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Resumo

O Cloud Computing tem sofrido uma enorme expansão nos últimos anos, com
cada vez mais organizações a migrar os seus sistemas, que se encontravam pre-
viamente in-house, para a Cloud. No entanto esta migração ainda é vista com
olhos duvidosos por algumas companhias, com medo de confiar os seus sistemas
a entidades externas sobre as quais não possuem controlo. Uma das razões
desta falta de confiança deve-se à problemática da resiliência dos seus sistemas.
Este dilema lança as fundações para esta tese. O nosso trabalho define as bases
para o desenvolvimento de uma benchmark de resiliência para sistemas de Cloud
Computing, apresenta um mecanismo watchdog capaz de detectar problemas e
restaurar o serviço de um sistema virtualizado para Cloud, e relata os resulta-
dos obtidos de várias experiências. O bem mais valioso produzido durante esta
tese foram as 3 ferramentas para Fault Injection, e que a partir de agora estão
dispońıveis para serem usadas em futuros projectos de investigação.
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Abstract

Cloud computing has witnessed a tantalizing growth in recent years,
with more and more companies migrating their previously in-house sys-
tems to the Cloud, and Cloud Providers racing to match this growth by
building newer and bigger datacenters. Nonetheless, this migration is still
seen with dubious eyes by some companies, rightfully reticent in confid-
ing their systems to external entities, over whom they possess little to no
control. One of the reasons of this distrust has to do with the resilience
of their systems. This dilemma set the foundation for this thesis. Our
work sets the foundation for the development of a resilience benchmark
for Cloud Computing systems, presents a watchdog mechanism capable of
detecting problems and recovering the service of virtualized cloud systems
and reports the results of various campaigns. The most important asset
produced from this thesis are the 3 Fault Injection tools that we developed
and from now on can support future research projects.

Keywords. Fault Injection, Virtualization, Cloud Computing, Xen, Bench-
marking
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1 Introduction

The work here presented has been carried under ”Dissertação / Estágio” of
”Mestrado em Engenharia Informática” of Universidade de Coimbra, and took
place in CISUC (Center for Informatics and Systems of the University of Coim-
bra). Furthermore, this work has been supported by a fellowship provided under
the DECAF project, whose aim is the analysis of the behaviour of virtualized
Cloud Computing infrastructure in the presence of faults.

1.1 Motivation

Cloud Computing is growing in popularity compared to traditional computing.
In order to accommodate for this increased interest cloud providers are building
data centers all around the globe. These data centers feature massive amounts
of commodity hardware, which was not designed to endure this kind of use
and is often undervolted in order to reduce energy consumption and cooling
requirements [6]. Furthermore, cloud providers strive to maintain their hardware
working always at full capacity, by having multiple VMs in the same physical
node. This allows the remaining systems to be powered down. All these factors
lead to an increase in the probability of faults in the hardware [39][37].

On the other hand, with the increasing popularity of cloud systems, com-
panies are migrating more mission-critical systems from private datacenters to
cloud computing.

These reasons make it important to study the behaviour of a virtualized
cloud system under the influence of soft-errors. This information can then be
used for many useful purposes, such as to propose mechanisms for fault tolerance
and for benchmarking of cloud infrastructures. Therefore helping to reduce the
distrust between cloud providers and customers.

1.2 Objectives

The objective of this thesis was to analyze the behaviour of virtualized cloud
infrastructures under the presence of faults, which would culminate with the
proposal of a cloud resilience benchmarking that cloud clients and providers
could use in their systems. Due to the lack of time available during the thesis, at
the end of the first semester, we opted to limit our scope only to hardware faults
(e.g., register and memory bitflips), and relegate software faults to future works.
With the development of our work during the second semester, we decided to
change the direction of our work towards a more research influenced approach,
which allowed us to write two conference papers, one of which has been accepted
for EDCC 2015. However this change implicated that it would be impossible for
us to successfully propose a resilience benchmark standard, as was the original
goal of the thesis. This change also presented us with new challenges that
required the creation of new fault injection tools. The development of the fault
injection tools eventually became both the main objective and area of focus of
this thesis.
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The choice of which hypervisor package to focus our study on was taken at
the beginning of the thesis, still in the first semester, and was the result of an
analysis of the available hypervisors, their features and their representativeness
of real-world cloud systems. There was a wealth of options from which to
choose the hypervisor, as can be seen in the Table 1, where hypervisor features
are compared [13]. The final choice was to use Xen, because of the fact that its
open-source license, it features the same range of features has any other top-of-
the-line hypervisor and it is used in many high-grade deployments all over the
world, particularly in Amazon AWS [11].

KVM [25] Hyper-V 2012 [43] VirtualBox [35] VMWare ESX [42] Xen [41]
Type Native Native Hosted Native Native
License Open-Source Commercial Commercial Open-Source Open-Source

USB Support ! ! ! !

GUI ! ! ! ! !

Live Memory Allocation ! ! ! ! !

Snapshots ! ! ! ! !

Live Migration ! ! ! ! !

Table 1: Comparison of hypervisor packages

1.3 Document Structure

This document is structured as follows: the next chapter will present the state-
of-the-art in the adjoining areas of this work, with particular attention to Cloud
Computing, Benchmarking, Fault Injection and Virtualization. In Chapter 3, a
detailed overview of the fault injection tools developed to provide support for the
various experiments by us conducted is given. Chapter 4 presents the watchdog
mechanism that we developed and which is part of the content of the article
accepted in the conference EDCC 2015. This mechanism is capable of restoring
the correct service of a virtualized system that is producing incorrect behaviour,
even in the presence of an unresponsive system. To assess the effectiveness of
this mechanism we performed a benchmark between a classic virtualized system
and the same virtualized system using our watchdog. Chapter 5 presents and
analyzes the results of the various experiments performed during this thesis,
which consisted of injecting errors in various parts of the virtualized system
(e.g., hypervisor, applications running in privileged and guest VMs) and had the
objective of assessing the behaviour of a virtualized system under the presence
of soft-errors. Their importance in defining the behaviour in this scenario is
undeniable, given the lack of previous data in this specific area. The majority
of the results here presented were also part of the paper that was accepted for
the conference. Since the paper was delivered we have continued with similar
experiments that have gathered further information that will be presented in
this report, and later will hopefully be part of another paper that complements
the results of the first one. Finally, in Chapter 6 we reflect about what was
accomplished, how it can be useful for the community, how the work performed
in this thesis can be expanded and what future work possibilities have risen
along the way.
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2 Related Work

In this chapter, a overview of the state-of-the-art in the areas of Cloud Comput-
ing, Benchmarking, Fault Injection and Virtualization is provided. Regarding
the theme of this thesis, previous research is recent and scarce [7], which can
indicate the recent demand for Cloud Computing and anticipate this topic as a
focus of research in the following years.

In the ”How is the Weather tomorrow? Towards a Benchmark for the
Cloud”[7] paper, the authors argue that current benchmarks, such as the vari-
ous TPC benchmarks, are not adequate for cloud computing, and present their
ideas for a new benchmark that incorporates, among others, fault tolerance. The
basis of their work revolves around fixing the shortcomings they deem TPC-W
presents for cloud systems.

2.1 Cloud Computing

According to ”The NIST definition of cloud computing”[31], Cloud Computing
is ”a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”.

In the same publication, 5 characteristics are stated as essential to Cloud
Computing.

• On-demand self-service: A consumer can request and obtain comput-
ing capabilities without requiring human interaction.

• Broad network access: Capabilities are accessible over the network
through standard mechanisms.

• Resource pooling: The provider has a pool of resources to server mul-
tiple consumers, where the resources are dynamically assigned and re-
assigned according to demand. Usually the consumer has no control or
knowledge over the physical location of the resources.

• Rapid elasticity: Resources can be elastically provisioned and released,
in other to adapt to demand.

• Measured service: Resource usage can be monitored and controlled in
a transparent way both by the provider and the consumer.

2.1.1 Service Models

There are 3 different service models that can be used for Cloud Computing.

• Software as a Service (SaaS)

• Platform as a Service (PaaS)
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• Infrastructure as a Service (IaaS)

The Software as a Service model provides the customer with access through
various client interfaces to software services running on the cloud. Examples of
this model are Google Docs, Google Sheets and Microsoft Office 365.

In the Platform as a Service model the customer can deploy his applications
into a cloud infrastructure, by using programming languages, libraries, service
and tools provided by the cloud provider. The customer is unable to manage
or control the underlying cloud infrastructure, keeping only control over the
deployed applications. Examples are Windows Azure, Elastic Beanstalk, Apache
Strato, Heroku and Google App Engine.

Finally, Infrastructure as a Service is a model where the customer is provided
with the capability to manage the processing, storage, network and other re-
sources where his applications will be run. Examples are Amazon EC2, Google
Compute Engine and Rackspace.

In Figure 1, a visual comparison between Traditional IT and IaaS, SaaS,
PaaS is presented.

Figure 1: Comparison between Traditional IT, IaaS, SaaS and PaaS

2.1.2 Deployment Models

A cloud computing infrastructure can be deployed in a variety of different set-
tings. Namely:

• Private Cloud

• Community Cloud

• Public Cloud
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• Hybrid Cloud

In a Private Cloud, the cloud infrastructure is provisioned for exclusive use
by a single organization. Whereas a Community Cloud is design to be used
by a group of organizations that share similar concerns. A Public Cloud is
provisioned for use by the the general public (e.g., Amazon AWS, Microsoft
Azure, ...). A Hybrid Cloud possesses a cloud infrastructure that is a composed
by two or more distinct cloud infrastructures (private, community, or public)
that while remaining unique entities, are linked together by standardized or
proprietary technology that allows data and application portability (e.g., cloud
bursting for load balancing between clouds).

