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Resumo
O cálculo estocástico tem adquirido uma grande dimensão durante

as últimas décadas, tanto do ponto de vista teórico como prático. Em
particular, no ramo da biologia teórica tem contribuído para a dedução
de modelos mais realistas, mas ao mesmo tempo mais complexos. O es-
tudo destes modelos reduz-se, por isso, muitas vezes a uma abordagem
numérica. Os principais objetivos desta tese passam por motivar, esta-
belecer e analisar modelos estocásticos de dinâmica de populações que
resultam de dois tipos diferentes de aleatoriedade: ambiental e demográ-
fica. De modo a analisarmos a primeira classe de modelos, assim como
a justificar o procedimento usado para deduzir a segunda classe, é pre-
viamente brevemente apresentada a teoria dos processos de difusão e
dos sistemas de equações diferenciais estocásticas. Adicionalmente, ap-
resentamos também um breve estudo numérico dos modelos que é feito
recorrendo ao método de Euler-Maruyama.

Palavras Chave: processos de difusão, sistemas de equações diferenciais estocás-

ticas de Itô, modelos de crescimento populacional, modelo de epidemias

Abstract
Stochastic calculus has gained a great expansion in the last decades

both from theoretical and practical perspectives. In particular, in the
field of theoretical biology, it has contributing for the deduction of more
realistic but also less tractable models. Due to the complexity of the
mathematical theory behind stochastic calculus, the approaches followed
are often limited to numerical technics. The principal aims of this the-
sis are the motivation, establishment and discussion of classic stochastic
differential equation models in population dynamics, resulting from two
different types of randomness: environmental and demographic. In or-
der to analyse the first class of models, as well as rigorously justify the
procedure used in the second class, we deal with the theory of diffusion
processes and Itô stochastic differential systems. Additionally, a numer-
ical study by implementing the Euler-Maruyama method is made.

Keywords: diffusion processes, system of Itô stochastic differential equations,

growth population models, epidemic model
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Chapter 1

Introduction

The study of Markov processes, and particularly of diffusion processes, marked un-

doubtedly the origin of the research concerning continuous-time stochastic processes.

Besides the contributions of N. Wiener (1923) and Lévy-Khinchin (1937), we may

say that the modern theory of Markov processes was initiated by A. Kolmogorov

(1931), who characterized the transition probability distribution of a diffusion pro-

cess as a solution of a parabolic partial differential equation involving its drift and

diffusion coefficients, extended afterwards by Feller (1936) to the characterization of

a Markov process admitting jumps.

K. Itô (1940) entered in the scene right after this:

"I saw a powerful analytic method to study the transition probabilities of the

process, namely Kolmogorov’s parabolic equation and its extension by Feller. But I

wanted to study the paths of Markov processes (...)".

Itô’s original goal was thus to complement the study of diffusion processes (see

[1] [2]), in order to permit the explicit construction of their trajectories. This goal

led him to conceive a new concept of integral, named stochastic integral, giving rise

to the famous stochastic calculus and stochastic differential equations (SDEs), which

revealed to be a powerful tool for the construction and analysis of mathematical

models. In fact, during the last decades, SDEs gained a remarkable popularity by

finding multiple applications in different areas of science such as finance, chemistry,

physics, engineering, population dynamics and, more generally, in systems biology

(see, for instance, [3], [4], [5], [6], [7], [8] and [9]). They are particularly important in

modelling complicated systems where randomness can not be ignored. On the other

hand, these applications have also motivated theoretical developments conducting to

new kinds of stochastic integrals (see, for example, [1], [5]).

This thesis aims to motivate, establish, compare and analyse, essentially from a
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Chapter 1 Introduction

numerical point of view, some classic models of stochastic differential equations in

the field of life sciences, supported by a rigorous mathematical justification, as far as

possible. We begin, in Chapter 2, by briefly describing the probabilistic background

needed to understand the models that will be considered and the techniques support-

ing their manipulation. We then proceed by presenting the class of diffusion processes

and the corresponding Kolmogorov’s forward differential equation, in order to estab-

lish the link between SDE solutions and diffusion processes. Later on, in Chapter 3,

two different classes of stochastic models are analised and several examples are given.

In the first class, models are obtained directly from a deterministic ordinary differ-

ential equation (ODE) model, by adding a random perturbation, which pretends

to represent environmental stochasticity. The stochastic Malthusian growth model

(Black-Scholes model), the stochastic logistic growth model as well as the stochastic

Lotka-Volterra model, are then settled and slightly explored. In the second class

of models, the stochasticity arises intrinsically from the underlying phenomena. A

general time-continuous Markov chain model is first constructed, leading to the es-

tablishment of a SDE by diffusion approximation procedures (see [10] [11] [12] [13]).

A few examples are subsequently given, including a second version of the stochastic

logistic growth model, a two species stochastic Lotka-Volterra model and, finally, a

stochastic epidemic model.

In order to gain some insight about the models’ behavior and, consequently,

about the underlying biological phenomenon, the Euler-Maruyama method was im-

plemented for approximating trajectories of SDE solutions. Although there exist

higher order convergence methods (see [3]), this method is computationally simple

and often proposed in the literature. In this way, it was possible to obtain some

sample paths for the solutions of nonlinear models, for which an analytical resolu-

tion procedure is in general not available. As in the scope of PDEs, some analytical

approaches exist and others continue being developed, in order to complement the

numerical study. However, because of the complex mathematical tools they encom-

pass, we opted by not bringing very deeply this analysis to this thesis, instead, we

suggest appropriate references. Since this is yet a quite recent and complex field of

research, when compared to deterministic partial differential equations (PDEs), still

many questions are far from being answered and new techniques must be developed.

Finally, together with the models’ descriptions, we present a short discussion on the

comparison between deterministic and stochastic models.
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Chapter 2

Diffusion processes and solutions
of Stochastic Differential

Equations

2.1. Preliminaries

In this thesis, we consider the complete1 probability measure space (Ω,A, P ) where

all real random vectors and real vector-valued stochastic processes are defined. The

set of d-dimensional real vectors, as well as any subset of it, is equipped with the

Borel σ-algebra, BC , C ⊆ Rd, d ∈ N. The time interval on which all stochastic

processes are defined is [0, T ], for some T > 0, which may be allowed to be infinite.

Vectors will be written in bold to distinguish from scalars. The Euclidean vector-

norm will be denoted by |.| and the Hilbert-Schmidt norm, ‖.‖, for an m × n real

matrix A = [aij ]i=1,...,m,j=1,...,n, m,n ∈ N, is defined by

‖A‖ =




m∑

i=1

n∑

j=1

a2
ij




1/2

.

The Wiener process is a basic tool in stochastic calculus. Among several defini-

tions that can be found in the literature, we consider the following one.( see [14])

Definition 1. (i) Given a complete2 filtration (Gt, t ∈ [0, T ]) of (Ω,A, P ), the

stochastic process W = (Wt, t ∈ [0, T ]) is called a scalar Wiener process

with respect to (Gt, t ∈ [0, T ]) if it satisfies the following properties:

• X0 = 0 a.s.,

• Wt is adapted to Gt, ∀t ∈ [0, T ]

• ∀ t ∈ [0, T ], ∀ h > 0, with 0 ≤ t < t + h ≤ T , Wt+h −Wt ∼ N (0, σ2h),

where σ2 is a real positive constant,
1A probability measure space is complete if its σ-algebra is complete. In turn, a σ-algebra, F , is

called complete if for each A ∈ F such that P (A) = 0, one has B ∈ F for any B ⊂ A. The complete

framework is used in this thesis for technical convenience.
2Notice that a filtration is complete if all σ-algebras which constitute it are complete.
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Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

• ∀t ∈ [0, T ], ∀ h > 0, with 0 ≤ t < t + h ≤ T , Wt+h −Wt is independent

of Gt,

• almost all sample paths of W are continuous functions.

(ii) A d-dimensional Wiener process W is defined by W = (Wt, t ∈ [0, T ]),

where Wt = (W (1)
t , ..., W

(d)
t ) and (W (i)

t , t ∈ [0, T ]), i = 1, ..., d, d ∈ N, are d

independent scalar Wiener processes.

If σ2 = 1, W is called the standard Wiener process.

We denote by (Ft, t ∈ [0, T ]) the complete filtration of (Ω,A, P ) generated by

the Wiener process W.

For T ∈ (0, T ], we denote by Li([0, T ] × Ω), i = 1, 2, the spaces of functions

f : [0, T ]× Ω → Rd such that

• f is measurable regarding the tensor-product σ-algebra B[0,T ] ⊗A,

• f is adapted to the filtration (Ft, t ∈ [0, T ]),

• ∫ T
0 |f |idt < ∞ a.s., i = 1, 2 .

We next present a central tool in stochastic calculus, namely, the famous Itô’s

lemma, which is formulated for a specific class of processes, called Itô processes.

Definition 2. Let W = (Wt, t ∈ [0, T ]) be an m-dimensional Wiener process.

(i) A scalar stochastic process X = (Xt, t ∈ [0, T ]) is called a scalar Itô process

driven by an m-dimensional Wiener process W if

• X0 is F0-measurable,

• X can be expressed in the form

Xt = X0 +
∫ t

0
Bsds +

m∑

j=1

∫ t

0
C(j)

s dW (j)
s a.s., t ∈ [0, T ], (2.1)

where (Bt, t ∈ [0, T ]) ∈ L1(Ω × [0, T ]) and (C(j)
t , t ∈ [0, T ]) ∈ L2(Ω ×

[0, T ]), j = 1, ...,m.

(ii) An n-dimensional stochastic process X = (Xt, t ∈ [0, T ]), with Xt = (X(1)
t , ..., X

(n)
t )

is called an Itô process driven by W if, for each i = 1, ..., n, X
(i)
t is a scalar

Itô process, defined by

X
(i)
t = X

(i)
0 +

∫ t

0
B(i)

s ds +
m∑

j=1

∫ t

0
C(i,j)

s dW (j)
s a.s., t ∈ [0, T ] (2.2)
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2.1 Preliminaries

where (B(i)
t , t ∈ [0, T ]) ∈ L1(Ω × [0, T ]) and (C(i,j)

t , t ∈ [0, T ]) ∈ L2(Ω ×
[0, T ]), i = 1, ..., n j = 1, ..., m.

Moreover, rewriting (2.2) in the differential form, we obtain the stochastic differ-

ential of X, namely,

dXt = Btdt + CtdWt, t ∈ [0, T ],

with

Ct =




C
(1,1)
t · · · C

(1,m)
t

...
. . .

...

C
(n,1)
t · · · C

(n,m)
t


 , Bt =




B
(1)
t

...

B
(n)
t


 .

An Itô process thus results from a linear combination of a Lesbesgue and a

stochastic integral.

The Itô’s lemma for n-dimensional Itô processes is next presented. A proof can

be found in [3].

