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Abstract

Topological insulators (TIs) are a new quantum state of matter that has attracted great
interest due to their unique properties and potential applications in spintronics. These
materials have an energy gap in the bulk, like an ordinary insulator, but have helical
conducting states on the surface. These states arise from the combination of spin-
orbit coupling and time reversal symmetry. Bismuth chalcogenides have been the most
extensively studied materials due to their simple surface states and single Dirac cones.
Bi2Se3, in particular, has an approximately ideal Dirac cone, which makes it particularly
interesting as a prototype of topological insulators.

In this work, we synthesized Bi2Se3, Bi2Se3−xTex , x = 0.1, 0.3, 0.5 and Bi2Te3 by
a microwave-assisted method. The structural, morphological and composition charac-
terization of the nanocrystals was performed. Furthermore, the transport properties of
two samples of Bi2Se3 were measured, one of them with impurity phases. In the ana-
lyzed nanomaterials one can observe weak anti-localization (WAL) effect, which can be
modeled by the Hikami-Larkin-Nagaoka (HLN) formula, and also Shubnikov-de Haas
oscillations. For both samples, the dependence of the phase coherence length lφ with
temperature followed the expected for a two-dimensional system (lφ ∼ T−1/2), suggest-
ing the existence of 2D surface states in the gap of the 3D material. However, the Hall
effect suggests that the bulk is not insulator and the bulk states are relevant to the
transport properties.

The most important result of this work is that we have shown that polycrystalline
samples of Bi2Se3, even those that are contaminated with parasitic phases, preserve the
WAL effect. The relatively high coherence length of the electrons measured in the nano-
material led us to conclude that the quantum phenomena of weak anti-localization and
SdH oscillations are robust to the presence of non-magnetic impurities and structural
defects.

Keywords: Topological insulator, weak anti-localization, Shubnikov-de Haas oscil-
lations, magnetoresistance, nanostructured materials





Resumo

Os isoladores topológicos são um novo estado da matéria que tem suscitado grande inter-
esse devido às suas propriedades únicas e a potenciais aplicações em spintrónica. Estes
materiais possuem um gap energético no bulk, como os demais isoladores, mas possuem
estados condutores helicoidais na superfície. Estes estados surgem da combinação do
acoplamento spin-órbita e da simetria de reversão temporal. Os calcogenetos de bis-
muto têm sido os materiais estudados mais extensivamente devido aos seus estados de
superfície simples e cones de Dirac únicos. Bi2Se3, nomeadamente, tem um cone de Dirac
aproximadamente ideal, o que o torna particularmente interessante como protótipo dos
isoladores topológicos.

Neste trabalho procedeu-se à síntese por micro-ondas de Bi2Se3, Bi2Se3−xTex , x =
0.1, 0.3, 0.5 e Bi2Te3, e à caracterização estrutural, morfológica e de composição dos
nanocristais obtidos. Além disso, foi realizado o estudo das propriedades de transporte
de duas amostras de Bi2Se3, uma das quais com fases correspondentes a impurezas.
Os nanomateriais analisados possuem anti-localização fraca (WAL), que pode ser mode-
lada pela fórmula de Hikami-Larkin-Nagaoka (HLN), bem como oscilações Shubnikov-de
Haas. Para ambas as amostras, o comportamento do comprimento de coerência de fase
lφ com a temperatura segue o esperado para um sistema bidimensional (lφ ∼ T−1/2),
evidenciando a existência de estados de superfície 2D existentes no gap do material 3D.
No entanto, o efeito de Hall sugere que o bulk destas amostras não é isolador, sendo os
estados de bulk relevantes para as propriedades de transporte.

O resultado mais importante deste trabalho reside no facto de se ter mostrado que
as amostras policristalinas de Bi2Se3, mesmo aquelas contaminadas com fases parasíti-
cas, preservam o efeito de WAL. Concluímos que, dado o relativamente elevado com-
primento de coerência eletrónica medido no nanomaterial, os fenómenos quânticos de
anti-localização fraca, bem como as oscilações quânticas SdH, são robustas à presença
de impurezas não magnéticas e defeitos estruturais.

Palavras-chave: Isolador topológico, anti-localização fraca, oscilações Shubnikov-
de Haas, magnetorresistência, materiais nanoestruturados
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Chapter 1

Introduction

In condensed-matter physics, the order of a state of matter is usually described by the
symmetries they spontaneously break: crystalline solids, magnets and superconductors
are therefore described by translational, rotational and gauge symmetries, respectively.
In the recent years a new state of matter has emerged, where no spontaneous break of
symmetry occurs. Instead, its behavior depends only on the topology. These materials,
the topological insulators (TIs), are therefore a new class of materials with important
quantum-mechanical properties. These have a typical insulator behavior in the bulk,
with separated conduction and valence bands, while having conducting states at the
surface. However, these were not the first class of topological materials. The first
example of a quantum state with no spontaneous break of symmetry was the Quantum
Hall (QH) state, discovered in 1980 [1]. The QH effect is verified in electronic systems
subjected to strong magnetic fields and it consists of a conducting channel along the
boundary, the edge state, around the insulating bulk. This state defines a topological
phase since some properties, as the quantized Hall conductance, are insensitive to smooth
changes and only change when the system undergoes a phase transition.

A few years later, in 1988, Haldane proposed that QH effect could occur even in the
absence of a macroscopic magnetic field [2]. Alternatively, the electrons would move on
a lattice and would be driven by forces resulting from their motion in the said crystal
lattice, analogue to the Lorentz force for an electric charge in a magnetic field [3]. More
recent studies replaced those forces by the spin-orbit coupling, a relativistic effect in
which the degrees of freedom of the spin and momentum are coupled, causing the elec-
trons to feel a spin-dependent force. In 2003 some simplified models were introduced [4],
showing that spin-orbit coupling could lead to quantum spin Hall (QSH) effect, although
it does not break time-reversal symmetry. Note that this is opposite to what happens
in the QH state, where the applied magnetic field breaks time-reversal symmetry. The
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quantum spin Hall effect can be regarded as a combination of two quantum Hall states,
where electrons with spin-up or spin-down will move in opposite directions in the edge.
However, these models were not realistic, since they failed, for example, to predict if
the QSH would survive the addition of impurities [5]. In 2005 Kane and Mele proposed
a more realistic model similar to a graphene model with spin-orbit coupling (SOC) [6].
Here, SOC acts as spin-dependent magnetic field for the electron spins, aligning them
in relation to the momentum direction and, therefore, causing spin polarization.

However, the graphene used to build the model could not be used to experimentally
observe the QSH effect, since the spin-orbit coupling in this material is very weak. But
another theoretical advance was made in 2006 by Bernevig, Hughes and Zhang [7], who
predicted that CdTe/HgTe/CdTe quantum wells should give rise to a 2D topological
phase. One year later, this prediction was verified by König et al. [8], where the
quantized charge conductance was observed, as a plateau similar to what happens in the
quantum Hall effect, but in zero magnetic field. Hence, this was the first experimental
observation of a 2D topological insulator.

Although there is no quantum Hall state in 3D, the topological insulator state can
be generalized to a three-dimensional state. However, it is a subtle generalization and is
considered as one of the milestones in the topological insulators field [9, 10]. It consists
of an evolution of the edge states based on the intrinsic band structure. Thus, the 1D
edge states in the QSH effect would evolve into 2D surface states in three-dimensional
topological insulators [11].

For a topological insulator to form there must exist a strong spin-orbit coupling, in
order to modify the band structure significantly. Since spin-orbit coupling is a relativis-
tic effect, obtained as a consequence of the Dirac equation in the nonrelativistic limit,
only heavy elements will have a strong interaction and the Dirac fermion physics (with
linear energy dispersion relations) becomes relevant. Pure bismuth is a semimetal with a
strong spin-orbit coupling. Besides that, the most promising candidates seem to be semi-
conductors with small bandgaps, since the bandgap should not be much larger than the
energy-scale of SOC. BixSb1−x was the first material predicted to be a three-dimensional
topological insulator [12], in 2007. The experimental verification occurred soon after that
by Hsieh et al. [13]. Its unusual surface bands were observed by angle-resolved pho-
toemission spectroscopy (ARPES). This technique uses a high-energy photon to eject
an electron from a crystal. The bulk or surface electronic structure can then be de-
termined by the analysis of the momentum of the projected electron. High-resolution
ARPES allows to separate the surface states from that of the bulk, since the former do
not disperse in the direction perpendicular to the surface, while bulk states do. The
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experimental discovery of BixSb1−x motivated a search for other topological insulators,
namely ones with simpler surface states and larger band gaps, since that would allow
to observe topological insulator phases at higher temperatures. The new generation of
topological insulators of Bi2Se3 and Bi2Te3 have simpler surface states predicted by the-
ory and confirmed by ARPES. In addition, they are pure compounds, rather than alloys
like BixSb1−x , which would, in principle, favor the higher purity of the synthesis [14].

However, not every material is suitable for ARPES, which demands good quality
single crystals. When these are not available, transport experiments are used to confirm
the TI materials. One should confirm that the transport is surface-dominant and that
the carriers are Dirac fermions. Some of the properties of these materials can help
to characterize them. Dirac fermions are known to acquire a Berry phase of π when
the wave vector is rotated along a closed path [15]. This π Berry phase leads to a
destructive interference between two time-reversed paths, which leads to the weak anti-
localization effect. Besides that, when a crystalline solid is subjected to high magnetic
fields, the Landau quantization leads to oscillation phenomena generally called quantum
oscillations [16]. Since the phase factor of the oscillations is related to the Berry phase,
one can therefore understand if the electrons responsible for the oscillations are Dirac
fermions and, ultimately, confirm the TI nature of the material. This is important since
there are other phenomena, as trivial accumulation or inversion layers, that may cause
surface-dominated transport [16].

The possible applications in spintronics and quantum computing, closely related
to the transport properties of these materials, have created a great interest for this
unique state of matter. The study of such an interesting “hot topic” in physics, cou-
pled to the importance of the transport properties in TIs, are the motivation for this
work. Therefore, the goal of this thesis is the synthesis of materials with possible topo-
logical insulator phases, namely Bi2Se3, Bi2Se3−xTex , x = 0.1, 0.3, 0.5 and Bi2Te3, and
their characterization via Powder X-Ray Diffraction, Scanning Electron Microscopy and
transport measurements using a magnetometer.

The dissertation is structured as follows: Chapter 2 is dedicated to the introductory
aspects of the topology in topological insulators. Concepts as the Berry phase, the Z2

topology, two and three-dimensional TIs are discussed in this chapter. A short intro-
duction to the materials of our interest is also presented. In Chapter 3 we discuss the
theoretical aspects of the transport properties in the scope of this thesis. The weak lo-
calization and anti-localization effects are presented, as well as the quantum oscillations
observed in the resistivity. The Chapter 4 consists of a description of the experimental
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methods, including the equipment used on the synthesis and characterization measure-
ments. In Chapter 5 a presentation and discussion of the results is reported. The first
six sections are dedicated to the characterization and morphology studies of the synthe-
sized compounds, whereas in the last three sections we report the transport properties
measured in three samples. Finally, in Chapter 6, the conclusions and suggestions for
further work are presented.



Chapter 2

Topology in Topological Insulators

2.1 Topology and Band Theory

One of the goals of condensed matter physics is to characterize phases of matter. One
of the common ways to understand the phases of certain materials is the symmetries
they spontaneously break. However, there are some phases that cannot be understood
in those terms. In the recent decades, it was discovered that the quantum Hall state,
that does not break any symmetries, can be described in terms of topological order.
Some of the properties of this state, such as the quantized Hall conductivity and the
number of conducting edge modes, can be understood as consequences of the topological
structure of the state. With the recent discovery of topological insulator materials, the
interest in the study of topological order increased. In order to understand the concepts
of topological order, it is necessary to review the key elements of topology and band
theory.

Topology is a branch of mathematics dedicated to the study of objects insensitive
to smooth deformations. One of the most well known and illustrative examples is the
example of closed two-dimensional surfaces in 3-dimensions. A sphere can be smoothly
deformed into a disk, but it can never be smoothly deformed into the surface of a
doughnut. These two surfaces are topologically distinct. The topological invariant is, in
this case, called the genus, g, which is essentially the number of holes. Integers cannot
change smoothly and, consequently, surfaces with different genus cannot be deformed
into one another. On the other hand, surfaces with the same genus are said to be
topologically equivalent.

For surfaces, the topological invariant that characterize an object can be determined
by the Gauss-Bonnet theorem. It states that the integral of the Gaussian curvature, K,
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over a surface defines an integer topological invariant, known as Euler characteristic,

χ = 1
2π

∫
S

K dA. (2.1)

This invariant is directly related to the genus by χ = 2 − 2g.

Although this was an illustrative example, the principles concerning topological in-
sulators are similar. The topological invariant will, however, describe more abstract
objects. In fact, topology for electronic materials is caused by the “foldings” of the wave
function of the electrons. The topology in cause is then the topology of the Hilbert
space.

Similarly to what was described for the two-dimensional surfaces, insulators are said
to be equivalent if they can be interchanged by slowly changing the Hamiltonian, main-
taining the system in the ground state. The equivalence can be understood in terms of
adiabatic continuity. The scale of how low the adiabatic process must be is defined by
the energy gap, EG. Therefore, if there is an adiabatic path connecting two insulators
with the energy gap remaining finite, the insulators are topologically equivalent. Also,
if two inequivalent insulators are connected, the energy gap must be zero at some point,
causing a phase transition.

Assuming that the material is crystalline, the translation symmetry allows the single
particle states to be labeled by their momentum k. These states can be written according
to Bloch’s theorem

|ψ(k)⟩ = eik·r |u(k)⟩ , (2.2)

where |u(k)⟩ is a cell periodic eigenstate of the Bloch Hamiltonian,

H(k) = eik·rHe−ik·r. (2.3)

The eigenvalues Em(k) and eigenstates |um(k)⟩ define the energy bands that collec-
tively form the band structure of the solid, m being the band index.

All conventional insulators are equivalent and equivalent to the vacuum (from Dirac’s
theory, vacuum has an energy gap for pair production, a conduction band for electrons
and a valence band for positrons). However, not all electronic states with an energy gap
are equivalent, the simplest being the quantum Hall state described in section 2.3.
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2.2 Berry Phase

The Berry phase is an important notion in the discussions of topological phases. It arises
from the intrinsic phase ambiguity of a quantum mechanical wave function: the Bloch
states are invariant under the transformation

|u(k)⟩ → eiφ(k) |u(k)⟩ . (2.4)

Thus, when k is transported around a closed loop, the Bloch state |u(k)⟩ acquires a
well defined Berry phase. The Berry connection, A, is defined as

A = −i ⟨u(k)| ∇k |u(k)⟩ . (2.5)

Besides that, one can also define the Berry curvature as

F = ∇ × A. (2.6)

The Berry phase is given by the line integral of the Berry connection or, according
to Stokes’ theorem, by the surface integral of the Berry flux,

γC =
∮

C
A · dk =

∫
S

F d2k. (2.7)

In a quantum-mechanical system, the Berry phase is the accumulated phase factor
when completing a closed path in the parameter space. Furthermore, the Berry connec-
tion has a similar role to the vector potential for electromagnetic fields, corresponding
to the gauge field defined in that parameter space.

