tt s s t s n

e s s s t++ s

n s s s

t s s t s

s s s

 s s

 s

n s e s e t e

t s s s e

) t)) n

+ t++ e

sssssllllsll slssssls lsssllss

)) s)

n s +

) s r

n s s s s s t s + s

r ts s e s s s s

) s s

e

s s e s n r ss

 n

s

n s s) t

n s s

 s s s s) t

n s s s s s

 , s s s

)))

e s e

n s) s s s

 s s) s t s s) s s))) s

n + +

e s)

sllls

 t s

 s t

e t

s s

 t s

 s t

e t

s s

lllllllsslsylsyllylslsslllsysllls

Appendix C

Entity-Relationship
Diagram

79

Appendix D

List of Archetype Game’s
Features and Metrics

80

APPENDIX D. LIST OF ARCHETYPE GAME’S FEATURES ANDMETRICS81

The following are the lists of both the existing units and the parameters that
can vary for each unit.

List of buildings: List of Units:
• Barracks • CarryAll
• Construction Yard • Devastator
• Gun Turret • Deviator
• Heavy Factory • Frigate
• High Tech Factory • Harvester
• IX • Soldier
• Light Factory • Launcher
• Palace • Mobile Construction Vehicle
• Radar • Ornithopter
• Refinery • Quad
• Repair Yard • Saboteur
• Rocket Turret • Sandworm
• Silo • SiegeTank
• Slab Size 1 • SonicTank
• Slab Size 4 • Tank
• StarPort • Trike
• Wall • RaiderTrike
• Wind Trap • Trooper
• WOR • Special

• Infantry
• Troopers

The list of parameters is as follows:

• Hitpoints

• Price

• Power

• View Range

• Capacity

• Weapon Damage

• Weapon Range

• Weapon Reload Time

• Max Speed

• Turn Speed

• Build Time

• Probability to Spawn Infantry at
Death

Game engine parameters:

• Mission - The mission to be played. There are 9 different missions for each
of the 6 existing houses, allowing to choose between a total of 54 different
missions, each with its own layout and victory conditions.

• Game Speed - The speed at which the game flows. This can vary from 8
to 32, being 16 the normal game speed, 8 very fast and 32 very slow.

• Harvest Speed - Determines how fast a Harvester can take spice from a
tile.

APPENDIX D. LIST OF ARCHETYPE GAME’S FEATURES ANDMETRICS82

• Max Spice Carried - The maximum amount of spice a harvester can carry
before it has to return and deposit it.

• StarPort Arrival Time - The amount of time the requested units take to
be delivered.

• Minimum Spice on Tile - The minimum amount of spice a normal spice
tile will have when starting a map.

• Maximum Spice on Tile - The maximum amount of spice a normal spice
tile will have when starting a map.

• Minimum Spice on Thick Spice Tile - The minimum amount of spice a
thick spice tile will have when starting a map.

• Maximum Spice on Thick Spice Tile - The maximum amount of spice a
thick spice tile will have when starting a map.

• Bad Damage Ratio - The percentage of health from which the unit is
considered to be badly damaged and, consequently, starts to be applied
the damaged speed multiplier.

• Damaged Speed Multiplier - The value by which the badly damaged unit’s
speed will be multiplied.

List of collected Metrics:

• Select unit - This metric is collected when the player selects any number
of units except those that are not his. The select unit info is kept in the
subject fields. If the player selects multiple units at the same time, a
metric of this type will be created for each of them.

• Select enemy unit - Collected when the player selects an enemy unit, this
metric keeps record of the selected unit in the subject fields.

• Move unit - When the player moves one or more units, a metric of this
type is created for each of those units. The unit information is kept in the
subject part of the metric and the x and y fields keep the new position
coordinates.

• Move unit to ally - similar to the move unit metric but is collected when
the player orders a unit to move to another friendly unit. Also, that
friendly unit’s information is stored in the predicate fields of the metric
and its position is kept as the metrics x and y.