Lemma 1. Let (Xt, t ∈ [0, T ]) be an n-dimensional Itô process with stochastic dif-

ferential dXt = Btdt + CtdWt, t ∈ [0, T ]. Let also f(t,x), (t,x) ∈ [0, T ] × Rn, be

a continuous real function with continuous partial derivatives ∂f
∂t ,

∂f
∂xi

and ∂2f
∂xixj

, for

i, j = 1, ..., n. Then f(t,Xt) is also an Itô process satisfying the Itô’s formula:

f(t,Xt) = f(0,X0) +
∫ t

0


∂f

∂t
(s,Xs) +

n∑

i=1

∂f

∂xi
(s,Xs)B(i)

s +
m∑

k=1

n∑

i,j=1

1
2

∂2f

∂xixj
(s,Xs)C(i,k)

s C(j,k)
s


 ds +

m∑

k=1

n∑

i=1

∫ t

0

∂f

∂xi
(s,Xs)C(i,k)

s dW (k)
s a.s.. (2.3)

In the scalar case, the Itô’s formula for f(t,Xt), where X = (Xt, t ∈ [0, T ]) is a

scalar Itô process with stochastic differential dXt = Btdt + CtdWt, takes the form

f(t,Xt) = f(0, X0) +
∫ t

0

[
∂f

∂t
(s,Xs) +

∂f

∂x
(s,Xs)Bs +

1
2

∂2f

∂x2
(s,Xs)C2

s

]
ds +

∫ t

0

∂f

∂x
(s,Xs)CsdWs a.s., t ∈ [0, T ]. (2.4)

Notice that ( 2.4) corresponds to a stochastic chain rule. If f is linear in x,

then ∂2f
∂x2 = 0 and the Itô formula reduces to the usual chain rule. Itô’s lemma

is particularly useful in the analytical calculation of the solution of some specific

stochastic differential equations, as we shall see later.
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Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

From (2.3) we can deduce the Itô product formula. Consider f(x, y) = xy.

Let X = (Xt, t ∈ [0, T ]) and Y = (Yt, t ∈ [0, T ]) be two scalar Itô processes with

stochastic differentials dXt = Atdt + BtdWt and dYt = Ctdt + DtdWt. Therefore,
∂f
∂x (x, y) = y, ∂f

∂y (x, y) = x, ∂2f
∂xy (x, y) = 1 and ∂2f

∂x2 = ∂2f
∂y2 = 0. Applying ( 2.3) to

f(Xt, Yt), we obtain the Itô product formula,

XtYt = X0Y0+
∫ t

0
(YsAs + XsCs + BsDs) ds+

∫ t

0
(YsBs + XsDs) dWs a.s, t ∈ [0, T ]

(2.5)

or, in the differential form,

dXtYt = (YtAt + XtCt + BtDt) dt + (YtBt + XtDt) dWt, t ∈ [0, T ].

2.2. Diffusion processes

In this section we begin by considering real-valued processes. At the end, appropriate

generalizations shall then be made.

In order to develop stochastic models in biology, we first present a brief exposition

on the general concept of Markov processes.

Markov processes constitute a widely studied class of stochastic processes with

the property that future probabilities only depend on the most recent values of the

process, i.e., the process "forgets" the past. The formal definition is presented below.

Definition 3. Let X = (Xt, t ∈ [0, T ]) be a real-valued stochastic process. X is

called a Markov process if the following so-called Markov property is satisfied: for

any 0 ≤ t1 < ... < tn ≤ s ≤ T , the equality

P (Xs ≤ y/Xt1 , ..., Xtn) = P (Xs ≤ y/Xtn) a.s.

holds for all y ∈ R.

We find in the literature (see e.g. [2] and [15]) various equivalent formulations

of the Markov property, from which we highlight the following one: for any 0 ≤ t ≤
s ≤ T and B ∈ BR,

P (Xs ∈ B/Gt) = P (Xs ∈ B/Xt) a.s.,

where Gt := σ(Xs, s ∈ [0, t]), i.e., Gt is the σ-algebra generated by the variables Xs.

These processes are used to model random systems that change according to a

transition rule that only depends on the current state. Their finite distributions

6



2.2 Diffusion processes

are, in fact, characterized by the distribution of X0 and the family of transition

probability functions,

P = {P (t, x, s, B), 0 ≤ t ≤ s ≤ T, x ∈ R B ∈ BR},

where the function P has the following properties:

(i) for fixed t ≤ s and B ∈ BR, we have

P (t, X, s, B) = P (Xs ∈ /Xt) a.s.,

(ii) for fixed t ≤ s and x ∈ R, P (t, x, s, ·) is a probability on BR,

(iii) for fixed t ≤ s and B ∈ BR P (t, x, s, ·) is adapted to BR,

(iv) for t ≤ u ≤ s and for all B ∈ BR, (with a possible exception of a set A ∈ BR
such that P (Xt ∈ A) = 0), the so-called Chapman-Kolmogorov equation

P (t, x, s, B) =
∫

R
P (u, y, s, B)P (t, x, u, dy), (2.6)

(v) for all t ∈ [0, T ] and B ∈ BR P (t, x, t, B) = 1B(x).

We shall use the notation P (t, x, s, B) = P (Xs ∈ B/Xt ∈ x) = Pt,x(s,B).3

For instance, if Xs represents the position of an object at time s, then Pt,x(s, B)

represents the probability that this object, being at x at time t, will be in B at time

s.

If, for all t and s, 0 ≤ t < s ≤ T , and x ∈ R, the transition probability function

Pt,x(s, ·) is absolutely continuous, then it admits a density ft,x(s, ·), which is called

a transition density function of X. In this case, the Chapman-Kolmogorov equation

takes the form,

ft,x(s, y) =
∫

R
fu,z(s, y)ft,x(u, z)dz,

for 0 ≤ t < u < s ≤ T .

One classical example of a Markov process is the Wiener process, which describes

the behavior (with friction neglected) of the well-known Brownian motion, the chaotic

motion of a grain of pollen on a water surface, first noticed by the British botanist

Brown in 1826. For further details on the modellation of the Brownian motion using

the Wiener process (see [16]). A first rigorous proof of its (mathematical) existence

was given by Norbert Wiener in 1923 (see [1]).
3Note that the number P (Xs ∈ B/Xt = x) is well defined, even though P (Xt = x) = 0.

7



Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

We introduce now a particular subclass of Markov processes that represents a

form of conditional probabilistic equilibrium, in the sense that the transition proba-

bilities do not depend explicitly on time, they are stationary. Formally speaking, we

have the following definition.

Definition 4. Let X be a Markov process with transition probabilities P = {Pt,x, x ∈
R, t ∈ [0, T )}. X is called time-homogeneous if

Pt+u,x(s + u,B) = Pt,x(s,B),

for all 0 ≤ t ≤ s ≤ T and 0 ≤ t + u ≤ s + u ≤ T .

In this case, P is thus a function of x, s − t and B. Hence, we can write,

Pt,x(s,B) = P0,x(s− t, B), 0 ≤ s− t ≤ T .

In natural systems, homogeneous Markov processes are quite common (see [17]).

Some illustrations will be given in Chapter 3. The Wiener process is an example of

a time-homogeneous Markov process.

In 1931 Kolmogorov found out that there are two types of time-continuous

Markov processes: diffusion and jump processes, which differ on the behavior over

small time intervals. Roughly speaking, suppose that in a small time interval there

is an overwhelming probability that the state will remain unchanged, however if it

changes, the change can be either radical or small, leading to a jump or a diffusion

process, respectively. Kolmogorov then derived the so-called forward and backward

equations for each kind of process referred before.

Our interest will remain on the Kolmogorov forward equation for diffusion pro-

cesses, also known as Fokker-Plank equation, since this equation will be crucial for

the deduction of mathematical models, as we shall see.

We present in the following the definition of diffusion process.

Definition 5. Let X = (Xt, t ∈ [0, T ]) be a real-valued Markov process with al-

most certainly continuous paths. X is said to be a diffusion process if there exist

functions m : [0, T ]× R→ R and Q : [0, T ]× R→ R+, such that4,

(i) P (|Xt+h −Xt| ≥ c/Xt = x) = o(h),

(ii)
∫
|y−x|<c(y − x)Pt,x(t + h, dy) = m(t, x)h + o(h),

(iii)
∫
|y−x|<c(y − x)2Pt,x(t + h, dy) = Q(t, x)h + o(h),

4As usually, o denotes a function of h such that limh→0
o(h)

h
= 0.

8



2.2 Diffusion processes

for all c ∈ R+ and (t, x) ∈ [0, T ]× R .

The functions m and Q are called the drift and diffusion coefficients of the

diffusion process X, respectively.

Remark 1. In the literature, one can find different a more intuitive definition of

diffusion process (see [18]), where the condition (i) is omitted, the following condition

is added:

(i)’ for some δ > 0, E
(|Xt+h −Xt|2+δ/Xt = x

)
= o(h),

and the truncated moments in conditions (ii) and (iii) are replaced by the non-

truncated moments, namely

(ii)’ E(Xt+h −Xt/Xt = x) = m(t, x)h + o(h),

(iii)’ E
(
(Xt+h −Xt)2/Xt = x

)
= Q(t, x)h + o(h).

These conditions are stronger, once they require the process to have finite condicional

moments.

To prove that (i)′, (ii)′ and (iii)′ imply (i), (ii) and (iii) it is enough to show

that ∫

|y−x|≥c
|y − x|kPt,x(t + h, dy) = o(h),

for k = 0, 1, 2, which is a consequence of (i)′ and the inequality
∫

|y−x|≥c
|y − x|kPt,x(t + h, dy) ≤ 1

c2+δ−k

∫

|y−x|≥c
|y − x|2+δPt,x(t + h, dy).

Notice that condition (i) says that large displacements are very unlikely in small

time intervals. This fact can be viewed as a formalization of the process sample

paths’ continuity. A diffusion process is thus a Markov process with no instantaneous

jumps. Moreover, the functions m and Q correspond to the infinitesimal mean and

variance of X, respectively, since m represents the instantaneous rate of change in

the conditional mean of the process and Q measures the average size of instantaneous

conditional fluctuations of the diffusion process.

The standard scalar Wiener process and the Ornstein-Uhlenbeck process, defined

by Xt = g(t)Wf(t), t ∈ R+
0 , with g(t) = e−αt and f(t) = σ2e2αt

2α , α, σ2 positive

constants, are basic examples of diffusion processes. To prove this, note that W is a

Markov process, as it was referred above, and, consequently, X is a Markov process

too. Furthermore, for all t, t + h ∈ [0, T ], we know that Wt+h −Wt ∼ N (0, h), by

definition, which together with the independence of increments implies that

E(Wt+h −Wt) = 0, E((Wt+h −Wt)2) = h,

9



Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

showing that W is a diffusion process with drift m(t, x) = 0 and diffusion coefficient

Q(t, x) = 1.

It follows that for the Ornstein-Uhlenbeck process, the conditional distribution is

also gaussian with mean E(Xt+h/Xt = x) = xe−αh and variance V (Xt+h/Xt = x) =(
1−e−

2αh

2α

)
σ2. Therefore, X is a diffusion process with coefficients m(t, x) = −αx

and Q(t, x) = σ2.

This process arose as an improvement of the Wiener process model for the diffu-

sion phenomenon, which has into account the friction effect inherent to the movement

of the particles of pollen on a water surface.

We are now ready to deduce the Kolmogorov forward equation for diffusion pro-

cesses. As we will see in the next theorem, the term forward is motivated by the fact

that the time variable s moves forward from t, contrarily to the backward equation.

Theorem 1. Let X be a real-valued diffusion process with drift m and diffusion

coefficient Q , such that the limits (in definition 5) are uniform with respect to x.

Moreover, assume that the transition density functions of X, ft,x, (t, x) ∈ [0, T ]×R,
exist and that the derivatives

∂ft,x

∂s
,

∂(mf)t,x

∂y
,

∂(Qft,x)
∂y

and
∂2(Qft,x)

∂y2

exist and are continuous functions on [0, T ]× R. Then, for each (t, x) ∈ [0, T ]× R,
ft,x satisfies the Kolmogorov forward equation:

∂

∂s
ft,x = − ∂

∂y
(mft,x) +

1
2

∂2

∂y2
(Qft,x), (2.7)

evaluated at (s, y) ∈ (t, T ]× R, with the initial condition5

lims→t+ft,x(s, y) = δx(y). (2.8)

Proof. Let t ∈ [0, T ) and x ∈ R be fixed and consider ft,x as a function of s ∈ (t, T ]

and y ∈ R. For any smooth real-valued function6, φ, such that φ has compact

support C, we define the function θ as

θ(s) :=
∫

R
φ(z)ft,x(s, z)dz =

∫

C
φ(z)ft,x(s, z)dz, s ∈ (t, T ]. (2.9)

Notice that φ′, φ′′ and φ′′′ vanish outside C. For h ∈ R+, we may write, by the

Chapman-Kolmogorov equation,

ft,x(s + h, z) =
∫

R
fs,y(s + h, z)ft,x(s, y)dy,

5δx denotes the Dirac delta function at x.
6For example, for any a, b, c ∈ R, with a < b and c > 0, define φ as

φ(z) = (z − a)3(b− z)3e−cz2
1[a,b](z).

