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Abstract
Cloud computing is increasingly important, with the industry moving towards out-

sourcing computational resources as a means to reduce investment and management

costs, while improving dependability and performance. Nevertheless, the migration to

cloud environments is a process that has been raising some concerns to many companies,

which see the lack of physical control, the physical resources sharing (between distinct

clients) and possible security breaches as the biggest barrier to move their systems to

cloud environments.

Taking into account these cloud’s problems and the resilience, availability and con-

sistency needed in critical applications, we propose CloudBFT: a standard three-tiered

system capable of taking advantage of cloud’s scalability and elasticity, and simultane-

ously, being as resilient as possible in order to tolerate a wide range of faults, such as

faults caused by intrusions, software and hardware faults, etc. The elasticity and scala-

bility are achieved by scaling out and shrinking the cluster according to the processing

requirements. On the other hand, to tolerate a wide range of faults (i.e., Byzantine faults),

the system must execute a parallel version of a Byzantine fault-tolerant algorithm, where

it is used groups of replicas placed on distinct physical machines, as a means to avoid

exposing applications to correlated failures. This challenge becomes even more difficult

in a relational model (as we used), where the synchronization and contention is higher.

We believe that the elasticity we observe in our system, as it scales with the load,

demonstrates the feasibility of tolerating Byzantine faults in a cloud-based web server

using a relational data model. The results show that the system can scale with the load,

as well as tolerating Byzantine faults in a cloud-based web server using a relational data

model. Therefore, this work indicates that is possible to have a higher level of resilience in

cloud environments and tolerating Byzantine faults without compromising the scalability

and elasticity.

Keywords: Distributed systems, fault-tolerant algorithms, Byzantine faults, security,

dependability.
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CHAPTER 1
Introduction

1.1 Motivation

Cloud computing has been consolidating as one of the most successful paradigms

of the internet. The need to enhance the processing power and to accommodate

peaks in demand and, at the same time, reduce the costs with the infrastructure has

led many companies to move their information systems to cloud environments. The

elasticity is one of the most important features of the cloud, where the cluster size

can grow or shrink, by adding or removing Virtual Machines (VMs) according to the

processing power needed at a certain time.

Cloud providers use virtualization for reducing the overall costs with their in-

frastructures by grouping VMs into the lowest possible number of physical machines

(PMs). The costs are reduced because the lower the number of physical machines

used is, the less the power consumed by the cluster will be. Using virtualization al-

lows cloud providers to offer services to distinct clients with lowest possible number

of PMs, since each client rents VMs instead of PMs. However, the resource shar-

ing might deteriorate the security, since different clients share the same PMs and

malicious clients may managed to attack other VMs belonging to the same PM. In

addition, clients are only able to access VMs remotely, thereby removing the phys-

ical control over these infrastructures and, therefore, increasing the possibility of a

physical attack.

The consistency and availability in many applications are crucial, mainly in critical

applications that have an utmost need of guaranteeing that the service has enough

resilience to work properly without interruption regardless of time or day. Banks

are an example, since they must ensure that all transactions are processed properly,

otherwise they may lose money, clients may start to complaint about the quality of

the service, etc. These guarantees are not provided by cloud providers and because of

1



CHAPTER 1. INTRODUCTION 2

that, clients that have critical applications are still reluctant about moving their critical

system to the cloud.

Cloud infrastructures have been exhibiting a wide range of faults [1], such as

hardware faults, software faults, faults caused by an arbitrary behavior of network

communication and faults caused by attacks. The Byzantine faults are a result of an

arbitrary behavior of the system and might be originated by a wide range of sources,

such as attacks, software and hardware faults. For instance, Byzantine faults may be

caused by crashes, omissions, timing faults, processing faults, faults in Redundant Ar-

ray of Independent Disks (RAID) controllers, etc. Systems able to tolerate Byzantine

faults are known as Byzantine fault-tolerant and they are becoming increasingly im-

portant, since malicious attacks, and software and hardware faults have also become

more common.

Building an application capable of taking advantage of cloud’s elasticity and scal-

ability is not an easy task, since these applications must be built in accordance to the

cloud’s computational model. To overcome this barrier, cloud providers have encour-

aged, through pricing, the use of their non-relational data storages, to enable parallel,

unsynchronized accesses.

Unfortunately, these models do not provide all the ACID (Atomicity, Consistency,

Isolation and Durability) properties of typical relational databases. In fact, relational

databases provide a much more powerful model with a large existing software base,

finely optimized and deeply understood by programmers. However, using relational

databases in a Byzantine fault-tolerant algorithm is expensive due to all the synchro-

nization necessary for replicated nodes and databases. In fact, some researchers argue

that the subtleties of replication strongly collide with elasticity, a driving force of the

cloud [2]. Properly isolating resources in the cloud is also a relevant problem. Cur-

rently, cloud providers try to concentrate their clients as much as possible, depending

on the resources they need, on the internal traffic they generate, or even on the pro-

grams they run, to save memory [3, 4, 5, 6].

Currently, there are no cloud service capable to tolerate byzantine faults. Even the

main cloud providers, such as Amazon EC2 [7], Rackspace [8], Google Cloud Plat-

form [9] and Microsoft Azure [10] do not have any type of service capable to tolerate

byzantine faults, where the security and reliability are deteriorated in favor of the per-

formance and elasticity. A service capable of taking advantage of cloud elasticity by

scaling out and shrinking the cluster according to the processing requirements and,
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simultaneously, capable of tolerating Byzantine faults (intrusions, hardware faults,

processing errors, malicious physical access, etc.) would be a great asset for cloud

providers and it could attract a larger number of customers.

The ideal system for cloud, mainly for critical applications, is a system capable of

taking advantage of the scalability and elasticity (to accommodate peaks in demand)

and, at the same time, being as resilient as possible for tolerating byzantine faults.

Ensuring all these characteristics at the same time, without harming the latency and

throughput is a tremendous challenge and surely a system that has all these features

could be applied in practical scenarios.

1.2 Goals

The main goal of this work is to demonstrate that is possible to have a system

capable of taking advantage of cloud elasticity for adapting the number of nodes

used according to processing power required for processing the clients’ requests. In

addition, the architecture must be able to tolerate Byzantine faults, thereby ensuring

that the system does not deviate from the expected behavior even if a set of nodes

has been attacked or a PM has been affected by a hardware fault (compromising the

whole PM) or a VM is compromised due to a hardware or software fault, etc. The

architecture must be as general as possible, being adaptable to any BFT algorithm

with minimal changes. It provides a greater flexibility and enables the user to choose

the BFT algorithm that it knows best and relies on the most.

The system must be able to execute on a relational database, guaranteeing both

data consistency and scalability by partitioning the database with the lowest data

correlation possible. To deal with the different partitions, it must create processing

groups (replicas) running on different facilities (different servers, availability zones or

regions). The number of partitions may vary according to the load over the system,

i.e., under light load, one group of VMs may respond to requests involving more than

one of the partitions. As the system load increases, the number of partitions per group

decreases down to the minimum of 1.

Since this architecture is designed for web applications, like in most of known web

frameworks, it must be as decoupled as possible for enabling the programmer for

producing modular and maintainable code. Furthermore, to make this architecture
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cost-friendly, the processing groups must run in the smallest possible number of PMs

(it depends on which BFT algorithms the user has chosen), thus taking advantage of

virtualization. As the number of clients grows, the architecture increases the number

of groups (or VMs), and takes the opposite movement when the number of clients

shrinks. This ensures elasticity.

1.3 Contributions

This work provides the following contributions:

• a scalable BFT system that shrink and scales out according to the processing

power required for processing the clients’ requests;

• it is the first three-tier and cloud-based architecture for tolerating Byzantine

faults;

• it is the first BFT system that was demonstrated that is capable to ensure some

ACID properties using relational databases in cloud environments;

• it achieves a 10× speedup.

This work led to the following publication: Rodrigo Nogueira, Filipe Araújo, Raul

Barbosa, “CloudBFT: Elastic Byzantine Fault Tolerance”, to appear in 20th IEEE Pacific

Rim International Symposium on Dependable Computing (PRDC 2014), November

2014.

1.4 Structure

The remaining document is structured as follows. Chapter two introduces the

state of the art and the related work, focusing on the cloud computing architecture

and byzantine fault-tolerant algorithms. Chapter three presents the CloudBFT archi-

tecture. Chapter four describes a CloudBFT implementation using an algorithm that

requires 3 f + 1 nodes. Chapter five shows and discusses the results achieved. Chapter

six concludes the work.



CHAPTER 2
Related Work

This chapter describes the state of the art and the related work, focusing in two

main topics of our investigation: cloud computing and Byzantine fault-tolerant algo-

rithms. Section one describes the main characteristics of cloud computing, its archi-

tecture and functioning, as well as its service model. Section two characterizes the

fault model, their sources and consequences. Section three discusses the methods to

tolerate byzantine faults and depicts the functioning of some algorithms in the litera-

ture. Section four compares the Byzantine fault-tolerant algorithms presented in the

previous section. Section five details the functioning of the Trusted Platform Module

and their features. Section six describes the main benchmarks found in the market.

2.1 Cloud Computing

Cloud computing is a computational model that is dynamically scalable (elastic),

easily configurable, of rapid deployment, convenient, virtualized and ubiquitous [11].

According to Foster et. al. [12], cloud computing can be defined as:

“A large-scale distributed computing paradigm that is driven by economies of scale, in

which a pool of abstracted, virtualized, dynamically-scalable, managed computing power, stor-

age, platforms, and services are delivered on demand to external customers over the Internet.”

2.1.1 Architecture

Virtualization is a crucial part of the cloud computing architecture, since it allows

that physical machines with a huge amount of memory and dozens of cores to share

their resources between distinct Virtual Machines (VMs). The resource sharing guar-

antees the isolation between VMs and, therefore, one VM cannot access the resource

previously allocated for others. Furthermore, if a VM has been compromised, the

5
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other VMs are not automatically affected, but the risk of attack increases and, conse-

quently the risk of the whole physical machines being compromised increases as well.

According to the National Institute of Standards and Technology (NIST) [13], the five

key cloud’s characteristics are

On-demand Service - The customer can configure the service to ensure that the re-

source management is done transparently and automatically (without directly

interacting with the cloud provider). The management is done based on metrics

such as disk utilization, memory and CPU used, etc.

Resource Pooling - It allows different customers to share the same software (multi-

tenant model), the same operating system (OS) and the same hardware. The

resources are dynamically assigned and are adapted according to the customer’s

needs (more or less processing power, more or less disk space, etc.). The disks

are partitioned, giving the illusion that the service is running alone.

Rapid Elasticity - The cluster’s computational power can be adjusted quickly and

efficiently, conforming to the processing requirements needed at certain time:

adding, removing and migrating VMs.

Broad network Access - All resource can be accessed remotely, allowing clients, both

thin and thick, to be able to access the service.

Measured Service - The cloud provider automatically and transparently controls and

monitors the client’s resources. In addition to the fixed price that is charged by

the rent of the resources (VMs), the client is also charged conforming utilization

of these resources (network traffic, CPU processing, etc.).