2.2 Benchmarking

Computer benchmarks are standardized tools that allow the evaluation and
comparison of different systems or components in different areas, such as, per-
formance, security, dependability or resilience.

In order to produce valid and useful benchmarks there is a set of criteria
which must be respected. These criteria have been refined through the research
in this area. One of those publications was ”The Benchmark Handbook” [15],
where four important criteria were defined.

• Relevance: the benchmark has to focus on typical and representative
operations of the problem domain.

• Portability: the benchmark should be capable of running in several dif-
ferent systems and architectures.

• Scalability: it should be able to cover both small and large systems

• Simplicity: in order to avoid lack of credibility, the benchmark should
strive to be clear and simple to understand.

Subsequent research [17] has yielded further criteria.

• Relevant: the benchmark must simulate useful and representative oper-
ations of the problem domain.

• Repeatable: the benchmark’s results can be reproduced when running
the same benchmark under similar conditions.

• Fair&Portable: the benchmark needs to be easily portable and do not
favor or penalize one system or architecture over another, it should provide
a fair comparison between systems.

• Verifiable: the results provided by the benchmark need to inspire confi-
dence as of their validity and representativeness. This can be done through
the review of the benchmark by external auditors.

• Economical: the benchmark should be affordable to run.
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The most common kind of benchmarks are performance benchmarks. These
benchmarks focus on evaluating the performance of a system or component for
posterior comparison. Many standardization organizations and their respective
standards have been created. Two of the most influential are SPEC (Stan-
dard Performance Evaluation Corporation) and TPC (Transaction Processing
Performance Council).

Another kind of benchmarking are dependability benchmarks. As defined by
the International Federation for Information Processing (IFIP) Working Group
10.4, dependability is ”the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers” [18]. Extrapolating
from this definition it is possible to state that Dependability Benchmarking is
a standardized procedure used to assess dependability-related measures of a
system or component. Such measures are usually stated as:

• Availability: being available to perform a service correctly.

• Reliability: continuity of the service in correct operation.

• Safety: absence of catastrophic consequences.

• Confidentiality: no unintended disclosure of information.

• Integrity: no improper system state alterations.

• Maintainability: ability of undergoing repairs and maintenance opera-
tions.

Finally, we define Resilience Benchmarking, one important part of this thesis.
Resilience Benchmarking integrates concepts from performance and dependabil-
ity benchmarks, and aims at providing methods for characterizing, quantifying
and comparing the system behaviour in the presence of faults.

2.3 Fault Injection

Fault Injection is an important technique when assessing the behavior of a sys-
tem and its fault tolerance mechanisms under the presence of faults. Fault Injec-
tion can be defined as ”the process of deliberately introducing faults or errors in
computer systems, allowing researchers and system designers to study how com-
puter systems behave in the presence of faults” [4]. Fault Injection is present in
many different contexts, from the automotive industry to the aerospace industry,
or in the aviation industry, as well as in distributed and embedded systems.

Given the repeated use of some Fault Injection related concepts in this doc-
ument, an explanation of them is provided ahead, thereby allowing the reader
to perform an analysis of this document without any ambiguity. A Fault is the
cause of an error. An Error is the discrepancy between the expected and the
obtained result. A Failure is an event that occurs when the delivered service is
unable to perform its desired function in the presence of an error.[2]

A Workload is a operation that will be used to stress the system. A Fault-
load is a operation that will interfere with the system. A Target System can be
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considered the system that will endure the testing. In this system, a Workload
and a Faultload will be executing. A Control System is a system similar to the
Target System, but where no Faultload will be executed. In our experiments,
the purpose of this system it to assess the isolation between VMs. A Command
and Control System is an external system, connected both to the Control and
to the Target system, usually through a network, which performs the tasks of
starting, managing and stopping the Workload and the Faultload, as well as
extracting and analyzing the obtained results. A Fault Injection Experiment is
the execution of a Workload and a Faultload. In each Fault Injection Exper-
iment only one fault is injected. This will guarantee that the execution state
is not corrupted by previous injected faults. This strategy sacrifices an higher
number of injections per minute, allowed by the use of multiple injections in
the same experiment, for more accurate and representative results. A Fault
Injection Campaign can be defined as the execution of several Fault Injection
Experiments.

After this obligatory concept definition we will describe Fault Injection in
further detail. There are a multitude of Fault Injection techniques, nonetheless
all of them can be classified according to a set of parameters:

• Controllability: Ability of controlling the injection of faults, both in
time and space.

• Observability: Ability of observing the manifestations of the injected
faults.

• Repeatability: Being capable of repeating an experiment and obtaining
the same result.

• Reproducibility: Being able to reproduce the results of a fault injection
campaign.

• Representativeness: How accurately can the emulated system, the Work-
load and the Fautload represent the real system.

The most common Fault Injection techniques are Hardware-Implemented Fault
Injection and Software-Implemented Fault Injection. These techniques vary
in the method used to inject the faults. While Hardware-Implemented Fault
Injection makes use of specialized hardware components, Software-Implemented
Fault Injection uses software for that purpose.

2.3.1 Fault Types

A fault can be classified, according to its dimension, either as an Hardware Fault,
a malfunction of an hardware component, or a Software Fault, a malfunction
due to a software defect. Typical software faults, injected by Fault Injection
tools, are incorrectly assigned variables, wrong loop counter initialization, off-
by-one overflows and incorrect comparison rules (e.g., use of <instead of <=)
[30][10].
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Hardware faults can be of various kinds, such as stuck-to-one, stuck-to-zero
and bit-flip, and can affect a wide range of computer components, from CPU
registers to memory transistors or communication buses.

Faults can also be classified, according to their persistence, as Permanent,
Intermittent or Transient. A Permanent fault will remain active until the af-
fected component is repaired. An Intermittent fault will appear and reappear
in an apparently random fashion. A Transient fault will disappear after some
time. This kind of fault can be caused by environmental effects, such as cosmic
rays.

The emulation of a permanent hardware fault is considerably more elaborate
than emulating a transient fault, since a permanent fault requires a manipulation
every time the target hardware component (e.g., CPU register) is read, while a
transient fault needs only 1 manipulation.

Previous research [26] has shown that the vast majority of hardware faults
are transient.

Faults can also manifest themselves in a number of different ways. Some
faults will cause the system or program to completely crash while others will
cause it to enter an hang state. Some can have a less destructive effect, such
as slowing down the performance of the system or making the system produce
wrong or invalid output.

2.3.2 Software Implemented Fault Injection of Hardware Faults

The subset of fault injection tools that we focused in this thesis were Software
Implement Fault Injection of Hardware Faults.

There are 2 approaches for the emulation of hardware faults by software:
run-time injection and pre run-time injection. In run-time injection, faults are
injected while the target system is executing the workload. This incurs a non-
negligible overhead at runtime. In pre run-time injection, faults are inserted
by manipulating either the source code or the executable image of the work-
load, before it is executed. This approach performs a trade-off between runtime
overhead and setup time.

Since the beginning of research in this area, some tools have been developed
that proved to be a significant improvement over their ancestors. Some of these
tools are FIAT[5], FERRARI[22], FINE[23], FTAPE[40] and Xception[8].

One of the first tools to emulate hardware faults trough software was FIAT,
developed at the Carnegie Mellon University. This tool injected faults by cor-
rupting the code or the data area in the memory of the target program during
runtime. FIAT supported 3 fault models: set-a-byte, zero-a-byte and two-bit
compensation. Two-bit compensation consists of complementing any 2 bits of
a 32-bit word. Single bitflips were not implemented due to the use of parity
mechanisms in the memory.

FERRARI and FINE used more advanced techniques, with support for both
permanent and transient hardware faults. FERRARI was capable of emulating
address line, data line and condition code faults, by using the Linux function
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ptrace. While FINE focused on faults in the CPU registers, memory and memory
bus.

FTAPE was designed with purpose of being used in benchmarking of fault
tolerant commercial systems. FTAPE emulates single and multiple bitflips, as
well as, zero and set faults, on the CPU, memory and disk components.

Finally, Xception, developed at Universidade de Coimbra, uses advanced
debugging features present in recent processors. The use of these advanced
features brings improvements over previous methods. It reduces interference
with the workload, allows the recording of detailed information right before the
injection and the use of complicated triggering conditions. Xception is capable
of using stuck-at-one, stuck-at-zero and bitflip fault models.

2.3.3 Contemporary Frameworks

In this section, we describe the research for suitable contemporary tools to
support the work of this

Analyzing the 3 propositions that stood out: KEDR, Linux Kernel’s Fault
Injection Framework and GDB Remote Debugging. However, unfortunately
concluding that none of these 3 were fully adequate for our goals.

KEDR [24] is a framework devised for the analysis of kernel modules. Given
that emphasis, the functionalities of this framework only apply to kernel modules
and not to processes. This fact proves contrary to our needs. After selecting
which module to inspect, the framework allows the interception of function calls,
detection of memory leaks, simulation of resource usage and other uncommon
events. It also features a so-called ”Fault Simulation Facility”, which simulates
the results of a theoretical fault in the system. In conclusion, not only is KEDR
unable to inject faults, it cannot target userspace process, and therefore does
not fulfill our goals.

Since around kernel version 2.16.20, the Linux Kernel has featured a ”Fault
Injection Framework” [19], designed with the kernel and module developers in
mind, so that uncommon code paths could be tested. This feature is not usually
enabled in most Linux distributions and therefore requires a kernel recompila-
tion before it can be used. The Fault Injection Framework is controlled through
a file structure implemented over the RAM-based debugfs filesystem [14], which
provides a simple interface to exchanging information between user-space and
kernel-space. Some of the configuration options provided by this framework are:

• Type of fault

• Interval between faults

• Fault Injection probability

• Number of possible Fault Injections during process Lifetime

• Which process to target
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This framework ticks some of the requirements for our Fault Injection Tool,
however there are 2 critical points where it falls short. First of all, despite
its name, this framework does not inject faults per se, but rather failures, by
blocking certain kernel functions from operating. The other problem is that this
framework requires the recompilation of the kernel, which increases the burden
on the benchmark user.