10



2.2 Diffusion processes

which implies, from (2.9), that

θ(s + h)− θ(s)
h

=
1
h

∫

R
φ(z)

[∫

R
fs,y(s + h, z)ft,x(s, y)dy

]
dz− 1

h

∫

R
φ(y)ft,x(s, y)dy.

Using Fubini’s theorem and rearranging terms, we obtain

θ(s + h)− θ(s)
h

=
1
h

∫

R

(∫

R
(φ(z)− φ(y))fs,y(s + h, z)dz

)
ft,x(s, y)dy. (2.10)

For any positive constant c, the integral with respect to the variable z can be written

as a sum of two integrals as follows

∫

|y−z|<c
(φ(z)− φ(y))fs,y(s + h, z)dz +

∫

|y−z|≥c
(φ(z)− φ(y))fs,y(s + h, z)dz.

Once φ is bounded, from definition 5 the second term of the previous expression

is an o(h) uniformly with respect to y, by hypothesis. Moreover, considering c > 0

sufficiently small, we may use the Taylor expansion of φ at y with Lagrange reminder

to get for the first term

∫

|z−y|<c

(
φ′(y)(z − y) +

1
2
φ′′(y)(z − y)2 +

1
6
φ′′′(ξ)(z − y)3

)
fs,y(s + h, z)dz, (2.11)

for some real number ξ between y and z. Notice that if we divide ( 2.11) by h, and

take the limit as h approaches zero, we obtain (see definition 5)

φ′(y)m(s, y) +
1
2
φ′′(y)Q(s, y) + lim

h→0+

1
h

1
6
φ′′′(ξ)

∫

|z−y|<c
(z − y)3fs,y(s + h, z)dz.

By the Lebesgue’s dominated convergence theorem, the limit of ( 2.10) as h ap-

proaches zero conduces to the expression

θ′(s) =
∫

R

(
φ′(y)m(s, y) +

1
2
φ′′(y)Q(s, y)

)
ft,x(s, y)dy

+ lim
h→0+

1
h

1
6

∫

R
φ′′′(ξ)

∫

|z−y|<c
(z − y)3fs,y(s + h, z)dzft,x(s, y)dy.

The second term of the previous expression turns out to be an O(c) (recall that φ′′′ is

null outside C), therefore it must be null. Once φ′ and φ′′ have support C, it follows

that

θ′(s) =
∫

C

(
φ′(y)m(s, y) +

1
2
φ′′(y)Q(s, y)

)
ft,x(s, y)dy. (2.12)

The integration by parts leads to

θ′(s) =
∫

C

[
−φ(y)

∂

∂y
(m(s, y)ft,x(s, y)) +

1
2
φ(y)

∂2

∂y2
(Q(s, y)ft,x(s, y))

]
dy.

11



Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

On the other hand, from (2.9), θ′(s) is obtained by bringing the derivative inside the

integral

θ′(s) =
∫

C
φ(y)

(
∂

∂s
ft,x(s, y)

)
dy.

The equality of the last two integrals for all functions φ specified above implies that

the integrand functions are equal too, which ends the proof.

Notice that, whenever the solution is unique, the Kolmogorov forward equation

represents a useful tool to obtain the probabilistic characterization of a diffusion

process X satisfying the conditions of the previous theorem, because it reduces the

probabilistic problem of finding the transition density functions of the diffusion pro-

cess to a deterministic problem of solving a PDE.

The simplest example is again given by the standard scalar Wiener process. Re-

call that the drift and diffusion coefficients of this process are 0 and 1, respectively.

The Kolmogorov forward equation for the transition probability from x at time t to

y at time s of this process is then

∂

∂t
ft,x(s, y) =

1
2

∂2

∂y2
ft,x(s, y), 0 ≤ t < s ≤ T, y ∈ R (2.13)

lim
s→t+

ft,x(s, y) = δx(y).

This equation belongs to the class of diffusion equations (also called heat equations)

which consist of well-known deterministic models for describing diffusion phenomena.

In fact, their solutions represent the density of Brownian particles at point y and at

time s, such that all particles were concentrated at a point x at time t. On the other

hand, in the context of SDEs, the solution of this equation represents the probability

of a particle being in a position y at time s, if it was in a position x at time t. In

fact, the solution to (2.13) is given by

ft,x(s, y) =
1√

2π(s− t)
exp

(
−(y − x)2

2(s− t)

)
, 0 ≤ t < s ≤ T, y ∈ R,

which corresponds to the probability density function of the Gaussian distribution

with mean value x and variance s−t. We now understand why both models are used

to model Brownian motion, following different interpretations, and that the Wiener

process represents a basic example of a diffusion process.

The existence and uniqueness of the solution of ( 2.7)-( 2.8), which is a partial

differential equation of parabolic type, is ensured under certain conditions on the

coefficients m and Q, described in the next theorem.

12



2.3 Systems of stochastic differential equations

Theorem 2. Let m , Q and the partial derivatives ∂m
∂x ,

∂Q
∂x and ∂2Q

∂x2 be continuous

functions defined on [0, T ] × R and satisfying the Lipschitz and the linear growth

conditions in x, namely, ∃k1, k2 > 0 : ∀t ∈ [0, T ], x, y ∈ R,

Lipschitz condition |m(t, x)−m(t, y)|+ |Q(t, x)−Q(t, y)| ≤ k1|x− y|,

Growth condition |m(t, x)|2 + |Q(t, x)|2 ≤ k2(1 + x2).

Additionally, assume that there exists a positive constant c such that Q ≥ c.Then,

for each x ∈ R and t ∈ [0, T ), (2.7)- (2.8)) has exactly one solution.

A proof of this theorem can be found in [19].

Before proceeding to the introduction of systems of stochastic differential equa-

tions, we need to see how to generalize the previous concepts and results for vector-

valued stochastic processes. Let X = (Xt, t ∈ [0, T ]) be a Rn-valued stochastic

process. The definitions of Markov process, transition probability function and time-

homogeneous Markov process are identical. The definition of diffusion process is sim-

ilar too, but m is now an n-dimensional vector, Q a symmetric and positive definite

n ×m-dimensional matrix, in (iii) and (iii)′ the square is replaced by the product

(Xt+h −Xt)(Xt+h −Xt)T . The Kolmogorov forward equation takes the form

∂

∂s
ft,x = −

n∑

i=1

∂

∂yi
(mift,x) +

1
2

n∑

i,j=1

∂2

∂yi∂yj
(Qijft,x) (2.14)

evaluated at (s,y) ∈ (t, T ]× Rn, with the initial condition

lim
s→t+

ft,x(s,y) = δx(y). (2.15)

In theorem 2 the inequality for Q takes the form

∀v ∈ Rn, vTQv ≥ c|v|2,

for some positive constant c and the Lipschitz and growth conditions are now given

by

|m(t,x)−m(t,y)|+ ‖Q(t,x)−Q(t,y)‖ ≤ k1|x− y|,

|m(t,x)|2 + ‖Q(t,x)‖2 ≤ k2(1 + |x|2).

respectively.

Finally, we stress that if we consider an unbounded time domain, i.e., if t ∈ [0,∞),

all results remain valid (see [20]) under the following modification in the definition

of the space Li([0,∞)), i = 1, 2: the third condition must be replaced by

∀t ∈ [0,∞)
∫ t

0
|f |idt < ∞ a.s., i = 1, 2.

13



Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

2.3. Systems of stochastic differential equations

Stochastic differential equations are becoming increasingly important in mod-

elling biological phenomena, by their capacity of including random aspects, which

are intrinsic to real situations. Population dynamics, oncogenesis, epidemic and ge-

netics are some examples where SDE models can constitute popular generalizations

of ordinary differential equation models (see [17], [5], [4] and [21]).

We shall now briefly introduce stochastic differential equations and, subsequently,

systems of stochastic differential equations, as they will be our main tool for estab-

lishing the models in the next chapter.

Let X = (Xt, t ∈ [0, T ]) be a real-valued stochastic process and ρ and σ be real

functions defined on [0, T ]×R and measurable with respect to B[0,T ]⊗BR. A stochas-

tic differential equation, with initial condition X0 = ξ a.s., F0-measurable, is in fact

an integral equation involving a Lebesgue and a stochastic integral. Symbolically, it

is of the form

dXt = ρ(t,Xt)dt + σ(t,Xt)dWt, t ∈ [0, T ],

which should be interpreted, mathematically, as

Xt = ξ +

t∫

0

ρ(s, Xs)ds +

t∫

0

σ(s,Xs)dWs a.s., t ∈ [0, T ]

where ρ and σ are the coefficients of the equation and must satisfy appropriate

conditions in order to ensure the existence of these integrals. The notation used to

represent SDEs pretends to make the analogy with classic differential calculus.

Likewise, let (W (j)
t , t ∈ [0, T ]), j = 1, ..., m, m ∈ N, be m independent Wiener

processes and, for i = 1, ..., n and j = 1, ..., m, let σi,j and ρi be real functions on

[0, T ]×Rn, which we assume to be measurable regarding B[0,T ]⊗BRn . A system of n

stochastic differential equations and n variables with the initial condition X
(i)
0 = ξ(i)

a.s., i = 1, ..., n, F0-measurable, is naturally given by

dX
(i)
t = ρi

(
t,X

(1)
t , . . . , X

(n)
t

)
dt +

m∑

j=1

σij

(
t,X

(1)
t , . . . , X

(n)
t

)
dW

(j)
t , 1 ≤ i ≤ n,

which should be interpreted as

X
(i)
t = ξi+

∫ t

0
ρi

(
s,X(1)

s , . . . , X(n)
s

)
ds+

m∑

j=1

∫ t

0
σij

(
s,X(1)

s , . . . , X(n)
s

)
dW (j)

s a.s., i = 1, ..., n.

14



2.3 Systems of stochastic differential equations

Using matrix notation, this system can be rewritten as the matrix SDE

dXt = ρ(t,Xt)dt + σ(t,Xt)dWt, t ∈ [0, T ], X0 = ξ a.s. (2.16)

with

Xt =




X
(1)
t

...

X
(n)
t


 , σ =




σ11 · · · σ1m

...
. . .

...

σn1 · · · σnm


 , Wt =




W
(1)
t

...

W
(m)
t


 , ρ =




ρ1

...

ρn


 , ξ =




ξ(1)

...

ξ(n)


 ,

where ρ and σ are the coefficients of the equation and, again, must satisfy appropriate

conditions in order to ensure the existence of these integrals.

If ρ and σ are linear with respect to the second variable, we say (2.16) is a

system of linear stochastic differential equations. It is important to notice that in the

linear regime it is possible to find the exact solution of the system using analytical

procedures (see section 2.3.1). However, in the general setting, there is no way

of solving such equations, except in some particular cases, so that we must resort

to numerical approximations, using the Euler-Maruyama or Mildstein methods, for

instance.(see [22] and [3])

Since we are interested in formulating mathematical models in biology, we want

to ensure certain properties on the system so that our model is consistent with

the reality we want to model, namely, the existence and uniqueness of the solution

and the continuous dependency on initial conditions. A problem satisfying these

three properties is said to be well-posed in the sense of Hadamard. Notice that in

biological models the initial conditions must frequently be estimated or measured

with a certain degree of precision. For this reason, it is important to be sure that

small perturbations on the initial conditions will not lead to very different solutions.

