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Abstract

In this thesis we present a detailed analysis of a fully explicit leap-frog type discontinuous Galerkin
(DG) method for the numerical discretization of the time-dependent Maxwell’s equations. The study
comprehends models capable to deal with anisotropic materials and different types of boundary
conditions. Despite the practical relevance of the anisotropic case, most of the numerical analysis
present in the literature is restricted to isotropic materials. Motivated by a real application, in the
present dissertation we consider a model which encompasses heterogeneous anisotropy, extending the
existing theoretical results.

The DG formulation for the spatial discretization is developed in a general framework which
unifies the study for different flux evaluation schemes. The leap-frog time integrator is applied to
the semi-discrete DG formulation yielding to a fully explicit scheme. The main contribution of this
thesis is to provide a rigorous proof of conditional stability and convergence of the scheme taking
into account typical boundary conditions, either perfect electric, perfect magnetic or first order Silver-
Müller absorbing boundary conditions and for different choices of numerical fluxes. The bounds
of the stability region point out not only the influence of the mesh size but also the dependence on
the choice of the numerical flux and the degree of the polynomials used in the construction of the
finite element space, making possible to balance accuracy and computational efficiency. Under the
stability condition, we prove that the scheme is convergent being of arbitrary high-order in space and
second order in time. When Silver-Müller boundary conditions are considered we observe only first
order convergence in time. To overcome this order reduction we propose a predictor-corrector time
integrator which is also analyzed in this dissertation.

We illustrate the stability and convergence properties of the various schemes with numerical tests.
The numerical results of our simulations support the theoretical analysis developed along the thesis.





Resumo

Nesta tese apresentamos uma análise detalhada de um método numérico totalmente explícito para
as equações de Maxwell dependentes do tempo que combina um esquema de elementos finitos de
Galerkin descontínuos para a discretização no espaço com um integrador do tipo leap-frog no tempo.
O estudo apresentado permite considerar materiais anisotrópicos e diferentes tipos de condições
de fronteira. Apesar da relevância prática do caso anisotrópico, a maioria dos trabalhos presentes
na literatura restringe a análise numérica ao caso isotrópico. Motivados por uma aplicação real,
nesta dissertação consideramos um modelo que compreende simultaneamente o caso anisotrópico e
heterogéneo, generalizando os resultados teóricos existentes.

A formulação do método elementos finitos de Galerkin descontínuos para a discretização espacial
é desenvolvida num contexto geral que unifica o estudo de esquemas com diferentes fluxos numéricos.
O integrador temporal do tipo leap-frog aplicado à formulação semi-discreta de elementos finitos
conduz a um esquema totalmente explícito. O principal contributo desta tese é a demonstração rigorosa
da estabilidade condicional e da convergência do método numérico, tendo em conta as condições
de fronteira mais usuais, que incluem as condições impostas no caso dos condutores perfeitos e
as condições absorventes de Silver-Müller de primeira ordem e diferentes escolhas para os fluxos
numéricos. Os limites da região de estabilidade evidenciam não só a influência do diâmetro da
malha espacial, mas também a dependência da escolha do fluxo numérico e o grau dos polinómios
usados na construção do espaço de elementos finitos, tornando possível estabelecer um compromisso
entre precisão e eficiência computacional. Provamos que, sob a condição de estabilidade, o método
é convergente podendo ser de ordem arbitrariamente elevada no espaço e de segunda ordem no
tempo. No caso de serem consideradas as condições de fronteira de Silver-Müller, observamos apenas
convergência de primeira ordem no tempo. Esta redução de ordem é ultrapassada pela definição de
um método preditor-corretor temporal, que também é analisado nesta dissertação.

Ilustramos as propriedades de estabilidade e convergência dos vários esquemas considerados com
testes numérico. Os resultados numéricos das simulações efetuadas suportam a análise desenvolvida
ao longo da tese.
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5.7 L2-error for Ẽx (5.14) versus h, for SM-ABC and space dependent permittivity tensor

(5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.8 L2-errors (5.14)–(5.16) versus ∆t, for SM-ABC and upwind flux. . . . . . . . . . . . 79
5.9 L2-errors (5.14)–(5.16) versus ∆t, for SM-ABC and upwind flux when the predictor-

corrector method is considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.10 Square computational domain which contains a circle that aims to represent the single

nucleus in ONL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.11 Computational domain and triangular mesh. . . . . . . . . . . . . . . . . . . . . . . 83
5.12 Evolution of the scattered field intensity Is =

√
(Es

x)
2 +(Es

y)
2 with time. . . . . . . . 83

xv





List of tables

5.1 The number of triangle elements and vertices in computational meshes used in the
computations. hmin denotes the shortest distance between two vertices in the mesh. . 64

5.2 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary
conditions, central flux and constant permittivity tensor (5.1). . . . . . . . . . . . . 66

5.3 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary
conditions, upwind flux and constant permittivity tensor (5.1). . . . . . . . . . . . . 66

5.4 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, central
flux and constant permittivity tensor (5.1). . . . . . . . . . . . . . . . . . . . . . . 67

5.5 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, upwind
flux and constant permittivity tensor (5.1). . . . . . . . . . . . . . . . . . . . . . . 67

5.6 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary
conditions, central flux and space-dependent permittivity tensor (5.2). . . . . . . . . 68

5.7 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary
conditions, upwind flux and space-dependent permittivity tensor (5.2). . . . . . . . . 68

5.8 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, central
flux and space-dependent permittivity tensor (5.2). . . . . . . . . . . . . . . . . . . 68

5.9 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, upwind
flux and space-dependent permittivity tensor (5.2). . . . . . . . . . . . . . . . . . . 69

5.10 The L2-errors (5.14)–(5.16) and the spatial order for PEC boundary condition and
constant permittivity tensor (5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.11 The L2-errors (5.14)–(5.16) and the spatial order for PEC boundary condition and
space-dependent permittivity tensor (5.2). . . . . . . . . . . . . . . . . . . . . . . . 73

5.12 The L2-errors (5.14)–(5.16) and the temporal order for PEC boundary condition and
constant permittivity tensor (5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.13 The L2-error (5.14)–(5.16) and the temporal order for PEC boundary condition and
space-dependent permittivity tensor (5.2). . . . . . . . . . . . . . . . . . . . . . . . 75

5.14 The L2-errors (5.14)–(5.16) and the spatial order for SM-ABC and constant permittiv-
ity tensor (5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.15 The L2-errors (5.14)–(5.16) and the spatial order for SM-ABC and space-dependent
permittivity tensor (5.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.16 The L2-errors (5.14)–(5.16) and the temporal order for SM-ABC and constant permit-
tivity tensor (5.1) when the predictor-corrector method is considered. . . . . . . . . 79

xvii



xviii List of tables

5.17 The L2-errors (5.14)–(5.16) and the temporal order for SM-ABC and space-dependent
permittivity tensor (5.2) when the predictor-corrector method is considered. . . . . . 80



Introduction

Maxwell’s equations form the complete set of laws governing electromagnetism and, when combined
with constitutive relations, describe the effect of material media on the propagation of electromagnetic
waves. A given set of boundary conditions along with prescribed initial conditions complete the
model. Results about the existence and the uniqueness of solution can be found in e.g. [52].

