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Abstract 

Cardiovascular diseases are the leading cause of death around the world, representing a major 

problem regarding human health. Systolic time intervals (STI’s) represent a possible solution to 

manage cardiovascular diseases. Being correlated to cardiac function, STI’s represent a valuable 

resource in prognostic and diagnostic to access the heart condition and are a promising tool to deploy 

long-term follow-up cardiovascular disease management solutions. Heart sounds already proved to 

be a valuable approach to assess STI’s [1].  

In this thesis we propose new models for the Pre-Ejection Period (PEP) automatic extraction based in 

the heart sound (PCG), electrocardiogram(ECG) and Photoplethysmogram (PPG). PEP is estimated 

with a Bayesian approach, where the model proposed by Paiva et al. [1] is adapted. Heart sound 

processing is challenging as the optimal auscultation sites vary from individual to individual.  

We also propose new models to extract PEP in a multi-channel approach where we use information 

from two different acquisition sites in order to exploit signal redundancy. The multi-channel models 

are based on the Bayesian approach from Paiva et al. [2], where the adaptation aims to improve the 

previous results by using a larger amount of information to assess PEP. The single-channel approach 

was evaluated on a group of 16 signal acquisitions from four healthy males, with four acquisitions for 

each individual. On the other hand, the multi-channel models were applied to signals from 8 healthy 

male subjects.  

The results from the single-channel approach suggest that the inclusion of physiological properties 

extracted from PPG in the model reported by Paiva et al. [1] is a good procedure and the new 

approach can be applied to assess STI. On the other hand, the proposed multi-channel models do not 

improve the previous results. According to Paiva et al. [2], the multi-channel approach should be 

applied to assess STI’s and our results suggest that it is better to use information only from the 

channel with the best performance.  
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Resumo 

As doenças cardiovasculares são a principal causa de morte em todo o mundo, representando um 

grande problema em relação à saúde humana. Os intervalos de tempo sistólicos (STI) representam 

uma possível solução para gerir este tipo de doenças. Sendo correlacionados com a função cardíaca, 

os STI representam um recurso valioso no prognóstico e diagnóstico sobre condição do coração, e 

são uma ferramenta promissora para implementar soluções de gestão de doenças cardiovasculares 

num acompanhamento a longo prazo. Os sons cardíacos já demonstraram ser uma abordagem útil 

para a avaliação dos STI [1]. 

Nesta tese propomos novos modelos que visam a extração automática do período de pré-ejeção 

(PEP) com base no som do coração (PCG), eletrocardiograma (ECG) e fotopletismograma (PPG). O 

valor de PEP é estimado com uma abordagem Bayesiana, onde o modelo proposto por Paiva et al. 

[1] é adaptado. O processamento de som do coração é um desafio pois os locais ideias para a 

auscultação variam de indivíduo para indivíduo. 

Propomos também novos modelos para extrair o PEP partindo de um abordagem multi-canal, onde 

usamos a informação de dois locais de aquisição diferentes, com o intuito de explorar a redundância 

do sinal. Os modelos de multi-canal são baseados na abordagem Bayesiana reportada por Paiva et al. 

[2], onde realizamos uma adaptação com o objectivo de melhorar os resultados já obtidos, utilizando 

uma maior quantidade de informação para estimar o PEP. A abordagem realizada para um canal 

único foi avaliada num grupo de 16 aquisições de sinal, referentes a quartro voluntários saúdavéis do 

sexo masculino. Por outro lado, os modelos de multi-canal foram aplicados a sinais adquirides de 8 

indivíduos do sexo masculino, também saudáveis. 

Os resultados referentes à abordagem de canal único sugerem que a inclusão de propriedades 

fisiológicas extraídos a partir de PPG no modelo relatado de Paiva et al. [1] é um bom procedimento 

e que a nova abordagem pode ser aplicada para avaliar os STI. Por outro lado, os modelos de multi-

canal propostos não melhoram os resultados anteriores. De acordo com Paiva et al. [2], a abordagem 

multi-canal deve ser aplicada para avaliar STI e os nossos resultados sugerem que é melhor usar as 

informações apenas a partir do canal com o melhor desempenho. 
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Chapter 1 

Introduction 

1.1 Contextualization 

Cardiovascular diseases (CVD’s) are a major problem in human mortality, as it is the leading cause of 

death among Europeans and around the world. As Figure 1 demonstrates, in Europe, CVD is 

responsible for more than half of all deaths among women (51%), and a little less among men (42%). 

This represents around four million deaths per year. This huge numbers represent almost two time 

the number of deaths cause by cancer and shed light to how problematic CVD’s are [3]. 

 

Figure 1- Proportion of all deaths due to major causes in Europe in 2014 among men (A) and 

women(B) [3]. 
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CVD’s are not only a health problem, but an economical one as well, being responsible for 10% of the 

total health care expenditure [4]. Therefore, developing a system capable of preventing and perform 

a good management of CVD’s is a major goal for medicine in the current days. It is believed that the 

solution to this problem should follow a preventive long-term healthcare. This solution allows a 

reduction in costs by reducing hospital visits, and enable homecare. In this regard, long-term tele-

monitoring is a promise tool to achieve this goal [1]. 

The main goal of this thesis is to study two systolic time intervals (STI’s), PEP and left ventricular 

ejection time (LVET) exploring the heart sound. In this respect, there are two different theories 

behind the origin of the heart sound. The first one, is the valve theory, which claims that the sound 

is produced by the closure and opening of the heart valves. The second one is the cardiohemic theory, 

which states that the sound is produced by the entire cardiohemic system, i.e., by the vibration of 

structures that compose it, such as the heart cavities, the valves and the blood [4]. Heart Sound is 

divided in two main sounds, S1 and S2, related to systole and diastole, respectively. For this thesis, 

we assumed the first theory described in this paragraph. 

Heart sound auscultation is a very important tool in medicine. The bio-signal resulting from this 

technique is usually acquired using a stethoscope. The analysis of this sound can provide important 

information regarding the condition of the heart [5]. Cardiac auscultation has been a powerful 

instrument for heart diagnosis, due to be a non-invasive and low-cost application.  

A computed based auscultation provides new possibilities regarding health management. It is 

especially efficient in chronic disease management, being a low-cost and reliable solution, as required 

in long-term patient follow-up [1] [6].A computer based heart sound analysis provides an easier way 

to evaluate some cardiac disorders, such as valvar dysfunction and congestive heart failure [6]. 

Heart sound can be applied to extract systolic time intervals, such as PEP and LVET. STI’s are highly 

correlated to fundamental cardiac functions, and have significant value in prognosis and diagnosis in 

heart failure condition [1]. Myocardial relaxation and contraction are controlled by intracellular 

recycling of calcium ions, and therefore, the timings of these cardiac events are directly related to 

the health of myocardial cells [7]. The blood flow in the systematic circulation is controlled by the left 

ventricle’s function, acting as a pump. Therefore, the cardiac timings of this ventricle represent a 

major relevance in accessing the cardiac function. In the current days, there are some procedures 
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applied to obtain systolic and diastolic functions, such as echocardiography, which are performed in 

clinical facilities. As so, those procedures do not fulfill the requirements of this study goal, i.e., a daily 

application in home settings for a long-term patient follow-up. As it was reported in [7], the use of 

time intervals is a good solution for that case. The most important time intervals are PEP and LVET, 

regarding left ventricular systolic function.  

 

1.2 Objectives  

The objective of this thesis was to extract the Pre-ejection period (PEP) with a multi-channel 

approach. For this goal, phonocardiogram (PCG) and electrocardiogram(ECG) are used and 

echocardiogram represents as a gold standard for the values extracted. The first goal was to improve 

a Multi-Channel Audio-Based Estimation of the Pre-Ejection Period which was performed by Paiva et 

al. [2].  

Initially, the established second goal of this thesis was to perform a segmentation of the second heart 

sound (S2), in order to study the correlation of the time interval between its main components and 

the cardiac function.  

 

1.3 Organization 

In order to maintain coherence throughout the thesis, the steps of this work are sequentially 

divided in 5 chapters. The first two chapters are devoted to establish a good background of the 

problem. As so, there’s a brief review of heart’s physiology, and a review of the technologies 

available to access systolic time intervals. To finish the introductory chapters, we provide a 

summary of the methods implemented and applied in the last years in order to develop a computer 

based extraction of STI’s. The remaining chapters are devoted to explain the methods used in this 

thesis, as well as the results obtained.  
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Chapter 1 

This is the current chapter. Here, a brief introduction of this thesis is presented, contemplating the 

motivation of our work and the objectives. 

Chapter 2 

This chapter starts with a brief review of the human heart physiology and anatomy. A large part of 

this chapter is devoted to an overview of the origins of heart sounds, and existing technologies used 

to study this sounds. The final part of this chapter is dedicated to a review of the works done in this 

area in the past years.  

Chapter 3  

The contributions of the thesis and the models already reported that we used are presented in this 

chapter. Every solution proposed to extract PEP is described in Chapter 3. In its first section, two 

Multi-channel audio-based approaches to extract PEP are described. The second part of this chapter 

described the method used in single-channel audio-based using PPG approaches. 

Chapter 4  

This chapter describes the results obtained for each method presented in chapter 3. We start with a 

review of the best performances across the models proposed, and finish with the analysis of the 

attempt made with changes in some parameters. At the end of each method results, a statistical 

analysis is performed in order to compare the results with the ones obtained by Paiva et. al. 

Chapter 5  

This chapter is composed of the main conclusions of the proposed methods, and the analysis of some 

possible challenges for the future.  
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Chapter 2 

Background Concepts 

2.1 Heart’s Anatomy and Physiology  

The heart is a part of the cardiovascular system. Its main function is to deliver blood rich in oxygen 

and nutrients to the body tissues through blood vessels. The heart is located in the thoracic cavity 

medial to the lungs and posterior to the sternum. It is involved in cardiac muscle, also called 

myocardium, and is divided in four chambers; the upper chambers are called the left and right atrium, 

and the lower chambers are called the left and right ventricles [8].  

 

 

 

 

 

´ 

 

 

 

 

 

 

 

 

 

 

The human heart has four valves that regulate blood flow through the heart, two atrioventricular 

valves (respectively, the mitral valve and the tricuspid valve) and two semilunar valves (the 

pulmonary valve and the aortic valve) [8].  

Figure 2- Anatomy of the human heart [8]. 
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In a coordinated fashion, all valves open and close in order to enable or prevent blood from flowing, 

respectively. Tricuspid valve allows the communication between right atrium and right ventricle; on 

the other hand, pulmonary valve conducts right ventricle blood to the pulmonary artery in order to 

oxygenate it in the lungs. Mitral valve controls the blood flow from the left atrium into the left 

ventricle and aortic valve opens the way for blood to pass from the left ventricle into the aorta [8].  

The pumping action of the heart is divided in two phases: diastole and systole. Diastole occurs when 

the semilunar valves close and the atrioventricular valves open. In this stage, the ventricles are 

relaxed and the heart is filled with blood. During systole the atrioventricular valves close and the 

semilunar valves open, the ventricles contract and eject blood from the heart [6] [8].  

