

A Distributed Security
Event Correlation

Platform for SCADA

Pedro Guedes Alves
pgalves@student.dei.uc.pt

Orientador:

Professor Doutor Tiago Santos Cruz
Data: 01 de Julho de 2014

Mestrado em Engenharia Informática
Dissertação
Relatório Final

Abstract

A Distributed Security Event Correlation Platform for SCADA

by

Pedro Guedes Alves

Critical Infrastructures rely on Industrial Control Systems (ICS) such as Supervisory
Control and Data Acquisition (SCADA) to operate the networks and systems of vital
assets for the functioning of society and economy. SCADA systems were traditionally
isolated and used closed architectures with proprietary protocols, but nowadays this
systems use open standards with open architectures that are highly interconnected with
other corporate networks and the internet. As a result, the vulnerability of these systems
to cyber-attacks increased considerably.
This thesis is integrated in the work developed by the Laboratory of Communications and
Telematics for CockpiCI, an European Framework FP7 research project, whose goal is to
provide intrusion detection, analysis and protection techniques to Critical Infrastructures.
The design and implementation of an event correlation platform for detection of cyber-
attacks in SCADA systems are detailed in this thesis. The developed correlation platform
implements the means to collect, process and correlate security events from differently
distributed sources. The validation performed to this system demonstrated its resiliency,
performance and correlation capabilities to detect cyber-attacks.
The platform presented will be deployed in a test bed that includes critical infrastructures
simulated by real equipment and enterprise Industrial Control Systems, this will allow a
further validation of its concepts and capabilities.

Keywords: "Event Correlation" "Event Processing" "Distributed Event Correlation"
"Intrusion Detection" "SCADA"

i

Contents

List of Figures vi

List of Tables vii

List of Acronyms viii

List of Acronyms (cont.) ix

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Research Objectives . 2
1.3 Document Outline . 2

2 CockpitCI Project 4
2.1 Overview and Objectives . 4
2.2 Cyber Analysis and Detection Layer . 6
2.3 Dynamic Perimeter Intrusion Detection System 7

3 Event Correlation: An overview 9
3.1 Event Correlation . 9
3.2 Event Correlation Operations . 10

3.2.1 Compression . 10
3.2.2 Aggregation . 10
3.2.3 Thresholding . 10
3.2.4 Filtering . 10
3.2.5 Selective Suppression . 11
3.2.6 Prioritization . 11
3.2.7 Enrichment . 11
3.2.8 Time-linking . 11

3.3 Event Correlation Techniques . 11
3.3.1 Rule-based Event Correlation . 11
3.3.2 Codebook-based Event Correlation 12
3.3.3 Case-based Event Correlation . 12
3.3.4 Statistical Event Correlation . 12

ii

3.3.5 Model-based Correlation . 12
3.4 Existing Open Source Event Correlation Software 13

3.4.1 General Purpose Correlation Software 13
3.4.1.1 Esper . 13
3.4.1.2 NodeBrain . 15
3.4.1.3 SEC . 17
3.4.1.4 Drools . 18

3.4.2 Security Specific Correlation Software 20
3.4.2.1 OSSIM . 20
3.4.2.2 Prelude . 21
3.4.2.3 Sagan . 22
3.4.2.4 ACARM-ng . 23

3.5 Feature Comparison of the Correlation Software 24

4 Communication for Distributed Event Correlation Systems 28
4.1 Communication Models for distributed Applications 28

4.1.1 Remote Procedure Call . 28
4.1.2 Message Oriented Middleware . 29
4.1.3 Conclusion . 30

4.2 Message Oriented Middleware Technologies 30
4.2.1 Simple Text Oriented Messaging Protocol 30
4.2.2 Message Queue Telemetry Transport 30
4.2.3 Java Messaging Service . 31
4.2.4 Advanced Message Queuing Protocol 31

4.3 Message Oriented Middleware Comparison 32

5 Proposed Architecture 34
5.1 The Correlation Platform Within the Perimeter Intrusion Detection System 34
5.2 Correlation Platform Requirements . 34
5.3 Architectural Design . 36

5.3.1 Event Format . 37
5.3.2 Detection Agent Components . 37
5.3.3 Correlation and Analysis Components 38
5.3.4 Event Communication Layer . 39

5.3.4.1 Event Communication Protocol 39
5.3.4.2 Event Communication Architecture 40

5.4 Correlation Engine Evaluation . 41
5.4.1 Performance Evaluation . 41

5.4.1.1 Test Setup . 42
5.4.1.2 Tests and Results . 42
5.4.1.3 Conclusions . 44

iii

6 Implementation and Integration 46
6.1 Event Communication: The EventBus . 46

6.1.1 EventBus Configuration . 47
6.1.2 Message Reliability . 48
6.1.3 Event Publisher Library . 48

6.2 Event Correlation . 51
6.2.1 Correlator Core . 52
6.2.2 Input Adapter . 55
6.2.3 Output Adapter . 56

6.3 Agent integration . 57
6.3.1 NIDS Integration: The Snort Agent 57
6.3.2 HIDS Integration: The OSSEC Agent 59
6.3.3 Other Agents and Systems Integration 59

7 Validation 61
7.1 Functional Validation . 61

7.1.1 Preliminary validation . 61
7.1.2 Correlation . 62

7.1.2.1 Event Aggregation . 62
7.1.2.2 Event Filtering . 63
7.1.2.3 Event Suppression . 63

7.1.3 Resilience . 63
7.2 Performance testing . 65

7.2.1 Event Publishing on Limited Resources Systems 65
7.2.2 EventBus and Correlation Application Test Setup 66
7.2.3 Event Rate Evaluation . 67
7.2.4 Latency Evaluation . 69
7.2.5 Performance Testing Conclusion 71

8 Project Progress 73
8.1 Constraints . 73
8.2 Second Semester Work Progress . 74

9 Conclusions 75
9.1 Contributions . 76
9.2 Future work . 76

Bibliography 78

A IDMEF data model 84

B Examples of IDMEF attacks representation 85

C Configurations 88

iv

D Correlator statements 90

v

List of Figures

2.1 CockpitCI operational concept . 5
2.2 Perimeter Intrusion Detection System architecture 8

3.1 Esper Event Stream Processing and correlation 14

5.1 Correlator architecture overview . 39
5.2 Event communication architecture overview. 41
5.3 Correlators memory usage comparison. 43
5.4 Correlators CPU usage comparison. 44

6.1 EventBus and correlators configuration layout. 47
6.2 Python EventBus publisher. 50
6.3 Correlator design diagram. 51
6.4 Esper engine architecture overview. 52
6.5 Snort agent event filtering flow . 58

7.1 High availability correlation platform configuration. 65
7.2 Performance testing configuration layout. 66
7.3 Event rate for different message sizes. 68
7.4 Event data rate for different event sizes. 68
7.5 CPU usage during tests. 69
7.6 Average latency for different event sizes. 70
7.7 Average latency for different number of events published continuously. . . 71

8.2 Work progress progress Gantt chart. 74
8.1 Work planning Gantt chart . 74

A.1 IDMEF data model . 84

vi

List of Tables

3.1 Correlation software features summary. 25
3.2 Correlation software features summary (cont.). 26

4.1 MOM features comparison. 33

5.1 Correlators throughput comparison. 42

vii

List of Acronyms

AMQP Advanced Message Queuing Protocol
API Application Programming Interface
APL Apache Software License
BRMS Business Rule Management System
CEP Complex event Processing
CI Critical Infrastructure
DBMS Database Management Systems
DDS Data Distribution Service
DOM Document Object Model
EPL Event Processing Language
GPL General Public License
HIDS Host-based Intrusion Detection System
HMI Human-Machine Interaction
HTB Hybrid Test Bed
ICS Industrial Control System
IDMEF Intrusion Detection Message Exchange Format
IDXP Intrusion Detection Exchange Protocol
IPS Intrusion Prevention System
JCP Java Community Process
JSON JavaScript Object Notation
JVM Java Virtual Machine
LCT Laboratory of Communications and Telematics
MOM Message Oriented Middleware
MQTT Message Queue Telemetry Transport
NIDS Network Intrusion Detection System
OASIS Organization for the Advancement of Structured Information Standards
OCSVM One Class Support Vector Machines
p2p point-to-point
PIDS Perimeter Intrusion Detection System

viii

List of Acronyms (cont.)

POJO Plain Old Java Objects
pub/sub publish-and-subscribe
RTU Remote terminal Unit
SASL Simple Authentication and Security Layer
SCADA Supervisory Control and Data Acquisition
SDEE Security Device Event Exchange
SEM Security Event Management
SIEM Security Information and Event Management
SIM Security Information Management
SMP Security Management Platform
SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
SQL Structured Query Language
SQL Structured Query Language
STOMP Simple Text Oriented Messaging Protocol
TCP Transmission Control Protocol
TLS Transport Layer Security
TLS Transport Layer Security
UDP User Datagram Protocol
XSD XML Schema Definition

ix

Chapter 1

Introduction

1.1 Motivation and Background
Critical Infrastructures (CIs) rely on Industrial Control Systems (ICS) such as

Supervisory Control and Data Acquisition (SCADA) to operate network and systems
designed to support industrial processes. These infrastructures encompass vital assets
for the functioning of society and economy. Usually include facilities for the generation,
transmission and distribution of electricity, facilities for the production, transport and
distribution of oil and gas, water supply and sewer processing, telecommunication
networks, transportation systems, among others.

SCADA systems are the largest subgroup of among ICS and are used to control
assets using a centralized data acquisition and supervisory control. Legacy control systems
were isolated and used closed architectures with proprietary protocols, in which the degree
of security was achieved by obscurity and system isolation. Nowadays, these systems use
open standards with open architectures and ICS systems are highly interconnected with
other corporate network and the internet. As a result, the vulnerability of these systems
to cyber-attacks increased considerably.

With the full recognition of the risks linked cyber-attacks to CIs several European
Framework (FP7) research projects were initiated. CockpitCI is one of those research
projects. The goal of this project is to provide intrusion detection, analysis and protection
techniques to Critical Infrastructures. CockpitCI will aim to define and implement
risk modeling and prediction tools, to collect and share information among different
infrastructures and intrusion detection systems to detect attacks and anomalies. The
CockpitCI focus is on detecting ongoing attacks and minimizing their impact instead of
focusing in avoiding the attack.

As part of this project, the Laboratory of Communications and Telematics (LCT)
group is responsible for the coordination of the research and design of the components
for the Analysis and Detection Layer of the CockpitCI platform. More specifically, one

1

of the tasks is to design, develop and integrate a distributed Intrusion Detection System
(IDS). This real-time distributed Perimeter Intrusion Detection System (PIDS) should
be able to aggregate, filter and analyze information of potential cyber-attacks against
SCADA systems used to run the CIs.

This thesis integrates with the work developed within the group and is focused
in the design, development and integration of a correlation platform capable of collecting
data from local detection agents and correlate this data. The work also includes the
design and implementation of the communication infrastructure that allows the collected
data to be transmitted between the different components.

1.2 Research Objectives
The aim of this research is to explore the use of event correlation for detection

of cyber-attacks in SCADA systems. The research should result in the development of
a distributed security event correlation platform suited for industrial control networks.
This platform must fulfill the requirements of CockpitCI’s Dynamic Perimeter Intrusion
Detection System (PIDS).

The ultimate goal of the developed system is to provide the necessary means of
collecting, processing and correlating security events from differently distributed sources.
As a result, the correlation platform must detect intrusions in industrial control networks
as soon as possible so that is possible to minimize the effects of the attack.

The proposed solution shall use existing open source software whenever a proven
solution already exists for the core problems to solve. The idea is to streamline the
development and allow focus on the innovative aspects. A research of existing open
source software related to the scope of the project should allow to identify the software
that can be used to build the platform.

To verify and validate the design and implementation, attack scenarios and
validation tests are implemented and deployed.

Other components of the PIDS and CockpitCI should integrate with the platform.
The integration with the other components of CockpitCI should be carried out in a
testbed that realistically simulates a real world SCADA environment.

1.3 Document Outline
In this section is going to be detailed the structure of next chapters in this

document.
Chapter 2 presents an overview of the CockpitCI project.
Chapter 3 starts by presenting an overview of the diverse techniques used in

event correlation and how they used in the field of security, more precisely in intrusion
detection. In Section 3.4 is presented a survey of the existing open source correlation
software, where the main characteristics of each one of the tools is described.

In Chapter 4 are described the transport protocols for event communication in
distributed systems.

2

Chapter 5 discusses the correlation platform architecture and components, as
well as how this platform integrates in the CockpitCI Perimeter Intrusion Detection
System.

In Chapter 6 is described how the correlation platform was implemented and
the several components integrated.

Chapter 7 describes the validation performed to the correlation platform and
the results obtained.

In the Chapter 8 is given an overview of progress of the work developed for this
thesis.

3

Chapter 2

CockpitCI Project

This chapter gives an overview of the CockpitCI project. It provides better
understanding of how the work developed in this thesis is integrated within the scope of
the CockpitCI.

2.1 Overview and Objectives
The CockpitCI project continues the work done in the FP7 MICIE1 project

(a Tool for systemic risk analysis and secure mediation of data exchanged across linked
CI information infrastructures). MICIE target was to develop a secure online software
architecture that shared information on a real time basis among local risk predictors,
in order to obtain accurate and synchronized predictions using interdependency models.
With this tool, the CI operators receive information about the future evolution of their
infrastructure with a wider perspective compared to predictions that can be generated
by sector specific and isolated simulators. While the MICIE project has proved that
increasing cooperation among infrastructures owners by sharing information leads to
better predictions, such integration is not enough in order to quickly and efficiently
react to cyber attacks. The CockpitCI project as two main objectives. The first is
to improve the MICIE on-line Risk Predictor deployed in SCADA center that shares
real-time information among CI owners. The other is to add cyber detection capabilities
in order to get a broader perspective in terms of security, to identify in near real time
the CI functionalities impacted by cyber-attacks and assess degradation of CI delivery
services. CockpitCI aims to classify the associated risk level and activate a strategy of
containment of possible consequences of cyber attacks together with the provision of
some intelligence to field equipment, allowing it performing local decisions in order to
self-identify and self-react to abnormal situations induced by cyber attacks. The main

1http://www.micie.eu/

4

components of CockpitCI are a set of modules, each with a different set of functionalities,
as described below:

Cyber Analysis and Detection Layer (DL): provides cyber attack detection and
identifies the type of cyber threats;

Integrated Risk Prediction (IRP): provides situation awareness that reflects the
current situation, predicts the near-term evolution of the situation with risk predic-
tion and provides reaction by selecting the appropriate countermeasures as well as
triggers automatic reaction logic;

Secure Mediation Gateway (SMN): provides secure data exchange;

Figure 2.1 – CockpitCI operational concept (from deliverable D3.5).

The operational concept of the CockpitCI, depicted in Figure 2.1 , shows two
interdependent CIs, electrical CI (ELE CI) and telecommunication CI (TLC CI), which
exchange information between each other, the TLC CI provides telecommunication
services to the ELE CI and the ELE CI provides power to the TLC CI. Each one of
the CI has a SCADA control room and a CockpitCI tool. The CockpitCI tools collect
data from the field and SCADA, via cyber sensing probes and the SCADA adaptor. In
order to provide CI operators a better situational awareness over the system of systems
in the presence of cyber attacks and, therefore, increase the CI level of service, the
two infrastructures share information via the Secure Mediation Network (SMN), which
provides secure information exchange via public network. The figure also shows other two
components: the Cyber Analysis and Detection Layer (DL) which performs cyber sensing
and provides cyber detection capability and the Integrated Risk Prediction Tool (IRP)

5

which provides situation awareness and assesses risk. The Secure Mediation Network is
the only mean by which all CockpitCI system internal components can communicate
with their remote corresponding modules.

2.2 Cyber Analysis and Detection Layer
The CockpitCI project is broken down into several work-packages to improve

manageability. The University of Coimbra LCT team leads the group responsible for
the work-package whose main goal is to conceive and develop the cyber analysis and
detection layer (WP3000). As pointed before, this layer provides the detection and
analysis capabilities to the CockpitCI.

This layer should integrate several different detection strategies, distributed along
different levels. The analysis and detection infrastructure, under development, is designed
taking into account local detection mechanisms that are able to function autonomously
on each component of the industrial control network, and provide coordinated detection
mechanisms, for multidimensional distributed intrusion detection.

The applied detection techniques integrate more classical approaches, such as
signature-based IDS tools and classic anomaly-based detection and event correlation,
with more advanced solutions, such as machine learning based approaches, including
innovative data mining and pattern recognition approaches towards event correlation.
These techniques take into account the specific nature of industrial control networks.
The idea is to use aggressive usage of topology and system-specific detection mechanisms
based on the fact that the role and behavior of each system components are expected to
be more consistent over time than other types of networks.

It encompasses detection agents, including adapters for existing intrusion detec-
tion systems, as well as specialized network probes and honeypots. That when added to
the network are able to capture behavior or traffic patterns. Moreover, it includes a Dy-
namic Perimeter Intrusion Detection System performing many of the tasks traditionally
associated with a Distributed Intrusion Detection System.

The work-package is divided into smaller tasks, with more defined goals, each
one with different participant teams.

The University of Coimbra LCT team is involved in several of this tasks with
different responsibilities in one each of them. The most relevant are:
• Design of detection agents and field adaptors

• Definition of Real-time intrusion detection strategies

• Design of the Dynamic PIDS

• Implementation and trials
The design, implementation and trial of the Dynamic PIDS can be considered one of the
main tasks as it integrates the work developed in the other tasks. The work developed
during this thesis is integrated into the work developed by the team in the design,
implementation and trial of the Dynamic PIDS as well as collaboration in the other tasks.

6

2.3 Dynamic Perimeter Intrusion Detection System
In this Section is given an overview of the Dynamic PIDS. The details presented

in this section were one of the starting points for the work developed in this thesis.
The architecture of the PIDS, as defined in deliverable D3.1.2 [1] and represented

in Figure 2.2 in a simplified way, aggregates several probing and monitoring sensors to
provide the surveillance capabilities for the security platform.

The deployment of these sensors divide the SCADA network in three different
network security zones:

IT Network while this network is not part of the SCADA network, there are some
SCADA components that can be hosted in this zone like Human-Machine Interaction
(HMI) consoles. Moreover, historical evidence has shown that several successful
attacks reach SCADA components through this level of networking infrastructure.

Operations Network this network hosts the main SCADA components, such as Master
Stations, Database Management Systems (DBMS) or HMI consoles.

Field Network in this network are hosted the field devices, such as Remote Terminal
Units (RTUs) and process sensors.

As stated in deliverable D3.1.2 [1], the network separation has two purposes. First, to
segment different infrastructure contexts for which different detection and correlation
strategies might apply. Second, to provide well-defined security perimeters between each
zone were mediation mechanisms may inspect and control information flows between
each zone.

The main type of security detection sensors considered in the architecture of
the PIDS are:

Host Intrusion Detection System (HIDS) are security detection sensors located in
individual hosts or devices of the network that gather audit data through analysis of
system logs. Additionally, they provide file integrity checking, system configuration
checking and other methods to detect abnormal activity that could be an indication
of an attack.

Network Intrusion Detection System (NIDS) are security detection sensors placed
in strategic points of the network that detect intrusions by analyzing network pack-
ets for signs of malicious activity. A signature (pattern) is used to match specific
events, such as an attack attempt, to traffic on the network. If the traffic seen on
the network matches a defined signature, an event alert is generated.

Honeypot is a decoy or trap that is set up to attract and detect/observe attacks. It
simulates a component of the system that appears to be part of the network, usually
without providing real functionality, it acts like as a dummy target. Its purpose
is to lure and track intruders as they advance to interact with this system; this
interaction can be an indication of an attack as the normal functioning of the
system does not interact with the honeypot.

7

Shadow RTU is responsible for monitoring the events handled by the electronic device
that interfaces objects in the physical world to SCADA system, the Remote Terminal
Units (RTUs).

While some security detection sensors are tools based in existing open source software
others are based on research and design by other members of the LCT group integrated
with the CockpitCI project and also by other external partner teams members of the
project. The design and implementation of the Shadow RTU are the subject of the thesis
to be presented this year by another member of the LCT CockpitCI team.

Although not a security sensor the One Class Support Vector Machine (OCSVM)
module will provide information to the correlators. This module uses supervised learning
models with associated learning algorithms that analyze data and recognize patterns
for intrusion detection, therefore, allowing the PIDS to detect unknown attacks. The
partner team from the University of Surrey is responsible for developing this module.

The Security Management Platform (SMP) is responsible for managing all the
involved components of PIDS. It includes the mechanisms, among others, for monitor
and manage detection agents, correlators, OCSVM and feed other CockpitCI systems by
retrieving relevant information from the correlation platform.

IT Network Operations Network Field Network

Local Co rrelator

Service Management Plat form

Main Correlator

Local Co rrelator Local Co rrelator

NIDS HIDS Honeypot

OCSVMOCSVM OCSVM

NIDS HIDS Honeypot HoneypotShadow
RTU

Events

Figure 2.2 – Architecture overview of the Perimeter Intrusion Detection System (adapted
from deliverable D3.1).

8

Chapter 3

Event Correlation: An overview

This chapter gives an overview of event correlation and describes the different
techniques used for event correlation. Furthermore, it presents a survey of several existing
open source correlation software including a feature comparison. The purpose is to select
the best tool to be used in the correlation platform.

3.1 Event Correlation
Intrusion detection systems, like HIDS and NIDS, generate a great amount of

alerts that may not be a result of a real alert, called false positives [2]. Additionally,
the intrusion alert messages they produce may lack information due to the fact these
security sensors have very specific domains of operation. For example, a NIDS only sees
network-based information while a HIDS does not have much information about the
network. If a HIDS reports an alert message about an unauthorized file change, it does
not have the information about the IP of the machine connected to the host at the time
of that change. Similar examples can be given for the Honeypot and Shadow RTU.

The information provided by the IDS also has limited contextual information,
for example, there is limited or non-existent knowledge of the global network topology
and other information about the host they are protecting. Hence, does not allow the
discovery of a distributed attack to several nodes of the infrastructure.

In order to reduce the limitations of the isolated intrusion detection systems,
security correlation systems are used.

Some authors call the process of this correlation systems, event correlation
3; 4; 5, others call it alert correlation 6; 7; 2 and others make a explicit distinction
between event and alert correlation 8. In this thesis both terms, event correlation and
alert correlation, will be used interchangeably to define the operation that finds the
causal relationships between events or alerts.

These systems collect the events from the several security sensors and, as such,

9

can provide a high level overview of all the infrastructure, combining the information
from all this systems.