GDB allows the remote debugging of a Linux kernel running in another
system, through the use of a TCP or serial port connection. With this feature
it is possible to inject breakpoints in the execution flow of the kernel, perform the
fault injection and resume operation [32]. This method has its advantages: high
controllability of injection and low intrusiveness in the target system. However
it is considerably more complex than other options, is not as simple to automate
and will also require kernel recompilation to enable debug symbols.

2.4 Virtualization

Virtualization is conceptually very similar to emulation, but with a key dif-
ference. Whereas in emulation a system pretends to be another system, in
virtualization a system pretends to be two or more instances of the same sys-
tem. As a matter of fact, nowadays Operating Systems make plenty of use of
virtualization during their functioning. For example, when one process is run-
ning the Operating System virtualizes the CPU and Memory in a way which
allows the process to act as if it was the only one on the entire system. If that
process decides to use all of the CPU, the Operating System will comply with
it, but will internally preempt other processes, so that every one has a fair share
of the computing time. The same is true with Memory, trough the creation of
a Virtual Address Space for each process. As should be clear by now, one key
feature of virtualization is isolation. The same holds true for the virtualization
used in cloud systems.

2.4.1 Hypervisor

In Cloud Systems and others, the virtualization capabilities which enable the
existence of multiple Virtual Machines running on top of the same physical
entity are provided by an Hypervisor. An Hypervisor is a software program
that enables the execution of Virtual Machines on top of the same hardware.

Hypervisors can be classified in two groups, Native and Hosted, according to
how close to the hardware they operate. A Native Hypervisor sits between the
hardware and the Operating Systems of the Virtual Machines. Given their direct
contact with the hardware these kind of hypervisors are usually the quickest.
Examples of Native Hypervisors are KVM, Xen, Oracle VMServer and Microsoft
Hyper-V.

Whereas a Hosted Hypervisor sits on top of one Operating System. Due to
the overhead imposed by an extra layer, these hypervisors are at a disadvantage.
Examples of Hosted Hypervisors are VirtualVox and VMware Workstation.
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In Figure 2, the differences between a Native and a Hosted Hypervisor are
displayed.

Figure 2: Differences between Native and Hosted Hypervisors

2.4.2 Virtualization Modes

In this thesis the chosen hypervisor was Xen, a well-known native hypervisor,
and used in an array of cloud computing deployments, such as ”Alibaba, Ama-
zon Web Services, IBM Softlayer, Rackspace and Oracle” [28]. Xen is capable of
deploying Virtual Machines through two different virtualization modes: Paravir-
tualization and Hardware-Assisted Virtualization [9]. In the Paravirtualization
(PV) approach, Xen does not provide an environment exactly like the real one,
but rather a very similar one, without functionalities that would be difficult
to implement. This allows this mode to be used in hardware without virtu-
alization support, at the expense of requiring a slightly modified guest kernel.
While modifying a Linux or any other open-source kernel for supporting Xen
Paravirtualization as a Guest is not very complicated, the same cannot be said
of an Operating System such as Windows, where the kernel code is not public.
For this reason it is impossible to run Windows by Paravirtualization.

The most important difference that the guest Operating Systems have to
face when being virtualized trough Paravirtualization is the fact that instead of
running in the usual Ring 0, they are forced to run in Ring 1, due to the occupa-
tion of Ring 0 by Xen’s hypervisor. Now in Ring 1, the Operating System sees
itself deprived from the capabilities to perform privileged accesses to the hard-
ware. To solve this problem Xen uses the so called, hypercalls. Hypercalls are
an idea not unlike syscalls, where the guest Operating System can communicate
with the hypervisor by passing values and then calling an interrupt.
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With the advent and popularization of hardware support for virtualization,
a new virtualization mode has become available, Hardware-Assisted Virtualiza-
tion (HVM). This virtualization mode does not require the use of a custom guest
Operating System, because it uses hardware capabilities that make it possible
to run the guests in the precise same environment as they would in a dedicated
system. Most of these hardware virtualization technologies focus on creating
new rings in the CPU, so that both Xen and the guest Operating Systems can
run in a privileged state.

In Figure 3, the privilege rings for Bare-Metal, Paravirtualization and Hardware-
Assisted Virtualization are shown.

Figure 3: Privilege rings for Bare-Metal, Paravirtualization and Hardware-
Assisted Virtualization

3 Fault Injection Tools

What eventually became this thesis main focus of attention and biggest contri-
butions were the fault injection tools capable of targeting different components
of a virtualization system. In total 3 different fault injection tools were created,
which one specially designed to target one area of the virtualized system:

• Kernel module to inject register and memory bitflips in applications

• Xen hypercall to inject memory bitflips inside Xen’s protected memory

• Xen assembly code modification to inject register bitflips inside executable
code (e.g., hypercalls)

This section provides an in-depth overview of each tool.

3.1 Injecting in a process

We will describe the implementation, limitations and motivation behind this
tool, which was the first one to be created, still during the first semester.
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3.1.1 Motivation

The first fault injection tool was built in order to support the experiments inside
the guest virtual machines. This tool is capable of performing both register and
memory bitflips, in userspace and kernelspace processes. It was implemented as
two Linux kernel modules that when loaded will receive the necessary parameters
and perform the injection. If a register bitflip is chosen, the tool will modify the
registers of a process that the kernel saves in memory. In the context switch
to the targeted process, the kernel will load the corrupted register and proceed
with the execution flow. This allows the tool to precisely limit the impact of
the bitflip solely to one process. If a memory injection is chosen, the tool will
obtain the memory pages of the process, choose one of them randomly, load that
page into the module’s own memory address and perform a bitflip in a random
position.

3.1.2 Implementation

In order to improve code modularity we implemented the tool as two different
and independent modules, that share the same code base. The first module is
implemented in file registers.c and includes the following functions:

• void save injec()

• void register fault()

• int init mod init()

• void exit mod cleanup()

The mod init and mod cleanup functions are obligatory for any kernel mod-
ule and will be called by the kernel when loading and removing a module. In
our case mod cleanup is left empty, because there are no tasks that need to be
performed. The function mod init is the main function of each model, and con-
tains the module’s logic and sanity checks. Function register fault encompasses
the act of performing the bitflip in a register. It starts by disabling preemption
in the kernel, this enforces that no other process can interrupt this function ex-
ecution, avoiding hard to trace problems. Then the structure inside the kernel
that holds the process we want to target is found and the register is corrupted.
Before restoring preemption to the kernel, we call function save injec. This
function will save various information about the injection to stable storage, so
it can be analyzed later. Stable storage is a storage that guarantees that any
write operation is atomic, this means that if we read the written-to portion of
the disk after a write, we must either get the written data or the data that was
there before the write operation.

The second module is implemented in memory.c:

• void save injec()
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• void corrupt()

• unsigned int size()

• void memory fault()

• int init mod init()

• void exit mod cleanup()

As happened in registers.c, mod cleanup is left empty. mod init begins by
verifying if the parameters were correctly passed and to what memory flags
we should limit the injection (Read-only, write-only or executable memory).
Function memory fault holds the code that performs the injection. It starts by
disabling kernel preemption, locating the kernel structure of the process, and
obtaining all the memory pages belonging to the process that obey our flag
choice. After this step, the function will choose a random page and byte to
bitflip. Then it will need to map the page into memory, since it belongs to
another process and can have been swapped to disk. This will load the page
from its location (e.g., swap, RAM) into the active memory area of our module.
Performing the bitflip is now a easy task that is implemented in function cor-
rupt. After the bit is flipped the page is unmapped and the information about
the injection is saved to stable storage (save injec). Finally kernel preemption
is re-enabled.

Functions that can be shared among both modules are kept in file utility.h:

• unsigned int get random int compab()

• int readProgramCode();

• struct page *walk page table();

• int getRIP();

• struct file* file open();

• int file write();

• int file read();

• void file close();

get random int compab was implemented as a compatibility function for
some kernel versions that did not possess get random int function. It uses the
kernel’s get random bytes to return a random unsigned integer value. readPro-
gramCode returns the content of the memory area defined in the parameters.
getRIP is used to read the memory content in the nearby areas to where the
process Instruction Pointer register is, this information can be useful for pos-
terior analysis, by extracting the instructions being executed at the moment of
injection, it makes use of the readProgramCode function. file open, file write,
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file read and file close are functions used to aid the filesystem operations that
the modules need to perform. The code of these functions took strong influence
from [16] .

One crucial aspect of fault injection is defining the moment of injection, or
the trigger. To provide this functionality, the tool resorts to a userspace program
that provides temporal triggering, this means, triggering after a certain period
of time has elapsed. This program, located in timer.c, receives as parameters
the amount of time (in ms) to sleep, the name of the processes to target and
the command line to run (usually an insmod that loads the module into the
kernel). At the beginning, the program will sleep for the desired amount, using
the high-resolution nanosleep function. After waking up, the program will use
the filesystem structure existent in /proc to obtain the PID of every process
that we are looking for (e.g., every process of Apache). Finally, the program
will randomly choose one of the processes and execute the requested command,
but before it will elevate its privileges to root, by using setuid.