Systole is the interval between the first and the second heart sounds, lasting from the opening of the 

aortic valve to its closure. It is when the contraction of the heart happens. At this point, the 

atrioventricular valves snap, which results in the production of S1 [6] [9] .  

Diastole is the term used to describe the relaxation of the heart. When the heart is in this state of 

relaxation the pressure within the heart is low. This is when blood is passively flowing through the 

atria and into the ventricles [6] [9]. 

In a normal human adult, there are two main heart sounds in each cardiac cycle, S1 and S2, induced 

by the closing of atrioventricular and semilunar valves, respectively. There are other cardiac sounds 

such as S3, S4 or even a great variety of murmurs [4] [6]. 

 

2.2 Phonocardiogram (PCG) 

Phonocardiogram or PCG is a non-invasive clinical technique used to register heart sounds during a 

cardiac cycle [10]. In other words, PCG can be described as a digitized heart sound, being the 

interpretation of the sound waves produced by the heart during its function. Those sounds can be 

recorded in order to perform a detailed analysis and differentiate similar cardiac events that are 

difficult to discriminate by the human ear [10].  

 

https://en.wikipedia.org/wiki/Diastole
https://en.wikipedia.org/wiki/Heart_valve
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2.3 Electrocardiogram (ECG) 

Based on electrical potential variations, ECG records the electrical activity generated by specialized 

heart cells over a determined amount of time [11]. A typical ECG consists of a P wave 

(atrial depolarization), a QRS complex (ventricular depolarization), and a T wave (ventricular 

repolarization) - Figure 4. The QRS complex is the main component of this signal, and it is commonly 

used to calculate heart rate in medical environments [12]. 

 

Figure 3 - Wiggers diagram describing the relationship between blood pressures and flows inside 
the left ventricle and corresponding events in the cardiac electrical and mechanical systems. 

Adapted from [13] 

 

Figure 3 is very helpful to understand the relationship of heart sounds and a normal ECG with the 

heart cycle. It is also possible to correlate events such as heart valves closures and openings with the 

production of heart sounds. 

 

 

https://www.boundless.com/physiology/definition/depolarization
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Figure 4 - Example of an ECG [14]. 

 

2.4 Photoplethysmogram (PPG) 

Photoplethysmography is an optical technique, which typically operates using infrared light. It is very 

simple and low-cost and can be used to detect blood volume changes in the microvascular bed of 

tissue. The mechanism that generates PPG signals is composed by a complex interaction between 

the heart and connective vasculature [15] [16] [17]. 

The PPG waveform comprises a pulsatile (AC component) physiological waveform attributed to 

cardiac synchronous changes in the blood volume with each heartbeat which is called PPG signal. It 

is superimposed on a slowly varying (DC component) baseline with various lower frequency 

components attributed to respiration, sympathetic nervous system activity and thermoregulation. 

The pulsatile AC PPG waveform is named PPG signal [15] [16] [17]. 

 

 

Figure 5- The pulsatile (AC) component of the PPG signal and corresponding electrocardiogram 
(ECG) [15]. 
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2.5 Heart Sound and Auscultation 

As it was mentioned previously, heart sounds are measured via phonocardiography, which is the 

process of listening the sound via stethoscope. There are four different heart sounds that can be 

listened, apart from murmurs [18] .  

The first heart sound or S1 occurs when leaflets of mitral and tricuspid valves close in a coordinated 

way [8]. Therefore, S1 comprises two different components, M1 and T1. M1, which usually comes 

first than T1, results from mitral valve closure. On the other hand, T1 is produced when tricuspid 

valve closes. Due to higher pressures on the left side of the heart, M1 component is louder than T1 

[4] [6] .  

The closure of aortic and pulmonary valves generates the second heart sound or S2 [8]. Like S1, S2 is 

also consisted by two components termed A2 and P2. A2 is considered the main component of S2 

and is resulted from aortic valve closure. In turn, P2 occurs when the pulmonary valve closes. Usually 

A2 is louder than P2, for the same reason as M1 is louder than T1 [4] [6].  

The third heart sound or S3 is an extra sound that could be heard in early diastole during the 

ventricular rapid filling phase of the heart cycle [8]. S3 is also known as protodiastolic gallop or 

ventricular gallop as the sequence S1-S2-S3 sounds like a galloping horse. S3 might be present in 

normal children and teenagers as a result of a limited ventricular distensibility due to lack of 

cardiovascular system maturity [8]. Although S3 could be audible in an adult, its presence in those 

cases may be indicative of cardiac pathology and heart failure [8]; the volume overload in the 

ventricles difficult its recoiling process and forces them to provide extra recoiling power. The marked 

recoil results in an audible S3 [8]. Repetition of this situation will end in a dilated ventricle [6] [19].  

The fourth heart sound or S4 is an extra sound that occurs during the atrial filling phase of ventricular 

diastole and only can be heard in pathological situations [8]. When there is a pathological situation 

that combines a strong atrial contraction with a non-compliant left ventricle results in S4.  S4 is heard 

due to blood striking the ventricle [8] [20]. S4 is also classified as a gallop sound as the sequence S4-

S1-S2 resemble a galloping horse. Therefore, S4 is known as presystolic gallop or atrial gallop [8]. 
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Finally, there are the heart murmurs, or abnormal heart sounds, which are mainly associated with 

turbulence in blood flow. Murmurs differ between themselves, and are classified by their loudness, 

frequency, timing, quality and shape [8]. 

As it was mentioned previously, the main goal of this thesis is to extract STI’s, more precisely PEP. 

PEP and LVET relevance and its relationship with the heart’s function will be explored later in this 

chapter. 

 

2.6 Heart Sound Segmentation 

As it was mentioned previously, noninvasive methods such as phonocardiogram (PCG) and 

electrocardiogram (ECG) are really useful in studying heart’s condition. In auscultation process, the 

listener has to analyze the sound components and synthesize the heard features. The analysis is very 

dependent on listener skill and experience, and as so, computerized analysis is vital to help 

cardiologists in this field. In order to do any computerized analysis of heart sound, the former need 

to be segmented into its components to be possible to analyze those components separately [21] 

[22]. 

Segmentation can be divided in two main different approaches. It can either be done with help of an 

auxiliary signal, or it can be done with the heart sound signal alone. In the first scenario, the auxiliary 

signal is usually a signal that requires less processing steps, and it is used to extract markers coinciding 

the main heart sounds. This seems to be a good procedure to do when we are trying to segment 

heart sound. However, adding a second signal implies adding hardware complexity and decreasing 

the user friendliness. As so, the segmentation of heart sound using no auxiliary signal is the ideal 

scenario. We can divide this type of approach in two components: unsupervised approaches and 

supervised approaches. Despite both approaches require a training dataset, the major difference 

between these two is that in the last one a typical pattern recognition approach is applied [6] .  

In this thesis we study the segmentation of the first heart sound in aortic (A1) and pulmonary (P1) 

components. 
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2.7 Systolic Time Intervals  

Many studies proved that heart sounds can be applied to measure the systolic time intervals we were 

interested in, pre-ejection period and left ventricle ejection time. 

Systolic time intervals are highly correlated to fundamental cardiac functions. A large number of 

studies proved that these measurements have significant diagnostic and prognostic value in heart 

failure condition. The most adequate application is for long-term patient follow-up and disease 

management [1].  

Pre-ejection period, or PEP, is the time interval between the start of ventricular depolarization and 

the moment when aortic valve opens. PEP’s main utility is reflecting the condition of the left 

ventricular function, and it allows to see changes in myocardial contractility, left ventricular end-

diastolic volume and aortic diastolic pressure [23] [24] .PEP is also very useful as a non-invasive beat-

to-beat surrogate to estimate the blood pressure. To take a closer look on PEP’s main role, we can 

find a review in Muehlsteff et al. [25]. 

Left ventricular ejection time, or LVET, is the time interval between the opening of the aortic valve 

and its closure. Studies reveal that LVET is related to cardiac output [26] and to contractility [24], thus 

we can say LVET is a measure of cardiac function. 

The sum of PEP and LVET is the total time the heart spends in systole (ejection) as compared to 

diastole (filling) and is an important parameter for monitoring of patients with heart disorders [27]. 

The STI’s can change according to heart rate, preload, afterload and myocardial inotropic state [28]. 

These four determinants do not influence every systolic time interval in the same way, in fact, not 

every determinant influence every STI. By definition, preload is the amount of stretch in the left 

ventricle at the end of diastole [29]. The contraction of myocardial cells is directly related with the 

amount of stretch they are under, therefore, the greater the stretch, the greater will be the force of 

contraction [29]. On the other hand, afterload represents the force that heart must overcome to 

open the aortic valve and eject blood into the systemic circulation [29]. Myocardial inotropic state 

refers to myocardium contractility, i.e., the term inotropy refers to a measurement of the increase of 

myocardium contractility [29]. The greater the contractility of the heart, the greater will be the 

cardiac output [29]. 
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PEP increases inversely with preload and stroke volume (SV) and directly with afterload. Thus, a 

decrease in preload will cause an increase in PEP value and a decrease will shorten PEP. On the other 

hand, a rise on afterload is translated by an increase in PEP value; a decrease will produce a lower 

value of PEP. Regarding myocardial contractility, the presence of positive inotropic agents leads to 

an increase of inotropy and consequently a stronger myocardial contractility, which reduce the time 

of PEP [28]. The opposite is also true, i.e., PEP interval is elongated by the presence of negative 

inotropic agents.  Regarding LVET, this systolic time interval has an opposite behavior with changes 

in preload and stroke volume. Thus, an increase in preload and SV will increase LVET and a decrease 

will shorten this interval. Afterload can only influence LVET to grow, since any change in afterload, 

no matter its nature, can cause an increase in LVET. On the other hand, inotropic agents can affect 

LVET in order to decrease it, no matter their nature [28]. STI’s in general vary inversely with heart 

rate [30]. Therefore, corrections related to differences in heart rate must be done in order to properly 

interpreter STI’s deviations [30]. To this end, regression equations for each STI were derived, and 

used to derive STI indices. Each index is calculated as the sum of the extracted interval with heart 

rate multiplied by slope of the regression equation [30]. These indexes are useful to extract a 

quantitative measure of the degree of deviation between the calculated STI and the one expected as 

normal. There is no agreement in what are the most efficient regression equations, being the most 

applied the ones derived by Weissler et al. [31].  

PEP interval is usually around 90 ms [32], leading to an index of 131 in females and 133 in males when 

the heart rate is added as a factor [31]. LVET usually last around 300 ms [32], with an index value 

around 413 ms for women and 418 ms for men when the heart rate in taken into account [31]. 

As far as PEP and LVET are concerned, usually a short PEP and long LVET represent a healthy heart 

[33]. On the other side, a myocardial dysfunction extends PEP and shortens LVET [34]. There are many 

more cardiac dysfunctions that can be identified purely based on systolic time intervals, reported in 

[35]. 