In the last decades there has been a great interest in solving the Maxwell’s equations accurately
and efficiently in realistic applications because of their relevance in many different areas. The first
– and most well known – method for solving Maxwell’s equations is the so-called finite difference
time-domain (FDTD) scheme proposed by Yee in 1966 [89]. This method uses a staggered grid both
in space and time to obtain a second order convergent algorithm, fully explicit, very easy to implement,
that has became widely popular [82]. Despite its success, FDTD, like all finite difference methods, is
difficult to generalize to irregular domains and unstructured grids.

The most appealing methods which overcome the limitations of the Yee’s scheme and other time-
domain methods are the discontinuous Galerkin (DG) methods. These methods gather many desirable
features such as being able to achieve high-order accuracy and easily handle complex geometries.
Moreover, they are suitable for parallel implementation on modern multi-graphics processing units
[48]. Local refinement strategies [20, 30] can also be incorporated due to the possibility of considering
irregular meshes with hanging nodes and local solutions.

The main goal of this thesis is to study a fully discrete scheme for time-dependent Maxwell’s
equations that combines nodal DG methods for the spatial discretization [42] with an explicit leap-frog
time integrator. One important ingredient for the efficiency of DG methods is the definition of the
numerical fluxes, which generalizes ideas from finite volume methods [79]. Two main choices of
fluxes are central fluxes and upwind fluxes. In our investigation we consider a general unwinding flux
which contains both of these fluxes.

The idea of using a leap-frog time integrator coupled with a DG method was already presented
in the literature. In [32] a locally implicit scheme is defined with central fluxes and Silver-Müller
absorbing boundary conditions (SM-ABC), and in [56] an implicit scheme is defined with upwind
fluxes. Our derivation extends the results in [32] and [56] to a fully explicit in time method for both
cases, central fluxes and upwind fluxes and the most typical boundary conditions: perfect electric
conductor (PEC), perfect magnetic conductor (PMC) and first order SM-ABC. Moreover, we consider
anisotropic material properties in all our analysis and simulations.

Motivated by our application of interest that will be described later, in this thesis we consider
a model with a heterogeneous anisotropic permittivity tensor. Most of ocular tissues exhibit form
birefringence that is due to their oriented cylindrical structures [91]. Anisotropy could play a role in

xix
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biological waveguides [58]. The anisotropy of biological waveguides and, in particular, of retinal
optical photoreceptors has been studied and measured by several authors during the last decades by
using various techniques in mammalians and also in the human eye [57, 80].

Even though the DG methods have capability to deal with different material properties, most of
the formulation and analysis of the DG method is limited to isotropic cases [39, 42] and in some cases
dispersive materials [60]. This excludes a wide class of anisotropic materials and related applications
[11, 53, 90]. The treatment of anisotropic materials within a DG framework was discussed, for
instance, in [16, 32] for central fluxes and in [2, 49] for upwind fluxes. In this thesis we consider
dielectric anisotropy in a general upwinding flux formulation in two dimensions (2D) as well as an
extension to a three dimensional problem with anisotropy in electric and magnetic material properties.

The outline of this thesis is as follows:

• Chapter 1 is devoted to introductory concepts related to electromagnetism. We will start with
the Maxwell’s equations as a fundamental set of equations to formulate the electromagnetic
wave propagation, their constitutive relations and the definition of the most common boundary
conditions. We describe the electromagnetic wave propagation in dielectric anisotropic materials
with a focus on form birefringence, which plays a role on biological anisotropy. In order to put
our work into proper perspective, we review the most popular numerical methods for solving
Maxwell’s equations highlighting the advantages of using the DG method in computational
electromagnetics in the last part of the chapter.

• In Chapter 2 the numerical tools for solving the Maxwell’s equations are introduced. We
will consider the three dimensional Maxwell’s equations with tensorial material properties
(anisotropy in permittivity and permeability). Then we introduce the transverse electric mode
which is a model in two dimensions. To complete the model we apply typical reflecting boundary
conditions such as perfect electric or perfect magnetic and as an absorbing boundary condition,
the first order Silver-Müller is applied. We present the DG method for Maxwell’s equations
in the conservation form taking into account the tensor material properties in the definition of
the numerical flux. The semi-discrete DG scheme is coupled with a leap-frog time integrator
which employs a centered approximation for time derivatives and the central flux terms and a
backward approximation for the upwind flux terms yielding an explicit leap-frog DG scheme
that is capable to deal with different flux evolutions, material properties and different boundary
conditions.

• Chapter 3 is devoted to stability analysis of the leap-frog DG solution of Maxwell’s equations.
We present a rigorous proof of the stability of 2D scheme showing the influence of the mesh
size, the choice of the numerical flux and choice of the degree of the polynomials used in the
construction of the finite element space as well as the boundary conditions, which can be either
perfect electric, perfect magnetic or first order Silver-Müller. This analysis is further extended
to three dimensions (3D) model.

• In Chapter 4, we assess the convergence properties of the leap-frog DG scheme in 2D and
derive the error estimates. The analysis proves that the leap-frog DG scheme is arbitrary
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high-order in space and second order in time in case of PEC and PMC boundary condition
and first order in case of SM-ABC. In order to overcome the order reduction that occurs when
Silver-Müller boundary conditions are considered, a fully explicit predictor-corrector time
integrator is proposed and generalized to an iterative predictor-corrector. We will show that the
iterative predictor-corrector scheme converges to a second order convergent in time implicit
method. The stability analysis of the implicit method is presented.

• Chapter 5 is dedicated to a detailed numerical study of the proposed leap-frog DG method
on triangular meshes for solving two dimensional Maxwell’s equations. We examine the
stability condition and the error estimate of the method, through numerical experiments for
2D electromagnetic wave propagation in anisotropic media with PEC boundary condition and
SM-ABC while considering central and upwind fluxes. We present numerical results which
support the stability and convergence theoretical results. In our simulations, we include models
with non diagonal and spatially-varying permittivity tensors. The sharpness of the stability
region and the high-order convergence property of DG scheme are observed. Besides achieving
the temporal order for different types of boundary conditions, the efficiency of the proposed
predictor-corrector method to recover the temporal convergency in the case of SM-ABC is
visualized. In the last part of this chapter we simulate light scattering in a 2D domain which
aims to represent a simple example of light scattering in retina.

• In Appendix A we include some useful mathematical tools, namely inverse and trace inequali-
ties, polynomial approximation properties and the discrete Gronwall’s lemma that were used in
the analysis of the DG methods

Motivation behind this work

The human retina is a complex structure in the eye that is responsible for the sense of vision. It is a
part of the central nervous system and it is composed by several layers, namely the outer nuclear layer
that comprises the cells bodies of light sensitive photoreceptors cells, rods and cones (see Figure 1).

For many diseases that affect the eye, the diagnosis is not straightforward. The sensitivity of this
structure makes medical analysis particularly complicated. Most of the diagnoses are made either
by direct observation, with the possible injection of dyes, to enhance certain parts of the organ, or
by numbing the eye and directly measuring its inner pressure or thickness. There are a number of
eye-related pathologies that can be identified by the detailed analysis of the retinal layers.