2.3 Integer Quantum Hall Effect and TKNN invari-
ant

The Quantum Hall state occurs when an electron gas confined to two dimensions is
placed in a strong magnetic field. In these conditions, the electron’s circular orbit is
quantized with cyclotron frequency ωc = eB/m, leading to quantized Landau levels with
energy Em = (m+ 1

2)~ωc.
This state is similar to an ordinary insulator in the sense that an energy gap separates

the N occupied Landau levels from the empty states. The Landau levels can therefore
be viewed as a band structure. However, an electric field causes an Hall current charac-
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terized by

σxy = Ne2

h
. (2.8)

The quantum Hall state differs from an ordinary insulator by their topologies. The
Chern invariant is a topological invariant n ∈ Z that can be interpreted as the invariant
that characterizes the classes of H(k) that can be continuously deformed into one an-
other. Physically it can be understood in terms of the Berry phase [17] associated with
the Bloch wave functions |um(k)⟩. The Chern invariant is the total Berry flux in the
Brillouin zone,

nm = 1
2π

∫
S

Fmd
2k. (2.9)

The total Chern number n is a sum over all the occupied bands (N),

n =
N∑

m=1
nm. (2.10)

If we take a path encircling the Brillouin zone, nm (and therefore n) can only be an
integer multiple of 2π, due to the single-valued nature of the wave-function.

Thouless, Kohmoto, Nightingale and den Nijs (TKNN) [18] showed that the integer
in the quantized Hall conductivity (eq. 2.8) is the Chern number n. This is why this
invariant is also known as TKNN invariant. Thus, since n is a topological invariant,
it cannot change when the Hamiltonian changes smoothly, which helps to understand
the robust quantization of σxy. Moreover, the conductivity σxy is quantized to integer
multiples of e2/h.

As was referred in section 2.1, the integral of the Gaussian curvature over a surface
defines a topological invariant. Similarly, the Chern number is an integral of a related
curvature, the Berry curvature.

The topological classification of gapped band structures has a consequence of extreme
importance: if there is an interface where the topological invariant changes, there must
exist a gapless conducting state at the interface. Considering an interface between the
quantum Hall state and the vacuum, one can understand the edge states in terms of
the skipping motion of the electron (Fig. 2.1(a)). It is known that a charged particle
in a uniform magnetic field will cycle around the magnetic flux due to the Lorentz
force. When the particle is close to the boundary, its trajectory is interrupted and the
particle bounces back from the rigid boundary and skips along it. The electronic states
responsible for this motion propagate only in one direction along the edge, forming a
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Figure 2.1: Interface between an ordinary insulator and the QH state. (a) Skipping mo-
tion of the particles near the boundary. (b) Existence of a conducting channel connecting
the valence and conduction bands. [14]

conducting channel along the boundary, called the edge state (Fig. 2.1(b)).
Furthermore, since the group velocity of the particles in the bulk is much slower

than that of the cyclotron, the electrons in the bulk are localized by impurities or
disorders. The particles on the edge, on the contrary, have a higher group velocity and
are not affected by impurities or disorders. Thus, the edge state constitutes a perfect
one-dimensional conducting channel.

2.4 Z2 Topological Invariant

The distinction between an ordinary insulator and a topological insulator is suggested
by the robustness of its edge states. This state is characterized by a topological invari-
ant, called the Z2 invariant. This index nomenclature comes from the group of integer
numbers Z and, specifically, the Z2 quotient group that classifies even and odd numbers.
The Z2 index gives a classification based on parity. In a very simple way, the invariant
expresses if the number of times that the one-dimensional edge state crosses the Fermi
level between 0 and π/a (with a the lattice constant) is even or odd [16].

2.4.1 Time reversal symmetry (TRS)

The time reversal (TR) operator for spin 1/2 particles is given by

Θ = eiπSy/~K, (2.11)

where Sy is the spin operator and K is the complex conjugate operator. The operator
satisfies Θ2 = −1.
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Figure 2.2: Kramers pairs of bands. Each pair of bands are degenerated at the TRIMs.
[16]

A time reversal Bloch Hamiltonian must satisfy

ΘH(k)Θ−1 = H(−k). (2.12)

This identity proves the existence of Kramers pairs, i.e., that the energy bands of a
TR system have the same energy for +k and −k. Each pair of bands are degenerate at
the time reversal invariant momentum (TRIM), where +k and −k become equivalent
due to the periodicity of the Brillouin zone. At values of k other than the correspondent
for TRIMs, the degeneracy is lifted by the spin-orbit coupling, as illustrated in Figure
2.2.

Equation 2.12 also allows to classify the classes of Hamiltonians that can be slowly
deformed into one another without closing the energy gap.

Therefore, additionally to the TKNN classification of quantum Hall states, there is
another classification (Z2 index) for time invariant systems with possible values 1 or 0
[6] that applies to TI in two and three dimensions.

2.4.2 Z2 index formulas

The formulation presented next for the Z2 invariant follows the approach reported by
Fu and Kane [19].

It is convenient to represent the TR operator in the Bloch wave function basis as a
matrix. A convenient matrix is

wαβ = ⟨uα(k)| Θ |uβ(−k)⟩ , (2.13)
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with α and β the band indices. This matrix relates to the Bloch states by

|uα(−k)⟩ =
∑

β

w∗
αβ(k)Θ |uβ(k)⟩ . (2.14)

wαβ is an unitary matrix with the following property:

wβα(−k) = −wαβ(k). (2.15)

This means that at a TRIM Λa (where k and −k coincide), the w matrix becomes
antisymmetric, i.e.,

wβα(Λa) = −wαβ(Λa). (2.16)

Pfaffian is generally defined for an antisymmetric matrix and can be related to the
determinant by

Pf[A]2 = det[A]. (2.17)

Therefore, we can define

δa = Pf[w(Λa)]√
det[w(Λa)]

= ±1. (2.18)

The Z2 topological invariant ν is given by

(−1)ν =
4∏

a=1
δa. (2.19)

This invariant classifies the two-dimensional insulators according to their Hilbert
spaces: “twisted” if ν = 1 and trivial if ν = 0.

One can extend this formulation to 3D systems and its physical origin can be easily
understood. For simplicity, consider a cubic system with lattice constant a = 1 (See
Fig. 2.3). In the Brillouin zone of this system there are eight TRIMs denoted by
Λn1,n2,n3 where the Bloch Hamiltonian becomes TR symmetric, with ΘH(Λn1,n2,n3)Θ−1 =
H(−Λn1,n2,n3). The six planes of the 3D Brillouin zone each have the same symmetries
described for the 2D system, and therefore they can be described by a Z2 invariant.
However, those six invariants are not all independent and only four invariants can be
independently determined [16]. Using the definition in equation 2.18, we can write the
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(a) (b)

Figure 2.3: Time-reversal invariant momenta for (a) a square 2D Brillouin zone and (b)
a cubic Brillouin zone. [16]

four invariants as

(−1)ν0 =
∏

nj=0,π

δ(Λn1,n2,n3), (2.20)

(−1)νi =
∏

nj ̸=i=0,π;ni=π

δ(Λn1,n2,n3) (i = 1, 2, 3). (2.21)

Thus, the ν0 invariant is given by the product of all eight TRIMs, and it is a unique
feature for a 3D system. νi, however, is a product of four TRIMs, and is similar to the
Z2 invariant defined for bidimensional systems.

2.5 Two-dimensional TI: Quantum Spin Hall Effect

While quantum Hall states require an external magnetic field, which breaks the time-
reversal symmetry, the quantum spin Hall (QSH) states are time-reversal invariant and
do not need an applied magnetic field.

The QSH insulators are essentially two copies of the QH state with opposite chirali-
ties. It has an upper edge constituted by a forward mover with spin-up and a backward
mover with spin-down, and vice-versa for the lower edge.

Kane and Mele [20] described the QSH insulator starting from a graphene model
with spin-orbit coupling. The SOC is then responsible for the locking of the spin to
the orbital motion of the electron and, therefore, the counterpropagation of opposite
spin states characteristic of this state. Taken separately, the Hamiltonians for the spins
up and down violate time-reversal symmetry. However, in an applied electric field, the
up and down spins have Hall currents in opposite directions that cancel each other,
recovering the overall time-reversal symmetry. But a spin current JS = (~/2e)(J↑ − J↓)



2.5 Two-dimensional TI: Quantum Spin Hall Effect 13

is generated, with a spin Hall conductivity given by σS
xy = e/2π, thus the name “quantum

spin Hall effect”.
The previous discussion was held considering the conservation of spin, which does not

happen in real systems. The quantized Hall conductivity is just an artifact of a simplified
model, invalidated for any real system. However, the QSH state, being two copies of
the quantum Hall state, also has gapless edge states. These states, unlike the quantized
Hall conductivity, are robust even when spin conservation is violated. The quantum
spin Hall edge states always respect the property that the up spins propagate in one
direction and the down spins propagate in the opposite, known as “helical”, in analogy
with the helicity1 of a particle. They form a unique 1D conductor not susceptible to
Anderson localization [21] usual for conductors in disordered systems. On the contrary,
those states cannot be localized even for strong disorder. Unless time-reversal symmetry
(TRS) is broken, an incident electron will be transmitted perfectly through the region
with disorder. Thus, the edge states are protected by time reversal symmetry.

In graphene the conduction and valence bands touch each other in two points in
the Brillouin zone. Near those points the electronic dispersion is linear and it can be
described by employing the Dirac equation with the rest mass set to zero [22]. The
dispersion is therefore called a Dirac cone and the electrons behave as massless Dirac
fermions.

Kane and Mele model showed that SOC leads to an opening of a gap at the crossing
point of the cone - the Dirac point [16] and that a pair of spin-polarized states with TRS
appear at the edge. The spin-polarization of the edge states would be achieved due to
the SOC, which has an inherent tendency to align spins in relation to the momentum
direction of the electrons. The electrons in the gapless edge states behave has one-
dimensional Dirac fermions without mass within the gap opened in the bidimensional
Dirac cone. Thus, the bulk electrons behave as two-dimensional massive Dirac fermions
due to the finite energy gap at the Dirac point [16].

The two-dimensional topological insulators can be classified by the Z2 invariant.
Consider the Figure 2.4, which illustrates the surface states between two TR invariant
points now denoted by Γa = 0 and Γb = π/a. In Fig. 2.4(a), the two states connect
pairwise, intersecting the Fermi energy an even number of times. The surface states are
topologically trivial because disorder can cause the edge states to be eliminated, pushing
the surface bands above or bellow EF. However, in Fig. 2.4(b), the bands intersect EF an
odd number of times, and the edge states cannot be eliminated. Therefore, topologically
trivial states will be characterized by ν = 0, while the quantum spin Hall insulator will

1Correlation between spin and momentum of a particle.
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Figure 2.4: Electronic dispersion between two Kramers points labeled as Γa = 0 and
Γb = π/a. (a) has an even number of states crossing the Fermi energy, while in (b) it is
odd. [23]

have ν = 1.

2.6 Three-dimensional TI

The picture of the linear dispersion of the states at their crossing point can be easily
generalized into three dimensions. In a 3D topological insulator, the surface states consist
of bidimensional Dirac fermions and the dispersion forms a Dirac cone. The crossing
point, like in the 2D case, is called the Dirac point and is located at a TR-invariant
point.

One of the most interesting properties of the TIs is that they carry a Berry phase of
π. This is generally applied to Dirac fermions, as first reported by Ando et al. [15]. The
Dirac equation is given by

Eψ(r) =
(
cp · α +mc2β

)
ψ(r), (2.22)

where m is the rest mass of particle, and α and β are the Dirac matrices, related to
the Pauli matrices. The energy eigenvalue of this equation is E = ±c

√
p2 +mc2. For a

two-dimensional massless system with Fermi velocity vF, the Dirac equation reduces to

Eψ(r) = ~vFσ · k̂ψ(r) = −i~vFσ · ∇ψ(r), (2.23)

with σ = (σx, σy) the Pauli matrices and k̂ =
(
k̂x, k̂y

)
a wave vector operator defined

by k̂ = −i∇. The eigenfunctions are

ψ±(r) = 1√
2

 e−iθ(k)/2

±eiθ(k)/2

 eik·r = u±(k)eik·r, (2.24)
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with θ(k) = arctan (ky/kx). Furthermore, the energy eigenvalues are now given by

E± = ±~vFk. (2.25)

Using equations 2.5 and 2.7, the Berry phase acquired when k is adiabatically rotated
anticlockwise along a closed path C can be calculated as

γC =
∮

C
dk · i ⟨u±(k)| ∇k |u±(k)⟩ = π. (2.26)

Regarding the classification of these materials, a three-dimensional TI is character-
ized by four Z2 topological invariants (ν0; ν1ν2ν3) [9, 24, 25]. The 2D surface states of
a 3D crystal contain four time-reversal invariant points, Γ1,2,3,4 in the surface Brillouin
zone, where the surface states must be Kramers degenerate. Those points form the 2D
Dirac points in the surface band structure. As illustrated in Fig. 2.4, the Fermi surface
can intersect a line between two TRIM Γa and Γb an even or odd number of times. This
can be characterized by the four bulk Z2 invariants.

2.6.1 Weak Topological Insulator

The simplest three-dimensional topological insulator is formed by layering 2D versions,
similar to layered quantum Hall states. Figure 2.5(a) illustrates the Fermi surface for
coupled layers of quantum spin Hall insulators, stacked along the y direction. In this
case, a surface band intersects the Fermi energy between Γ1 and Γ2 and between Γ3

and Γ4, leading to a non-trivial electronic dispersion similar to Fig. 2.4(b). A weak
topological insulator is characterized by ν0 = 0 and νi = 1 for some i = 1, 2, 3. The
indices νi can be interpreted as Miller indices to specify the directions of the layers.

However, this state differs from the 2D case in the sense that the surface states are
not protected by time-reversal symmetry. They can, in fact, be localized due to the
presence of disorder.

2.6.2 Strong Topological Insulator

A strong topological insulator consists of a distinct phase related in a more subtle way
to the 2D quantum spin Hall insulator. In this case ν0 = 1. This invariant is related to
the number of TR invariant points that are enclosed by the Fermi surface circle. In a
strong TI, the Fermi circle encloses an odd number of Dirac points. When only one Dirac
point is enclosed, we are in the presence of the simplest case of a 3D strong topological
insulator (Figs. 2.5(b) and 2.5(c)).
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Figure 2.5: Fermi surfaces in the surface of a Brillouin zone for (a) a weak topological
insulator and (b) a strong topological insulator. (c) illustrates the simplest case with
only one Dirac point. [23]

The surface states of a 3D TI form a unique bidimensional metal. While in a regular
metal every point at the Fermi surface has up and down spins, in a TI the TR symmetry
requires that states with k and −k have opposite spins. This will cause the rotation
of the spin with k around the Fermi circle, leading to an accumulated Berry phase.
When an electron encloses a Dirac point, the Berry phase will have a value of π. The
Berry phase has important consequences, such as the behavior in a magnetic field (to be
discussed in Chapter 3) and the impossibility of localization of the surface states, even
for strong disorder. In this sense, the surface states of a 3D strong topological insulator
are similar to the edge states in a quantum spin Hall insulator.

2.7 Topological Insulator Materials: Bi2Se3 and Bi2Te3

Bi2Se3 and Bi2Te3 are known to be excellent thermoelectric materials, and have been in-
vestigated recurrently in the past decades. In the last few years a new interest has arisen
in the study of these materials, as they were found to be topological insulators with rather
simple surface states. Those are, in fact, the most extensively studied three-dimensional
topological insulators. In 2009 the topological surface states of these materials were suc-
cessfully confirmed by angle-resolved photoemission spectroscopy (ARPES), revealing a
nearly idealized single Dirac cone for Bi2Se3.

The two compounds share the same structure, with quintuple layers bonded by co-
valent bonds, stacked as T-Bi-T-Bi-T, with T=Se, Te. Those quintuple layers are con-
nected to each other by weak van der Waals forces, which causes them to cleave easily.

These systems are characterized by the Z2 invariant (1; 000), which means that they
are strong topological insulators (ν0 = 1) with the Dirac cone centered at the Γ point
of the surface of the Brillouin zone (see Fig. 2.7). These materials have been a popular
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Figure 2.6: Crystal structure of Bi2Se3 and Bi2Te3, with X1, X2=Se, Te. [16]

Figure 2.7: Bulk and surface structures for (a) Bi2Se3 and (b) Bi2Te3. (c) and (d)
represent the constant-energy contours of the Dirac cones for the same compounds. [16]
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choice in the study of topological insulators due to their simple surface states and the
absence of non-topological surface states [16].