Event correlation can produce more succinct overview of the security activity of
the network. This is achieved by suppressing events that do not provide useful information,
aggregating events that refer to the same incident or filtering duplicate events.

3.2 Event Correlation Operations
Event correlation encompasses several correlation operations. These operations

differ in the operations executed over the events. Several operations can be combined to
provide more complex event correlation patterns. In the next sections are presented the
main correlations operations, according to [2; 9; 10]:

3.2.1 Compression

This operation consists in grouping several similar events into one event. In
this operation, the events that where grouped are discarded and replaced by a new event.
Thus, reducing the total number of events.

3.2.2 Aggregation

This operation collects multiple events and generates a new. The new event as
new meaning than the ones it aggregates. In this operation, the aggregated events are
not discarded, like in the compression operation. The new event contains references for
the events it aggregates.

It can be used to combine events that represent the independent detection of
the same attack occurrence by different intrusion detection systems.

3.2.3 Thresholding

Thresholding consists generating a new event if the number of occurrences of a
given type reached a certain threshold. In this operation, if the threshold is not reached,
the events are discarded.

3.2.4 Filtering

This operation consists in suppressing certain events based on the attributes of
the event being discarded. This is considered a stateless operation as no other conditions
are taken in consideration, beside each event properties. The filtering can also be used as
rate-limiting, this allows to forward events at no more than a given rate, filtering all the
others.

10

3.2.5 Selective Suppression

In this operation, the events are discarded according to the state of the correlator.
The event is only suppressed if it meets other criteria, beyond the event properties, like
a variable value, the temporal relationship with other events or the presence of other
events.

3.2.6 Prioritization

This operation can be used to can be used to change certain event properties,
as its priority. This allows to identify the information that is important and the one that
is irrelevant. Prioritization can depend on, the state of the correlator, other events or
even an external source of information.

3.2.7 Enrichment

This operation consists in augmenting the information of the event. This adds
additional information to an event, that is either extracted from other related events or
the state of the correlator.

3.2.8 Time-linking

This operation correlates the events based on time and order they arrive. An
Example of time-linking is described bellow:

• Event A happened within 5 minutes after Event B happened;

3.3 Event Correlation Techniques
The main techniques used in event correlation are described in this section.

3.3.1 Rule-based Event Correlation

This type of correlation uses a set of predefined rules to evaluate incoming
events until a conclusion is reached. The correlation depends only on the capabilities
and comprehensiveness of the rule set. The rules usually have the form if condition then
action. The rule is trigger when an input event together with the state of the system
match a condition. The action can also be an input to other rules.

The rules in a system that use this technique are or more or less human readable
so that their effect is supposed to be intuitive.

Rule-based systems are only feasible for problems for which any and all knowledge
in the problem area can be written in the form of if-then rules and for which this problem
area is not large

The rule sets can become very large which may lead to unintended rule in-
teractions and can make the system difficult to maintain the system and can suffer a

11

performance hit. Additionally, the system is going to fail if an unknown situation occurs
which has not been covered by the rules so far.

3.3.2 Codebook-based Event Correlation

This technique, explained in [11], is similar to the rule-based techniques but
rather than treating events separately, they are grouped into an alarm vector which
represents all of the events. This alarm vector is then matched against problem signatures
in a so-called codebook, which represents an optimal set of alarms.

It comprises two stages: an initial stage of pre-processing designed codebook
selection, where a subset of alarms is chosen and the second stage, decoding phase, where
the alarm vector is analyzed in order to find problems and causes.

This approach as an advantage in comparison with the rule based correlation
as it can deal with unknown combination of events.

3.3.3 Case-based Event Correlation

Case-based correlation [12], unlike the techniques presented before, does not need
prior knowledge about the infrastructures. Systems that use this technique try to solve a
given problem by searching for the most similar case from a base library and retrieve the
solution. A case consists of a problem, its solution and, usually, annotations about how
the solution was derived. The principle consists in solving incremental problems with
a learning component. After applying the new solution to the problem, the result will
be verified, and if it is successful, the new case will be stored in the library. Otherwise,
a better solution must be proposed, which after validation will be added to the library.
As a result, this technique allows systems to learn from experience and can adapt to
unknown problems.

3.3.4 Statistical Event Correlation

In [13], a statistical correlation technique that uses a Bayesian network to model
the causality relationship between alerts. In this model, alerts are represented by nodes
and their causality represented by edges. Based on this model, the goal is to determine
which alert types may cause of type A and how the conditional probability of A is related
to its parents, the causes. The algorithm proposed is based on mutual information
between alerts to find the structure of the Bayesian network, the causal relationship
between alerts. When the structure of the Bayesian network is known, is is simple to
obtain the Conditional Probability Tables using the statistical relationship between alerts
divided along time slots.

3.3.5 Model-based Correlation

The Model-based approach [14] is more a paradigm rather than a detailed
technique to correlate events. It refers to the use of a model of the physical world
representing the structure and behavior of the system under observation, as an inference

12

method. Each component of the infrastructure is modeled regarding its attributes,
behavior and relation with other models. The behavior of the whole infrastructure is a
result of the interaction of the component models. The event correlation is a result of
the collaborations of the models comprising the whole infrastructure.

3.4 Existing Open Source Event Correlation Software
In this section, is presented an overview of the features of the available correlation

tools, in order to get an early indication of their capabilities and suitability to be use in
the correlation platform.

Commercial event correlation software was not analyzed as the purpose of this
survey was only to evaluate tools that could eventually be used in the CockpitCI Project
and the use of open source software was one of the requirements for the software to use
in the PIDS.

3.4.1 General Purpose Correlation Software

This section describes the open source correlation software with a generic
purpose. The tools presented here can be used in different scenarios, they are not specific
to the security domain. Although some of them were designed with a specific goal, they
are generic enough to process and correlate events from different domains.

3.4.1.1 Esper

Esper is an open source event series analysis and event correlation engine. Event
series analysis is related to the processing of historical events while event correlation
is intended for current-arriving events. Esper is not an application by itself but an
embeddable component that can be integrated, by using an API, in Java and JavaEE
applications. There is also a version, called Nesper, written in C#, designed to be
integrated with .NET applications. Nesper contains similar features as Esper. While Esper
is an open source Complex Event Processing (CEP) engine, there are two commercial
and more complete versions: Esper Enterprise Edition and EsperHA. Compared to the
open source version the commercial versions provide additional features, these include
among others: High Availability, GUI for design and management of EPL statements,
real-time interactive graphs and charts to display event stream data, REST Web Services
for access to CEP and data.

To express different operations correlation operations, Esper uses the Event
Processing Language (EPL), a declarative language that has similarities with the Struc-
tured Query Language (SQL). Like SQL, this language provides SELECT, FROM, WHERE,
GROUP BY, HAVING and ORDER BY clauses. Streams replace tables as the source of data
and events replace rows as the basic unit of data. Since events are composed of data, the
SQL concepts of correlation through joins, filtering and aggregation through grouping
can be effectively be used.

13

The following sample EPL, taken from the Esper tutorial [15], shows a query
that that returns the average price per symbol for the last 100 stock ticks:

select symbol , avg(price) as averagePrice
from StockTickEvent .win: length (100)
group by symbol

In addition to the event stream processing provided by the EPL language, Esper
includes pattern matching semantics to define more complex patterns like temporal
causality. The pattern matching language is based on a state machine technique. Both
the EPL and patterns can be combined together to provide more complex temporal logic.

Below is an example of an Esper pattern, from [15], where a property of a
following event must match a property from the first event:

every a= EventX -> every b= EventY (objectID =a. objectID)

Figure 3.1 shows an example of how Event Stream Processing and correlation
can be combined among different input event streams.

Figure 3.1 – Esper Event Stream Processing and correlation (image from [16]).

As stated in the Esper ’s FAQ [17] the engine works like a database turned
upside-down. Unlike the traditional databases that store data and run queries against
this data, Esper stores the queries and runs the incoming data through the stored queries.
When an event is received, the response from Esper is in real-time if this event matches
the conditions defined in any of the queries.

Esper provides a historical data access layer to connect to traditional databases,
this enables joining event series with data stored in SQL databases. The idea is to enrich
the output with historical data, or use the historical data to further filter stream.

As it is an engine library, an application needs to be built to provide a way that
allows Esper to receive events. Events accepted by Esper can be represented by Plain
Old Java Objects (POJO), XML, Arrays of Java Objects or Java Maps.

This correlator engine has a very active community, the discussions are mainly
made on the mailing lists [18; 19].

14

3.4.1.2 NodeBrain

NodeBrain [20] is, at its core, a rule engine with a modular architecture. It
includes several modules, called nodes in NodeBrain terminology, that can be used to
extend the features of the rule engine. NodeBrain is designed for construction of state
event monitoring and event correlation applications by combining the core engine with
the some of the modules, according the needs.

A declarative rule-based language is used to express the rules that can be
interpreted by the rule engine.

NodeBrain receives can receive input events from regular files, like text log files,
syslog or named pipes.

This tool has different operation modes; it can run in interactive, batch, servant
or service mode. The service mode allows NodeBrain to be executed as a persistent
daemon. In batch mode NodeBrain is executed like a shell script. The interactive mode
allows to access the interpreter directly, somewhat like the Unix shell. Hence, is particular
interesting to test new rules and to communicate with nodes in service mode. The servant
mode is a temporary child process spawned to handle a system shell command or another
function.

Below is presented a description of some of the most useful modules included
with NodeBrain [21]:

Audit for log file monitoring. It monitors lines of text written to system and application
logs.

Baseline module provides statistical anomaly detection. Allows to maintain a simple
statistical profile for a set of values to measure. A Baseline node monitors the
current value of each measure and alerts when a measure is considered an anomaly
relative to the statistical profile.

Cache module provides detection of event repetition, variation or sequence, this enables
NodeBrain to keep certain values in memory resident table for short-term storage of
events. Thus, allowing to perform event correlation by comparing the parameters
of current event with parameters of previous events stored in the cache.

Message module that allows broadcasting messages to multiple NodeBrain peers, it
uses the NodeBrain Message API.

Peer module provides authenticated and encrypted peer-to-peer communication. It
can be used for the communication of NodeBrain running in the same or different
hosts. The store and forward messaging pattern can be used in the transmission of
the messages. This pattern provides reliability to the transmission. If destination
system is unavailable, the message is stored locally and forwarded to the remote
destination once it becomes available.

Servant is a shell command executed as a child process to NodeBrain. NodeBrain can
communicate with the child process via stdin and stdout. The idea is to allow

15

programs written in different languages to communicate easily with NodeBrain
rules, particularly convenient for scripting languages.

Snmptrap is used to monitor Simple Network Management Protocol (SNMP) traps, it
should be noted that however its does not use MIBs.

String module can be used to do simple string manipulation to consume text represen-
tations of events.

Syslog enables listening to UDP port for syslog messages, therefore, allowing remote
syslog monitoring.

Translator module recognizes elements of foreign text and converts them into NodeBrain
commands; it uses regular expressions to recognize and extract elements from input
events.

Webster provides a simple web server interface to NodeBrain. Allowing to manage (add,
edit, delete) NodeBrain rules and other simple operations via a TLS encrypted web
interface.

A NodeBrain rule associates an action with a condition, the syntax is as follows:
define term type(condition) assertion : command

The term is the name used to reference the rule, type is the type of the rule,
condition is the condition to monitor, the optional assertion clause is a set of assignments
(for example counterA=10). Command is the action to be executed when the rule is
triggered, the action can be a script or application. There are three types of rules: ON,
WHEN, and IF. An ON rule will fire any time the condition transitions to a True value
from a non-True value. A WHEN rule is just like an ON rule, except it only fires once.
After a WHEN rule fires, it is removed from the interpreter’s memory. There is also the
IF rule that will always fires when True, but only for a specific NodeBrain command.

From the previously described modules the Cache module is the one that
provides features for event correlation where the goal is to detect repetition, it allows to
detect patterns of events that, can be described as follows, adapted from the application
tutorial [22]:

• EventA happened N times within time period P or interval I ;

• EventA was associated with EventB in N events within time period P or interval I ;

• EventB was associated with N different values of EventB within time period P or
interval I ;

• EventA happened within interval I after EventB happened;

NodeBrain documentation [23] is very complete and detailed, including many tutorials
and examples.

The user community of NodeBrain is almost non-existent and the user mailing
list [23] has almost no activity.

16

3.4.1.3 SEC

The Simple Event Correlator (SEC) [24] is an open source real-time event
correlation tool. This tool uses rule-based correlation for event processing. SEC is
written in Perl, this allows this software to be platform independent. The goal of its
author was to create a lightweight and easily customizable tool that could be used for a
variety of event correlations tasks [25].

This event correlator can receive events from regular files, named pipes and
standard input. The events are recognized from the lines of text, received from the file
input stream, by using regular expression language or Perl subroutines. Perl subroutines
are functions written in Perl.

The configuration of SEC rules is stored in text files. Each of the files can have
more than one rule. The rule sets from different files are applied logically in parallel [25].
A rule in SEC is normally specified by an event matching condition, a list of actions and
optional contexts. The event matching condition is the pattern specified in the rule that
is looked for in the input to check if it matches. A context is a logical entity that can be
created or deleted from a rule. The lifetime of a context can, optionally, be defined at
the context creation [25]. The presence or absence of a context can determine if a rule is
applicable or not. This entity can also be used as an event store. If events are associated
with a context as they occur, they can later be processed with an external application or
written to a file [25].

SEC can be configured with a set of predefined configurable rules. According
to Rouillard [26], these rules can be divided into two groups, basic and complex rules.
For Rouillard [26], basic rules types are rules that perform actions and do not start an
active correlation operation that persists in time. As described in SEC man page [27]
these basic types are:

Single: immediately executes an action list when an event has matched the rule. An
event matches the rule if the pattern matches the event and the context expression
(if given) evaluates True.

Suppress: takes no action when an event has matched the rule, and keeps matching
events from being processed by later rules in the configuration file.

Calendar: executes an action at specific time and supports repetition, this rule reacts
only to the system clock.

The complex rules are described as follows in SEC man page [27]:

SingleWithScript: when an input event is matched SEC forks a process to execute
an external program. The action to be executed depends on the exit status of the
forked process.

SingleWithSuppress: when an input event is matched the action list is executed, but
the following matching events will be ignored for the next t seconds. This rule is
used to filter repeated instances of the same event for a certain time.

17

Pair: when an input event is matched the first action is executed immediately. The
following matching events are ignored during the next t seconds until some other
input event arrives. When the second events arrives another action list is executed.

PairWithWindow: when an input event is matched wait t seconds for another input
event to arrive. If the event arrives within the time window t, execute an action
list. If the event does not arrive within the defined time window, execute another
action list.

SingleWithThreshold: count the number of input events that are matched during the
window time of t seconds and execute an action list. If a threshold n is given only
execute the action list if the threshold is exceeded. The window is sliding.

SingleWith2Thresholds: count the number of input events that are matched during
the window time of t seconds and execute an action list. If a threshold n is given
only execute the action list if the threshold is exceeded. The counting of the
threshold continues after the execution of the first action list, when no more than
n events have been observed during the last t seconds, execute a second action list.
Both event correlation windows are sliding.
Below is an an example of SingleWithThreshold rule, taken from SEC tutorial [28].

type= SingleWithThreshold
ptype= RegExp
pattern =foo
desc=$0
action = write - foo matched three times in 10 seconds !
window =10
thresh =3

The action in the above rule is executed when the pattern foo is matched thresh
number of times in the input data events during the window time of 10 seconds.

EventGroup: this rule runs event correlation operations for counting repeated instances
of N different events during T seconds and taking an action if the threshold
conditions, defined for each one of the N events, are satisfied. The event correlation
window is sliding.

Combining one or more of the above rules with appropriate actions and contexts allows
to define more complex event correlation schemes.

This tool has large user community and a very active mailing-list [29].

3.4.1.4 Drools

Drools [30] is an open source Business Rule Management System (BRMS)
platform. The module responsible for event processing (or CEP) and temporal reasoning
is the Drools Fusion [31] module. Drools Fusion can be used as an independent module
from the rest of the platform.

18

Like Esper, Drools Fusion is not an application, but a rule engine software
library written in Java. It provides an API that can be used to include this library in
applications developed in Java.

This Rule-Based engine is classified by [32] as Production Rule System. These
systems use an inference engine that matches facts and data, against Production Rules
or just Rules, to infer conclusions that result in actions. Drools uses an Object Oriented
system optimized version of the Rete algorithm [33], to implement the forward chaining
method of its Inference Engine. The Rete algorithm is designed to sacrifice memory
for increased speed [34]. Forward chaining is a reasoning method that starts with the
available data (known knowledge) and progresses to a goal state. While progressing from
a state to state, all inference rules are fired making all knowledge available within the
current state.

Drools Fusion provides two event processing modes, as described below:

Cloud mode in this mode there is no notion of time, neither there is a requirement
for event ordering, the engine sees the events as an unordered cloud which tries to
match rules. In this mode does not remove events that any longer match a rule
automatically, they need to be removed explicitly.

Stream mode is the needed when an application has to process streams of events. As
a result, it requires that the events in each stream to be time-ordered, this means
that events that happened first must be inserted first into the engine.
If there more than one input stream there is a session clock that forces the synchro-
nization between streams.
As in this mode there is the notion of time it allows rules with sliding window
support and also automatic event lifecycle management, where events that no longer
match a rule are removed from the engine.

Drools Fusion uses a specific rule language with the following structure:
rule "name"

attributes
when

LHS
then

RHS
end

The optional attributes are hints of how the rule should behave. Left-hand-side
LHS is the conditional part of the rule, is a set of productions that contains the unordered
sequence of patterns (conditions). The right-hand-side RHS is a block that allows dialect
specific code to be executed; it contains the actions. The actions dialect can either be
Java or MVEL [35]; MVEL is an expression language for Java-based applications. The
rules are usually read from text files containing one or more rules.

Below is presented an example of rule involving a sliding window, in MVEL
dialect, taken from the Drools documentation [36]:

19

rule "Sound the alarm in case temperature rises above threshold "
when

TemperatureThreshold ($max : max)
Number (doubleValue > $max) from accumulate (

SensorReading ($temp : temperature) over window :time (10m),
average ($temp))

then
// sound the alarm

end

The rule above represents the situation where an alarm must sound in case
the average temperature over the last ten minutes, read from the sensor, is above the
threshold value.

Drools has a very active community; the discussion is mainly through the user
mailing list [37].

3.4.2 Security Specific Correlation Software

The tools presented in this section are specifically designed to process and
correlate security events. Some of them do much more than just event correlation. They
are complete Security Information and Event Management (SIEM) solutions. A SIEM
combines Security Information Management (SIM), and Security Event Management
(SEM) functions into one security management system.

3.4.2.1 OSSIM

OSSIM [38] is an open source version of a commercial product, the AlienVault
Security Information and Event Management (SIEM) [39]. It is not considered a prod-
uct, but a solution that integrates many open source security tools in a single Linux
distribution.

A SIEM provides more functionality besides the event correlation and data
aggregation, usually it provides functionalities such as a dashboard for event visualization,
long-term storage of historical events for forensic investigations and data retention policies.

The integrated tools in OSSIM include, among others, the following:

• Arpwatch, used for MAC address anomaly detection;

• P0f, used for Operative System detection by passive collection of configuration
attributes from a remote device during standard layer 4 network communications;

• PADS (Passive Asset Detection System), used for service anomaly detection;

• Nessus, used for vulnerability assessment;

• Snort, used as an Intrusion detection system (IDS), and can also used for cross
correlation with Nessus;

• Tcptrack, used for session data information which can grant useful information for
attack correlation;

20

• Ntop, used for network usage monitoring;

• Nagios, used to monitor host and service availability information based on a host
asset database;

• Osiris, a Host-based intrusion detection system (HIDS);

• Snare, a log collector for windows systems;

• OSSEC, a Host-based intrusion detection system (HIDS);

This distribution has plug-ins for receiving input from many Linux and Windows sensors.
All the tools are linked together in a graphical console that gives the user a single,
integrated overview of security-related aspects of the system. The solution enables
post-processing of events allowing prioritization and risk assessment.

The open source version as the following limitations comparing to the commercial
version, mainly:

• reduced scalability on open source version, no multi-level deployment;

• it is for small, simple, environments that do not require a complex deployment
architecture;

• does not support the logger module that provides forensic storage;

• the open source version has more limited speed than the commercial version;

• the web interface is only for local configuration, cannot manage remote components;

The correlation engine of OSSIM employs two different correlation methods:

• Correlation using sequences of events: focused on known and detectable attacks by
using rules implemented by a state machine. These method is configured through
XML files

• Correlation using heuristic algorithms: uses algorithms that attempt to detect risky
situations using heuristic analysis. In an effort to compensate for the shortcomings
of other methods, these algorithms are intended to detect unknown attacks for
which no rules are available.

3.4.2.2 Prelude

Prelude [40] like OSSIM provides more functionality than event correlation as
it is a SIEM application. This application if focused goal is to collect, normalize, sort,
aggregate, correlate and report all security-related events.

Prelude has a distributed modular architecture [41], the main module is the
Prelude-Manager a centralized server that accepts secure connections from distributed
sensors or other Prelude-Managers, it acts as an event concentrator that also saves the

21

received events to a persistent storage. Using plug-ins this module also provides event
filtering, event suppression, event thresholding and normalization.

The intrusion detection is provided by sensors that report security events to
the Prelude-Manager.

All event communication between the different Prelude modules is done in a
single format the Intrusion Detection Message Exchange Format (IDMEF), this format
is detailed in Section 5.3.1.

The Prelude-Correlator [42] module allows multistream event correlation. It is
a Python based rule engine, the rules are classes written in Python. The module connects
and fetches the events from the Prelude-Manager server and correlates the incoming
events based on the rule set. When a rule generates an alert, an IDMEF event is sent to
the server. The module already is distributed with a default correlation rule set.

The Prelude-LML module provides log analysis capabilities to Prelude. It
monitors log files, logs from Syslog daemon or other types of single-line event logs. Uses
regular expressions to analyze and monitor the logs. The tool is distributed with an
extensive list of default regular expression rules for security and logging applications.

A web-based graphical user interface is provided by the Prewikka module[43],
it provides a graphical interface for permission management, event alert listing, sensor
monitoring and filter creation.

Prelude OSS, the open source edition of Prelude has some limitation when
compared with the commercial Pro edition. The open source edition Prelude OSS
is aimed for evaluation, research and testing purposes on small environments. The
performance of this version is much lower than the Prelude Pro edition.

3.4.2.3 Sagan

Sagan [44]is a multi-threaded, real-time Security Event Management and Ana-
lyzer application. Sagan uses rules similar to Snort [45] rules to detect malicious traffic.
Snort is a widely used Network Intrusion Detection System (NIDS) and its rule format
its a well know in the security field.