• Attack - Same as the move unit to ally but the friendly unit information in
the predicate is changed with the attacked unit’s information. The saved
coordinates are the position of the attacked unit.

• Start production - Whenever the player adds an item to a production
queue, the game records a metric with the producing building as in the
subject fields and the produced item as the predicate. There is no predi-
cate value because the produced item still has no in game id.

APPENDIX D. LIST OF ARCHETYPE GAME’S FEATURES ANDMETRICS83

• End production - When an item production is finished, the game saves
a metric containing the producing building’s information in the subject
fields and the finished item in the predicate.

• Pause production - Collected when the player pauses an item in a build-
ing’s production queue. The subject fields contain the building’s informa-
tion and the predicate is referent to the paused item.

• Resume production - If a player resumes an item production in a building’s
queue, the game will save a metric containing the information about that
building in the subject fields and the resumed item in the predicate.

• Place building - While its not needed when building units, after a structure
is built, the player must choose where to place it. When the player does,
a metric will be saved containing the position where it was placed, along
with its information (including its newly acquired object id) in the subject
fields.

• Cancel production - If the player cancels an item in a building’s queue,
the respective metric will contain the building in which the production
was canceled (in the subject fields) and the item as the predicate.

• Missing resources for production - After placing an item in a building pro-
duction queue, its production can be halted due to the lack of resources.
In that case, this metric will be saved using the producing building’s in-
formation in the subject fields and the halted item in the predicate.

• Upgrade building - When the player upgrades a building this metric is
saved using the upgraded building’s information in the subject fields. The
predicate and its value are filled with an UpgradeId and the level to which
it is being upgraded respectively.

• Finished upgrading - When a building’s upgrade is finished, this metric
records the information about the building in the subject fields, the Up-
gradeId in the predicate and the reached level in the predicate value.

• Missing resources for upgrade - Just like there is a metric for the halted
production due to the lack of resources, there is one for the halt of a
building upgrade. This takes the building information as the subject fields,
uses the UpgradeId to identify the predicate and uses the level to which
the building was being upgraded to as the predicate value.

• Destruction - Taken when the a player unit or building is destroyed. The
subject fields contain the destroyed unit information while the predicate
fields contain the information about the unit that destroyed it.

• Enemy destruction - same as above but for enemy units instead of the
player’s.

• Start Repairing - Metric taken when a building is repaired. It takes the
information about the building that is being repaired, uses it for the sub-
ject fields and then places a RepairId and the building’s health percentage
in the predicate and predicate value respectively.

APPENDIX D. LIST OF ARCHETYPE GAME’S FEATURES ANDMETRICS84

• Finished repairing - Same as above but, since it is collected when the
building is fully repaired, the predicate fields are not needed.

• Spice collect - When a harvester starts collecting spice, the game takes
this metric, containing the harvester’s information as the subject and the
quantity of spice as the predicate.

• Spice deposit - When a harvester finishes depositing the collected spice, a
metric containing just the harvester’s information in the subject fields is
saved.

• Resources & Health Verification - There are two verifications that are
being made in the game every second. The first one is the player resources,
translated directly in the amount of credits the player has and saved as a
metric with that amount serving as value for a Spice subject. The second
verification is the health value of each of the player’s units and buildings.
This means that, for every unit or building the player has, a metric will be
created with that unit or building’s information as the subject and their
current health as value for a Health predicate.

Appendix E

Usability Tests

85

Tool Evaluation

Questionnaire

Select a number

between 1 and 5

1- Highly

Disagree

5 - Highly Agree

Observations

Step I.

Time Taken: _______

(Reference time = 1 min)

I.1. I found this task easy to accomplish. 1-2-3-4-5

Step II.

Time Taken: _______

(Reference time = 1 min 30s)

II.1. I found this task easy to accomplish. 1-2-3-4-5

II.2. I understood what the term Game

Variation refers to.
1-2-3-4-5

II.3. What is a Game Variation?

II.4. What changes when we select a

triangular function instead of a step

function?