The well-posedness is also important for numerical simulations, as it ensures that

an accurate solution can be found when using a stable algorithm.

Before checking these properties, we shall present the concept of strong solution

of a system of SDEs.

Definition 6. A Rn-valued stochastic process X = (Xt, t ∈ [0, T ]), with Xt =

(X(1)
t , ..., X

(n)
t ), is called a strong solution to the matrix SDE ( 2.16) if

• almost all sample paths of X are continuous functions,

• X is adapted to the filtration (Ft)t∈[0,T ],

• (ρ(t,Xt), t ∈ [0, T ]) ∈ L1(Ω× [0, T ]),

15



Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

• (σ(t,Xt), t ∈ [0, T ]) ∈ L2(Ω× [0, T ]),

• X satisfies X0 = ξ a.s. and

Xt = X0 +

t∫

0

ρ(s,Xs)ds +

t∫

0

σ(s,Xs)dWs a.s., t ∈ [0, T ].

The literature refers two types of solutions: strong and weak solutions. In the

later case, the integrator Wiener process is not previously specified, making part of

the solution. A weak solution consists thus in a pair (Xt, t ∈ [0, T ]) and (W̄t, t ∈
[0, T ]) such that

Xt = X0 +

t∫

0

ρ(s,Xs)ds +

t∫

0

σ(s,Xs)dW̄s a.s., t ∈ [0, T ].

The next result assures the existence and uniqueness of a strong solution to ( 2.16)

under appropriate conditions. As in the case of deterministic PDE’s (see theorem 2),

we shall require the Lipschitz continuity of the coefficients in x, so that the solution

exists and is unique in a finite time interval, as well as a growing condition, in order

to safeguard the boundedness of the solution for all time t > 0, when we are working

in [0, +∞). A detailed proof can be found in [14], for example.

Theorem 3. Let ξ be a F0-measurable random vector such that E(|ξ|2) < ∞. Let

ρ and σ be functions satisfying the Lipschitz and growth conditions in x. Then, the

stochastic differential equation (2.16) has exactly one strong solution, X.

The solution is unique in the sense of pathwise uniqueness, i.e, if two processes X

and Y solve (2.16) in the conditions of theorem 3, then almost all their sample paths

coincide. In this case, we say that the processes X and Y are indistinguishable.

It is possible to guarantee the existence of a unique solution under weaker hypoth-

esis on the coefficients, such as local Lipschitz continuity, instead of global Lipschitz

continuity (see [23]). By the mean-value theorem, any continuously differentiable

function satisfies this condition. The growing condition is also not essential, but

its absence may allow the unbounded growth of the sample paths within a finite

time interval. Hence, we encounter in this context a similar behaviour as in ODE’s

context.

The strong solution to an SDE, X, satisfies three properties that we shall address

next. The most important property of the strong solution of an SDE states that,

under certain conditions, (Xt, t ∈ [0, T ]) is a Markov process and, moreover, it

is a diffusion process. As a consequence of this result, we can apply the powerful
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2.3 Systems of stochastic differential equations

analytical tools that have been developed for diffusion processes to the solutions of

stochastic differential equations, which will assume a crucial role in the next chapter.

In order to establish this property, we need the following auxiliary properties.

Lemma 2. Let ρ and σ be functions as described in theorem 3, with Lipschitz

constant k1 and growth constant k2. Let ξ be a F0-measurable random vector, such

that E(|ξ|2n) < ∞, for some positive integer n. Then the solution (Xt, t ∈ [0, T ]) to

the system ( 2.16) satisfies the inequalities:

E(|Xt|2n) ≤ (
1 + E(|ξ|2n)

)
eat

E(|Xt − ξ|2n) ≤ b
(
1 + E(|ξ|2n)

)
tneat, t ∈ (0, T ] (2.17)

with a = 2n(n + 1)max(k1, k2) and b is a positive constant depending only on k1, k2

and T .

A proof of this lemma can be found in [6].

Lemma 3. Let H be a sub-σ-algebra of A and X and Y Rn−valued random vectors

defined on (Ω,A, P ) such that X is H-measurable and Y is independent of G. Then,
for all measurable and limited functions g : Rn × Rn → R, we have

E(g(X,Y/G)) = φ(X) a.s.,

with φ(x) = E[g(x,y)], x ∈ Rn.

Proof. Due to φ(x) =
∫
R g(x,y)dPY (y), x ∈ Rn, this function is limited and mea-

surable. Hence, for all random variable Z, H-measurable and limited, we have, by

Fubini’s theorem,

E [g(X,Y)Z] =
∫

Rn

∫

Rn+1

g(x,y)zdP(X,Z)(x, z)dPY(y)

=
∫

Rn+1

(∫

Rn

g(x,y)dPY(y)
)

zdP(X,Z)(x, z)

=
∫

Rn+1

φ(x)zdP(X,Z)(s, z)

= E(φ(X)Z) (2.18)

which, by definition of conditional probability, ends the proof.

Theorem 4. Let ρ and σ be functions as described in theorem 3, and assume that

they are continuous on [0, T ] × Rn. Let ξ be a F0-measurable random vector such

that E(|ξ|4) < ∞. Then the unique solution X to the system

dXt = ρ(t,Xt)dt + σ(t,Xt)dWt, t ∈ [0, T ], X0 = ξ a.s. (2.19)
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Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

is a diffusion process with diffusion coefficient Q = σσT and drift m = ρ.

Proof. We begin by noticing that under the conditions of this theorem, the processes

ρ(t,Xt) and σ(t,Xt) satisfy
∫ t

0
E

(|ρ(u,Xu)|2) du < ∞ (2.20)

and
∫ t

0
E

(|σ(u,Xu)|2) du < ∞, (2.21)

because the linear growth condition implies
∫ t

0
E

(|ρ(u,Xu)|2) du ≤
∫ t

0
E

(|k1(1 + X2
u)|) du

and ∫ t

0
E

(|σ(u,Xu)|2) du ≤
∫ t

0
E

(|k1(1 + X2
u)|) du

which is finite because ∫ t

0
E(|Xu|2)du < ∞,

due to the upper bound of E(|Xt|2) presented in lemma 2.

We proceed to prove that the only solution X to (2.16) is a Markov process with

initial distribution Pξ and transition probabilities given by

∀B ∈ BRn , ∀x ∈ Rn,∀s, t ∈ [0, T ], s ≤ t, P (Xt ∈ B/Xs = x) = P (Xsx
t ∈ B),

where (Xsx
t , t ∈ [s, T ]) is the solution to the equation

Xsx
t = x +

∫ t

s
ρ(u,Xsx

u )du +
∫ t

s
σ(u,Xsx

u )dWu a.s., t ∈ [s, T ], (2.22)

with the initial condition Xs = x ∈ Rn a.s..

Let 0 ≤ t1 < ... < tn < t ≤ T be arbitrarily fixed. Since Xti , i = 1, ..., n are

measurable regarding Ftn , we have σ(Xt1 , ...,Xtn) ⊆ Ftn , therefore,

∀B ∈ BRn , P (Xt ∈ B/Xt1 , ...,Xtn) = E(P (Xt ∈ B/Ftn)/Xt1 , ...,Xtn) a.s..

Consequently, the Markov property is valid if

P (Xt ∈ B/Ftn) = P (Xt ∈ B/Xtn)

holds almost surely. To prove this, note that for all t ∈ [tn, T ], Xtnx
t is independent

os Ftn since, by virtue of the initial value at time s being constant, this variable

18



2.3 Systems of stochastic differential equations

is measurable with respect to the σ-algebra generated by Wt −Wtn , for t ≥ tn.

Therefore, Xtnx
t , for t ∈ [tn, T ], is independent of Fu, 0 ≤ u ≤ tn, by the properties

of the Wiener process. On the other hand, (Xt, t ∈ [0, T ]) also satisfies the equation

Xt = Xtn +
∫ t

tn

ρ(u,Xu)du +
∫ t

tn

σ(u,Xu)dWu a.s., t ∈ [tn, T ].

Then, by the uniqueness of the solution, it follows that Xt = XtnXtn
t , t ∈ [tn, T ] a.s.,

and therefore, 1B

(
XtnXtn

t

)
= 1B(Xt), t ∈ [tn, T ] a.s.. As Xtn is Ftn-measurable,

lemma 3 allows us to write

E
(
1B

(
XtnXtn

t

)
/Ftn

)
= φ(Xtn) a.s., t ∈ [tn, T ]

with φ(x) = E
(
1B

(
Xtnx

t

))
, x ∈ Rn, by a similar reasoning. Thus, we conclude that

P (Xt ∈ B/Ftn) = P
(
1B

(
XtnXtn

t ∈ B/Ftn

))
=

= P
(
1B

(
XtXtn

t ∈ B/Xtn

))
= P (Xt ∈ B/Xtn) a.s..

Finally, we stress that

P (Xt ∈ B/Xtn = x) = φ(x) = P
(
Xtnx

t

)
,

which shows the the transition probabilities of the process are of the form referred

above. We have thus proved that X is a Markov process.

We shall prove now that X satisfies the conditions (i), (ii) and (iii) in definition

5. Let (Xsx
t , t ∈ [s, t]) be the solution to ( 2.22) with the initial condition Xs = x,

a.s.. Then, for any 0 ≤ s < t ≤ T and for x ∈ Rn, we have, by the inequality ( 2.17)

E(|Xt −Xs|4/Xs = x) = E(|Xsx
t − x|4)

≤ b(1 + |x|4)(t− s)2ea(t−s) = o(t− s),

where a and b are the constants referred in theorem 2. The condition (iii) in defini-

tion 5 is then verified, with δ = 2.

In order to prove the existence of the drift function, we notice that

Xsx
t = x +

t∫

s

ρ(u,Xsx
u )du +

t∫

s

σ(u,Xsx
u )dWu, a.s., t ∈ (s, T ]. (2.23)

Using the relation ( 2.20) and the fact that the mean value of a stochastic integral

is 0, one gets, by applying Fubbini’s theorem,

E(Xt − x/Xs = x) = E(Xsx
t − x)

= E

(∫ t

s
ρ(u,Xsx

u )du

)

=
∫ t

s
E(ρ(u,Xsx

u ))du.
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Dividing by t− s and taking the limit when t → s+ we obtain the drift coefficient

lim
t→s+

1
t− s

E(Xt − x/Xs = x) = lim
t→s+

1
t− s

∫ t

s
E(ρ(u,Xsx

u ))du

= E(ρ(s,Xsx
s )) (2.24)

= ρ(s,x)

since ρ is continuous, by assumption, E(ρ(s,Xtx
s )) is continuous too and we can use

the fundamental theorem of calculus to justify the step ( 2.24).

In what concerns the existence of the diffusion coefficient, we just need to prove

that

lim
t→s+

1
t− s

E
[(

(Xsx
t )(i) − xi

)(
(Xsx

t )(j) − xj

)]
= σij(s, x),

for i = 1, ..., n and j = 1, ..., m. We begin by applying the Itô product formula ( 2.5),

lim
t→s+

1
t− s

E
(
(Xsx

t )(i) (Xsx
t )(j) − xixj

)

= lim
t→s+

1
t− s

∫ t

s
E

[
(Xsx

u )(i) ρj(u,Xsx
u ) + (Xsx

u )(j) ρi(u,Xsx
u ) + σij(u,Xsx

u )
]
du

= xiρj(u, x) + xjρi(u, x) + σij(u, x).

Then,

lim
t→s+

1
t− s

E
[(

(Xsx
t )(i) − x

)(
(Xsx

t )(j) − x
)]

= xiρj(s, x) + xjρi(s, x) + σij(s, x)− xi lim
t→s+

1
t− s

E
(
(Xsx

t )(j) − xj

)
− xj lim

t→s+

1
t− s

E
(
(Xsx

t )(i) − xi

)

= σij(s, x).