However, studying the transport properties of these compounds is not so simple,
due to the large residual bulk carriers. Bi2Se3, for example, is always n-type because
of Se vacancies. In order to overcome those crystalline defects, physicists have tried
material doping [26, 27], nanostructuring [28] and electrical gating [29] to reduce the
bulk carriers. Moreover, mixing Bi2Se3 and Bi2Te3 along with Sb2Te3 (other well known
and characterized TI) in ternary and quaternary compounds has been done with the
aim to improve the bulk insulating properties.



Chapter 3

Transport Properties in TIs

It is predicted that the topological insulators have exotic properties closely related to
the spin quantum transport, and with possible applications in spintronics and quantum
computing. Thus, in the last years, a great amount of studies related to the transport
properties of this new quantum state of matter have been reported.

In this chapter we will present the relevant transport properties that were also focus
of study in the present work. In the next section, the weak anti-localization (commonly
observed in TIs) will be presented, starting from the more common effect observed in
ordinary metals, the weak localization effect. The second section will cover the quantum
oscillations in TIs, namely the Shubnikov-de Haas oscillations.

3.1 Weak Localization and Weak Anti-localization
Effects

For a rectangular two-dimensional conductor, one can relate the conductance, G = 1/R,
and the conductivity, σ, by:

G = σ
W

L
, (3.1)

where W and L are the width and length of the sample, respectively. However, when
these dimensions are decreased to a certain point, the ohmic behavior no longer holds.
The question is then how small can those dimensions be so that the ohmic behavior is
still preserved. The answer relies on the relation between three characteristic lengths
that classify the transport in solids. Those are the already referred sample size, L;
the mean free path l, that measures the average distance an electron travels before its
momentum is changed due to elastic scattering; and the phase coherence length, lφ,
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Figure 3.1: Different transport regimes in solids. Impurities are represented by the white
circles, while the trajectories of the electrons are represented by arrows. [30]

which is the average distance an electron maintains phase coherence.
The three electronic transport regimes in solids are the ballistic, diffusive and quan-

tum diffusive, as illustrated in Figure 3.1. In the first, l ≫ L, and the electrons can
go through the sample without being scattered. On the other hand, if l ≪ L, we are
in the diffusive regime, and electrons will suffer from scattering. This regime has two
different behaviors depending on the phase coherence length, lφ. If lφ ≤ l, it is called
semiclassical diffusion, and the conductivity is given by Drude model. In the opposite
limit, if lφ ≫ l, the regime is called quantum diffusive and the phase coherence will
be maintained, even though the electron suffers from scattering several times. In this
regime, a quantum interference between two time-reversed loops (see Fig. 3.1-right)
arises, causing a correction to the usual conductivity. The weak (anti-)localization effect
appears as a consequence of this correction.

3.1.1 Weak Localization

In a disordered system, the path of an electron depends on the scattering events it suffers.
Consider an electron moving from point m to point n. The total probability R(m → n)
that an electron goes from m to n is given by squaring the sum of the amplitudes of all
the possible trajectories connecting both points:

R(m → n) = |A1(m→n) + A2(m→n) + . . . |2 . (3.2)

Usually, the interference effects between different paths do not have any relevance,
since the phases are random and, in average, cancel out. In this case the previous
equation would be equivalent to the sum of the squares of the different amplitudes.

However, when the initial and final points are the same, something different happens.
Consider a path starting and ending at the same point m:
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m→m1→m2...mN−1 → mN → m

To every path like this, there is a time-reversed path that is obtained by reversing
the arrows:

m→mN → mN−1. . .m2→m1→m

Thus, the probability can be seen as the sum of the amplitudes for two different sets,
one with index i referring to the first path, and other, with index iR referring to the
time-reversed path:

R(m → m) = |(A1 + A2 + . . . ) + (A1R + A2R + . . . )|2 ≡ |A+ AR|2 . (3.3)

In systems with time-reversal symmetry and in the absence of magnetic field, the
amplitudes for a carrier propagating clockwise or counterclockwise is equal, A = AR.
Hence, the probability is given by

R(m → m) = 4 |A|2 . (3.4)

On the other hand, in the classical case where there is no interference between the
paths, the probability would be

R(m → m) = |A|2 + |AR|2 = 2 |A|2 . (3.5)

Therefore, the constructive coherence between the two time-reversed paths causes
an enhanced probability that the electron scatters in a loop. As a consequence, the
electrons are more localized, leading to an increase in the resistivity. Experimentally,
it can be seen as an increase in the resistivity (hence, decrease in conductivity) as the
temperature decreases, as long as the temperature is low enough for interference to be
observed, as illustrated in Figure 3.2(b).

3.1.2 Weak Anti-localization

The weak anti-localization effect is conceptually very similar to the weak localization.
In the case of TIs, the phase shift of π acquired when an electron travels along a closed
path (the Berry phase discussed in section 2.6) causes the time-reversed paths to interfere
destructively. This effect can, however, occur in systems with strong SOC.
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Figure 3.2: Signatures of WL and WAL as a function of (a) the applied magnetic field
and (b) the temperature. [30]

A similar phase change occurs in a system with strong spin-orbit coupling, where
scattering from an impurity causes a spin rotation, since the spin and momentum are
locked. In fact, an electron can contour the impurity by taking a clockwise or counter-
clockwise turn around it. As the momentum rotates, the spin will rotate by an angle
of π or −π, respectively. This is schematically represented in Figure 3.3. Consequently,
the electron spin of the two time-reversed paths differ by π− (−π) = 2π. Yet, the wave
function for a spin 1/2 particle acquires a negative sign when the spin undergoes a 2π
rotation. Therefore, the amplitudes of the two sets discussed in eq. 3.3 are now related
by A = −AR. The probability that an electron travels from a point m to the same point
is now:

R(m → m) = |A+ AR|2 = 0. (3.6)

The interference between the two time-reversed paths is therefore destructive, which
reduces the probability of electrons to localize and, consequently, reduces the resistivity.
Its dependence with temperature can also be seen in Fig. 3.2(b).

3.1.3 Hikami-Larkin-Nagaoka (HLN) formula

When a magnetic field is applied, the time-reversal symmetry is destroyed and, naturally,
the two paths no longer interfere constructively/destructively (WL/WAL). In that sense,
the WL/WAL effects are protected by time-reversal symmetry. As a result, a sharp cusp
in the conductivity can be observed around B = 0 (see Figure 3.2(a)). The magnetic
field causes a negative magnetoconductivity in the case of WAL and the opposite for
WL.

The magnetic field dependence of the conductivity in 2D systems was reported by
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Figure 3.3: When an electron suffers from scattering from a nonmagnetic impurity, it
can be scattered in two directions: clockwise along the blue curve (spin rotates by π) or
counterclockwise along the red curve (spin rotates by −π). This leads to a spin rotation
of 2π, causing destructive interference. [31]

Hikami, Larkin and Nagaoka in 1980 [32]. The HLN formula represents the change in
conductivity with respect to its value in the absence of a magnetic field and it is given
in equation 3.7, where Ψ is the digamma function, lφ is the phase coherence length, and
the prefactor α is positive for WL and negative for WAL.

∆σxx = α
e2

πh

[
Ψ
(

~c
4el2φB

+ 1
2

)
− ln

(
~c

4el2φB

)]
(3.7)

For the weak anti-localization effect, α should be −1/2 for each transport channel with
a π Berry phase. In experiments, α was found to have values between around -0.4 and
-1.1 , indicating the presence of one or two surface bands contributing to the weak anti-
localization effect [33–35]. One can usually find α ∼ −1/2 in thin films, because the top
and bottom surfaces form only one diffusive transport channel [16]. This happens when
the thickness of the sample is shorter than lφ, causing the electrons to travel between
the two surfaces, through the bulk state, without losing the phase memory.

The weak anti-localization effect was rapidly observed after the discovery of Bi2Se3

and Bi2Te3 as topological insulators. The poor sample quality causes the mean free
path, l, to be short (∼ 10 nm). The phase coherence length in TIs is, however, of
the order of 100-1000 nm. Thereafter, at low temperatures, these materials are in the
quantum diffusive regime, where the WAL can occur. The WAL effect is, then, robust
to non-magnetic impurities. However, the presence of magnetic impurities will lift the
TR symmetry between the two paths, suppressing the WAL cusp [36].
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3.2 Shubnikov-de Haas oscillations

A topological insulator should have a completely insulator bulk, and any transport
should be carried by the surface states. However, in real cases this is not verified, as the
bulk always has residual carriers due to defects or impurities. Therefore, the transport
measurements always take into account both the bulk and surface states. Then, one
can understand the importance of distinguishing between transport from the 2D surface
states or the 3D bulk states. The quantum oscillations offer a way to do so.

The quantum oscillations can be measured in any property that depends on the
density of states (DOS). The oscillations observed in conductivity are called Shubnikov-
de Haas (SdH) oscillations, while the oscillations occurring in magnetic susceptibility
are de Haas-van Alphen. Our focus of interest relies on SdH oscillations, discussed next.

Consider once again electrons confined to two dimensions in the presence of a strong
magnetic field. The Landau quantization of the energy states will take place and the
DOS will become periodically modulated as a function of the magnetic field. This can
be understood since the Landau levels (LL) are separated by ~ωc, with ωc = eB/m.
As the magnetic field is increased, the spacing between the LLs will increase, and the
highest LL will be pushed through the Fermi energy, EF (fewer LLs are filled). When
EF is positioned at the center of a LL, the DOS will be maximum. On the other hand,
when EF lies between two Landau levels, DOS will take a minimum (see Fig. 3.4).
In the latter, a minimum in the conductivity σxx will occur, since a certain amount of
LLs are completely filled and the next LL is empty. Therefore, a minimum in the DOS
represents a minimum in the conductivity. This simplified vision helps to understand
why the conductivity has oscillatory phenomena.

The SdH oscillations are periodic in 1/B and the oscillatory part of the longitudinal
conductivity is described by

∆σxx ∼ cos
[
2π
(
F

B
− γ

)]
, (3.8)

where F is frequency of the oscillation and γ is a phase shift. This factor also appears
in the Onsager’s quantization condition

An = 2πe
~
B (n+ γ) , (3.9)

with An the area enclosed by electrons in the k-space. This relation holds when the n-th
LL is crossing the Fermi energy. γ is given by [33]

γ = 1
2 − γC

2π − δ, (3.10)
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Figure 3.4: Landau quantization; µ is the Fermi level. For a higher magnetic field, the
spacing between LLs increase and less Landau levels are occupied. [16]

where γC is the Berry phase, which takes values of 0 for a conventional metal and π for
Dirac systems, and δ is the phase shift correction determined by the dimensionality of
Fermi surface [33], with δ = 0 for 2D Fermi surfaces and δ = ±1/8 for 3D Fermi surfaces.
Given that An = πk2

F, then eq. 3.9 can be written as

2π(n+ γ) = πk2
F
~
eB

, (3.11)

where ~ is the reduced Planck constant, e is the electronic charge, B the applied magnetic
field and (πk2

F ) the cross-sectional area of the Fermi surface perpendicular to B with
radius equivalent to the Fermi wave vector kF.

Experimentally, γ can be determined from the so-called LL fan diagram. This dia-
gram plots successive values of 1/B correspondent to the minimums and maximums of
σxx versus the Landau level n. As discussed earlier, the minimums of σxx are assigned
to integer values of n, while half integers, n+ 1/2, are assigned to maximums. The plot
should make a straight line with slope F = ~

2πe
πk2

F corresponding to the oscillation fre-
quency. When the linear fit is extrapolated to 1/B → 0, the intercept on the n-axis gives
the SdH phase γ. For conventional metals, γ = 1/2 [33]. However, γ gets a non-trivial
contribution from the Berry phase of the electrons.

The principal interest in the study of the SdH oscillation is the fact that it is possible
to characterize the 2D surface states coexisting with the bulk states. This can be done by
taking the dependence of F with the angle between the surface normal and the magnetic
field direction, θ. When a wide range of angles is considered, and if the measured
frequency changes with ∼ 1/ cos θ, then one can conclude with acceptable precision that
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the oscillations come from a 2D system. Note that it is necessary that a wide range of θ
is considered (e.g., up to 50°), because the SdH oscillations originated from a 3D system
with an elongated Fermi surface can also cause the frequency to change in a similar way
for smaller angles [16]. Furthermore, for θ = 90°, the SdH oscillations should disappear
only if they originate from 2D states.

Thus, when combining the study of the dependence of the SdH oscillations on the
angle θ, and the phase γ obtained from the LL fan-diagram, one can confirm the nature
of the quantum oscillations.



Chapter 4

Experimental Methods

4.1 Synthesis

Many methods have been proposed for the synthesis of binary bismuth chalcogenides,
such as the solvothermal method, metalorganic chemical vapor deposition method and
Bridgman technique. However, for these approaches, it is usually needed long reaction
times, high temperatures and energy consumption, and toxic solvents [37, 38]. One can
overcome this using the microwave-assisted polyol method used in this work. Microwave
heating in inorganic chemistry had its first applications in the late 1980´s [39]. In the
past decades, it also has attracted much attention in the synthesis of nanostructured
materials. Microwave irradiation is more efficient than conventional heating, since it
directly transmits the energy into the molecules present in the reaction mixture. This
causes an uniform, rapid, heating, opposite to what usually happens with conventional
heating, where the reaction vessel temperature can be higher than that of the solution.
The rapid heating can therefore reduce the reaction time by orders of magnitude and
increase product yield [37].

In this work, stoichiometric ratio of bismuth nitrate (Bi(NO3)3 · 5H2O, 99.99 %,
Sigma-Aldrich), sodium selenide (Na2SeO3, 99 %, Alfa Aesar), sodium tellurite (Na2TeO3,
99.5 %, Alfa Aesar) and also potassium hydroxide were dissolved in ethylene glycol,
stirred and microwave-heated for short periods of time at 180 °C and with a maximum
power of 1000 W. When cooled, the product was separated by centrifugation and washed
with water and ethanol. The synthesized nanosheets of Bi2Se3 and Bi2Te3 are more likely
to manifest surface effects, since they have larger surface-to-volume ratios than bulk ma-
terials. Moreover, the synthesis was performed recurring to a microwave-assisted polyol
method. In this method, the polyol (in this case ethylene glycol) acts both as the solvent
and the reducing agent [37, 40–42]. Furthermore, the high permanent dipole of the EG
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makes it an excellent susceptor for microwave radiation, leading to overheating, what
causes an increased reduction ability [41]. The polyol process consists of three steps.
First, the precursor is dissolved in the polyol. The dissolved species will then be reduced
by the polyol and finally the polyol serves as a medium for the nucleation and growth
of the particles [40]. Several articles [42, 43] suggest two possible paths, consisting of
atomic (Path A) or ionic (Path B) mechanisms, represented in the following scheme:

However, more recent studies [37, 41] showed that the process involved is, in fact,
ionic. At high temperatures, the ethylene glycol oxidizes to acetaldehyde, used as a
reducing agent (Eq. 4.1). The precursor including T=Se, Te (Na2TO3) dissociates,
forming TO2−

3 in solution. Those ions are reduced by EG, forming elemental T (Eq. 4.2).
In an alkaline medium (obtained by adding KOH), the freshly generated T produces T2−

through disproportionation (Eq. 4.3). Finally, the T2− ions react with the metallic ion
Bi3+, forming Bi2T3 (Eq. 4.4).