II.5. I understood what the term Game

Variable refers to.
1-2-3-4-5

II.6. What is a Game Variable?

Step III.

Time Taken: _______

(Reference time = 4 mins)

III.1. I found this task easy to accomplish. 1-2-3-4-5

III.2 I understood what the term Design

Goal refers to.
1-2-3-4-5

III.3. What is a Design Goal?

III.4. I understood how Formulas work. 1-2-3-4-5

III.5. I could use the Formula Editor to

create every Experience Indicator I would

like to extract from a game of mine.

1-2-3-4-5

III.6. I understood what the term Score

refers to.
1-2-3-4-5

III.7. What does Score term refer to?

III.8. I find the score attribution useful. 1-2-3-4-5

Step IV.

Time Taken: _______

(Reference time = 3 mins)

IV.1. I found this task easy to accomplish. 1-2-3-4-5

Step V.

Time Taken: _______

(Reference time = 1 min 30s)

V.1. I found this task easy to accomplish. 1-2-3-4-5

V.2. I understood what the term Game

Permutation refers to.
1-2-3-4-5

V.3. What is a Game Permutation?

V.4. I understood what the term Session

refers to.
1-2-3-4-5

V.5. What is a Session?

V.6. I understood the differences in the

types of test that are available.
1-2-3-4-5

Step VI.

Time Taken: _______

(Reference time = 2 mins)

VI.1. I found this task easy to accomplish. 1-2-3-4-5

VI.2 I found the available chart and table

tools to be enough to fully explore the

results from experimenting with a game.

1-2-3-4-5

System Usability Scale

© Digital Equipment Corporation, 1986.

 Strongly Strongly
 disagree agree

1. I think that I would like to
 use this system frequently

2. I found the system unnecessarily
 complex

3. I thought the system was easy
 to use

4. I think that I would need the
 support of a technical person to
 be able to use this system

5. I found the various functions in
 this system were well integrated

6. I thought there was too much
 inconsistency in this system

7. I would imagine that most people
 would learn to use this system
 very quickly

8. I found the system very
 cumbersome to use

9. I felt very confident using the
 system

10. I needed to learn a lot of
 things before I could get going
 with this system

Appendix F

Game Design Test

86

This appendix refers to the questionnaires posed to the game designer at the beginning

and at the end of his second designing session.

Beginning:

- Describe the design you intend to develop for Dune with this application’s
support.

- What experience qualities do you intend to reach with it? How do you wish that
the player plays the game?

- Do you have any idea of how to translate that design to a set of Game Variations
and Design Goals? If so, enumerate them and tell us what values you are thinking
about giving them.

- How did you get those values?

- Do you wish to do any kind of free experimentation, without setting design
goals? Why?

- Do you consider that the design problem that you just translated is exactly the
design problem that you wish to see solved?

(Had to change it completely to fit) 1-2-3-4-5-6-7-8-9 (Remained intact)

- If there were any changes, explain why and with what purpose

- When thinking about a design based in the offered ontology, did you get any
more design ideas? If so, which, and why did you choose this one?

End:

- Do you consider that you managed to translate your design through the
application?

(I had lots of difficulties) 1-2-3-4-5-6-7-8-9 (I did it perfectly)

- In this moment, can you imagine how the final prototype will be?

- What values do you think it will have for the variables you selected?

- While using the application, did you change your initial plan for the game? If so,
how?

- While using the application, did you get any ideas for alternative design
problems that you would like to solve?

- How interesting do you think the final game will be?

(uninteresting) 1-2-3-4-5-6-7-8-9 (very interesting)

- Why? In your opinion, what aspects will valorize it?

- Do you consider that the experience you seek to reach is totally in line with the
set of Design Goals that you set? Why?

(Totally out of line) 1-2-3-4-5-6-7-8-9 (perfectly in line)

- If you had to create this game without using this application, how would you do
it?
- Having the choice between using this application and doing the development
process without it, what would you choose and why?

	Report
	Appendix B
	Appendix C
	Appendix E1
	Appendix E2
	Appendix F1