 

2.8 Relevant Studies using Systolic Time Intervals 

This field is not an unexplored area. Some attempts to extract systolic time intervals and even 

correlating them to clinical assessment of heart condition have been done in the last years. 
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However, it seems that there is significant space to improve like everything in science. Like it was 

mentioned previously, we find Systolic time intervals an area of vast interest due to its correlation 

with cardiac function.  

Currently, there are many technologies available to access STI’s. Carvalho et al. [34] performed an 

evaluation contemplating most of this technologies, that will be described forward. Some of this 

technologies were already described previously, such as electrocardiogram (ECG), phonocardiogram 

(PCG) and photoplethysmogram (PPG). Those alongside impedance cardiogram (ICG), are the most 

used in this area of interest. In the past years, some projects using echocardiogram as a gold standard 

were reported, and they will be described forward in this section. Apart from these, 

ballistocardiogram (BCG) and seismocardiogram (SCG) can also be used to assess STI’s, as in [36].  

 

2.8.1 Relevant Studies using Systolic Time Intervals : Part I 

Hongyan Luo and Zhigang Wang [37] developed methods of automatic analysis for systolic time 

intervals in 2000. They applied a slope method for detecting characteristic points of ECG and carotid 

pulsate wave (CPW), and an algorithm based on wavelet transform is implemented for analysis of 

PCG [37]. 

They used a slope method to detect R-peaks in ECG, and according to their results it is possible to see 

that R-peaks are correlated with the slopes. 

The carotid pulsate waveform (CPW) consists of three waves and a notch. Since the ECG signal and 

CPW signal were recorded simultaneously, each complete cycle of CPW is located between two R-

wave peaks. The CPW peak is the maximum amplitude point meeting the condition of being between 

the R-peaks. The start is the nearest point from the baseline [37]. 

Applying the slope method to CPW, it is possible to see that the characteristics of dicrotic notch are 

more outstanding [37]. 

To detect PCG signal characteristic points they used a wavelet transform method. The binary wavelet 

transform of the digital signal was performed by Mallat algorithm [37]. 
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As described in [37], wavelet transforms in different scales can be used to see components with 

different frequency. As so, they were able to extract features of S1 and S2, as well as their location, 

using the scale 2. S1 was identified as the maximum point of the wavelet transform PCG signal, 

meeting the requirements of being between R-wave peak and the peak of CPW. The maximum value 

between the peak of PCG wave and the dicrotic notch of CPW was considered to be S2 [37].  

Based on the total 100 cases they studied and on scientific literatures, they developed a criterion of 

classification for cardiac function, shown in Table 1. It should be taken in consideration that Heart 

rate (HR) has an influence in the values of PEP and LVET as described previously, so the following 

results are obtained considering a normal value for heart rate between 60 and 100 bpm’s [37].  

 
 
 

Table 1- Criterion of classification for cardiac function [37].  

 

                            Parameter 

Level 
LVET (ms) PEP (ms) PEP/LVET 

Normal ≥300 ≤90 ≤0.30 

Approximately normal 281~299 91~105 0.31~0.34 

Lightly weaken 271~289 106~120 0.35~0.38 

Weaken 251~269 121~140 0.39~0.49 

Obviously weaken ≤250 ≥141 ≥0.50 

 

Table 2- A comparison study between the new system and an existing system accuracy’s [37]. 

 

    Points 

 

System 

Q 

wave 

start 

R-peak 

start 

CPW 

start 

CPW 

peak 

CPW 

dicrotic 

notch 

S1 S2 

New System 92.5% 97.5% 92.5% 97.5% 92.5% 95% 95% 

Existing 

System 
87.5% 90% 85% 87.5% 75% 80% 80% 
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The results provided by the authors were very positive. They show that the new system can obtain 

higher accuracy in every point, with a special increase in detection of dicrotic notch, the first and the 

second heart sound [37].  

 

2.8.2 Relevant Studies using Systolic Time Intervals: Part II 

Abdul Q. Javaid et al. [36] [38] also has some relevant studies about measurement of systolic time 

intervals. There are two remarkable studies that he leads about this field, which will be explored in 

this section.  

In 2015 Abdul Q. Javaid et al. [38] worked on a way to estimate systolic time intervals using head-to-

foot and dorso-ventral components of sternal acceleration signals. Acknowledging systolic time 

intervals is a major interest for monitoring cardiac functions, Abdul Q. Javaid thought that continuous 

measurement of cardiac time intervals throughout daily living had a special interest to this goal. The 

objective of his study was to measure PEP and LVET with wearable sensors based on 

ballistocardiogram (BCG) and seismocardiogram (SCG) measures. They present methods for 

estimating the systolic time intervals from a single three-axis accelerometer placed at the sternum. 

Also, they show that the method is insensitive to certain postural changes [38]. 

 

 
 

 
Figure 6- Block diagram of the setup. The subjects were asked to stand in three different postures 

while an accelerometer, ECG and ICG electrodes were placed on the body locations specified by the 
front view. The data collected from all sensors was bandpass filtered (BPF) followed by subsequent 

processing and analysis [38].  
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PEP and LVET were extracted from impedance cardiogram (ICG), from the dorso-ventral components 

of the SCG signal and from the Head-to-foot components of the SCG signal. A study of the correlation 

between these extractions was made afterwards [38].  

Using STI’s extracted from ICG as a gold standard, the correlation results suggest that for PEP 

estimation, the double integrated head-to-foot component of the SCG waveform (very alike BCG 

waveform) is better than the dorso-ventral component. At the same time, the dorso-ventral 

component provides a robust estimate of LVET [38]. 

 

In 2016 Abdul Q. Javaid et al. [36] published other study about approximately the same theme. This 

study is focused on estimating PEP and LVET during walking based on ballistocardiogram (BCG). They 

demonstrated a good correlation between PEP from ICG and the BCG features, and also LVET 

estimated from both ways [36]. 

 
 

 
Figure 7- (a) Position of accelerometers on the body. (b) The head-to-foot (H-F), dorso-ventral (D-V) 
and right-to-left (R-L) axis of the accelerometer. (c) Block diagram of the setup. Data were collected 

in resting and walking states [36].  

 

To calculate LVET they used data from D-V axis and from the neck and sternum accelerometers. On 

the other hand, the H-F data from all accelerometers were used to estimate the RJ-intervals. They 

employed data fusion to improve the correlation between the accelerometer and ICG estimated 

parameters during walking [36]. 
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The results suggest that this method combined with fusion of estimates from more than one sensor 

can provide an assessment of cardiac health during walking [36]. 

 

2.8.3 Relevant Studies using Systolic Time Intervals: Part III 

University of Coimbra, more specifically Centre for Informatics and Systems of the University of 

Coimbra (CISUC), has been working on systolic time intervals detection for the last years. The 

following paragraphs describe a further study based on the ones that were already performed by this 

institution. We find important to make a review about what has been done in the past, and what are 

the root of this thesis.  

In 2009 Carvalho et al. [39] investigated the feasibility of measuring opening and closing moments of 

the aortic valve, using heart sound. These moments are very important, since they are crucial to 

define both PEP and LVET. Heart sound was used to extract several features with the goal of define 

these STI’s. A secondary goal of their study was to measure the accuracy in using heart sounds to 

measure aortic valve opening and closing times [39]. 

This study was performed with 17 volunteers, providing both heart sounds and echocardiography 

(echo). A synchronous ECG with each of the above signals was also acquired and served as a reference 

signal for co-registration [39].  

Echocardiography’s were used to take annotations of the opening and closing instants of aortic valve, 

under the supervision of an experienced clinical expert in this area. Regarding the heart sound, the 

annotations were performed by them, without echo reference, using features from heart sound and 

ECG signals [39].  
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Table 3- PEP identification results from Carvalho et al.  [39]. 

Signal Average ± SD (ms) Range 

Echo 54.04 ± 18.22 [22.02, 109,97] 

HS 52 ± 17.13 [27.77, 106,58] 

Error* 5.81 ± 4.91 - 

*|PEPHS-PEPEcho| 

 
Table 4- LVET identification results from Carvalho et al. [39] 

Signal Average±SD (ms) Range 

Echo 266.01±27.67 [180.54, 328.95] 

HS 255.13±25.41 [176.85, 326.05] 

Error* 14.76±10.94 - 

*|LVETHS-LVETEcho| 

 

 

Table 5- AVC identification results from Carvalho et al. [39]. 

Signal Average ± SD (ms) Range 

Echo 320.05 ± 26.46 [222.63, 328.95] 

HS 307.95 ± 22.84 [250.49, 362.98] 

Error* -12.10 ± 14.71 - 

*AVCHS-AVCEcho, where AVC stands for Aortic Valve Closure 

 

 

The achieved results are shown in Table 3, Table 4 and Table 5, suggesting that is possible to identify 

systolic time intervals from heart sound with accuracy. The errors ae significantly low and according 

to their reports the correlation value between the calculated values and the ones from 

echocardiography was high. 

In 2010 the study of systolic time intervals was carried further, and Carvalho et al. [34] performed a 

study using the echocardiographic gold standard synchronized with impedance cardiography (ICG), 

phonocardiography (PCG) and photoplethysmography (PPG).  
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Regarding ICG, they present results for several definitions for ICG characteristic points of aortic valve 

events. These results reported for ICG are obtained with the algorithms reported in [40] , [41] and 

measurements achieved by Niccomo device from Medis (abbreviations ICGZC, ICGOnu ICGCarvalho 

and ICGNiccomo, respectively). 

Phonocardiography results were obtained applying a modified version of the algorithm reported in 

[42]. 

PPG signal was used to estimate LVET, since there is no known solution to extract PEP. The PPG 

waveform analysis is based in an approach reported in [43]. 

 

Table 6 - Summary of results for PEP from Carvalho et al. [39] - correlation with echocardiography. 

Parameter 
Est. Error (msec.) 

(average  SD) 

Abs. Est. Error 

(msec.) 

(average  SD) 

 

ICGZC -7.2  28.6 23.9  17.2 0.75 

ICGOnu 16.5  16.7 19.9  13.4 0.68 

ICGCarvalho 5.8  14.0 12.4  8.7 0.54 

ICGNiccomo 9.8  21.4 19.3  13.4 0.58 

PCG 0.7  11.0 9.0  6.4 0.54 

 

Table 7 - Summary of results for LVET.  - correlation with echocardiography [39]. 

Parameter 
Est. Error (msec.) 

(average  SD) 

Abs. Est. Error 

(msec.) 

(average  SD) 

 

ICGOnu 1.8  46.2 39.1  24.5 0.19 

ICGCarvalho -23.6  31.1 29.9  25.1 0.36 

ICGNiccomo 51.2  45.8 54.3  42.1 0.27 

PCG -9.9  16.3 14.4  12.4 0.80 

PPG* 0.9  14.2 11.5  8.95 0.77 

* Only apllied over a subset of 112 beats where PPG was available. 
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The best overall performance was achieved using heart sound to measure systolic time intervals. The 

results suggest that PCG and PPG have the potential to build monitoring systems for long-term 

cardiac function follow-up, despite the correlation value not being very high (calculated using Matlab) 

[34].  