Sagan has the capability to monitor events from different sources by using FIFO
and stdin as input, this allows to use this tool with any application that is able to write
to a FIFO or standard output.

As Sagan uses Snort syntax rules it is easy to write new ones for those used
to Snort. The application already includes an extensive list of predefined attack rule
signatures.

Although this application can run without Snort, its usage is tightly coupled
with Snort, Sagan only does correlation with Snort events. To correlate events from
Sagan with those of Snort, the application must use the Snort database to save the
events. These events are kept as a different sensor from those from Snort. The collected
by Sagan from the different sources are then correlated with Snort ones.

The correlation is not configurable and is done by the application automatically
by using the following methods:

22

• Time stamp

• Destination TCP/IP address

• Source TCP/IP address

• Destination TCP/IP port

• Source TCP/IP port

• Protocol used

• Classification

As this tool write the events to the a Snort database, it is possible to use a Snort console
to also visualize the Sagan events, this allows to monitor packet level threats and log
level events from a unified console.

3.4.2.4 ACARM-ng

Alert Correlation, Assessment and Reaction Module-next generation (ACARM-
ng) [46] is a system for correlation of security alerts. It aims to collect and correlate
information coming from IDS components located in the network infrastructure.

Designed to work in conjunction with Prelude-Manager, albeit it can work
without it. The Prelude module act has hub in a multi-level configuration and data
gathering point from multiple sensors.

This application accepts inputs from Prelude-Manager or IDMEF XML files;
other input modules can be written.

The main application is easy to install without requiring many dependencies.
However, some of the optional modules required some patching of source code. The
Prelude-Manager dependency is the one that requires most of the work.

ACARM-ng has a modular architecture made of plug-ins. It includes a pre-
processor, this tool allows to remove certain alerts just after receiving them, this is useful
when there are known facilities that generates useless alerts that are not intended to
be correlated. The pre-processor is configurable by using rules in the form of logical
expressions.

Other included plug-in is the filter plug-in, filters are the key components for
alert processing and have some configurable parameters. Although most of the filters
take part in the process of joining similar alerts, there are some filters as IP blacklist or
DNS resolver that can change input alerts by increasing priority or filling DNS names of
involved hosts. The following filters are included in the application:

• One to one (joins all the alerts between a given pair of hosts, correlates attacks
from one host to another);

• One to many (correlates alerts coming from one source host and with multiple
targets. This is a typical scenario of one attacker trying broad network recognition);

23

• Many to one (correlates attacks performed by botnets against a single host in
monitored network);

• Many to many (correlates attacks performed by botnets against a set of hosts in
monitored network);

• IP blacklist (increases priority of alerts generated by attacks coming from one of
IPs which are known to be attackers. A list of such IP addresses is downloaded
regularly from by this filter);

• Event chain (correlates chains of alerts where one host acts as a source in one alert
and as target in another. It can find break-in where captured computer is used as
a base for following attacks);

• DNS resolver (performs reverse-DNS mapping on hosts that do not have DNS name
set);

• Same name (correlates multiple attacks with the same name);

• User monitor (filter correlating actions of each user)

• Similarity (correlates events similar to each other, above a given threshold; all data
is taken into consideration during comparison of two elements)

• New event (changes priority of events, that were not previously seen on the system);

New filters can be written in Python to perform correlation.
The modules responsible for taking predefined actions for input or correlated

alerts are called triggers.
ACARM-ng includes triggers to send e-mail notifications, write events to files,

invoke external scripts or applications and logging to a console, Syslog or files.

3.5 Feature Comparison of the Correlation Software
To provide a better overview of the tools presented in the previous sections

Table 3.1 and Table 3.2 shows a summary of the features for all correlators described in
the previous sections.

Reviewing the features of the correlators described in Section 3.4 and summarized
in tables 3.1 and 3.2 it was found that some of them were not suitable to be used within
the correlation platform of the PIDS, as they do not fulfill the requirements for the
correlator of the PIDS.

In OSSIM, multilevel deployment is not supported by the open source version
[47]. As a result, it cannot be used in the two-level correlation architecture of the PIDS,
described in section 2.3. Moreover, this tool is distributed as a ISO image designed to be
deployed as the main operative system of the host. Thus it is less flexible and harder to
integrate with the CockpitCI test bed. For these reasons, OSSIM was not considered as
an option for the correlation engine to be used.

24

C
or
re
la
to
r

L
an

gu
ag
e

D
ev
el
op

ed
si
nc

e
L
as
t
st
ab

le
re
le
as
e

(1
0/

1/
20

14
)

L
ic
en

se
O
p
er
at
iv
e

Sy
st
em

R
ea
l-
ti
m
e

B
ui
lt
-i
n

P
er
si
s-

te
nc

e

E
ve
nt

co
m
m
un

i-
ca
ti
on

E
sp
er

Ja
va

20
04

4.
11
.0

(J
an

ua
ry
,2

01
4)

G
N
U
/G

P
Lv

2
C
ro
ss
-p
la
tf
or
m

ye
s

no
no

N
od

eB
ra
in

C
19

98
0.
8.
15

(M
ay
,

20
13
)

G
N
U
/G

P
Lv

2
Li
nu

x,
W

in
do

w
s,

M
A
C

O
S
X
,

U
N
IX

ye
s

no
(o
nl
y

to
te
xt

fil
es
)

ye
s

SE
C

P
er
l

20
02

2.
7.
4
(J
un

e,
20

13
)

G
N
U
/G

P
Lv

2
C
ro
ss
-p
la
tf
or
m

ye
s

no
(o
nl
y

to
te
xt

fil
es
)

no

D
ro
ol
s
Fu

si
on

Ja
va

?
6.
0
(D

ec
em

be
r,

20
13
)

A
P
L

C
ro
ss
-p
la
tf
or
m

ye
s

no
no

A
ca
rm

-n
g

C
+
+
,P

yt
ho

n
20

11
1.
1.
1
(M

ay
,

20
12
)

G
N
U
/G

P
Lv

2
Li
nu

x
ye
s

ye
s

ye
s

O
SS

IM
se
ve
ra
l

m
od

ul
es

w
ri
tt
en

in
di
ffe

re
nt

la
ng

ua
ge
s

20
03

4.
4
(D

ec
em

be
r,

20
13
)

G
N
U
/G

P
L

Li
nu

x
ye
s

ye
s

ye
s

P
re
lu
de

C
,P

yt
ho

n,
Lu

a
19

98
1.
1.
1

(S
ep
te
m
be

r,
20

13
)

G
N
U
/G

P
L

Li
nu

x,
O
pe

nB
SD

,
Fr
ee
B
SD

,
N
et
B
SD

,
Su

n/
So

la
ri
s,

M
ac
O
SX

ye
s

ye
s

ye
s

Sa
ga

n
C

20
09

0.
3
(A

pr
il,

20
13
)

G
N
U
/G

P
Lv

2
Li
nu

x,
O
pe

nB
SD

ye
s

ye
s

(S
no

rt
da

ta
ba

se
)

no

T
ab

le
3.
1
–
O
pe

n
so
ur
ce

co
rr
el
at
io
n
so
ftw

ar
e
fe
at
ur
es

su
m
m
ar
y.

25

C
or
re
la
to
r

T
yp

e
of

so
ft
w
ar
e

In
pu

t
E
ve
nt

fo
rm

at
C
or
re
la
ti
on

M
an

ag
em

en
t/
ev
en
t

vi
su
al
iz
at
io
n

G
U
I

D
oc
um

en
ta
ti
on

U
se
r
co
m
m
un

it
y

A
va
ila

bl
e
in
pu

t
se
ns
or
s

E
sp
er

lib
ra
ry

P
O
JO

,X
M
L,

Ja
va

M
ap

s,
Ja
va

O
bj
ec
ts

ru
le

ba
se
d

no
/n

o
ve
ry

co
m
pl
et
e
an

d
de
ta
ile
d

ve
ry

ac
ti
ve

m
ai
lin

g
lis
ts

-

N
od

eB
ra
in

ap
pl
ic
at
io
n

ra
w

te
xt
,

Sy
sl
og

ru
le

ba
se
d

no
/y

es
(v
er
y
ba

si
c)

ve
ry

co
m
pl
et
e
an

d
ve
ry

de
ta
ile
d

no
ac
ti
ve

us
er

co
m
m
un

ity
,a

lm
os
t

em
pt
y
m
ai
lin

g
lis
ts

Sy
sl
og
,l
og

fil
es
,n
am

ed
pi
pe

s

SE
C

ap
pl
ic
at
io
n

ra
w

te
xt
,

Sy
sl
og

ru
le

ba
se
d

no
/n

o
co
m
pl
et
e
an

d
de
ta
ile
d

ve
ry

ac
ti
ve

m
ai
lin

g
lis
ts

lo
g
fil
es
,n

am
ed

pi
pe

s

D
ro
ol
s

lib
ra
ry

P
O
JO

ru
le

ba
se
d

no
/n

o
ve
ry

co
m
pl
et
e
an

d
de
ta
ile
d

ve
ry

ac
ti
ve

m
ai
lin

g
lis
ts

-

A
ca
rm

-n
g

ap
pl
ic
at
io
n

X
M
L

(I
D
M
E
F
)

ru
le
-b
as
ed

no
/y
es

in
co
m
pl
et
e
an

d
sc
ar
ce

no
ac
ti
ve

us
er

co
m
m
un

ity
,e

m
pt
y

m
ai
lin

g
lis
ts

us
es

P
re
lu
de
-M

an
ag
er

(s
am

e
se
ns
or
s
th
an

P
re
lu
de
)

O
SS

IM
V
ir
tu
al

M
ac
hi
ne

ap
pl
ia
nc
e

O
SS

IM
sp
ec
ifi
c

te
xt

fo
rm

at
ru
le
s,

an
om

al
y

de
te
ct
io
n

ye
s/
ye
s

co
m
pl
et
e
an

d
de
ta
ile
d

ve
ry

ac
ti
ve

m
ai
lin

g
lis
ts

O
SS

E
C
,S

no
rt
,

Su
ri
ca
ta
,O

pe
nV

A
S,

os
vd

b,
N
m
ap

,P
ra
ds
,

N
ag
io
s,

tc
pd

um
p,

nt
op

,n
fd
um

p,
fp
ro
be

P
re
lu
de

ap
pl
ic
at
io
n

X
M
L

(I
D
M
E
F
)

ru
le
-b
as
ed
,

st
at
is
ti
ca
l

co
rr
el
at
io
n

ye
s/
ye
s

co
m
pl
et
e
an

d
de
ta
ile
d

no
ac
ti
ve

us
er

co
m
m
un

ity
,e

m
pt
y

m
ai
lin

g
lis
ts

A
ud

it
d,

N
ep

en
th
es
,

O
SS

E
C
,S

no
rt
,

Su
ri
ca
ta
,S

am
ha

in
,

N
ep

en
th
es
,P

A
M
,

uf
w
i-fi

lt
er
d,

Sa
nc
p

Sa
ga

n
ap

pl
ic
at
io
n

ra
w

te
xt
/s
ys
lo
g

ru
le
-b
as
ed

no
/y
es

(u
si
ng

a
Sn

or
t
co
ns
ol
e)

co
m
pl
et
e
an

d
de
ta
ile
d

ve
ry

ac
ti
ve

m
ai
lin

g
lis
ts

Sy
sl
og
,S

no
rt

T
ab

le
3.
2
–
O
pe

n
so
ur
ce

co
rr
el
at
io
n
so
ftw

ar
e
fe
at
ur
es

su
m
m
ar
y
(c
on

t.)
.

26

Sagan was also excluded as an option for the correlation engine to be used given
that its correlation capabilities are very limited. Sagan correlation is not configurable.
This tool only correlates events from logs with those of Snort based in predefined
parameters like: time stamp, destination and source address and port, protocol and
classification.

Although Prelude satisfied many of the features required for the correlation
platform, the open source version Prelude OSS is aimed for evaluation and testing
purposes in very small environments with performances that are very lower compared to
the Prelude Pro edition, like stated in Prelude open source web page [40]. Additionally,
the development of the open source version advance very slowly, although there was a
release in September of 2013 with small updates, the previous one was more than a year
before. The mailing lists [48] are almost empty, meaning that the community around the
project is almost non existent. Based on the reasons mentioned above the Prelude open
source version was also not considered as a valid option for inclusion in the correlation
platform.

During the analysis, it was found that ACARM-ng was also not an option to
consider. This tool has no releases since May of 2012. It has very poor documentation and
the community is almost non existent, as can be verified by empty forums/mailing lists [49].
ACARM-ng sensors are also based in Prelude-Manager, thus, have the same limitations
than Prelude pointed before. For these reasons, this tool was also not considered.

27

Chapter 4

Communication for Distributed
Event Correlation Systems

The distributed correlation platform needs a mechanism to exchange the events
between the different components of the platform. In this Chapter are described several
technologies for event communication in distributed systems.

4.1 Communication Models for distributed Applications
Two of the most important communication paradigms are the Remote Procedure

Call (RPC) and asynchronous messaging using a Message Oriented Middleware (MOM)
[50; 51].

In Section 4.1.1 and Section 4.1.2 both paradigms are briefly explained and
their suitability to be used for the event communication in the correlation platform is
analyzed.

4.1.1 Remote Procedure Call

RPC is procedure or function-oriented interaction model, allowing synchronously
to request a remote service execution, where both parties communicate directly. It is
suitable to be used in client-server based applications. The systems are tightly coupled
by working on functions interfaces or objects.

This paradigm requires simultaneous availability of all subsystems. As the
communication is synchronous, the receiving server must be available to accept messages
sent. If the server is down, the message cannot be delivered at that time, and it is lost.

Systems built with the RPC model are interdependent, as such RPC provides
an inflexible method of integrating multiple systems [51].

28

4.1.2 Message Oriented Middleware

Message Oriented Middleware [52] is a middleware infrastructure that provides
messaging capabilities, allowing communication between disparate software entities. This
message-centric approach fits well with the security event transmission, as the unit of
information to exchange is the message itself.

In this infrastructure, each client connects to one or more servers, called brokers,
which act as an intermediary in the sending and receiving of messages. Thus, the
applications, senders and receivers does not know about each others making them be
loosely coupled.

Client applications that send the messages are called publishers or producers,
while client applications that receive the messages are called consumers. Each of these
components, publisher, consumer and broker, can have multiple instances each of them
can reside in independent hosts.

One of the strengths of this system is that it allows for efficient communication
between applications situated in heterogeneous operating system and networks[53], as
such it fits well in a heterogeneous system where the Dynamic PIDS is going to be
deployed. The correlation platform needs to receive events from system running in
different operative systems, with applications written in several programming languages
and developed by different teams of the CockpitCI project. Additionally it should
receive events form different networks. Thus, by using a MOM, instead of enabling
explicit connections to varied systems and networks, the client applications only need to
communicate with the Message Oriented Middleware.

Messaging applications use a client Application Programming Interface (API)
to communicate with the MOM. A client application can either act as a sender (producer)
that produces messages, or a receiver (consumer) that consumes messages.

The most common MOM implementations use asynchronous message delivery
between unconnected applications via a message queue framework, although there are
MOM implementations that work without a queue. The queues provide temporary
storage when the destination program is busy or not connected.

The MOM provides different messaging models, two of the main ones are the
point-to-point and publish-and-subscribe.

In point-to-point (p2p) messages from a producing client are routed to the
consumer via a queue. There can be several publishers to the queue, but usually there is
only one consumer. Although it is not a requirement, for example, several consumers
can be used as load balancing in the consuming side of the system. In this mode, the
messages are always delivered and will be stored in the queue until they are consumed
by the consumer.

The publish-and-subscribe (pub/sub) is mainly intended to be used as one-
to-many and many-to-many broadcast of information. It allows one publisher to send
messages to one or several consumers. In this model, the publisher does not need to
know about the consumer application. It just sends the message to a destination in the
broker. The broker will then send it to the consumer. Publishers can send messages to
a specific topic in the broker and only consumers subscribed to that topic are going to

29

receive the message, but all subscribed consumers receive the message.
A combination of publish-and-subscribe and point-to-point can coexist in a

broker, allowing very flexible configurations.

4.1.3 Conclusion

As pointed before, being message centered, the MOM is more targeted to
provide security event exchange than the function based RPC model. Additionally, the
inflexibility of the RPC, due to its tight coupling and synchronous communication, can
be problematic in the heterogeneous systems where the PIDS is going to be deployed.
An advantage of the RPC has over MOM is that it can guarantee sequential processing,
but in the scope of event communication this is not required.

For geographically dispersed deployments, like the ones that are the target of
the PIDS, with strict demands in robustness, reliability, flexibility, and scalability the
MOM is the best solution [51; 50].

4.2 Message Oriented Middleware Technologies
In this section are described some open Message Oriented technologies. Not all

technologies are listed, but is given an overview of the widest spread technologies, with
potential to be used in the correlation platform.

4.2.1 Simple Text Oriented Messaging Protocol

The Simple Text Oriented Messaging Protocol (STOMP) [54] is a lightweight
and simple human readable text messaging protocol. It provides an interoperable wire
format to allow clients (publishers/consumers) to communicate to any message broker
that supports the protocol. This protocol is based on the HTTP protocol. The messages
consist in a frame header with properties and a frame body.

This protocol does not deal with topic and queues, the semantics and detailed
syntax of the destination tag are not defined in the official specification [55][56], as such,
different brokers can interpret the destination in a different way. Hence, interoperability
of the protocol can be compromised when using different brokers.

This protocol as several open source implementations available for clients and
brokers. The implementations provide libraries in different programming languages.

4.2.2 Message Queue Telemetry Transport

The Message Queue Telemetry Transport (MQTT) [57] is a lightweight broker-
based publish/subscribe message-centered wire protocol. It was designed to be used in
constrained environments, like embedded systems, mobile devices or sensors. Usually
this environments have low bandwidth limited connections, limited processor or limited
memory.

30

It is optimized for the use case where routing of messages is made for simultane-
ous connected publishers and subscribers [58], as such, it is not suited for the case where
the consumer is not connected and the messages need to wait in the queue, although it
can be configured this way.

This messaging protocol is agnostic to the payload content, as such, publishers
and consumers need to agree on how data is serialized.

There are available several open source implementations of this protocol either
for broker or clients in different programming languages.

4.2.3 Java Messaging Service

Java Messaging Service (JMS) [59] is a standard that specifies an API for MOM;
it does not specify a wire protocol. This vendor agnostic Java Community Process (JCP)
standard defines the interfaces and semantics on how an application can create, send,
read and receive a message. A broker is used to route the messages from the publishers
to the consumers.

JMS provides a standard for interoperability only within the Java platform.
Being a Java API standard and not defining a message format makes the integration
with other languages difficult to implement.

4.2.4 Advanced Message Queuing Protocol

The Advanced Message Queuing Protocol (AMQP) [60] provides an open
standard application layer protocol for MOM. The AMQP standard was designed with
the following main characteristics as goals [61]: security, reliability, interoperability,
standard, open.

AMQP is a wire-level protocol, it defines a self-describing encoding scheme of
byte sequences to pass over the network. It does not constrain data to be exchanged to
a specific format. This type of protocol also provides interoperability among different
AMQP compliant software. The specification of the protocol enables conforming client
applications to communicate with conforming messaging middleware brokers. Message
exchange can be synchronous or asynchronous. It should be noted that different versions
of the protocol specification are not interoperable, and applications do not implement all
versions of the protocol.

The protocol defines several queuing mechanisms including support for store-
and-forward, this allow to the broker to queue the messages when the consumer is not
available. Messages will be delivered when the consumer becomes available.

AMQP provides several routing mechanisms. It has the concept of a routing
engine, called exchange. Exchanges are entities to where the messages are sent, the
messages sent to an exchange are routed to queues by bindings. Bindings are rules that
allow the broker to know to which queue the messages is going to be sent. A broker
can have one more message queue and exchanges. This allows it to support messaging
models beyond the point-to-point and publish-subscriber.

31

The protocol is vendor-neutral and platform-agnostic. There are several open
source implementations for many different programming languages.

4.3 Message Oriented Middleware Comparison
In this section, the MOM protocols presented before are compared and their

suitability to be used for the communication of the events is analyzed. In Table4.1 is
presented an overview of the key features of each of the technologies.

MQTT and STOMP were designed to be very simple, as a result they are much
less flexible than AMQP and JMS. But the flexibility provided by the AMQP exchanges
makes it even more flexible than JMS. The flexibility in the routing mechanism can allow
to build a more flexible correlation platform.

The fact that JMS only defines an API for Java applications and not messaging
protocol sets this technology apart from the others. This limits the interoperability of
this technology. Although AMQP, MQTT and STOMP are wire formats the AMQP
provides better interoperability than STOMP and MQTT. The limited interoperability
of JMS excludes it from being a viable solution for the correlation platform as it does
not adapts to heterogeneity of the agents to connect to the correlation platform. The
security agents can be written in different programming languages, furthermore, there
are applications developed by external teams that are going to connect to the platform.
There should be no imposition to use Java.

Not being a standard limits the suitability of STOMP to be used as MOM for
security event communication. Additionally its simplicity make its too inflexible to be
used in the platform.

According to [58], MQTT is more suited for the case where simple clients
connect to a server. It also claims that AMQP supports much more use cases, and that
it provides better security and message reliability.

It should be highlighted that many broker implementations support both the
MQTT, STOMP and AMQP protocols. In the scope of the correlation platform this can
allow to use a different protocol for the limited resources agents, like the ShadowRTU
and the Honeypot and have another protocol for the communication between the other
components.

32

AMQP JMS MQTT STOMP

Type p2p, Pub/Sub, other p2p and Pub/Sub Pub/Sub p2p and Pub/Sub

Architecture Brokered Brokered Brokered Brokered

Interoperability Yes No Partial Partial

License Open Source Open Source Open Source Open Source

API/Protocol no/yes yes/no no/yes no/yes

Security SASL authentication
and TLS for data
encryption

Vendor Specific
usually based on SSL
and TLS

Simple
username/password
authentication, SSL
for data encryption

SSL or TLS

Encoding Binary Binary Binary Plain Text

Transport layer TCP Not specified, usually
TCP

TCP TCP

Platform-agnostic yes yes yes yes

Standard yes (OASIS) yes (JCP), but only
API

proposed (OASIS) no

Table 4.1 – MOM features comparison.

33

Chapter 5

Proposed Architecture

This chapter discusses the formal design of the event correlation platform within
the Perimeter Intrusion Detection System (PIDS) of the CockpitCI. The requirements
are presented in Section 5.2.