2C2H6O2 → 2CH3CHO + 2H2O (4.1)

2CH3CHO + TO2−
3 → 2CH3COO− + T + H2O (4.2)

3T + 6OH− → TO2−
3 + 2T2− + 3H2O (4.3)

3T2− + 2Bi3+ → Bi2T3 (4.4)

The synthesis was performed in a Milestone Start D Microwave Digestion System
(Fig. 4.1). This is equipped with 6 high pressure vessels (SK-10 rotors), with a volume
of 100 mL. It includes a reference segment, used for temperature control, and 5 stan-
dard segments. The equipment has an industrial magnetron and its typical delivered
power is 1200 W, allowing rapid heating. Moreover, a rotating diffuser located above
the microwave cavity evenly distributes microwaves throughout the cavity, preventing
localized hot and cold spots.
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Figure 4.1: Milestone Start D Microwave Digestion System used in this work.

4.2 Structural Characterization: Powder X-ray Diffrac-
tion

4.2.1 Introduction

Although nowadays we know the crystalline structure of many materials, whether we
are talking about simple materials as metals or more complex as proteins and organic
molecules with many atoms, there is a constant need to study the structure of new
materials, in order to understand and predict its properties. This can be accomplished
using the right techniques. Since the interatomic distances in a crystalline material have
the same order of magnitude as the typical X-ray wavelength, these can be diffracted by
crystalline structures. Therefore, X-rays are the ideal radiation for these studies.

Powder X-ray diffraction (XRD) is the most convenient method when the sample in
study is a polycrystalline material or even when it is obtained as a mixture of phases.
One then needs to characterise the sample beyond its elemental composition and identify
the phases and, ideally, quantify them.

The experimental equipment can be divided into techniques using parallel beam and
focusing methods (as the Bragg-Brentano geometry). The latter was used in this work
and will be described in detail later.
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Figure 4.2: Bragg reflection from a set of parallel planes. [44]

4.2.2 X-ray diffraction theory

Although both protons and electrons interact with electromagnetic waves such as X-rays,
the fact that electrons are much lighter particles makes their contribution for scattering
more prominent. Hence, in a crystal structure the X-rays are scattered by the electrons of
the atoms, making possible to determine the electron density. As the crystal structure
is periodic, it is possible to determine the constitution of a unit cell from the XRD
diffraction pattern.

In 1913, Sir Lawrence Bragg gave a simple, but convincing explanation of the diffrac-
tion patterns characteristic of crystalline materials. Consider a set of parallel planes
(h, k, l) equally spaced by a distance d. In order to observe an intense beam emerging
from the crystal, the beams reflected by consecutive planes must interfere constructively.
That condition is given by

2dhkl sin θ = nλ, (4.5)

where λ is the wavelength, θ is the angle of incidence, dhlk is the distance between
planes of a family of planes and n is the order of the reflection, i.e., for n = 1, 2, ... we
get reflections of first, second order, etc. Equation 4.5 states that there is constructive
interference when the path length difference between two incident waves is a multiple
number of the wavelength.

The scattered amplitude from a unit cell is the structure factor Fhkl, defined as

Fhkl =
N∑
j

fj exp[2iπ(hxj + kyi + lzi)], (4.6)
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where fj is the atomic scattering factor for the jth atom in the unit cell with coordinates
xj , yj and zj. Each structure factor represents a diffracted beam with amplitude |Fhkl|
and a relative phase φhkl. One can then write its mathematical relationship as

Fhkl = |Fhkl| exp (iφhkl) (4.7)

The intensity of the diffracted beam is proportional to the square of its amplitude,

Ihkl ∝ |Fhkl|2 . (4.8)

The experiment consists in measuring the intensity of the scattered beam as a func-
tion of the scattering angle. The diffraction pattern is a sum of the individual peaks
and a background function. For materials with several phases or polycrystalline mate-
rials with complex unit cells, the Bragg peaks can overlap. Thus, it is convenient to fit
a model to the entire pattern, refining it against the experimental data. This can be
performed by minimization techniques. One of these techniques is the Rietveld method,
where the minimized quantity is a weighted sum of the squares of the difference between
the calculated and observed patterns.

4.2.3 XRD Equipment

In this work we used a Bruker AXS D8 ADVANCE diffractometer (Fig. 4.3) with
DAVINCI design, which provides automatic change of the diffraction geometry. This
equipment can operate in parallel beam geometry and Bragg-Brentano parafocusing
geometry. Some of its components are listed as follows:

• ceramic sealed tube with a Copper tube (Kα = 1.5418 Å) which generates the
X-rays;

• compact XYZ table which allows the adjustment of the sample position;

• vertical goniometer, where the combination of stepper motors with optical encoders
ensures precise positioning of both arms where the source and the detector are
placed. It can work in the θ − θ or θ − 2θ modes;

• LYNXEYE detector, a compound silicon strip detector with 192 strips covering an
angular range of ∼ 3º. It has a maximum global count rate > 100, 000, 000 cps.

• for parallel beam geometry: Göbel mirror with 40 mm graded multi-layer optics
tuned for Cu radiation. This creates a highly parallel beam and suppresses Kβ

radiation.
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Figure 4.3: Bruker AXS D8 ADVANCE X-ray diffractometer. [45]

Figure 4.4: Bragg-Brentano geometry. [46]

• for Bragg-Brentano geometry:

– variable divergence slit controlled by a stepper motor and two sets of Soller
slits, controlling the axial divergence: attenuates the divergence of the in-
cident beam before interacting with the sample and the divergence of the
diffracted beam before it reaches the detector;

– 0.02 mm Ni filter, in order to eliminate the β component of the Cu anode
(Kβ ≈ 1.39 Å). Ni foil is the ideal filter since its absorption edge is ∼ 1.54 Å,
just above the wavelength of the Kβ line [44].

In the geometry used in this work - Bragg-Brentano parafocusing geometry (see Fig.
4.4) - both the incident and diffracted beams form an angle θ with the surface of the
sample. The divergence of the latter is controlled by a Soller slit and eventually it will
converge at a receiving slit.

In order to identify the phases we used the ICDD PDF-4+ 2015 database in the
DIFFRAC.SUITE EVA 3.0 software. Once this was successfully achieved, DIFFRAC.SUITE
TOPAS V5 was used to perform a quantitative analysis.
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4.3 Scanning Electron Microscopy (SEM)

4.3.1 Introduction

The resolving power of a microscope is not only limited by the number and quality of
the lenses but also by the wavelength of the light used for illumination. The wave-
length of the visible light is considerably high and, therefore, the limit of resolution of
an optical instrument is rather low. Since electrons have shorter wavelengths, the micro-
scope resolution is better, and we can characterize materials in the micro to nanometer
range. Since the invention of scanning electron microscopy in 1937 by von Ardenne, its
applications have covered a vast range of subjects, from physics, to biology or medicine.

The SEM scans a focused electron beam over a surface to create an image. It operates
in a high vacuum and the samples must be electrically conductive, at least at the surface.
If they are not naturally conductive, they are therefore usually coated with an ultrathin
coating of electrically conducting material.

Energy Dispersive X-Ray Spectometry (EDS) can be coupled to the SEM, allowing
to obtain relevant information on the chemical composition of the specimen.

4.3.2 Fundamental principles

The scanning electron microscope uses a focused beam of high-energy electrons to gen-
erate a variety of signals that derive from electron-sample interactions. These are not
confined to the sample surface, and can also occur in the bulk, revealing information
about the sample, including its morphology, chemical composition, and crystalline struc-
ture.

We can classify the electron-sample interactions in two different types, namely elastic
and inelastic interactions, which we will discuss next.

4.3.2.1 Elastic Interactions

When an elastic interaction occurs, no energy is transferred from the incident electron
to the sample. This happens when the electrons pass through the sample without inter-
acting at all, contributing to the direct beam. But it can also happen when an electron
is elastically deflected from its path by a Coulomb interaction with the positive potential
of the nucleus, with a force F given by

F = Q1Q2

4πε0r2 . (4.9)
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Figure 4.5: Scattering of an electron inside the electron cloud of an atom. [47]

One one hand, we can point the dependence of F on the charge: the Coulomb
interaction increases with the atomic number Z. Therefore, the areas with heavier
atoms will appear with darker contrast than those of lighter atoms. On the other
hand, the closer the electron is to the nucleus, the stronger the interaction will be and,
consequently, the scattering angle will increase (Fig. 4.5). This can lead to scattering
into high angles and even backscattering (typically when the electron hits a nucleus,
producing backscattered electrons, BSE). The latter are most valuable for illustrating
contrasts in composition in multiphase samples.

4.3.2.2 Inelastic Interactions

If part of the energy of the incident electron is transferred to the sample, we are in the
presence of an inelastic interaction. Several processes can occur, leading to different
signals, such as inner-shell ionization, braking radiation and secondary electrons, which
will be described as follows.

Inner-shell radiation The incident electron can transfer energy to an electron local-
ized in any of the atom’s electron shells. If the energy is sufficient, it can cause the latter
to be ejected from the sample. When this happens, the atom is left in an excited state,
where an inner shell (with lower energy) has an electron vacancy, whereas the levels of
higher energy are fully occupied. In order to return to the ground state, an electron
from a higher shell drops to fill the vacancy. The difference in energy can be released
by two processes: the Auger process and characteristic X-rays. In the former, the en-
ergy released when the electron falls into the vacancy is transferred to another electron,
which is ejected from the sample - Auger electron. The kinetic energy of this electron
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corresponds to the difference between the energy of the initial electronic transition and
the ionization energy for the electron shell from which the Auger electron originated.
Since these electrons are easily absorbed, only the Auger electrons created close to the
surface can escape the sample. In the characteristic X-ray process, the energy difference
is released by the emission of photons with an energy equivalent to the energy difference
of the transition. Each element has a unique set of energy levels, and thus the transition
produces a unique set of X-rays, which are characteristic to each element. Therefore,
X-ray emission can help to characterize the elemental composition of the sample, using
the Energy Dispersive X-ray Spectrometry.

Braking radiation Also known as Bremsstrahlung, the braking radiation is produced
by the deceleration of an incident electron in the Coulomb field of the atoms in the sam-
ple. The electron loses kinetic energy, which is converted into a photon. Bremsstrahlung
has a continuous spectrum and is the main constituent of the continuous background in
a X-ray spectrum.

Secondary Electron (SE) Secondary electrons can originate from electrons located
in the outer shell that are ejected from the sample or electrons ejected from the inner
shell of the specimen by inelastic scattering with the electron beam. These are low-
energy (<50 eV) electrons, which originate within a few nanometers from the sample
surface. These are therefore most valuable for showing morphology and topography on
samples.

4.3.3 SEM Equipment

The experimental system used in this work was a TESCAN VEGA3 SBH SEM. The
scanning electron microscope swipes an electron beam over the sample, located in the
microscope chamber. The quality of the images depends on the parameters of the
electron probe: spot size, aperture angle and beam intensity.

The spot size determines the resolution of the microscope and the magnification. It
is considered as a circular spot with a Gaussian intensity profile and it reduces at shorter
working distances (distance between the lower objective and the focused surface of the
specimen). The aperture angle is the vertex angle of the cone-shaped incident electron
beam. The wider the cone, the lower the depth of focus. Finally, the beam intensity is
the number of electrons passing through the probe in a specific time. The image noise of
the electron microscope is related to the beam intensity. Thus, at lower beam intensities,
a larger time for imaging scanning is needed, and vice-versa.
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Since the incident beam parameters influence each other, it is their combination that
allows the equipment to operate in different modes.

The SEM has two main parts: the electron column, where the electron beam is
produced, and the detection system, which will be described in the next subsections.

4.3.3.1 Electron Column

The column of the microscope (Fig. 4.6) consists of the following main parts [48]:

• The electron gun consists of a cathode, Wehnelt cylinder and anode.The first two
components are connected to the negative electric potential, whereas the anode
and the remaining part of the column are at earth potential. The cathode is a
tungsten filament that needs to be heated to high temperatures in order to cause
the emission of free electrons. The voltage between the Wehnelt cylinder and the
anode determinates the accelerating voltage of electrons and therefore their energy.
The emission current is changed by maintaining the Wehnelt cylinder at a more
negative voltage than the cathode. The system can produce an electron beam with
a dimension of 25-50 µm, an energy from 200 eV to 30 keV and an emission current
up to 300 µA.

• The gun centering allows to tilt the electron beam so that it enters the axis of
the optical system of the column. It is formed by a system of electromagnetic
deflection coils under the gun.

• The spray aperture is placed under the coils referred above and its function is to
collimate the electron beam.

• The condensers C1 and C2 are strong magnetic lenses used to demagnify the spot
size that the electron beam produces. The higher the excitation of the condenser,
the shorter its focal length and the higher its demagnification.

• The final aperture is placed under the condenser C2 and it cuts the size of the final
incident beam.

• The intermediate lens IML is a magnetic lens used for the aperture change of the
beam caused by the final aperture.

• The stigmator is an electromagnetic octupole that compensates for astigmatism.

• The scanning coils are formed by two sets of deflection coils that deflect the beam
off the optical axis and later return it onto the axis. A scanning ramp connects the
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Figure 4.6: VEGA3 SEM cross section and schematic representation of the optical ele-
ments. [48]

the coils. The ramp frequency determines the scanning speed of the electron beam
and the amplitude determines the microscope’s field of view and the magnification.

• The objective is the last magnetic lens of the column and forms the resulting
electron beam.

4.3.3.2 Detection System

The TESCAN VEGA3 SBH SEM is equipped with three different detectors:

• The secondary electron (SE) detector is of Everhart-Thornley type. In order to
attract the low-energy secondary electrons arising on the sample surface and fo-
cus them onto the scintillator, a positive potential is applied to the grid on the
front part of the detector. The scintillator accelerates and converts the incoming
electrons into photons. These are then transferred through the light guide to the
photo-multiplier outside the chamber of the microscope.



38 Experimental Methods

• The backscattered electrons (BSE) detector is of the scintillation type. It has an
annular (YAG) mono-crystal with a conductive surface placed in the optical axis
directly under the lower pole extension of the objective. The high energy backscat-
tered electrons excite the scintillator atoms without any additional acceleration.
Those atoms then produce visible radiation photons, which are carried to the pho-
tomultiplier.

• The EDS detector is a silicon drift detector (SDD), namely a Bruker XFlash 410 M
detector. The SDD is a type of energy dispersive solid state detector. It utilizes a
drift field structure to guide charges produced by absorbed X-rays to a small anode.
Such a detector eliminates the need to be cooled by liquid nitrogen. Instead, it is
only moderately cooled by thermoelectric Peltier coolers. The detector has a 10
mm2 active area and a resolution of 133 eV at Mn Kα wavelength. Besides that,
it has a counting rate of 100000 cps and it is able to detect every element from B
to Am [49].

4.4 Electronic properties

4.4.1 DynaCool Physical Property Measurement System (PPMS)

A Physical Property Measurement System (PPMS) from Quantum Design was used in
this work. This equipment offers a stable environment for measuring different properties
such as the magnetic moment, resistivity, specific heat, etc. in a range of temperatures
from 1.8 K to 400 K in applied magnetic fields up to 9 T. This device operates using
a closed-cycle He cryostat, obviating the need to supply liquid cryogens. Both the
superconducting magnet and the sample chamber are cooled by a minimum amount of
liquid helium produced by the cryocooler. The helium flows up the cooling annulus,
cooling the sample chamber. This flow is driven by the pressure difference between the
cooling annulus (maintained at moderated vacuum) and the bucket (∼ 1 atm), which
controls the 4 K plate.

It is important to notice that there are two cooling flow modes in this equipment:
main flow and low temperature flow. In the former, ∼ 4.2 K helium gas in the bucket
flows up the counter-flow heat exchanger (CFE), through the mass flow controller, re-
turns to CFE and reaches the cooling annulus.The low temperature flow mode is acti-
vated when the temperature is below ∼ 10 K. In this mode, 4.2 K liquid from the bucket
is expanded through the capillary flow impedance. The inlet pressure is at bucket
pressure, around 1 atm, and the outlet is 10 Torr (annulus pressure), what leads to
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evaporation of some of the helium, resulting in an outlet flow that is a mixture of liquid
and gas at 1.7 K. This mixture flows to the bottom of the cooling annulus (also know as
pot). The equipment uses a heater on the impedance, another in the pot and a liquid
level sensor in the cooling annulus in order to control simultaneously the level of the
liquid in the pot and the flow rate of the gas and, thereafter, controlling the temperature
of the sample with high accuracy. Helium finnaly goes through the circulation pump
and returns to the bucket, where it will be cooled by the cryocooler and reused [50].