The Optical Coherence Tomography (OCT) technique became increasingly popular in the past
decades and has been successfully used as a diagnostic tool in ophthalmology [34]. This low coherence
interferometry noninvasive technique [78] allows the assessment of the human retina in vivo and
has been shown to provide functional information from the ocular fundus [81] due to its sensitivity
to small variations of the refractive index [1]. The OCT technology’s working principle, which is
schematically described by Figure 2, is analogous to ultrasound, but it uses light instead of sound to
locate subtle differences in the tissue being analyzed [33]. Discontinuities in the refractive index of
the tissue give rise to light scattering, with some light backscattered to the detector. Factors such as
the shape and size of the scatterer, wavelength of the incident light and refractive index differences
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Fig. 1 Section of retina. Henry Gray. Anatomy of the Human Body. Philadelphia: Lea & Febiger,
1918. (in public domain at Bartleby.com)

have an impact on the amount of backscattered light. During a scan, the OCT machine directs a light
beam into the retina and extracts, through interferometry, the backscattered light intensity of retinal
structures and their depth location in an A-scan. By transversely moving the light beam, several
A-scans can be collected into a cross-sectional image – a B-scan. Usually, several cross-sectional
images are acquired by probing an azimuthal direction and combined into a volume, see Figure 3.

By analyzing data acquired through OCT, several retinal pathologies, such as diabetic retinopathy,
or macular edema, can be detected in their early stages, before noticeable morphologic alterations on
the retina [78]. This approach for early diagnosis of retinal conditions is based on functional changes
that modify the optical scattering properties of retina, prior to any structural alterations.

Diabetic macular edema (DME), is a major cause of visual loss in diabetic patients [18]. This
disease is defined as an increase in retinal thickness due to fluid accumulation that can be intra- or
extra-cellular [23]. In intra-cellular edema, cells have increased fluid intake, becoming enlarged.
Extra-cellular edema, in contrast, results from fluid accumulation outside the cell, generally as a
consequence of the breakdown of the blood-retinal barrier and subsequent leakage into the retinal
space. Distinguishing which case is present or more prevalent in a patient’s eye at an early stage is
usually not straightforward. A common method to assess the progression of DME in patients is to
monitor their retinal thickness, e.g. with OCT.

In [21] authors proposed methodology to identify and understand possible microscopic changes
that lead to the differences in the OCT data between healthy and diseased cases, which are not possible
to detect through direct observation. The proposed method combines a light scattering simulation
using a Monte Carlo routine with a model of the outer nuclear layer (ONL). This layer was chosen
as it consistently presents the characteristics of DME and because it can be adequately modeled by
spherical scatterers, which helps to simplify the simulation. By varying the model’s parameters, they
expected to reproduce the data gathered from healthy and DME eyes and potentially infer which
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Fig. 2 Scheme for the principle of OCT [78].

Monte Carlo Simulation of Diabetic Macular Edema Changes on
Optical Coherence Tomography Data*

António Correia1, Luı́s Pinto2,3, Adérito Araújo2, Sı́lvia Barbeiro2, Francisco Caramelo3, Paulo Menezes4,
Miguel Morgado3,5, Pedro Serranho6, Rui Bernardes1,3

Abstract— Optical coherence tomography (OCT) scans were
acquired from healthy controls and patients with diabetic
macular edema (DME), a common complication of diabetes
characterized by increased retinal thickness due to fluid ac-
cumulation. The collected OCT data was divided into three
distinct groups: healthy subjects, DME patients with signif-
icantly increased outer nuclear layer (ONL) thickness and
DME patients without visible changes in the ONL. For each
group, the ONL was segmented and processed, yielding a
representative A-scan. Using reference values for the physical
and optical characteristics of the healthy human retina, we used
a Monte Carlo method with a model for the ONL to simulate
an A-scan for each group and compare it to the real OCT
data. This allowed to identify which alterations in the cellular
characteristics are responsible for the changes observed in the
OCT scans of the diseased groups.

I. INTRODUCTION
Diabetes mellitus is one of the most prevalent diseases

in developed countries, estimated to affect 8.5% of the
European population, according to recently collected data
[1]. A resulting complication of diabetes, diabetic macular
edema (DME), is a major cause of visual loss in diabetic
patients [2].

DME is defined as an increase in retinal thickness due to
fluid accumulation that can be intra- or extra-cellular [3].
In intra-cellular edema, cells have increased fluid intake,
becoming enlarged. Extra-cellular edema, in contrast, results
from fluid accumulation outside the cell, generally as a
consequence of the breakdown of the blood-retinal barrier
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and subsequent leakage into the retinal space. In the second
type of edema, lipid contents of the leakage can agglomer-
ate into irregularly shaped structures called hard exudates.
Distinguishing which case is present or more prevalent in a
patient’s eye at an early stage is usually not straightforward.

A common method to assess the progression of DME in
patients is to monitor their retinal thickness, e.g. with optical
coherence tomography (OCT), a noninvasive imaging tech-
nique. This technology’s working principle is analogous to
ultrasound, but it uses light instead of sound to locate subtle
differences in the tissue being analyzed [4]. Discontinuities in
the refractive index of the tissue give rise to light scattering,
with some light backscattered to the detector. Factors such
as the shape and size of the scatterer, wavelength of the
incident light and refractive index differences have an impact
on the amount of backscattered light. During a scan, the OCT
machine directs a light beam into the retina and extracts,
through interferometry, the backscattered light intensity of
retinal structures and their depth location in an A-scan [4].
By transversely moving the light beam, several A-scans can
be collected into a cross-sectional image – a B-scan. Usually,
several cross- sectional images are acquired by probing an
azimuthal direction and combined into a volume (Fig. 1).

Using OCT, patients with DME can be identified, when
contrasted with healthy controls, as they exhibit an increased
retinal thickness. However, OCT is still unable to directly
assess changes at the cellular level.

Fig. 1. Example of an OCT volume (top left), B-scan (top right) and
A-scan (bottom) for a healthy retina.

In this work, we aim to identify and understand the
microscopic changes that lead to the differences in the OCT

Fig. 3 Example of an OCT volume (top left), B-scan (top right) and A-scan (bottom) for a healthy
retina [21].

changes at the cellular level are responsible for the differences in OCT data between the groups
studied. As ONL can be modeled as an homogenous medium filled with spherical scatterers, the
authors used the Mie theory to estimate the parameters describing the interaction of light with the
medium. The results achieved were very promising once they seem to corroborate the existence of the
two types of edema, cytotoxic (intra-cellular) and vasogenic (extra-cellular).
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To expand the process presented from simulating a single layer to simulating the whole retina will
allow the study of more complex retinal pathologies which have pronounced influences outside the
ONL. In this context, more sophisticated models to obtain the scattered parameters at cellular level.
Several different models have been developed to describe the interactions of the electromagnetic field
with biological structures. The first models were based on single-scattering theory, which is restricted
to superficial layers of highly scattering tissue in which only single scattering occurs. Accounting
for such complexity, in particular to account for how the shape and internal inhomogeneities of each
individual biological cell generates its own local optical electromagnetic field structure, requires a
more accurate approach that can be achieved by numerically solving Maxwell’s equations.