5.1 The Correlation Platform Within the Perimeter Intru-
sion Detection System
According to the CockpitCI project deliverable D3.1.2 (Requirements and

Reference Architecture of the Analysis and Detection Layer [1]), the PIDS must be
able to aggregate, filter and analyze information of potential cyber-attacks induced on
SCADA systems or telecommunication involved in the operation of Critical Infrastructures,
identifying the potential insecurities and vulnerabilities.

The correlation platform is responsible for collecting the events generated by
the different security sensors, analyze them in order identify threats and generate alarms.
The design, implementation and trial of this platform are the main goals of this thesis.

The correlation platform, as shown in Figure 2.2, comprises two types of event
correlators, arranged in a two-level hierarchy. It consists of one local correlator located in
each network zone and a main correlator with a global perspective of the global SCADA
infrastructure.

5.2 Correlation Platform Requirements
As already mentioned in the section 2.3, the correlation platform proposed here

is integrated with the PIDS, therefore, the architecture must fulfill the requirements of
this intrusion detection system. Additionally, new requirements specifically related to
the event correlation platform were defined. The main requirements are listed below:

34

• All the components of the correlation platform shall be based on existing open-source
software to minimize the costs of development/implementation.

• The global correlator shall be able to send alerts to the Security Management Platform in
case of an attack.

• The alerts sent to the Security Management Platform shall be clear, and include information
complete as possible and easily understandable by the SCADA operators (identify time,
attack, zone, etc).

• The correlation layer shall be able to collect the events generated by the detection layer,
analyze them in order to quickly identify threats (according to some predefined rules) and
generate alarms.

• The system shall provide a mechanism for event aggregation and event filtering in order to
reduce the number of duplicate events, non-critical events and false alarms.

• The local correlators shall be able to send relevant events to the global correlator in case of
an attack. The scope of the correlation of each of the local correlators shall be limited to
the corresponding network zone.

• The correlation layer shall be a distributed two-level correlation architecture. There shall
be a local correlator for each of the network zones of the PIDS. the local correlators shall be
capable of processing the events from the agents were they are located. The main correlator
shall be capable of correlating events from the different network zones of the PIDS. These
events are received from the corresponding local correlators and the OCSVM module.

• It shall be possible to add, edit, delete and view the correlation rules of the correlators.

• All the events sent to the correlator shall be in normalized format.

• The behavior of the correlation shall be deterministic. The behavior shall only depend on
the input events, the rules and the internal state of the correlator. The internal state of
the correlator, in turn, shall only depend on past events and rules. If external sources of
information are used, that are not under control of the correlation engine and can be time
dependent, the correlation process cannot be guaranteed to be reproducible.

• The communication protocol shall allow the implementation of lightweight event producer
capable of running in a limited resource system (like a Raspberry Pi).

• The detection of anomalous security events on the different hosts shall be made by a
specialized application, agents (Honeypot, HIDS, NIDS, Shadow RTU).

• All event communication shall be encrypted from source to destination. Only authenticated
applications can publish events to the platform.

• The protocol used by the communication layer shall provide interoperability.

• The correlation platform shall be resilient, and the loss of events shall be minimized or
even eliminated.

• The correlation application shall be a scalable solution that can have more sources of events
added, as needed, without a large impact in global performance.

• The communication and correlation layer should provide fail-over mechanisms.

35

5.3 Architectural Design
In this section is presented an overview of the distributed security event correla-

tion platform architecture. The platform must be tightly integrated with the architecture
of the Dynamic PIDS. As a result, in this thesis is proposed an architecture for several
components that define the PIDS. The high level architecture of the PIDS, presented
in section 2.3, does not define in detail the several components, it is a global and sim-
plified overview. In this thesis is defined and detailed the architecture of the event
communication and event correlation.

As pointed in section 2.3, the correlation platform incorporates two types of
correlators arranged in a two-level hierarchy.

This arrangement increases the scalability of the correlation system, as each
one of the local correlators is only responsible for processing the events generated by
the agents placed in their corresponding network zone, and the main correlator does
not process all the events generated by all sensors. The disposition of the correlators in
different zones allows to have specialized rule configuration, for each of the zones. Hence,
it will limit the total number of correlation rules for each of the correlators, as such it
will have a positive impact on the correlator’s performance as a large number of rules
can decrease its performance.

The difference and specific details of each one of the two types of correlators is
described below:

Local correlators report information to the higher level of correlation, also performing
event reduction and synthesis (for instance, using duplicate elimination). These
correlators act as a data supplier for the main correlator. By performing event
reduction and aggregation they send fewer events to the main correlator than those
received from all the detections agents. They will behave distinctively according to
its network zone, thus allowing to detect specific problems to a particular zone.

Main correlator that is placed above the local correlators, gets a global perspective of
the whole SCADA infrastructure, receiving events from each local zone correlator.
Due to the broad view of the whole infrastructure, this correlator has an important
role in detecting network traversal attacks. This type of attacks happens when
an attacker penetrates successive networks layers, like one that starts in the IT
network and progresses to Field Network.

The platform is composed by three main elements, each one of them with a different role
in the system. A brief description of each of the components role is presented below:

Detection agent components are the security sensors, distributed over different hosts
and networks, these components are responsible for monitoring, collecting informa-
tion and sending security events to the correlation components.

Correlation and analysis components provide a way to extract meaningful infor-
mation from the events collected by the detection agents by correlating the data
provided by the events. It comprises the local and main correlators.

36

Event communication layer allows reliable and secure communication of events from
the detection agent components to the correlation components as well as sending
the events to the Security Management Platform (SMP).

5.3.1 Event Format

In a distributed environment like the correlation platform, with heterogeneous
security sensors and Intrusion Detection Systems, it is fundamental to specify a common
event format for providing interoperability. Additionally, in a platform developed in col-
laboration with several teams working in a geographical dispersed environment, agreeing
on a common language with a well-defined standard is fundamental. Moreover, high level
analysis like event correlation also requires events to be processed in a generic format [6].

As such, the data format chosen to represent the information exchanged with
the different components of the correlation platform is the Intrusion Detection Message
Exchange Format (IDMEF) [62]. This experimental standard defines data formats and
exchange procedures to be used by automated intrusion detection and response systems,
as well as their management systems. The IDMEF standard is transport independent.

A XML implementation for this standard is defined in the IDMEF RFC draft
[62].

The data model used by the format addresses several problems associated with
intrusion detection data, as indicated in [62]. As an object-oriented model can provide
a flexible way to represent the information from heterogeneous events alerts. It defines
classes to represent different intrusion detection environments, like, for example, a NIDS
that detects attacks by analyzing network traffic and a HIDS that detect attacks by
analyzing logs and files. Can be extended by subclassing or association of new classes to
accommodate the difference in sensor capabilities and the way attacks are reported in
different operative environments. An overview of the IDMEF data model included in
Appendix A and two examples of events attack alerts are included in Appendix B.

Although IDMEF never became a standard its the format used by several
intrusion detection software like Prelude [40] and ACARM-ng [46], there are libraries to
integrate the format with other tools like the LibIDMEF [63].

As pointed before, using a common data exchange enables interoperability of the
correlation platform with other components, as well as making easier to add new elements
to the platform, like new security sensors, as the correlation engines will understand the
events.

Alternatively there are several proprietary standards. One of them is the
Security Device Event Exchange (SDEE), this is an IDS alert format and transport
protocol specification defined by a consortium of companies. In addition to no being
freely available, the specification is mainly only used by Cisco products.

5.3.2 Detection Agent Components

The detection agents are the security sensors responsible for monitoring, col-
lecting information and sending security events to the correlation components.

37

The work to be developed regarding the detection agents concerns the design
and development of adapters for existing sensor applications that provide detection
mechanisms to the PIDS. The adapters ensure the interoperability between heterogeneous
agents and the infrastructure of the PIDS. The idea is to develop a component to connect
two systems that use distinct information formats. The adapter will make possible to
connect systems like Snort, OSSEC and others with the event communication layer
so that these tools can send events in a format (IDMEF) that can be understood and
processed by the correlation components.

Most often the different agents report security events, information of potential
threats and vulnerabilities to log files. The adapter should capable of capturing this
information, normalize the events the from the agent custom format to the IDMEF
and publish the events to the communication layer, in order be sent to the correlation
components. Additionally, the adapter can provide a simple filtering and aggregation
capabilities to reduce duplicate events.

5.3.3 Correlation and Analysis Components

The architecture of each of the two correlators is similar for the local and main
correlator. This uniformity allows for easier integration with the communication layer,
as the adapters will be the same, moreover, using the same correlator engine allows for
expressing the correlation operations using the same language. Thus, simplifying the
task of rule management by operators and security experts. Although, both types of
correlators have similar architectures, they will have different configurations as well as
different correlation rules.

An overview of the correlator internal architecture is depicted in Figure 5.1.
The correlator will interface with the communication layer via an input and an output
adapter. The input adapter consumes IDMEF events from the communication layer and
inserts them into the Esper correlation engine core whereas the output adapter inserts
the events generated by the correlation engine into the communication layer to be sent
to the upper level correlator or the SMP, according to the type of correlator.

For security auditing purposes, the correlator will log all events and traces of
the actions performed to a persistent storage. The events will be logged as they are
received in the correlator and the actions executed by the correlator shall also be logged.

The correlation can make use of information taken from external sources. These
sources can provide additional information related, among others, to the definition of the
network topology, detailed system information. These external sources (knowledge and
topology databases) can be queried directly from the correlator core engine.

The management adapter allows to manage and access the event storage
database, the knowledge and topology database, the rules, as well as to manage the
correlator engine configuration. The management is done from a remote central location,
the SMP

New rules should be easily added to the correlation engine dynamically, without
the need to restart the application. The design and development of this management

38

adapter are out of scope of this thesis. The component is in development by another
member of the LCT CockpitCI team.

Security Management
Console

Management adaptor

Correlator

Correlator co re
Engine

Knowledge/
Topo logy
database

Event
storage

database

Correlation
rules

Co
m

m
un

ic
at

io
n

la
ye

r

Communicat ion layer

In
pu

t
ad

ap
to

r

RE
ST

AM
Q

P

AM
Q

P

Output adaptor

Figure 5.1 – Correlator architecture overview.

5.3.4 Event Communication Layer

The event communication layer is responsible for the transmission of the security
events between the different components of the correlation platform in a secure and
reliable way.

5.3.4.1 Event Communication Protocol

Based on the comparison of the different MOM technologies, described in section
4.3, the protocol selected to be used by the event communication layer is the AMQP
protocol. This protocol fulfills all the requirements for the event communications in the
platform.

As pointed before, AMQP is a wire-level protocol, it does not constrain data to
be exchanged to a specific format allowing the events in the PIDS to be exchanged in
the IDMEF format.

Bellow are described the main feature this protocol can provide to the platform’s
communication layer :
Security The standard specifies security layers OASIS [64](Transport Layer Security

(TLS) and the Simple Authentication and Security Layer (SASL)) that are used to

39

establish an authenticated and encrypted connection over which regular AMQP
traffic can be tunneled.
The security mechanisms provided by the AMQP can ensure that the events are not
tampered, that the event is originating from a certain agent and that an attacker
cannot know that certain alarms are being generated.

Reliability systems supporting AMQP can guarantee message persistence by using a
store-and-forward mechanism. This mechanism is used for persisting events to disk
to ensure that they can be recovered if there is a failure in either the messaging
system or the consuming client. The events that were sent while the system was
unavailable will be redelivered to a system at later time.

Scalability and high availability several AMQP open source broker implementations
support clustering [65; 66; 67], this allows a group of brokers to act as a simple
broker. The brokers, in a cluster, may run on the same host or different hosts. A
cluster can be used to provide high availability and/or scalability/load-balancing.
In the high availability configuration, the cluster members replicate state an if one
member fail clients can fail-over to another. To provide scalability, the workload is
distributed across the multiple brokers that compose the cluster. Although the two
goals are different, the configurations can be combined to provide a highly available
and scalable system, but providing reliability has a cost because replication is extra
work in addition to the normal operation of a broker.

Flexibility AMQP can also provide the publisher-and-subscriber, point-to-point, and
other configurable routing models that allow for a more flexible configuration of
the platform.

5.3.4.2 Event Communication Architecture

An overview of the architecture of the communication layer is detailed in Figure
5.2.

The events generated by the different detection agents, after being normalized
to the IDMEF format, are sent to an event broker through an adapter that connects to
the broker. The broker is then responsible to route these events to a queue where the
local correlator can consume this events. After processing and correlating the events,
each of the local correlators sends the events to another broker from where the main
correlator consumes them. The events produced by the main correlator are sent to the
broker that routes them to a queue where they can be sent to the Service Management
Platform.

The communication system should allow automatic reconnection in case of loss
of connection.

40

Security Management Platform

Main CorrelatorEvent Broker

Events

Operations Network

Local Co rrelator

Event Broker

NIDS HIDS Honeypot

OCSVM

Field Network

Local Co rrelator

Event Broker

NIDS HIDS Honeypot

OCSVM

IT Network

Local Co rrelator

Event Broker

NIDS HIDS Honeypot

OCSVM

...

Figure 5.2 – Event communication architecture overview.

5.4 Correlation Engine Evaluation
As a core component of the platform, the correlation engine, had to be carefully

chosen. This section describes the tests performed to the correlators as well as the
features analyzed in order to select most suitable correlation engine, to be used in the
correlation platform.

5.4.1 Performance Evaluation

As the correlation platform should process and correlate events in near real-time
as well as detect attacks in the shortest time possible, a performance evaluation was
conducted to the selected group of correlation software. The idea was to get an overview
of their capabilities in terms of event processing speed and resources usage (like memory
and CPU). Additionally the goal was to provide additional information that could assist
in the selection of the software to be used as correlation engine. By having a hands-on,
experience it was possible to have an insight of how easily was to express correlation rules
in each of the correlators rule language, the configurability of the engines and eventual
limitations.

As some tools were excluded to be considered as valid options for the correlation
platform, as described in section 3.5, the tests were executed only for remaining tools:
Drools, Esper, SEC and NodeBrain.

The test setup and results are detailed in the next sections.

41

5.4.1.1 Test Setup

The performance tests were executed on a virtual CentOS 6.4 operative system
running on a server with the following characteristics: Intel Xeon CPU X5660 with
2.80GHz. The virtual system had only one single core allocated.

The tested versions of the software were: Esper 4.9, Drools 5.5.0, SEC 2.74
and NodeBrain 0.8.15. Both Esper and Drools used Java, the installed Java version was
OpenJDK 1.7.0_25.

5.4.1.2 Tests and Results

The tests consisted in processing input events, lines of text in a Syslog similar
format, read from a file by the correlation engine. With a defined number of correlation
rules. The correlation rules were defined to check for income matching events using
regular expressions. When an event was matched by a rule, the engine logged this
occurrence to a log file. The correlation process logs allowed to certify that the different
tools were matching the same events.

As all correlators use different rule language, the rules had to be written in such
a way that they were equivalent between the different tools.

The tests were performed three times, and the results were averaged.

Correlators Events per second (for different number of input events)

1,000 events 10,000 events 100,000 events 1,000,000 events

20
rules

200
rules

500
rules

20
rules

200
rules

500
rules

20
rules

200
rules

500
rules

20
rules

200
rules

500
rules

Drools 302 172 128 2,109 1,342 1,053 10,830 7,318 6,247 22,850 14,824 14,075
Esper 448 291 210 2,947 1,724 1,053 16,685 4,652 2,030 37,294 5,767 2,318
NodeBrain 6,383 4,347 3,571 6,756 4,511 3,726 6,678 4,494 3,744 6,352 4,329 3,611
SEC 3,225 735 322 4,231 4,231 345 4,443 1,559 345 4,400 811 338

Table 5.1 – Correlators throughput comparison.

From the tests, it could be observed that Drools Fusion was the software that
consistently needed more memory to run the tests, followed by Esper. SEC and NodeBrain
used, in almost all tests, nearly the same amount of memory. One of the reasons why
Drools and Esper used more memory can be attributed to the fact they are tools written
in Java and, therefore, additional memory is required to run the JVM. In Figure 5.3, is
shown an example of the memory usage during the execution of a test with 100,000 input
events and 500 rules. It should be referred that Drools could not finish tests with 1500 or
more rules due to memory limits. However, the other tools had no problems finishing
this tests. Tests containing rules a with counter for events in a sliding window were not
possible to run with Drools, this engine crashed when processing events with this type of
rules.

42

 11900

 11950

 12000

 12050

 12100

 12150

 12200

 12250

 12300

 0 50 100 150 200 250

A
llo

ca
te

d
 m

eg
ab

yt
es

Time (s)

Memory

NodeBrain
Drools
Esper

SEC

Figure 5.3 – Memory usage comparison, 500 independent rules with 100,000 input events.

The throughput results are presented in Table 5.1. From the results, it can be
observed that the number of the input events has almost no impact in number of events
processed by second, by SEC and NodeBrain while for Esper and Drools it can be seen
that the throughout increases with more events. The fact that Drools and Esper have
lower throughput than SEC and NodeBrain, for a small number of input events (1,000
and 10,000), seems to be related the impact of the time need to start the JVM, as this
tests take less than 10 seconds to run. It should be noted that in real usage the impact
of starting time of the JVM is negligible as the engines are going run continuously.

Increasing the number of rules has a larger impact in decreasing the throughput
in SEC and Esper than in Drools or NodeBrain, but it is in SEC that increasing the
number of rules has the biggest impact.

For tests with a large number of events and that run for longer (100,000 and
1,000,000) SEC has the lowest throughput results, while Drools has the best results,
except for the small set of rules (20 rules). In this case, Esper had better results. However,
such a small number of rules is not expected in a correlator in real usage.

It was observed, from the result data, that I/O operations, like reading the
events and writing the log files, were never a bottleneck in the tests. In all tests the
bottleneck was CPU bound, Figure 5.4 shows the CPU usage while processing 100,000
input events with 500 rules.

Although the presented tests does not represent a complete view of the correlators
performance, they can give however an indication of the throughput expected by each
one of the tools in different conditions.

43

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 50 100 150 200 250

Pe
rc

en
t

Time (s)

CPU usage

NodeBrain
Drools
Esper

SEC

Figure 5.4 – CPU usage comparison, independent rules with 100,000 events.

5.4.1.3 Conclusions

Based on what was outlined above and the features provided by the tools,
detailed in Table 3.1 and 3.2, Esper is the recommended correlator engine to be used by
the security correlation platform of the PIDS.

The good performance exhibited by Drools and an easy to write rule language,
close to natural language, could not overcome the problems exhibited by Drools during
the tests. This engine could not complete some of the tests due to the lack of enough
memory, even when the JVM memory limits were increased to values that were the
double of those used by Esper. Drools also crashed when using a counter within a sliding
window rule. In all tests, Drools was the tools that required more memory resources to
run.

SEC proved to be the slowest correlator, at least in the executed tests. This
and the fact that the rules that can be expressed by its language are less flexible, when
compared to the other three tools, lead to consider the other tools first.

Regarding NodeBrain, even though it had good throughput results its rules
proved to be very unintuitive to write and cumbersome. Moreover, this tool has almost
no user community with almost no discussions on its mailing lists. Additionally, like SEC,
this tool is designed to parse events from text lines using regular expressions. Therefore,
it would be more complex to parse IDMEF XML events as the input events had to be
converted to a format that could be understood by the tool.

Esper proved to be the right tool to be used as local and global correlator of
the correlation platform. Although it was not the top performance correlator tool, it
presented good results without using excessive memory. This correlation engine is also
actively maintained with a very active user community. As pointed before, it can accept

44

input events in XML format that make it suitable to accept IDMEF events. Additionally,
with a SQL like language, the rules proved to be intuitive to write. The expressivity
of the Esper query language EPL, that is, the ability of the query language to express
determined correlation scenarios was considered very good by [68].

Esper has some limitations in the open source versions, but they are mainly
related with the lack of high availability and graphical user interface and not as a
performance limitation.

45

Chapter 6

Implementation and Integration

This Chapter discusses the steps and the decisions taken during the imple-
mentation of the correlation platform, as well as the integration of existing intrusion
detection software and other components with the platform. The main components
implemented were the EventBus for event communication, the correlator application
for event correlation and the agents that integrate the NIDS and the HIDS with the
platform.

6.1 Event Communication: The EventBus
The EventBus or just Bus is used to transmit the events in the distributed

system between the different components.
The communication uses the AMQP protocol, as defined in section 5.3.4.1.

There are several broker implementations as well as client interfaces in different languages.
Some of the most widespread are RabbitMQ 1, 2 and Apache Qpid 3.

The RabbitMQ server (version 3.2.0), was the broker selected to implement the
EventBus. It was found that at a feature level there were no large differences among the
different implementations, which would invalidate the choice of one of the implementations.
The main reason to select the RabbitMQ was the fact that it provided more detailed
and complete documentation. It had detailed tutorials for broker and clients API in
different programming languages. As a result, it helped to support other external teams
to connect and send events to the platform as well as to make the development easier.
Some informal benchmarks showed that RabbitMQ was also one of the fastest broker.

1http://www.rabbitmq.com
2https://activemq.apache.org
3https://qpid.apache.org

46

Agent A

Local
Correlator

Local Broker

idmef.
agents
Queue

EventsGlobal
Correlator

Global Broker

idmef.
smp

Queue

idmef.
correlato rs

Queue

Agent B

Event
Consumer

(SMP)

Figure 6.1 – EventBus and correlators configuration layout.

It should be noted that although the AMQP is RabbitMQ main protocol it also
supports the MQTT, STOMP protocols.

The applications that connect with a broker or Bus were implemented using
different client libraries as described in the next sections.

6.1.1 EventBus Configuration

As described in Section 5.3.4.2, there is one event broker deployed in each one
of the PIDS network security zones: IT Network, Operations Network and Field Network.
These brokers received the events published from the several in the corresponding zone
that are then consumed by the local correlator in each zone. In the upper level there
is a global broker that takes the responsibility for the events published by the local
correlators and then consumed by the global correlator. After processing the events the
global correlator publishes the events to a queue in this broker. The events published by
the global correlator are sent a different queue from were they will be consumed by the
Security Management Platform. The EventBus layout and correlators is presented in
Figure 6.1. This diagram is simplified in a way that it only includes one Local correlator,
to make it easier to describe. To represent the architecture described in Section 5.3.4.2 it
is just a matter of adding one or more combos Local broker/Local correlator, where the
Local correlator publishes to the idmef.correlators queue in the Global broker.

The local brokers have similar configurations, in these brokers a queue was
configured ,named idmef.agents, binded to a Topic exchange (named pids_exchange)
with the idmef.agents routing key. In a Topic exchange, an event sent with a particular
routing key will be delivered to all the queues that are bound with the matching binding
key.