The previous study has been carried further by Paiva et al. [1] in 2012. After the results from [34] this 

study focused in investigating the feasibility of using heart sound to extract PEP and LVET. The paper 

[1] was the basis for this thesis, i.e. the starting point of this work was to find ways to improve the 

accuracy of the model from [1] to extract systolic time intervals. The methods used by Paiva et al. [1] 

will be described in the forthcoming section. The hypothesis of heart sound containing important 

markers that enable the detection of aortic valve opening and closing is the basis of Paiva´s [1] study 

and this thesis. To evaluate the accuracy of this methods, an echocardiography was used as a gold 

standard [1].  

PEP was estimated following a Bayesian approach where the main features were the instantaneous 

amplitude of heart sound, and the delay between aortic valve opening and atrioventricular valve 

closure [1]. To extract LVET, sound segmentation was performed and the segments nearest the T-

wave were taken as S2 candidates [1].  

The results suggest that heart sound is a possible option to detect systolic time intervals, being the 

biggest motivation of this thesis [1].  
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Chapter 3 

Materials and Methods 

In this chapter the methods applied and the data collections used will be described. The first 

subsection is dedicated to understand the algorithms developed by Paiva et al., reported in [2] and 

[1] , which are the basis of this thesis. This project starts from creating two methods for a two-channel 

audio-based estimation of PEP, where the main objective is to use information from the worst 

channel to extract PEP from the best channel, in order to improve the results obtained by Paiva et al. 

The best channel selection is performed according to the algorithm reported in [2]. For the sake of 

completeness, methods reported in [1] and  [2] will be described in the next subsections. The second 

stage of this project consists in the description of two models used to perform a single-channel audio-

based estimation of PEP using PPG. The model is based in the algorithm reported in Paiva et al. [1], 

where PPG is added to extract LVET and consequently a PEP value for each beat, which will serve as 

an additional parameter to assess PEP from heart sound. Every method used will be described in the 

following sections in order to understand how the models created work. 

 

3.1 Multi-channel Audio-based Estimation of PEP 

3.1.1 Overview 

This section describes each one of the steps taken in the approach studied by Paiva et al. [2] since it 

is the foundation of the models developed in this thesis regarding Multi-channel audio-based 

estimation of PEP. Data collection was provided by Centre for Informatics and Systems of the 

University of Coimbra (CISUC). The main methodological steps of Paiva et al. [2] model are 

summarized in  Figure 8 and will be described in the following subsections.  
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Apex and LSB represent two different body regions from where the heart sound was extracted. The 

existing method extracts information from both channels, choses the best and then extracts PEP for 

the best channel using only the parameters from that channel. The first goal of this thesis is to not 

discard the information extracted from the channel that had the worst performance, and to use it 

instead to get a better estimation accuracy of PEP for the best channel with a complete mode 

approach.  

 

3.1.2 Experimental setup and data collection 

Data acquisition was performed in the HeartSafe project from University of Coimbra [2]. Data 

collection involved 8 healthy male volunteers, and was carried out at “Centro Hospitalar de Coimbra”, 

where heart sounds (two channels) and echocardiographies (echo) were acquired simultaneously. It 

was also acquired a synchronous ECG with the mentioned signals, serving as a reference signal for 

co-registration. The average age from the population was 30.4 ± 9.8 years, the body mass index 25.9 

± 4.7 Kg/m2 and the average heart rate was around 66.0 ± 14.9 bpm. All the measurements were 

conducted by an authorized medical specialist. 

Data from two different channels: Apex and LSB 

Best channel selection 

PEP extraction for the best channel beat-by-beat 

PEP extraction for the best channel in complete mode 

Performance evaluation with echo as a gold standard  

Figure 8 – Overview of Paiva et al. [2] model for a Multi-Channel 
Audio-Based Estimation of the PEP. 
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Patients were positioned in supine position, turned left (approximately 45o). The echo was configured 

for Doppler mode and the stethoscopes were positioned in the LSB and apex regions. Heart sound, 

echocardiogram and ECG were acquired with runs between 80 and 100 seconds. To acquire ECG and 

echocardiography they used a Vivid system from General Electric. To acquire heart sound and ECG 

they used two Meditron stethoscopes and an ADInstruments Bio Amp ECG recorder connected to an 

ADInstruments Powerlab. Heart sound and ECG were recorded at sampling frequency of 2 kHz. 

Echo served as a gold standard to evaluate the accuracy of the algorithm extracting PEP, so after data 

acquisition, annotations of the opening instants of aortic valve were performed, with the associated 

PEP values. This procedure was made under the supervision of an experienced clinical expert in 

echocardiography. 

 

3.1.3 Sound channel selection 

As it was mentioned previously, sound was collected from two sites: the apex and left sternum border 

(LSB). The first step is to identify which channel has a better performance between those two.  

The algorithm that performs the channel selection was developed by Paiva et al. [2] from University 

of Coimbra, so all credits for the following algorithm are given to him.  

Paiva et al. [2] identified that one way to select the best channel was to determine the one with the 

highest signal-to-noise (SNR) ratio. To this end, he proposes a signal contrast feature, adapted from 

the spectral contrast feature proposed in [44].  

This method is described in the following paragraphs and is performed for each heartbeat. 

 

Step 1. Select the audio segment corresponding to the current heartbeat.  

PEP is formally defined as the time interval between the Q-peak of the ECG to the opening of the 

aortic valve. Hence, an algorithm for detection of Q-peaks [45] is applied. The relevant audio segment 

starts at Q-peak time and as [1] suggests, has a duration of 210 ms. 
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(1) 

(2) 

(3) 

Step 2. Compute the amplitude contour of the audio segment corresponding to the current 

heartbeat, for each sound channel. 

The audio segment is full wave rectified and smoothed with a 100 msec half-Hanning window, 

described in (1): 

 

𝑐[𝑛] = |𝑠[𝑛]| ∗ 𝑊 [𝑛 −
𝑊

2
] , 𝑛 = 1,2, … , 𝑁

𝑤[𝑛] = 0.5 − 0.5 cos (
2𝜋(𝑛 − 1)

𝑊 − 1
) , 𝑛 = 1,2, … ,

𝑤

2
 



 c[n] represents the amplitude contour of a given audio segment s[n] with N samples. 

 w[n] stands for the half- Hanning window.  

 W denotes the number of samples (corresponding to 100 msec at the employed 2kHz 

sampling frequency). Zero output delay is guaranteed by shifting the window. 

 

Step 3. Determine the signal contrast of the amplitude contour segment corresponding to the current 

heartbeat, for each sound channel. 

The amplitude contour c[n] is returned as a vector. This vector is sorted into descending order of 

magnitude, forming a new vector {c1, c2, …, cN} where c1 ≥ c2 ≥ … ≥ cN. Equations (2) and (3) describe 

how the signal peak and valley are estimated, respectively. 

 

𝑝𝑒𝑎𝑘 =  
1

𝛼𝑁
∑ 𝑐𝑖

𝛼𝑁
𝑖=1    

𝑣𝑎𝑙𝑙𝑒𝑦 =  
1

𝛼𝑁
∑ 𝑐𝑁−𝑖+1

𝛼𝑁
𝑖=1   

 

 



25 
Bruno Cerqueira 

 

 

(4) 

α represents a neighborhood factor set to 0.2. Signal peak is calculated the average of 20% highest 

samples in the amplitude contour while signal valley corresponds to the 20% lowest. 

Signal contrast (SC) corresponds to the difference between the computed signal peak, and valley, as 

described in equation (4). 

𝑆𝐶 = 𝑝𝑒𝑎𝑘 − 𝑣𝑎𝑙𝑙𝑒𝑦   

Step 4. Select the best channel. 

The best channel is selected beat-to-beat, where a different channel might be selected each 

heartbeat. After beat-to-beat selection is performed, a complete mode is applied, where the channel 

that was selected the best channel in a higher number of beats, is considered as the best channel for 

every beat. Complete mode allows channel switching when the wrong channel is selected. 

 

3.1.4 PEP estimation  

For PEP estimation, a Bayesian approach is followed, resorting to the instantaneous amplitude (IA) 

of the HS waveform as the main feature. The algorithm was proposed by Paiva et al. [1], and its 

adapted in this thesis in every approach made to estimate PEP. This algorithm is the basis of this 

thesis, so it will be described in the following paragraphs. Any extra information about the algorithm 

can be find in [1]. 

The motivation for this approach comes up from the fact that the closure of AV valves is usually 

correlated with strong amplitude values in the first HS. According to [23], PEP is estimated based on 

the delay between AV closure and aortic valve opening. To constrain the range of possibilities, the 

previous heartbeat PEP interval in included in the model since abrupt variations should not occur 

while patients are at rest during data acquisition. 

The model follows a two-pass approach. During the first iteration, it assumes initial probability 

distributions for the variables used, based on average population values reported in the literature. In 

the second pass, the probability distributions are updated based on the results obtained during the 

first pass. Therefore, the model is patient-dependent and applies a data-driven approach.  
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(5) 

(6) 

As described in step 1 of the previous section, the same algorithm is used to detect Q-peaks. 

 

Figure 9 summarizes the procedures carried out for PEP estimation. In the next paragraphs, each of 

the stages will be described. 

 

Figure 9 - Overview of the model proposed for PEP estimation by Paiva et al. [1]. 

 

 

Step 1. First pass. Given a HS signal, s(t), the algorithm for PEP estimation starts by determining the 

signal’s IA, a(t), via the analytic signal as in (5). There, HT ( · ) denotes the Hilbert transform: 

 

𝑎(𝑡) = |𝑠(𝑡) + 𝑗𝐻𝑇(𝑠(𝑡))|  

 

Step 2.  AV valve closure estimation. Next, for each heartbeat, k, the AV closure time interval, AVk, is 

estimated. The corresponding Q-peak (previously determined) is employed as reference. To this end, 

a Bayesian model is applied according to (6), using the prominences (𝑝𝑟𝑜𝑚𝑘) of the HS near the Q-

peak, the IA curve and the previous AV interval (𝐴𝑉𝑘−1). 

 

𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘, 𝐼𝐴𝑘 , 𝐴𝑉𝑘−1) ≈ 𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘). 𝑝(𝐴𝑉𝑘|𝐼𝐴𝑘). 𝑝(𝐴𝑉𝑘|𝐴𝑉𝑘−1)  
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(7) 

(8) 

A time interval was established for the AV time estimation, obtained experimentally and proved 

reliable. This time interval is represented by 𝐷𝐴𝑉  = [Q-peak time, Q-peak time + 110 ms] and 

𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝐴𝑉𝑘−1 ∈ 𝐷𝐴𝑉. 

 

Figure 10 - Detection of prominences in the HS (vertical scale is arbitrary). [1] 

The closing moment of the AV valves is strongly correlated with valleys and peaks of the HS, so in 

order to model p (𝐴𝑉𝑘 | 𝑝𝑟𝑜𝑚𝑘) from (6), the first step is to determine those events. To this end, an 

algorithm reported in [46] was applied according to (7). There, tL and tR represent the peaks from 

the left and from the right of the valley t.  