In [7, 73] discontinuous Galerkin numerical solution of Maxwell’s equations was considered as an
effective and accurate approach for simulation of the complexity of retina, especially the variation of
the size and the shape of each layer, distance between them, and respective indexes. In particular, in
[73] DG method is employed to solve the Maxwell’s equations in retina’s layer to obtain the scattered
field and calculate the scattered cross-sectioning and anisotropy. This approach was the motivation
of our work once it underlies the need of a rigorous analysis of the numerical methods used in the
simulations as a first step to validate the results.



Chapter 1

Modeling of Electromagnetic Wave
Propagation

Maxwell’s equations are a fundamental set of partial differential equations which describe electromag-
netic wave interactions with materials. This introductory chapter is started by recalling Maxwell’s
equations in time-domain and their constitutive relations. Then we discuss the transverse modes
of Maxwell’s equations in two-dimensions in the last part of Section 1.1. The behavior of the
electromagnetic fields at interfaces and boundary conditions is discussed in Section 1.2.

In this thesis we consider electromagnetic wave propagation in dielectric anisotropic media. We
shall see that in such media the electric vector of a propagating wave is not in general parallel to its
polarization direction, defined by the direction of its electric displacement vector. The preliminaries
of electromagnetic wave propagation in anisotropic media with a focus on biological anisotropy are
discussed in Section 1.3. We review the existing computational methods for time-domain solution of
Maxwell’s equations in Section 1.4. We attempt to emphasize on strengths and limitations of some
numerical methods when compared with discontinuous Galerkin methods.

1.1 Maxwell’s equations

The actual equations that describe electromagnetic phenomena were first completely formulated in
1873 by James Clerk Maxwell. The electromagnetic fields in space is classically described by two
field vectors, E and H, called respectively electric field and magnetic field. It is necessary to introduce
a second set of vectors, D and B, electric displacement and magnetic induction to include the effect
of electromagnetic fields on matter. Maxwell’s equations state that these electromagnetic fields are
related by two pairs of coupled partial differential equations:

∂B
∂ t

=−∇×E, (1.1)

∂D
∂ t

= ∇×H − J, (1.2)

∇ ·D = ρ, (1.3)

∇ ·B = 0, (1.4)

1
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where ρ and J are the source functions known as scalar charge density and vector current density. The
notation ∇× and ∇· is used for vector operator curl and divergence, respectively.

These four equations are the basics of electricity and magnetism in differential form. Equation (1.1)
is the differential form of Faraday’s law for induction and describes the creation of an induced electric
field due to a time-varying magnetic flux. The creation of an induced magnetic field due to charge
flow is described by Equation (1.2) known as Ampère’s law. The divergence equations (1.3) and
(1.4) are Gauss’s electric law and Gauss’s magnetic law, respectively. Equation (1.3) describes the
relation between the electric field distribution and the charge distribution. Equation (1.4) is a statement
of the absence of free magnetic monopoles. Faraday’s and Ampère’s law constitute a first-order
hyperbolic system of equations. The two Gauss’s laws can be derived from Faraday’s and Ampère’s
laws provided that the initial conditions fulfill the Gauss’s laws. Differentiating (1.3) with respect to
time and using (1.2) gives

∂ρ

∂ t
+∇ · J = 0, (1.5)

which expresses the conservation of the charge of the system. The Equation (1.5) is known as
continuity equation. Equations (1.1) and (1.2) are also called curl equations, and equations (1.3) and
(1.4) are divergence equations.

For time evolution only the curl equations are important and the divergence equations can be seen
as constraints that have to be fulfilled for all times t. It is not hard to see that if the continuity equation
(1.5) holds, then from the curl equations it follows that ∇ ·D and ∇ ·B are constant in time [11]. The
charge density ρ and the current density J in equations (1.1)–(1.4) are the source of electromagnetic
radiation. In many areas of optics, the propagation of electromagnetic radiation is analyzed in the
regions far from the sources where ρ and J can be considered to be zero. This case is assumed in the
all following derivation.

Although, the Maxwell’s equations (1.1)–(1.4) fully describe the propagation of electromagnetic
radiation in any medium, they are not sufficient to determine the electromagnetic field in matter and
additional relations known as constitutive equations are needed to model the electromagnetic field
interaction with matter.

1.1.1 Constitutive relations

The system of equations (1.1)–(1.4) constitutes the set of governing equations characterizing the
behaviour of time and space varying electric and magnetic fields and their interaction with material
structures. However, this system remains underdetermined, as long as the relations connecting D
to E and B to H are undefined. To allow a unique determination of the field vectors from a given
distribution of currents and charges, these equations must be supplemented by relations that describe
the effect of the electromagnetic field on material. The relationships connecting these field vectors are
called constitutive relations.

Although not being a part of the Maxwell’s system, constitutive relations are of great importance
to the uniqueness of the field quantities. For a general case, the constitutive relations can be written as,

D = D(E), B = B(H). (1.6)
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In free space, D differs from E and similarly B differs from H by two respective constants ε0 and
µ0, which are called the permittivity and permeability of free space respectively. In this case, the
constitutive relations (1.6) are written as

D = ε0E, B = µ0H.

The values of ε0 and µ0 depend on the system of units used. In the standard SI or MKS units we have

ε0 = 8.85×10−12Fm−1, and µ0 = 4π ×10−7Hm−1.

Furthermore the speed of light in a vacuum, denoted by c0 is given by c0 =
1√

ε0µ0
.

In the case of homogeneous isotropic medium where the physical properties of the medium in the
neighbourhood is the same in all directions, the above relationship is given by

D = εE, B = µH,

where ε = εrε0 and µ = µrµ0. εr and µr correspond to relative permittivity and relative permeability,
respectively. The permittivity and permeability of the medium, ε and µ are positive, bounded and in
the case of inhomogeneous materials, scalar functions of the position.

The electric or magnetic properties of the constituent materials may depend on the direction of
the field. These phenomena known as anisotropy, are modeled using tensor permittivity ε = [εi j]3×3

and tensor permeability µ = [µi j]3×3 with directional dependence. In anisotropic media, the vector
pairs, namely (B,H) and (D,E), are not always parallel and the material tensors, ε and µ are positive-
definite matrices that may depend on the position. We will describe the basics of anisotropy later in
Section 1.3.

With the assumptions of zero charge density and zero current density, along with the constitutive
relations (Equation (1.6)), leads to the Maxwell’s system

µ
∂H
∂ t

=−∇×E, (1.7)

ε
∂E
∂ t

= ∇×H, (1.8)

∇ ·H = 0, (1.9)

∇ ·E = 0. (1.10)

If the continuity equation, Equation (1.5) holds, the two divergence equations (1.9) and (1.10) are
implicitly satisfied. The electromagnetic wave propagation in such a medium formulated as a set of
first order coupled differential equations has the form

ε
∂E
∂ t

= ∇×H, (1.11)

µ
∂H
∂ t

=−∇×E, (1.12)
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where E = (Ex,Ey,Ez) , H = (Hx,Hy,Hz), ε(x) and µ(x) are permittivity and permeability tensors.
The equations (1.11) and (1.12) are completed with boundary conditions.

1.2 Interfaces and boundary conditions

A complete description of an electromagnetic problem should include complete information about
both differential equations and boundary conditions. The typical boundary conditions imposed on
the computational domain in an electromagnetic wave propagation simulation are of three types:
reflecting, absorbing and periodic boundary conditions [82].

Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) boundary conditions
are typical reflecting boundary conditions that reflect all incident radiation and use to model cavities
or to introduce symmetry planes into the system [12]. Many problems appearing in computational
electromagnetics are posed in unbounded domains. To compute a numerical solution for such
problems, it is necessary to truncate the space, by introducing artificial boundaries and regions that
define a finite domain. The absorbing boundary conditions mimic open space by absorbing incident
radiation in the truncated computational domain. An alternative to absorbing boundary conditions
consists in using a perfectly matched layer [9, 10] which is constructed to absorb the electromagnetic
waves entering the layer.

In the context of this thesis, we consider reflecting boundary conditions, PEC and PMC and first
order Silver-Müller absorbing boundary condition (SM-ABC).

1.2.1 Tangential continuity condition

To solve the Maxwell’s equations in the vicinity of boundaries, we shall need conditions relating the
field components on either side of the boundary. It can be seen that [44], across the boundary of the
domain the tangential components of E and H need to be continuous, that is

n× (E1 −E2) = 0, (1.13)

n× (H1 −H2) = 0, (1.14)

where n is the normal unit vector to the boundary and indexes 1 and 2 represent the field component
inside and outside of the domain, respectively.

The tangential continuity conditions (1.13) and (1.14) ensure that the tangential component of the
field vector is continuous on either side of the boundary regardless of the material. The tangential
continuity condition is used to derive flux and interface conditions.

The continuity in normal direction of the fields B and D is achieved from the divergence equations

n · (D1 −D2) = 0, (1.15)

n · (B1 −B2) = 0, (1.16)
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which is equivalent to the continuity of the normal component of E and H,

n · (ε1E1 − ε2E2) = 0, (1.17)

n · (µ1H1 −µ2H2) = 0. (1.18)

The equations (1.13)–(1.16) are called the interface conditions.

1.2.2 Perfect electric conductor boundary condition

Perfect electric conductor boundary condition is a reflective boundary condition which is typically
used to model a metallic cavity. For a PEC surface the tangential component of the E field goes to
zero and there is no field propagation into the PEC medium.

If we consider the case where the material is surrounded by a perfect conductor the interface
conditions (1.13)–(1.16) yield the boundary conditions [11]

n×E = 0, (1.19)

n ·B = 0. (1.20)

The conditions (1.19) and (1.20) imply that the tangential components of the electric field and the
normal component of the magnetic field vanish at the boundary.

1.2.3 Perfect magnetic conductor boundary condition

Perfect magnetic conductor boundary condition is also a reflective boundary condition. For a PMC
surface the tangential component of the H field goes to zero and there is no field propagation into the
PMC medium. The interface conditions (1.13)–(1.16) yield the PMC boundary conditions as

n×H = 0, (1.21)

n ·D = 0. (1.22)

The conditions (1.21) and (1.22) imply that the tangential components of the magnetic field and the
normal component of the electric field vanish at the boundary.

1.2.4 Silver-Müller absorbing boundary condition

In unbounded electromagnetic simulations, the computational domain has to be truncated by an
absorbing boundary condition to model the infinite space. In this case, when the electromagnetic
wave hits the boundary it should not be reflected but absorbed. The effective modeling of waves
on unbounded domains by numerical methods is dependent on the particular absorbing boundary
condition used to truncate the computational domain [77].

One of the widely used absorbing boundary condition is the first-order accurate Silver-Müller
absorbing boundary condition. Applying the Silver-Müller conditions at a finite distance from the
scatterer results in an approximate absorbing boundary condition which is exact for outgoing spherical
waves [45, 64].
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In the case of isotropic material properties, the SM-ABC for Maxwell’s equations can be imposed
in two different ways as

n×E = cµn× (H ×n), (1.23)

n×H =−cεn× (E ×n), (1.24)

where n is the unit outward normal vector to the boundary and c = 1√
εµ

is the speed with which a
wave travels along the direction of unit normal.

The SM-ABC depends on the material properties, ε and µ . In order to apply the SM-ABC in the
case of anisotropic material properties, we consider, as in [49], the notion of effective permittivity

εe f f =
det(ε)
nT εn

. (1.25)

In a similar way, we may define effective permeability as

µe f f =
det(µ)
nT µn

. (1.26)

In this case the SM-ABC (1.23) and (1.24) are changed to

n×E = cµe f f n× (H ×n), (1.27)

n×H =−cεe f f n× (E ×n), (1.28)

where c is defined with the efficient permittivity and permeability as

c =
1

√
εe f f µe f f

. (1.29)

The conditions (1.23)–(1.24) and (1.27)–(1.28) are based on considering that outside the computa-
tion domain, the fields propagate as plane waves normally to the interface. In these equations, the term
n× (H ×n) is the tangential magnetic field and the term n× (E ×n) is the tangential electric field.

1.3 Wave propagation in anisotropic media

There are many materials whose optical properties depend on the direction of propagation. The
history of research on wave propagation in anisotropic material is linked with the development of the
history of the theory of elasticity in the early nineteenth century [59]. Wave propagation in anisotropic
material is significantly more complex than in isotropic materials. Important anisotropic optical
media are crystalline and their optical properties are closely related to various symmetry properties
possessed by crystals [88]. Besides crystals and liquid crystals, two other important classes of optically
anisotropic dielectric materials exist, optical anisotropy due to form birefringence [11], and optical
anisotropy due to the photo-elastic effect or stress birefringence [72]. Optical anisotropy could play a
role in biological waveguides, polarimetric fiber-optic sensors, and in mechanical stress sensors. Thus
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it is important to have a complete understanding of light propagation in anisotropic media if these
phenomena are to be used for practical applications.

In this section, basics of optical anisotropy is reviewed. Among the cases in which optical
anisotropy happens, the form birefringence that plays a role in biological anisotropy is described in
Subsection 1.3.2 in more detail.

1.3.1 Dielectric tensor of an anisotropic medium

At the macroscopic scale, a dielectric material is optically isotropic if, at any given spatial location in
it, its optical properties are the same for any direction [11]. Then at a given spatial location in that
medium, there is only one dielectric permittivity (for a given frequency of light) and, hence, only one
refractive index of light. Gases, liquids, but not liquid crystals and amorphous solids are the examples
of optically isotropic dielectric materials. Various general and specific aspects of the propagation
and scattering of the electromagnetic field in optically isotropic materials are well studied and well
documented [50, 84].

An optically anisotropic dielectric material is, by definition, one in which, for a given macroscopi-
cally small volume element, the optical properties depend on the chosen direction (also, for a given
frequency of light), [11]. Then, the dielectric permittivity becomes a 3×3 symmetric tensor and there
are more than one refractive indices of light. When the medium is anisotropic, the relation between
the electric displacement and the electric field becomes tensorial. Therefore the vectors D and E are
no longer parallel. We assumed that the medium is non-dispersive in the frequency range of interest.
In this case, a tensorial relation also holds between D and E. On an orthonormal basis (e1,e2,e3), this
tensorial relation links the components of the vectors D and E and can be expressed in matrix form
according to  Dx

Dy

Dz

=

 εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


 Ex

Ey

Ez

 . (1.30)

These nine quantities εxx,εxy, · · · are characteristics of the medium and constitute the dielectric tensor.
In the case of non absorbing media that are magnetically isotropic (i.e. for which B = µH where

µ is a scalar quantity), the elements of the dielectric tensor are real quantities. Such materials will be
considered in this thesis. So the permittivity tensor elements, εi j are real, dimensionless and functions
of position.