The queues were configured as non auto-delete, durable queues. Queues config-
ured this way are permanent and are not deleted by broker when there is no consumer or
publisher interacting with it.

The global broker as two queues configured, one named idmef.correlators that
is responsible for queueing the events sent by the Local correlators and from where the
Global correlator consumes these events. The other queue named idmef.smp is to where
the Global correlator publishes the events and from where the SMP will consume them.

47

6.1.2 Message Reliability

To provide message reliability to the event communication is was used the
confirmation mechanism provided by RabbitMQ to guarantee that a message hasn’t
been lost (called publisher confirms) [69], this is an extension to AMQP that provides
increased performance when compared to the transaction mechanism defined in AMQP
for message reliability. Transaction’s decrease throughput by a factor of 250, according to
[69], which can be unacceptably slow. Using the publisher confirms, once a channel is put
into confirm mode the broker will confirm messages as it processes them asynchronously,
so the publisher does not need to wait for the broker to acknowledge the last message.
The publisher just sends the messages and will receive asynchronously an acknowledge
or a negative acknowledge from the broker, in case broker has acknowledge or not the
message. The broker acknowledges a message when it assumes responsibility for it, can
it be that the message was persisted to disk, or consumed from every queue it was sent.
Instead, with transactions the publisher needs to wait for the broker to process the last
message and receive an acknowledgment, due to its blocking nature.

6.1.3 Event Publisher Library

In order to facilitate the integration of the different security sensors and to
be easily reusable, the EventBus publisher was implemented as a python library, the
eventbus module. This library was used for publishing events to the Bus by the Honeypot,
ShadowRTU, OSSEC Agent and Snort Agent. Figure 6.2 shows a high level diagram of
the EventBus publisher.

The choice of python as the programming language was related to the fact
that the Honeypot and the ShadowRTU are being developed in Python, therefore, this
language allowed for a seamless integration with these applications. Moreover, the
developer already had experience with this language, and there are several well supported
libraries that implement the AMQP 0-9-1 protocol in python. It should be noted that
the development of the ShadowRTU and Honeypot carried out by other members of the
LCT CockpitCI team was started prior the development of the Distributed Correlation
System.

The library selected for the connection with the RabbitMQ broker was the pika
version 0.9.13 [70] python client library. Pika provides a pure python implementation of
the AMQP 0-9-1 protocol supporting synchronous and asynchronous connections, and it
is very well documented.

The goal of the development of this library was to provide a robust, reliable
and easily integrable software to send messages to the EventBus.

The library is composed of the EventBus class and the EventSender class. The
EventSender class implements the connection management logic as well as sending event
to bus, while the EventBus class is the class integrated with the application that want
to send the events to the bus. The EventBus class works as an abstraction for the
application that makes use of the library. The application only has to instantiate the
class, start it and call the method send(“Message text”) to send a message to the bus.

48

When stopping the application the stop() method must be called to stop in an orderly
way.

The EventSender is spawned as different thread of the main application to
avoid blocking. The communication of the events from the main application integrating
the EventBus class and the EventSender is implemented using the deque class from the
Python standard library module collections [71]. Deques are a generalization of stacks
and queues that allow for memory efficient appends and pops from either side of the
deque. This provides a caching mechanism for messages that cannot be send due to a
lack of connection with the broker.

To avoid losing messages and in the event that there are unsent messages while
stopping the application the eventbus module allows these messages to be persisted to
disk. The messages can also be persisted to disk if the number of the messages in the
memory buffer (deque) reaches a certain, configurable, threshold. This is to avoid holding
a large number of messages in memory. It is particularly important when using the
module in hosts with very limited resources like the single-board computers used by the
SmartRTU and Honeypot.

A FIFO persistent priority queue was used to persist the messages to disk the
messages while maintaining the order of the messages; the implementation of this type of
queue was provided by the python module queuelib4.

Three priorities (priority1, priority 2 and priority 3) were used in the persistent
priority queue according to the source of the messages to persist. This allows the module
internally to keep the order of the messages, it does not relate to the event content
priority, sent events does not have priorities. When consuming from this queue, the
messages with the highest priority are always consumed first (lower the number higher
the priority). The priority assigned to each of messages according to their source is
described bellow:

• Priority 1: messages sent to the Bus and waiting for acknowledgment or messages
that received a negative-acknowledge. The communication of this messages from
the EventSender to the EventBus is implemented by means of a Queue from the
Python standard module Queue5.

• Priority 2: messages in the memory buffer, waiting to be sent to the bus before
stopping the application.

• Priority 3: messages that are persisted to disk when the memory buffer reached its
maximum size, when the buffer has free space messages are moved from this queue
to the memory buffer.

Messages persisted to disk will be sent to the bus upon application restart.
The EventSender class implements a connection recovery mechanism that

reconnects the client to the broker in case of connection failure. If the broker is not
4https://pypi.python.org/pypi/queuelib
5https://docs.python.org/2/library/queue.html

49

EventBus.p y

python Queue

EventSend er.p y

A
M
Q
P

Ap plicatio n using the
event publishing l ib rary

Cache

python deque
IDM EF even ts

Nacked events

Ac
k/

N
a

ck

Event Bus

ID
M

E
F

 even
ts

Prio rity Queue 3

Prio rity Queue 2

Priority Queue 1

P
er

si
st

en
t s

to
ra

g
e

Figure 6.2 – Python EventBus publisher.

available, the module attempts to connect/reconnect. The interval between subsequent
reconnection attempts is configurable.

The communication between the EventSender and the RabbitMQ broker is
established by a permanent connection. Connecting every time a message needs to
be sent to the broker increases the latency, the latency is even worst when using TLS
encrypted connections due to the handshake step where the peers negotiate the cipher
suite, establish the secret keys for the connection, and authenticate their identities.

TLS connections provide encryption, authentication, and data integrity. With
this configuration, only clients with a valid signed certificate are allowed to connect to
the broker and send messages to the Bus.

The confirmation mechanism provided by RabbitMQ is used in the EventSender
class. The container OrderedDict (similar to a Python dictionary but it remembers the
order that keys were first inserted), from the Python standard library module collections
[72], is used as a cache to keep track of the messages sent to the bus. When an event is
delivered to the Bus is is added to the container, when the acknowledge is received the
event is removed from the container. If an negative-acknowledge is otherwise received
the event is moved to another container. The messages in this container are resent again
to the bus.

When stopping the application if there are unacknowledged messages and
negative-acknowledge the containers with this messages are merged, sorted by message
delivery, to be persisted to disk, as previously described.

Pika can use different connection adapters that allow it to use different I/O
loop implementations for pika core communications. The EventBus is implemented using
the pika Tornado Connection Adapter. This adapter uses the Tornado ioloop event loop.
It is an I/O event loop for non-blocking sockets used by the Tornado6, the Python web
framework and asynchronous networking library. This loop is used because it allows to
use the same I/O loop for listening to messages that come from the application through

6http://www.tornadoweb.org/en/stable/

50

the python deque and consume them, as well has sending the messages to the Bus and
receiving the broker acknowledges. Otherwise, two different I/O event loops needed to
be used one to interface with the python deque and other with the Bus.

6.2 Event Correlation
The correlation application has three main components, the input adapter,

the correlation core and the output adapter. In this section, is described how the
implementation of these elements was performed.

The application was implemented using the Esper engine Java API; this engine
was selected as correlator according to the reasons described in 5.4.

As described in Section 5.4.1.3 the same application can run in Local and Global
correlator modes. The correlator mode defined at the application start by passing a
command line parameter, passing -global or -local according to the desired mode. The
distinction between these two types of correlator applications are the input and output
adapter configurations, Esper engine configurations, correlation rules as well as the
listeners (Java classes that process the output of the rules) that can be associated to the
rules.

In Figure 6.3 is presented the diagram of the implemented correlator application,
the diagram presents a more detailed view of the correlator than architecture overview
presented in Figure 5.1.

Security Management Plat tform

Management Adaptor

Correlat or Core

Output adapter

Topology
database

MongoDB
storage

Configuration
files

C
om

m
un

ic
at

io
n

bu
s

Communication bus

In
pu

t a
da

pt
er

AM
Q

P

RE
ST

AM
Q

P

or
g.

w
3c

.d
o

m
.N

o
de

EPL
Statement

module

Esper
run-time

St
at

em
en

tM
an

ag
er

Listeners

Started
statements

Figure 6.3 – Correlator design diagram.

51

6.2.1 Correlator Core

The correlator core component is responsible for the event correlation, statement
management, life-cycle management of the input, output and management adapters as
well as managing the configuration of the application.

In the context of the correlation engine platform, a correlation rule can be
composed of one or more EPL statements.

To understand how the correlator core application was implemented around the
Esper engine is important to describe the Esper Architecture. A simplified overview of
the Esper engine architecture can be found in the Figure 6.4

Esper engine

EPServiceProvider

Event Object EPL Statements

UpdateListeners

C
onfiguration

1

EPRuntime EPAdministrator2 3

4 5

6

7

Figure 6.4 – Esper engine architecture overview.

1. The EPServiceProvider interface. This interface represents an engine instance. Each
instance of an Esper engine is completely independent of other engine instances and
has its own administrative EPAdministrator and runtime EPRuntime interfaces.

2. The EPRuntime interface is mainly used to send events for processing into an Esper
engine.

3. EPAdministrator is used to create pattern expressions, create EPL statements,
receive statement results and other statement operations. The results can be
obtained by attaching one or more listeners to a statement, the EPAdministrator
interface also provides this.

4. Event object, which is an object that represents an event. Esper can accept events
in different formats, like POJO, Java Maps, XML and Java Object arrays. The
statement results events are returned as EventBean objects. These objects are
events that have additional metadata associated. The metadata differs for each of
one of the event formats.

5. The EPLStatement are queries written in EPL. Statements are the correlation rules
in other correlator’s terminology.

52

6. The UpdateListener, these listeners are Java classes that receive updated data as
soon as the statement processes the incoming events. The listeners attached to
statements receive EventBean objects that represent a row (event) in a continu-
ous query’s result set. An UpdateListener implementation receives one or more
EventBean events with each invocation.

7. Configuration, to tune the engine to specific configurations an application using the
engine can use XML files to hold the configuration as well as using the Configuration
class at the time of engine allocation. The configuration can also be changed at
run-time using the EPAdministrator interface.

Although Esper can have several engine instances running at the same time, in the
implemented application only one engine is instantiated. As the application needs be
aware and process all the events entering the correlator, and all events of the same type
and representation, there were no advantages of instantiating more than one instance.

Bellow is presented a description of how the features of the correlator core
application were implemented:

Configuration to simplify the deployment of the correlator, as it can run in Local
correlator or Global correlator modes, the configuration files for the input adapter, output
adapter, statements module and Esper engine, have distinct paths for the Local and
Global modes. When the correlator starts, it loads the configurations concerning the
chosen mode.

As pointed before, Esper can manage different event representation and have
different types, the event type describes the type of information for an event representation.
Predefined event types can be configured at the application start or at run-time via
API or EPL statements. The events entering the engine via input adapter are in the
IDMEF format (XML based), represented as org.w3c.dom.Node instances. An XML event
representation for the type IDMEF was configured in Esper including the required XML
root element name, for the IDMEF the root node is “IDMEF-Message”. The IDMEF
XSD (XML Schema Definition) file, included in the RFC [62], was set in the configuration.
This allows Esper to validate EPL statements that refer to event properties against the
types provided in the schema. An example of the configuration can be found in the
Appendix C.

The option xpath-property-expr was enabled to allow the traversal of the
namespace-aware Document Object Model (DOM) representation of the IDMEF. With
this option, the engine rewrites each property expression as an XPath expression
to access the event properties. Property expressions are expressions in EPL state-
ments that allow to assess event properties. For example, the property expression
Alert.Classification.text, for the configured IDMEF event, allows to get the value of the
attribute text defined in the element Classification, child of the IDMEF element Alert.
Internally this expression is rewritten as the equivalent Xpath expression /idmef:IDMEF-
Message/idmef:Alert/idmef:Classification/@text, including the idmef namespace prefix,
that to query the intended XML node value.

53

Explicit properties, defined with the option xpath-property, can be configured to
access some IDMEF properties stored in child elements instead of attributes, additionally
this can provide shorter properties expressions to access the most often used properties.
These are properties explicitly defined in the configuration, there is a property name
which backed by a Xpath expression.

Statement management the statements, representing the correlation rules are read
and parsed from a file upon the engine initialization. The file is loaded as an EPL module.
In Esper ’s terminology, an EPL module is a plain text file in which EPL statements
appear separated by a semicolon (;) character. After added to the list of known modules,
it is deployed starting all the statements of the module. When undeploying the module all
started statements associated to the module are destroyed. All the module management
is done throughout the EPDeploymentAdmin service available from the EPAdministrator
interface.

To allow for the management of the statements at run-time, without the need for
restating the correlator, a file change monitor was implemented using the WatchService
interface from the standard java.nio package present in Java 1.7 [73]. This service watches
registered objects for changes and events. The file with the statements is registered with
the service, to be monitored for file changes. When the statements file changes, a callback
is called to the reload the module.

Every time the module is loaded, the implemented application validates it to
check whether the included set of statements is complete and can start without issues.
This is accomplished by deploying the module to an isolated service provider. An isolated
service is an execution environment separate from the main run-time engine. This is
done with the option to not deploy any EPL statement and just only perform syntax
checking. If there is a syntax error on the statement, an error is logged appending the
error description provided by Esper. Most of the times the messages provided by Esper
are descriptive enough to identify the error including the line number where it can be
found. If there are syntax errors in the module, it is not deployed, only after changing
the file and correcting the error(s) the module is deployed to the running engine instance.

One of the challenges, while developing, the correlator was to define a way to
dynamically attach a listener to a statement as well as to add new listeners without the
need to compile to byte-code the entire correlator application every time a new statement
or listener was added/removed or changed.

As Esper only allows to add a listener class to a statement programmatically
through its API, the solution was to make use of Esper annotations. An annotation is
additional information added to the statement; it is part of the statement text and precedes
it. They can be used, for example to define, the statement name using @Name("example
name"), allowing to retrieve the statement later on by the engine, or add a statement
description using @Description("example event description").

Esper provides certain built-in annotations, but applications can provide their
own annotation classes that the EPL compiler can populate. Therefore a new annotation
class was created, the @UpdateListeners annotation, with the purpose off attaching

54

one or more listeners to a statement from the module file dynamically at run-time. A
list or a single UpdateListener class can be attached to a statement be appending the
@UpdateListeners annotation before the statement. The syntax for adding a list of listeners
to a statement is as follows: @UpdateListeners({"ListenerClassA", “ListenerClassB”}).

When the module is loaded, the application will use a factory method to
dynamically load and instantiate the classes with the names matching the ones identified
in the @UpdateListeners annotation. The factory method will look for the classes
matching the name in a defined path and will raise an exception if a class with that
name cannot be found. As a result, it is possible to move a pre-compiled listener to the
defined path and attach it to a statement during run-time, without the need to restart
the correlator application. Additionally with this feature it is easy the Local and Global
correlators to have different listeners without the need to recompile the application. The
StatementManager class, identified in Figure 6.3, implements the functionalities described
above.

Listeners Listeners are Java classes that receive the results of the statements, they
can receive the results as org.w3c.dom.Node instances or Java Map instances. These
classes, after processing the events are responsible for building the new IDMEF events,
when required, and can also execute other programmed actions. To build new IDMEF
messages in Java, it was used the JavaIDMEF7 library. As this library only supported an
old version of the IDMEF standard, it had to be modified to support the latest version.

6.2.2 Input Adapter

This adapter is responsible for consuming events from the Bus and insert them
into the Esper engine for correlation. It interfaces with the Bus using the RabbitMQ
Java client library to consume events from the broker.

The adapter was implemented as an Esper plug-in implementing the com.espertech
.esper.plugin.PluginLoader interface from the Esper API. By implementing the input
adapter as plug-in as the advantage that the plug-in follows the Esper engine life-cycle;
when the engine initializes, it instantiates the PluginLoader implementation class. The
engine then invokes the lifecycle methods of the PluginLoader implementation class before
the engine is fully initialized (init method, where is done some variable initialization)
and after (postInitialize method, where is established a connection to the broker) and
before the engine instance is destroyed (destroy method, where the connection to the
broker is terminated).

The ConsumerManager implements the connection management to the broker
with connection recovery. When the connection to the broker is not explicitly terminated
by the application, this class implements a recovery mechanism that reconnects to the
broker. If the broker is not available it, keeps trying to reconnect.

The TLS protocol used to provide encryption, authentication, and data integrity
to the connection.

7http://sourceforge.net/projects/javaidmef/

55

All the connection parameters are read from a file upon initialization.
The ConsumerWorker class is responsible for the processing of the events

consumed from the broker. As an event arrives from the Bus as a XML string (representing
the IDMEF), it is converted to org.w3c.dom.Node instance, this interface represents the
DOM an entire XML event, which the Esper engine can process. After the conversion,
the event is sent into the engine via the sendEvent method on the Esper EPRuntime
interface. If the event is insert correctly into the engine an acknowledge is sent to the
broker, to inform it that the correlator has taken responsibility for the event. Otherwise,
a negative-acknowledge is sent so the broker can re-queue the event unless the exception
is an Esper EPException. In this case, the event is acknowledged, and the error logged.
As this indicates an Esper run-time exception, the event should not be re-queued because
if there is a problem with the event format it would be negative-acknowledged every time.

All the events processed by the ConsumerWorker are logged to a MongoDB8

database for auditing purposes.

6.2.3 Output Adapter

Instead of implementing a new output adapter as a plug-in, like it was done for
the input adapter, the Esper AMQPSink9 data-flow operator was used. While for the
input adapter there were advantages of implementing a new adapter as a plug-in, as this
provided more flexibility and control of the event consumer, that could not be achieved
with the built-in Esper input adapter. For the output adapter, there was a feature that
could not be provided by a plug-in. The AMQPSink data-flow operator allows for an
event to be sent to the Bus directly from an EPL statement without requiring a listener
class to process the event. This is useful when forwarding events to the upper layer, as it
that does not require further processing.

To the correlator publish an event to the Bus, using the AMQPSink, this
event must be wrapped in new event type, configured as OutgoingWrappedIDMEF and
represented by a Java Map containing the IDMEF XML string. Every time an event of
this type enters the Esper engine, it is published to the Bus.

The AMQPSink code was modified and extended to provide additional features,
such as connection recovery, TLS protocol support, connection parameters configuration
read from an external file, confirmation mechanism for the messages and message caching.
Like the input adapter, the modified adapter supports reconnection to the broker upon
disconnection, encryption and authentication via TLS. The confirmation mechanism
guarantees that a message is not lost, as described in Section 6.1.2. Message caching
allows to store the messages in memory when there is a connection failure, the messages
will be published to the Bus when the connection is re-established.

8http://www.mongodb.org/
9http://esper.codehaus.org/esperio-5.0.0/doc/reference/en-US/html/adapter_amqp.html#amqp-

sink

56

6.3 Agent integration
In this section is described who the integration of the NIDS and HIDS was

implemented. These intrusion detection tools are one of the sources of the security events
that provide information to be correlated.

6.3.1 NIDS Integration: The Snort Agent

The Snort Agent is responsible for reading Snort events, compose IDMEF
messages with the data obtained from the event and send the event to the EventBus.

To read the Snort logs it was used the idstools 10 tool, a python library to work
with snort rules and logs. This library allows for continuous unified2 directory spool
reading, including bookmarking support. The bookmarking feature allows the library
to bookmark the last unified2 log file, as well as the last event in the file, this allows
the reader to remember its location and start reading from the bookmarked location
on initialization, avoiding parsing all the previously read events. Each event processed
by the tools is represented as a python dictionary dict containing the fields of a Snort
unified2 event record.

In order to use this library, Snort had to be configured to log with the unified2
output plug-in. The unified2 is designed to be the fastest possible method of logging
Snort events. According to the Snort documentation [74], this output plug-in logs events
in binary format, allowing other programs to handle complex logging mechanisms that
would, otherwise, diminish the performance of Snort.

The agent runs as a daemon, when a new Snort event is logged to the unified2
log file the daemon composes an IDMEF file with the information from the Snort event
and sends the event to the EventBus using the event publishing library, described in
Section 6.1.3.

The agent has an event reduction mechanism. An event is filtered if the same
event is generated from snort during a certain interval; this interval is configurable.

Two events are considered equal if they have the same hash. The hash is
obtained from hashing the concatenation of the words (strings) of the defined event
properties, like signature id, destination IP, source IP, protocol, priority, etc. The list of
the properties to include in the string to hash is configurable. This allows to configure
how aggressively the events are filtered. When fewer properties are selected to be included
results in more events considered equal. Hence, more events are going to be be filtered.
So, this properties need to be chosen carefully. Event timestamp, for example, should
not be used as a propriety for hashing as, otherwise, no events could be considered equal.

For hashing it was used a fast non-cryptographic hash, Murmur311 or optionally
xxHash12 were selected. It is used the hashing library available in the platform were the

10https://pypi.python.org/pypi/idstools
11https://code.google.com/p/pyfasthash/
12https://github.com/ewencp/pyhashxx

57

Snort event logged to
file

Generate event hash
from properties

Event hash already
in cache?

Event timestamp <
timestamp in cache +

interval?

Append event to cache
(key:hash,value:

timestamp)

Discard event Update timestamp
of event in cache

NoYes

Yes No

Send event to EventBus

Send event to
EventBus

Figure 6.5 – Snort agent event filtering flow

agent is going to be deployed. These fast hashing functions have good performance and
have a low number of collisions.

A python dictionary is used to keep a temporary cache of previous events. The
events are inserted into this dictionary with the event hash as the key and the timestamp
as the value, the timestamp represents the time of insertion into the cache. Upon arrival
of a new event, the hash is generated for the event, as described above, and it is inserted
into the cache with the current time as timestamp. If an event with identical hash is
found to be already in the cache upon insertion the timestamp of this event is verified. If
the number of seconds that elapsed since the time represented by the timestamp of the
event in cache is less than a defined (configurable) interval of time the event is filtered
and not sent to the EventBus. Otherwise, the timestamp is updated with the current
time. The event flow described above can be pictured in Figure 6.5.