Virtualization has a direct influence on most of the cloud’s characteristics refer-

enced above. Virtualization, considered a key aspect of the cloud services, allows

cloud providers to increase the resource utilization of the cluster, minimizing power

consumption (more VMs sharing the same physical machine) and, consequently, re-

ducing the maintenance cost of the cluster.

The cloud environments must have an additional layer for managing the VMs.

The hypervisor or Virtual Machine Monitor (VMM) (see figure 2.1) is a component

which, in cloud environments, runs over the hardware and is responsible for creating,

destroying and managing the execution of all VMs. It is the hypervisor which controls
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Physical MachinePhysical Machine

Hardware

Hypervisor

SO guest (VM) SO guest (VM)

APP APP APP APP

Hardware

SO host

Hypervisor Hypervisor

APP APP APP APP

SO 
guest

SO 
guest

SO 
guest

SO 
guest

Hypervisor type 1 (native) Hypervisor type 2 (hosted)

Figure 2.1: Virtualized Architecture and distinct types of Hypervisors

the amount of memory that can be used by the OS guest, the disk partition to store

the data, the network adapter for communication, etc. Guaranteeing the isolation

between the OS is one of the most important hypervisor roles, since it is essential

for guaranteeing the fully isolation between distinct VMs, ensuring that distinct VMs

do not conflict during concurrent accesses to resources of the same physical machine

(PM). Hence, each VM works as if it were executing over an independent PM.

There are two types of hypervisors (see figure 2.1): bare metal (type 1), that runs

directly over the hardware and the hosted (type 2), that works as an OS application,

connecting the OS guest with the hardware, through the OS host.

Studies [14] [15] [16] show that the overhead of sharing physical resources between

distinct VMs and the addition of the hypervisor for managing the access to this re-

sources is low, especially when the bare metal hypervisor is used, thus guaranteeing a

good performance and at the same time maximizing the physical resource utilization.

Nonetheless, other studies [17] [18] show that the hypervisor is not 100% secure, and

it has been a target of several successful attacks, which managed to break the isola-

tion between VMs, thereby executing a cross-VM attack (see Figure 2.2). According

to the IBM X-Force [18], 35% of the vulnerabilities created by the virtualization may

compromise the hypervisor, as well as the isolation between the VMs. The bare metal

hypervisors (type 1) are considered more secure because they execute directly over

the hardware (without any host OS). On the the other hand, adding a hypervisor on

top of a host OS (hosted hypervisor) adds more complexity and more vulnerabilities
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to the host [19]. The hypervisor must be as robust and secure as possible because the

proper functioning of VMs depends on this.

Physical Machine

Hardware

Hypervisor

SO guest   SO guest

APP APP APP APP

Figure 2.2: Example of a cross-VM attack, where the hypervisor cannot ensure the isolation

between VMs.

2.1.2 Service Models

Cloud computing has different service models, which vary according to the ab-

straction level intended by the customer. The higher the abstraction level is, the lower

the access level and infrastructure control will be (see figure 2.3). The service models

are:

Infrastructure as a Service (IaaS) - In this model, the cloud provider offers servers,

storage, network, and OSes according to the customer needs (on-demand). The

restrictions imposed by the IaaS providers are minimal, since the customer can

control and configure almost all components over the infrastructure, thereby

being able to deploy or execute any type of software, such as applications or

operating systems. The user is billed only by the CPU processing, data trans-

ferred over the network (download and upload) and disk space used. The in-

frastructure can scale out or shrink dynamically according to resources that are

necessary, thereby reducing the cost when the load is low and guaranteeing

computational power when needed. The IaaS big players are Amazon EC2 [7],

Rackspace [8], Microsoft Azure [10] and Google Cloud Platform[9].
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Platform as a Service (PaaS) - In this model, the cloud provider offers a high level

ready-to-use development platform for the client for compiling, testing and de-

ploying its own applications. To provide these services, the PaaS provider im-

poses some restrictions on the consumer and limits some characteristics, such

as supported programming language, available libraries and services, the disk

access mechanism, etc. The customer does not have access or control of infras-

tructure resources (like in IaaS), but the cloud providers ensure that the platform

where a customer’s application is running, fulfills the needed requirements. The

PaaS big players are: Microsoft Azure Services [10], Force.com platform [20],

Heroku [21] and Google App Engine [22].

Software as a Service (SaaS) - In this model, the cloud provider is responsible for

managing the complete infrastructure and, therefore, ensuring that the service

works properly without any downtime or at least as minimal as possible. This

involves guaranteeing the appropriate infrastructure operations (IaaS) and prop-

erly deploying and operating the customers’ applications (PaaS), as well as many

crucial features such as scalability, reliability, compatibility, confidentiality, etc.

The client just uses the software and does not need to worry about server con-

figuration, OS, network, storage. The access is done by a browser or by a thin

client designed especially for this purpose. The SaaS providers charge the cus-

tomers conforming to the service utilization, for example, subscriptions for a

certain period (monthly, annually, etc.). The SaaS big players are: Salesforce.com

[23], leading provider of Customer Relationship Management (CRM) online and

Google Apps [24] which provides e-mail, calendar, document, and management

for business and Workday [25].

2.1.3 Deployment Models

The cloud computing has two key deployment models, which define how the

client accesses the resources. One is the public cloud that is the most popular and

widely used, where the whole infrastructure and their resources are provided as a

service that can be accessed over the Internet. In this model, the cluster’s resources

are shared by distinct customers (multi-tenancy), and the customers are charged de-

pending on service utilization. The infrastructure is managed by the cloud provider,

but the customer can automatically adapt the resources in a certain period, in order
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Figure 2.3: Cloud service models: IaaS, PaaS and SaaS

to satisfy their needs, such as processing capacity, space in disk, etc. The main pub-

lic cloud providers are Amazon [7], Windows Azure [10], Rackspace [8] and Google

Cloud Platform [9]. The private cloud is another deployment model, where the whole

infrastructure is used by only one organization and there is no kind of hardware shar-

ing between customers (through virtualization), thus reducing the risk of a possible

cross-VM attack, since all VMs belong to the same owner. The resource management

can be done by the owner, by other companies or by both.

Besides the private and public cloud deployment models, there are two others

that are based on these models. The hybrid cloud allows an organization to share

their resources between a public cloud and a private cloud, thereby aiming to do as

much processing as possible in private cloud and only use the public cloud when

the private cloud does not suit to the requirements needed. The community cloud

deployment model allows customers to share their resources among a restricted set

of organizations, which usually have the same purposes, such as security, interoper-

ability, confidentiality, etc.
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2.2 Fault Model

Faults, errors and failures are terms used in the field of dependability, with differ-

ent meanings, often exchanged erroneously. These terms are extremely important for

understanding the following sections well. The terminology used is based on Gray

et. al. [26], Laprie [27], and endorsed by IFIP Working Group (IFIP WG 10.4) and the

IEEE Technical Committee on Fault-tolerant Computing.

A system can be composed by one or multiple modules that can recursively have

sub-modules. Each system has a specified behavior, which is the behavior expected in

the absence of anomalies, and the actual behavior, which is the current state that the

system is in.

A fault creates one or more latent errors, becoming effective when it is activated.

When the error is activated, it might create more errors, that in turn may affect the

service, thereby generating a failure (see Figure 2.4), and therefore, affecting proper

functioning of the system and exhibiting that to the client. Therefore, failures happen

when the actual behavior diverges from the specified behavior, errors are defects in a

module and the cause of an error is a fault.

Faults can be caused by physical components (hardware faults), such as a hard

drive disk, memory, processor, network interface, as well as by software faults, such

as programming mistakes, exceptions, etc. A fault generates a latent error, which,

might never be activated, for example, a piece of software containing a programming

mistake that is never executed. The errors emerge when, because of a fault, a module

no longer works properly, thereby making part of the system or making the whole

system inconsistent. Errors may generate a failure, that in turn affects the proper

execution of the system, where data may be corrupted or lost, processing errors may

occur, hardware may not work properly and, consequently, exhibiting the erroneous

behavior to the client.

One of the main goals of this work, is to ensure that errors do not result in fail-

ures,i.e., the system must be able to tolerate faults, errors and failures, working prop-

erly even in these scenarios.

Although software faults occur more often, hardware faults have a greater impact

on the system, mainly if the system uses virtualization, because all VMs belonging to

the PM will be affected. For instance, a memory fault may compromise the proper



CHAPTER 2. RELATED WORK 12

System

Error

System State

Fault

Service

User

Failure

X

Figure 2.4: The representation of the flow of faults, errors and failures.
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Figure 2.5: Spectrum of faults representing crash, omission, timing and Byzantine faults

functioning of the whole system, since for the correct functioning of the software,

the hardware must work well too. The disk and processor faults can have the same

effect, since they are crucial components for the correct working of any OS, and con-

sequently, any application.

In cloud environments, tolerating hardware faults is even more important, since

the cloud architecture is based on virtualization and, therefore, a PM provides VMs

for several clients. Thus, a hardware fault may affect all VMs belonging to the PM,

precluding the clients from accessing their VMs or corrupting data stored in these

VMs. Cloud providers, such as Amazon, offer High Availability Zones (Multi-AZ),

where the service and database are replicated and automatically synchronized across

different availability zones. Although the replication achieved by Multi-AZ enhances
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the system’s availability, since the service is replicated across distinct PMs around

the world, this is not enough for ensuring the proper functioning of the system in

all scenarios, because the replicated nodes may deviate arbitrarily from the specified

behavior, thereby being able for corrupting all other replicated nodes. In critical sys-

tems, it is necessary a higher level of dependability than the achieved by a typical

replicated system, since critical system must ensure that even arbitrary faults do not

compromise the service.

The replication achieved by Multi-AZ guarantees that the system is able to tolerate

crash faults and omission faults (e.g., failing to receive a request or failing to send a

response) (See Figure 2.5, however there are more complex faults, such as commis-

sion faults (e.g. process the request erroneously, corrupting the system state, sending

inconsistent responses to a request) and Byzantine faults. Byzantine faults (see Fig-

ure 2.6) are the most complex faults, since the system may deviate from the specified

behavior arbitrarily and, therefore, it is extremely difficult to predict the system’s be-

havior and the consequences of the erroneous actions. A system that is capable of

tolerating Byzantine faults is known as Byzantine fault-tolerant (BFT). In addition to

software faults and hardware faults, the BFT systems must also tolerate physical or

remote attacks. Therefore, they must guarantee that if an attacker performs a success-

ful attack, a set of replicated nodes remain following the specified behavior, thereby

guaranteeing the correct service functioning, even if a set of nodes has been exhibiting

arbitrary behavior. The BFT systems do not make any assumptions about the source

of the faults, since they must be able to tolerate faults from any source, including they

are hardware or software faults.