An important property of the dielectric tensor that has implications on the propagation of elec-
tromagnetic waves in anisotropic media is its symmetry. This means that the permittivity tensor has
in general six independent elements, since εi j = ε ji where i, j = x,y,z. The demonstration of the
symmetry of the dielectric tensors raises some issues in many texts, e.g. [83].

There exists an orthonormal basis where the dielectric tensor is represented by a diagonal matrix

ε̄ =

 εx 0 0
0 εy 0
0 0 εz

 . (1.31)
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where εx, εy and εz are the eigenvalues of ε . Therefor the dielectric tensor ε becomes diagonal in the
eigenvector coordinate system. The directions determined by x, y and z are known as the principal
axes of the medium. The refractive indices can be defined along the three principal axes according to

ri =

√
εi

ε0
,

where i = x,y,z.
If rx = ry = rz the medium is isotropic. If two out of the three refractive indices are equal, for

instance rx = ry ̸= rz the anisotropic medium is said to be uniaxial. The rx = ry is known as the
ordinary index ro and rz is the extraordinary index re. If ro > re the medium is said to be negative,
while it is described as positive when re > ro. In more general case where all three eigenvalues are
different rx ̸= ry ̸= rz, the anisotropic medium is said to be biaxial. Quartz and calcite are the examples
of positive and negative uniaxial crystals. An example of biaxial crystal is topaz.

The phenomenon known as form birefringence which refer the existence of two characteristic
waves, behaves as a uniaxial optically anisotropic system. The form birefringence arise from the
electrical properties of atoms and molecules which are typically isotropic. Among the cases in which
optical anisotropy occurs, (crystals and liquid crystals and photo-elastic effects), form birefringence is
described in the following.

1.3.2 Form birefringence

In all analysis and simulations through this thesis we consider the dielectric anisotropy, which
motivates from the anisotropy in retinal tissue. The source of anisotropy in retina is its structure that
cause a kind of anisotropy known as form birefringence. Form birefringence is directly related to an
ordered arrangement of similar particles of optically isotropic material, whose size is large compared
with the dimensions of molecules but small in comparison with the wavelength of light.

In 1912, Wiener [86] first showed that a stack of thin, non-absorbing, isotropic dielectric plates
would exhibit effective anisotropic dielectric constants when the thickness of the plates and the
dimensions of the overall structure were smaller and larger, respectively, than the wavelengths of light.
Such birefringence is due to the boundary condition imposed by Maxwell’s equations on the electric
and displacement field vectors [11].

The form birefringence could arise from ordered structure of parallel fibrils and parallel discs.
There is at least one direction along which an incident light has equal propagation velocities in a
birefringent material. Such a direction is called an optic axis. An assembly of thin parallel discs
behaves as a negative uniaxial crystal with its optic axis perpendicular to the plane of the discs. An
assembly of parallel and similar thin cylindrical fibril behaves as a positive uniaxial crystal, with its
optic axis parallel to the axes of the fibrils.

Observations on form birefringence are useful in biological waveguides. The sign of the difference
between the refractive indexes indicates whether the shape of the particles is nearer to that of a discs
or a fibril [11], and if the refractive indexes are known, it may be possible to estimate the fraction of
the volume occupied by the particles.

The tissue birefringence includes two types of birefringence: form birefringence, due to ordered
arrangement of cellular organelles and intrinsic birefringence, due to anisotropic molecular structure. A
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quantitative estimation of the amount of birefringence can achieve with the so-called net birefringence,
∆n which is a sum of differences of refractive indices. A non-vanishing value for the net birefringence
(∆n ̸= 0) implies the overall optical anisotropy. The net birefringence is the sum of the intrinsic, form
and chromic birefringence:

∆n = ∆nI +∆nF +∆nC.

The value of form birefringence, ∆nF changes while the refractive index of the medium is varied, but
the value of intrinsic birefringence, ∆nI is a fixed. The chromatic birefringence, ∆nC is associated with
dichroism [37]. Dichroism is anisotropy in absorption and could be understood by recalling that the
components εi j of the dielectric permittivity tensor could to be complex. The chromatic birefringence,
∆nC could be neglected.

The form birefringence happens in most of the ocular tissues including the cornea, the lens,
Helen’s fiber at the macula and retinal nerve fiber layer (RNFL) around the optic head. The retinal
photoreceptors were modeled as arrays of approximately parallel cylindrical dielectric waveguides
in [28]. Similar models will be assumed for the elements of which the retinal nerve fiber layer is
composed [91]. The cylindrical shape of photoreceptor cells, their dimensions and the fact that their
refractive index is higher than the surrounding medium are the reasons behind their waveguiding
properties [28]. A theoretical model developed in [38] shows that an array of thick cylinders with low
relative refractive index can produce form birefringence that varies with wavelength. This model is
quite suitable for discussing form birefringence of RNFL.

To end up this discussion, measurement of net birefringence can be used as an early diagnosis
tool. The net birefringence of RNFL is measured with different technics and groups, e.g. [14, 43].
The variation in net birefringence could imply structural changes in tissue. For instance, the RNFL
birefringence measurements may provide an early indicator of structural changes caused by glaucoma
[43].

1.4 Time-domain methods for solving Maxwell’s equations

Several real world electromagnetic problems are not analytically calculable as they often involve large
regions with complex geometry of inhomogeneous, anisotropic, lossy and even nonlinear materials.
Computational numerical techniques can overcome the inability to derive closed form solutions of
Maxwell’s equations under various constitutive relations on media and different types of boundary
conditions. In order to solve an electromagnetic field problem, one should take into account Maxwell’s
equations, boundary conditions, all interface and material conditions and all excitation conditions.

The propagation of electromagnetic waves and their interaction with matter is often investigated
in a time domain setting. This is the case of the present thesis. In this section we make a brief
comparative discussion about the most used numerical methods for time dependent wave problems,
highlighting the advantages of the prominent discontinuous Galerkin (DG) as an interesting choice,
which is the numerical method employed for space discretization in our derivations.

In the last decades there has been an increasing interest in solving Maxwell’s equations because of
their great importance and diversity of applications. The finite difference time domain (FDTD), which
is also known as Yee’s scheme, was introduced in 1966 in [89], and since then it has been applied to
a wide range of electromagnetic problems, as for instance, in radar cross section computations and
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electromagnetic compatibility investigations. The Yee’s scheme continues to be the most widespread
computational electromagnetic method in the time-domain [82], mostly because of its simplicity.