 

𝑝𝑟𝑜𝑚𝑘(𝑡) = {
𝑚𝑖𝑛(|𝑠(𝑡) − 𝑠(𝑡𝐿)|, |𝑠(𝑡) − 𝑠(𝑡𝑅)|)          𝑡 𝑖𝑠 𝑝𝑒𝑎𝑘/𝑣𝑎𝑙𝑙𝑒𝑦
                                                                                                          ,

0                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘) =
𝑝𝑟𝑜𝑚𝑘

∫ 𝑝𝑟𝑜𝑚𝑘𝑑𝑡𝑡∈𝐷𝐴𝑉

 . 

 
 

 

In (6), the conditional probability distribution of the AV closure time interval given the IA, 

𝑝(𝐴𝑉𝑘|𝐼𝐴𝑘), is defined as the normalized IA in beat k, according to (8).  

 

𝑝(𝐴𝑉𝑘|𝐼𝐴𝑘) =
𝐼𝐴𝑘

∫ 𝐼𝐴𝑘(𝑡)
 

𝑡∈𝐷𝐴𝑉
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(9) 

(10) 

The last probability distribution needed for (4), 𝑝(𝐴𝑉𝑘|𝐴𝑉𝑘−1), is modeled as in (9), a Gaussian 

distribution centered in the previous AV interval, 𝐴𝑉𝑘−1, and with a standard deviation 𝜎𝐴𝑉 = 30 ms, 

motivated by results found in literature [47]. 

 

𝑝(𝐴𝑉𝑘|𝐴𝑉𝑘−1) = 𝐺(𝐴𝑉𝑘−1, 𝜎𝐴𝑉)  

 
Here, G(μ,σ) denotes a Gaussian function with mean value μ and standard deviation σ. However, in 

the first heartbeat there is no AV interval reference so a uniform distribution is employed. Finally, 

the AV interval is estimated as the time instant that maximizes (6). 

 

Step 3. PEP estimation. After AV closure interval estimation, PEP duration, 𝑃𝐸𝑃𝑘, is inferred. Again, 

a Bayesian strategy is followed, employing the estimated AV interval in beat k, 𝐴𝑉𝑘, and the previous 

PEP interval in beat k − 1, 𝑃𝐸𝑃𝑘−1, as in (10): 

 

𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1) ≈ 𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)   

𝑤ℎ𝑒𝑟𝑒 𝐴𝑉𝑘−1 ∈ 𝐷𝐴𝑉  𝑎𝑛𝑑 𝑃𝐸𝑃𝑘 , 𝑃𝐸𝑃𝑘−1 ∈  𝐷𝑃𝐸𝑃 

 

𝐷𝑃𝐸𝑃 denotes the time range PEP time estimation, corresponding to the time interval 𝐷𝑃𝐸𝑃 = [Q-peak 

time, Q-peak time + 210 ms]. As before, this interval was obtained experimentally and proved 

reliable. 

The conditional probability distribution of PEP duration given the AV time interval, 𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘), is 

modeled as a Gaussian centered in 𝐴𝑉𝑘 + 𝜇𝑃𝐸𝑃−𝐴𝑉 (𝜇𝑃𝐸𝑃−𝐴𝑉 = 30 ms), with a standard deviation 

𝜎𝑃𝐸𝑃−𝐴𝑉= 30 ms motivated by result found in literature [23], suggesting that AV opening occurs 

typically 30 ms after AV closure. 
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(14) 

(11) 

(12) 

(13) 

𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘) = 𝐺(𝐴𝑉𝑘 + 𝜇𝑃𝐸𝑃−𝐴𝑉, 𝜎𝑃𝐸𝑃−𝐴𝑉)  

 

The PEP interval in beat k, 𝑃𝐸𝑃𝑘, knowing PEP from the previous beat, 𝑃𝐸𝑃𝑘−1, is modeled as a 

Gaussian centered in 𝑃𝐸𝑃𝑘−1, with a standard deviation 𝜎𝑃𝐸𝑃 = 30 ms as in (12). Again, there is no 

PEP interval reference for the first heartbeat, so a uniform distribution is initially taken. 

 

𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1) = 𝐺(𝑃𝐸𝑃𝑘−1, 𝜎𝑃𝐸𝑃)  

 

 

Finally, the PEP interval is estimated as the time instant that maximizes (10). 

 

𝑃𝐸𝑃 = max
 

(𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1))  

Gaussian models only serve for bootstrapping the identification processes, so a second pass is applied 

using a data-driven approach. 

 

Step 4. Second pass. In the second pass the algorithm is run again with updated models. Mean and 

standard deviation values of p (𝐴𝑉𝑘|𝐴𝑉𝑘−1), p(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1) and p(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘), are updated using 

the obtained results. Also, the estimated AV and PEP distributions, p(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘, 𝐼𝐴𝑘, 𝐴𝑉𝑘−1) and 

p(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1) are added to the model, resulting in equations (14) and (15). There, 𝑝𝑓𝑝 stands 

for the distributions obtained with the first iteration of the algorithm. 

 

𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘, 𝐼𝐴𝑘, 𝐴𝑉𝑘−1)

≈ 𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘). 𝑝(𝐴𝑉𝑘|𝐼𝐴𝑘). 𝑝𝑓𝑝(𝐴𝑉𝑘|𝐴𝑉𝑘−1). 𝑝𝑓𝑝(𝐴𝑉𝑘|𝑝𝑟𝑜𝑚𝑘, 𝐼𝐴𝑘, 𝐴𝑉𝑘−1) 
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(15) 𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1) ≈ 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)  

 

Finally, PEP is extracted as the time instant that maximizes (15), as described in (13). 

Like it was mentioned previously, this model discards the information acquired from the worst 

channel, and the goal of the first step of this thesis was to use the discarded information to improve 

PEP estimation for the best channel. To this end, two approaches were performed and will be 

described in the following paragraphs. 

 

Figure 11 - (a) AV closure probability distribution; (b) PEP probability distribution. The dashed lines 
represent the probability distributions after the first pass of the algorithm. The solid lines denote 

the final distributions. [1] 
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3.2 Multi-channel Audio-based Estimation of PEP from the best 

channel using probability distributions from the worst channel  

As mentioned previously, the main objective of the first stage of this thesis is to use the information 

extracted from the worst channel to improve the accuracy of PEP estimation for best channel. To this 

end, a Bayesian approach is performed based in the model described in section 3.1. To the existing 

model, three probability distributions with information of the worst channel were added, resulting 

in a model that takes in consideration the information from both channels in order to extract PEP 

from the best channel. Summarizing this model, it is possible to say that the algorithm described in 

section 3.1.4 is applied twice each beat.  

Figure 12 shows an overview of the steps of the proposed model, that will be described in this section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data from two different channels: Apex and LSB 

Best channel selection 

Extract probability distributions for worst channel 

PEP extraction for the best channel using the worst channel 

Performance evaluation with echo as a standard goal 

Statistical analysis 

Figure 12 – Overview of the proposed model to extract PEP from best 
channel, using information from the worst channel in the form of 

probability distributions.  

Extract probability distributions for best channel 
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Step 1 - Perform Channel selection. 

Channel selection is performed using the algorithm described by equations (1), (2), (3) and (4) in 

section 3.1.3. The channel selection was made beat-by-beat, and after the channel that was selected 

the higher number of times was labeled the best, and the other worst. Knowing the best and the 

worst channel, the necessary probability distributions from the worst channel were extracted.  

 

Step 2 – Extraction of probability distributions for worst channel. 

According to the model described in 3.1.4, PEP is extracted as in (15): 

 

𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1) ≈ 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)     (15) 

 

As so, all the necessary probability distributions for PEP extraction regarding the worst channel are 

estimated using the algorithm described in 3.1.4: 

 Probability distribution of PEP given AV time interval of the worst channel 

(𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘)); 

 Probability distribution of PEP given PEP from last heartbeat of the worst channel 

(𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)); 

 Probability distribution of PEP given AV time interval, instantaneous amplitude and PEP from 

last heartbeat of the worst channel (𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)). 

 

Step 3- Extraction of probability distributions for best channel. 

This step is very similar to step 2, where the algorithm described in 3.1.4 is applied to extract the 

following probability distributions regarding the best channel: 
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(17) 

(16) 

 Probability distribution of PEP given AV time interval of the best channel 

(𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘)); 

 Probability distribution of PEP given PEP from last heartbeat of the best channel 

(𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)); 

 Probability distribution of PEP given AV time interval, instantaneous amplitude and PEP from 

last heartbeat of the best channel (𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)). 

 

Step 4- Extract PEP for best channel. 

With the required probability distributions extracted, at this point is possible to start PEP extraction 

for the best channel.  

To use information from the worst channel to extract PEP from the best channel, we assumed 

independence between the channels, such as: 

 

𝑝(𝐴 ∩ 𝐵) = 𝑝(𝐴). 𝑝(𝐵)  

As so, PEP from the best channel is estimated as the multiplication of the probability distributions 

from the best channel and the probability distributions from the worst channel, resulting in equation 

(17): 

 

𝑝(𝑃𝐸𝑃𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
|𝐴𝑉𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
, 𝐴𝑉𝑘𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
)

≈ 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘 , 𝑃𝐸𝑃𝑘−1) 

. 𝑝𝑓𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1) 
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(18) 

PEP is then obtained as time instant that maximizes (17): 

 

𝑃𝐸𝑃𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

= max
 

(𝑝(𝑃𝐸𝑃𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
|𝐴𝑉𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
, 𝐴𝑉𝑘𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
)) 

 

 

Figure 13- Summary of the model proposed for PEP extraction using probability distributions from 
the worst channel. 

 

Figure 13 describes the proposed model, and how it applies the algorithm from section 3.1.4 to 

extract PEP for the best channel.  
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3.3 Multi-channel Audio-based Estimation of PEP from the best 

channel using PEP from the worst channel 

The independence between both channels is a strong affirmation, and might be unreliable, so in this 

approach we consider that the two channels are dependent between each other. As this model still 

follows a Bayesian approach based in the model described in section 3.1, in this approach we used 

PEP directly from the worst channel. To summarize it, a new parameter was added to the existing 

model described in 3.1, in the form of a Gaussian centered in the PEP value of the worst channel. Like 

the last approach, it is possible to say that the algorithm described in 3.1.4 is applied twice each beat, 

once for each channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data from two different channels: Apex and LSB 

Best channel selection 

Probability distributions for PEP from best channel 

PEP extraction for the worst channel 

Performance evaluation with echo as a standard goal 

Statistical analysis 

PEP extraction for the best channel  

Figure 14 – Overview of the proposed model to extract PEP from best 
channel, using information from the worst channel in the form of a 

Gaussian centered in PEP from the worst channel. 
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(19) 

(20) 

Step 1 - Perform Channel selection. 

Channel selection is performed using the algorithm described in chapter 3.1.3. The channel selection 

was made beat-by-beat, and after the channel that was selected the higher number of times was 

labeled the best, and the other worst.  

 

Step 2 – PEP extraction for worst channel. 

According to the algorithm described in 3.1.4, PEP is extracted and the time that maximizes equation 

(15):  

 

𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1) ≈ 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)       (15) 

 

This model is applied to data from the worst channel, with the final result being a PEP value for each 

beat: 

𝑃𝐸𝑃𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = max
 

(𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1))  

 

Step 3 – Initialization of the Gaussian. 