Software Faults Network Faults Hardware Faults

Security Faults Faults caused by 
natural disasters

Faults caused by 
unpredictable events

Byzantine Faults

…

Figure 2.6: Examples of faults that cloud be the source of a Byzantine fault.
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2.3 State Machine Replication

The state machine replication is a method for implementing a fault-tolerant service

by replicating the initial state of a machine across distinct nodes of the system. Thus,

all nodes of the service start with the same state and as the requests arrive on the

servers and the nodes start processing them, thereby moving to other states. It is

expected that after the initial state, all nodes follow the same sequence of states. The

replicas, which deviate from the correct state sequence, are considered faulty. The

SMR has been used for building Byzantine fault-tolerant algorithms by replicating the

service state across several replicas, thereby guaranteeing consistency and availability

even when a set of replicas deviates arbitrarily from the expected behavior. In addition

to the SMR, it is necessary to incorporate a consensus algorithm to the SMR technique,

ensuring that, even when a set of replicas deviate from the correct state sequence, the

others (the correct ones) are able to agree on which is the correct state. The consistency

is ensured since all replicas execute the same request in the same order (the non-faulty

servers) and the availability is guaranteed by using the redundancy achieved through

the state replication.

2.3.1 PBFT - Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance (PBFT) is an algorithm proposed by Miguel

Castro and Barbara Liskov [28] for tolerating Byzantine faults with the main purpose

of guaranteeing a good performance, therefore making it possible to apply it in prac-

tice. The PBFT assumes an asynchronous (or have a weak synchrony [29]), for making

it capable to work on asynchronous environments such as the Internet. The service is

replicated across several nodes (3 f + 1) and only a set of replicas ( f ) can exhibit an ar-

bitrary behavior. The algorithm moves through a sequence of configurations (views),

where in each view a primary and a set of replicas is defined. The view changes

when the replicas suspect that the primary has failed or if it has been demonstrating

Byzantine behavior. The algorithm steps (see figure 2.7) are:

1) The client sends a request to all replicas and to the primary, which starts a three-

phase agreement protocol (PRE-PREPARE, PREPARE and COMMIT) by sending a
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message of PREPARE to all other 3 f replicas.

2) After receiving the PRE-PREPARE message, the replicas validate the message

and then each one sends a PREPARE message to all other nodes 3 f of the cluster.

3) When each node (replicas and primary) receives 2 f + 1 PREPARE messages,

they verify the message authenticity and then send a COMMIT message to all other

nodes of cluster.

4) After receiving 2 f + 1 valid COMMIT messages, each node sends a REPLY

message to the client containing the response of the client’s request.

5) After receiving 2 f + 1 REPLY valid messages, the client accepts it and can act

on it.

Figure 2.7: PBFT algorithm execution with 3 f + 1 nodes. Source: [28]

The algorithm has a checkpoint mechanism, for guaranteeing that the current

state of each node is correct, as well as reducing the overhead of a future view-

change operation. This overhead is amortized, because the checkpoint operation is

executed regularly, thereby ensuring when a view-change operation is needed, the

non-synchronized states between replicas are as few as possible. Therefore, after re-

ceiving 2 f + 1 CHECKPOINT messages with the same state, each node accepts that

all processing done before is correct and then it erases the previous message logs and

updates the latest checkpoint to the agreed one.

Thus, after receiving two CHECKPOINT messages with the same state, each node

accepts that all processing done before is correct and then it erases the previous mes-
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sage logs and updates the latest checkpoint to the agreed one.

The view change is necessary when a replica suspects that the primary has failed.

After receiving the client’s request and if during a determined interval the primary

does not send the PREPARE message, the replicas suspect that the primary has failed

and, consequently, start a view-change operation.

2.3.2 Zyzzyva - Speculative Byzantine Fault Tolerance

Zyzzyva is a Byzantine fault-tolerant protocol proposed by Kotla et. al. [30], which

uses an optimistic approach (speculative) to reduce the total number of steps done in

the normal case execution (without fail). This approach allows Zyzzyva to improve

the algorithm’s performance in scenarios without the presence failures or Byzantine

nodes. However, when there are failures the algorithm must execute an additional

step for ensuring the response consistency. This additional step deteriorates the algo-

rithm’s performance in scenarios where the nodes are more likely to fail.

In Zyzzyva, throughout the algorithm execution (see figure 2.9), the replicas trust

on the primary by executing the requests by the order imposed by primary. Therefore,

there is no need to execute a further step to determine the order in which the requests

must be executed (generally heavy computationally). When the replicas suspect that

the primary has failed, they start a view-change operation. The client has a crucial

role, since it is responsible for detecting if there are problems with the response gen-

erated by each server. Hence, the client waits for 3 f + 1 matching responses (same

content) and if it receives this exact number of correct responses, it accepts the re-

sponse as being correct and acts on it. Otherwise, if the client receives between 2 f + 1

and 3 f equal responses, it starts a supplementary step, sending a commit certificate to

all replicas, thereby ensuring that at least 2 f + 1 distinct replicas agreed on the order

that the request was executed. If the client receives less than 2 f + 1 equal responses af-

ter sending the commit certificate, the request is retransmitted to all replicas and then

the client waits during a determined period (t) by a correct response (this implies a

correct ordering by the primary). Finally, if the client does not receive the response

before t expires, the replicas suspect that the primary has failed and a view-change

operation is triggered.

Zyzzyva also has a checkpoint mechanism for reducing the overhead of the view-

change operations, since the nodes only need to synchronize the states (throughout
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Figure 2.8: Optimistic execution of the Zyzzyva algorithm with 3 f + 1 nodes. Source: [30]

the view-change operation) that were executed after the last successful checkpoint.

Furthermore, it guarantees that after a checkpoint at least 2 f + 1 nodes are in consis-

tent state and that they have executed all requests properly up until present moment.

Figure 2.9: Zyzzyva algorithm execution with Byzantine nodes. Source: [30]
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2.3.3 ZZ - Cheap Practical BFT using Virtualization

ZZ [31] is an algorithm for tolerating Byzantine faults, that takes advantage of

the virtualization for reducing costs and resources used. The ZZ divides the agree-

ment nodes (they are responsible for guaranteeing the execution order) and the execu-

tion nodes (they keep the system state and process the clients’ requests) into distinct

groups (see figure 2.10).

Figure 2.10: Functioning groups division implemented at ZZ: agreement group and execution

group. Source: [31]

Like in PBFT [28] and Zyzzyva [30], for assuring the operations’ execution are

required 3 f + 1 nodes. In this case, as the nodes are responsible for executing only the

agreement protocol and the algorithm allows the usage of virtualized environments,

it assume that the nodes can be low-cost VMs with very limited resources.

The ZZ allows that the minimum number of nodes for executing the clients’ re-

quest (execution group), are by far lower than other approaches ( f + 1). The initial

group size is f + 1 nodes, and as the conflict on the responses are detected (see figure

2.11), more VMs must be added into the processing group in order to guarantee that

there is a majority of non-BFT nodes for being able to decide properly the response.

Thus, in a scenario where all servers operate correctly, it only needs f + 1 VMs for

processing the clients’ requests, substantially reducing the number of messages ex-

changed and, therefore, enhancing the overall performance. In the ZZ, the client also

has a crucial role, because it is accountable for verifying that at least f + 1 received

messages are equal.
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The ZZ has a checkpoint mechanism as well, but only the execution group needs

to periodically synchronize the state between the nodes.

Figure 2.11: ZZ algorithm execution. Source: [31]

2.3.4 MinBFT

MinBFT [32] a is Byzantine fault-tolerant algorithm developed by Veronese et. al.,

which is based on PBFT [28]. The key advantage of this algorithm is the fact of only

needs 2 f + 1 nodes. The reducing from 3 f + 1 to 2 f + 1 is achieved by adding a

tamper-proof trusted component, which together with a monotonic counter, allows

the algorithm to assign a sequence number to each client’s request. Thus, it is pos-

sible to ensure that the processing order is the correct, since it was decided a by the

trusted component. The total order during the processing is ensured by associating

the counter to each message, so that the replicas only processing the message with

counter value equal to c + 1, after processed the c. Since that counter is associated

to the message by the trusted and tamper-proof component, it is possible to ensure

that correct replicas process the message in the same order and the others, that do

not process the message in the correct order, are considered as faulty. The trusted

component must be able to work properly, even if it resides has been compromised.

The Trusted Platform Module (TPM) (See 2.5) is the trusted component used by the

MinBFT, since it is a secure cryptographic co-processor, which provides all necessary

resources for guaranteeing the authenticity of the messages and the validity of the

respective assigned counter. Like in PBFT; there is a primary and the other nodes

are replicas, which processing the requests conforming to the order defined by the
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primary. The algorithms steps are:

1) The client sends a REQUEST message to all nodes.

2) Upon receiving the REQUEST message from the client, the primary uses the

TPM for getting the counter value and assigns it to the PREPARE, which is sent to all

replicas. After receiving the REQUEST message from the client, the replicas start a

timer that, if it expires, triggers a view-change operation.

3) The replicas verify the authenticity of the PREPARE message and, if the message

counter is correct, a COMMIT message is created and sent to all nodes.

4) After receiving 2 f + 1 equal COMMIT messages, the nodes send a REPLY mes-

sage to the client, which contains the response of its request.

5) Upon receiving f + 1 equal messages, the client accepts this response and acts

on it.

Figure 2.12: MinBFT algorithm execution. Source: [32]

According to Veronese et. al. [32], the main advantages of the algorithm are:

1) Reducing the number of nodes from 3 f + 1 to 2 f + 1, that reduces the system

cost considerably. 2) Reducing the number of necessary steps during the algorithm

execution, compared to previous approaches such as [28] [30]. 3) It uses the TPM as

trusted component, that is an approach that has never used before in BFT algorithms

[33] [34].
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2.4 Comparison of BFT algorithms

The state machine replication has been the most used technique for building sys-

tem to tolerate Byzantine faults [28, 35, 30, 33, 32, 31]. The state replication aims to

ensure a higher level of resilience, thereby even when a set of nodes ( f ) have been

attacked or have failed, other groups of nodes can operate correctly, replying to the

clients’ requests properly.

The PBFT is an agreement-based protocol for tolerating Byzantine faults that re-

quires 3 f + 1 nodes. The PBFT does not use any tamper-proof component and, there-

fore, it needs an additional step for ensuring the total order. In this additional step

(PRE-PREPARE) is necessary for synchronizing the replicas and for the primary as-

sures which nodes are ready for executing the client’s request. Since the PBFT was

proposed more than 10 years ago, it does not have any virtualization mechanism for

taking advantage of cloud environments.

Zyzzyva is a Byzantine fault-tolerant algorithm that uses a speculative approach

for reducing the communication steps in the absence of faulty nodes. Both latency and

throughput in these scenarios are tremendously improved, since the communication

steps are close to the non-replicated approach (the nodes receive the client’s request,

process and reply). Though the Zyzzyva does not use any tamper-proof component

to reduce the required number of nodes, some works have already been conducted

in this direction, such as MinZyzzyva [32], thus decreasing the minimum number of

nodes from 3 f + 1 to 2 f + 1 to tolerate Byzantine faults. Until now, any Zyzzyva

based protocol did not exploit the virtualization and, therefore, these algorithms are

not adequate for cloud environments.