The magnetic field is generated by a TiNb superconducting coil. The magnet is
cooled by contact with the 4 K plate (see Fig. 4.7) and its current is controlled by a
hybrid digital/analog magnet controller. The PPMS has three thermometers located at
different places controlling the temperature of the magnet and the cryostat. Moreover,
extra thermometers can be monitored for particular applications.

The system has a built in magnetic shield, which reduces the field experienced out-
side, allowing other instruments to be placed nearby.

In this work it was used one of the options of the DynaCool equipment, the Electrical
Transport Option (ETO), which will be described in the next section.

4.4.2 Electrical Transport Option (ETO)

ETO contains two channels, each with its dedicated electronics, allowing a simultaneous,
continuous resistance measurement of two different samples. Each channel contains a
precision current source and voltage preamplifiers coupled to a Digital Signal Processor
(DSP). The response signal is filtered by the DSP, which filters the AC component and
picks out the portion of the response at the same frequency and phase as the drive signal,
while eliminating all other components of the signal [51].

This option can operate in two modes: the 2-wire mode, used for high impedance
(2 MΩ − 5 GΩ), and the 4-wire mode, for low impedance (µΩ − 10 MΩ) (Fig. 4.8). For
the 2-wire mode, an AC voltage is applied and the AC current response is measured with
a current amplifier. However, the most common mode, which is also the one used in
this work, is the 4-wire mode, where a sinusoidal current is applied and the AC voltage
response is measured. In this mode, the current is applied via the two external contacts,
and the two intern contacts measure the voltage drop across a section of the sample.
Ideally, the two intern contacts draw very little current. Hence, the current through the
sample and the voltage drop are known with high accuracy.

However, there are some factors that can influence the voltage readings, such as the
quality of the contacts, the sample characteristics or the thermal and electrical contacts
between the puck and the sample. First, we should notice that ohmic and low resistance
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Figure 4.7: Components of the cryostat, chamber temperature and magnetic field control
systems of the DynaCool Cryostat. [50]
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Figure 4.8: Typical placement of the contacts for a four-wire geometry (left) and two-
wire geometry (right). Adapted from [51].

contacts are essential. Considering this, we usually use Ag paint to make the contacts
between the Au wires and the sample. In order to assure good thermal contact between
the sample and the puck and, simultaneously, electrically isolate the sample from the
ground, a thin layer of cigarette paper is usually used [52]. The paper is painted on
both sides with a small amount of type N grease (used for temperatures up to the room
temperature), so that it sticks to the puck and the sample. Finally, it is also helpful if
the sample has a regular geometry and if it is homogeneous and isotropic.

4.4.2.1 Resistance

The sample resistance can be calculated according to Ohm’s law:

R = V

I
, (4.10)

where I is the current through the sample and V is the voltage drop across the sample.
The resistivity of the material can then be calculated as follows

ρ = A

L
R, (4.11)

where L is the voltage lead separation and A is the cross-section area of the sample.
This relation holds for a bar with an ideal geometry.

When current passes through the sample, an electric field is created. The voltage
contacts should measure the voltage drop in a region where the electrical field lines
are approximately linear. Thus, the voltage contacts should be placed in line with the
current leads. However, experimentally, it is sometimes difficult to achieve near-perfect
linearity. The measured resistance will then be affected by the transverse Hall resistance.
In order to correct this effect, and taking into account that the magnetoresistivity is
symmetric as a function of the applied magnetic field, we can write the longitudinal
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Figure 4.9: Typical lead placement on a rectangular sample for measurement of Hall
potential with an applied magnetic field normal to the sample surface. Adapted from
[51].

resistance, Rxx, as

Rxx = R+ +R−

2 , (4.12)

whereR+ andR−are the resistance for positive and negative magnetic fields, respectively.

4.4.2.2 Hall Coefficient

In the 4-wire mode it is also possible to measure the Hall resistance, as long as the wires
are placed properly (see Fig. 4.9). When charged particles move perpendicular to a
magnetic field, they experience a force perpendicular to both the field and the direction
of the particle, expressed as

F = q(v × B). (4.13)

Therefore, charged particles tend to build up on one edge of the sample, leading to
a potential difference across the sample, the Hall potential, VH. The separation of the
charges creates a transverse electrical field, EH, that opposes the migration of further
charge.

The Hall coefficient, RH, is defined as

RH = EH

jB
, (4.14)

where j is the current density and B is the magnitude of the magnetic field. The sign
of the Hall coefficient indicates the sign of the charged carriers and its magnitude is
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related to the density of the carriers in the sample. When the sample geometry is well
defined, the current density can be written as I/A, where I is the current and A is the
cross-sectional area. Moreover, the Hall field is given by VH/L, where L is the distance
between the set of transverse voltage contacts. Therefore, the Hall coefficient is given
by

RH = VHA

IBL
. (4.15)

On the other hand, the Hall coefficient can be shown to be

RH = 1
nq
, (4.16)

with n representing the charge carrier density and q the charge of the carriers.
When measuring the Hall potential, the voltage contacts must be perpendicular to

both the current and the field directions. Considering Fig. 4.9, the magnetic field should
be applied perpendicular to the sample surface. From equations 4.10 and 4.15, one can
write the Hall coefficient in terms of the measured resistance, R:

RH = RA

LB
. (4.17)

Comparing 4.17 and 4.16, and knowing the geometry of the sample, one can then
calculate the carrier density n

n = 1
mwq

, (4.18)

where m is the slope, R/B, and w is the width of the sample, which relates to the
cross-sectional area by A = L× w.

Similarly to what happens in the magnetoresistivity measurements, the experimental
Hall effect can include a component due to the longitudinal voltage drop that arises from
the sample resistance itself. This would be avoided if the voltage contacts were perfectly
perpendicular to the current. However, since the longitudinal resistance is usually much
larger than the Hall potential, even small errors in contacts placement will be important.

In order to decrease this effect, and knowing that Rxy is anti-symmetric as a function
of the magnetic field, we can average the measured resistances for positive and negative
applied magnetic fields:

Rxy = R+ −R−

2 . (4.19)





Chapter 5

Results and Discussion

In this work five bismuth chalcogenides were synthesized: Bi2Se3, Bi2Se3−xTex , with
x = 0.5, 0.3, 0.1 and Bi2Te3. The results are reported next; the first five sections are
dedicated to the characterization and morphology studies of the synthesized compounds,
and each section will be dedicated to a different compound. In the last three sections
we report the transport properties, namely the magnetoresistance and Hall effect of the
samples under study. Since we made several synthesis for each compound, they will be
identified as Batch I, II, etc. Besides, since not all synthesis were successful, only the
most interesting ones will be reported here.

5.1 Bi2Se3

5.1.1 Batch I

5.1.1.1 Synthesis

Stoichiometric amounts of bismuth nitrate (Bi2(NO3)3 · 5H2O), sodium selenide (Na2SeO3)
and also potassium hydroxide (KOH) were dissolved in ethylene glycol (EG) and stirred
for several minutes at room temperature, as reported by Xu et al. [37]. The mixture
was then heated in the microwave oven described in the previous section. The set target
temperature of 180 °C was reached in 10 minutes and after that the temperature was
held for 1 minute. The product was then separated by centrifugation and washed with
deionized water and ethanol and dried at 50 °C for 3 hours.
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Figure 5.1: Diffraction pattern of Bi2Se3- Batch I.

5.1.1.2 XRD Analysis

Bruker AXS D8 AVANCE X-ray diffractometer was used to characterize the sample.
The resulting powder was placed in a Si sample holder and the height of the sample
was determined by scanning the primary beam, allowing to have a correct 2θ0 reference.
The diffractogram was obtained in the 10° − 130° range, with a 0.005° stepsize and 0.5
seconds per step. The identification of the phases was done using EVA (version 3.0)
search-match option. The quantitative analysis was then determined by the Rietveld
method implemented in TOPAS V5. The program allows the refinement of the mi-
crostructure parameters (grain size and microstrains), cell parameters, atomic positions,
site occupancies and isotropic temperature factors. First principles calculations, which
are based on the optics of the instrument, were used in order to determine the pro-
files for the Bragg reflections. These were convoluted with the shapes arising from the
microstructure, with a lorentzian profile for the grain size distribution and a gaussian
profile for the microstrain distribution.

All the diffraction peaks were successfully indexed to the rhombohedral geometry
of Bi2Se3, suggesting the high purity of the product (see Fig 5.1). No further peaks,
characteristic of impurities, were observed. The most relevant parameters from the
Rietved refinement are presented in table 5.1. The cell parameters a and c agree to
what is reported in the literature [37].

5.1.1.3 SEM

Scanning electron microscopy was performed using the SEM VEGA TESCAN described
previously. The images presented were obtained using the SE detector and an electron
beam acceleration of 5 kV. Figure 5.2 reveals the uniformity of the sample, consisting
of flake-like single crystals with hexagonal form (sheets) with an average diameter of
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Bi2Se3 (100%)
a (Å) 4.13864(7)
c (Å) 28.6428(7)
D (nm) 65.4(5)
Rwp (%) 7.80

Table 5.1: Summary of the parameters from the Rietveld refinement for sample Bi2Se3−
Batch I.

(a) (b)

Figure 5.2: SEM images of the sample Bi2Se3− Batch I taken with a working distance
of 10.7 mm and a magnification of (a) 10.7 k× (b) 20.0 k×.
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Figure 5.3: Diffraction pattern of Bi2Se3 - Batch II.

∼ 2.3µm. Note that this differs from D (table 5.1) by several orders of magnitude.
The crystallite size, D, measures smaller portions of the crystal, separated by grain
boundaries and, therefore, it has a lower value compared to the diameter of the particles
observed by SEM.

5.1.2 Batch II

5.1.2.1 Synthesis

The synthesis was made following the previously described procedure. Since the amount
of final product obtained in Batch I revealed not to be enough to prepare a pellet to
measure the transport properties, the amounts of the precursors were increased in the
present batch, preserving the stoichiometric ratios.

5.1.2.2 XRD Analysis

The diffractograms were obtained in the same conditions as specified before, and the
identification and quantification of the samples also followed the same indications, with
an exception to the bismutite phase, where the site occupancies and the temperature
factors were fixed. The majority of the diffraction peaks could be indexed to Bi2Se3, but
some other peaks, characteristic of impurities, can be observed (Fig. 5.3). We were able
to identify, as impurity phases, selenium (11.9(2) %) and bismutite (23.90(13) %). The
parameters from Rietveld refinement are given in table 5.2.

5.1.2.3 SEM

SEM pictures for the sample Bi2Se3 - Batch II were taken with an electron beam accel-
eration of 5 kV and a working distance of 11.80 mm. In Figure 5.4a we can observe that
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Bi2Se3 (64.2(2) %) Se (11.9(2) %) Bismutite (23.90(13) %)
a (Å) 4.13915(6) 4.36807(18) 3.8696(2)
b (Å) — — 3.8652(3)
c (Å) 28.6429(5) 4.9529(5) 13.784(3)
D (nm) 64.1(3) 19.0(3)×102 37.6(7)
Rwp (%) 7.68

Table 5.2: Summary of the parameters from the Rietveld refinement for sample Bi2Se3
- Batch II.

(a) (b)

Figure 5.4: SEM images of the sample Bi2Se3 - Batch II with a working distance of 11.80
mm and a magnification of (a) 5.00 k× (b) 7.70 k×.
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Figure 5.5: EDS mapping of the sample Bi2Se3 - Batch II performed with a high voltage
of 20 kV and a magnification of 7.7 k×.

the structures presented are not uniform. In fact, it is possible to distinguish two differ-
ent structures: one identical to what was observed in Bi2Se3 - Batch I - the hexagonal
sheets with an average diameter of ∼ 2.3µm; and a rod-like structure with an average
length larger than to the diameter of the hexagonal structures. Further investigation was
done using EDS, in order to understand possible differences in the composition of the
different structures. Figure 5.5 presents the EDS analysis for the same region observed
in Fig. 5.4a, using the Kα lines of Bi and Se. One can observe that there is a clear
difference in the composition of the structures: while the hexagonal sheets have bismuth
and selenium in their composition, the rod-like structures are primarily constituted by
selenium. This was found to be in agreement to what was reported by Chen et al. [41],
in a similar synthesis of Bi2Te3.

5.1.3 Batch III

5.1.3.1 Synthesis

Since the previous batch revealed some diffraction peaks that could not be indexed to
the rhombohedral phase of Bi2Se3, its synthesis was repeated in order to avoid impurity
phases. The same procedures were followed for the synthesis of Bi2Se3 - Batch III. The
heating time was kept at 10 minutes to reach the set temperature (180 °C) plus 1 minute
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Figure 5.6: Diffraction pattern for the sample Bi2Se3 - Batch III.

Bi2Se3 (100%)
a (Å) 4.13915(3)
c (Å) 28.6253(3)
D (nm) 145.3(8)
Rwp (%) 8.29

Table 5.3: Summary of the parameters from the Rietveld refinement for sample Bi2Se3
- Batch III.

at constant temperature.

5.1.3.2 XRD Analysis

The diffraction pattern, identification and quantification of phases followed the previ-
ously described procedures. From Fig. 5.6 we can observe the similarities with the
diffraction pattern obtained for the sample Bi2Se3 - Batch I (Fig. 5.1). No characteristic
peaks for impurities were observed. The Rietveld refinement parameters are presented
in table 5.3.

5.1.3.3 SEM

The SEM images of Bi2Se3 - Batch III (Fig. 5.7) were obtained using an electron beam
acceleration of 5.0 kV and a working distance of 11.9 mm. The images suggest an uniform
sample consisting of hexagonal sheets similar to what was observed in Fig. 5.2.
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(a) (b)

Figure 5.7: SEM images for the sample Bi2Se3 - Batch III performed with a working
distance of 11.9 mm and a magnification of (a) 10.00 k× (b) 20.00 k×.

5.2 Bi2Se2.5Te0.5

5.2.1 Synthesis

Stoichiometric ratio of bismuth nitrate (Bi(NO3) · 5H2O), sodium telluride (Na2TeO3),
sodium selenide (Na2SeO3) and potassium hydroxide (KOH) were dissolved in ethylene
glycol and stirred at room temperature, closely following the procedure described by
Xu et al. [53]. The solution was then divided into the microwave’s vessels and was
subjected to a microwave cycle of 10 minutes to reach the set temperature, plus 25
minutes at 180 ◦C. After cooling to room temperature, the product was separated by
centrifugation and washed with deionized water and ethanol several times. It was then
dried at 50 °C for 3 hours.

5.2.2 XRD Analysis

The diffraction pattern, identification and quantification of phases followed the previ-
ously described procedures. Xu et al. [53] reported that all the difraction peaks were
steadily indexed to Bi2Se3, but a slight shift to lower-angles of the peak 2θ ∼ 29.5° was
observed due to the incorporation of tellurium, an atom of bigger dimensions, in the lat-
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tice. While the majority of the diffraction peaks could be indexed to the Bi2Se3 phase,
there was another phase with peaks next to those of Bi2Se3 (see Fig. 5.8). This suggested
that there could be an isostructural phase, with slightly increased cell parameters. This
phase would be an intermediate phase between Bi2Se3 and the desired Bi2Se2.5Te0.5. In
fact, while analyzing this intermediate phase and taking into account the occupancies
of the elements in TOPAS, we came to the conclusion that tellurium had substituted
completely the second atom of selenium in the Bi2Se3 structure, leading to the formation
of Bi2SeTe2. Therefore, the final mixture was constituted not by a homogeneous phase
where the tellurium substituted some of the selenium in the Bi2Se3 structure, but by
two isostructural phases. Thus, tellurium was not homogeneously incorporated in the
product, but instead it led to a segregation of phases, one without tellurium, Bi2Se3,
and another, Bi2SeTe2, which incorporated all Te.