 

In this step, a new probability distribution is created, defined as a Gaussian centered in 

𝑃𝐸𝑃𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙: 

 

𝑝(𝑃𝐸𝑃𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙) = 𝐺(𝑃𝐸𝑃𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙 , 𝛿), 𝑤ℎ𝑒𝑟𝑒 𝛿 = 30 𝑚𝑠    
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(21) 

(22) 

Step 4- Extraction of probability distributions for best channel. 

The algorithm described in 3.1.4 is applied to extract the following probability distributions regarding 

the best channel: 

 Probability distribution of PEP given AV time interval of the worst channel 

(𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘)); 

 Probability distribution of PEP given PEP from last heartbeat of the worst channel 

(𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)); 

 Probability distribution of PEP given AV time interval, instantaneous amplitude and PEP from 

last heartbeat of the worst channel (𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)). 

 

Step 5– PEP extraction for the best channel. 

The new parameter in the form of a Gaussian centered in PEP from the worst channel, is added to 

the model described in (15). As so, the new model using information from the worst channel to 

extract PEP of the best channel is described in (21): 

 

𝑝(𝑃𝐸𝑃𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
|𝐴𝑉𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
, 𝑃𝐸𝑃𝑘𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

)         

≈ 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘 , 𝑃𝐸𝑃𝑘−1) 

. 𝑝(𝑃𝐸𝑃𝑘𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
) 

 

PEP is then obtained as time instant that maximizes (21) according to (22): 

 

𝑃𝐸𝑃𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

= max
 

(𝑝(𝑃𝐸𝑃𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
|𝐴𝑉𝑘𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

, 𝑃𝐸𝑃𝑘−1𝑏𝑒𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙
, 𝑃𝐸𝑃𝑘𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙

))                      
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Figure 15 - Summary of the model proposed for PEP extraction using a Gaussian centered in PEP 
from the worst channel. 

 

Figure 15 represents que model applied in this section, and summarizes how the Bayesian model 

described in 3.1.4 is applied to extract PEP from the best channel, using information from the worst 

channel. 

 

3.4 Single-channel Audio-based Estimation of PEP using PPG 

3.4.1 Overview 

In this model, we introduce a new data collection, containing only information about one channel. In 

the other hand, the new data collection has PPG information, which allow us to use this signal to 

improve PEP extraction. The idea behind this model is to extract PEP from PPG, and use it as a 

parameter to influence the PEP calculation based in heart sound. To this end, the algorithm described 

in 3.1.4 is adapted, with the addition of a new probability distribution of PEP, extracted from PPG. To 

this end, an algorithm reported by Couceiro et al. [48] is used in order to extract LVET from PPG, that 

is after used to assess a value of PEP. The procedure of extraction of PEP from PPG will be described 

in this section sections, alongside each step of this model. In order to evaluate the results obtained, 
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the algorithm described 3.1.4 is applied to the new data collection. As the data collection only 

contains information about one channel, there is no need to perform a channel selection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.2 Experimental setup and data collection 

As the new data collection only contains information for one channel, it is not necessary to perform 

best channel selection. Therefore, PEP estimation is applied as soon as the data collection is available. 

The model will be described in the next paragraphs. 

As the last data collection, described in 3.1, this data acquisition was conducted at “Centro Hospitalar 

de Coimbra”. PPG and echocardiography were acquired simultaneously, with an ECG acquisition 

serving as a reference of the co-registration procedure [49]. The data collected involved 68 subjects 

including healthy individuals and people suffering from CVD [49]. For this thesis, we used a smaller 

data collection, using a set of 16 acquisitions from four healthy people, all males. Thus, there was 

four different acquisitions for each patient. The individuals studied were randomly selected. 

Data from one channel 

LVET extraction from PPG 

PEP probability distribution using LVET from PPG 

PEP probability distributions from heart sound 

PEP extraction using LVET from PPG 

 

Statistical analysis 

 
Figure 16- Overview of the proposed model for Single-channel audio-

based PEP extraction using PPG. 
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As in the previous data collection, the measurement protocol was conducted by an authorized 

specialist [49]. Echocardiography was acquired in Doppler mode and the annotation of aortic opening 

and closure times in echo was performed by an experienced clinical expert. PPG was collected at the 

right hand index finger [49]. 

 

3.4.3 PEP estimation 

The main goal of this model is to use features extracted from PPG to help in the audio-based PEP 

extraction. To this end, we used LVET extracted from PPG to create a probability distribution of PEP. 

Two approaches were made in this scenario, which will be explained in the following sub-chapters. 

The first model created is an adaptation of the model from [1] described in section 3.1.4, adding a 

new probability distribution to the final equation (15) of PEP estimation. This model is described in 

this section.  

As in the multi-channel approaches described previously, the algorithm reported in [45] was applied 

for the detection of Q-peaks. 

 

Step 1 – LVET extraction from PPG. 

LVET measure was performed using a model proposed by Couceiro et al. [48]. This method outputs 

some important variables, between which we highlight LVET and PPG peaks time, which were the 

ones we used for this model. 

This model is composed by four steps, described in Figure 17.  
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Pre-processing 
and baseline 

removal
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Figure 17- Overview of the proposed model for LVET extraction by Couceiro 
et al. [48] . 

 

 

 

 

 

 

Since PPG can be susceptible to many factors, a pre-processing is applied in order to minimize their 

possible effect in the next phases. Then, a segmentation of PPG is performed in order to match each 

PPG peak to a single heartbeat. The third step uses a model composed by five Gaussian functions, 

where an additional pre-processing is performed and PPG is decomposed into its main physiological 

components. LVET is then estimated from the analysis of this components. Any extra information 

about the model can be found in [48]. 

 

Step 2- Extraction of S2 start times. 

 

S2 start times were extracted using a model proposed by Paiva et al. [1]. The goal of this model is to 

segment the HS waveform into a number of candidates for S2 sound segments. To this end, the 

algorithm resorts to the application of Shannon energy operator to detail coefficients of the fast 

wavelet transform(FWT).  

 

Step 3- Synchronization of LVET values with corresponding S2 starts. 

 

The number of LVET values, S2 starts and heart beats detected differed between themselves, 

suggesting a need of synchronization. In order to guarantee that the LVET values we were using 

corresponded to the correct S2 start and beat from HS, we established some constraints: 
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(23) 

(24) 

(25) 

(26) 

(27) 

𝑅𝐸𝐶𝐺
𝑘  ≤ 𝑃𝑒𝑎𝑘𝑃𝑃𝐺 ≤ 𝑅𝐸𝐶𝐺

𝑘+1 

𝑅𝐸𝐶𝐺
𝑘  ≤ 𝑆2𝑠𝑡𝑎𝑟𝑡𝐻𝑆 ≤ 𝑅𝐸𝐶𝐺

𝑘+1 

𝑃𝑒𝑎𝑘𝑃𝑃𝐺 ≤ 𝑆2𝑠𝑡𝑎𝑟𝑡𝐻𝑆 

 

As it is possible to see in Figure 5 usually the PPG peak corresponding to beat k comes after the 

corresponding R-peak from ECG and before the R-peak of the next beat, resulting in equation (23).  

As Figure 3 demonstrates, S2 start is represented by the t-wave of an ECG, therefore it happens after 

R-peak of the corresponding beat (24).  At the same time, to guarantee that S2 start value and PPG 

peak correspond to the same beat, they must meet these conditions for the same beat. Looking at 

Figure 5 its notable that PPG peak usually occurs at the same time as T wave begins, and using 

information from Figure 3 we can see that S2 starts occurs in the decreasing stage of T wave, so 

usually PPG peak occurs slightly before S2 start. To prevent situations where multiple PPG peaks meet 

the required conditions for each S2 start, equation (25) is applied as a constraint. 

 

Step 4- PEP probability distribution. 

 

Each heart beat is now corresponded with a LVET value, a S2 start and a Q-peak time. As it was 

mentioned, PEP is the interval between the start of ventricular depolarization (Q-peak) and aortic 

valve opening, and LVET is the interval between aortic valve opening and its closure. Based on that, 

PEP and LVET can be seen in Figure 3. 

As so, PEP can be calculated as described in equation (26).  

𝑃𝐸𝑃𝑣𝑎𝑙𝑢𝑒(𝑘) = 𝑆2𝑠𝑡𝑎𝑟𝑡(𝑘) − 𝐿𝑉𝐸𝑇𝑣𝑎𝑙𝑢𝑒(𝑘) − 𝑄𝑝𝑒𝑎𝑘(𝑘)  

 

From the estimated PEP value for each peak, we created a new probability distribution in the form 

of a Gaussian described in (27): 

𝑝(𝑃𝐸𝑃𝑃𝑃𝐺) = 𝐺(𝑃𝐸𝑃𝑣𝑎𝑙𝑢𝑒 , 𝛿)  
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(28) 

(29) 

𝑃𝐸𝑃𝑣𝑎𝑙𝑢𝑒  represents the center of the Gaussian according to calculations performed in (26), and δ its 

standard deviation settle to δ=30 ms according to the literature as it was mentioned previously. 

 

Step 5- Extraction of probability distributions from heart sound. 

The algorithm described in 3.1.4 is applied to extract the following probability distributions of PEP: 

 Probability distribution of PEP given AV time interval (p(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘)); 

 Probability distribution of PEP given PEP from last heartbeat (𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)); 

 Probability distribution of PEP given AV time interval, instantaneous amplitude and PEP from 

last heartbeat (𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1)). 

 

Step 6 – PEP extraction. 

Adapting the model described in 3.1.4, the probability distribution of PEP extracted from PPG is 

added, resulting in equation (28): 

 

(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1, 𝑃𝐸𝑃𝑃𝑃𝐺)

≈ 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘 , 𝑃𝐸𝑃𝑘−1). 𝑝(𝑃𝐸𝑃𝑃𝑃𝐺) 

The final value of PEP is then calculated as the time that maximizes (27): 

 

𝑃𝐸𝑃 = max
 

(𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝑃𝐸𝑃𝑘−1, 𝑃𝐸𝑃𝑃𝑃𝐺))  

 

In order to see if the new probability distribution (𝑝(𝑃𝐸𝑃𝑃𝑃𝐺)) was having a positive effect in PEP 

calculation, the influence of the parameter was increased by reducing the standard deviation of the 

Gaussian. As so, all the steps mentioned above were repeated δ=15ms. The lower the value of δ, the 
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more influence will the distribution have in the final extraction of PEP, but its value was fixed in 

δ=15ms since we are aware of the error propagation resulting from steps 1, 2 and 4. To better 

understand the proposed model, Figure 18 summarizes all the steps taken to extract PEP using PPG. 

 

Figure 18- Summary of the proposed model for PEP extraction using PPG. 
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(30) 

(31) 

3.4.4 Single channel Audio-based Estimation of PEP using PPG: second approach 

The second approach applied to extract PEP was very similar to the last one described in 3.4.3. The 

idea behind this model was to not limit PEP variations from beat to beat while still using PEP from 

PPG as a parameter to extract PEP. As so, the difference between this model and the last one, is that 

this model does not used the probability distribution of PEP knowing the PEP from the last beat 

(𝑝(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)). As so, step 1,2,3 and 4 of the last model were repeated and the following steps 

can be found below: 

 

Step 5- Extraction of probability distributions from heart sound. 