Another important feature of this tool is the logging of execution information
to stable storage, for posterior extraction and analysis. The information we
chose to store in the target host consists of:

• PID of target process

• Value of the register before injection

• Value of the register after injection

• Value of the Instruction Pointer Register

• Program opcodes in the near region of the current execution flow

At the same time, the host who launches and commands the campaign stores
more information, namely:

• Type of Fault Model (Register or Memory bitflip)

• Timestamp of start of the tool

• Interval (in ms) before the fault is injected

• Register or position in memory targeted

• Bit chosen to be flipped

All this information is crucial to completely understand when, how and why one
fault injection lead to a particular outcome.

In Figure 4 a rudimentary diagram of the usual flow when using this tool is
displayed.
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Figure 4: Sequence flow of the usage of the fault injector

3.1.3 Limitations

The choice of using a kernel module limits the scope of this tool to Linux sys-
tems using recent kernel versions (from Linux 3.x up, but older versions can be
supported with small changes to the tool). Yet the impact of this disadvantage
is reduced given the proliferation of Linux in the Cloud Computing field [12]
[34]. The hardware architecture is also limited to x86-64, the same of our test-
ing setup, but can easily be ported to other architectures with minimal code
modifcations.

Whereas integrating the triggering mechanism into the kernel module would
be the preferred method, due to the higher precision it would provide versus
a userspace mechanism, this was proven unfeasible due to inherent limitations
of performing disk I/O while in a interrupt context. [29]. Nonetheless, the
userspace program makes an effort to reduce its overhead as much as possible.

3.2 Injecting in Xen’s memory

The motivation, implementation and limitations of this tool are described in
the following subsections.

3.2.1 Motivation

By default Xen protects its own memory from access by lesser privileged layers,
such as dom0 and the guest virtual machines. [44, 38] This improves the security
of the system but presents an obstacle to our objectives. In order to work around
this limitation the supervisors suggested to modify Xen’s source code and add
a way for a lower privilege domain to request a memory bitflips.

Our approach was chosen after a review of the literature, where previous
options were highly complex and hardware dependent, and consists in modifying
the source code by adding a new hypercall. This hypercall performs a bitflip
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in Xen’s memory and receives two parameters, the memory position and bit to
flip. As with any other hypercall it can be called from the dom0 or the guest
machines. The disadvantage of this method is the inherent modification of the
system, which can cause unaccounted differences versus the original system,
and slightly modify the results. As to reduce this effect we strived to keep the
modifications to a minimum.

3.2.2 Implementation

The hypercall code is presented below:

1 long do_bitflip ( unsigned long input , i n t pos )
2 {
3 unsigned long ∗ t ;
4 t = ( ( unsigned long ∗) (0 xffff82d080000000+input ) ) ;
5 (∗t ) ˆ= 1 << pos ;
6 re turn 1 ;
7 }

The hypercall’s code is pretty straightforward, but it should be explained
that the value 0xffff82d080000000 is added to the input because it is the location
where the memory assigned for Xen’s use starts, as defined in one of Xen’s
configuration file. The code of the userspace tool that is used to call the hypercall
is:

1 i n t main ( i n t argc , char ∗∗argv )
2 {
3 xc_interface ∗xch ;
4 i n t ret ;
5 unsigned long input_number ;
6 i n t pos ;
7
8 xch = xc_interface_open ( 0 , 0 , 0 ) ;
9 i f ( ! xch )

10 errx (1 , ” f a i l e d to open c o n t r o l i n t e r f a c e ” ) ;
11
12 input_number = atoi ( argv [ 1 ] ) ;
13 pos = atoi ( argv [ 2 ] ) ;
14
15 ret = do_bitflip_hypercall (xch , input_number , pos ) ;
16
17 i f ( ret == 0)
18 {
19 errx (1 , ” r e t == 0\n” ) ;
20 fflush ( stdout ) ;
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21 }
22
23 xc_interface_close ( xch ) ;
24
25 re turn ret ;
26 }

3.2.3 Limitations

Due to the low-level nature of this tool it would dramatically increase its over-
head if we added a logging functionality that would allow us to store infor-
mation about each injection. For this reason this functionality has not been
implemented.

3.3 Injecting in Xen’s registers

The motivation, implementation and limitations of this tool are described in
the following subsections.

3.3.1 Motivation

Up until this point the last major functionality that we missed was the injection
of faults in registers during the execution of Xen’s code. In order to fulfill
this objective the supervisors challenged me to evaluate a different approach
from previous tools. One that would use compile-time (pre run-time) injection
instead of run-time, by modifying the assembly code of the most called Xen
hypercall and adding a small set of assembly instructions in between the original
instructions. After reflection, I deemed this idea to have a big possibility of
success and we set off developing it.

3.3.2 Implementation

After analyzing which hypercall we would target, we developed the payload
that would be used to modify the registers. In order to reduce the overhead and
intrusiveness of our approach we aimed at using the lowest amount of instruc-
tions required to attain our goal. Given the limitations of assembly instructions
we developed 2 different payloads: one that would work with most common-
purpose registers (AX, BX, CX, ...) and another specifically designed for the
Instruction Pointer register.

Below we can see a sample of both payloads. Please take notice that the
intermediate registers can and must change according to the register being tar-
geted (e.g., we cannot use AX as a intermediate register when we are trying to
perform a bitflip in AX).

1 . globl contador
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2 . bss
3 . type contador , @object

4 . size contador

5 contador :
6 . zero 1

1 pushq %rax

2 cmp $1 , contador(%rip )
3 je final

4 pushq %rdx

5 rdtsc

6 salq $32 , %rdx ,
7 or %rax , %rdx

8 movabsq $valor , %rax

9 cmp %rdx , %rax

10 popq %rdx

11 jg final

12 movabsq $mascara , %rax

13 movb $1 , contador(%rip )
14 xorq %rax , %registo

15 final :
16 popq %rax

At first we add the declaration of a new variable to the header of the assembly
file. This variable (in this case named contador) will only use 1 byte, and serves
as a boolean that indicates whether a bitflip has already been performed.

The first line pushes the first intermediate register into the stack (in this
case we are using rax ), so that its original value is not tainted. In our code we
will need the use of 2 intermediate registers (e.g., rax and rdx ). The next line
verifies if a bitflip has already been done (contador == 1), if this is true we will
not need to continue any further (je final). The fourth line pushes the second
intermediate register into the stack. In the fifth line we call the rdtsc (Read
Time Stamp Counter) instruction. This instruction returns the amount of CPU
cycles since the start of the system. This 64-bit value is by default saved to the
rax and rdx registers. Line 6 and 7 are used to copy the 64-bit value into just 1
register, so that we can perform the comparison. Line 6 performs a arithmetic
shift left by 32 bits. Line 7 performs a OR between rax and rdx, and saves the
result into rdx. In line 8, valor is loaded into rax. valor is a placeholder for the
numeric value of CPU cycles that we want to wait before performing the bitflip.
Line 9 performs the comparison between these two values, held in rax and rdx
and sets the flags accordingly. Next line performs a jump to a label near the
end of our payload when the amount of cycles is not yet enough to perform the
injection. And we take this chance to pop one register that will be no longer
needed from the stack. If there are enough cycles we continue to line 12 where
we move mascara into register rax. mascara is another placeholder, where the
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XOR mask is kept. Given that we are dealing with 64-bit values, a special
version of the mov instruction (movabsq) had to be used. Next line we set the
the contador variable to 1, meaning that the bitflip has already taken place.
Finally, the next line will perform the bitflip itself, by xoring our target register
(placeholder registo) with the mask loaded into rax. We end by popping the
last register from the stack. From now on the code will continue its execution
as usual, apart from the bitflip.

The second payload is similar to the previous one but uses a different method
to read and modify the IP register. By default the previous method of directly
assessing the register (xorq %rax, %registo) is not supported for the IP register.
For this reason we used the long jump instruction to modify the register and
the Load Effective Address (LEA) instruction to obtain the current value of the
IP.

At first we needed to add a new variable to the file’s header, to be used when
holding the Instruction Pointer value before the jump.

1 . globl contador

2 . bss
3 . type contador , @object

4 . size contador , 1
5 contador :
6 . zero 1
7 . globl val_reg

8 . bss
9 . type val_reg , @object

10 . size val_reg , 8
11 val_reg :
12 zero 8

1 pushq %rax

2 cmp $1 , contador(%rip )
3 je final

4 pushq %rdx

5 rdtsc

6 tsalq $32 , %rdx

7 or %rax , %rdx

8 movabsq $valor , %rax

9 tcmp %rdx , %rax

10 jg final

11 movabsq $mascara , %rdx

12 movb $1 , contador(%rip )
13 lea (%rip ) , %rax

14 xorq %rdx , %rax

15 movq %rax , val_reg(%rip )
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16 popq %rdx

17 popq %rax

18 ljmp val_reg(%rip )
19 final :
20 popq %rdx ,
21 popq %rax

3.3.3 Limitations

As happened with the previous tool, the very low-level nature of this fault
injection tool lead us not to implement any logging functionality.

4 Mechanism for Recovery of Virtualization In-
frastructures

The needs that arose during this thesis lead us to the development of an external
watchdog timer that is capable of assessing when the virtualization infrastruc-
ture is displaying incorrect behaviour to the clients, and also capable of restoring
the correct service even if the infrastructure is completely unresponsive. In this
section we present an detailed overview of this mechanism, a brief introduction
to the technology that supports it and a benchmark of the performance of the
watchdog.

4.1 Watchdog Overview

During the development of our experiments we were faced with the need to
infer when the system was unresponsive and to be able to restart it in a auto-
matic fashion, even if the hypervisor and the VMs are completely inaccessible.
I researched this question and developed a solution that makes use of an In-
tel technology widely deployed in virtualization servers and other workspace
computers: Intel AMT. Intel AMT consists of an imbued CPU inside the main
CPU, which runs completely parallel and decoupled from the main CPU, and
by listening on the network card is capable of providing many management op-
erations over the network independently of the state of the Operating System
(e.g., hanged). In particular, for our watchdog implementation, we use AMT’s
capability of restarting the computer at our request.