MinBFT [32] is a Byzantine fault-tolerant algorithm that requires the lowest num-

ber of nodes (2 f + 1), for tolerating f faulty nodes. This is achieved by adding a

tamper-proof component for signing and verifying all messages sent throughout the

protocol’s execution. Though the tamper-proof component reduces the total number

of nodes from 3 f + 1 to 2 f + 1, it adds a slower component that mandatorily has

to sign and verify all the messages, thus compromising the system’s scalability (the

tamper-proof component can be quickly become the system’s bottleneck). MinBFT

has the lowest number of communication steps compared to other approaches, since

all messages are signed and verified by a tamper-proof component, the number of

nodes can be reduce, and, consequently, the number of communication steps can also
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be reduced from 4 (Like in PBFT) to 3. The figure 2.7 and 2.12, depict that the MinBFT

removes the PRE-PREPARE communication. This step is no longer necessary, because

in MinBFT all replicas only accept messages signed by the tamper-proof component

with the respective monotonic counter attached, thus guaranteeing the total order

execution without a further step.

ZZ uses a distinct approach for tolerating Byzantine faults. It splits the cluster

in two distinct and functional groups of nodes: agreement and execution groups.

Furthermore, ZZ uses low-spec virtualized nodes to reduce the overall cost of the

cluster, aiming to be feasible the use of the algorithm in practice. The agreement

group must have 3 f + 1 nodes for tolerating f faults and these nodes can be VMs of

low performance and cost, since it does not make any processing (they only make

processing for agreeing on the message’s order execution). The processing groups

start with only f + 1 nodes and if the client does not receive f + 1 equal responses, it

notifies the cluster and more nodes are added for guaranteeing a majority of correct

responses i.e. a consensus of at least f + 1 identical responses.

Algorithm

PBFT [28] Zyzzyva [30] ZZ [31] MinBFT [32]

Tamper-proof component No No No Yes

Speculative No Yes No No

Virtualized No No Yes No

Communication Steps 4
2 (Speculative)

4 (Non-Speculative) 5 3

Cost
Minimum 3 f + 1 3 f + 1

3 f + 1 (Agreement)
f + 1 (Execution) 2 f + 1

Maximum 3 f + 1 3 f + 1
3 f + 1 (Agreement)
2 f + 1 (Execution) 2 f + 1

Figure 2.13: BFT algorithms comparasion

2.5 Trusted Platform Module

The Trusted Computing Group (TCG) is an organization created in 2003 by big

IT companies such as IBM, Intel, AMD, Infineon, Microsoft, Hewlett-Pack and Sun

Microsystems with one purpose: to improve the security of the computers and the

communication networks. The TCG is accountable for creating several specifications,
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describing how a trusted system should work (trusted computing). The main specifi-

cation created by TCG is the Trusted Platform Module (TPM): a security chip with its

own co-processor, memory, firmware and software.

2.5.1 Architecture

The TPM is composed by distinct and independent units, that together provide all

functionalities of this chip. The architecture (see figure 2.14) and its respective units

are:
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Figure 2.14: Trusted Platform Module architecture

Cryptographic co-processor and functional units - This component is responsible for

executing all cryptographic operations that can be executed by the TPM. The

TPM has a high quality random number generator (RNG), which is capable to

generate non-reproducible and non-periodic numbers. The generated numbers

can be used afterwards for internal or external applications. There is also a RSA

key generator capable to generate keys with sizes higher than 2048 bits, and it

is possible to encrypt, decrypt and sign messages both for internal and external

applications. The TPM provides a dedicated unit for generating hash functions

(SHA1 - Secure Hash Algorithm 1) that are very important and widely used by

several applications to provide some security features.
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Volatile Memory - The TPM’s volatile memory is accountable for storing the Plat-

form Configuration Registers (PCRs), the Attestation Identity Key (AIK) and

the Storage Keys (SK). Since it is a volatile memory, all the registers are dis-

carded after the machine has been shut down. The PCRs are responsible for

storing the systems component measurements, such as Basic Input/Output Sys-

tem (BIOS), hypervisor and firmware. The TPM only allows to extend1 a previ-

ous PCR value, so each new component measurement is extended (combined)

from the previous PCR value and, therefore, at the end, the PCR will contain

the combined value for the whole system component stack. Since the extension

operation is not commutative, the order that operations are done is extremely

important. The AIK are a key pair used only to sign the structures belonging

to the TPM. These keys allow to verify the authenticity of a message generated

by a TPM. The SK is a unity for storing other key types, such as registers and

necessary information to the proper operations of other specific applications.

Non-volatile Memory - The non-volatile memory is responsible for storing the En-

dorsement Keys (EK), the Storage Root Keys (SRK), counters and all sorts of

data that needs to be persisted. The EK are a RSA key pair of 2048 bits that

are incorporated to the TPM during the manufacturing process. The EK private

part is used to identify unequivocally the TPM chip. For security and privacy

reasons, the EK private part is only used to encrypt structures that will not

leave the TPM and to decrypt external or internal structures. The non-volatile

memory is also able to store other data structures, such as monotonic counters,

that together with the RSA encryption unit and hash functions are crucial for

implementing our architecture.

2.5.2 TPM features

The TPM allows to create different applications capable to take advantage of its

features, such as the random number generator of high quality, asymmetric keys

generator, the ability to create more secure hashes, etc. Nevertheless, the TCG defines

[36] that the TPM must provide at least three main features:

Platform Integrity - The TPM must be able to verify the system’s state during the

1The “extend” operation consists in combining a previous value with the new through a particular

operation, replacing the old value by the produced.
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boot time by verifying it through reliable metrics (trusted conditions) and extend

this reliability until the OS is completely booted and working. For providing this

feature, the TPM together with the BIOS, uses the Platform Configuration Reg-

isters (PCR), that act as sort of a container by storing the measurements of each

system’s component. The TPM computes the hash of each measurement (each

system component) for assessing if the system is trusted or not. The measure-

ment result is stored in a PCR (this process is called “Extending the PCR”). The

PCRs can be extended many times until the final value has been calculated. Af-

ter measuring all system’s components and extending them to the TPM, this

value will represent an accumulation of all executed code until the system is

fully booted. Thus, the TPM can verify the system’s final state by checking the

final hash stored into the PCRs and, consequently, it can decide if the system

can be trusted or not.

Disk Encryption - The TPM allows that the data stored in a computer are encrypted

and associated to the specific platform configurations. This association is done

by using PCR values and asymmetric keys, which cannot be accessed or ex-

tracted from the TPM. Thus, for decrypting the data previously encrypted, the

platform configurations must be the same that were used previously, as well as

the same TPM with the same private key. The Sealed Storage is the main data

protection method specified by TCG. In addition to this method, there are two

more related to data protection: Binding and Sealed-Signing. The first is similar

to the Sealed Store, but in the binding operation, the TPM can choose if the used

key for encrypting the hard disk data can be transferred to another TPM or if

it only belongs to the TPM that created the key. On the other hand, the Sealed-

Signing allows the algorithm to add specific PCRs, to ensure that the system

that is verifying the signature fulfills all required configurations imposed by the

TPM that previously has signed the content.

Integrity Report - It enables to determine the hardware and software current con-

figurations to remotely attest the platform’s state, thus avoiding unexpected al-

terations. To be able to do remote attestations properly, the PCR values must

be signed with the Attestation Identity Keys (AIK), thereby ensuring the sig-

nature authenticity, since each TPM has its own unique AIK. For determining

that an AIK belongs to a trusted platform without revealing the TPM’s identity,

algorithms for Direct Anonymous Attestation [37] [38] [39] can be used.
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2.6 Database Benchmarks

A benchmarking is used to measure the performance of a process, software or

system to compare the results achieved against to the best practiced by the industries.

In the field of databases, benchmarking is used to measure and compare the per-

formance of distinct Database Management Systems (DBMSs) or NoSQL databases,

thus determining which one is more suitable for a particular case. However, there are

several benchmarks available and some of them do not trustworthily represent a real

scenario and do not have the necessary complexity to be a standard benchmark. To

avoid this, the Transaction Processing Performance Council (TPPC) was created for

defining and standardizing the relational database benchmarks.

Since then, the TPPC has been creating several benchmarks, that are now the stan-

dard for measuring and comparing the relational databases’ performance. The most

popular benchmarks are:

TPC-C - TPC-C is industry standard for measuring the performance of Online Trans-

action Processing databases. It simulates a retailer company, where clients can

order products and distinct warehouses provide the products for clients of a de-

termined district. Therefore, this benchmarking depicts a widely used business

model, mainly by the IT companies that sell goods and products through the

Internet. The TPC-C has five main queries of different types, such as read-only,

write-only and read-write. This mix of transactions allows to test the major part

of possible operations done by the data-schema provided by the TPC-C. For

example, the new-order transaction (the client buys something, and, therefore,

it must create a new-order for processing the client’s order) and the payment

transaction for computing the client’s payment related to a certain order. To

approximate the TPC-C even closer to a real system, the TCG defined that 10%

of the items of a new-order transaction must be provided by a remote ware-

house (a warehouse of another district). Therefore, it simulates a run out of

stock of some of items belonging to a new-order transaction, thereby forcing

the system to resort to a remote warehouse to process the client’s order and,

therefore, enhancing the query complexity (more complex join operation) and

concurrency between transactions. The metric used by the TPC-C for measuring

the databases’ performance is the transactions per minute (tpmC).

TPC-H - TPC-C is a standard benchmark benchmarking designed for decision-making
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systems for measuring the performance in Online Analytical Processing (OLAP)

databases. Since it is designed for an OLAP databases, the queries are business

oriented and ad-hoc, that were built for running over large volumes of data. The

queries have a high degree of complexity for illustrating a real and complex de-

cision making system (business intelligence). For example, some queries analyze

the company’s profit obtained in the last year, others analyze what the market

share of the company is, etc. The performance metric used by TPC-H is called

the TPC-H Composite Query-per-Hour Performance Metric (QphH@Size). This

metric is composed by several aspects related to the databases’ performance,

such as database size, query-processing power, throughput by multiple concur-

rent users, etc.

Since this system is designated for cloud environments, the TPC-C is more ade-

quate for measuring the system performance and scalability.
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This chapter describes the CloudBFT architecture by depicting the functioning of

all components. Section one the system model and the assumptions made. Section

two gives an overview of how the system works and which are the main components.

Section three describes how the system is organized for assuring maintainability, as

well as for being as close as possible to the web frameworks found in the market. Sec-

tion four characterizes the client functioning and its relevance during the algorithm’s

execution. Section five details the primary’s role and how it is important for the

proper functioning of the entire system. Section six describes the processing groups,

as well as the main decisions to make this architecture elastic and scalable. Section

seven illustrates the functioning of the database nodes and how they ensure data

consistency without compromising the system’s performance. Section eight charac-

terizes the working of the trusted component (TPM) and the operations that it must

implement. Section nine describes the messages exchanged throughout the BFT algo-

rithm execution and the content of each message. Section ten depicts the TPC-C data

schema as well as why it is a relevant benchmark for OLTP databases.