5.3 Bi2Se2.7Te0.3

5.3.1 Synthesis

The synthesis followed what was indicated for Bi2Se2.5Te0.5 with the correct stoichio-
metric ratios. The heating conditions were kept the same as well.

5.3.2 XRD Analysis

The diffraction pattern was obtained using Bruker AXS D8 AVANCE X-ray diffrac-
tometer in the 10° − 130° range, with a 0.005° stepsize and 0.5 seconds per step. EVA
and TOPAS were used to identify the phases and implement a Rietveld refinement, re-
spectively. Figure 5.9 shows many similarities to the previous diffractogram (Fig. 5.8).
This suggests that the Bi2SeTe2 phase is still present, although the correspondent peaks
are not so prominent, indicating that it has decreased. Table 5.4 shows some of the
refinement parameters obtained from TOPAS.

5.4 Bi2Se2.9Te0.1

5.4.1 Synthesis

The synthesis for Bi2Se2.5Te0.1 followed the directions for the two previous compounds.
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Figure 5.8: Diffraction pattern for the sample Bi2Se2.5Te0.5.

Figure 5.9: Diffraction pattern for the sample Bi2Se2.7Te0.3.

5.4.2 XRD Analysis

The diffractogram was obtained in the conditions specified before. The Rietveld re-
finement was performed, including the two phases present in the samples Bi2Se2.5Te0.5

and Bi2Se2.7Te0.3. Since Bi2SeTe2 contributed with a small percentage, the parameters
correspondent to this phase were kept fix. The diffraction pattern can be seen in Figure
5.10. It can be observed that Bi2SeTe2 has now little relevance, but it still improves the
refinement.

Bi2Se2.5Te0.5 Bi2Se2.7Te0.3 Bi2Se2.9Te0.1
Bi2Se3 78.4(2) 82.8(2) 99.30(12)

Bi2SeTe2 21.6(2) 17.2(2) 0.70(12)
Rwp (%) 8.22 8.18 8.24

Table 5.4: Summary of the parameters from the Rietveld refinement for samples
Bi2Se2.5Te0.5, Bi2Se2.7Te0.3 and Bi2Se2.9Te0.1.
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Figure 5.10: Diffraction pattern for the sample Bi2Se2.9Te0.1.

5.5 Bi2Se2.5Te0.5 - Repetition

5.5.1 Batch III

5.5.1.1 Synthesis

Since all three compounds from the family Bi2Se3−xTex synthesized previously led to
similar results in the XRD analysis, the synthesis was repeated. We chose to repeat, in
slightly different conditions, the synthesis of Bi2Se2.5Te0.5 since that compound had the
most prominent additional phase and would be, in principle, easier to detect. Therefore,
stoichiometric ratio of sodium tellurite, sodium selenide and potassium hydroxide were
dissolved in ethylene glycol. Separately, a 0.5 mmol solution of bismuth nitrate in
ethylene glycol was prepared. The two solutions were mixed and the final mixture was
heated in the microwave in the same conditions as before. This intermediate step was
done according to what was reported by Xu et al. [53], intending to make the final
solution more homogeneous.

5.5.1.2 XRD Analysis

The diffraction pattern was obtained in the conditions specified before. Identification of
phases was performed using EVA, and TOPAS was used to implement a Rietveld refine-
ment. The Bragg reflections were described by a modified pseudo-voigt (PV_MOD), as
the profile determined from first principles had difficulties in the description of the input.
Besides the peaks indexed to Bi2Se3, we were able to identify some peaks characteristic
of tellurium (Fig. 5.11). Moreover, we can observe the presence of other phases similar
to what was reported in the section above. When we tried to implement the refinement
with the phase described in the previous sections, the site occupancies pointed not to
Bi2SeTe2 but to Bi2Se2Te, an isostructural phase where the atom of selenium in the
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Bi2Se2.5Te0.5- III
Bi2Se3 (%) 49.1(6)

Te (%) 0.63(4)
Bi2SeSexTe2-x (%) 41.2(6)

Bi2Se2Te (%) 9.0(3)
Rwp (%) 5.29

Table 5.5: Summary of the parameters from the Rietveld refinement for sample
Bi2Se2.5Te0.5 - Batch III.

second position is only half substituted. This, however, led to a poor description of
the broadening of the peaks correspondent to Bi2Se3. We identified the presence of two
phases with different Te content, Bi2Se2Te and Bi2SeSexTe2−x . The former would be
responsible for the appearance of peaks next to those of Bi2Se3 and the latter would de-
scribe the broadening of the principal peaks. The cell parameters, site occupancies and
isotropic temperature factors were kept fix for the Bi2Se2Te phase, as this was the only
option we encountered in order to have a good Rietveld refinement. For Bi2SeSexTe2−x ,
the site occupancies indicated the compound Bi2Se2.68Te0.32. A summary of the Rietveld
refinement parameters, with the percentages for each phase, is included in table 5.5.

5.5.2 Batch V

5.5.2.1 Synthesis

Since in the previous batch we were still unable to eliminate the undesired phases,
another change was made. In the synthesis of Bi2Se2.5Te0.5 - Batch V we tried to avoid
any possible heterogeneity in the solution. As the solution was divided into the vessels
it was possible that the distribution of the precursors in the different vessels was not
uniform, causing the reaction to process differently in the different vessels. In order to
overcome this, we made three separated solutions (listed bellow as #1, #2, #3), one
for each vessel, in which stoichiometric ratios of sodium tellurite, sodium selenide and
potassium hydroxide were dissolved in ethylene glycol. Separately, a 0.5 mmol solution
of bismuth nitrate in ethylene glycol was prepared and then mixed with the first. The
mixture was then microwave-heated in the conditions specified before.
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Figure 5.11: Diffraction pattern for the sample Bi2Se2.5Te0.5 - Batch III.

Sample #1 Sample #2 Sample #3
Bi2Se3 (%) 41.9(9) 46.9(9) 47.6(1)

Te (%) 4.14(11) 2.34(18) 0.24(4)
Bi2SeSexTe2-x (%) 38.2(1) 41.3(1) 39.4(1)

Bi2Se2Te (%) 15.8(5) 9.7(4) 12.7(7)
Rwp (%) 5.29 5.77 5.46

Table 5.6: Summary of the parameters from the Rietveld refinement for sample
Bi2Se2.5Te0.5 - Batch V, samples #1, #2, #3.

5.5.2.2 XRD Analysis

The diffraction pattern, identification and quantification of the phases was performed in
the conditions mentioned earlier, with a modified pseudo-voigt describing the peak type.
As can be seen in Figures 5.12 to 5.14, the diffraction pattern suggests the presence of
Bi2Se3 and Te. Moreover, the same intermediate phases indicated earlier are present.
The cell parameters, site occupancies and isotropic temperature factors were kept fix for
Bi2Se2Te. The site occupancies for Bi2SeSexTe2−x indicated the presence of Bi2Se2.5Te0.5

(sample #1), Bi2Se2.32Te0.68 (sample #2) and Bi2Se2.24Te0.76 (sample #3). These two
phases (Bi2Se2Te and Bi2SeSexTe2−x) and Te phase incorporated again all the tellurium,
leading to a non-homogeneous distribution of this element. Also, it is relevant to notice
that the three initial solutions, although very similar in composition, led to significant
differences in the quantitative composition of the phases. A summary of the refined
parameters is present in table 5.6 (sample #1 to #3). Note that, while the parameter a
is approximately constant in the three samples, c increases from sample #1 to sample
#3 (c = 28.6063(11) Å in sample #1 to c = 28.6255(10) Å in sample #3), in agreement
to the incorporation of more Te in Bi2SeSexTe2−x structure.
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Figure 5.12: Diffraction pattern for the sample Bi2Se2.5Te0.5 - Batch V #1.

Figure 5.13: Diffraction pattern for the sample Bi2Se2.5Te0.5 - Batch V #2.

Figure 5.14: Diffraction pattern for the sample Bi2Se2.5Te0.5 - Batch V #3.
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5.6 Bi2Te3

5.6.1 Batch IV

5.6.1.1 Synthesis

Following a similar procedure to what was done in the synthesis of Bi2Se3, stoichio-
metric ratio of bismuth nitrate (Bi(NO3)3 · 5H2O), sodium tellurite (Na2TeO3) and
potassium hydroxide (KOH) were dissolved in ethylene glycol and stirred for several
minutes at room temperature. The mixture was placed in several vessels in the mi-
crowave. The heating was processed in a 10 min ramp to reach the set temperature
of 180 °C and 12 min in that constant temperature. The increased time in relation to
what was done with Bi2Se3 is due to the higher reduction potential of the tellurium
(Te + 2e− = Te2−, E0 = −1.143 V; Se + 2e− = Se2−, E0 = −0.924 V), as explained by
Zhou et al. [42]. Since it was suggested that a much longer time is needed to pro-
duce Bi2Te3 than Bi2Se3 under similar conditions, increasing the time from 0.5 hours
in Bi2Se3 to 6 hours in Bi2Te3 [42], we tried to increase the heating time by 12 times
of that of Bi2Se3, leading to a heating time of 12 minutes. However, when the mixture
was cooled to room temperature, it was notorious that while some of the vessels had
product (a dark precipitate was formed in the bottom of the vessels), there was one with
a light-yellow liquid without any precipitate. Regarding this, the product resultant from
each vessel was not mixed, leading to two different samples, named #1, #2, depending
on the position of the vessels in the microwave. These results were also found in the
batches I-III, not described here due to the similarity of the results.

5.6.1.2 XRD Analysis

The diffraction pattern was obtained in the same conditions as before. Identification
of the phases was performed using EVA and their quantification using TOPAS. The
profile for the Bragg reflections was determined from first principles. It can be observed
in Figures 5.15 and 5.16 that the phases are the same, although their quantities vary.
Note that the expected product, Bi2Te3, was actually the smallest phase present on both
samples. Phases correspondent to Te and TeO2 were also identified. There are also other
phases of smaller relevance, identified by a star in the same figures, that we were unable
to identify. A summary of the Rietveld refinement parameter is presented in table 5.7.
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Figure 5.15: Diffraction pattern for the sample Bi2Te3 - Batch IV #1.

Figure 5.16: Diffraction pattern for the sample Bi2Te3 - Batch IV #2.

Sample #1 Sample #2
Bi2Te3 (%) 11.76(19) 5.5(5)

Te (%) 42.0(4) 76.6(11)
TeO2 (%) 46.3(5) 14.9(11)
Rwp (%) 9.44 10.33

Table 5.7: Summary of the parameters from the Rietveld refinement for sample Bi2Te3
- Batch IV.
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Figure 5.17: Diffraction pattern for the sample Bi2Te3 - Batch V #1.

5.6.2 Batch V

5.6.2.1 Synthesis

The previous results suggested that the solution could be heterogeneous, leading to
an uneven distribution of the precursors in the solvent. To avoid this, three different
solutions were made, one for each vessel, named #1, #2 and #3. Furthermore, the
mixture was microwave-heated for 10 min in order to reach the set temperature of 180
°C plus 30 min at constant temperature. The heating time of the present batch was
chosen regarding the results reported by Chen et al. [41], in which they state that 30
min is the optimum reaction time for their system (similar to the one reported here),
leading to the formation of pure Bi2Te3. When cooled to room temperature, all the
vessels had a dark precipitate in the bottom, suggesting that non-homogeneity could, in
fact, have been a problem in the previous synthesis.

5.6.2.2 XRD Analysis

The samples #1, #2 and #3 were examined by X-ray diffraction. Identification and
quantification of the phases present in the diffraction peaks was implemented using
EVA and TOPAS, respectively. The diffractograms are presented in Figures 5.17 to
5.19. The composition of the three samples determined from Rietveld refinement is
given in table 5.8. The three samples have common phases, although their contents vary
from sample to sample. We can observe that, even though the solution was, in principle,
homogeneous, there is a difference in the quantities of the specified phases. Keeping
in mind the formation mechanism explained in section 4.1, one can deduce that the
formation of Bi2Te3 at the expense of Te occurred with decreased success from samples
#1 to #3. This could be due to possible hot spots in the microwave cavity, leading to
an uneven heating process of the different vessels.
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Figure 5.18: Diffraction pattern for the sample Bi2Te3 - Batch V #2.

Figure 5.19: Diffraction pattern for the sample Bi2Te3 - Batch V #3.

Sample #1 Sample #2 Sample #3
Bi2Te3 (%) 85.76(15) 61.1(3) 43.4(9)

Te (%) 14.24(15) 38.9(3) 56.6(9)
Rwp (%) 6.79 7.17 11.67

Table 5.8: Summary of the parameters from the Rietveld refinement for sample Bi2Te3
- Batch V.
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Figure 5.20: Puck containing Bi2Se3 − II, with the 4-point contacts used to measure the
longitudinal resistance.

5.7 Transport properties of Bi2Se3 - Batch II

The powder resultant from the synthesis was pressed into a pellet by applying a pressure
of 6 MPa at room temperature, and four contacts were placed in the sample, in agreement
to the 4-probe measurement technique (Fig. 4.9), as can be seen in Fig. 5.20. The
contacts consist of golden wires connected both to the sample and the puck by conductive
silver paint. The DynaCool Physical Property Measurement System (PPMS) was used
to perform all the measurements reported in the next sections.

5.7.1 Resistance vs Temperature

The temperature dependence of the longitudinal resistance for sample Bi2Se3 - II is
illustrated in Figure 5.21. It shows a metallic behavior (dR/dT > 0) for a certain
temperature range, compatible with a finite bulk population or with an impurity band
with high conduction [23]. In the former case, SdH oscillations originated from the 3D
bulk states have been reported. Furthermore, Butch et al. [54] reported the temperature
dependence for several carrier concentrations in Bi2Se3 (Fig. 5.22). For n > 1018 cm−3,
a metallic behavior is expected, while for lower concentrations, a minimum develops at
around 30 K. This same anomalous behavior is observed in the present sample.

For higher temperatures, it can be observed a local maximum at ∼ 200 K, repre-
senting a crossover to an activated behavior, while the concentration of extrinsic carriers
decreases [54].

5.7.2 Hall Effect

In order to study the Hall effect, the contacts were now placed in the sample according
to Fig. 4.9. As discussed in section 4.4.2.2, the measured Hall effect (Figure 5.23) can
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Figure 5.21: Temperature dependence of the resistance for the sample Bi2Se3 - Batch II.
There are anomalies observed above 250 K which are not intrinsic to the sample but are
due to problems in the electrical contacts, since those results were not reproducible.

include a component due to the longitudinal voltage drop, which is actually visible at
low temperatures, since one can observe the WAL dip1 around B ∼ 0 T. In order to
eliminate this, we can average the measurements for positive and negative fields following
equation 4.19.

Taking into account the lead placement illustrated in figure 5.20, the positive slope
identified in figure 5.24 indicates carriers with negative charge, i.e., electrons. This result
agrees with the expected, since Bi2Se3 is naturally n-type due to Se vacancies.

Furthermore, the carrier density, nH, can be calculated from eq. 4.18, knowing the
width of the sample, w = (0.20 ± 0.05) mm. The fitting illustrated in figure 5.24 was
performed at 1.8 K and yields m = (17674 ± 6) × 10−6 ΩT−1. One can then calculate
the carrier density, nH = 1.76 × 1018 cm−3. This is larger than what is usually reported
for the Hall carrier density for similar topological insulators (tipically nH ∼ 1016 cm−3)
[55, 56].