As there could be a large number of unique event hashes, for long periods of
execution, the cache could became very large. To prevent the cache to keep growing
indefinitely entries with expired timestamps need to be removed. To avoid iterating all
the elements of the dictionary for an expired timestamp, on a regular interval or on every
new insertion, an operation that for large caches could delay the processing of a new
event, a different approach was used. Upon new event arrival only a set of events in
cache is checked for expiration, the events are removed from cache if found expired, an
event is considered expired if more than a configured number of seconds have elapsed
since the value of timestamp for that event. The size of the set is configurable and the
set is chosen randomly from all the keys in the dictionary. It was found that with set
with 1 or 2 elements to be enough to avoid the cache to grow excessively, with larger sets

58

the overhead would be larger without reducing the size of expired events in cache.
To build IDMEF events, programmatically in a structured way, it was used the

GenerateDS13 python application. This application is an automated tool that generates
Python data structures from a XSD schema. This tool generated a python module, the
idmef_api.py. However, the module had to be adjusted to produced valid IDMEF files
as there where some details of the IDMEF that were not correctly generated by the tool.

6.3.2 HIDS Integration: The OSSEC Agent

The OSSEC architecture includes a central manager for monitoring and receiving
information from agents. The agents are small programs installed on systems to be
monitored, that are registered within the manager.

OSSEC provides several ways of sending alerts to other systems or applications,
such as send alerts via e-mail, Syslog and SQL database.

To integrate the OSSEC output with the correlation platform was implemented
using the Syslog output from the OSSEC manager. This option was found to be the
simplest and with the lowest overhead. It had the advantage of using a service already
running on the host, Rsyslog, to forward the messages without that need of more complex
daemon to parse e-mail or SQL database.

The integration of the syslog with the EventBus was implemented by using the
omprog14 module (Program integration Output module) from the Rsyslog15, a Syslog
daemon implementation. This module allows to integrate external an external program
with the Syslog daemon. For this, an external application was developed. This application,
omprog_ossec.py, receives from standard input (stdin) the Syslog messages the omprog
module outputs. Rsyslog was configured to send all messages coming from OSSEC to
this module, in JSON (JavaScript Object Notation) format. To send messages to the
Bus, it was used the event publisher library, referred in Section 6.1.3. Before sending the
messages to the Bus, the application assembles the events in IDMEF format from the
information contained in the JSON message received from the Rsyslog daemon.

6.3.3 Other Agents and Systems Integration

As pointed before, the Shadow RTU and the Honeypot, developed by other
elements of the CockpitCI LCT team, were integrated with the correlation platform by
using the python event publisher library described in Section6.1.3.

Additionally, is was provided support to integrate security tools developed by
other CockpitCI project members. One example is the multi anti-virus software checker
developed by itrust16. A security company from Luxemburg. Their tool successfully

13https://pypi.python.org/pypi/generateDS
14http://www.rsyslog.com/doc/omprog.html
15http://www.rsyslog.com/
16http://www.itrust.lu/

59

connected to the correlation platform. This tool publishes IDMEF events to the platform
reporting alarms from the hosts being analyzed.

Another tool is the OCSVM (One-Class Support Vector Machine) module, a
machine learning tool for intrusion detection developed the University of Surrey17, in the
U.K. This module analyzes the network traffic connects to the correlation platform and
publishes reports in the IDMEF event format.

17http://www.surrey.ac.uk/

60

Chapter 7

Validation

This Chapter discusses how the developed application validation was performed.
Two types of validation were performed, functional validation and performance validation.

7.1 Functional Validation
In this section are described the validation steps performed to the correlation

platform in order to verify that is was working according to the requirements. For the
validation in this section it was used a simplified small scale test bed, running in a
virtualized server. A an overview of the configuration is depicted in Figure 6.1.

7.1.1 Preliminary validation

A preliminary and simplified version of the correlation application and EventBus
was demonstrated in the Conference on Innovation for Secure and Efficient Transmission
Grids1 (CIGRE), that was held on Brussels, Belgium from the 12th of march to 14 of
march of 2014.

The scenarios demonstrated in the conference showed the capabilities of Cock-
pitCI detection layer to detected, correlate and report some security attacks. The attacks
were communicated to the Integrated Risk Predictor (IRP), described in 2.1. The IRP
was developed by Roma Tre University, from Italy.

The following scenarios were successfully tested: Network Scan, Network Flood,
Honeypot Interaction and Man-in-the-Middle attack.

All the CockpitCI team collaborated in the development of the demo. The
author of this thesis was in charge of the event communication and correlation tasks.

1http://www.cigre.org/Events/Other-CIGRE-Events/Innovation-for-secure-and-efficient-
transmission-grids

61

7.1.2 Correlation

The correlation application needs some rules configured to perform the event
correlation. In the section are described some correlation operations applied to the events
received in the correlator. The statements described were written to the application EPL
statement module file, loaded by the application. Several publisher agents published a
set of events composing a scenario that triggered the correlation operation. This allowed
to verify if the outcome of the correlation operation was the expected. These tests
also allowed to verify the statement management functionality, as the statements were
configured while the correlator was running. The statements or rules described here
show the capabilities of the platform to perform security event correlation, with IDMEF
events. Additionally it should function as a guide on how to write rules for the correlation
application. The goal is not to show all the event processing capabilities provided by
Esper neither to test all possible correlation operations.

7.1.2.1 Event Aggregation

In this section is described an example of an event correlation operation named
event aggregation. This operation consists in creating a new event, that has a new
meaning, from a set of events. The aggregated event contains references for the events it
aggregates.

The example implements an Event Storm detection. Event storms are the
manifestation of an important class of abnormal behaviors in communication systems,
according to [75]. They occur when a single host generates an excessive number of events
within a small period. It is essential for network management systems to detect every
event storm and identify its cause, in order to prevent and repair potential system faults.

The statements that allow detecting an event storm can be found in Listing D.1
in Appendix D. The output of the statement is sent to a listener, this listener then builds
an IDMEF event with results from the EventStorm statement. The generated IDMEF
is then inserted into the Esper engine to be sent to the upper correlation level by the
correlator output adapter.

The example statements in Listing D.1 allow to detect when a single host,
generates more than 100 events during an interval of 120 seconds. As one event IDMEF
can have multiple sources, an event stream, which aggregates all the sources, is first
created. An event stream is a time ordered sequence of events in time. The events in this
stream have only a subset of all the properties of the IDMEF from where they originate.
This stream can be seen, in a simplified way, as the list of sources of all events entering
the engine.

When the correlator is configured with the statements presented in Listing
D.1 and more than 100 events, identifying the same address as source, arrive at the
correlator within an interval of 120 seconds an IDMEF alerting for an event storm is sent
to the correlator output adapter. The generated IDMEF contains the reference for each
of the event ids (messageid attribute in the IDMEF) that originated the event storm,
as well as the target’s IP addresses of the events. It should be noted, that a listener

62

IDMEFEventStormListener, developed specifically for this rule, need to be attached to
the last statement in Listing D.1 in Appendix D, so it can receive the results of the
statement.

To test the rule, several events containing different sources each were sent to
the correlator application. It was observed that when one source IP was referred 100
times in the received events during the defined interval, it was generated and sent to the
output adapter an IDMEF containing the references for those events.

7.1.2.2 Event Filtering

The statements in Listing D.3, found in Appendix D, were configured in the
correlator application to provide event filtering. With the configured statements the
correlator filters all but the first event, every 30 seconds, originated from any Snort Agent
and reporting a SYN Flood. This type of events is received in large batches of similar
events from the Snort Agent. As a result, the correlator only forwards to the upper layer,
the first of these events, every 30 seconds, filtering all the other similar events.

7.1.2.3 Event Suppression

The event suppression statements, presented in Listing D.2, found in Appendix
D, have a similar operation than the ones presented before, i.e. both make event filtering.
However, while the event filtering presented before took into account properties of the
events to be filtered, the event filtering in Listing D.2 also take into account the state of
the correlator. In this particular case, the “ARP Cache Overwrite Attack” event from
Snort is only forwarded to the output adapter if a Medium or Severe Alarm has been
received from the OCSVM in the previous 5 minutes, otherwise the event is filtered.
An Esper variable is used keep the alert level from OCSVM. The variable is toggled by
statements that check for events originated from the OCSVM.

7.1.3 Resilience

To test the resilience of the application some tests were performed. Some failures
were intentionally triggered, to verify how the components recover for failure while events
are being published by the agents. Below are described the tests performed. In the
tested configuration it was not implemented broker or correlator redundancy mechanisms.
However this configuration can be implemented, which can provide additional resiliency
and robustness to the platform. The tested setup diagram is pictured in Figure 6.1.

Broker failure: the local broker was rebooted during normal operation. The
idea was to simulate a broker failure. It was observed that while the broker was down
the publishing agents kept trying to connect to the broker, as well as, the input adapter
of the local correlator. The events produced by Agent A and B were queued by the
event publishing library while the connection was down. When the broker started again,

63

the agents successfully reconnect to it and sent all unsent cached events. The global
correlator reconnected again to the broker and started consuming the events.

The same procedure, as described before, was performed for the global broker.
It was observed that the local correlator output adapter cached the events not sent
while the connection with the global broker was down. As soon as the global broker was
operational the output adapter was able to reconnected to it, and sent the cached events.
Both input adapter and output adapter kept trying to reconnect to global broker while
it was down, once it restarted both adapters successfully reconnect to it.

During this procedure, no events were lost due to the implemented caching
mechanisms in the agents and local correlator output adapter.

Correlator failure: the local correlator was restarted while operating. When
the correlator was down the events published by the agents were queued in the broker.
When the correlator started, connected to the broker and started consuming the queued
events. When executing the same operation with the global correlator, the events received
by the local correlator were queued in the idmef.correlators in the global broker. As soon
as the global correlator restarted both connection adapters reconnected to broker and
started processing the events.

In this test there was event loss as Esper does not persist the events when
stopping, so the events the Esper engine acknowledged and were being processed were
lost (Esper does not support event persistence in the Open Source version). The events
eventually queued in correlator output adapter are also lost as it was not implemented
persistence for this caching mechanism.

Agent shutdown: testing the correlator resilience was done with the local
broker shutdown, in this situation it was observed that since the agent publishing library
was unable to connect to the broker the events, received from the application using the
library, were being cached by the library. The application was then restarted. When
stopping the publishing library persisted the cached events to disk. Once agent application
restarted it started trying to connect to the broker again, as soon as the broker was
started, it was observed that the cached events were successfully sent to the broker.

Consumer failure: When the consumer was shutdown while operating, the
events were cached in the idmef.smp queue. As the confirm mechanism, previously
described in Section 6.1.2, was enabled, the events that were not acknowledged by the
consumer were republished by the broker. No events were lost during this failure.

Although only single component failure at the same time was tested, it was
possible to verify the platform provides strong resiliency capabilities.

To provide more reliability to the platform is also possible to have more than one
RabbitMQ broker connected in a cluster, and using High Available queues, as described in
[76]. In this configuration, the queues are mirrored, and the events in them synchronized.

64

The publishers and consumer connect to the cluster if one broker node fails the other
takes its place.

Having redundancy mechanism on the correlators (be it Local or Global) allows
the consumer to start receiving events from the queue with events from the backup
correlator. Both share the same internal state as in this configuration the master and
slave correlator are receiving the same events and have the same configured rules. This
configuration protects from a failure of both the correlator and the broker at the same
time. The configuration previously described is presented in the Figure 7.1. It should be
taken in consideration that this solution was empirically tested, no further testing was
done as it was out of the scope of this thesis.

Events
Master

Correlator master

Queue
A (HA)

Queue
B

Correlator slave

Queue
A' (HA)

Queue
B'

Event
Broker

A

SMP
(event consumer)

Slave

Events

RabbitMQ in
Cluster configuration

Agent A

Agent B Event
Broker

A'

Figure 7.1 – High availability correlation platform configuration.

7.2 Performance testing
To assess the performance of the correlation platform, some benchmarks were

performed. The results of these tests can allow to identify eventual bottlenecks in the
platform, estimate the performance behavior in a working deployment as well as define
what elements can be optimized.

7.2.1 Event Publishing on Limited Resources Systems

The performance of an event publisher in a small low-spec ARM computer, like
the Raspberry Pi [77], was also tested. The purpose was to check the feasibility of an
AMQP event publisher on this type of system and assess the performance. This type
of computer will be used to deploy the Shadow RTU and Honeypot. Therefore, this
components need to send security events to the to the Bus. The testing was successful,
and it was possible in a simple test to send to the broker events (in IDMEF format with
1Kb) at a rate of around 200 events/second, on average.

65

7.2.2 EventBus and Correlation Application Test Setup

The benchmark layout was configured like shown in Figure 7.2. The correlation
platform was deployed in three different hosts. Host 1 and host 2 identified in the Figure
were deployed on a virtual CentOS 6.4 operative system running on a server with the
following characteristics: Intel Xeon CPU X5660 with 2.80GHz. The virtual host had
only one single allocated. These hosts have the same configuration than the system used
for the correlator benchmarks referred in Section5.4.1.1. Host 3 was not a virtualized
system; it was a system running outside the server. An event publisher was deployed
in host 1 (simulating an agent); this element publishes events in IDMEF format to the
broker using the Python eventbus library described in Section 6.1.3. In host 2, it was
deployed the RabbitMQ broker and the correlation application, while host 3 had an
application that consumed the events from the broker.

Events

Host 2 Host 3

Event consumer

Host 1

Correlator

Event Broker

IDMEF event
publisher

Queue
A

Queue
B

Figure 7.2 – Performance testing configuration layout.

To time the tests the publisher writes the current system time on one element
of the IDMEF then when the consumer receives the event it reads the publisher time
and compares it to the arrival time. Both machines system clock’s were synchronized
with a Network Time Protocol (NTP) before performing the benchmarks.

The correlation application and the RabbitMQ broker were deployed in the
same host as in this configuration the communication between the two components
can happen inside the same machine without increased network latency, the correlator
consumes events from the broker and then after processing publishes the to the broker.
Additionally, as communication takes place inside the same host, the encryption of the
communication between the two components can be disabled, reducing the overhead
encryption imposes without lowering the security level.

It should be noted, that the testing configuration represents a segment of the
architecture described in Section 5.1. As the architecture includes two correlators the
latency values should be doubled, as proposed architecture includes two correlators
it is equivalent of having two testing layouts connected in sequence, like publisher →
broker↔correlator → broker↔correlator → consumer. This simplified testing layout
allows to identify the eventual bottlenecks better.

The correlator was configured with 20 rules. The tests in this Section were

66

focused in the global platform performance assessment. Detailed benchmarks of the
correlator component are described in Section 5.4.1.2. In this performance testing, the
correlator was not filtering events, neither new events were created by the correlator. All
and only the events consumed were being published to the broker. When the configured
rules were triggered, by matching a configured string with an element in the IDMEF
event, the events were published to Queue B. All events were triggering a rule.

7.2.3 Event Rate Evaluation

Several tests were performed to test the number of events the correlation
platform can process when publishing events as fast as possible.

IDMEF events do not have a size limit and can have different sizes to accommo-
date information from different sources, for example, an IDMEF that is the result of the
correlation of several other events includes the references for all the events it aggregates
as well as their sources and targets, thus becoming a very large event. As a result, to
test the impact of the message size in the message rate, the tests were performed for
different message sizes, from 1 kB to 20 kB. The 1 kB represents an IDMEF with all the
mandatory fields and 20 kB an estimation of an event with several references for other
events. However, an IDMEF event can even be much larger than 20 kB tested here.

In order to have an idea of the impact in the performance imposed by confir-
mation mechanism, for improved reliability, described in Section 6.1.2 the tests were
also performed with this mechanism disabled. When enabled, an acknowledge is sent to
the publisher when the consumer processes the message or the broker persists the event
to disk. Otherwise, when disabled, in auto acknowledge mode (AutoAck as RabbitMQ
names it), the broker sends an acknowledge to the publisher as soon it receives the event.

Although the encrypted communications are a requirement, the tests were also
performed without encryption to assess how it impacts the performance of the platform.
The values presented are the average of the execution of each test three times.

All the tests were executed with messaged marked as persistent; this way
messages are persisted to disk, by the broker, when they can not be immediately
consumed. This allows the events to have higher delivery guarantees, however, this also
decreases the performance.

Figure 7.3 shows the impact of the message size in the message rate when
sending 10.000 events to the broker, as fast as possible.

The results show, as expected, that when the message size increases the rate of
messages consumed decreases, as larger messages take longer to send and process. It can
be seen that the impact of the confirmation mechanism and encryption is not neglectable
and that this impact, in the message, rate decreases with the size of the message. For
event sizes of 5 kB to 20 kB, the rate reduction is primarily due to the confirmation
mechanism, as encrypted and non-encrypted rate can be considered very similar.

In the Figure 7.4 are shown the results from the same tests, but this time,
comparing the number of sent bytes versus the message size. As it can be verified, when
increasing the event size, the number of bytes sent increases while rate of events decreases.

67

Figure 7.3 – Event rate for different message sizes.

Figure 7.4 – Event data rate for different event sizes.

The CPU usage for the Host 2, where the correlator and the broker were running,
is shown in Figure 7.5. As it can be seen is reached the maximum capacity of the CPU.
The process that took most of the CPU time was the correlator, taking on around 70%
of CPU time.

While the event publisher was sending the events, Host 1 CPU was also at 100%
of maximum CPU capacity. Host 3 never peaked 100% of CPU usage.

The system memory never reached its limit in any of the Hosts.

68

Figure 7.5 – Host 2 CPU usage during tests.

Another point that should be highlighted is that the event rate consumed, from
Queue A, by the correlator application was always much higher than the rate the was
publishing to Queue B, when the CPU usage reached 100%. It the worst case, the
correlator in the worst case was only publishing at a rate of 30% of the consumed event
rate. When the CPU usage was not reaching the peak, the correlator was publishing
events with a rate equal at the rate it was consuming the events or only at a slightly
lower rate. These values were observed in the graphical user interface of the broker while
monitoring the tests; it was not possible to get this values a systematic way to do further
analysis.

7.2.4 Latency Evaluation

When performing the test referred in the previous Section the average one-way
latency was also measured, it represents the latency from all sent events, from when they
are sent until they are consumed. They results show very large average latency values
when sending the 10.000 messages, as fast as possible, for messages sizes lower than 10
kB or 20 kB, depending on the transmission confirmation method and if encryption is
enable or not. As can be seen in Figure 7.6, the latency is in the order of seconds when
the CPU of Host 2 reaches 100%. This show that when the CPU reach its maximum
capacity, due to the processing of the events by the correlator and event broker, the
average latency changes from the milliseconds range to the seconds range. With the CPU
at 100% the event broker and correlator have to wait for processing time and as result
the events will take longer to process. When the CPU usage of host 2 does not reaches
its peak, for larger event sizes, as they take longer to be sent by the publisher and are
received more gradually, the latency ranges, on average for all 10.000 events, from 200 ms
to 300 ms. Additionally, the events that are not immediately consumed by the correlator
are persisted to disk by the broker what also justifies the high latency values. It was
observed that not using auto acknowledging the events has a large impact on the average

69

latency, except for events with 20 Kb.

Figure 7.6 – Average latency for different event sizes.

The tests previously described demonstrated that when Host 2 reached its
maximum processing capabilities the latency increased considerably. Taking this into
account, additional test were performed. In this tests, the number of consecutive messages
sent to the broker continuously. The results are present in the graph of Figure 7.7. The
tests were executed for events of 1 kB and 5 kB.

The chart in Figure 7.7 shows that for the testing deployment when the number
of events, sent continuously, was over 1000 the latency became extremely high as the
Host 2 reached its maximum capacity. When the system receives a lower number of
continuous events, the latency was below 1 second.

These tests showed that for a number of consecutive events that do not overload
the Host 2 CPU, the impact of encryption and manual confirmation mechanism, although
noticeable, does not have a large impact on latency.

70

Figure 7.7 – Average latency for different number of events published continuously.

7.2.5 Performance Testing Conclusion

The tests showed that the platform can process a considerable number of events
per second in a system with limited resources, as a single core virtualized system, where
the tests were performed.

It was shown that when the CPU of the processing host does not reach its
CPU usage limits the latency can be kept below the 1 second. Although this cannot be
considered a low value, it should be highlighted, that the tests were performed publishing
the batch of events in a continuous loop. This is the test that stresses the event broker
and mainly the correlator.

Based on the observed values between the rated of events consumed by the
correlator and the rate of the events it published after correlation it proved to be a
bottleneck.

There are several aspects that can be taken in consideration when trying to
improve the performance of correlation platform in terms of event throughput and latency:
• The host where the correlation application and the RabbitMQ were deployed had

only a single core. This made the correlation application and the event broker, two
resource hogging applications, impacted each other when the CPU reached its peak.
A multi-core system would allow to decrease, if not eliminate, this impact in terms
of performance.

• The flexibility of the platform allows the deploy the broker and the correlation
application in different systems. In this configuration, the applications don’t

71

system share system resources, although this can increase the latency slightly when
transmitting the events between the two systems.

• As pointed before, several RabbitMQ brokers (nodes) can deployed in a cluster
configuration (the brokers be deployed in different hosts), distributing the load
among the different nodes. It is even possible to add new nodes without stopping
the broker.

• RabbitMQ has several performance related parameters that can be tuned to even-
tually improve the performance. Esper provides as well several threading and
concurrency parameters that can be adjusted to obtain better performance.

• The correlator application was built using one engine instance, in order to the
correlator to receive all the events therefor has a global overview of all events.
However is possible to increase the number of Esper engines instances. Based
on the results of the correlators performance assessment, described in Section
5.4.1.2, when the number of rules increases the number of events processed by the
correlator decreases. Having more than one Esper engine instance, where all the
instances receive all the events, but each one with a different set of rules, it is
possible to reduce the impact of of the number of rules in the correlation application
performance. This can provide better scalability to the platform.

• The publisher library was developed using the python pika library and the publisher
host reached the maximum CPU usage while publishing the events. Possibly using
other library, as the Java client library) it would allow to increase the rate of events
published for the same host. However, this would require capable broker/correlator.

It should be remarked that during in the tests all the events published reached the
consumer, there were no lost events, even when the machine reached its processing limits,
and the events were being queued.

While the evaluation performed in this Section stressed the correlation platform
with a large batch of continuous events, when this platform will be deployed in the
CockpitCI testbed, the number of continuously published events is expected to be lower
then the limits tested here. Most of the agents will employ filtering mechanism that will
reduce the event of the events published. The correlator will all be configured with rules
for event filtering, aggregation and event suppression that will reduce the number of the
events published to the upper layer.

72

Chapter 8

Project Progress

This Chapter discusses the work progress of the tasks performed in the second
semester.

8.1 Constraints
There was a constraint in the course of the work for this thesis that changed

the planning of some tasks. Due to some problems in the deployment of Hybrid Test
Bed (HTB), beyond the control of the UC LCT team, the test bed was not available
as defined schedule in the CockpitCI schedule. Only on the on July of 2014 the first
machines were accessible from Coimbra Laboratory.

The test bed is located in the premises of the Israel Electric Corporation1 (IEC),
another partner of the CockpiCI project.