3.1 System Model

In this work a Byzantine failure model is assumed, where faulty nodes or clients

may deviate arbitrarily from the correct state. Clients or nodes that deviate from

the correct state are said to be faulty. A Byzantine fault-tolerant algorithm is used to

ensure that even in the presence of faulty nodes, the majority of the system can process

a client’s request correctly, and reply with the correct response. MinBFT [32] was

used as the BFT algorithm, because it needs only 2 f + 1 replicated nodes to tolerate f

failures. Since one of cloud computing characteristics is to be cost efficient, we choose

a BFT algorithm that can provide performance and elasticity with minimum number

28
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of nodes possible, thus reducing the total overall cost for tolerating Byzantine faults

and, therefore, approximating our approach to the practical environments.

We assume strong adversaries that can delay communication, attack and take con-

trol of any node of the cluster. However, adversaries cannot forge cryptographic

operations done by the tamper-proof component, such as collision-resistant hashes,

encryption and digital signatures. The adversaries can take control of an entire phys-

ical machine and, consequently, controlling all VMs of its physical machine. The

system must tolerate these type of physical attacks, since it was designated for cloud

computing environments, where the VMs are accessed only remotely and, therefore,

we cannot make any assumptions related to the physical access control of such VMs.

In spite of the cloud providers can offer a Service-level agreements (where are spec-

ified several assurances for the client, such as performance measurement, problem

management, warranties, disaster recovery, etc.), for tolerating Byzantine faults, these

assurances are insufficient. Furthermore, both servers and clients must know the pri-

vate keys necessary to encrypt and sign the messages in order to ensure authenticity,

integrity, non-repudiation and confidentiality.

We assume an asynchronous network that can fail to deliver messages, dupli-

cate them or deliver them out of order. Like MinBFT and PBFT, we do not make

any assumptions related to liveness, but the network and the internal system must

eventually process or send the messages. Furthermore, it is assumed that faults are

independent, i.e., there is no correlation between two failures or the least possible

correlation practically achievable. This may be achieved by introducing diversity in

the cluster, for example, through the utilization of distinct operating systems, distinct

source code, different versions of the programming language used, etc.

Although the MinBFT is used as the algorithm to tolerate Byzantine faults, any

Byzantine fault tolerant algorithm with some changes, such as PBFT [28] or Zyzzyva [30],

is suitable for the system presented in this work. Thus, this approach is so general

and adaptable that is able to work with any Byzantine algorithm.

Since the system’s design is specifically intended for cloud environments, it was

stipulated that the nodes (VMs) that execute the algorithm must be distributed across

2 f + 1 or 3 f + 1 distinct physical machines (in a multi-server or multi Availability

Zone configuration, for example). Thus, if a physical machine is compromised due

to a hardware fault or if multiple VMs are affected by a cross-VM attack, the faults

will not compromise the system and, therefore a majority of machines (2 f + 1− f ou
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3 f + 1− f ) remains intact (running the algorithm properly).

3.2 Architecture Overview

The system presented in this work is designed for cloud environments for taking

advantage of elasticity and scalability, but at the same time, for being highly resilient

to be able to tolerate Byzantine faults. This work has several challenges because for

tolerating Byzantine faults is necessary to build a tremendously complex distributed

system, to ensure that hardware and software faults, physical and remote attacks and

natural disasters do not compromise the system. Thus, the system remains consis-

tent and able to tolerate any type of faults, replying properly the clients’ requests

even in the worst scenarios. In addition, the system must be able to scale according

to processing power required and, therefore, it must be elastic and scalable as well

as Byzantine fault-tolerant. The biggest challenge of this work is to find a balance

between these challenges in order to assure one without compromising another.

The virtualization is the key component of the system’s architecture, since it is

through this technique that is possible to parallelize the processing of the requests

and the accesses to the data. Thus, we create processing groups (See Figure 3.1), that

are distributed across distinct physical machines and each group processes requests

independently of the others, thereby enhancing the system’s performance by paral-

lelizing the processing and reducing the resource consumption through the use of

virtualization. The in-depth description of how CloudBFT parallelizes processing of

the clients’ requests, how the group division is made, as well as how the database

nodes are partitioned are described in more detail in the next sections.

The MinBFT [32] was chosen to be adapted and inserted into the logic tier for toler-

ating Byzantine faults because, besides it has already been proven that works properly

with a tamper-proof component, it only needs to replicate the state across 2 f + 1 dis-

tinct PMs. The amount of resources needed for orchestrating and running the BFT

algorithm is crucial, since both IaaS and PaaS (the most widely used models by cloud

customers) are service models that charge their customers according to the number of

VMs rented and by the respective processing and network traffic performed by each

VMs. However, the MinBFT must be adapted, enhanced and optimized for making it

capable to work properly in cloud environments, for ensuring that all requirements

of the architecture presented in this work are fulfilled. BFT algorithms are composed
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by several components that are crucial for the proper working during its execution.

These components are described in more detail in the next sections:
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Figure 3.1: System Architecture

3.3 3-tier Architecture

The architecture presented in this work was designed aiming applications that

use the HyperText Transfer Protocol (HTTP) to establish the communication between

clients and servers. The HTTP is widely used on the Internet by web applications,

however since it belongs to the application layer, it is necessary to have another proto-

col in the transport layer for handling lower level operations. The Transmission Con-

trol Protocol (TCP) and the User Datagram Protocol (UDP) are the most commonly
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used options. Like in most well defined, designed and implemented web applica-

tions, our architecture follows a three-tier model. This division achieved through this

model allows creating application with greater flexibility and loosely coupled, thereby

reducing the cost of future changes, testing more easily the application and improv-

ing the maintainability. The main web frameworks, such as ASP.NET, Django, Ruby

on Rails, Grails, Spring MVC, use the same paradigm and have been having great

adoption by the companies[40]. Cloud providers have invested a lot in web frame-

works to be the basis of one its main services: Platform as a Service (PaaS). Besides

offering greater flexibility, the PaaS services have been increasingly adopted by many

programmers because it is considerably easier and fast to deploy applications in these

services. The web frameworks have direct influence on PaaS’s features and, surely,

the PaaS’s future will depend on the web frameworks.

Database DatabaseDatabase

Vo)ng

BFT/Plugin

= =

Vo)ng Vo)ng
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Figure 3.2: System Architecture

The 3-tier architecture decomposes the system into three distinct and functional
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layers: presentation, logic, and data. The presentation tier is responsible for display-

ing properly and effectively the information to the client, which, usually accesses

this information through a webpage. The logic tier is responsible for processing the

clients’ requests by doing the needed computation, requesting/updating/persisting

data from/to the lower tier (data tier). The data tier, in turn, is accountable for man-

aging the data, replying requests from the logic tier related to the data management

(consulting, updating and removing, etc.), as well as managing the concurrency be-

tween simulateneous access, thereby guaranteeing data consistency even in scenarios

of high concurrency in the data tier.

In our approach, the presentation tier besides displaying the information to the

client, is also responsible for managing the sending and receiving of the clients’ re-

quests by guaranteeing the Byzantine fault tolerance through a plugin installed into

the browser (See Figure 3.2). The Byzantine fault-tolerant algorithm is inserted into

the logic tier, being responsible for receiving the clients’ requests and for executing

the agreement protocol, accessing/persisting data to the data tier and, finally, sending

the response to the client. Unlike typical web frameworks, our system needs some

additional components, such as the primary and processing groups, both being they

crucial for guaranteeing Byzantine fault tolerance.

The use of relational databases obligates the data tier for guaranteeing the consis-

tency between the replicated nodes and, simultaneously, tolerating Byzantine faults

during the data processing. Like in typical web frameworks, the data tier is only re-

sponsible for managing the data without any information, both about logic tier and

about presentation tier, thereby remaining loosely coupled and modulate. In addi-

tion to replicated database nodes, the data tier must have a voting system attached to

each database node. It is extremely important to design a system as close as possible

to what is currently used in cloud environments, because the closer the architecture

is to what is found in cloud computing, the less changes the client need to perform

for adding Byzantine fault tolerance in its system. Achieving this likeness increases

tremendously the possibility of a future adoption of our architecture.

3.4 Client

The client is accountable for sending the requests containing the operation to be ex-

ecuted by the cluster. The communication with the cluster goes through a web service
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accessible with a special Web browser plugin (see Figure 3.1). The plugin is a crucial

component, because without it, clients are unable to use the BFT algorithm, since the

plugin is responsible for coordinating the sending of the clients’ requests for the cor-

rect nodes, as well as the receiving of equal responses from at least f + 1 proper nodes.

Before sending the message, the client must encrypt the message with a session key

(SK) previously exchanged and then, it must create the message’s digital signature

by signing the message attached to its hash value, thereby creating a proof for future

integrity verifications. Therefore, only the nodes intended for receiving the client’s re-

quest will be able to decrypt and read the message’s content. To exchange the private

keys, algorithms such as the Diffie-Hellman [41] or Menezes–Qu–Vanstone [42] could

be used.

The BFT plugin must also manage the receiving of responses from the nodes of the

cluster. Therefore, after sending the request to the cluster’s nodes, the plugin waits

for, at least, f + 1 correct equal messages. Upon receiving the f + 1 equal messages,

the BFT plugin accepts these messages as being correct, since it surely was decided

by the majority of nodes belonging to the cluster. If after a certain interval (t), the

client has not received any response from the cluster, the plugin resends the request.

To assure the confidentiality of the messages, the cluster’s nodes encrypt the content

of the response with the same SK previously used by the client for encrypting the

request. Furthermore, a digital signature is created and embedded into the message,

thus assuring also in the reply messages: integrity, non-repudiation and authenticity.

Server 0
(Primary)

Server 1(G1)

Server 2(G1)

Server 3(G1)

Client

request prepare commit commit-db

DBnode 1

DBnode 2

DBnode 3

reply-commit-db reply

Server 5(G2)

Server 6(G2)

Server 7(G2)

Figure 3.3: Normal case execution with 2 groups with size of 2 f + 1
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3.5 Primary

The primary node orchestrates the execution of the BFT algorithm and distributes

the work to the groups. After receiving a REQUEST message from a client, it verifies

the message integrity and validity. Then, the primary generates a PREPARE message

and sends it to the tamper-proof device (as we describe ahead, one such device must

be attached to each PM). This device adds a monotonic counter and signs the resulting

message, thus preventing the primary from ever sending different versions of the

same request.

The primary node selects the Byzantine fault-tolerant group that should process

each request, based on the contents of the REQUEST message. The client messages

convey information on which specific partition they refer to (possibly more than one),

thus letting the primary direct the message to the appropriate group in charge.

Although we assume the general relational data model, data is divided into par-

titions to enable the system to scale by using parallel execution of BFT groups. As

we shall see in the results chapter, the TPC-C benchmark allows the database to be

partitioned by assigning one group to each warehouse. Requests that require more

than one warehouse are handled by serializing all database accesses.

Therefore, the primary node needs to analyze the content of each request to de-

termine which group will process it. Unlike existing approaches, in our design, the

primary node does not process any message or response, and is therefore only re-

sponsible for ordering requests and sending the signed PREPARE message (see Fig-

ure 3.3). The primary node guarantees totally ordered execution by associating a

monotonically increasing counter to all PREPARE messages. A disadvantage of this

approach is that we need a primary node in addition to all worker VMs, although one

primary node is sufficient to co-ordinate multiple groups.