The Yee’s scheme is an explicit finite difference scheme using central differences on a staggered
Cartesian grid. It is second-order accurate in both time and space. The expression staggered grid here
indicates that the different electromagnetic components are not computed at the same discretization
points in the domain. Furthermore, the field components are not considered on the same time levels.
The FDTD method is very efficient for simple geometries, as it gives naturally spurious free solution, is
energy conservative and is second-order convergent. The main drawback of the scheme is the inability
to represent curved boundaries and small geometrical details. Curved objects must be modeled by
staircasing which reduces the accuracy of the scheme to first order [13, 82]. There are several FDTD
methods (e.g [46, 65]) which effort to model curved objects and remain second order but most of them
destroy the simplicity of Yee’s scheme.

The finite volume time domain (FVTD) technique emerged as an alternative to FDTD aiming to
overcome its geometrical discretization constraints, avoiding the staggered spatial discretization of
the fields. The concept of the finite volume method originates in the context of computational fluid
dynamics [79]. The most common formulation of FVTD is carried on tetrahedral elements for the
Maxwell’s curl equations [35, 61]. The scheme is formulated by defining a system of equations in
which the time derivative of the electric field vector components integrated in volume equals to the sum
of all surface integrals of the spatial derivative of the magnetic field vector components and vice-versa.
Since the flux entering a given volume is identical to that leaving the adjacent volume, these methods
are local conservative. The time discretization can be performed, in a similarly fashion to the FDTD
method, using a second order leap-frog algorithm. Thus the FVTD method it is easily formulated to
allow unstructured spatial grids. The main drawback of the FVTD is its order of convergence which is
quite low. Moreover, the time step is limited by a condition that depends on the shape of the elements
and that is usually more restrictive than for the FDTD method [68].

With the growing need to solve geometrically complex large scale problems, there has been an
interest in the flexibility offered by the finite element schemes. Most applications of finite element
methods to electromagnetic models were carried out in the frequency domain [45]. Finite element time
domain solution of Maxwell’s equations received more attention while focusing essentially on low
order formulations [51]. These methods offer important advantages over the standard finite difference
methods. The use of unstructured grids offers high facility in the modeling of complex geometries.
Field and flux continuity conditions at material interfaces can be handled by the variational approach
in a natural way [51]. Finite element based methods can handle irregular domains, achieve high order
and allow adaptivity and error control. They also use a variational approach which inherits many
properties of the continuous problems. In spite of their advantages, finite element methods suffer also
from a number of drawbacks. The spatial discretization must be conforming and the mass matrix is
global at every time step, which becomes an issue of significant importance in certain problems. While
the mass matrix is sparse and typically well conditioned, if we seek for instance a steady solution,
the global mass matrix must be inverted. The work associated with this inversion which increases for
higher order and large scale problems, is a bottleneck for parallel computations.

The attention to the development of high-order accurate methods for solving time-domain
Maxwell’s equations in complex geometries brings to the use of a variation of finite element method
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called discontinuous Galerkin (DG) finite element methods. Discontinuous Galerkin schemes retain
most of the benefits of the finite element methods, as well as local refinement mesh strategies, due
to the ability of the method to deal with non-conforming meshes with hanging nodes, and spatial
high-order convergence, allowing to deal with problems where the required precision varies over the
entire domain, or when the solution lacks smoothness. These advantages come together with other
benefits as local conservation and flexibility on the choice of the numerical flux. Moreover, the mass
matrix is local rather than global and the method is highly parallelizable. DG methods can be seen
as a generalization of finite volume method. Thus the obvious advantage of DG methods over finite
volume methods is that higher-order approximation in space can be achieved.

The one-step explicit time integration methods like Runge-Kutta (RK) and leap-frog schemes are
computationally efficient per update cycle and easy to implement. The RK approach combined with
a DG method was originally published by Cockburn and Shu [19]. Since then, several extensions,
such as explicit low-storage Runge-Kutta and the fourth-order explicit, singly diagonally implicit
Runge-Kutta [47], have been considered.

Resulting from the coupling of the DG method, for the integration in space, with a time integrator,
the DG time domain approach gathers most of the advantages of FDTD, FVTD and finite element
time domain methods.

Regarding the interaction of electromagnetic field with biological fields, several approaches have
been proposed over the past decades, mostly based on single-scattering theory. The numerical methods
for solving Maxwell’s equations are providing methods to strengthen the knowledge of cellular-level
as well as to accelerate the development of corresponding novel clinical technologies. FDTD is one of
the most commonly used numerical methods for solving Maxwell’s equations that has been applied
to light scattering from cells [26]. The first application of the FDTD to cellular-level biophotonics
was reported in [67], wherein visible light interactions with a retinal photoreceptors were modeled for
the two-dimensional transverse magnetic (TM) and transverse electric (TE) polarization cases. The
DG method, in particular the nodal formulation described in [39], has gained notorious popularity in
recent years and it has been extensively used in electromagnetic problems since the first application of
the method to Maxwell’s equations in 2002 (see [41]). This is the method that we have chosen to use
in the present work, motivated by our application of interest. Along the thesis we consider a nodal DG
method for the space discretization combined with a leap-frog method for the time integration.





Chapter 2

Leap-frog DG Method

The DG finite element method appears to have been introduced in the framework of neutron transport
in 1973 [69], and its first analysis was presented in 1974 in [54]. Important progresses took place in
the next two decades, like their extension to conservation laws and development adaptive solution
techniques. Since the years 2000 DG methods have become very widely used for solving a large
range of problems. Being local methods capable of producing highly accurate numerical solutions,
DG methods gather many desirable features over more standard continuous methods. The advantages
include their flexibility on the choice of meshes and thus their capacity handle complicated geometries,
their potential for error control and mesh adaptation, their possible definition on unstructured meshes,
the fact that they are suitable parallelization attenuating their major drawbacks which are high memory
requirements and computational cost. A main ingredient in the definition of any DG scheme is the
so-called numerical flux, which serves as a connection between the single elements in order to make
possible to construct the global numerical solution from all local approximations. The notion of the
numerical flux has been taken from finite volume methods, where the numerical flux meets the same
purpose, i.e. to transport the information from one local cell to another.

This chapter is dedicated to the leap-frog DG scheme for solving Maxwell’s equations in
anisotropic materials. We start by a 3D system of Maxwell’s equations. After rewriting the system
of equations in the conservation form we introduce transverse modes of Maxwell’s system in Sec-
tion 2.1. In Section 2.2 the nodal DG approach for solving Maxwell’s equations is presented leading
to a semi-discrete model where the spatial derivatives are discretized while the temporal derivates
remain untouched. Then the temporal derivatives of the semi-discrete scheme are discretized, in a
procedure that is known as the method of lines, using a leap-frog scheme which employs a centered
approximation for time derivatives and the central flux terms and a backward approximation for the
upwind flux terms. We arrive at the fully explicit leap-frog DG scheme in Section 2.4. The scheme is
presented for a 2D model and further extended to 3D in the last part of this chapter.

2.1 Maxwell’s equations in anisotropic materials

In this section we consider the homogeneous system of Maxwell’s equations (1.11) and (1.12)
which is completed by considering perfect electric conductor or perfect magnetic conductor boundary
conditions or Silver-Müller boundary conditions. The system of equations is formulated as a hyperbolic

13
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system of conservation laws which is later used to develop the discretization approach. The reduction
to 2D is discussed in Subsection 2.1.2 and transverse electric mode is chosen as our 2D model.