The algorithm described in 3.1.4 is applied to extract the following probability distributions of PEP: 

 Probability distribution of PEP given AV time interval of worst channel (𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘)); 

 Probability distribution of PEP given AV time interval and instantaneous amplitude of worst 

channel (𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘)). 

 

Step 6 – PEP extraction. 

Adapting the model described in 3.1.4, the probability distribution of PEP extracted from PPG is 

added, resulting in equation (30): 

 

(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑃𝑃𝐺) ≈ 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘). 𝑝𝑓𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘). 𝑝(𝑃𝐸𝑃𝑃𝑃𝐺) 

 

The final value of PEP is then calculated as the time that maximizes (30): 

 

𝑃𝐸𝑃 = max
 

(𝑝(𝑃𝐸𝑃𝑘|𝐴𝑉𝑘, 𝐼𝐴𝑘 , 𝑃𝐸𝑃𝑃𝑃𝐺)) 
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As in section 3.4.3, in order to evaluate how the new probability distribution was affecting PEP 

calculation, all the steps referred above were repeated a different standard deviation for 

𝑝(𝑃𝐸𝑃𝑃𝑃𝐺) (δ=15 ms). 
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Chapter 4 
 

Results and Discussion 
 

 

4.1 Multi channel Audio-Based Estimation of PEP 

4.1.1 Existing model 

As the main goal of this thesis was to improve the accuracy of an audio based extraction of PEP 

reported by Paiva et al. [2] it’s important to evaluate its results first, in order to compare the results 

obtained using the new models with those already established. In this section, the results obtained 

in [2] for multi-channel audio-based estimation of PEP are detailed according to what was reported.  

 

 

 

 

 

 

 

 

 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.465. 

Table 8 -  PEP median, mean and standard deviation results from Paiva et al. [2] in ms. 

PEP estimation results (ms) 

Median 65.5 

Mean 67.3792 

Standard Deviation 6.2356 

Table 9 - PEP error mean and standard deviation results from Paiva et al. [2], in ms. 

Error estimation results (ms) 

Mean 9.2692 

Standard Deviation 7.1457 
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In order to perform a statistical analysis regarding the results from the new models, it is necessary to 

know if the distribution of the error of the existing results is Gaussian. To this end, a Kolmogorov-

Smirnov test was applied with a significance level of 5% as default, revealing that the error 

distribution is Gaussian.  

 

4.1.2 Best results obtained with Multi-channel models 

 

In this section the best results obtained with each model regarding a multi-channel approach are 

detailed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19- Results from PEP(blue) and echo(green) 
values from Paiva et al. [2]. 
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4.1.2.1 Multi-channel Audio-based Estimation of PEP from the best channel using 

probability distributions from the worst channel 

 

This sub-section details the results obtained using the model described in 3.2. This model uses three 

probability distributions (𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘 |𝐴𝑉𝑘), 𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑃𝐸𝑃𝑘|𝑃𝐸𝑃𝑘−1)),

𝑝𝑤𝑜𝑟𝑠𝑡𝑐ℎ𝑎𝑛𝑛𝑒𝑙 (𝑃𝐸𝑃𝑘| 𝐴𝑉𝑘, 𝐼𝐴𝑘, 𝑃𝐸𝑃𝑘−1) to extract PEP. Table 10 summarizes the results obtained for 

the PEP value, while Table 11 is related with the error in the calculation of PEP.  

 

 

 

 

 

 

 

 

 

 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.420.  

 

 

Table 10 - PEP median, mean and standard deviation results from Multi-channel audio based PEP 
extraction from best channel using probability distributions from the worst channel, in ms. 

PEP estimation results (ms) 

Median 68.5 

Mean 68.5445 

Standard deviation 6.5559 

Table 11 - PEP error mean and standard deviation results from Multi-channel audio based PEP 
extraction from best channel using probability distributions from the worst channel, in ms. 

Error estimation results (ms) 

Mean 9.4062 

Standard deviation 7.4379 
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Figure 20 - Comparison of the results from the model detailed in 3.1.4 with the new model 
described in section 3.2. (PEP(blue) and echo(green)). 

 

It is possible to see a slightly decrease in the algorithm accuracy, which is notable in Figure 20, where 

the extracted PEP by the new model does not follow PEP from echo with the same quality. Although 

the calculated PEP with the new model follows a very close pattern to the existing model, it is clear 

that PEP values between each beat are do not vary as much as its supposed, suggesting 𝑃𝐸𝑃𝑘−1 has 

a stronger influence in 𝑃𝐸𝑃𝑘  than previously. Also, the correlation value between PEP extracted and 

PEP from echo decreases, confirming the decrease in the accuracy of PEP extraction using the new 

model. Even then, a statistical analysis between the error of both models is performed to verify if the 

difference between the models is statistically significant. To this end, a Kolmogorov-Smirnov test was 

applied to the error distribution of the new model, that was found to be Gaussian. As so, a paired T-

test was carried out and the results achieved with the new model proved to be statistical significant 

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  3.2979 × 10−7 < 0.01).  Considering the error increase from 9.27 ms to 9.41 ms 

(1.5%), we can conclude that this model does not need to be discarded, as it has room for 

improvement and has potential to improve the existing results.  
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4.1.2.2 Multi-channel Audio-based Estimation of PEP from the best channel using PEP 

from the worst channel 

In this section, we can see the results obtained using a Gaussian centered in the PEP value from the 

worst channel, to extract PEP from the best channel. The Gaussian is updated every beat, using the 

PEP from beat k of the worst channel, to extract the PEP of beat k of the best channel. Standard 

deviation is settled as 30 ms in this section as that was the one that presented the best results for 

this model. Table 12 summarizes the results obtained for the PEP value, while Table 13 is related with 

the error in the calculation of PEP. 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.418. 

 

Table 12 - PEP median, mean and standard deviation results from Multi-channel audio based PEP 
extraction from best channel using PEP from the worst channel, in ms. δ=30. 

PEP estimation results (ms) 

Median 68.5 

Mean 68.4470 

Standard deviation 6.4780 

Table 13 - PEP error mean and standard deviation results Multi-channel audio based PEP extraction 
from best channel using PEP from the worst channel, in ms. δ=30. 

Error estimation results (ms) 

Mean 9.5064 

Standard deviation 7.3242 
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Figure 21 - Comparison of the results from the model detailed in 3.1.4 with the model described in 
3.3 using δ= 30 ms (PEP(blue) and echo(green)). 

 

 

This approach shows results very close to the ones in section 4.1.1, increasing the error of PEP 

extraction slightly. Across all beats, it is possible to see in Figure 21 that the new model follows a very 

similar pattern to the existing model. Once again, PEP seems to not vary very much in consecutive 

beats, excluding the biggest variations. This monotony suggests PEP from the last beat is having a 

bigger influence in PEP of the current beat, and seems to be limiting its variation. As the last model, 

this one also presents a decrease in the correlation value between PEP extracted and PEP from echo, 

which corroborates the decrease in accuracy of PEP extraction. The results from this model, are worse 

than the ones obtained with model described in section 3.2, suggesting that using PEP directly from 

worst channel to extract PEP from the best channel is not a good procedure. A statistical analysis was 

performed in order to evaluate the statistical significance of the difference between this model and 

the one reported by Paiva et al. [2]. Error distribution was found to be Gaussian. Therefore, a paired 

T-test was applied to compare the models and the results proved to be statistically significant, with 

a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  2.7690 × 10−9 < 0.01. The results suggest the model was not performing according 

to what is expected, and therefore the model was applied one more time with different parameters 

in order to evaluate where was the problem. The second application of the model will be described 

forward in this document. 
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4.2 Single-channel Audio-based Estimation of PEP using PPG 

 

4.2.1 Existing model 

As referred previously, the new models adapt the algorithm reported in [1] include PPG in the model. 

As so, this section describes the results obtained using the model from [1] without the inclusion of 

PPG, and served as a standard to evaluate the improvement of the new models.  

 

Table 14 - PEP median, mean and standard deviation results from the existing algorithm [1], in ms. 

PEP estimation results (ms) 

Median 73 

Mean 73.3952 

Standard deviation 3.0868 

 

Table 15 - PEP error mean and standard deviation results from existing algorithm [1], in ms. 

Error estimation results (ms) 

Mean 6.1695 

Standard deviation 4.3691 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) 

was 0.553. 
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4.2.2 Best results obtained with Single-channel models 

In this section the best results obtained for each model created for a single-channel approach are 

detailed.  

4.2.2.1 Single-channel Audio-based Estimation of PEP using PPG  

This section is dedicated to evaluate the results obtained with the model described in 3.4.3 with the 

standard deviation for the Gaussian used settled in 15 ms. This procedure was the one that delivered 

the best results amongst all the different approaches for the single-channel audio-based PEP 

estimation using PPG. The main goal of the analysis of this results to evaluate if using PPG to extract 

PEP is a good procedure. Result regarding the values of PEP extracted can be seen in Table 16  and 

the corresponding error in Table 17. 

 

  

 

Figure 22 - Results from PEP(blue) and echo(green) values from the single-
channel audio-based PEP extraction using the Paiva et al. [1] algorithm. 
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Table 16 - PEP median, mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG, in ms: model from 3.4.3, δ=15. 

PEP estimation results (ms) 

Median 73.33 

Mean 71.5483 

Standard deviation 4.5717 

 

Table 17 - PEP error mean and standard deviation results Single channel audio-based PEP 
estimation using PPG, in ms: model from 3.4.3, δ=15. 

Error estimation results (ms) 

Mean 5.4110 

Standard deviation 4.1260 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.630.  

 

Figure 23 - Comparison of the results from the model described in 3.1.4 with the model proposed in 
3.4.3, using δ= 15 ms (PEP(blue) and echo(green)). 
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This model provides results very similar with the model from Paiva et al [1]. The biggest difference 

between models in Figure 23 is represented between beats 50 and 100, where the extracted PEP 

values are closer to the ones from echo. This difference is reflected in the value of the error, 

decreasing slightly when using the new model. This suggests that the model implemented to extract 

PEP from PPG using LVET is a very promising tool regarding PEP extraction. To evaluate the statistical 

significance of the difference between the errors, a statistical analysis was applied. A Kolmogorov-

Smirnov test was applied and since both distributions proved to be Gaussian a paired T-test was 

applied. With a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  5.3434 × 10−21 < 0.01 we can safely say that the differences are 

statistically significant. Therefore, considering the improvement of 12% in the error value, this model 

has a potential to assess PEP using PPG with high accuracy.  

 

4.3 Other results 

As it was mentioned previously, more procedures were performed for both multi-channel and single-

channel approaches. This section is dedicated to the analysis of this results. 