The watchdog needs to be installed in an external computer that is connected
to the same network of the systems under watch, and operates by periodically
performing responsiveness checks. These responsiveness checks can be defined
by the network administrator, but will usually consist of a simple ping check
followed by an ssh attempt or an attempt to simulate a client of the services
(e.g., visitor in webpage). After a predefined timeout, if there is still no answer,
the watchdog will force the server to restart by sending a specially crafted AMT

24



packet. Finally, the watchdog waits for the server to restart and then reloads
the Virtual Machines by executing a script installed in the server.

In Figure 5 a simple graphical overview of this system is presented.

Figure 5: Overview of watchdog system

4.2 Overview of Intel AMT

Intel AMT (Active Management Technology) [20] is a technology embedded in
some Intel-based platforms that improves the ability of organizations to manage
enterprise computing facilities. It operates independently of the processor or
operating system, and therefore remote applications can access Intel AMT even
when the system is turned off or hanged, as long as the system is connected to
a power line and to the network.

Some often advertised use cases for Intel AMT are:

• Discover all of your computing assets: Intel AMT stores information about
the hardware and software in non-volatile memory. This feature allows IT
management to discover hardware and software assets even when the PCs
are powered off.

• Heal systems remotely regardless of system state: Intel AMT provide out-
of-band access and management capabilities that allow IT management
to fix system problems even after OS failures. Intel AMT also supports
alerts and logs to help the timely detection of problems.

• Protect against malicious software attacks: Intel AMT helps an organi-
zation to protect it’s network by making it easy to keep software and
anti-virus products up-to-date. Third party software can store version
numbers or policy data in the non-volatile memory for off-hours updates.

• Contain the effect of malware and platform misuse: Intel AMT is able to
confine virus infections by sealing the infected network elements from the
rest of the network. It can detect if anti-virus software is executing, and
send a report in case it is not.

There are 3 methods that a remote application can use to communicate
with Intel AMT: Simple Object Access Protocol (SOAP) Messages, Proprietary
Redirection Protocol and WS-Management. SOAP is a well-known XML-based
protocol for exchanging information in a distributed and decoupled way. It is
composed of 3 parts:
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• An envelope that states what are the message’s content and how to process
them

• Encoding rules for expressing the instances of the application-defined data
types

• Convention for remote procedure calls

Proprietary Redirection Protocol is a Intel proprietary protocol that can be used
to access Intel AMT’s features. WS-Management (”Web services for manage-
ment”) is a recent DMTF (Distributed Management Task Force) standard for
managing devices in a network using an object-oriented approach. It should be
noted that WS-Management is a layer over SOAP messages.

4.3 Benchmark Results

In order to validate and benchmark the performance and effectiveness of our
watchdog a simple experiment was performed where the system was purposely
forced into an unresponsive state and the watchdog was forced to act. As to
force the machine into an unresponsive state we shortened the duration of the
experiment to 2 minutes and injected register bitflips only in IP, BX and SP
registers, on kernelspace processes in dom0. The time taken to restart the
system and the success of the recovery action were measured and are presented
in Table 2.

System state Hypervisor recovery VM recovery

Total experiments 206 Min Max Avg Min Max Avg
Hang 203 30 s 34 s 31.9 s 54 s 103 s 75.2 s

No effect 3

Table 2: Evaluation of the recovery implementation.

As can be seen, despite the relative simplicity of our approach, both the
success and time overhead had very good results. In our case, the system did
not take longer than 137 seconds to recover (maximum of hypervisor and VM
recovery), with most of the time being spent in the reloading of the VMs, which
will take a different amount of time according to the amount and size of the
VMs in each scenario.

4.4 Conclusion

This section presented and benchmarked the watchdog mechanism which was
developed by the studend during the course of the thesis. Despite its success in
performing the role it was intended for, it should be noted that there are a few
limitations and disadvantages with the present implementation of the watchdog
timer, namely:
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• The watchdog timer needs to be running in an external component that is
connected to the same network of the virtualization infrastructure. First
of all this will bring an additional hardware cost overhead that can be non-
negligible. Furthermore a failure in the connection between the watchdog
timer and the remaining system will completely disable the watchdog op-
eration. Nonetheless there are plenty of well-known technical solutions to
this limitation, such as using two or more redundant connections, but the
implementation of such feature was left out of our scope.

• User-defined responsiveness checks should detect all cases where system
needs to be restarted, a failure to do so can create cases where the watch-
dog timer fails to restart the system because it is unable to correctly
comprehend that such action is needed.

5 Experimental Results

With the intent of characterizing the behaviour of a virtualized application
under the influence of soft errors and of putting our recently developed tools
to test, we conducted a series of fault injection campaigns. The campaigns and
their results are presented and analyzed in this section.

5.1 Definition

Across this thesis several different campaigns were undertaken, which despite
having the same goal in mind, took different approaches to reach it. These
campaigns were:

• Injection in Apache’s processes inside VM

• Injection in OS’s processes inside VM

• Injection in Xen’s processes in dom0

• Memory bitflips in Xen’s memory

• Register bitflips in Xen’s hypercalls

Despite the differences between them, namely in what component the faults
were injected, there are many properties that are kept the same. All the cam-
paigns used two different guest VMs running the same system image and the
same workload, VM1 or VM2, also known in some campagins as Fault VM and
Control VM, respectively. This difference in denomination is due to the fact
that while in the campaigns that do not inject inside privileged VMs, there is
absolutely no difference between the two VMs, when we injected inside a priv-
ileged VM, we chose VM1 (Fault VM) for that effect, hence the name. Both
VMs were executed side-by-side.

The Faultload is a transient hardware fault, in the form of a bitflip in one of
the available registers or memory. Both the bit to flip, the register or memory
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location to target are chosen in a random way, using an uniform distribution
PRNG.

The Workload consists of a scenario where multiple external HTTP clients,
simulated with use of one external computer (Control & Command), access
one page in an Apache webserver running in both VMs. This webserver serves
only one page, where its content is the result from an SHA1 hash, using as
input a stream obtained from /dev/zero. A similar approach was taken in
”Challenges and Opportunities with Fault Injection in Virtualized Systems”
[27]. This workload stresses particularly the system’s CPU, and, to an extent, its
memory. The size of the input stream can be defined by passing a HTTP GET
parameter, allowing a simple and quick configuration. In our campaigns the size
was of 1024Mb. This relatively large size was chosen so that the Transactions
per Second could be relatively small, and therefore the failure of one process
due to a fault could have more impact and be easily detect than when the input
size is small and the process’ life is short.

In order to simulate the HTTP clients, JMeter was used, configured to use
10 threads, with a 30 second ramp-up, and a 600ms with 100ms deviation pause
between requests.

In order to save the disk state between executions, a LVM snapshot was
created of each VMs’ logical volume. A LVM snapshot is nothing more than
another logical partition which saves the modifications done to the original
volume from there on. When a run has finished, these modifications are of
no use to us, and therefore we can drop this snapshot and start again from the
initial state. The Xen snapshot feature was also used to perform a similar action
with the memory state of both VMs. Xen is capable of saving a VM state at
any given point in time to a file, and later, to restore that state back. With
such capability it was possible to reload a ”clean” state into execution, each
time that the run had finished and another run was about to start. Without
these two features, the downtime in-between executions would have significantly
increased, resulting in a decrease in number of runs per unit of time.

The metrics obtained can be grouped in two categories: performance and
isolation metrics. The performance metrics are Response Time (in ms), Transac-
tions Per Second and Network Performance (both uplink and downlink). These
metrics are calculated by the software that simulates the clients (JMeter), and
therefore does not in any way interfere with the VMs’ execution. The isolation
metrics refer to the correctness of the output provided by the webserver, for
both the Target VM and the Control VM. These metrics are also obtained by
JMeter, simply by analyzing the provided HTTP response against a predefined
expected response. These metrics allowed us to understand what effect the fault
had in the Fault VM and its neighbouring VM, the Control VM.

In order to widen the scope of information obtained from the VMs, a simple
and lightweight probe is launched in both VMs. This probe records data re-
garding the system’s CPU, Memory and Swap usage along the experiment run,
and saves it in a CSV file. This CSV file is later extracted when the experiment
has finished.
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The state of the hypervisor at the end of an experiment is assessed by the
use of a script that performs a ping check and attempts an SSH connection,
followed by the execution of some commands whose output can be used to
verify the health of the system. With this information the hypervisor state is
classified either as Responsive or Unresponsive.

Both Virtualization Modes were used in the campaigns and the results spec-
ify explicitly which mode was used.

The experiment flow and stages for the experiment campaigns that targeted
solely processes running in the guest VMs (FaultVM) can be previewed in Figure
6.

Figure 6: Sequence of the campaigns that inject inside guest VM

Each experiment run of this kind had the duration of sensibly 420 seconds
(or 7 minutes), 330s (or 5 and a half minutes) of which 220s correspond to the
time where the workload is being executed, and the remaining 110s are divided
among the time of setup before the start of each run and the cleanup time at
the end. The fault is injected in one process running inside FaultVM in an
interval between [30s; 4m]. This interval guarantees that the workload had time
to warmup and is now working at peak throughput, and also provides enough
time before the end of the experiment for the fault to be propagated.

Meanwhile, the experiments that targeted the privileged domain (dom0) had
a slightly different flow as described in Figure 7. Instead of launching the fault
injection timer in a guest VM, it is launched inside dom0.
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Figure 7: Sequence of the campaigns that inject inside dom0

The campaign that consisted in injecting memory bitflips had the flow pre-
sented in Figure 8, where we can see that the injection is triggered by a userspace
tool located in dom0, which interacts with Xen through an hypercall. The en-
tire system is restarted through the use of the Intel AMT feature present in the
CPU, in order to assure that a faulty hypervisor does not block the system from
rebooting.