Hence, (Xt, t ∈ [0, T ]) is a diffusion process with diffusion coefficient Q = σσT

and drift m = ρ.

Notice that if the coefficients of the system of SDEs do not depend on time, then

the strong solution is an homogeneous Markov process. In this case, we say that the

system of SDEs is autonomous.

It can be proved (see [20]) that if the drift and diffusion coefficients of a diffu-

sion process X satisfy the conditions of theorem 2, then X has transition densities

ft,x, (t,x) ∈ [0, T ]×Rn, which, by theorem 1, satisfy the Kolmogorov forward equa-

tions ( 2.14)-( 2.15) and, by theorem 2, constitute their only solutions.

We can now think on the reverse of this theorem, i.e., if any diffusion process can

constitute a solution to some stochastic differential equation. Let X be a diffusion
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2.3 Systems of stochastic differential equations

process with coefficients ρ and Q and Y the solution of the SDE with the corre-

sponding coefficients ρ and σ, such that Q = σTσ. If the initial distribution of both

processes is the same and they both satisfy the conditions of theorem 2 then their

transition densities will be the only solutions of the the same Kolmogorov forward

equations, therefore, X and Y are identical in distribution.

Finally, we stress that all results in this section can be generalized for t ∈ [0,∞)

with the additional requirement that in definition 6, for all t > 0, (ρ(t,Xs), s ∈
[0, t]) ∈ L1(Ω× [0, t]), and (σ(t,Xs), s ∈ [0, t]) ∈ L2(Ω× [0, t]).

2.3.1. Systems of linear stochastic differential equations

As mentioned in section 2, in the particular case of linear systems of SDEs, it is

possible to find an analytical solution. That solution is unique, because the co-

efficients satisfy the Lipschitz and growth conditions in the second variable. Let

(W (j)
t , t ∈ [0, T ]), j = 1, ..., m, m ∈ N, be m independent Wiener processes. The

general form of a system of n linear SDEs and n variables, with the initial condition

X0 = (ξ(1), ..., ξ(n)) a.s., F0-measurable, is given by

dXt = (A(t)Xt+a(t))dt+
m∑

j=1

(Bj(t)Xt+bj(t))dW
(j)
t , t ∈ [0, T ], X0 = ξ a.s., (2.25)

where A(t), B1(t), ..., Bm(t) are n×n-dimensional matrix functions and a(t), b1(t),

..., bm(t) are n-dimensional vector functions. When a(t), b1(t), ..., bm(t) are identi-

cally zero we call it a homogeneous system of SDEs. As in the case of ODEs, the solu-

tion to the general system (2.25) is given in function of the fundamental matrix satis-

fying the homogeneous system, which is obtained by making all a(t), b1(t), ..., bm(t)

identically zero, as follows

dΦt = A(t)Φtdt +
m∑

j=1

Bj(t)ΦtdW
(j)
t , t ∈ [0, T ], Φ0 = I a.s., (2.26)

where I is the identity matrix. Unfortunately, except for the scalar case, an explicit

expression cannot be given in general, even if all the matrices are constant. However,

if they are constant and pairwise commute, then it is possible to obtain the explicit

solution by Itô’s formula (see [24]), which is given by

Φ(t) = exp





A(t)− 1

2

m∑

j=1

B2
j (t)


 t +

m∑

j=1

Bj(t)W (j)(t)


 , t ∈ [0, T ]. (2.27)
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Chapter 2 Diffusion processes and solutions of Stochastic Differential Equations

The general solution to ( 2.25) can likewise be deduced as in the scalar case (see

[22] [25]). It is given by

Xt = Φ(t)


ξ +

∫ t

0
Φ−1(s)


a(s)−

m∑

j=1

Bj(s)bj(s)


 ds (2.28)

+

t∫

0

Φ−1(s)
m∑

j=1

bj(s)dW (j)(s)


 .

An example of a linear SDE is given in the next Chapter. However, in general, it is

not possible to construct the explicit solution to an SDE nor even to the Kolmogorov

forward equation. It may still be possible to obtain invariant distributions, which

do not depend on time, and therefore they must satisfy the Kolmogorov forward

equation after taking out the derivative with respect to time, which is null, i.e.,

0 = −
n∑

i=1

∂

∂yi
(mift,x) +

1
2

n∑

i,j=1

∂2

∂yi∂yj
(Qijft,x) (2.29)

evaluated at x ∈ Rn. Despite this equation being slightly easier to solve, it does

not tell us whether a given invariant distribution is a stationary distribution or not,

in the sense that its distribution will eventually converge to that distribution, as

t → +∞. For more details, please see [24] and [4].
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Chapter 3

Modelling the evolution of
populations

Biological phenomena may involve frequently one or more different species that in-

teract with each other making all the system to evolve across time; we can think,

for example, in a growing population of cells or animals, the spread of diseases or

the migration of species. The state of the systems may evolve depending just on

the current state and not on the past, thus reflecting the Markovian property of the

system. This assumption is frequently used in this context, either in deterministic

and stochastic models.

In this Chapter we will present and motivate two classes of SDE models in biol-

ogy. The first one arises as a generalization of a deterministic ordinary differential

equation model, considering environmental randomness, which may affect the param-

eters of the model. The second class of models results from the natural demographic

randomness, existing even when the growing rate is constant and the environmental

disturbances are disregarded. As we will see, the models belonging to this latter

class are intrinsically non-linear, for we shall resort to numerical technics, in order

to gain some insight about their behavior.

We stress that the systems arising in the models are autonomous and satisfy

the local Lipschitz condition, therefore, the solution exists and is unique until an

eventual moment of explosion. In case the model being linear, we know already that

the solution exists for all t > 0. In some cases considered in the next section, it is

possible to obtain the explicit expression for the solution.

3.1. Environmental randomness

3.1.1. Stochastic Malthusian linear model

Consider a population of animals or cells growing at a constant rate per capita,

r, in a bounded habitat with no food shortage. If no other aspects are relevant

for the evolution of the population and if the habitat area is big enough, we may
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Chapter 3 Modelling the evolution of populations

approximately describe the population density, x(t), on each time t ∈ [0, T ], using the

continuous deterministic Malthusian growth model (also called exponential growth

model),

dx

dt
(t) = rx(t), t ∈ [0, T ] (3.1)

with the initial condition x(0) = x0, x0 ∈ R+. However, if the growing rate per

capita, r, is affected by small non-negligible random environmental pressures, such

as the temperature, humidity, light or diseases, we should replace the constant r

by a random variable R. As usually, we will consider that r is affected by a time

dependent gaussian noise, i.e., R := r + σWt a.s., σ ∈ R+. This gives rise to the

following linear autonomous stochastic differential equation

dXt = rXtdt + σXtdWt, t ∈ [0, T ], X0 = x0. (3.2)

This model constitutes a stochastic version of the deterministic Malthusian model

and is called the Black-Scholes model1

The Black-Scholes equation has exactly one strong solution X = (Xt, t ∈ [0, T ]),

which is an homogeneous diffusion process with drift m(t, x) = rx and diffusion

coefficient Q(t, x) = σ2x2.

From ( 2.28), the solution X = (Xt, t ∈ [0, T ]) is thus given by

Xt = x0exp

((
r − 1

2
σ2

)
t + σWt

)
a.s. t ∈ [0, T ] (3.3)

which is known as the geometric Brownian motion, while the process Z = (Zt, t ∈
[0, T ]), defined by Xt = x0exp(Zt), is a Wiener process with drift such that Zt ∼
N (

(r − 1
2σ2)t, σ

√
t
)
. Obviously, X is adapted to (Ft)t∈[0,T ] and has continuous

sample paths almost surely, consequently, both integrals
∫ t
0 r|Xs|ds and

∫ t
0 σ2|Xs|2ds,

t > 0, are almost surely finite. In view of definition 6, we conclude that X given in

( 3.3) is in fact the only strong solution of ( 3.2).

The parameter r represents the mean growing rate per capita and σ the intensity

of the random effects on the growing rate. In fact, the mean function E(Xt) =

u(t), t ∈ [0, T ] verifies the ODE

du

dt
(t) = ru(t), u(0) = x0 (3.4)

1The Black-Scholes model was first used in the context of finances by Black and Scholes in 1973

(see [26] [1]).

24



3.1 Environmental randomness

We conclude that the solution of the deterministic model corresponds to the mean

function of the solution of the stochastic model. Naturally, the stochastic model

gives more insight about the underlying biological phenomenon, but it needs more

information to be settled because one more parameter must be estimated.
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x

Malthusian growth model

Figure 3.1: Two sample paths of the stochastic Malthusian growth model (blue lines)

with the same underlying sample path of the Wiener process, illustrating the two

different types of behavior of the solutions on the time interval [0, 3]. The time-step

is 2−8. The initial condition is X0 = 5 and the parameter values are r = 0.4, σ = 0.1

(upper curve) and σ = 2 (lower curve). The red line represents the solution of the

corresponding deterministic model.

Two sample paths of X as well as the solution of the deterministic Malthusian

model are presented in figure 3.1. As expected, the sample paths are positive

functions. The upper curve seems to have an approximately positive exponential

growth, which is in accordance with the deterministic model. However, the lower

curve apparently tends to zero, which means that the extinction of the population

may occur. This behavior is different from the one presented by the deterministic

model, on which the extinction never occurs for r positive. In fact, once Wt
t converges

to zero a.s. (see [20]) as t goes to infinity, then

lim
t→+∞ t(r − 1

2
σ2 + σ

Wt

t
) = −∞ a.s.

whenever r − 1
2σ2 is negative, implying that Xt converges to zero a.s.. This feature
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Figure 3.2: One thousand of sample paths of the stochastic Malthusian growth model

on the time interval [0, 2] are presented. Magenta lines represent the two pointwise

bounds of the confidence interval. Cyan lines correspond to the paths that went out

of the confident region at some time. The time-step is 2−8. The initial condition is

X0 = 5 and the parameter values are r = 0.4, σ = 0.1.

of the stochastic model is realist, because even in the case that the growth rate per

capita is positive, if the random effects of the medium have a relatively strong impact

on the population growth, then it may get extinct.

To see how the dispersion evolves with time, we calculate the standard deviation

of Xt, t ∈ [0, T ], either by using (3.3) or by applying the Itô’s formula to f(x) = x2

in order to obtain a SDE for the process X2 = (X2
t , t ∈ [0, T ]). A straightforward

computation leads to
√

V (X2
t ) = x0e

rt
√

eσ2t − 1. This function is strictly increasing,

which means that the model loses accuracy over time.

In order to gain a better understanding about how the model evolves with time

we will obtain a interval where the Xt is likely to occur, for each t > 0. Recalling

that Zt ∼ N (
(r − 1

2σ2)t, σ
√

t
)
, we may write

0.9973 = P

((
r − σ2

2

)
t− 3σ

√
t ≤ Zt ≤

(
r − σ2

2

)
t + 3σ

√
t

)

= P

(
x0exp

((
r − σ2

2

)
t− 3σ

√
t

)
≤ Xt ≤ x0exp

((
r − σ2

2

)
t + 3σ

√
t

))

One thousand sample paths of (Xt, t ∈ [0, 2]) were generated in order to illustrate

their position regarding the confidence band. For each t, an average of 99.84% of

the generated values, Xt(ω), lie within the region referred above, which is near the
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3.1 Environmental randomness

theoretical value, as expected. In figure 3.2, we can see the generated sample paths,

as well as the confidence region. Despite being quite simple to calculate the pointwise

confidence band, it would be more worthwhile to obtain a confidence band uniformly

in t. However there is not a closed formula for obtaining that band (see [27]). In

this simulation, only 95.5% of the sample paths presented in figure 3.2 lie entirely

within the considered region. Those are presented in blue, while the remaining 4.5%

are presented in cyan. If we consider a bigger time interval, these percentages get

worse.