 

4.3.1 Multi-channel Audio-based Estimation of PEP from the best channel using PEP 

from the worst channel 

For the multi-channel approach using a new probability distribution in the form of a Gaussian 

centered in the PEP value of the worst channel, we performed one more procedure where the 

standard deviation of this Gaussian was reduced to δ=15 ms. The main goal of this approach was to 

increase the influence of this Gaussian to assess PEP for best channel. The results can be observed in 

Table 18 and Table 19. 

 

 

 

 

 



57 
Bruno Cerqueira 

 

 

P
EP

 v
al

u
e 

(m
s)

 

P
EP

 v
al

u
e 

(m
s)

 

Heart beats 

 

 

 

 

 

 

 

 

 

 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.348 compared to the 0.418 obtained with a larger standard deviation. 

 

 

Figure 24 - Comparison of the results from the proposed model in 3.3 using δ= 15 ms and δ= 30 ms  
(PEP(blue) and echo(green)). 

 

PEP estimation results (ms) 

Median 71.0000 

Mean 68.8877 

Standard deviation 7.4011 

Table 18 - PEP median, mean and standard deviation results from Multi-channel audio based PEP 
extraction from best channel using PEP from the worst channel, in ms. δ=15. 

Error estimation results (ms) 

Mean 10.0210 

Standard Deviation 7.7412 

Table 19 - PEP error mean and standard deviation results from Multi-channel audio based PEP 
extraction from best channel using PEP from the worst channel, in ms. δ=15. 
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With the decrease of the standard deviation of the Gaussian centered in PEP from the worst channel, 

it is expected to see that Gaussian being to influence more the final result of PEP from ECG. With a 

major raise in the error of PEP calculation, it suggests that the information of PEP from the worst 

channel is not a good parameter to use to extract PEP from the best channel. Alongside the increase 

in the error value, the correlations suffered a major decrease corroborating the suspects. 

 

 

Figure 25 - Comparison of the results from the model described in 3.1.4 with the new model 
proposed (3.3) using δ= 15 ms (PEP(blue) and echo(green)). 

 

As expected, when the δ= 15 ms the model results are worse than the ones extracted using the model 

reported by Paiva et al. [2]. The curve of extracted PEP values does not follow PEP values as good as 

the existing model does, suggesting one more time that using the PEP value from the worst channel 

is not a good procedure. Nevertheless, a statistical analysis was applied where a Kolmogorov-Smirnov 

test was proved both error distributions to be Gaussian and therefore a paired T-test was applied. 

Comparing the models, the results proved to be statistically significant with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =

 3.2417 × 10−7 < 0.01. 
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4.3.2 Single-channel Audio-based Estimation of PEP using PPG: Model from 3.4.3  

This section is dedicated to evaluate the results obtained with the model described in 3.4.3 with the 

standard deviation for the Gaussian used settled in 30 ms. The difference between the standard 

deviation is applied with the purpose of evaluating the influence of the new probability distribution 

extracted from PPG in the final extraction of PEP from heart sound.  

 

Table 20 - PEP median, mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.3, in ms. δ=30. 

PEP estimation results (ms) 

Median 71.6667 

Mean 72.3605 

Standard Deviation 3.6508 

 

Table 21 - PEP error mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.3, in ms. δ=30 

Error estimation results (ms) 

Mean 5.5633 

Standard Deviation 4.1017 

 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.645 compared to the 0.630 from the same model with a larger standard deviation. 
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Figure 26 - Comparison of the results from the model described in 3.1.4 with the new model 
proposed (3.4.3) using δ= 30 ms (PEP(blue) and echo(green)). 

 

 

 

Figure 27 - Comparison of the results from the new model (3.4.3) using δ= 30 ms and δ= 15ms 
(PEP(blue) and echo(green)). 

 

From Figure 27 it is possible to see that regardless the δ used, both procedures have very similar 

results, with the biggest difference being between beats 50 and 100. The error value is slightly higher 

when a larger standard deviation is used, which indicates that the probability distribution has a good 

effect in the accuracy of PEP extraction. With such similar results using two different values of 
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standard deviation, it is useful to verify is this difference is statistically significant. The Kolmogorov-

Smirnov test proved both distributions to be Gaussian, and a paired T-test was applied. With a 𝑝 −

𝑣𝑎𝑙𝑢𝑒 =  1.8143 × 10−21 < 0.01 the results proved to be statistically significant. The same 

procedure was applied between the results from this model and the model described in 3.1.4, and 

once again they proved to be statistically significant with a 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  2.6868 × 10−20 < 0.01. 

The results strongly suggest that using this model is a good procedure, and the addition of the 

probability distribution of PEP value extracted from PEP improves the accuracy of the existing model. 

 

 

4.3.3 Single-channel Audio-based Estimation of PEP using PPG: Model from 3.4.4  

As described in section 3.4.4, a model without using PEP from the last heart beat was applied as well 

using PPG. This model was applied twice with standard deviation values δ=30 and δ=15. The first 

results shown are the ones regarding δ=30.  

 

Table 22 - PEP median, mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.4, in ms. δ=30. 

PEP estimation results (ms) 

Median 71.3333 

Mean 72.0065 

Standard Deviation 4.1292 

 

Table 23 - PEP error mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.4, in ms. δ=30. 

Error estimation results (ms) 

Mean 5.8685 

Standard Deviation 4.5149 
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The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.522. 

In the next two tables is possible to see the results from the same model, with a standard deviation 

δ=15 ms. As it was mentioned previously, the difference between the standard deviations is applied 

in order to evaluate the influence of the probability distribution in assessing PEP. 

 

Table 24 - PEP median, mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.4, in ms. δ=15 

PEP estimation results (ms) 

Median 71.3333 

Mean 71.5993 

Standard Deviation 4.4824 

 

Table 25 - PEP error mean and standard deviation results from Single channel audio-based PEP 
estimation using PPG: model from 3.4.4, in ms. δ=15 

Error estimation results (ms) 

Mean 5.5935 

Standard Deviation 4.3026 

 

The correlation value between PEP values extracted and PEP values from echo (golden standard) was 

0.586. 



63 
Bruno Cerqueira 

 

 

P
EP

 v
al

u
e 

(m
s)

 
P

EP
 v

al
u

e 
(m

s)
 

Heart beats 

Heart beats 

 

Figure 28 - Comparison of the results from the model described in 3.1.4 with the new model 
proposed (3.4.4) using δ= 30 ms (PEP(blue) and echo(green)). 

  

 

 

Figure 29 - Comparison of the results from the new model (3.4.4) using δ= 15 ms and δ= 30ms 
(PEP(blue) and echo(green)). 

 

Once again the model proposed using PPG improves the accuracy in PEP extraction. The removal of 

𝑃𝐸𝑃𝑘−1 is followed by a minor increase of the error in PEP from ECG calculation. Although the results 

are better than the results from the existing algorithm, showed in section 4.4, they are slightly worse 
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than the ones obtained while using PEP from the last beat. This result suggests that there is room to 

work in the model, and 𝑃𝐸𝑃𝑘−1 appear to not be absolutely necessary, which indicates that the 

model is performing well by not needing this limitation for PEP values. Nevertheless, it I possible to 

see that between beat 150 and 200 there’s too much variation between PEP values of consecutive 

beast, which may be part of the cause of the decrease in the accuracy when compared to the method 

using 𝑃𝐸𝑃𝑘−1. A statistical analysis was applied to compare the results of this model with the one 

reported by Paiva et al. [1], and to compare the results between the different standard deviations 

inside the same model. All error distributions were proved to be Gaussian according to the 

Kolmogorov-Smirnov test, so paired T-tests were applied. All results have proved to be statistically 

significant, where the p-value between different standard deviations settled in 1.1830e-08. Between 

the new model using δ= 30ms and the existing model, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  1.9164 × 10−26 < 0.01 and 

when the standard deviation changed to δ= 15ms, the extracted 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  1.3520 × 10−24 <

0.01. 
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Chapter 5 
 

Conclusions 

This thesis investigates two different possibilities to measure PEP using the HS. The first models 

developed study data from two different channels, and after the evaluation of each channel accuracy, 

they focus in the measure of PEP from the best channel, while using physiological properties from 

the worst channel. Since both channels contain data from the same patient, it is a good procedure to 

not discard information from any of those, even if the accuracy of the same is not as good as the 

other one. To this end, two different models were applied in order to use the information provided 

from both channel, to measure PEP values for the best channel. This study for the multi-channel 

approach was conducted on 8 healthy volunteers. Both models follow a Bayesian approach based in 

[1], where the channel selection was performed by a model reported in [2]. The second stage of this 

thesis is focused in a single channel model who aims to measure PEP in an audio-based approach, 

while using physiological properties acquired from a PPG signal.  

For the multi-channel models created, the results obtained suggest that the new models represent a 

worse approach than the one reported by Paiva et al. [2]. Between the two models presented, it was 

not possible to verify an increase in the accuracy of measuring PEP when this information is used. 

This results might be related with the fact that the worst channel does not measure the physiological 

properties used with the same accuracy the best channel does. Nevertheless, the accuracy in 

measuring PEP does not decrease in a very significant scale, suggesting that both models have 

potential to be applied to extract PEP. Our results suggest that in a multi-channel approach it is better 

to not include information from channels that have worse performances based in the channel 

selection algorithm, and that information is not extracted with the necessary accuracy. Nevertheless, 

we find interesting the possibility of applying the model to a higher number of channels, representing 

an interesting study to perform in the future. The introduction of new channels represents an 

increase in the information that can be used to assess PEP that can be effective to improve the 

accuracy of this measurement.  
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To prove the statistical significance of these models, we would also like to extend the data collection 

as the current one is not very large. The main limitation of both models is the difficulty involved in 

the detection of the aortic valve opening, and a way to improve that can be using different signals to 

extract that timing, in an attempt to improve the performance of this procedure. In the future, we 

plan to extend this study to measure LVET as well.  

After some approaches to achieve the multi-channel model, we realized that the acquisition and 

consequently the database might not be good enough. We were aware of this since the beginning, 

but we still though that it was worth to give it a try to improve the previous results. Data collection 

was changed to the one reported in [49] that was limited with data from only one channel. On the 

other hand, the new data collection was provided with information from a new signal, PPG. The initial 

goal of the second stage of this thesis was to segment S2 and study the split properties between its 

main components, but we decided to change the route and apply the Bayesian model reported in [1] 

to this data collection, in order to try to improve the existing model. To this end, we decided to use 

information from the new signal, PPG, by measuring PEP and creating a new probability distribution. 

PEP was calculated using LVET [49], S2start [1] and Q-peak [45] times as described previously. The 

results from the proposed models suggest the potential of the application of PPG when measuring 

PEP in an audio-based approach. This procedure provided an improvement in the accuracy of PEP 

measurement, by adding the information obtained from PPG. This supports the possibility that the 

accuracy in PEP measurement can be improved by using information from several signals. The larger 

the number of different signals, the larger will be the amount of information possible to extract, and 

the higher should be the accuracy in measuring physiological properties. In the future we want to 

extend the data collection in order to prove the statistical significance of this results. Also, we want 

to extend this study to measure LVET in an audio-based approach, while using LVET extracted from 

PPG to accurately measure the systolic time interval.  
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