Reducing the load of the primary node is crucial for achieving good system per-

formance. In a realistic scenario, where the system must process a large number of

requests, the primary would quickly become the bottleneck if, in addition to sign-

ing/ordering messages and issuing PREPARE commands, it would need to process

requests. Thus, as the load increases, the system adds more groups and the primary

node balances the load.

Since one of our design decisions is to distrust the hypervisors, the primary node
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Figure 3.4: Scaling out the system i.e adding more groups for meeting the processing require-

ments.

must not share the PMs with any VM belonging to the groups, i.e., the primary and

the groups must be distributed across at least 2 f + 2 PMs. Although this requires one

additional PM, as the system load increases and the system scales out, the addition of

the primary becomes less significant.

As soon as the group nodes receive the REQUEST message from the client, they

start a timer to detect if the primary is faulty. If the timer goes off, because nodes did

not get the PREPARE message within the maximum allowable time, they start a view-

change operation to elect a new primary. To inform the other nodes that it is alive,

the primary broadcasts the PREPARE message to all elements of the cluster, which

should cancel their timers in response (see Figure 3.3). The view-change is triggered

only if the timers of f + 1 nodes of the same group expire.

3.6 Groups

The groups are responsible for processing the COMMIT message and for ensuring

that the operation is persisted successfully on the database nodes. After receiving the

PREPARE message from the primary, the group nodes check if they are responsible
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for processing the PREPARE message. Since only one group can process a PREPARE

message, the others which were not assigned by the primary to process it, will cancel

their timers and discard the message (see Figure 3.3). The chosen group will check

the validity and integrity of the PREPARE message by calling a specific function on

the TPM for this purpose. If this validation succeeds, the node creates a COMMIT

message with a monotonic counter associated. The TPM generates the counter and

signs the COMMIT message, ensuring that only another TPM with the same private

key will be able to verify successfully the COMMIT message.

As soon as the COMMIT message is created by a group node, it is sent to all

other peer nodes of the same group (see Figure 3.3). The group node will wait for

f + 1 matching COMMIT messages. Each COMMIT message is also verified in the

TPM. After receiving f + 1 matching COMMIT messages, the group member accepts

the state and persists it into durable storage. It then creates and sends a COMMIT-

DB to all 2 f + 1 databases nodes. The COMMIT-DB message contains the operation

decided by the group and the order identifier. Each group node signs and encrypts the

COMMIT-DB message with an already known key, shared between the database and

the group nodes. Each group node needs to wait for f + 1 matching REPLY-COMMIT-

DB messages from the database nodes, guaranteeing the proper processing even if f

database node fails. Otherwise, it would not be able to tolerate byzantine faults in the

database nodes and consequently the entire system would be compromised.

Finally, each group node generates the webpage, which contains the database re-

sponse, and then sends it to the client. The page generation could be a heavy stage

throughout the system’s pipeline, since it needs to parse the database response, gen-

erates all data necessary to display the information effectively, such as, HTML, CSS,

JavaScript, etc.

Each group has at least one partition associated and most of times this group is

only responsible for executing transactions on this partition (see Figure 3.1). How-

ever, when a transactions needs to access data stored in multiple partitions, a foreign

group can access them. As the load increases, the system takes on more groups up to

the number of partitions, thus enhancing the computer power and dividing the load

across more computational nodes. The opposite move occurs when the system re-

sponds to a lighter load by reducing the size of the cluster. Thus, the system explores

the elasticity available in cloud environments, either in response to heavier demands

or to save costs during slower periods.
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3.7 Database Nodes

The database nodes are also replicated to ensure the correct operation of the sys-

tem, even in the presence of faults. To tolerate up to f Byzantine faults, even if

hypervisors are not trustworthy, the database nodes must be replicated by 2 f + 1

different PMs. To ensure the generality of our system, we do not depart from the

relational data model. However, to explore parallelism, we need to split the database

into different partitions. A good separation of the database schema may enable dif-

ferent transactions to simultaneously access different partitions, thus being decisive

to reduce the contention on the database nodes.

Since the database nodes are physically disconnected from the processing groups,

it is vital to ensure that the transactions executed on these nodes were really decided

by the groups. The database nodes receive a COMMIT-DB message from the each

group node. This message is signed and encrypted by the group node and sent to

the database nodes. Although this security mechanism ensures integrity, authenticity,

non-repudiation and confidentiality, the database nodes must be sure about which

was the correct transaction decided by the group nodes. To circumvent this, every

database node must have a voting system for ensuring that only transactions decided

by at least f + 1 group nodes will be able to execute.

As the database nodes are partitioned, we have to consider two types of transac-

tions: single partition and multiple partition. The former type of transactions only access

one partition during the execution, whereas the latter need access to multiple parti-

tions. Distinct single partition transactions can execute in parallel, because they will

not conflict with one another. However, when a multiple partition transaction executes,

the voting system (see Figure 3.1) locks all the database partitions and executes the

SQL queries alone in order to guarantee data consistency. One group is associated to

at least one database partition. Therefore, only this group can execute disjoint trans-

actions (single partition transaction) on that partition. However, a group can execute

transactions on more than one partition when the operation is not disjoint, requiring

access to multiple partitions.
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3.8 Tamper-proof component

The purpose of the TPM is to reduce the number of total nodes from 3 f + 1 to

2 f + 1. The TPM is considered as a tamper-proof component, and therefore, in no

scenario could an attacker forge any message signed by the TPM. To reduce the cluster

size, in each message produced by the TPM, a monotonic counter is concatenated to

the message. As the TPM is a tamper proof component and only the cluster’s TPMs

know the private key, the signatures ensure that the messages were surely created by

the TPM. Furthermore, only another TPM which has the private key will be able to

verify the message.

Our system is designed for cloud environments and consequently it is likely multi-

tenant, hosting multiple VMs in the same PM. Since we assume that only one TPM

will exist per PM, the same TPM must be able to sign and verify operations from

distinct group nodes residing in the same PM. Therefore, the TPM must have as many

counters as the number of groups in the cluster. Otherwise, the counter sequentiality

would be broken, because distinct VMs would increment the same counter. Thus,

each group node uses its own counter, thereby guaranteeing proper operation of the

system even in a multi-tenant cloud environment.

Each TPM must have a public identifier, known by the other TPMs of the cluster.

This identifier enables the nodes running the algorithm to unambiguously determine

the source PM of each signed message. Ensuring that messages come from the ap-

propriate process is a more complex problem, but we rely on the same properties and

have similar weaknesses as the MinBFT [32] algorithm, concerning access rights to the

TPM. In the extreme case where a single process reached the TPM and impersonated

nodes from other groups (thus VMs), we would still have a single Byzantine failure,

from the point of view of the 2 f + 1 relation, as different groups respond to different

queries and each group could still conserve a majority of sane nodes.

The TPM must provide two functions:

• createUW(m) - This function returns a valid unique warrant with a monotonic

counter and a TPM identifier concatenated to the message. The monotonic

counter ensures the exactly-once and therefore the total order execution. The

TPM identifier authenticates the PM creating the warrant.

• verifyUW(PK,UW,TPMid,m) - This function verifies the validity of the UW cer-
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tificate previously crated by other TPM. The TPM generates a UW according to

the encryption used (RSA [41] or HMAC [43]) by using the private key, PK, the

TPMid and the message m. If the UW is equal to the one produced in the TPM,

true is returned. Otherwise, the TPM returns false.

The Figure 3.5 depicts the keys used in the system. Each TPM must share the same

key and all group nodes must have two keys to communicate securely with the client

as well as with the database nodes. A session key is enough for guaranteeing a robust

communication between client and cluster nodes, but it would be even more robust if

a asymmetric key would be used together.
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Figure 3.5: Keys used in the system
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3.9 Messages Exchanged

To tolerate Byzantine faults in cloud environments, we modify the typical steps

made by Byzantine fault-tolerant algorithms, and consequently the content of the

messages exchanged during the execution of the algorithm. Thus, almost all messages

carry additional information, necessary to ensure proper operation of the system even

in a virtualized environment, where one can trust, neither the hypervisor, nor the

cloud provider. Before listing these operations, we enumerate their parameters in

Table 3.1.

Label Meaning

c Client ID

op Operation requested by client

t Timestamp associated to a client request

pid Primary ID

v Current view

gexec Group designated by the primary to process the client request

m Message containing the client request

Spid TPM sign operation called by the primary

gei, gej Group node i and j

Sgei , Sgej TPM sign operation called by the server i and j

o Order id determined by the primary

res Response resulted by the execution of client request

Table 3.1: Operation’s labels and their respective meanings

• 〈REQUEST, c, op, t〉σc — The REQUEST message is sent by the client to all nodes

of the cluster, requesting an operation execution. The message must contain the

client identifier, the operation to execute and a timestamp.

• 〈PREPARE, pid, v, gexec, m, UWpid〉 — The PREPARE message is sent by the pri-

mary to all nodes of the cluster. The message must contain the primary identi-

fier, the view number, the group identifier, which is charged to process the mes-

sage, the message containing the client request and the unique warrant (UW)

created by the TPM.
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• 〈COMMIT, gei, gej, v, m, UWpid , UWgei〉 — The COMMIT message is broadcast

from all elements of a group to all elements of the same group. It must con-

tain the sender (gei), the receiver (gej), the current view, the message containing

the client request, as well as the UW generated by the primary and by the sender.

• 〈COMMIT-DB, op, o〉σdbk
— The COMMIT-DB is sent by group nodes to execute

operations on database nodes. The message must contain the operations and

the order identifier generated by the primary.

• 〈REPLY-COMMIT-DB, res〉σgei
— The REPLY-COMMIT-DB is sent by the database

nodes in reply to the COMMIT-DB message. The message must contain the re-

sult of executing the transaction.

• 〈REPLY, gei, t, res〉σgei
— The REPLY message is sent by the the group nodes

that processed the request. Therefore, it must contain the sender identifier, the

response content and the timestamp sent by the client in the REQUEST message.

3.10 TPC-C properties

TPC-C [44] is the main industry benchmark for measuring the performance and

scalability of Online Transaction Processing (OLTP) databases. It was designed by the

Transaction Processing Performance Council (TPC) and has distinct type of transac-

tions, such as read-only, write-only and write and read, thereby allowing to measure

the entire data model consistently and reliably. Despite the TPC-C is not a data model

for any specific market, it represents a kind of industry that aims to sell, manage and

deliver a service or product. This model is similar to a wide range of companies,

whether they be large, medium-sized or small.

The company represented by the TPC-C is a typical retailer, that has lots of ware-

houses geographically distributed across distinct districts (see Figure 3.6), in order to

serve a higher number of clients efficiently and as the company grows, more ware-

houses are added. Each warehouse supplies 10 districts and each district has an average

of 3, 000 clients. The company has more than 100, 000 items that are kept in stock by

all warehouses. Clients can create a new new-order or check of an existing one (order).