3.1.2. Stochastic logistic growth model I

One assumption underlying the previous model is the lack of any limitation of re-

sources, which allows the unbounded growth of the population whenever the growing

rate satisfies a certain condition. This situation is realistic when the size of the pop-

ulation is far bellow the carrying capacity of the habitat. However, as the population

grows, a different dynamic may occur: the system will eventually enter a region in

which negative feedback factors become important. The lack of resources makes the

growing rate to decrease and the size of the population will eventually reach an equi-

librium. A basic model that incorporates these two phenomena is the well-known

deterministic logistic model,

dx

dt
(t) = rx(t)

(
1− x(t)

K

)
, x(0) = x0, t ∈ [0, T ],

where x(t) represents the density of the population at time t, r ∈ R+ the growth

rate and K ∈ R+ the carrying capacity. The variation per capita is now given by the

quotient dx
dt /x = r1(x) := r

(
1− x

K

)
. Notice that r is now the maximum rate. For

x0 < K, dx
dt is positive and as the population increases, r1 decreases until vanishing.

At this moment, the derivative dx
dt is null, which means that the population density

reaches an equilibrium with the habitat: limt→∞x(t) = K. On the other hand, if

x0 > K, then dx
dt is negative and the population decreases until it reaches again K.

For r > 0, K is then a globally asymptotic stable equilibrium point, while 0 is an

unstable equilibrium point.

As in the study of the Malthusian model, we will introduce a gaussian pertur-

bation on the growth rate per capita, R := r1 + σWt a.s., σ > 0, leading to the

following logistic stochastic differential equation,

dXt = rXt

(
1− Xt

K

)
dt + σXtdWt, X0 = x0, t ∈ [0, T ]. (3.5)
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Figure 3.3: Three sample paths of the stochastic logistic growth model on the time

interval [0, 20], corresponding to three different values for σ: 0.01 (magenta), 0.1

(cyan) and 0.2 (red). The time-step is 2−8, the initial condition is X0 = 1 and the

values of the remaining parameters are r = 1, k = 5. The blue line represents the

solution of the corresponding deterministic model with the same time-step and the

same parameters’ values.

Since the coefficients are not linear, a unique strong solution, X = (Xt, t ∈ [0, T ]),

of (3.5) exists until a time of explosion, which turns out to be infinite (see [7]).

The solution X is a homogeneous diffusion process with drift coefficient m(t, x) =

rx
(
1− x

K

)
and diffusion coefficient Q(t, x) = σ2x2.

The Euler-Maruyama method was implemented (see [6] [22]).2 Some sample

paths are plotted in figures 3.3 and 3.4.

We see that the sample paths are positive. In figure 3.3, the sample paths behave

accordingly to the deterministic solution: they stay in the vicinity of the carrying

capacity, K = 5, which suggests that the solution of the SDE has a stationary distri-

bution with mean value K. This is in fact true and can be formally proved (see [7]).

We also observe that as σ increases, the variance of Xt increases too, as was to be ex-

pected from ( 3.5). In figure 3.4, we see a different behavior: the sample paths differ

from the deterministic model, they apparently do not follow any specific rule, except

the sample path (c), which tends to zero (extinction). This behavior is justified by

the big oscillations due to the value of σ being bigger then one, which causes the

random term to be bigger then Xt. As Xt increases governed by the deterministic

2This model can also be solved analytically by performing an appropriate change of variable (see

[3]).
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Figure 3.4: Three sample paths (cyan) of the stochastic logistic growth model on the

time interval [0, 20]. The time-step is 2−8, the initial condition is X0 = 1 and the

values of the remaining parameters are r = 1, k = 5. The blue line represents the

solution of the corresponding deterministic model with the same time-step and the

same parameters’ values.

part of the equation, the random term increases too, making the sample path to vary

with such a big amplitude that it nearly reaches zero. At this moment, the random

term is small again and Xt remains near zero making small "jumps" only, until it

eventually goes up and we return to the initial situation that may be repeated over

time. This feature of the model is in accordance with population growth mechanisms

observed in real life: if the randomness of the environment is big, then the changes

on the population size are more unpredictable and may result in dramatic changes or

even extinction in a short period of time. We can think, for example, in a population

which is infected by a contagious disease: when the population is small, individuals

do not have so much contact with each other, therefore, the disease does not prop-

agate easily and the growth of the population is approximately logistic. When the

density of the population gets bigger, then two situations may occur: the contacts

do not increase and the size of the population may remain following a logistic growth

or the contacts may increase so that many individuals get infected and may dye. In

this example, the randomness of the environment can be associated to the contacts

between individuals.

We shall next find an approximation for the mean function of the solution by

applying the Monte Carlo method. The mean function was obtained from 10, 100

and 1000 generated sample paths. The resulting estimations were then compared to

the solution, û, of the deterministic logistic growth equation obtained numerically.
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Chapter 3 Modelling the evolution of populations

Number of generated sample paths Error

10 9.6613

100 2.5444

1000 1.6085

Table 3.1: Euclidian norm of the difference between the vectors obtained in matlab,

corresponding to the approximation of the mean function and the solution of the

deterministic logistic model within the time interval [0, 20] for r = 1, k = 5, σ = 0.1.

The outcome is outlined in table 3.1, where the Error corresponds to the euclidian

norm of the difference between the two vectors referred before. We see that the mean

function gets closer to û as the number of sample paths increase.

3.1.3. Stochastic predator-prey model I

We shall consider now two populations acting as predator and prey. The model for

describing the interaction between them is then given by a system of two equations.

The well-known deterministic predator-prey model, also called Lotka-Volterra model,

is given by




dx
dt = f(x, y) = ax− bxy

dy
dt = g(x, y) = −cy + dxy

, x(0) = x0, y(0) = y0, (3.6)

where x0, y0, a, b, c, d > 0, x represents the density of the prey (for example, rabbits)

and y represents the density of the predator (for example, foxes). The dynamics

underlying this model is the following:

1. in the absence of predator, dx
dt = ax, the population of preys grows at a constant

rate per capita a (exponential growth),

2. in the absence of preys, dy
dt = −cy, the population of foxes decreases until

reaching extinction,

3. the number of meetings between the two species is proportional to the product

of the population densities, contributing to the decrease of the prey population

and to the increase the predator population.

Before we introduce a random perturbation in the parameters, we shall simplify

the deterministic model through linearization about a steady state, (x∗, y∗), which

yields a simple and reasonably good approximation, whenever the solution stays in
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3.1 Environmental randomness

the vicinity of (x∗, y∗). The steady states of ( 3.6) are (0, 0) and (c/d, a/b), which

were easily obtained by making f and g equal to zero. On the one hand, a lineariza-

tion around (0, 0) allows us to draw conclusions about the predation phenomenon

when both prey and predator populations have a small number of individuals. On

the other hand, a linearization around (c/d, a/b) gives us insight about the phe-

nomenon when the prey and predator populations have a density about a/b and

c/d, respectively. In the first case, it turns out that the population growth is ex-

ponential for both populations, which conduces us to a Malthusian model already

discussed in the beginning of this section. We will then see what happens in the

second case. By applying the first order Taylor polynomial at (c/d, a/b) we obtain a

linear approximation for f and g, which leads to the following linear system,




du
dt = − bc

d v

dv
dt = ad

b u
, u(0) = u0, v(0) = v0 (3.7)

with u = x − c
d , v = y − a

b and u0 and v0 in the vicinity of the steady state

(u∗, v∗) = (0, 0).

Introducing now a gaussian perturbation on the parameters c and a of the form

c + σ1Wt and a + σ2Wt, with σi ∈ R+, i = 1, 2, we obtain the following stochastic

linear system,




dUt = − bc
d Vtdt− σ1

b
dVtdWt

dVt = ad
b Utdt + σ2

d
bUtdWt,

, U0 = u0, V0 = v0 a.s.

or, in the matrix form,

dZt = AZtdt + BZtdWt,

with Zt = (Ut, Vt),

A =


 0 − bc

d

ad
b 0


 , B =


 0 −σ1

b
d

σ2
d
b 0


 .

Suppose that the parameters of the model satisfy c
a = σ1

σ2
, which may be plausible,

once the parameters responsible for the randomness, σ1 and σ2, do not need to be

very specific, only the order of magnitude of the noise is important. In this case, we

have that A and B are constants and verify AB = BA. We may then obtain an

explicit expression for the solution to this system given in ( 2.28), namely,

Zt = Φ(t)ξ, t ∈ [0, T ],
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Figure 3.5: Three sample paths of the linearized stochastic Lotka-Volterra I on the

time interval [0, 20], corresponding to n = 4 (cyan), n = 7 (green) and n = 10

(magenta). The time-step is 2−8, the initial condition is Z0 = (20,−10) and the

values of the remaining parameters are a = 1, b = 0.02, c = 1, d = 0.01 . The blue

line represents the solution of the corresponding deterministic linearized model with

the same time-step and the same parameters’ values.

with

Φ(t) = exp

[(
A− 1

2
B2

)
t + BWt

]
, t ∈ [0, T ]. (3.8)

Three sample paths of Z are presented in figure 3.5.

Finally, notice that the random effect introduced to obtain the models ( 3.2),

(3.5) and ( 3.8) results from environmental randomness and not from demographic

randomness, i.e., the randomness associated to the number of births and deaths,

which exists even when the birth and death rates are constant. This case is considered

in the next section.

3.2. Demographic randomness

The phenomena studied in population dynamics are intrinsically discrete and are

often modeled by Markov chains. However, as the discretization becomes finer,

Markov chains might be well approximated by diffusion processes corresponding to
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3.2 Demographic randomness

solutions of stochastic differential equations, therefore facilitating the mathematical

analysis (see [3], [10], [12], [13], [11] and [28]).We will then make the assumption that

the biological phenomenon is well described by a vector-valued time-homogeneous

Markov chain X = (X(n)
t , t ∈ [0, T ]), with X(n)

t = (X(n)
t,1 , ..., X

(n)
t,d ), d ∈ N, with state

space 1
nZ, where X

(n)
t represents its population density at time t, depending on the

parameter n, which represents the order of magnitude of the populationsŠ size or of

the area of the habitat.

The procedure followed for the model deduction comprises the following steps:

• define X(n)
0 = x0 and the transition probabilities of the Markov chain X(n),

• for large n, we approximate X(n) by a diffusion process Y(n) with coefficients

ρ and Q,

• Y(n) is a solution of the matrix SDE

dY(n)
t = ρ(Y(n), t)dt +

1
2
√

n
σ(Y(n), t)dWt, Y(n)

0 = x0

with σσT = Q.

We begin by briefly presenting the discrete model for one population. An heuristic

deduction of the continuous model shall then be described and analysed in order

to draw some conclusions about the underlying biological phenomenon. Consider

one species in a certain habitat at time t > 0. For a small positive constant δt let

∆X(n) := X
(n)
t+∆t−X

(n)
t denote the variation of the density occurring within [t, t+∆t]

and Dn the support of ∆X(n), which is defined by

Dn =
{

l

n
: l ∈ D

}
,

where D := Z∩E and E is a limited interval. Assume that the transition probabilities

of X(n),

pt,k/n

(
t + ∆t,

k + l

n

)
:= P

(
∆X(n) =

l

n
/X

(n)
t =

k

n

)
,

take the general form

pt,k/n

(
t + ∆t,

k + l

n

)
= nβl

(
t,

k

n

)
∆t + o(∆t), (3.9)

for each l ∈ D \{0} and βl : [0, T ]×R→ R+
0 , which represents the transition change

rate of the Markov chain. Since pt,k/n is a probability, then for l = 0 the probability

of the variation to be null is naturally given by

pt,k/n

(
t + ∆t,

k

n

)
= 1− n∆t

∑

l∈D\{0}
βl

(
t,

k

n

)
+ o(∆t). (3.10)
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The Markov chain is, thus, completely determined by the transition probabilities

( 3.9) and ( 3.10) and the distribution of X
(n)
0 .