Figure 8: Sequence of the campaign that inject in Xen memory

The campaign that injected bitflips in registers during Xen hypercalls had
the flow that appears in Figure 9. This flow is quite different from previous
ones, because it consists of 4 phases instead of the usual 3. Other than the
Setup, Peak and Cleanup phases, a new phase called ”Pre-Setup” was added.
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This phase, which happens before any other, is where we compile and install a
version of Xen that has our register injection payload inside. Since we already
injected the fault injection payload inside the code we do not need to load or
call any userspace program.

Figure 9: Sequence of the campaign that injects in Xen registers

5.2 Physical Setup

In order to provide a physical setup for the experiment, a Fujitsu Celsius desktop
computer was arranged.

The specifications of this computer were carefully chosen to match those used
in Cloud Computing datacenters worldwide [1, 3, 21]. This ensured that the
results from the campaigns closely represented the ones that would be obtained
in the real-world.

In Table 3 a brief synopsis of the most important components of the system
is provided.
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CPU Intel Core i7-4770,
4 physical cores running up to 3.9GHz

Cache 8 Mb
Virtualization Technologies VT-x, VT-d, EPT
RAM 8Gb DDR3
HDD 1TB
SSD 120GB Samsung EVO II

Table 3: Hardware Specifications of Virtualization Server

In the same way that the hardware strives to reflect a real world system,
so does the software. The chosen hypervisor was Xen version 4.4.1, released on
September 2014. At the time of writing the latest stable Xen version was 4.5,
released January 2015.

The dom0 operating system is CentOS 7.0 with kernel version 3.11.1. In
order to support all the features that Xen can take advantage of, the kernel
had to be recompiled using a configuration file with full Xen host support.
The choice of CentOS for dom0 can be dismissed by some as not ideal given
the representativeness of XenServer in the real-world. While the presence that
XenServer has in deployments all over the world cannot be denied, it must be
noted that XenServer is a package which, among other things, includes a control
domain (dom0) based on CentOS [36]. Proving not to be much different from
our setup.

The domU operating system is Debian 7.7, with kernel version 3.0.2. Debian
was chosen because of its fame as a stable and reliable server-oriented operating
system.

For the experiment’s workload, Apache 2.2.22 was used, as provided by
the Debian repositories, including the default configuration files. On the Con-
trol&Command system, JMeter 2.12 was used to emulate the client requests to
the webserver.

5.3 Classification of Failures

In our experiments we classified the results according to a client oriented view,
this means we classify the results as the client perceives them, or, to put it
another way, according to what impact they have in the output sent to the
outside of the virtualized system. It must be added that at the end of each fault
injection run we assessed the responsiveness state of the hypervisor through the
use of correctness tests (such as performing a ssh connection and obtaining the
output of a few utilities). The behaviour can be classified in different groups:

• Incorrect Content: Occurs when the webserver returns syntactically
correct HTML but with an incorrect hash inside. This failure mode is
perceptible to the user but also the most serious and difficult to handle at
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system-level, because wrong data can be undetected unless it is checked
against a redundant computation.

• Corrupted Output: In this case the socket remains open, however the
data stream contains solely corrupted data (syntactically incorrect HTTP
packet, invalid HTML code or just pure gibberish). For example, a browser
would handle a similar occurrence by displaying an error message. There-
fore, the client is capable of detect this behaviour, but since there is no
data to interpret, this behaviour is not as nefarious as that of Incorrect
Content.

• Connection Reset: The TCP connection between the server and the
client is reset by the server’s network stack, by sending a packet with RST
flag set.

• Client-Side Timeout: One or more of the clients fails to receive a re-
sponse inside the predefined time limit (20 seconds), and issues a client-
side timeout. The time limit of 20 seconds was by us considered enough for
HTTP communications, as an example, the keep-alive mechanism usually
maintains a connection open for 5-15 seconds.

• Hang: The service stops producing output and answering any subsequent
requests. Eventually all connected clients will issue a client-side timeout.
In some cases, due to timing aspects outside of our control, some experi-
ments are classified as client-side timeouts when the real behaviour should
be Hang.

• No Effect: The injected error has no visible effect on the provided service,
both in terms of performance (latency, throughput, ...) and correctness.

5.4 Results and Analysis

The results of the various campaigns are presented and analyzed here.

5.4.1 Injection in Apache’s processes inside VM

At first we used the HVM virtualization mode and obtained the results presented
in Table 4:

33



Virtual machine 1 (Fault VM) Virtual machine 2 (Control VM)

Incorrect content 4 (0.4%) Incorrect content 0 (0%)
Corrupted output 2 (0.2%) Corrupted output 0 (0%)
Connection reset 12 (1.2%) Connection reset 0 (0%)

Client-side timeout 130 (12.7%) Client-side timeout 0 (0%)
Hang 5 (0.5%) Hang 0 (0%)

No effect 876 (85.3%) No effect 1027 (100%)

Hypervisor responsive 1027 (100%)

Table 4: Outcomes of fault injection targeting application processes within a
virtual machine, in HVM mode

As can be seen by the 0% wrong output in the Control VM, it appears
that faults injected in the FaultVM do not propagate to the ControlVM. This
conclusion was further reinforced when we analyzed the performance of both
virtual machines and verified that there was no performance difference between
machines and between a previous baseline run. It is therefore safe to assert that
the inter-VM separation provided by the hypervisor was kept intact.

In order to fully explore Xen’s virtualization capabilities, we executed the
same campaign but while using the PV virtualization mode. The results are
presented in Table 5.

Virtual machine 1 (Fault VM) Virtual machine 2 (Control VM)

Incorrect content 6 (0.6%) Incorrect content 0 (0%)
Corrupted output 1 (0.1%) Corrupted output 0 (0%)
Connection reset 8 (0.8%) Connection reset 0 (0%)

Client-side timeout 71 (7.3%) Client-side timeout 0 (0%)
Hang 6 (0.6%) Hang 0 (0%)

No effect 876 (90.5%) No effect 968 (100%)

Hypervisor responsive 968 (100%)

Table 5: Outcomes of fault injection targeting application processes within a
virtual machine, in PV mode

Once again there was no breach between virtual machines. Equipped with
the results for both virtualization modes, it is possible to compare them and
notice the differences inherent to the method used to implement virtualization.
A straightforward conclusion that can be taken from both runs is that PV mode
presents a small but noticeable lower percentage of produced failures (9.5% vs
14.7%). The explanation for this fact must be linked to the differences on how
each virtualization mode achieves their purpose. On the other hand, there is no
big variation between the classification of the produced failures between virtu-
alization modes, where Client-Side timeouts are the most common occurrence.

In Figure 10 and Figure 11 the distribution of failures modes according to
registers is presented for both PV and HVM virtualization modes respectively.
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Figure 10: Distribution of failure modes across processor registers, for injections
in application processes, in PV mode

Figure 11: Distribution of failure modes across processor registers, for injections
in application processes, in HVM mode

Interestingly the results were quite disparate between PV and HVM modes.
Whereas in PV mode the most effective registers were IP, followed by BX. In
HVM mode the SP register caused the majority of failures, followed by FS, IP
and BX. To note the fact that in HVM the FS register caused solely Connec-
tion Resets. And that IP, BX and SP were more prone to causing Client-side
timeouts. Finally, the range of registers that produced failures is bigger in HVM
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than in PV mode (12 vs 8 registers).
The IP (Instruction Pointer) register is a essential register in any computer

system and has the role of controlling the execution flow. It is therefore no sur-
prise that when this register is corrupted it can produce unexpected results. The
SP (Stack Pointer) register is another key part of every computer system and
holds the top of the stack, a essential data structure. If this value is corrupted
the stack will point to a incorrect memory address. The BX (Base Register)
register is a general-purpose register that usually contains a data pointer used
for indirect addressing. Furthermore, Linux uses this register for storing param-
eters when performing a system call. The FS register is a segment register that
has no fixed purpose, but is available for the Operating Systems to use as they
see fit.

Figure 12 shows the distribution of the error manifestation latency, for both
HVM and PV modes. The x-axis uses a logarithmic scale for representing time.
From its analysis it is possible to understand that while some injections had
an almost immediate effect, a considerable amount staid dormant during a few
seconds. There is also an outlier that had a latency of 326 seconds.

Figure 12: Manifestation latency, in PV and HVM

5.4.2 Injection in OS’s processes inside VM

After injecting bitflips into the webserver’s processes we moved on to processes
spawned by the kernel (kernelspace processes). These kind of processes are
more privileged than userspace and therefore might have a bigger impact in the
behaviour of the virtual machine both to the outside and inside (interaction
with other VMs). Given the relative high amount of kernel processes active in
a system we opted by choosing one random kernel process to inject every time.
Table 6 presents the results for this scenario when executing the VM under
HVM mode, and Table 7 presents when under PV mode.
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Virtual machine 1 (Fault VM) Virtual machine 2 (Control VM)

Incorrect content 0 (0%) Incorrect content 0 (0%)
Corrupted output 0 (0%) Corrupted output 0 (0%)
Connection reset 0 (0%) Connection reset 0 (0%)

Client-side timeout 5 (1.0%) Client-side timeout 0 (0%)
Hang 4 (0.8%) Hang 0 (0%)

No effect 493 (98.2%) No effect 502 (100%)

Hypervisor responsive 502 (100%)

Table 6: Outcomes of fault injection targeting OS processes within a virtual
machine, in HVM mode

Virtual machine 1 (Fault VM) Virtual machine 2 (Control VM)

Incorrect content 0 (0%) Incorrect content 0 (0%)
Corrupted output 0 (0%) Corrupted output 0 (0%)
Connection reset 0 (0%) Connection reset 0 (0%)

Client-side timeout 2 (0.9%) Client-side timeout 0 (0%)
Hang 1 (0.4%) Hang 0 (0%)

No effect 225 (98.7%) No effect 228 (100%)

Hypervisor responsive 228 (100%)

Table 7: Outcomes of fault injection targeting OS processes within a virtual
machine, in PV mode

When comparing both, and taking into consideration the results from previ-
ous campaigns, it can be noticed that there is no longer a discrepancy in terms of
manifestation percentage between both virtualization modes. Furthermore, the
percentage of manifestations to injections was very low, and their categorization
was limited to Hangs and Client-side timeouts.