Each order has an average of 10 distinct items (order-line) and the client can check his

order history.
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Figure 3.6: Hierarchical representation of TPC-C. Source: [44]

The company’s system is also used for processing the clients’ payments, creating

and managing orders, deliveries and for analyzing the warehouses’ stocks for check-

ing if there are products out of stock or close to it. 99% of all existing items of an

order (order-line) are in stock in the same district warehouse. However there another

1% of items that are not available in the warehouses belonging to client’s district and,

consequently, must be supplied by a remote warehouse (of another district). This al-

lows creating orders with higher complexity (items from distinct warehouses), since

the database needs to manage transactions with higher complexity, thus simulating

an environment closer to the real functioning of a company that sells and delivers

goods and services.

The diagram 3.7 depicts the TPC-C Entity-Relationship model, that has the charac-

teristics described above. The TPC-C must be partitioned for fulfilling the architecture

requirements and, therefore, achieving a better performance by removing the con-

tention on the database. Hence, distinct groups process operations related to distinct

partitions (distinct warehouses), thereby removing the concurrency between transac-

tions that need to access distinct partitions. To remove that contention in TPC-C, the

biggest (line-item) table must be partitioned by warehouse, and, therefore, each pro-

cessing group will be in charge for processing queries of a set of warehouses. As

the system scales, each group works with a lower number of warehouses, until the
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point of one group processes transactions of only one warehouse, and therefore of

one partition.

Figure 3.7: Entity-Relationship model of TPC-C. Source: [44]

Amazon Store [45], the world’s largest online retailer, uses a similar data schema

to TPC-C, where it has several warehouses scattered throughout the world and each

warehouse is accountable for supplying a particular region and, consequently, a set of

clients that belongs to this region. The Amazon business model reinforces the TPC-

C’s relevance in the OLTP database benchmark field. Therefore, since our system uses

a OLTP database, the TPC-C is the best option for proving that our system is feasible

and that might be applied in practice.



CHAPTER 4
Cloud BFT implementation using a

3 f + 1 BFT algorithm

To demonstrate that CloudBFT can run with any well-defined BFT algorithm, we

also implemented a version of CloudBFT using a BFT algorithm that requires 3 f + 1

nodes for tolerating f Byzantine faults. Although an algorithm that uses a lower

number of nodes (2 f + 1) is better for cloud environments, because the lower the

number of nodes is, the lower the cost with the cluster will be. We intended to

demonstrate that our architecture is as general as possible, thereby being able to work

with any BFT algorithm with minimal changes. The execution of the BFT algorithm

is the heaviest step of the architecture and, therefore choosing the right algorithm is a

very important decision for assuring a good performance.

There are some implementations of BFT algorithms that need 3 f + 1 nodes to

tolerate f faults. Most of these implementations are based on PBFT and do not use any

kind of speculation for reducing the total number of nodes, like is used in Zyzzyva.

We used BFT-SMaRt [46] as the 3 f + 1 BFT algorithm, because it is a robust and

flexible implementation.

Most of the changes made for making the 3 f + 1 algorithm capable to fulfill the

CloudBFT’s requirements are similar to the changes made in the 2 f + 1 algorithm

(see Chapter 3). However, there are important differences that are crucial to ensure

the Byzantine fault tolerance, without compromising the scalability and elasticity and

vice-versa. Since BFT-SMaRt is an implementation based on PBFT, in this chapter, we

will use the nomenclature used by PBFT.

To implement this version of CloudBFT, we based on the same assumptions (see

Section 3.1) that were assumed in the 2 f + 1 version. MinBFT reduced the number of

nodes from 3 f + 1 to 2 f + 1 by adding a tamper-proof component that is responsible

for signing and verifying all messages throughout the algorithm’s execution. The

45
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absence of the tamper-proof component and consequently a higher number of nodes

are the main difference between the CloudBFT’s implementation presented in the

previous chapter (2 f + 1) and this one (3 f + 1).
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Figure 4.1: System architecture using a 3 f + 1 BFT algorithm implementation

Like in the previous implementation, the client must have a BFT plugin installed

into its browser to be able to execute request with Byzantine fault tolerance. The BFT

plugin must know which are the BFT algorithm used by CloudBFT, since the number

of nodes may change (2 f + 1 or 3 f + 1) between distinct implementations. Therefore,

in this implementation, the BFT plugin sends the REQUEST to all nodes belonging to

the cluster, then it waits for 3 f matching responses (REPLY messages).

The primary is responsible for orchestrating the execution by determining the

order that the operations must be processed. However, unlike the 2 f + 1 algorithm, it
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is done in two steps (see Figure 4.1), where the first one is for synchronizing the nodes

(PRE-PREPARE), and the second is in fact to determine the order that the operations

must be processed (PREPARE). Therefore, upon receiving a REQUEST from the client,

the primary creates the PRE-PREPARE message and send it to all cluster’s nodes and

waits for the PREPARE messageAs it is depicted in figure 4.1, the primary must be

physically isolated from the other nodes of the cluster and, therefore, the system

must need at least 3 f + 2 PMs to be able to tolerate f faults. Nevertheless, as the load

increases and more groups are added, this additional PMs becomes less significant.

In this implementation, the groups must be distributed across 3 f + 1 PMs and,

therefore, it necessary to pay a higher price to have elasticity and to accommodate

peaks in demand (by adding more groups). It is the main disadvantage of having an

algorithm that needs more replicas to tolerate the same number of faults ( f ). However,

this CloudBFT version could be easier to implement in cloud environments, since it

does not need to have a tamper-proof component in each PM.

The primary chooses the group to process the clients’ requests based on the re-

quest’s content. This CloudBFT implementation also uses TPC-C as data schema and

each group is responsible for processing requests related to a each partition, however

there are requests that must access more than one partition. Upon receiving the PRE-

PREPARE message, the group nodes chosen by the primary to process the request

sent a PREPARE to other nodes belonging to the same group, thereby ensuring that

they are ready to start the execution of a new request.

After receiving the PREPARE message, the group chosen by the primary to process

this requests, starts the agreement protocol by exchanging the COMMIT messages

(see Figure) to decide which is correct state and, consequently, the correct operation

that must be sent to the database nodes. In this version, each group node sends 3 f

messages and receives the same number. Thus, at the end of the agreement protocol,

it is possible to ensure that the correct state was decided correctly by a majority of

proper nodes (3 f + 1− f ). After deciding the system state, each group node sends

a COMMIT-DB message to 2 f + 1 distinct database nodes containing operation and

the message order. Then, each group node waits for 2 f equal responses from the

database nodes. With this response, the group node will generate the HTML, CSS

and JavaSript necessary to build the webpage that will be displayed to the client.

In this version, the database nodes are also responsible for ensuring that the op-

erations are executed successfully. It also has a voting system (see Figure 4.1) to
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Figure 4.2: CloudBFT execution using a 3 f + 1 BFT algorithm implementation

guarantee that all operations executed by database nodes were decided by at least

3 f proper nodes. Furthermore, the voting system manages the concurrency between

operations that needs to access more than one partition. Since the voting system exe-

cutes the operations according to the order specified in the COMMIT-DB message (the

order was previously decided by the primary and group nodes), the data tier must be

composed by only 2 f + 1 nodes. Upon executing the transaction on the database, each

database node sends the response to the group node that previously has requested

the operation execution.



CHAPTER 5
Evaluation

This chapter shows and discusses the results achieved by running an experimental

setup of CloudBFT. Section one describes the experimental used for executing the

tests. Section two discusses and compares the throughput achieved by CloudBFT and

an unreplicated system, as well as the time spent in each CloudBFT’s component.

Section three discusses about the scalability achieved by CloudBFT and compares the

maximum theoretical speedup against to the achieved by our system. Section four

examines the results achieved by CloudBFT taking into account the elasticity and

latency.

5.1 Setup

To measure the scalability of the system we resorted to experimental evaluation.

The CloudBFT clients run in a loop requesting a web page, waiting for the reply

and then returning to the beginning and requesting another page. For each page

request, the server submits a TPC-C query to the database. Upon response from the

database, the server generates a web page and replies back. We can simulate the page

generation step with a sleeping period of 200 ms, because we do not care for the client

side page rendering. In addition to these steps, the server must perform a number of

extra operations, like voting, signing and verifying messages, using the TPM and the

voting system.

CloudBFT system was implemented in Java and ran it on a private cluster, under

different loads and with varying numbers of VMs. The private cluster sports five

Dell PowerEdge R620 rack servers with 4 CPUs and 32 cores, served by a bare metal

Xen Hypervisor to support virtualization. The particular configuration of this cluster

ensures a strong isolation of the VMs, but gives us little control on the CPU core

they use. Thus, there is no physical resource pooling and consequently the system

49
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performance is not compromised. Each replica of the group is a single-core Intel Xeon

E5405 VM running at 2.00 GHz , with 1 GB RAM and hosting a Linux 2.6.32 OS.

To enable multiple VMs to access the (single) TPM of their PM, we used a virtual-

ization approach based on TCP sockets. This virtualization scheme accepts requests

to sign and verify messages, as we referred in Chapter 3. The TPM keeps separate

monotonic counters for the local VMs, to ensure the sequentiality of these counters

for the different VMs. In the verify operation, the TPM compares the expected output

against the received data.

To ensure BFT execution of the requests we implemented the BFT plugin using

a Java Servlet (See Figure 5.1). This servlet is responsible for handling the clients’

requests and dispatching them to all elements of the cluster. Then, it waits for f + 1

matching responses from the cluster, before displaying the webpage. The authenticity,

integrity, non-repudiation and confidentiality is guaranteed through the utilization of

private-public key digital signature and symmetric encryption.
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Figure 5.1: BFT execution of a request. In this figure the agreement step is not depicted for

sake of simplicity.

The data tier is composed by 2 f + 1 replicated databases in distinct PMs (See

Figure 5.1). We used the MySQL 5.6.17 database management system and the TPC-

C as the database schema. The voting system was implemented in Java using the
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concurrent standard java library to improve the performance. The communication

with the voting system of the database nodes is done through TPC sockets and all

messages are encrypted and digitally signed.

5.2 Throughput

Since the main goal of this work was to build a scalable BFT system for the cloud,

which is able to respond to increasing loads, we measure the throughput and the

latency it obtains against simpler systems and against the theoretical limits.

Physical Machine #1

VM#1

Client

REPLY

Database

Physical Machine #2

VM#2

REPLY

REQUEST

Physical Machine #3

VM#2

COM
MIT

-DB

COMMIT-DB

COMMIT-DBREQ
UEST

REQUEST

REPLY

Figure 5.2: Execution of the unreplicated system with 3 replicated VMs.

To measure the throughput of CloudBFT, we start by comparing it against a non-

replicated non-BFT approach, where each request is processed by a single VM (see

Figure 5.2), unlike our own solution, where each request is processed by a group of

VMs. In the non-replicated implementation we varied the number of VMs from 1 to

5. Each of these VMs replies to a different client. Since CloudBFT requires 3 VMs

per client, a fair comparison requires 15 VMs, to achieve a comparable number of 5

groups. Figure 5.3 shows the throughput of the non-replicated solution in grey (the

x-axis is the number of VMs) and the throughput of CloudBFT in black (the x-axis

is the number of groups), for a system with 15 clients. Since we have 5 partitions

(warehouses), the maximum number of partitions per computing group decreases
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from 5 to 3, 2, 2 and finally 1 partition per group, respectively, for 1, 2, 3, 4 and 5

groups.
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Figure 5.3: Throughput with Byzantine fault-tolerant groups vs. an unreplicated system.