The deduction of the diffusion approximation undergoes now through the heuris-

tic construction of a relation involving the transition probability functions pt,x(s, y),

for x, y ∈ 1
nZ and 0 ≤ t < s ≤ T , based on the forward Kolmogorov equations.

We begin by writing down the Chapman-Kolmogorov equation for time-continuous

Markov chains,

pt,x(s + ∆s, y) =
∑

l∈D

pt,x(s, y − l/n)ps,y−l/n(s + ∆s, y).

with 0 ≤ t < s < s + ∆s ≤ T . Using the expressions in ( 3.9) and ( 3.10), the

previous summation can be rewritten as

pt,x(s + ∆s, y) = pt,x(s, y)


1− n∆s

∑

l∈D\{0}
βl (s, y) + o(∆s)




+ n∆s
∑

l∈D\{0}
pt,x(s, y − l/n)βl (s, y − l/n) + o(∆s).

Dividing by ∆s and making ∆s to approach 0 we derive a differential equation

for the transition probability function pt,x. From ( 3.11) we thus obtain,

∂pt,x

∂s
(s, y) = −n

∑

l∈D\{0}
pt,x(s, y)βl(s, y) (3.11)

+ n
∑

l∈D\{0}
pt,x(s, y − l/n)βl(s, y − l/n)

Furthermore, for l/n sufficiently small, which is easily verified if n is large, we can

find a local approximation for pt,x(s, y− l/n)βl(s, y− l/n), by using the second order

Taylor polynomial at y. Under adequate regularity conditions, it follows from ( 3.12)

that

∂pt,x

∂s
≈ −n

∑

l∈D\{0}
pt,xβl + n

∑

l∈D\{0}

[
pt,xβl − l

n

∂(pt,xβl)
∂y

+
1
2

l2

n2

∂2(pt,xβl)
∂y2

]
(3.12)

evaluated at (s, y). Finally, simplifying this equation, we conclude that the transition

probability, pt,x, satisfies approximately the second-order partial differential equation

∂ft,x

∂s
=

∂(ft,xρ)
∂y

+
1
2n

∂2(ft,xQ)
∂y2

at (s, y), (3.13)

with

ρ :=
∑

l∈D\{0}
lβl and Q :=

∑

l∈D\{0}
l2βl.
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This gives us an idea about the diffusion process Y (n) we may use as an approximation

for the Markov chain X(n). Whenever ρ and Q satisfy the conditions described in

theorem 2, ( 3.13) coincides with the Kolmogorov forward equation of the diffusion

process with coefficients ρ and Q
n , whose the unique solution, ft,x, is a transition

density function of the process Y (n). Indeed, it can be shown that, for n large

enough, Y (n) represents a good approximation of X(n) (see [10]).

We finally arrived to the SDE’s stochastic model for one species given by

dY
(n)
t = ρ(Y (n)

t , t)dt +
1

2
√

n
σ(Y (n)

t , t)dWt, Y
(n)
0 = x0 a.s. (3.14)

with
√

Q = σ.

The previous deduction can easily be generalized for the case of d interacting

species. In this case, define D := Zd∩E, where E a limited d-dimensional rectangle,

and

ρ :=
∑

l∈D\{0}
lβl and Q :=

∑

l∈D\{0}
llT βl,

where βl is a real function defined in Dn The resulting model is given by

dY(n)
t = ρ(Y(n)

t , t)dt +
1

2
√

n
σ(Y(n)

t , t)dWt, Y(n)
0 = x0 a.s. (3.15)

such that Q = σσT .

3.2.1. Stochastic logistic growth model II

The functions βl can be obtained from the deterministic logistic growth model, which

is given by dy
dt = y

(
r − r y

K

)
. To establish the stochastic model, we need some

more information related to the population in consideration, namely, for instance,

the birth and death rates, which are represented by the parameters β1 and β−1,

respectively, and must satisfy β1 − β−1 = y
(
r − r y

K

)
. In order to present latter

numerical examples we will consider β1(t, y) = ry, β−1(t, y) = r y2

k and rl = 0 for

l 6= −1, 0, 1. Consequently, m(s, y) = y
(
r − r y

K

)
and Q(s, y) = y

(
r − r y

K

)
. A

stochastic logistic growth model for the population density, whose size of the habitat

has a order of magnitude of n, assumed constant, is thus given by the following SDE

dY
(n)
t =

(
rY

(n)
t − r

K

(
Y

(n)
t

)2
)

dt +
1

2
√

n

√∣∣∣∣rY
(n)
t +

r

K

(
Y

(n)
t

)2
∣∣∣∣dWt.

Some sample paths of the solution are plotted in figure 3.6. Similarly to the stochastic

logistic model I studied in section 3.1.2, we observe that the sample paths remain

in the vicinity of the solution of the deterministic model. Increasing the parameter
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n Number of sample paths Error

10 7.8640

1 100 3.3491

1000 1.9547

10 2.5097

100 100 0.7685

1000 0.2748

Table 3.2: Euclidian norm of the difference between the vectors corresponding to

the approximation of the mean function and the solution of the deterministic logistic

model within the time interval [0, 20], for different values of n and r = 1 and k = 5.

n we notice a decreasing in the variability, which confirms the theoretical reasoning

described in the deduction of the model, in the beginning of this section.

Contrarily to the stochastic version of the logistic model considered on the pre-

vious section, this model allows the sample paths to be negative (see figure 3.6

b)), which is not realistic in this context. In [21], this problem is overcame by an

adaptation to the model, giving rise to a mixed distribution. One hundred sample

paths were generated for different time intervals and for the parameters X0 = 0.5,

n = 1, k = 5 and r = 1, resulting in 5 extinctions within [1, 20], 3 within [0, 40] and

4 within [0, 200]. Apparently, we could not find any relation between the length of

the time interval and the probability of extinction. In fact, by analyzing the graph

of the sample paths, it is possible to realize that the extinction occurs just until a

certain instant. This observation allows us to expect that if the population resisted

until a certain moment, then it will probably survive at least in the medium term.

New simulations were made for the time interval [0, 20] in order to obtain the times

to extinction. Four sample paths led to extinction at times 1.3203, 1.9258, 0.8047

and 2.7695. A rough estimate of the mean time to extinction (when it occurs) is

then about 1.7051.

Finally, we present an approximation for the mean function of the solution by

applying the Monte Carlo simulations as before. The mean function was obtained

for two different values of n from 10, 100 and 1000 sample paths. The comparison

between the estimates and the deterministic solution are made by using the euclidian

norm. The results, which are presented in table 3.2, are, once again, in accordance

with the theoretical reasoning: as n increases, the distance to the deterministic
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Figure 3.6: In a): three sample paths of the stochastic logistic growth model II on

the time interval [0, 20] with the same underlying Wiener process, corresponding to

n = 1 (cyan), n = 25 (red) and n = 100 (green). The time-step is 2−8, the initial

condition is Y0 = 1 and the values of the remaining parameters are r = 1, k = 5.

The blue line represents the solution of the corresponding deterministic model with

the same time-step and the same parameters’ values. In b): ten sample paths of the

same model with the same parameters and n = 0.8. The red line corresponds to a

sample path for which extinction occurs.
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Figure 3.7: Three sample paths of the stochastic Lotka-Volterra model on the time

interval [0, 20] with the same underlying Wiener process, corresponding to n = 1

(cyan), n = 25 (red) and n = 100 (green). The time-step is 2−8, the initial condition

is Z0 = (120, 40) and the values of the remaining parameters are a = 1, b = 0.02, c =

1, d = 0.01. The blue line represents the solution of the corresponding deterministic

model with the same time-step and the same value of the parameters.

model decreases. This fact suggests that the empirical mean function converges to

the solution of the deterministic model.

3.2.2. Stochastic predator-prey model II

Consider the deterministic Lotka-Volterra model ( 3.6). Define z := (x, y) and

D := {(0, 0), (1, 0), (−1, 0), (0, 1), (0,−1)}, where (1, 0) and (−1, 0) represent one

birth and one death, respectively, in the prey population and (0, 1) and (0,−1)

represent one birth and one death in the predator population. The birth and death

rates in each population are given by β(1,0) = ax, β(0,1) = dxy, β(−1,0) = bxy,

β(0,−1) = cy. Consequently, we have

m(t, y) =
∑

l∈D

lβl =


 ax− bxy

dxy − cy




and

Q(t, y) =
∑

l∈D

llT βl =


 ax + bxy 0

0 dxy + cy


 .
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Prey

n No. of sample paths Error

10 698.7552

1 100 341.6737

1000 286.4792

10 59.9920

100 100 26.2427

1000 12.2385

Predator

n No. of sample paths Error

10 387.3996

1 100 164.3148

1000 107.8320

10 34.1499

100 100 12.6041

1000 6.0136

Table 3.3: Euclidian norm of the difference between the vectors corresponding to

the approximation of the mean function and the solution of the deterministic logistic

model within the time interval [0, 20], for a = 1, b = 0.02, c = 1, d = 0.01 and for

different values of n.

Once Q is a diagonal matrix, the diffusion matrix is given by

σ(t, y) =




√
|ax + bxy| 0

0
√
|dxy + cy|


 .

If the habitat area has a order of magnitude of n, then a stochastic predator-prey

model is given by the system




dXt = (aXt − bXtYt)dt + 1
2
√

n

√
|aXt + bXtYt|dW

(1)
t

dYt = (dXtYt − cYt)dt + 1
2
√

n

√
|dXtYt + cYt|dW

(2)
t .

For simplicity, we suppress the index n on the random variables Xt and Yt. Recall

that the Wiener processes (W (1)
t , t ∈ [0, T ]) and (W (2)

t , t ∈ [0, T ]) are independent.

Some sample paths are plotted in figure 3.7 corresponding to different values of the

parameter n. We see that the general dynamics of the stochastic model is consistent

with the deterministic model: when the prey population increases (decreases), the

density of the predators increases (decreases) too, with a delay. Once again, as n

increases, the variability decreases and the sample paths get apparently closer to the

solution of the deterministic model. The results outlined in table 3.3 were obtained

through Monte Carlo simulations and they confirm the previous conclusions.

3.2.3. Stochastic SIR epidemic model

An epidemic model pretends to represent the dynamic associated to the transmission

of a disease within a population. In this section, we begin by considering the most
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Chapter 3 Modelling the evolution of populations

basic deterministic epidemic model, the SIR model, which describes the number

of susceptible (S), infected (I) and recovered (R) individuals of a population. The

following assumptions are made:

1. the recovered individuals are not able to be infected again or to transmit the

infection to any susceptible individual,

2. the size of the population is considered to be fixed, i.e., S(t)+I(t)+R(t) = N ,

3. all individuals of the population have the same probability of contracting the

disease at a rate proportional to the number of meetings between infected and

susceptible, aSI,

4. infected individuals recover at a rate per capita b

Summarizing the above description, the evolution of each class of individuals is gov-

erned by the following rules

S + I
a−→ 2I, I

b−→ R.

By the Law of Mass Action, the deterministic model is then given by





ds
dt = −asj

dj
dt = asj − bj,

,

with s = S/N , j = I/N . Obviously, the percentage of recovered individuals follows

directly from the second assumption: r = R/N = 1−s−j. In the setting of figure 3.8,

at t = 0 the fraction of infected individuals corresponds to 1%, while the remaining

99% are susceptible. The epidemic increases until reaching its maximum 0.1586 at

time t = 6.25. At this time, the susceptible population falls below c = b/a = 0.5, as

we can see in figure 3.8. The parameter c is called basic parameter number and has

a crucial importance in the model, since it determines whether the disease will dye

out (c < 1) or whether it may become epidemic (c > 1). The stochastic model is

capable of giving a more realistic description of this value, as we will see next.