The Hall resistivity can be interpreted in a two-band model, where conduction from
both the surface and bulk states are considered. Such a situation would lead to a Hall
resistivity described as

ρxy = (Rsρ
2
b +Rbρ

2
s)B +RsRb(Rs +Rb)B3

(ρs + ρb)2 + (Rs +Rb)2B2 , (5.1)

with Rb and ρb the Hall coefficient and resistivity of the bulk, and Rs = w/(en2D)
1In fact, the WAL feature shows in Rxy as a peak.
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Figure 5.22: Temperature dependent electrical resistivity ρ(T ) between samples of Bi2Se3
with different carrier densities n (cm−3) : (i) 1 × 1019, (ii) 5.3 × 1018, (iii) 4.9 × 1017, (iv)
3.7×1017, (v) 3.3×1017, and (vi) ∼ 1016. For high carrier densities a metallic behavior is
observed, while for n < 1018 cm−3 an anomalous behavior is detected, with a minimum
developing ∼ 30K. [54]
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Figure 5.23: Hall effect for the sample Bi2Se3 − II at 1.8 K.
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Figure 5.24: Linear fitting and anti-symmetrization of the data in Fig. 5.23 .

and ρs = ρsurfw, with ρsurf the surface sheet resistance. This would allow to obtain
n2D, n3D, ρb and ρsurf , which leads to a complicated optimization. Nevertheless, if
SdH oscillations are observed in the surface, one can fix n2D, which turns this analysis
more reliable. The case in study, however, did not give this constraint (see discussion in
5.7.3.2). Furthermore, the obtained Hall effect is almost linear (Fig. 5.24), and the fit
would be too difficult. Thus, the calculated carrier density, nH, was obtained through a
one-band model.

5.7.3 Magnetoresistivity

5.7.3.1 Weak anti-localization

As described by several authors, weak anti localization is a characteristic of the topologi-
cal insulators, including Bi2Se3. The WAL effect decreases the resistivity due to the anti
localization of the electrons. However, this effect is suppressed by applying a magnetic
field (see section 3.1.3). When a magnetic field is applied, the weak anti localization will
decrease, leading to an increase in the resistivity. Following eq. 4.12, it is necessary to
average the value of the measured resistance for symmetric magnetic fields, in order to
eliminate the non-linearity of the contacts. Furthermore, it is necessary to calculate the
conductance, G. The resistivity ρ and the conductivity σ tensors are related by

 σxx σxy

σyx σxx

 = 1
ρ2

xx + ρ2
xy

 ρxx −ρxy

ρyx ρxx

 . (5.2)
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Since, in the conditions of the measurements (low temperatures and low applied mag-
netic fields), ρxx ≫ ρxy, one can write σxx ≈ 1

ρxx
. One can then write the conductance

as Rxx = 1
Gxx

, where Gxx is usually represented by G. Furthermore, we are interested
in the measurement of the change of the conductance with respect to its value without
a magnetic field (when the WAL effect is maximum). Thus, we choose to study the
change in conductance, ∆G, due to an applied magnetic field:

∆G = G(B) −G(0) = 1
R(B) − 1

R(0) . (5.3)

On the other hand, the conductivity given by the HLN formula 3.7 and the conduc-
tance are related by ∆σ = L

W
∆G, where L is the distance between the two voltage con-

tacts (L = 0.20(5)mm) and W is the width of the conducting channel (W = 3.10(5)mm).
Therefore, we can fit the previous equation to the experimental data. This was performed
using a program written in Python (Appendix A). The magnetoresistance in Figure 5.25,
at 1.8 K, contains a sharp dip around the zero magnetic field and a background. Al-
though the effect for small fields tends to disappear with the increase in temperature,
the background remains roughly the same. This suggests that the first has a quantum
origin, while the origin of the latter appears to be classical. However, the magnetic de-
pendence for high fields is not parabolic. Several authors reported that the dependence
on the magnetic field would be intermediate between the linear and parabolic behavior
[34, 57]. Furthermore, Takagaki et al. [34] report that the background dependence on
the field can be described by a power-law. Therefore, the fit includes not only the HLN
formula but also a power-law describing the background, given by a× Bb, where a and
b are fitting parameters.

For the sample in study, Bi2Se3 - Batch II, the fitting is presented in figure 5.26a
(at 1.8 K) with entire range of magnetic field (up to 9 T) and the fitted parameters are
given in table 5.9, for temperatures 1.8 K, 5 K and 15 K.

As expected, b has an intermediate value between 1 and 2, and it does not vary
much with the increasing temperature. Furthermore, α should be -0.5 for each transport
channel (see Chapter 3, section 3.1.3). Since w ≫ lφ, one should not expect to find a
diffusive channel connecting the top and bottom channels and, therefore, α should be -1.
However, we found α = −4.74 ± 0.02 at 1.8 K, which has the same order of magnitude.
Taking into account the significant errors in the measurements of L and W and the fact
that we are dealing with a thin polycrystalline sample and not a true 2D system, as
is the case of measurements performed on flake-like single-crystals, one can understand
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Figure 5.25: Magnetoresistance for the sample Bi2Se3−Batch II at different tempera-
tures. Note that the quantum mechanical effect around 0 T disappears with the increas-
ing temperature.

T (K) 1.8 5.0 15.0
α −4.74 ± 0.02 −3.84 ± 0.01 −3.49 ± 0.01

lφ (nm) 202 ± 1 149.0 ± 0.6 82.94 ± 0.16
b 1.86 ± 0.01 1.34 ± 0.04 1.44 ± 0.02

Table 5.9: Fitted parameters for the HLN model (α and lφ) and the power-law back-
ground (b) for the sample Bi2Se3 − II for temperatures 1.8 K, 5 K and 15 K. The fitting
was performed in the entire field range (9 T).
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(a)

(b)

Figure 5.26: Fitting of the HLN model + background for Bi2Se3− Batch II at 1.8 K for
fields up to (a) 9 T and (b) 0.5 T. In the latter, the background has reduced significance.
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Figure 5.27: Power-law fit of coherence length, lφ, with temperature for the sample
Bi2Se3 - Batch II. The fit yields T−0.519(3).

why the experimental value deviates from the expected value.
It is possible to observe in table 5.9 that the coherence length, lφ, decreases with

increasing temperature. In fact, for two-dimensional systems, the power-law dependence
of coherence length is lφ ∼ T−1/2, while for 3D systems the law changes to lφ ∼ T−3/4

[55].
From this point further, in order to obtain comparable results between the samples

from batches II and III, the fit was performed using only the data up to 0.5 T2. However,
this causes the background to have little influence and the background exponent b loses
physical significance (although it still improves the results for lφ). This fit is shown in
Figure 5.26b.

In this case, it is possible to observe the decrease of lφ from (231 ± 2) nm to (96 ± 2)
nm as the temperature increases from 1.8 K to 10 K. The power-law fit of lφ with
temperature illustrated in Fig. 5.27 yields lφ ∼ T−0.519(3), which corroborates that the
WAL effect at low magnetic fields originated from bidimensional surfaces.

5.7.3.2 Shubnikov-de Haas Oscillations

In Figure 5.25, at 1.8 K, it is possible to observe traces of oscillations in the resistivity,
more visible at high fields. To study the phenomenon, we directly subtracted the model
(HLN + power-law background) for fields B > 1 T, obtaining the oscillatory part of ∆G

2As can be seen in the next section, if higher values of the field were used, that would cause extreme
loss in the goodness of the fitting.



5.7 Transport properties of Bi2Se3 - Batch II 71

visible in Figure 5.28(a). The same figure illustrates that this effect tends to disappear
with the increasing temperature.

The conductance has periodic maximums and minimums with 1/B.
The Lifshitz–Onsager equation discussed in 3.2 is given by:

2π(n+ γ) = πk2
F
~
eB

, (5.4)

where ~ is the reduced Planck constant, e is the electronic charge, B the applied magnetic
field, (πk2

F ) the cross-sectional area of the Fermi surface perpendicular to B with radius
equivalent to the Fermi wave vector kF, n the Landau level (LL) index, and γ is the
phase of the SdH oscillations, given by eq. 3.10.

When plotting the LL fan diagram (plot of n versus 1/B) (Fig. 5.29), the phase of the
SdH oscillations γ can be determined following eq. 5.4. Integer values of n are assigned
to minimums of ∆G, while n+ 1/2 values are assigned to maximums.

The linear fitting for the data retrieved at 1.8 K yields a slope BF = 35 ± 2 T and
an intercept on n-axis γ = 0.1 ± 0.4. Thus, since for conventional metals γ should be
1/2, the experimentally determined γ suggests the presence of non-trivial π Berry phase.

Furthermore, for a 2D topological surface without spin degeneracy, the carrier density
and the Fermi vector are related by

n2D = 1
(2π)2πk

2
F = k2

F
4π (5.5)

and for a 3D Fermi surface where the spin degeneracy is taken into account, they are
related by

n3D = 2
(2π)3

4
3πk

2
F = k3

F
3π2 (5.6)

Therefore, from the slope BF = ~
2e
k2

F one can determine the Fermi wave vector,
kF = 0.0328 Å−1 and, from eq. 5.5, the surface carrier density n2D = 8.56 × 1011 cm−2.
On the other hand, for a 3D system with kF = 0.0328 Å−1, the carrier density can be
calculated to be n3D = 1.91 × 1018 cm−3.

Moreover, the carrier density calculated from the Hall effect (nH = 1.76 × 1018 cm−3)
agrees with the bulk density obtained from the SdH oscillations for 3D systems, which
suggests that the quantum oscillations can originate from the bulk states. This effect
was reported by several authors [33, 58], where the carrier density has indeed much
higher values (nH ∼ 1018 cm−3), indicating the relevance of residual bulk carriers.

However, it should be pointed out that the discussion above only suggests the 3D
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(a)

(b)

(c)

Figure 5.28: Shubnikov-de Haas oscilations for the sample Bi2Se3 − II at (a) 1.8 K, (b)15
K, (c) 25 K.
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Figure 5.29: Landau level fan diagram for SdH oscillations and linear fitting of the
periodic maxima and minima as a function of the index n. The fitting yields an intersect
γ = 0.1 ± 0.4.

origin of the SdH oscillations. The nature of the oscillations should be tested by its
dependence on the angle. If the oscillation frequency, F , changes as ∼ 1/ cos θ (for a
wide range of θ), a 2D origin is expected. Moreover, the 2D nature is supported if the
SdH oscillations disappear for θ = 90°. Unfortunately, we did not have access to a rotator
and therefore this analysis could not be performed with the available instrumental setup.

5.8 Transport properties of Bi2Se3 - Batch III

5.8.1 Resistance vs Temperature

When measuring the longitudinal resistance for sample Bi2Se3- Batch III, we noticed
that the resistance would decrease with time. Even when the sample was placed inside
the PPMS chamber, in a controlled environment and stable temperature of 300 K, the
resistance still decreased, as can be verified in Figure 5.30. We attributed those results
to the diffusion of silver (originated from the contacts) in the Bi2Se3 structure. This
phenomena was reported by several authors [59, 60], where it is indicated that the
deposition of silver atoms on the surface of Bi2Se3 would lead to an intercalation of
those atoms between the quintuple layers, in the van der Waals gaps.

The low values observed for the resistance of sample III and the positive slope,
dR/dT > 0, indicate a more metallic behavior, compared to sample II. Our guess is that
the resistance is indeed affected by the diffusion of the metallic atoms, and the measured
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Figure 5.30: Time dependence of the resistance for sample III, at 300 K in a controlled
environment.
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Figure 5.31: Temperature dependent resistance for sample III, (a) decreasing the tem-
perature and (b) increasing the temperature.

resistance decrease arises from the increased electron concentration due to the diffusion
of the silver atoms. An unexpected behavior for semiconductors was found at low tem-
peratures, where the resistance decreased abruptly for T < 10 K. Furthermore, a rather
unusual histeretic effect was corroborated in several cooling and heating cycles (Fig.
5.31(a) and (b)). When the temperature is decreased, some effects appear at around 50
K and 180 K. This anomalous hysteresis in the resistance is not really understood and
we can only guess that it can be due to a damaged contact.
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Figure 5.32: Linear fitting and anti-symmetrization of the Hall effect for sample III.

5.8.2 Hall Effect

Figure 5.32 shows the Hall effect for the sample Bi2Se3 − III at 1.8 K, suggesting that
the main carriers are electrons. The slope m = (36563 ± 9) × 10−7 ΩT−1 and width of
the pellet w = (0.20 ± 0.05) mm yield a carrier concentration of nH = 8.53 × 1018 cm−3

in a one-band model. This is a higher carrier density than that of sample II, indicating
a more metallic behavior, as already expected from the discussion in 5.8.1.

5.8.3 Magnetoresistivity

5.8.3.1 Weak anti-localization

The magnetoresistance at 1.8 K for the sample III is illustrated in Figure 5.33. It can be
observed that the WAL effect is much weaker and the data are notoriously asymmetric.
Once again, we performed a symmetrization of the data in order to eliminate the error
introduced by the misalignment of the contacts.

For the study of weak anti-localization effect in sample Bi2Se3 - Batch II, we consid-
ered that ρxx ≫ ρxy and therefore we could write G ∼ 1/Rxx. In this case, however, ρxx

and ρxy have the same order of magnitude, and the condition would not hold. From 5.2,
we know that the conductivity and resistivity are related by

σxx = ρxx

ρ2
xx + ρ2

xy

. (5.7)
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Figure 5.33: Magnetoresistance at 1.8 K for the sample Bi2Se3−III. Note that the WAL
effect is still present, although is is less significant.

The change in conductance, ∆G will now be given by

∆G = Rxx(B)
Rxx(B)2 + (mB)2 − Rxx(0)

Rxx(0)2 , (5.8)

where m is the slope obtained from the fit of the Hall effect data and, therefore, mB =
Rxy.

In the present sample, we measured the distance between the two voltage contacts
and the width of the channel and obtained, respectively, L = 1.10(5) mm and W =
2.60(5) mm.

When we did the plot of ∆G calculated as eq. 5.8 in the entire magnetic field range
(up to 9 T), we noticed that the oscillations were no longer visible and the resultant data
were significantly changed by the term (mB)2. The plot described almost nothing but
the background, as the term in B2 gained too much relevance. This, of course, is not in
our interest. Therefore, we tried to perform the fit of the HLN formula + background
to the region of 0 − 0.5 T, since B would not be that prominent and it is, indeed, the
region where the dip is notorious (see Fig. 5.33). This analysis led to a good fit and
coherent values for lφ, although α had values far from the expected α = −1, as can be
confirmed in Figure 5.34. The plot of the coherence length with temperature for this
analysis is presented in Figure 5.34(b). The fit yields lφ ∼ T−0.5(2), which is still close to
the desired value for a 2D system.

Although the previous discussion led to acceptable results, one can see that the shape
of the curve ∆G is still affected by the term (mB)2, even in small fields. Therefore,
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Figure 5.34: (a)Fitting of the HLN model + background, accounting for the Rxy compo-
nent, to the data of sample III at 1.8 K, up to 0.5 T. The fit yields α = (−43 ± 6) × 102

and lφ = (148 ± 12) nm. (b)Power-law fit of coherence length, lφ, with temperature for
the sample III. The fit yields T−0.5(2).
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Figure 5.35: (a)Fitting of the HLN model + background, with Gxx = 1/Rxx, to the
data of sample III at 1.8 K, up to 0.5 T. The fit yields α = (−44 ± 6) × 102 and
lφ = (21 ± 4) × 101 nm. (b)Power-law fit of coherence length, lφ, with temperature for
the sample III. The fit yields T−0.62(7).