In these measurements, we can observe that the overhead of our approach ranges

between 4%, with 1 group, and 16%, with 5 groups, when compared to 1 VM and

5 VMs of the non-replicated system. The main reasons for this overhead are the

additional work performed by all nodes to sign messages, and the way database

accesses are performed.

Regarding the work performed when signing messages, the primary node signs

each message using the TPM. Each other node must also sign all messages using its

local TPM. The primary therefore signs one request at a time. The other nodes are

placed in PMs that contain only one TPM. Since different groups may use the same

PMs, there is also contention in the local TPM, whenever nodes from different groups

simultaneously access this resource.

Regarding the database accesses, CloudBFT locks the entire database externally

for requests that must access more than one partition. In the TPC-C benchmark,

10% of the requests are randomly associated to a foreign warehouse, thereby creating

write/write conflicts. The non-replicated solution, on the other hand, solves all such
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conflicts internally using standard transactional isolation. Consequently, the overhead

in solving such conflicts is also showing up in the figure.

The relative throughput is also affected by the fact that, at all stages, a BFT group

must wait for the slowest node. Since there are normal variations in the response time

of each machine, systematically waiting for the slowest node bears an impact on the

overhead of our approach.

We measured the amount of time spent at each request processing stage by a group

of VMs. Figure 5.4 shows the time spent by one group of VMs processing requests

from a single client. We can observe that generating the HTML of the page is the

longest stage, taking about 200 ms. The message signing and verification stages take,

combined, 115 ms, and database access takes 71 ms.
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Figure 5.4: Time spent at each stage of the BFT pipeline.

Although the HTML page generation stage is the longest, it may be parallelized by

adding more groups. Hence, the throughput may be scaled as the number of clients

increases, by generating the HTML in parallel groups.

Regarding the load imposed on the primary node, we can observe in Figure 5.4 that

the TPM signature takes 50 ms. This means that the system is limited to a maximum

throughput of 1200 transactions per minute. In order to improve this limit, one may

use faster tamper-proof hardware or introduce additional modules to sign messages

in parallel.
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5.3 Scalability

To evaluate the speedup of our system, we can consider each operation, like sign-

ing or verifying a signature, to be a pipeline stage. Then, we consider two distinct

cases in the TPC-C benchmark: one out of ten transactions requires a foreign ware-

house and the database access must be serialized; the remaining nine out of ten trans-

actions require only the local warehouse and may therefore run in parallel.

Starting by the parallelizable requests, only the TPM signature done by the pri-

mary must run serially, but since the primary could withstand up to 1200 transactions

per minute, this effect is not present in these experiments. Hence the speedup bound

for nine out of ten transactions should be approximately linear.

In the case of transactions that require foreign warehouses, each group must access

more than one partition and, in our approach, the database is locked to serve such

transactions. In Figure 5.4 we can observe that the total time to reply to a request,

with one client and one group, is 389 ms. Of this time, the 71 ms corresponding to

the database access is the largest time entirely serialized. Therefore, up to the limit

of n = b389/71c = 5, we could consider the same coarse-grained linear bound. The

overall speedup bound is therefore also linear, i.e., S(n) = n, being n the number of

processes.

Figure 5.5 compares the maximum theoretical speedup with the actual speedup,

measured with up to 5 groups, using 15 clients. One may observe that our implemen-

tation reaches a speedup close to the theoretical maximum. Hence, up to the number

of partitions of data, the implementation can be said to scale within the limits im-

posed by the benchmark itself, that is, TPC-C. Multiple reasons concur to prevent real

solutions from reaching a linear speedup. For example, depending on the load and

on the number of groups, replicas can spend between 2 and 5% of their time waiting

on the global lock that protects multi-partition accesses.

It is worthwhile computing the maximum speedup that could ever be achieved as

n → ∞. To perform this computation, we assume that 10 serial transactions occur in

the beginning and 90 in the end, according to the percentages defined by TPC-C. In

steady state, a pipeline where the slowest stage takes 71 ms, can output the 10 requests

that occur serially in 10× 71 = 710 ms at least, whereas for 5 partitions, we have the

other 90 results in 90/5× 71 = 1278 ms, at least. The system would, therefore, take
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Figure 5.5: Total speedup (measured) vs. maximum theoretical speedup.

710 + 1278 = 1988 ms for 100 requests. If we compare this to the serial time, which

would be 100× 389 = 38900 ms, the maximum speedup we could ever achieve is given

by Equation 5.1. Although this value depends on the time spent in other stages, we

can, nevertheless, expect large speedups, quite in excess of the number of partitions.

lim
n→∞

S(n) <
38900
1988

≈ 19.57 (5.1)

5.4 Elasticity and Latency

We examined the system under an increasing load, to understand how beneficial

it can be to add more groups as the number of transactions per minute increases (or

the number of clients grows). One of the main advantages of cloud computing is the

ability to provision resources on-demand, as the load increases. Our goal is to provide

Byzantine fault-tolerance without compromising the elasticity of the cloud.

In Figure 5.6 we increased the number of clients from 1 to 20 and measured the

resulting throughput for systems with up to 5 groups. As we mentioned before, each
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client issues a new request as soon as the preceding reply is received. Due to this, we

can observe that a few clients are able to lead the system to its maximum throughput.
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Figure 5.6: Measured throughput for an increasing number of clients, with up to five groups.

The results shown in Figure 5.6 hint to the possibility of making use of the cloud’s

elasticity to increase the number of Byzantine fault-tolerant groups as the load in-

creases. In other words, one may start the system with one such group and start ad-

ditional groups as the load increases. To better analyze this possibility, we measured

the latency (in milliseconds) to respond to each request and plotted it against the total

load of the system (in transactions per minute). The result is shown if Figure 5.7.

In Figure 5.7 each curve represents a growing number of clients for systems with

up to five groups. For instance, the left-most curve shows one Byzantine fault-tolerant

group with the number of clients varying between 1 and 20. One may observe that

the maximum throughput achieved by one group stabilizes around 200 transactions

per minute. At that point the system is saturated and additional requests are queued,

leading to increasing latencies.

The cloud’s elasticity may be put to use by stipulating a desired maximum latency

and determining the number of groups that are necessary to fulfill that requirement

under a given load. Figure 5.7 shows that it is possible to respond to a growing load
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Figure 5.7: Latency of requests vs. throughput for systems with up to five groups.

by elastically adapting the number of fault tolerant groups.

In fact, the possibility of using more resources to reduce the response time is par-

ticularly important, because clients are very sensitive to this parameter [47]. To better

understand the response time observed by clients, Figure 5.8 shows the histogram of

latencies, for a system with 11 clients and 5 groups. This configuration was chosen to

measure the 5 groups in a high load scenario of 1000 transactions per minute.

We can observe that most requests are replied with a latency around the average

of 650 ms. Nevertheless, some requests take 50% above that average. In order to

choose an adequate elasticity plan (i.e., choose the number of active groups at each

point in time) it is suitable to observe the cumulative distribution function, plotted in

Figure 5.9.

The cumulative distribution function of latencies, in Figure 5.9, shows that 95% of

the requests are replied within 870 ms (the plotted guidelines). This analysis should

be performed online, by using a specified service requirement. For example, if the

requirement for an application specifies that the 95th percentile of the clients must

receive replies within 800 ms, one would need to startup at least one more group.
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CHAPTER 6
Conclusion

This work described a Byzantine fault-tolerant architecture, designed for cloud ap-

plications with critical services that may scale according to the computational power

required for processing the clients’ requests. Therefore, we demonstrated that CloudBFT

is capable of taking advantage of cloud’s elasticity, without compromising the de-

pendability and consistency. The elasticity and scalability were achieved by creating

groups of 2 f + 1 or 3 + 1 (it varies according to CloudBFT’s implementation) virtual

machines running on distinct physical machines.

The distribution of virtual machines (groups) across different physical machines is

required to avoid that hardware faults, faults caused by intrusions, and cross-VM at-

tacks do not compromise the system. Thus, the system remains consistent (following

the specified behavior) even if f virtual machines belonging to the same group were

affected by any type of faults.

This work shows that CloudBFT can work with any Byzantine fault-tolerant algo-

rithm with minimal changes. However, these changes must be made carefully, because

otherwise the system’s consistency and the Byzantine fault tolerance can be compro-

mised. Furthermore, we demonstrate that is possible to have a three-tier system in

cloud environments, where the client can trust on the response (webpage) received,

since this response was surely decided by a reliable group of nodes.

The proposed design supports the relational data model. Although this model is

well known and frequently used, one must address the fact that two or more groups

of virtual machines may require access to the same data items (i.e., the data may not be

completely partitioned). Hence, it requires synchronization among different replicas

to guarantee totally ordered accesses to every data item.

Using the TPC-C benchmark, the results show that, within reasonably large bounds,

elasticity is possible for cloud-based BFT protocols even under the relational data
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model. We believe that this may help a wide spectrum of critical services intended to

be deployed in the cloud.

6.1 Future Work

To further expand the work presented throughout this thesis, we intend to run

more experiments using a larger cluster, to better understand the impact on speedup

of the number of database partitions. In addition, these further experiments would

allow us to understand better which are the system’s components that quickly become

the bottleneck when the processing power needs to increase and, therefore, we would

be able to circumvent these bottlenecks with more concrete basis.

Although the experimental setup has been built as close as possible to cloud envi-

ronments, it would be interesting to run these experiments on a real cloud environ-

ment, such as Amazon or Google Cloud Platform. This would allow us to perceive

how the system would behave on the cloud, and consequently, improving it even

more.

Our system keeps a small machine footprint and the processing required from

each virtual machine is low. Nevertheless, since the cloud providers charge their

clients according to the virtual machines configurations (CPU model, space and type

of storage, etc.), as well as by the processing and by the data transferred over the

network. It would be interesting to better understand the minimum required configu-

rations of each component (primary, VMs of the group, database nodes) for deploying

and executing our system, as well as the CPU and network usage of each component

throughout the clients’ requests processing. This would allows us to understand bet-

ter where the system could be improved in terms of minimum requirements of the

nodes (CPU, amount of memory, etc.) and resource utilization during the execution

(CPU, network, etc.), thereby reducing the cost with the cluster and, therefore making

the architecture presented in this work even more feasible.

The 3 f + 1 implementation of our system was not fully tested and, therefore, one of

our further goals is to test this version in a real cloud environment. This would allows

us to better understand the real impact of the TPM on the system’s performance.
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6.2 Final Remarks

Taking into account the objectives that were defined at the beginning of this work,

we can conclude that all goals were fulfilled successfully. CloudBFT demonstrated

successfully that is possible to have a system capable to tolerate Byzantine faults in

cloud environments, without compromising the scalability and elasticity even under

a relational data model. We believe that this may help a wide spectrum of critical

services intended to be deployed in the cloud.
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