Proceeding as before, we define z := (s, j) and D := {(0, 0), (−1, 1), (0,−1)},
where (−1, 1) represents the infection of one individual and (0,−1) represents one

recovery. The rates of change of each class of individuals is given by β(0,−1) = bj and

β(−1,1) = asj. Consequently, we have
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Figure 3.8: Evolution of the percentages of susceptible (magenta), infected (blue)

and recovered (green) individuals within the time interval [0, 20] in the deterministic

SIR model ( 3.16). The time-step is 2−8, the initial condition is x0 = (0.99, 0.01, 0)

and the values of the parameters are a = 1.4, b = 0.7.

m(t, z) =


 −asj

asj − bj


 and Q(t, z) =


 asj −asj

−asj asj + bj


 . By using the Cholesky

decomposition, we obtain Q = σT σ, with

σ =




√
|asj| 0

−
√
|asj|

√
|bj|


 .

Notice that the decomposition Q = σT σ is not unique. Another decomposition for

the matrix Q satisfying the previous relation is given by

σ′(t, z) =
1
d


 asj + g −asj

−asj asj + bj + g


 ,

where g =
√

det(Q) and d =
√
|2asj + bj + 2g|. This ambiguity allows that different

SDE models can be used to construct the same diffusion process, which seems a

contradiction. In fact, once both systems are associated to the same Kolmogorov

forward equation, the solutions of each system have the same distribution. Moreover,

under the conditions of theorem 3, it can be proved that a sample path solution of

one system is also a sample path solution of the other system and vice versa (see

[13]). The systems may be considered as thus equivalent.
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Chapter 3 Modelling the evolution of populations

Figure 3.9: Histogram of W obtained from 100 sample paths that were generated

from the model ( 3.16) within the time interval [0, 20] for n = 1000 and the remaining

parameters as in figure 3.10. The software used was Eviews.
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Figure 3.10: Three sample paths of the stochastic SIR model (with the same un-

derlying Wiener sample path) describing the percentages of susceptible and infected

individuals within the time interval [0, 20] for n = 80 (cyan), n = 100 (green) and n =

1000 (red). The time-step is 2−8, the initial condition is (S0, I0, R0) = (0.99, 0.01, 0)

and the values of the parameters are a = 1.4, b = 0.7.
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3.2 Demographic randomness

For a big enough population, and considering the matrix σ, a stochastic SIR

model is given by the system




dSt = −aStItdt + 1
2
√

n

√
|aStIt|dW

(1)
t

dIt = (aStIt − bIt)dt− 1
2
√

n

√
|aStIt|dW

(2)
t + 1

2
√

n

√
|bIt|dWt,2

.

For simplicity, we suppress the index n on the random variables It and St. Some

sample paths are plotted in figure 3.10 corresponding to different values of n. Due

to the importance of the parameter c = b/a referred before, we will explore the

behavior of the correspondent random variable C in the stochastic model. From 100

sample paths we obtained the histogram of C presented in figure 3.9 and confirmed

by Jarque-Béra test that C follows a gaussian distribution with mean 0.4997 and

standard deviation 0.0408. It follows that about 99.7% of the values of C drawn

from this model are within three standard deviations from the mean value, i.e.,

[0.3273, 0.5721]. Consequently, in this case, the disease will be eradicated, which is

in accordance with the results illustrated in figure 3.10.
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Conclusion

As we could see, from the perspective of modellation, SDEs can provide a rich variety

of models in the context of population dynamics. One can settle different stochastic

models corresponding to the same phenomenon, depending on the assumption and

on the random aspect we want to model. In this thesis, two different random effects

were considered: the environmental and the demographic randomness.

In order to build SDE models, one can add a random ad hoc perturbation in

the classic ODE model, assuming that the dynamics are partly driven by noise, or

consider a diffusion approximation of a continuous-time Markov chain, frequently a

simple birth and death process (see [10], [29] and [30]). The last method seems

more natural as it is based on the relationship between diffusion processes and SDE

solutions, while the first one is more vague, because of the wide variety of different

environmental aspects existing in Nature. A combination of both would naturally

be the best option from the modellation point of view.

In what concerns the analysis of the established models, different technics were

used. When the model was linear, it was possible to find the exact solution. However,

realistic models in population dynamics are usually nonlinear. In this case, two differ-

ent approaches were followed: in the first one, we proceeded to the linearization of the

deterministic model and introduced then the random environmental perturbation,

which led to a linear stochastic differential system for describing the prey-predator

interaction; in the second one, the Euler-Maruyama method was implemented in or-

der to give an approximation for the sample paths solution of the original non-linear

model.

The dynamic of one population following a logistic growth as well as the predator-

prey interaction were analysed in the context of the two construction methods men-

tioned above. It was thus possible to obtain two different stochastic models for the

same phenomenon. Lastly, a stochastic SIR epidemic model was established and the

distribution of the basic parameter number was estimated by Monte-Carlo simula-
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tions. Curiously, this parameter has apparently a normal distribution.

During the preparation of this thesis, we could realize that stochastic differential

equations constitute a fundamental modelling tool in science and an extensive field

of mathematical research. During the last decades, the subject has been developing

in many exciting ways and in several fields (for instance in image denoising, see [31]),

both theoretical and application specific. In the theoretical framework, we stress the

study of the assymptotic behavior of their solutions and extinction times, which are

particularly important in biology, parameters estimation (see [30] for an introduc-

tion), as well as the properties of numerical approximations of the solutions (see [32])

such as error estimation, consistency, stability and convergence. More recently, we

also find in the literature new and more realistic modeling approaches that comprise

stochastic partial differential equation systems, in order to obtain also a spatial dis-

tribution of the populations, or stochastic differential equations driven by Wiener

and Poisson processes, known as SDEs with jumps, where the jump component can

capture event-driven uncertainties.
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Appendix A

Matlab code

A.1. Euler-Maruyama method for stochastic logistic growth
model

1 %Método de Euler−Maruyama

2 %Generating 100 sample paths o f s t o c h a s t i c l o g i s t i c growth

model

3 %dX=mudt+sigmadW

4 c l e a r a l l

5 de l t a=2^(−8) ;

6 T=20;

7 n=T/ de l t a ;

8 X0=1;

9 t0=0;

10 num_trajetorys=100;

11 Y=ze ro s ( num_trajetorys , n ) ;

12 Ye=ze ro s (1 , n) ;

13 Yt=X0 ;

14 Yte=X0 ;

15 meantime=ze ro s (n , 1 0 ) ;

16 e x t i n c t i o n =0;

17 N=0.8;

18 k=5;

19 r=1;

20 hold on

21 f o r i =1: num_trajetorys

22 dW=sqr t ( de l t a ) ∗ randn (1 , n) ;

23 Yt=X0 ;

24 f o r j =1:n
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25 mu=r ∗Yt∗(1−Yt/k ) ;

26 sigma=sq r t ( abs ( r ∗Yt∗(1+Yt/k ) ) ) /(2∗ s q r t (N) ) ;

27 Yt=Yt+mu∗ de l t a+sigma∗dW( j ) ;%random so l u t i o n

28 Y( i , j )=Yt ;

29 end

30 bool=Y( i , : ) >0;

31 i f (sum( bool )==n)

32 p lo t ( [ 0 : d e l t a :T ] , [ X0 ,Y( i , : ) ] , ’ g ’ ) ;

33 e l s e

34 meantime ( : , e x t i n c t i o n+1)=1−bool ;

35 e x t i n c t i o n=ex t i n c t i o n +1;

36 time=f i nd (1−bool , 1 ) ;

37 p lo t ( [ 0 : d e l t a : time∗ de l t a ] , [ X0 ,Y( i , 1 : time ) ] , ’ r ’ ) ;

38 end

39 end

40 f o r j =1:n

41 mu=r ∗Yte∗(1−Yte/k ) ;

42 Yte=Yte+mu∗ de l t a ;

43 Ye( j )=Yte ;%de t e rm i n i s t i c s o l u t i o n

44 end

45 p lo t ( [ 0 : d e l t a :T ] , [ X0 ,Ye ] ) ;

46 hold o f f

47 MeanTimeExtinction=f i nd (meantime ( : , 1 ) , 1 ) ∗ de l t a ;

A.2. Euler-Maruyama method for stochastic SIR model

1 %Euler−Maruyama method f o r systems o f SDEs

2 %Generating 100 sample paths o f s t o c h a s t i c SIR model

3 %dX=mudt+sigmadW

4 c l e a r a l l

5 de l t a=2^(−8) ;

6 T=20;

7 n=T/ de l t a ;

8 X0= [ 0 . 9 9 , 0 . 0 1 ] ’ ;

9 m=length (X0) ;
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A.2 Euler-Maruyama method for stochastic SIR model

10 t0=0;

11 num_trajetorys=100;

12 Y=ze ro s ( num_trajetorys , n ,m) ;

13 Ye=ze ro s (m, n) ;

14 C=ze ro s (1 , num_trajetorys ) ;

15 Yte=X0 ;

16 a=1.4 ;

17 b=0.7 ;

18 N=1000;

19 hold on

20 f o r i =1: num_trajetorys

21 dW=sqr t ( de l t a ) ∗ randn (m, n) ;

22 Yt=X0 ;

23 f o r j =1:n

24 mu=[−a∗Yt (1) ∗Yt (2) ; a∗Yt (1) ∗Yt (2)−b∗Yt (2) ] ;

25 sigma=[ sq r t ( abs ( a∗Yt (1) ∗Yt (2) ) ) ,0;− s q r t ( abs ( a∗Yt (1) ∗
Yt (2) ) ) , s q r t ( abs (b∗Yt (2) ) ) ] ;

26 Yt=Yt+mu∗ de l t a+sigma/ sq r t (N) /2∗dW( : , j ) ;%random

so l u t i o n

27 Y( i , j , 1 )=Yt (1) ;

28 Y( i , j , 2 )=Yt (2) ;

29 end

30 [ maximo , i nd i c e ]=max(Y( i , : , 2 ) ) ;

31 C( i )=Y( i , i nd i c e , 1 ) ;

32 p lo t ( [ 0 : d e l t a :T ] , [ X0(1 ) ,Y( i , : , 1 ) ] , ’ c ’ ) ;%S

33 p lo t ( [ 0 : d e l t a :T ] , [ X0(2 ) ,Y( i , : , 2 ) ] , ’ c ’ ) ;%I

34 p lo t ( [ 0 : d e l t a :T] , [1−X0(1)−X0(2) ,1−Y( i , : , 1 )−Y( i , : , 2 ) ] , ’ c ’

) ;%R

35 end

36 f o r j =1:n

37 mu=[−a∗Yte (1 ) ∗Yte (2 ) ; a∗Yte (1 ) ∗Yte (2 )−b∗Yte (2 ) ] ;

38 Yte=Yte+mu∗ de l t a ;

39 Ye(1 , j )=Yte (1 ) ;%de t e rm i n i s t i c s o l u t i o n

40 Ye(2 , j )=Yte (2 ) ;
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41 end

42 p lo t ( [ 0 : d e l t a :T ] , [ X0(1) ,Ye ( 1 , : ) ] ) ;%S

43 p lo t ( [ 0 : d e l t a :T ] , [ X0(2) ,Ye ( 2 , : ) ] ) ;%I

44 p lo t ( [ 0 : d e l t a :T] , [1−X0(1)−X0(2) ,1−Ye ( 2 , : )−Ye ( 1 , : ) ] ) ;%R

45 hold o f f
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