This constraint delayed the deployment of the platform to the test bed that
would have provided a better and complete testing and validation of the platform. The
platform was instead deployed into a small scale test bed in server located in the LCT
laboratory.

This limited, in a certain way, the testing and validation presented in this thesis.
The work that was allocated for a more extensive testing, validation and attack definition
was either allocated for a more complete implementation of the Snort and OSSEC Agent
implementation, as well as, improving the resiliency of the different components of the
platform.

1www.iec.co.il

73

WBS Tasks Start End D
u

ra
tio

n
 (

D
a

ys
)

1
0

 -
 fe

v
-

1
4

1
7

 -
 fe

v
-

1
4

2
4

 -
 fe

v
-

1
4

0
3

 -
 m

a
r

-
1

4

1
0

 -
 m

a
r

-
1

4

1
7

 -
 m

a
r

-
1

4

2
4

 -
 m

a
r

-
1

4

3
1

 -
 m

a
r

-
1

4

0
7

 -
 a

b
r

-
1

4

1
4

 -
 a

b
r

-
1

4

2
1

 -
 a

b
r

-
1

4

2
8

 -
 a

b
r

-
1

4

0
5

 -
 m

a
i -

 1
4

1
2

 -
 m

a
i -

 1
4

1
9

 -
 m

a
i -

 1
4

2
6

 -
 m

a
i -

 1
4

0
2

 -
 ju

n
 -

 1
4

0
9

 -
 ju

n
 -

 1
4

1
6

 -
 ju

n
 -

 1
4

2
3

 -
 ju

n
 -

 1
4

3
0

 -
 ju

n
 -

 1
4

1 Development/implementation 2/10/14 4/27/14 76

1.1 Correlation engine 2/10/14 4/06/14 55

1.2 Agent adapters implementation 3/10/14 4/27/14 48

1.3 Communication layer 2/24/14 3/31/14 35

2 Integration 3/03/14 5/12/14 70

2.1 Integration with CIGRE testbed 3/03/14 3/10/14 7

2.2 4/28/14 5/12/14 14

2 Testing/validation 3/03/14 6/10/14 99

2.1 3/03/14 3/10/14 7

2.2 Definition of test and attack scenarios 5/14/14 5/19/14 5

2.3 5/19/14 5/27/14 8

2.4 Testing and result analysis 5/26/14 6/10/14 15

3 Documentation 6/09/14 7/09/14 30

3.1 Final thesis report 6/09/14 7/09/14 30

Integration with Small scale UC
testbed

Test implementation (including
correlation rules definition) for CIGRE

Test implementation (including
correlation rules)

Figure 8.2 – Work progress progress Gantt chart.

8.2 Second Semester Work Progress
The Gantt chart in Figure8.1 details the work plan for the second semester,

defined in the intermediate report. In the Figure 8.2 is presented the Gantt chart for
main tasks performed during the second semester. The deviation for the scheduled plan
and the plan executed was mainly due to the constraints referred in the previous section.

WBS Tasks Start End W
o

rk
in

g
 D

a
ys

1
0

 -
 fe

v
-

1
4

1
7

 -
 fe

v
-

1
4

2
4

 -
 fe

v
-

1
4

0
3

 -
 m

a
r

-
1

4

1
0

 -
 m

a
r

-
1

4

1
7

 -
 m

a
r

-
1

4

2
4

 -
 m

a
r

-
1

4

3
1

 -
 m

a
r

-
1

4

0
7

 -
 a

b
r

-
1

4

1
4

 -
 a

b
r

-
1

4

2
1

 -
 a

b
r

-
1

4

2
8

 -
 a

b
r

-
1

4

0
5

 -
 m

a
i -

 1
4

1
2

 -
 m

a
i -

 1
4

1
9

 -
 m

a
i -

 1
4

2
6

 -
 m

a
i -

 1
4

0
2

 -
 ju

n
 -

 1
4

0
9

 -
 ju

n
 -

 1
4

1
6

 -
 ju

n
 -

 1
4

2
3

 -
 ju

n
 -

 1
4

3
0

 -
 ju

n
 -

 1
4

1 Development/implementation 2/10/14 3/31/14 36

1.1 Correlation engine 2/10/14 3/12/14 23

1.2 3/10/14 3/31/14 16

1.3 Communication layer 2/24/14 3/24/14 21

2 Integration 3/03/14 4/14/14 31

2.1 Integration with CIGRE testbed 3/03/14 3/10/14 6

2.2 3/31/14 4/14/14 11

2 Testing/validation 3/03/14 6/16/14 76

2.1 3/03/14 3/10/14 6

2.2 Definition of test and attack scenarios 4/14/14 5/05/14 16

2.3 5/05/14 5/26/14 16

2.4 Testing and result analysis 5/26/14 6/16/14 16

3 Documentation 6/09/14 7/09/14 23

3.1 Final thesis report 6/09/14 7/09/14 23

Agent adaptors implementation

Integration with CockpitCI testbed

Test implementation (including
correlation rules definition) for CIGRE

Test implementation (including
correlation rules)

Figure 8.1 – Work planning Gantt chart.

74

Chapter 9

Conclusions

This document presented the architecture, implementation and validation of a
distributed security event correlation platform.

The designed platform provides the capabilities to allow the PIDS to collect
and correlate security events form distributed probes and varied IDS.

Beyond the correlation capabilities, the evaluation showed that the platform
provides a tight integration of the intrusion detection systems with the correlation system.
Therefore, allowing the collection and transmission of security events, from a multitude
of security sensors distributed across several hosts in SCADA network to central a
correlation system, in a secure and reliable way.

The architecture of the platform outlined here can be configured with rules
that allow the PIDS to detect intrusions or intrusion attempts by extracting more useful
information from the security events collected by the several sensors, highlighting the
most important ones and reducing the number of false alarms. By integrating, as its
core Esper, a complete CEP engine with a very expressive language assures that complex
correlation scenarios can be configured.

The evaluation also showed that the implemented platform can provide high
levels of resiliency. This is a vital property in a system designed to process security events.
In this context, it is of great importance to be able to recover quickly from failures to
avoid losing events.

The interoperability provided by using a standard message format and standard
wire-protocol was demonstrated by connecting several components from different teams,
using different Operative Systems and with applications written in varied programming
languages. Hence, allowing, in the future, for more detection probes to easily be integrated
with the platform, providing further information to the correlation application.

Although, the two-level correlation already provides a scalable solution, it was
showed that the scalability by can be further increased by using a broker in cluster
configurations in combination with additional correlator instances when the number of

75

rules increases at a level that impacts the performance of the correlation application.

In the next sections are presented other contributions in the scope of the project,
as well as, future work to be developed.

9.1 Contributions
Based on the research and development performed in this thesis, the author of

this thesis made several contributions to following deliverables of the CockpitCI project:

• Deliverable D3.1 - Requirements and Reference Architecture of the Analysis and
Detection Layer (co-author and co-editor);

• Deliverable D3.2 - Real Time Intrusion Detection Strategies (co-author);

• Deliverable D3.3 - Design of Detection Agents and Field Adaptors (co-author and
co-editor);

• Deliverable D3.4 - Design of the Dynamic Perimeter Intrusion Detection System
(co-author and co-editor);

• Deliverable D3.5 - Implementation and Trials (co-author);

The author of this thesis had an active role on the definition of the requirements and
configuration of the Hybrid Test Bed (HTB), in order to assure that it provided the
required means for the validation of correlation platform. This test bed includes different
critical infrastructures simulated by real equipment and enterprise Industrial Control
Systems.

Additionally, co-authored a scientific poster to be presented at the 13th European
Conference on Cyber Warfare and Security (ECCWS), entitled “A Survey of Signature-
based Event Correlators”.

There is also an ongoing effort to produce a paper, in collaboration with other
member of the team, about event correlators survey and their performance evaluation.

9.2 Future work
The worked developed in this thesis will be continued. Future work will be

focused in the integration of the correlation platform with the Security Management
Platform. The component to be developed will allow the Secure Management Platform to
consume the events generated by the correlation platform, and after processing, sending
them to the Security Mediation Network, as defined in section 2.1.

Another task that will be carried out will be the deployment of the platform
to the HTB. This test bed will allow a more comprehensive testing, validation and
integration of the correlation platform with other CockpitCI components. Furthermore,
with the deployment on the test bed it will be possible to test the platform with more

76

realistic and complex attack scenarios and network infrastructure, as there will be real
equipment and the PIDS will have a complete deployment.

Additionally, with the availability of the HTB and further definition of complex
attack scenarios more correlation rules need to be developed.

77

Bibliography

[1] T. Cruz, P. Simoes, J. Proenca, Pedro Alves, Luis Rosa, Jorge Barrigas, M. Curado,
E. Monteiro, E. Ciancamerla, A. Di Pietro, M. Minichino, S. Palmieri, M. Ouedraogo,
C. Feltus, D. Khadraoui, and A. Graziano, “CockpitCI cyber-security on SCADA:
risk prediction, analysis and reaction tools for critical infrastructures, d3.1.2 -
requirements and reference architecture of the analysis and detection layer,” Jul.
2013.

[2] F. Valeur, “Real-time intrusion detection alert correlation,” Ph.D. dissertation,
University of California at Santa Barbara, 2006.

[3] P. Teufl, U. Payer, and R. Fellner, “Event correlation on the basis of activation
patterns,” in 2010 18th Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), Feb. 2010, pp. 631–640.

[4] Antonio Spadaro, “Event correlation for detecting advanced multi-stage
cyber-attacks,” Master Thesis, Delft University of Technology, Delft, 2013. [Online].
Available: http://www.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Over_de_
Faculteit/Afdelingen/Afdeling_Infrastructure_Systems_and_Services/Sectie_
Informatie_en_Communicatie_Technologie/medewerkers/jan_van_den_berg/
news/doc/A.Spadaro_Thesis-truly-final.pdf

[5] C. Krügel, T. Toth, and C. Kerer, “Decentralized event correlation
for intrusion detection,” in Information Security and Cryptology - ICISC
2001, ser. Lecture Notes in Computer Science, K. Kim, Ed. Springer
Berlin Heidelberg, Jan. 2002, no. 2288, pp. 114–131. [Online]. Available:
http://link.springer.com/chapter/10.1007/3-540-45861-1_10

[6] H. T. Elshoush and I. M. Osman, “An improved framework for intrusion alert
correlation,” in Proceedings of the World Congress on Engineering, vol. 1, 2012.

[7] S. A. Mirheidari, S. Arshad, and R. Jalili, “Alert correlation algorithms: A survey and
taxonomy,” in Cyberspace Safety and Security. Springer, 2013, pp. 183–197. [Online].
Available: http://link.springer.com/chapter/10.1007/978-3-319-03584-0_14

[8] D. Gorton, “Extending intrusion detection with alert correlation and intrusion
tolerance,” Ph.D. dissertation, Chalmers tekniska högsk., 2003.

78

http://www.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Over_de_Faculteit/Afdelingen/Afdeling_Infrastructure_Systems_and_Services/Sectie_Informatie_en_Communicatie_Technologie/medewerkers/jan_van_den_berg/news/doc/A.Spadaro_Thesis-truly-final.pdf
http://www.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Over_de_Faculteit/Afdelingen/Afdeling_Infrastructure_Systems_and_Services/Sectie_Informatie_en_Communicatie_Technologie/medewerkers/jan_van_den_berg/news/doc/A.Spadaro_Thesis-truly-final.pdf
http://www.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Over_de_Faculteit/Afdelingen/Afdeling_Infrastructure_Systems_and_Services/Sectie_Informatie_en_Communicatie_Technologie/medewerkers/jan_van_den_berg/news/doc/A.Spadaro_Thesis-truly-final.pdf
http://www.tbm.tudelft.nl/fileadmin/Faculteit/TBM/Over_de_Faculteit/Afdelingen/Afdeling_Infrastructure_Systems_and_Services/Sectie_Informatie_en_Communicatie_Technologie/medewerkers/jan_van_den_berg/news/doc/A.Spadaro_Thesis-truly-final.pdf
http://link.springer.com/chapter/10.1007/3-540-45861-1_10
http://link.springer.com/chapter/10.1007/978-3-319-03584-0_14

[9] F. Pouget and M. Dacier, “Alert correlation: Review of the state of
the art,” Eurecom, Tech. Rep. EURECOM+1271, 2003. [Online]. Available:
http://www.eurecom.fr/publication/1271

[10] Andreas Muller, “Event correlation engine,” Master Thesis, Swiss Federal
Institute of Technology Zurich, Zurich, 2009. [Online]. Available: ftp:
//ftp.tik.ee.ethz.ch/pub/students/2009-FS/MA-2009-01.pdf

[11] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie, and S. Stolfo, “A coding approach
to event correlation,” in Integrated Network Management IV, ser. IFIP - The
International Federation for Information Processing, A. S. Sethi, Y. Raynaud, and
F. Faure-Vincent, Eds. Springer US, Jan. 1995, pp. 266–277. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-0-387-34890-2_24

[12] L. Lewis, “A case-based reasoning approach to the management of faults in commu-
nications networks,” in Ninth Conference on Artificial Intelligence for Applications,
1993. Proceedings, 1993, pp. 114–120.

[13] Xinzhou Qin, “A probabilistic-based framework for INFOSEC alert correlation,”
Ph.D. dissertation, Georgia Institute of Technology, Jul. 2005. [Online]. Available:
https://smartech.gatech.edu/handle/1853/7278

[14] G. Jakobson and M. Weissman, “Alarm correlation,” Netwrk. Mag. of
Global Internetwkg., vol. 7, no. 6, pp. 52–59, Nov. 1993. [Online]. Available:
http://dx.doi.org/10.1109/65.244794

[15] Esper-Tutorial, “Esper - tutorial.” [Online]. Available: http://esper.codehaus.org/
tutorials/tutorial/tutorial.html

[16] Esper-Website, “EsperTech - products - esper.” [Online]. Available: http:
//www.espertech.com/products/esper.php

[17] Esper-FAQ-Website, “Esper - complex event processing FAQ.” [Online]. Available:
http://esper.codehaus.org/tutorials/faq_esper/faq.html

[18] Esper Project, “Esper developer mailing list.” [Online]. Available: http:
//markmail.org/list/org.codehaus.esper.dev

[19] ——, “Esper user Mailing list.” [Online]. Available: http://markmail.org/list/org.
codehaus.esper.user

[20] NodeBrain Project, “NodeBrain open source project.” [Online]. Available:
http://nodebrain.sourceforge.net/index.html

[21] NodeBrain Modules, “NodeBrain node modules.” [Online]. Available: http:
//nodebrain.sourceforge.net/package/nb/version/0.8/modules.html

79

http://www.eurecom.fr/publication/1271
ftp://ftp.tik.ee.ethz.ch/pub/students/2009-FS/MA-2009-01.pdf
ftp://ftp.tik.ee.ethz.ch/pub/students/2009-FS/MA-2009-01.pdf
http://link.springer.com/chapter/10.1007/978-0-387-34890-2_24
https://smartech.gatech.edu/handle/1853/7278
http://dx.doi.org/10.1109/65.244794
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://esper.codehaus.org/tutorials/tutorial/tutorial.html
http://www.espertech.com/products/esper.php
http://www.espertech.com/products/esper.php
http://esper.codehaus.org/tutorials/faq_esper/faq.html
http://markmail.org/list/org.codehaus.esper.dev
http://markmail.org/list/org.codehaus.esper.dev
http://markmail.org/list/org.codehaus.esper.user
http://markmail.org/list/org.codehaus.esper.user
http://nodebrain.sourceforge.net/index.html
http://nodebrain.sourceforge.net/package/nb/version/0.8/modules.html
http://nodebrain.sourceforge.net/package/nb/version/0.8/modules.html

[22] NodeBrain Project, “NodeBrain tutorial,” May 2013. [Online]. Avail-
able: http://nodebrain.sourceforge.net/package/nb/version/0.8/release/0.8.15/
nbTutorial/nbTutorial.pdf

[23] ——, “Nodebrain users mailing list.” [Online]. Available: http://sourceforge.net/
mailarchive/forum.php?forum_name=nodebrain-users

[24] SEC Project, “SEC - open source and platform independent event correlation tool.”
[Online]. Available: http://simple-evcorr.sourceforge.net/

[25] Risto Vaarandi, “SEC - a lightweight event correlation tool,” in Proceedings of the
2002 IEEE Workshop on IP Operations and Management, 2002, pp. 111–115.

[26] J. P. Rouillard, “Real-time log file analysis using the simple event correlator (SEC),”
in Proceedings of the 18th USENIX Conference on System Administration, ser.
LISA ’04. Berkeley, CA, USA: USENIX Association, 2004, pp. 133–150. [Online].
Available: http://dl.acm.org/citation.cfm?id=1052676.1052694

[27] SEC Project, “Simple event correlator (SEC) manpage.” [Online]. Available:
http://simple-evcorr.sourceforge.net/man.html

[28] SEC Tutorial, “Working with SEC- the simple event correlator.” [Online]. Available:
http://simple-evcorr.sourceforge.net/SEC-tutorial/article.html

[29] SEC Project, “SEC user mailing list.” [Online]. Available: https://lists.sourceforge.
net/lists/listinfo/simple-evcorr-users/

[30] Drools, “Drools - the business logic integration platform.” [Online]. Available:
https://www.jboss.org/drools/

[31] Drools Fusion, “Drools fusion.” [Online]. Available: https://www.jboss.org/drools/
drools-fusion

[32] G. Oguz, “Decision tree learning for drools,” Master Thesis, Ecole Polytechnique
Federale de Lausanne, 2008. [Online]. Available: http://infoscience.epfl.ch/record/
126292/files/oguz-thesis_final.pdf

[33] N. Wulff and D. Sottara, “Fuzzy reasoning with a rete-OO rule engine,” in
Proceedings of the 2009 International Symposium on Rule Interchange and
Applications, ser. RuleML 09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
337–344. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-04985-9_31

[34] “Rete algorithm,” Dec. 2013, page Version ID: 586897354. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Rete_algorithm&oldid=586897354

[35] MVEL, “MVEL - home.” [Online]. Available: http://mvel.codehaus.org/

80

http://nodebrain.sourceforge.net/package/nb/version/0.8/release/0.8.15/nbTutorial/nbTutorial.pdf
http://nodebrain.sourceforge.net/package/nb/version/0.8/release/0.8.15/nbTutorial/nbTutorial.pdf
http://sourceforge.net/mailarchive/forum.php?forum_name=nodebrain-users
http://sourceforge.net/mailarchive/forum.php?forum_name=nodebrain-users
http://simple-evcorr.sourceforge.net/
http://dl.acm.org/citation.cfm?id=1052676.1052694
http://simple-evcorr.sourceforge.net/man.html
http://simple-evcorr.sourceforge.net/SEC-tutorial/article.html
https://lists.sourceforge.net/lists/listinfo/simple-evcorr-users/
https://lists.sourceforge.net/lists/listinfo/simple-evcorr-users/
https://www.jboss.org/drools/
https://www.jboss.org/drools/drools-fusion
https://www.jboss.org/drools/drools-fusion
http://infoscience.epfl.ch/record/126292/files/oguz-thesis_final.pdf
http://infoscience.epfl.ch/record/126292/files/oguz-thesis_final.pdf
http://dx.doi.org/10.1007/978-3-642-04985-9_31
https://en.wikipedia.org/w/index.php?title=Rete_algorithm&oldid=586897354
http://mvel.codehaus.org/

[36] Drools Fusion CEP, “Chapter 8-complex event processing.” [Online].
Available: https://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/
DroolsComplexEventProcessingChapter.html

[37] Drools Fusion, “Drools user mailing list.” [Online]. Available: https://lists.jboss.org/
mailman/listinfo/rules-users

[38] Alienvault-OSSIM-Project, “OSSIM: Open source SIEM & open threat exchange
projects.” [Online]. Available: http://www.alienvault.com/open-threat-exchange/
projects

[39] AlienVault, “SIEM solutions & IT security risk assessment tools by AlienVault.”
[Online]. Available: http://www.alienvault.com/

[40] Prelude Project, “Prelude-IDS prelude universal open-source SIEM project.”
[Online]. Available: https://www.prelude-ids.org/

[41] Prelude-IDS, “Prelude-IDS - prelude components.” [Online]. Available: https:
//www.prelude-ids.org/wiki/prelude/PreludeComponents

[42] ——, “Prelude-IDS - PreludeCorrelator.” [Online]. Available: https://www.
prelude-ids.org/wiki/prelude/PreludeCorrelator

[43] ——, “Prelude-IDS - prewikka.” [Online]. Available: https://www.prelude-ids.org/
wiki/prelude/ManualPrewikka

[44] Quadrant Information Security, “The sagan log analysis & correlation engine.”
[Online]. Available: http://sagan.quadrantsec.com/

[45] Sourcefire, “Snort - open source intrusion and detection system.” [Online]. Available:
http://www.snort.org/

[46] ACARM-Project, “ACARM | main / home.” [Online]. Available: http:
//www.acarm.wcss.wroc.pl/

[47] AlienVault, “AlienVAult forum: ossim open source version can supports multi-level
deployment?” [Online]. Available: http://forums.alienvault.com/discussion/195/
ossim-open-source-version-can-supports-multi-level-deployment

[48] Prelude-Project, “www.prelude-ids.org mailing lists.” [Online]. Available: https:
//www.prelude-ids.org/lists/listinfo

[49] ACARM-ng-Project, “ACARM-ng / discussion / forums.” [Online]. Available:
http://sourceforge.net/p/acarmng/discussion/

[50] D. Menasce, “MOM vs. RPC: communication models for distributed applications,”
Internet Computing, IEEE, vol. 9, no. 2, pp. 90–93, Apr. 2005.

81

https://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://docs.jboss.org/drools/release/6.0.1.Final/drools-docs/html/DroolsComplexEventProcessingChapter.html
https://lists.jboss.org/mailman/listinfo/rules-users
https://lists.jboss.org/mailman/listinfo/rules-users
http://www.alienvault.com/open-threat-exchange/projects
http://www.alienvault.com/open-threat-exchange/projects
http://www.alienvault.com/
https://www.prelude-ids.org/
https://www.prelude-ids.org/wiki/prelude/PreludeComponents
https://www.prelude-ids.org/wiki/prelude/PreludeComponents
https://www.prelude-ids.org/wiki/prelude/PreludeCorrelator
https://www.prelude-ids.org/wiki/prelude/PreludeCorrelator
https://www.prelude-ids.org/wiki/prelude/ManualPrewikka
https://www.prelude-ids.org/wiki/prelude/ManualPrewikka
http://sagan.quadrantsec.com/
http://www.snort.org/
http://www.acarm.wcss.wroc.pl/
http://www.acarm.wcss.wroc.pl/
http://forums.alienvault.com/discussion/195/ossim-open-source-version-can-supports-multi-level-deployment
http://forums.alienvault.com/discussion/195/ossim-open-source-version-can-supports-multi-level-deployment
https://www.prelude-ids.org/lists/listinfo
https://www.prelude-ids.org/lists/listinfo
http://sourceforge.net/p/acarmng/discussion/

[51] Q. H. Mahmoud, Middleware for communications. Chichester, England: J. Wiley
& Sons, 2004.