78 Results and Discussion

(a)

 10

 100

 1000

 1  10  100

l φ
 (

nm
)

T (K)

(b)

Figure 5.36: (a)Fitting of the HLN model only, with Gxx = 1/Rxx, to the data of sample
III at 1.8 K, up to 0.5 T. The fit yields α = (−132 ± 11) × 101 and lφ = (39 ± 6) × 101

nm. (b)Power-law fit of coherence length, lφ, with temperature for the sample III. The
fit yields T−0.61(9).

we tried to calculate G as in the previous sample (G = 1/Rxx), since for B ∼ 0 T,
that should be a good approximation. Once again the fitting was performed up to
0.5 T (see Fig. 5.35(a) for the fit at 1.8 K) and the plot of lφ vs T is presented in
Figure 5.35(b). The dependence of the coherence length on temperature revealed to be
lφ ∼ T−0.62(7). However, it is possible to observe in Fig. 5.35(a) that, despite the good
fit, the background has an unusual shape and relevance for small fields, and it is more
artificial than desired. In order to overcome this, the fitting was repeated, accounting for
the HLN model only. This led to the results illustrated in Figures 5.36(a) and 5.36(b),
giving a behavior described by lφ ∼ T−0.61(9).

5.8.3.2 Shubnikov-de Haas Oscillations

The sample Bi2Se3 − III also exhibits oscillations in the magnetoresistance (see Fig.
5.37) that disappear at high temperatures. Following the same procedure as explained
for sample II (here we used the approximation G ∼ 1/Rxx, since the inclusion of Rxy

would make the SdH oscillations irrelevant) and performing the fitting in the LL fan
diagram (Fig. 5.38), one finds the interception with the n-axis γ = 0.1 ± 0.5 and slope
BF = (130 ± 4) T. The former indicates once again the presence of a non-trivial π
Berry phase, while from the latter it is possible to determine the Fermi wave vector,
kF = 0.063 Å−1. Using equations 5.5 and 5.6, one can calculate the carrier densities for
two and three dimensions, n2D = 3.16 × 1012 cm−2 and n3D = 8.44 × 1018 cm−3.
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Figure 5.37: Shubnikov-de Haas oscillations for the sample Bi2Se3 − III at 1.8 K.
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Figure 5.38: Landau level fan diagram for SdH oscillations and linear fitting of the
periodic maxima and minima as a function of the index n. The fitting yields an intersect
γ = 0.1 ± 0.5.
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As discussed for sample II, there is a good agreement between the carrier density
obtained from the Hall effect (nH = 8.53 × 1018 cm−3) and the one obtained from the
SdH oscillations considering a three-dimensional system. This suggests that the quantum
oscillations have a 3D nature, although that cannot be confirmed without further studies.

5.9 Transport properties of Bi2Se3 - Batch III (2)

As discussed in the previous section, the resistance in sample III varied considerably
with time at a constant temperature and protected environment (He exchange gas). We
attributed this effect to the involuntary diffusion of silver into the sample. We tried
to overcome this by using a sputtering of gold and gadolinium on the other half of the
pellet, in four small circles only, and placing the contacts on those spots. We expected
that this would limit the diffusion of the silver throughout the sample.

5.9.1 Resistance vs Temperature

In Figure 5.39(a) the evolution of the resistance with time is portrayed. Although there
still is a decrease of the resistance with time, it is not so prominent as before. The
resistance values differ by 102 from those of sample III. Keeping in mind that it is the
same pellet, a difference of this magnitude could not be caused by the contacts only.
It is our belief that the diffusion of silver was not so efficient in the case of sample
III (2) (either due to the sputtering of Au and Gd or to the lower time of exposure
of the sample with the contacts before the measurements were performed), causing a
more regular behavior with temperature. Indeed, the dependence of the resistance on
temperature (Fig. 5.39(b)) revealed that there is, as in sample II, an upturn in the
resistance for small temperatures.

5.9.2 Magnetoresistivity

5.9.2.1 Weak anti-localization

The weak anti-localization effect is now much more prominent than in sample III, without
the sputtering procedure, as can be seen in Figure 5.40. The symmetrization of the
data was performed and the distances L and W measured, giving L = 1.20(5) mm
and W = 1.40(5) mm. G was calculated as G = 1/Rxx, since Rxx now has values
∼ 1 Ω, ≫ Rxy usually measured. The fitting of the HLN model + background (described
previously for sample II) is shown in Figure 5.41(a) at 1.8 K. The obtained parameters
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Figure 5.39: Time (a) and temperature (b) dependence of the resistance for sample
III(2). Note that the resistance measured at 300 K still decays with time, although it is
less relevant.

 1.36

 1.37

 1.38

 1.39

 1.4

 1.41

 1.42

 1.43

 1.44

 1.45

 1.46

-10 -8 -6 -4 -2  0  2  4  6  8  10

R
xx

 (
Ω

)

B (T)

Figure 5.40: Magnetoresistance at 1.8 K for the sample Bi2Se3− III(2). The WAL cusp
is now much more prominent, although no SdH oscillations are visible.



82 Results and Discussion

(a)

 10

 100

 1000

 1  10  100

l φ
 (

nm
)

T (K)

(b)

Figure 5.41: (a)Fitting of the HLN model + background, with G = 1/Rxx, to the
data of sample III(2) at 1.8 K, up to 0.5 T. The fit yields α = −240.0 ± 0.9 and
lφ = (193.96 ± 0.17) nm. (b)Power-law fit of coherence length, lφ, with temperature for
the sample III(2). The fit yields T−0.463(5).

Figure 5.42: Shubnikov-de Haas oscillations for the sample Bi2Se3 − III(2) at 1.8 K.

are α = −240.0 ± 0.9, lφ = (193.96 ± 0.17) nm and b = 1.06 ± 0.02, with α, once again,
extremely deviated from the expected.

The plot of the coherence length with the temperature is presented in Figure 5.41(b),
where the fit is also illustrated. The values for lφ were obtained from the fits of the
magnetoresistance at several temperatures for fields up to 0.5 T. The fit gives a law of
lφ ∼ T−0.463(5).

5.9.2.2 Shubnikov-de Haas Oscillations

Although the WAL effect is much more visible in this sample, the SdH oscillations could
not be observed when looking directly to the magnetoresistance (Fig. 5.40). Even
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when subtracting the model from the ∆G data, we obtained only one maximum and
one minimum (see Figure 5.42), which did not allow to perform a LL fan diagram and,
consequently, calculate the carrier density for the cases of two and three-dimensional
systems. In order to take some conclusions, we would need to perform magnetoresis-
tance measurements up to higher fields, where the SdH oscillations are, generally, more
relevant.

Indeed, it is clear that a higher resistance (reduced electron concentration) of the
sample makes it harder to observe SdH oscillations. A higher resistance means, however,
that the sample is closer to the desired insulator (semiconductor) behavior.





Chapter 6

Conclusion and Further Work

Although some drawbacks were encountered during the work reported in this thesis,
the main goals were attained. The synthesis via a microwave-assisted method of Bi2Se3

granted two batches of a nanomaterial with topological insulator phases, verified by their
transport properties.

The synthesis of Bi2Se3−xTex , x = 0.1, 0.3, 0.5 and Bi2Te3, however, were not suc-
cessful. Despite the several synthesis in slightly different conditions, the desired com-
pound was never obtained (in the case of Bi2Se3−xTex) or it was not the majority phase
(for Bi2Te3). Also, even the synthesis of Bi2Se3 led to two batches of a highly pure com-
pound (I and III) and one with impurity phases (II). Since all synthetic conditions were
kept unchanged, the likely explanation for obtaining different results may rely on the
microwave oven. In fact, the temperature control is only active in one of the vessels and
the inhomogeneous microwave field may impact on the synthesis. This problem should
be addressed in future work.

Regarding the electrical measurements performed on both samples of Bi2Se3 (batches
II and III), we can conclude that the carrier concentrations calculated from the Hall ef-
fect (nH = 1.76×1018 cm−3 and nH = 8.53×1018 cm−3, respectively) are higher than
the usually reported concentrations for a Bi2Se3 topological insulator. This suggests
that the bulk conducting states contribute to the transport properties. Even if such
conducting states should not exist in an insulator, this behavior is commonly reported,
and has caused many problems to the study of these materials in the past. Unfortu-
nately, we could not produce samples with a sufficiently high resistivity to be classified
as "insulators". Furthermore, for sample Bi2Se3 - Batch II, we have found that the tem-
perature dependence of the resistance followed the expected behavior for this material.
The most interesting result of this work was the observation of a clear signal of a weak
anti-localization effect, strong indicator of the presence of topological surfaces. Indeed,
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the fit of the HLN formula to the WAL data yields values of the phase coherence length
which agree with the reported, expected values. Moreover, the dependence of this length
with temperature gave further evidence of the two-dimensional origin of that quantum
effect. Therefore, we came to the conclusion that the polycrystalline sample in study
has indeed topologically protected surface states that are robust against structural de-
fects and non-magnetic impurities. This is a remarkable achievement, since studies of
topological insulators are usually performed on single crystals. We are only aware of a
very recent study that reports the existence of robust surface states in polycrystalline
Bi2Te3 [61].

For sample Bi2Se3 - Batch III, the resistance dependence of temperature presented
odd phenomena that, we believe, can be at least partially explained by the diffusion
of silver atoms from the contacts into the compound structure. This was reported by
several studies, that indicate that Ag is incorporated in the van der Waals gaps between
the quintuple layers of Bi2Se3, although no studies of the alterations in the transport
properties were found. The resistance for this sample had much smaller values, consistent
with the hypothesis that the silver atoms are relevant to the measured properties. Also in
this train of thought, we can explain the reason why the WAL effect was less prominent,
since the two-dimensional surface states would now have less relevance than in sample
II. The study of the HLN fit depending on the formula used to calculate the conductance
G led to different behaviors of the coherence length with the temperature, although all
the exponents were relatively close to the expected lφ ∼ T−0.5.

Moreover, we can conclude that the sputtering of Au and Gd on the surface of the
pellet (sample III(2)) did not interrupt the diffusion of silver, although its effect was
less significant. The dependence of the measured resistance with temperature had a
semiconductor behavior in the majority of the temperature range, and the resistance
values were higher than in the previous sample. The WAL effect was also observed,
and the dependence of the phase coherence length with the temperature suggested, once
again, the existence of two-dimensional surface states.

Regarding the quantum oscillations observed in the magnetoresistance for both sam-
ple II and III, they respected the periodicity in 1/B, and the analysis of the LL fan
diagram suggested that they could have a 3D origin, i.e., that they are originated from
the bulk states. Although this hypothesis needs further studies to be confirmed, this
result is also in agreement to the reported studies of Bi2Se3 with similar carrier concen-
trations. For sample III(2), however, the quantum oscillations were not visible in the
range of magnetic field applied. In order to take any conclusions about this, a larger
magnetic field would be needed.
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Concerning future work, we can suggest that a larger range of dopants may be incor-
porated into the structure of Bi2Se3, and its consequences on the transport properties
of the synthesized samples can be studied. Furthermore, if a rotator (which offers the
possibility to rotate the sample in the applied magnetic field) becomes available in a
near future, that would further highlight the origin (2D or 3D) of this phenomena.
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Appendix A

Python script

1. import numpy as np   
2. from math import *   
3. from scipy.special import digamma   
4. import csv   
5. import matplotlib.pyplot as plt   
6. from scipy.optimize import curve_fit   
7. import sys   
8.    
9. e = 1.60217662E-19   
10. hbar = 1.0545718E-34   
11. data = []   
12. Col2=[]   
13. Col3=[]   
14. L = 0.2   
15. W = 3.1   
16. Rmed=[]   
17. Bmed=[]   
18. IBmed= []   
19. deltaG=[]   
20.    
21. Bmax = 9.   
22.    
23. csv.register_dialect('ssv', delimiter=' ', skipinitialspace=True)   
24.    
25. with open('MR_1.8K_3', 'r') as f:   
26.     reader = csv.reader(f, 'ssv')   
27.     for row in reader:   
28.         floats = [float(column) for column in row]   
29.         data.append(floats)   
30.    
31. for a in data:   
32.     if abs(a[1]*0.0001)<=(Bmax+0.001):   
33.         Col2.append(a[1]*0.0001)         
34.         Col3.append(a[2])    
35.    
36. #Rmed=(R+ + R-)/2   
37. for i in range(len(Col3)/2):   
38.     Bdiff = Col2[i]+Col2[-(i+1)]   
39.     if abs(Bdiff) >= 0.001:   
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40.        print abs(Bdiff),Col2[i], Col2[-(i+1)], "ERROR!"   
41.        sys.exit()   
42.     rmed = (Col3[i]+Col3[-(i+1)])/2.   
43.     #print "%10.5f %10.5f %10.5f %10.5f %10.5f %10.5f" % (Col2[i],Col2[-(i+1)],Col3[i],Col3[-(i+1)],rmed,Bdiff)   
44.     Rmed.append(rmed)   
45. Rmed.append(Col3[len(Col3)/2])   
46.    
47. for k in Rmed:   
48.     deltaG.append(1./k-1./Rmed[-1]) #1/R(B)-1/R(0)   
49.    
50. for j in range(len(Col2)/2):   
51.     bmed=(abs(Col2[j])+Col2[-(j+1)])/2.   
52.     Bmed.append(bmed)   
53. Bmed.append(Col2[len(Col2)/2])   
54.    
55. col2=np.array(Bmed)   
56. col3=np.array(deltaG)   
57.    
58.    
59. #DeltaG Function   
60. def G(B, alpha, l,a,b):   
61.     g = hiro(B, alpha, l)+backg(B,a,b)   
62.     return g   
63.    
64. #Background   
65. def backg(B,a,b):   
66.     bkg = a*abs(B)**b   
67.     return bkg*W/L   
68.    
69. #HLN Formula       
70. def hiro(B, alpha, l):   
71.     bphi = hbar/(4.*e*l**2)   
72.     alpha = alpha*e**2/(2.*pi**2*hbar)    
73.     g=alpha*(np.log(bphi/abs(B+0.00001))-digamma(0.5+bphi/abs(B+0.00001)))   
74.     return g*W/L   
75.            
76.        
77. #Initial guess     
78. parametros=[1.,100E-9,-0.0001,1.]   

79.    
80. B=np.linspace(0., Bmax, 10000)   
81.    
82. #Fit   
83. popt, pcov = curve_fit(G, col2, col3, p0=parametros, maxfev=1000)   
84. perr = np.sqrt(np.diag(pcov))   
85.    
86. #Generate SdH data   
87. col4=[]   
88. col5=[]   
89. for i in range(len(col2)):   
90.     B = col2[i]   
91.     if B >1.0:   
92.         col4.append(col3[i]-G(B,*popt))   
93.         col5.append(1./(B))   
94.    
95. print "Fit Results:"   
96.    
97. print "Alpha",popt[0], '+-', perr[0]   
98. print "Coherence length", popt[1]/1E-9, "nm +-",perr[1]/1E-9    
99. print "Background alpha",popt[2],"+-",perr[3]   
100. print "Background exponent",popt[3],"+-",perr[3]   
101.    
102. #Plot   
103. plt.subplot(2,1,1)   
104. plt.plot(col2, col3, 'ro',label="data")   
105. plt.title("Bi2Se3-II - HLN model + Bckg")   
106. plt.xlabel("B(T)")   
107. plt.ylabel(r"$\Delta G (1/\Omega)$")   
108. B=np.linspace(0, Bmax, 10000)   
109. plt.plot(B, G(B, *popt), linewidth=3.0, label="Fitted Curve")   
110. plt.plot(B,(backg(B, popt[2],popt[3]))+0.*hiro(100.,popt[0],popt[1]), label="Background")   
111. plt.plot(B,hiro(B, popt[0],popt[1]), label="HLN")   
112. plt.legend(loc='upper right', bbox_to_anchor=(1.1,1))   
113. plt.legend().draggable()   
114.    
115. plt.subplot(2,1,2)   
116. plt.xlabel("$1/B(T^{-1})$", fontsize=18)   
117. plt.ylabel(r"$\Delta G (1/\Omega)$-Model", fontsize=18)   
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118. plt.plot(col5,col4,'o',label="SdH")   
119. plt.legend(loc='best')   
120. plt.legend().draggable()   
121. plt.grid()   
122. plt.xticks(np.arange(0.1, 0.21, 0.01))   
123. plt.show()   
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