Once again an analysis of the distrbution of failure modes according to the
register was performed for register bitflips in dom0, and the results are presented
in Figure 13.

37



Figure 13: Distribution of failure modes across processor registers, for injections
in the hypervisor dom0

Unlike what happened in the previous scenario, when performing register
bitflips in dom0 every register produced an effect in the output, which caused
the system to Hang or a Client-side Timeout.

5.4.3 Injection in Xen’s processes in dom0

After injecting inside the guest virtual machines, we placed our attention into
the privileged VM (dom0). In here we performed injections inside pre-chosen
processes (both userspace and kernelspace) belonging to Xen. It should be noted
that dom0 can only be virtualized using PV. The targeted processes were:

• oxenstored: storage scheme for storing VMs configurations;

• xenconsoled: daemon that provides control to the domains’ consoles.

• qemu: used by Xen to enable the dom0 to access a virtual disk;

• xenwatchdogd: allows actions to be triggered when certain guest VMs are
detected as crashed;

• xenbus (kernelspace): bus for interaction between domains;

• xenbus-frontend (kernelspace): frontend for xenbus;

The results for register bitflips are presented in Table 8.
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Experiments Hypervisor Virtual machine 1 Virtual machine 2 Both VMs affected

965

Unresponsive 182

Incorrect content 0 Incorrect content 0

182 (100%)
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 75 Client-side timeout 75
Hang 107 Hang 107

No effect 0 No effect 0 —

Responsive 783

Incorrect content 0 Incorrect content 0

—
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 0 Client-side timeout 0
Hang 0 Hang 0

No effect 783 No effect 783 —

Table 8: Outcomes of fault injection in processor registers, targeting the hyper-
visor in dom0

Of particular note is the fact that both guest VMs were equally affected by
the injections. Furthermore all outcomes are classified as either Hang or Client-
side timeout. However it should be noted that it is our belief, after a manual
verification of the results, that the failures classified as Client-side timeouts are
in reality Hangs. In fact due to the cool-off period of the experiment not being
long enough, they were interrupted before being classified as Hang. These results
prove the impact that kernelspace processes inside the privileged VM can have
in the overall stability of the virtualization platform.

Due to the limited time that we had for performing the experiments we
had to prioritize the most important and likely valuable scenarios first, which
meant that memory injections would be paid much less attention than to register
bitflips. However given the higher privilege that dom0 has compared to the guest
virtual machines, we deemed that performing memory bitflips in this component
would be of interest. Another reason for using this scenario is that it will give
us data for later comparison, when we perform memory bitflips directly inside
Xen memory. The results are displayed in Table 9.

Experiments Hypervisor Virtual machine 1 Virtual machine 2 Both VMs affected

102

Unresponsive 0

Incorrect content 0 Incorrect content 0

—
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 0 Client-side timeout 0
Hang 0 Hang 0

No effect 0 No effect 0 —

Responsive 102

Incorrect content 0 Incorrect content 0

—
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 0 Client-side timeout 0
Hang 0 Hang 0

No effect 102 No effect 102 —

Table 9: Outcomes of fault injection in memory, targeting the hypervisor in
dom0

The nonexistence of any failure makes it clear that a memory injection cam-
paign will need to take much longer than a register injection campaign to obtain
enough results.
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5.4.4 Memory bitflips in Xen’s memory

The results of performing memory bitflips inside Xen’s memory (which is pro-
tected from access by any of the VMs) are presented in Table 10.

Experiments Hypervisor Virtual machine 1 Virtual machine 2 Both VMs affected

276

Unresponsive 1

Incorrect content 0 Incorrect content 0

1 (100%)
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 0 Client-side timeout 0
Hang 1 Hang 1

No effect 0 No effect 0 —

Responsive 275

Incorrect content 0 Incorrect content 0

—
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 0 Client-side timeout 0
Hang 0 Hang 0

No effect 275 No effect 275 —

Table 10: Outcomes of fault injection in memory, targeting the hypervisor in
Xen

The number of total injections performed during this campaign can be con-
sidered low when talking about memory bitflips, because of the inherently lower
effect that a memory bitflip possess versus register bitflips. This fact reflects
itself in only 1 bitflip having produced a perceptible failure (Hang).

5.4.5 Register bitflips in Xen’s hypercalls

Finally, we performed register bitflips inside Xen’s executable code. Given the
extension of Xen’s code we opted to target the code of the most often called
hypercalls. Hypercalls have a very high number of calls and CPU time and cross
the boundary between a VM and the hypervisor. Reasons that make it the best
choice of location in where to inject the bitflips.

First, we used the xentrace tool, that allowed us to obtain a count of the
number of calls that each hypercall had during a baseline execution of the work-
load. The results are presented in Table 11:
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Hypercall ID Hypercall Name # Calls
1 mmu update 2092
3 stack switch 10232
13 multicall 552
14 update va mapping 90
17 xen version 517
23 iret 31758
24 vcpu op 17666
25 set segment base 2488
26 mmuext op 2157
29 sched op 6323
32 evtchn op 1458
33 physdev op 2724
35 sysctl 1

Table 11: Profiling of hypercall usage

The results show that the most often called hypercall was iret, and therefore
we chose to target this hypercall in particular. From the information we man-
aged to compile from online sources [33], this hypercall can be used to switch
between user and kernel mode by a guest VM.

Given the very big range of possible permutations of line number, register,
mask and injection time it was impossible to exhaustively test every combina-
tion. For this reason a smaller range of combinations that could be executed in
a realistic timeframe was chosen.

These combinations were calculated by the following Python code, which
returns 2176 different combinations, taking around 22 days for the fault injection
campaign to complete:

1 # Line where payload will be injected ( we jump 6 in 6 lines )
2 for n linha in xrange (1 , 92 , 6) :
3 # Registers to be used

4 for n registo in xrange (0 , len ( registo lista ) ) :
5 # Choose 2 random bits of to inject

6 population = xrange (0 , 63)
7 registos escolhidos = random . sample ( population , 2)
8 for n bit in registos escolhidos :
9 # Miliseconds to wait since the computer has started until ←↩

injection is performed

10 for n tempo in xrange (220000 , 300000 , 20000) :

It should be noted that due to an overlapse the range of tested bits ends at
the 63rd bit, and not the 64th as was supposed. This is not a major problem
because it is easy to perform the missing runs, however there was not enough
time to do this task before the deadline of this thesis.

In Table 12 the results are presented.
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Experiments Hypervisor Virtual machine 1 Virtual machine 2 Both VMs affected

2176

Unresponsive 94

Incorrect content 0 Incorrect content 0

94 (100%)
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 18 Client-side timeout 18
Hang 76 Hang 76

No effect 0 No effect 0 —

Responsive 2082

Incorrect content 60 Incorrect content 48

352 (16.9%)
Corrupted output 0 Corrupted output 0
Connection reset 0 Connection reset 0

Client-side timeout 146 Client-side timeout 142
Hang 215 Hang 216

No effect 1661 No effect 1676 —

Table 12: Outcomes of fault injection in registers, targeting one hypercall in
Xen

One point worth mentioning is the fact that there were no manifestations of
Corrupted Output or Connection Reset. The hypervisor was sometimes capable
of maintaining its responsive state, even if one or more of the VMs had been
classified as Hanged.

In Figure 14 we can analyze which registers caused manifestations and in
which VMs they had an effect. It is clear that there are a few registers that
provoke more manifestations than the rest, namely RIP, RSP and RBX. We can
also refer RAX, RDX, RBP, R12 and R14, that had a lower yet still significant
impact. It appears that there were no major discrepancies between VMs, apart
from a small deviation which is not unexpected.

Figure 14: Distribution of manifestations across processor registers, for injec-
tions in Xen

Another interesting and useful way to look at these results is by analyzing
which bit produced the biggest impact in all the experiments. However when
parsing through this data we arrived at the conclusion that the distribution of
the bits was not as uniform as we had hoped for. In fact, the distribution had
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an average of 34,53, a median of 32 and a standard deviation of 11,38. In Figure
15 we can see this distribution in a graphical manner.

Figure 15: Distribution of the flipped bit, for injections in Xen code

In Figure 16 we assess the impact that each bit of the registers had when
provoking a manifestation. Instead of using absolute values we are displaying
percentage due to the previously stated reason. As can be seen, there were
bits that had significantly more effect than others, bits that had completely no
effect, namely bit 10 and 17, and others that only had a small effect in one of
the VMs, namely 4, 29, 40 and 52.
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Figure 16: Distribution of manifestation percentage according to flipped bit, for
injections in Xen

Another factor that was varied along this campaign was the time at which
the injection would take place. In Figure 17 the amount of manifestations for
each of the 4 timepoints is shown. The deviation among them is particularly
low, which allows us to conclude that the time of injection has little to no impact
in the outcome, at least for the 4 tested timepoints.
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Figure 17: Distribution of manifestations according to time of injection, for
injections in Xen

5.5 Conclusion

The results from the various campaigns have allowed us to better understand
how a virtualized system reacts to the presence of a soft-error, in particular
register and memory bitflips. By injecting in different areas of the system,
namely inside the userspace and kernelspace applications of the guest VM, inside
applications of the privileged guest and directly into the hypervisor, we were
able to have a good coverage of the system and obtain valuable knowledge of
how each area behaves. In summary:

• Memory injections are slower to produce a failure than register injections,
and therefore their campaigns need an higher number of samples before
useful results can be extracted.