[52] G. Banavar, T. Chandra, R. Strom, and D. Sturman, “A case for message oriented
middleware,” in Distributed Computing, ser. Lecture Notes in Computer Science,
P. Jayanti, Ed. Springer Berlin Heidelberg, Jan. 1999, vol. 1693, pp. 1–17. [Online].
Available: http://dx.doi.org/10.1007/3-540-48169-9_1

[53] H. Subramoni, G. Marsh, S. Narravula, Ping Lai, and D. Panda, “Design and
evaluation of benchmarks for financial applications using advanced message queuing
protocol (AMQP) over InfiniBand,” High Performance Computational Finance,
2008. WHPCF 2008. Workshop on, pp. 1–8, Nov. 2008.

[54] STOMP, “STOMP - the simple text oriented messaging protocol,” 2014. [Online].
Available: https://stomp.github.io/

[55] J. Oraskari, “The performance of open message-oriented middleware protocols in
smart space access,” 2010.

[56] vmware, “Choosing your messaging protocol: AMQP, MQTT, or STOMP | VMware
vFabric blog - VMware blogs,” 2013. [Online]. Available: http://blogs.vmware.com/
vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html

[57] MQTT, “MQTT,” 2014. [Online]. Available: http://mqtt.org/

[58] StormMQ, “WhitePaper - a comparison of AMQP and MQTT,” 2012.
[Online]. Available: https://lists.oasis-open.org/archives/amqp/201202/msg00086/
StormMQ_WhitePaper_-_A_Comparison_of_AMQP_and_MQTT.pdf

[59] Oracle, “Java message service (JMS),” 2014. [Online]. Available: http:
//docs.oracle.com/cd/B14099_19/web.1012/b14012/jms.htm

[60] AMQP Webpage, “AMQP about.” [Online]. Available: http://www.amqp.org/
about/what

[61] ——, “AMQP 1.0 becomes OASIS standard | AMQP.” [Online]. Available:
http://www.amqp.org/node/102

[62] IETF-Network Working Group, “The intrusion detection message exchange format
(IDMEF) RFC.” [Online]. Available: http://www.ietf.org/rfc/rfc4765.txt

[63] LibIDMEF, “LibIDMEF web site.” [Online]. Available: http://sourceforge.net/
projects/libidmef/

[64] OASIS, “OASIS advanced message queuing protocol (AMQP) version 1.0, part
5: Security.” [Online]. Available: http://docs.oasis-open.org/amqp/core/v1.0/os/
amqp-core-security-v1.0-os.html

82

http://dx.doi.org/10.1007/3-540-48169-9_1
https://stomp.github.io/
http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
http://blogs.vmware.com/vfabric/2013/02/choosing-your-messaging-protocol-amqp-mqtt-or-stomp.html
http://mqtt.org/
https://lists.oasis-open.org/archives/amqp/201202/msg00086/StormMQ_WhitePaper_-_A_Comparison_of_AMQP_and_MQTT.pdf
https://lists.oasis-open.org/archives/amqp/201202/msg00086/StormMQ_WhitePaper_-_A_Comparison_of_AMQP_and_MQTT.pdf
http://docs.oracle.com/cd/B14099_19/web.1012/b14012/jms.htm
http://docs.oracle.com/cd/B14099_19/web.1012/b14012/jms.htm
http://www.amqp.org/about/what
http://www.amqp.org/about/what
http://www.amqp.org/node/102
http://www.ietf.org/rfc/rfc4765.txt
http://sourceforge.net/projects/libidmef/
http://sourceforge.net/projects/libidmef/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-security-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-security-v1.0-os.html

[65] Apache-Qpid, “ClusteringHA - apache qpid - apache software foundation.” [Online].
Available: https://cwiki.apache.org/confluence/display/qpid/ClusteringHA

[66] Pivotal-RabbitMQ, “RabbitMQ - clustering guide.” [Online]. Available: http:
//www.rabbitmq.com/clustering.html

[67] Apache-ActiveMQ, “Apache ActiveMQ clustering.” [Online]. Available: https:
//activemq.apache.org/clustering.html

[68] H.-L. Bui, “Survey and comparison of event query languages using practical examples,”
Ph.D. dissertation, 2009.

[69] RabbitMQ, “RabbitMQ - confirms (aka publisher acknowledgements),” 2014.
[Online]. Available: https://www.rabbitmq.com/confirms.html

[70] “Pika documentation.” [Online]. Available: http://pika.readthedocs.org/en/latest/
index.html#

[71] python documentation, “8.3. collections - high-performance container datatypes -
python v2.7.7 documentation,” 2014. [Online]. Available: https://docs.python.org/
2/library/collections.html#collections.deque

[72] Python documentation, “8.3. collections - high-performance container datatypes -
python v2.7.7 documentation,” 2014. [Online]. Available: https://docs.python.org/
2/library/collections.html#collections.OrderedDict

[73] Javadocs, “WatchService (java platform SE 7),” 2014. [Online]. Available:
http://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html

[74] Sourcefire, “Snort - unified output plugin documentation,” 2014. [Online]. Available:
http://manual.snort.org/node249.html

[75] M. Albaghdadi, B. Briley, and M. Evens, “Event storm detection and
identification in communication systems,” Reliability Engineering & System
Safety, vol. 91, no. 5, pp. 602 – 613, 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S095183200500116X

[76] RabbitMQ, “RabbitMQ - highly available queues,” 2014. [Online]. Available:
https://www.rabbitmq.com/ha.html

[77] Raspberry-Pi, “Raspberry pi | an ARM GNU/linux box.” [Online]. Available:
http://www.raspberrypi.org/

83

https://cwiki.apache.org/confluence/display/qpid/ClusteringHA
http://www.rabbitmq.com/clustering.html
http://www.rabbitmq.com/clustering.html
https://activemq.apache.org/clustering.html
https://activemq.apache.org/clustering.html
https://www.rabbitmq.com/confirms.html
http://pika.readthedocs.org/en/latest/index.html#
http://pika.readthedocs.org/en/latest/index.html#
https://docs.python.org/2/library/collections.html#collections.deque
https://docs.python.org/2/library/collections.html#collections.deque
https://docs.python.org/2/library/collections.html#collections.OrderedDict
https://docs.python.org/2/library/collections.html#collections.OrderedDict
http://docs.oracle.com/javase/7/docs/api/java/nio/file/WatchService.html
http://manual.snort.org/node249.html
http://www.sciencedirect.com/science/article/pii/S095183200500116X
http://www.sciencedirect.com/science/article/pii/S095183200500116X
https://www.rabbitmq.com/ha.html
http://www.raspberrypi.org/

Appendix A

IDMEF data model

Figure A.1 – IDMEF data model, from [62].

84

Appendix B

Examples of IDMEF attacks
representation

From [62], this is a network-based detection of a port scan. Shows detection by
a single analyzer:
<?xml version ="1.0" encoding ="UTF -8"?>

<idmef:IDMEF - Message version ="1.0" xmlns:idmef ="http: // iana.org/idmef">
<idmef:Alert messageid =" abc123456789 ">

<idmef:Analyzer analyzerid ="hq -dmz - analyzer62 ">
<idmef:Node category ="dns">

<idmef:location >Headquarters Web Server </ idmef:location >
<idmef:name >analyzer62 . example .com </ idmef:name >

</ idmef:Node >
</ idmef:Analyzer >
<idmef:CreateTime ntpstamp ="0 xbc72b2b4 .0 x00000000 ">

2000 -03 -09 T15:31:00 -08 :00
</ idmef:CreateTime >
<idmef:Source ident="abc01">

<idmef:Node ident="abc01 -01">
<idmef:Address ident="abc01 -02" category ="ipv4 -addr">

<idmef:address >192.0.2.200 </ idmef:address >
</ idmef:Address >

</ idmef:Node >
</ idmef:Source >
<idmef:Target ident="def01">

<idmef:Node ident="def01 -01" category ="dns">
<idmef:name >www. example .com </ idmef:name >
<idmef:Address ident="def01 -02" category ="ipv4 -addr">

<idmef:address >192.0.2.50 </ idmef:address >
</ idmef:Address >

</ idmef:Node >
<idmef:Service ident="def01 -03">

<idmef:portlist >5 -25 ,37 ,42 ,43 ,53 ,69 -119 ,123 -514 </ idmef:portlist >

85

</ idmef:Service >
</ idmef:Target >
<idmef:Classification text=" simple portscan ">

<idmef:Reference origin ="vendor - specific ">
<idmef:name >portscan </ idmef:name >
<idmef:url >http: // www. vendor .com/ portscan </ idmef:url >

</ idmef:Reference >
</ idmef:Classification >

</ idmef:Alert >
</ idmef:IDMEF - Message >

Same ports scan event alert as above but represented if it had been detected
and sent from a correlation engine, instead of a single analyzer, example from [62]:
<?xml version ="1.0" encoding ="UTF -8"?>

<idmef:IDMEF - Message version ="1.0" xmlns:idmef ="http: // iana.org/idmef">
<idmef:Alert messageid =" abc123456789 ">

<idmef:Analyzer analyzerid ="bc -corr -01">
<idmef:Node category ="dns">

<idmef:name >correlator01 . example .com </ idmef:name >
</ idmef:Node >

</ idmef:Analyzer >
<idmef:CreateTime ntpstamp ="0 xbc72423b .0 x00000000 ">2000 -03 -09

T15:31:07Z
</ idmef:CreateTime >

<idmef:Source ident="a1">
<idmef:Node ident="a1 -1">

<idmef:Address ident="a1 -2" category ="ipv4 -addr">
<idmef:address >192.0.2.200 </ idmef:address >

</ idmef:Address >
</ idmef:Node >

</ idmef:Source >
<idmef:Target ident="a2">

<idmef:Node ident="a2 -1" category ="dns">
<idmef:name >www. example .com </ idmef:name >
<idmef:Address ident="a2 -2" category ="ipv4 -addr">

<idmef:address >192.0.2.50 </ idmef:address >
</ idmef:Address >

</ idmef:Node >
<idmef:Service ident="a2 -3">

<idmef:portlist >5 -25 ,37 ,42 ,43 ,53 ,69 -119 ,123 -514 </ idmef:portlist >
</ idmef:Service >

</ idmef:Target >
<idmef:Classification text=" Portscan ">

<idmef:Reference origin ="vendor - specific ">
<idmef:name >portscan </ idmef:name >
<idmef:url >http: // www. vendor .com/ portscan </ idmef:url >

</ idmef:Reference >
</ idmef:Classification >
<idmef:CorrelationAlert >

<idmef:name >multiple ports in short time </ idmef:name >
<idmef:alertident >123456781 </ idmef:alertident >
<idmef:alertident >123456782 </ idmef:alertident >
<idmef:alertident >123456783 </ idmef:alertident >

86

<idmef:alertident >123456784 </ idmef:alertident >
<idmef:alertident >123456785 </ idmef:alertident >
<idmef:alertident >123456786 </ idmef:alertident >
<idmef:alertident analyzerid =" a1b2c3d4 ">987654321
</ idmef:alertident >
<idmef:alertident analyzerid =" a1b2c3d4 ">987654322
</ idmef:alertident >

</ idmef:CorrelationAlert >
</ idmef:Alert >

</ idmef:IDMEF - Message >

87

Appendix C

Configurations

Esper configuration example, local correlator:
<?xml version ="1.0" encoding ="UTF -8"?>
<esper - configuration xmlns:xsi =" http: // www.w3.org /2001/ XMLSchema - instance "

xmlns =" http: // www. espertech .com/ schema / esper "
xsi:schemaLocation =" http: // www. espertech .com/ schema / esper http: // www. espertech .

com/ schema / esper /esper - configuration -3.0. xsd">
<event -type name=" Addresses ">

<xml -dom root -element -name="// Address "
default - namespace =" http: // iana.org/ idmef "

xpath -property -expr=" false " resolve - properties - absolute =" false ">
<namespace - prefix prefix =" idmef "

namespace =" http: // iana.org/ idmef "/>
</xml -dom >

</event -type >
<event -type name=" IDMEF ">

<xml -dom root -element -name="IDMEF - Message "
schema - resource ="idmef - message .xsd"
default - namespace =" http: // iana.org/ idmef "
xpath -property -expr="true"
resolve - properties - absolute ="true"
auto - fragment =" false ">
<namespace - prefix prefix =" idmef " namespace =" http: // iana.org/ idmef "/>

<xpath - property property -name=" MessageID "
xpath =" string (/ idmef:IDMEF - Message / idmef:Alert / @messageid)" type=" string

"/>
<xpath - property property -name=" AnalyzerLocation "

xpath ="/ idmef:Analyzer / idmef:Node / idmef:location /text ()" type=" string "/>
<xpath - property property -name=" AnalyzerName "

xpath ="/ idmef:IDMEF - Message / idmef:Analyzer / idmef:Node / idmef:name /text ()"
type=" string "/>

<xpath - property property -name=" CreateTimeText "
xpath ="/ idmef:IDMEF - Message / idmef:CreateTime /text ()" type=" string "/>

<xpath - property property -name=" SourceAddresses "
xpath ="// idmef:Source / idmef:Node / idmef:Address " type=" nodeset " cast="

String []" event -type -name=" Addresses "/>
<xpath - property property -name=" TargetAddresses "

xpath ="// idmef:Target / idmef:Node / idmef:Address " type=" nodeset " cast="
String []" event -type -name=" Addresses "/>

88

<xpath - property property -name=" SourcePort "
xpath ="/ idmef:IDMEF - Message / idmef:Source / idmef:Service / idmef:port " type=

" nodeset "/>
<xpath - property property -name=" TargetPort " xpath ="/ idmef:IDMEF - Message /

idmef:Target / idmef:Service / idmef:port /text ()" type=" string "/>
<xpath - property property -name=" AdditionalDataString " xpath ="//

idmef:AdditionalData / idmef:string /text ()" type=" string "/>
<xpath - property property -name=" ClassificationReferences " xpath ="/

idmef:IDMEF - Message / idmef:Alert / idmef:Classification / idmef:Reference " type="
nodeset "/>
</xml -dom >

</event -type >
<auto - import import -name="java.lang. Double "/>
<auto - import import -name="java.math .*"/>
<! -- Bellow is to import the class defining the UpdateListeners annotation used

in the correlation rules epl -->
<auto - import import -name="eu. cockpitci .uc. correlators . server . esper .

UpdateListeners "/>
<engine - settings >

<defaults >
<logging >

<execution -path enabled ="true"/>
<timer - debug enabled =" false "/>

</ logging >
</ defaults >

</engine - settings >
<! -- Bellow is the class declaration of the AMQP EventBusAdaptor -->
<plugin - loader name=" EventBusInputAdaptor "

class -name="eu. cockpitci .uc. correlators . server . eventbus . EventBusInputAdaptor ">
<! -- The parameter defined below declares the type of the correlator to be used

by the EventBusInputAdaptor Global and Local correlator can have different
consumer connection parameters , correlatorType can have either " global " or "
local " value -->

<init -arg name=" correlatorType " value =" local "/>
</plugin - loader >

</esper - configuration >

Correlator input adaptor configuration for global correlator:
BROKER_IP : 172.27.1.36
BROKER_PORT : 5672
VHOST: PIDS
USERNAME : guest
PASSWORD : guest
QUEUE_NAME : idmef. correlators
EXCHANGE_NAME : pids_exchange_global
EXCHANGE_TYPE : topic
EXCHANGE_DURABLE : true
EXCHANGE_AUTODELETE : false
ROUTINGKEY_DEFAULT : idmef. correlators
QUEUE_DURABLE : true
QUEUE_AUTODELETE : false
QUEUE_PASSIVE : false
QUEUE_EXCLUSIVE : false
ENABLE_DELIVERY_CONFIRMATIONS : true
RECONNECTION_ATTEMPTS : 3
RETRY_DELAY : 5
SOCKET_TIMEOUT : 500
SSL: true

89

Appendix D

Correlator statements

Event aggregation rule (event storm):
@Name("SourcesStream")
@Descr ipt ion ("create a new event stream with event sources")
insert into SourcesStream
select s r caddre s s e s , idmef . A le r t . messageid as msgid ,

idmef . A le r t . Analyzer . ana l y z e r i d as anaid ,
TargetAddresses as ds taddr e s s e s

from IDMEF[select address from SourceAddresses] as s r caddre s s e s , IDMEF as
idmef ;

@Name("SegmentedBySourceAddressCtx")
@Descr ipt ion ("create a context partitioned by source")
create context SegmentedBySourceAddress partition by s r c add r e s s e s . address

from SourcesStream ;

@Name("SourcesWindow")
@Descr ipt ion ("create a named window for the context that keeps sources

partition for the last 120 seconds")
context SegmentedBySourceAddress create window SourcesWindow . win : time (120

seconds) as SourcesStream ;

@Name("InsertSourcesWindow")
@Descr ipt ion ("insert arrived events into the SourcesWindow")
context SegmentedBySourceAddress insert into SourcesWindow select ∗ from

SourcesStream ;

@Name("EventStorm")
@Descr ipt ion ("select sources with 100 events in the SourcesWindow , send

results to IDMEFEventStormListener")
@UpdateListeners ({"IDMEFEventStormListener"})
context SegmentedBySourceAddress

select s r c add r e s s e s . address ,
context . key1 as evtstorm_source , msgid as id_message ,

90

anaid as id_analyser , d s t addr e s s e s as evts torm_dest inat ions
from SourcesWindow
output when count_insert = 100 ;

Listing D.1 – Event aggregation example (event storm detection)

Event filtering:
@Name("RateLimitSynFloodStatement")
@Descr ipt ion ("Limits the output of SYN flooding statements from all Snort

agents")
insert into AMQPOutgoingDataFlow
select Aler t
from IDMEF(Aler t . C l a s s i f i c a t i o n . t ex t=’SYN Flooding ’)
where Aler t . Analyzer . ana l y z e r i d regexp ’snort_agent -[0 -9]+’
output f i r s t every 30 seconds ;

Listing D.2 – Event filtering example statements

Event suppression:
@Descr ipt ion ("Create variable to signal an alarm from OCSVM")
create va r i ab l e boolean ocsvm_alarm = fa l se ;

@Descr ipt ion ("Set variable ocsvm_alarm=true when receiving a SEVERE or
MEDIUM alarm from OCSVM wihtin the last 5 minutes")

on IDMEF(Aler t . Analyzer . ana l y z e r i d=’oscvm -engine’
and Aler t . C l a s s i f i c a t i o n . t ex t in (’MEDIUM ALARM’ , ’SEVERE ALARM’))
where t imer : with in (5 min)

set ocsvm_alarm = true ;

@Descr ipt ion ("When an alrm is not received form OCSVM within the last 5
minutes set ocsvm_alarm=false")

@Descr ipt ion ("Create variable to signa alarm form OCSVM")
on pattern [every (t imer : interval (5 min) and not IDMEF(Aler t . Analyzer .

ana l y z e r i d=’oscvm -engine’
and Aler t . C l a s s i f i c a t i o n . t ex t in (’MEDIUM ALARM’ , ’SEVERE ALARM’)))]

set ocsvm_alarm = fa l se ;

@Name("HighArpAlert")
@Descr ipt ion ("When receiving an ARP cache alert from snort and ocsvm_alarm=

true forward event to output adapter")
insert into AMQPOutgoingDataFlow
select Aler t

from IDMEF(Aler t . C l a s s i f i c a t i o n . t ex t = ’spp_arpspoof: ARP Cache Overwrite
Attack’

and ocsvm_alarm = true) ;

Listing D.3 – Event supression example statements

91

	List of Figures
	List of Tables
	List of Acronyms
	List of Acronyms (cont.)
	Introduction
	Motivation and Background
	Research Objectives
	Document Outline

	CockpitCI Project
	Overview and Objectives
	Cyber Analysis and Detection Layer
	Dynamic Perimeter Intrusion Detection System

	Event Correlation: An overview
	Event Correlation
	Event Correlation Operations
	Compression
	Aggregation
	Thresholding
	Filtering
	Selective Suppression
	Prioritization
	Enrichment
	Time-linking

	Event Correlation Techniques
	Rule-based Event Correlation
	Codebook-based Event Correlation
	Case-based Event Correlation
	Statistical Event Correlation
	Model-based Correlation

	Existing Open Source Event Correlation Software
	General Purpose Correlation Software
	Esper
	NodeBrain
	SEC
	Drools

	Security Specific Correlation Software
	OSSIM
	Prelude
	Sagan
	ACARM-ng

	Feature Comparison of the Correlation Software

	Communication for Distributed Event Correlation Systems
	Communication Models for distributed Applications
	Remote Procedure Call
	Message Oriented Middleware
	Conclusion

	Message Oriented Middleware Technologies
	Simple Text Oriented Messaging Protocol
	Message Queue Telemetry Transport
	Java Messaging Service
	Advanced Message Queuing Protocol

	Message Oriented Middleware Comparison

	Proposed Architecture
	The Correlation Platform Within the Perimeter Intrusion Detection System
	Correlation Platform Requirements
	Architectural Design
	Event Format
	Detection Agent Components
	Correlation and Analysis Components
	Event Communication Layer
	Event Communication Protocol
	Event Communication Architecture

	Correlation Engine Evaluation
	Performance Evaluation
	Test Setup
	Tests and Results
	Conclusions

	Implementation and Integration
	Event Communication: The EventBus
	EventBus Configuration
	Message Reliability
	Event Publisher Library

	Event Correlation
	Correlator Core
	Input Adapter
	Output Adapter

	Agent integration
	NIDS Integration: The Snort Agent
	HIDS Integration: The OSSEC Agent
	Other Agents and Systems Integration

	Validation
	Functional Validation
	Preliminary validation
	Correlation
	Event Aggregation
	Event Filtering
	Event Suppression

	Resilience

	Performance testing
	Event Publishing on Limited Resources Systems
	EventBus and Correlation Application Test Setup
	Event Rate Evaluation
	Latency Evaluation
	Performance Testing Conclusion

	Project Progress
	Constraints
	Second Semester Work Progress

	Conclusions
	Contributions
	Future work

	Bibliography
	IDMEF data model
	Examples of IDMEF attacks representation
	Configurations
	Correlator statements