• Injecting directly into the hypervisor can have a big impact, but not all
the failure modes had expression, solely Hang, Wrong Content and Client-
Side Timeout. On the other hand, injecting in the privileged VM (dom0)
still has a significant impact, but only one failure mode is really present:
Hang. Injecting in the guest VMs will produce all the 5 different failure
modes but with a lower probability. Furthermore we also noted some
discrepancies between the two virtualization modes: PV and HVM.

• Different registers have wildly different impact in the behaviour of the
system, independently of the component where we inject. Across every
campaign we can name IP, SP and BX as the 3 highest-impact registers.
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• We never managed to break Xen’s isolation layer, failure in one guest
VM does not have impact in others. But a successful injection in dom0
will always affect both guest VMs and cause the hypervisor to become
unresponsive. Meanwhile, an injection in Xen’s hypercall can affect both
guest VMs, but not forcefully.

All this information is a very useful contribution to the field, and can base
the design of fault tolerance mechanisms for this kind of systems, by allowing
more attention to be paid to more critical and sensitive areas of the system (e.g.,
more critical registers).

6 Conclusion and Future Work

In this section a overview of the work performed during this thesis is provided,
followed by a review of the future work that will take place in the months
following the end of this Master thesis.

6.1 Global Vision

During this thesis we performed extensive work in the area of evaluating and
benchmarking virtualized systems for the cloud. Namely by conducting experi-
ment campaigns using fault-injection tools by us developed, in which we assess
the effect of a soft-fault inside a virtualized system using Xen hypervisor.

We also devised a watchdog system capable of detecting and restoring an
unresponsive virtualized system, even in the event of the hypervisor being com-
pletely unresponsive, by using a technological feature existent in some Intel
CPU’s. In order to assess the effectiveness of this system, we benchmarked the
vanilla system sans watchdog against the improved system using the watchdog,
and concluded that our watchdog timer is effective in its purpose. However
the biggest contribution of this thesis were the 3 fault injection tools that we
developed and from now on can be used in future research projects. In fact,
the first injection tool has already been used by a group of students to evaluate
the durability of data in MySQL and Cassandra under the presence of register
bitflips.

Using the work and knowledge obtained during this thesis, two articles were
written and submitted to the 11th European Dependable Computing Conference
- Dependability in Practice, one of the articles was accepted with distinction
and classified as a runner-up to the Best Article Prize.

By the end of this thesis we can safely feel satisfied with the work performed
and confident of our contributions to this area.

6.2 Future Work

As we completed the work of this thesis, new opportunities for further devel-
opment arose. Some of those opportunities could not fit inside the schedule of
this thesis, and therefore will be completed in the following months.
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• Finish the experiments of injecting register bitflips inside Xen’s hypercalls,
by increasing the breadth of hypercalls being targeted, and compare the
results between directly injecting in Xen’s code versus injecting in the
privileged VM.

• Reproduce the work here presented in one of the main cloud service
providers.

• The approach researched during this thesis can be used to guide the design
of a fault tolerance mechanism capable of preventing crashes and covering
a large portion of problems with a low cost (performance overhead).

Appendices

A Assembly code of iret hypercall

1 do_iret :
2 . LFB406 :
3 . loc 1 291 0
4 . cfi_startproc
5 pushq %rbp

6 . cfi_def_cfa_offset 16
7 . cfi_offset 6 , −16
8 . LBB346 :
9 . LBB347 :

10 . loc 2 29 0
11 movq $−32768 , %rax

12 . LBE347 :
13 . LBE346 :
14 . loc 1 296 0
15 movl $72 , %edx

16 . LBB350 :
17 . LBB348 :
18 . loc 2 29 0
19 #APP

20 # 29 ”/run/media/root/b0b5c925−c631−4902−8a08−54←↩
ebadb18fe3/xen−4.4.1/ xen/include/asm/current . h” 1

21 and %rsp ,%rax

22 # 0 ”” 2
23 . LVL199 :
24 #NO_APP

25 . LBE348 :
26 . LBE350 :
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27 . loc 1 291 0
28 pushq %rbx

29 . cfi_def_cfa_offset 24
30 . cfi_offset 3 , −24
31 . LBB351 :
32 . LBB349 :
33 . loc 2 30 0
34 leaq 32536(%rax ) , %rbx

35 . LVL200 :
36 . LBE349 :
37 . LBE351 :
38 . loc 1 291 0
39 subq $88 , %rsp

40 . cfi_def_cfa_offset 112
41 . loc 1 296 0
42 movq 152(%rbx ) , %rsi

43 . loc 1 294 0
44 movq 32744(%rax ) , %rbp

45 . LVL201 :
46 . loc 1 296 0
47 leaq 8(%rsp ) , %rdi

48 call copy_from_user

49 . LVL202 :
50 testq %rax , %rax

51 jne . L155
52 . loc 1 305 0
53 movq 48(%rsp ) , %rax

54 movq %rax , %rdx

55 andl $3 , %edx

56 cmpq $3 , %rdx

57 je . L156
58 . L146 :
59 . loc 1 317 0
60 orl $3 , %eax

61 . loc 1 316 0
62 movq 40(%rsp ) , %rdx

63 . loc 1 317 0
64 movw %ax , 136(%rbx )
65 . loc 1 318 0
66 movq 56(%rsp ) , %rax

67 . loc 1 316 0
68 movq %rdx , 128(%rbx )
69 . loc 1 319 0
70 movq %rax , %rdx

71 andq $−143873 , %rdx

72 orb $2 , %dh
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73 movq %rdx , 144(%rbx )
74 . loc 1 320 0
75 movq 64(%rsp ) , %rdx

76 movq %rdx , 152(%rbx )
77 . loc 1 321 0
78 movzwl 72(%rsp ) , %edx

79 orl $3 , %edx

80 . loc 1 323 0
81 testb $1 , 33(%rsp )
82 . loc 1 321 0
83 movw %dx , 160(%rbx )
84 . loc 1 323 0
85 je . L157
86 . L148 :
87 . loc 1 331 0
88 movq 8(%rbp ) , %rcx

89 shrq $9 , %rax

90 . loc 1 333 0
91 movq %rbp , %rdi

92 . loc 1 331 0
93 xorq $1 , %rax

94 andl $1 , %eax

95 leaq 1(%rcx ) , %rdx

96 movb %al , (%rdx )
97 . loc 1 333 0
98 call async_exception_cleanup

99 . LVL203 :
100 . loc 1 336 0
101 movq 8(%rsp ) , %rax

102 . L151 :
103 . loc 1 342 0
104 addq $88 , %rsp

105 . cfi_remember_state
106 . cfi_def_cfa_offset 24
107 popq %rbx

108 . cfi_restore 3
109 . cfi_def_cfa_offset 16
110 . LVL204 :
111 popq %rbp

112 . cfi_restore 6
113 . cfi_def_cfa_offset 8
114 . LVL205 :
115 ret

116 . LVL206 :
117 . p2align 4 , ,10
118 . p2align 3
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119 . L157 :
120 . cfi_restore_state
121 . loc 1 326 0
122 movq 16(%rsp ) , %rax

123 . loc 1 325 0
124 andl $−257 , 124(%rbx )
125 . loc 1 326 0
126 movq %rax , 48(%rbx )
127 . loc 1 327 0
128 movq 24(%rsp ) , %rax

129 movq %rax , 88(%rbx )
130 movq 56(%rsp ) , %rax

131 jmp . L148
132 . p2align 4 , ,10
133 . p2align 3
134 . L156 :
135 . loc 1 307 0
136 cmpq $0 , 2560(%rbp )
137 je . L158
138 . loc 1 313 0
139 movq %rbp , %rdi

140 call toggle_guest_mode

141 . LVL207 :
142 movq 48(%rsp ) , %rax

143 jmp . L146
144 . L155 :
145 . loc 1 299 0
146 call current_domain_id

147 . LVL208 :
148 leaq . LC27(%rip ) , %rsi

149 leaq . LC28(%rip ) , %rdi

150 movl %eax , %ecx

151 movl $300 , %edx

152 xorl %eax , %eax

153 call printk

154 . LVL209 :
155 . L145 :
156 . loc 1 339 0
157 call current_domain_id

158 . LVL210 :
159 leaq . LC27(%rip ) , %rsi

160 leaq . LC30(%rip ) , %rdi

161 movl %eax , %ecx

162 movl $339 , %edx

163 xorl %eax , %eax

164 call printk

50



165 . LVL211 :
166 . loc 1 340 0
167 leaq . LC27(%rip ) , %rsi

168 leaq . LC31(%rip ) , %rdi

169 xorl %eax , %eax

170 movl $340 , %edx

171 call printk

172 . LVL212 :
173 movq 16(%rbp ) , %rdi

174 call __domain_crash

175 . LVL213 :
176 . loc 1 341 0
177 xorl %eax , %eax

178 jmp . L151
179 . L158 :
180 . loc 1 309 0
181 call current_domain_id

182 . LVL214 :
183 leaq . LC27(%rip ) , %rsi

184 leaq . LC29(%rip ) , %rdi

185 movl %eax , %ecx

186 movl $310 , %edx

187 xorl %eax , %eax

188 call printk

189 . LVL215 :
190 . loc 1 311 0
191 jmp . L145
192 . cfi_endproc
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