2.1.1 Three dimensional model

Let us recall the Maxwell’s equations (1.11) and (1.12) in three-dimensions

ε
∂E
∂ t

= ∇×H in Ω× (0,Tf ], (2.1)

µ
∂H
∂ t

=−∇×E in Ω× (0,Tf ], (2.2)

where E = (Ex,Ey,Ez) , H = (Hx,Hy,Hz) and Ω ⊂ R3 is a bounded polyhedral domain. The permit-
tivity and permeability tensors ε and µ are space-dependent.

We assume that the electric permittivity and the magnetic permeability tensors ε and µ are
symmetric and uniformly positive definite for almost every (x,y,z) ∈ Ω, and are uniformly bounded
with a strictly positive lower bound, i.e., there are constants ε > 0, ε > 0 and µ > 0, µ > 0 such that,
for almost every (x,y,z) ∈ Ω,

¯
ε|ξ |2 ≤ ξ

T
ε(x,y,z)ξ ≤ ε|ξ |2,

¯
µ|ξ |2 ≤ ξ

T
µ(x,y,z)ξ ≤ µ|ξ |2, ∀ξ ∈ R3.

The model equations (2.1)–(2.2) must be complemented by proper boundary conditions. Here
we consider the most common, either the perfect electric conductor boundary condition , the perfect
magnetic conductor boundary condition or the first order Silver-Müller absorbing boundary condition
as: 

n×E = 0 on ∂Ω× (0,Tf ] for PEC,

n×H = 0 on ∂Ω× (0,Tf ] for PMC,

n×E = cµe f f n× (H ×n) on ∂Ω× (0,Tf ] for SM-ABC,

(2.3)

where c and µe f f were defined by (1.29) and (1.26) respectively.
The initial conditions

E(x,y,z,0) = E0(x,y,z) and H(x,y,z,0) = H0(x,y,z) in Ω, (2.4)

must also be provided.
Maxwell’s curl-equations can be reformulated in conservation form. The Maxwell’s equations

(2.1)–(2.2) in dimensionless units read

Q
∂q
∂ t

+∇ ·F(q) = 0 in Ω× (0,Tf ], (2.5)

where the material matrix Q and the state vector q are defined by

Q =

(
ε 0
0 µ

)
and q =

(
E
H

)
,
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and the flux F(q) = [Fx(q),Fy(q),Fz(q)]T is given by

Fi(q) =

(
−ei ×H
ei ×E

)
,

where ei signifies Cartesian unit vectors in i-direction where i = x,y,z. The 6×6 material matrix Q
depends on ε and µ the material properties of the medium. The state vector q is the super-vector
of the electric field E = (Ex,Ey,Ez), and magnetic field H = (Hx,Hy,Hz) and these are functions of
(x,y,z, t).

In mathematical terms, the system (2.5) is said to be hyperbolic [55]. The physical meaning of
this mathematical definition is that, the system has wavelike solution. This means that the material
matrix Q is diagonalizable with real eigenvalues.

2.1.2 Reduction to two dimensions

If we suppose that the system of Maxwell’s equations has some symmetries, it is possible to reduce
the dimensions of the system. The system is often homogeneous in one direction. The structure being
modeled extends to infinity in the z-direction with no change in the shape or position of its transverse
cross section. If the incident wave is also uniform in the z-direction, then all z-derivatives will vanish
[82]. Under these conditions the full set of Maxwell’s curl equations given by (2.1) and (2.2) reduce
to two decoupled sets of three equations.

The set of first three equations contains Ex, Ey and Hz, and it is called transverse electric mode.
TE mode describes the propagation where the electric field lies in the plane of propagation. The set
of the other three equations contains Hx, Hy and Ez components and it is called transverse magnetic
(TM) mode. TM mode describes the propagation where the electric field is perpendicular to the plane
of propagation. The TE and TM modes are decoupled since they do not contain any common field
vector components. These two modes are completely independent for structures that composed of
isotropic or anisotropic materials [82]. The TM and TE modes constitute the two possible ways that
two-dimensional electromagnetic wave interaction problems can be set up for case of zero partial
derivatives in the z-direction.

If the curl equations (2.1) and (2.2) are written component wise the reduction to TE mode is

εxx
∂Ex

∂ t
+ εxy

∂Ey

∂ t
=

∂Hz

∂y
(2.6)

εyx
∂Ex

∂ t
+ εyy

∂Ey

∂ t
=−∂Hz

∂x
(2.7)

µ
∂Hz

∂ t
=

∂Ex

∂y
−

∂Ey

∂x
(2.8)

Since we are dealing with anisotropic permittivity tensor, TE mode (2.6)–(2.8) is considered for our
2D model. This assumption is appropriate when studying e.g. truly 2D photonic crystals [24] or the
electrodynamic properties of 2D materials like graphene [62].

In the major part of this thesis we shall analyze 2D time-domain Maxwell’s equations in TE mode.
For this case, and assuming no conductivity effects, the equations (2.6)–(2.8) in the non-dimensional
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form are

ε
∂E
∂ t

= ∇×H in Ω× (0,Tf ], (2.9)

µ
∂H
∂ t

=−curl E in Ω× (0,Tf ], (2.10)

where E = (Ex,Ey) and H = (Hz). These equations are set and solved on the bounded polygonal
domain Ω ⊂ R2. Note that we use the following notation for the vector and scalar curl operators

∇×H =

(
∂Hz

∂y
,−∂Hz

∂x

)T

, curl E =
∂Ey

∂x
− ∂Ex

∂y
.

The electric permittivity of the medium, ε and the magnetic permeability of the medium µ are varying
in space, being ε an anisotropic tensor

ε =

(
εxx εxy

εyx εyy

)
, (2.11)

while we consider isotropic permeability µ .

We assume that the electric permittivity tensor ε is symmetric and uniformly positive definite for
almost every (x,y) ∈ Ω, and it is uniformly bounded with a strictly positive lower bound, i.e., there
are constants ε > 0 and ε > 0 such that, for almost every (x,y) ∈ Ω,

¯
ε|ξ |2 ≤ ξ

T
ε(x,y)ξ ≤ ε|ξ |2, ∀ξ ∈ R2.

We also assume that there are constants µ > 0 and µ > 0 such that, for almost every (x,y) ∈ Ω,

µ ≤ µ(x,y)≤ µ.

The model equations (2.9) and (2.10) is completed by boundary conditions, PEC, PMC or SM-
ABC as: 

n×E = 0 on ∂Ω× (0,Tf ] for PEC,

n×H = 0 on ∂Ω× (0,Tf ] for PMC,

n×E = cµn× (H ×n) on ∂Ω× (0,Tf ] for SM-ABC,

(2.12)

where

c =

√
nT εn

µ det(ε)
,

is the speed with which a wave travels along the direction of the unit normal n. The role of effective
permittivity (1.25) is observed in defining c.

The initial conditions

E(x,y,0) = E0(x,y) and H(x,y,0) = H0(x,y) in Ω, (2.13)
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must also be provided.

2.2 Space discretization with discontinuous Galerkin method

In this section, the spatial discretization of Maxwell’s equations in conservation form with nodal
DG method is presented. The idea of DG method, like finite element methods, is to construct finite
dimensional function spaces in which we search for an approximate solution. The first step in
constructing a discrete function space is to discretize the domain. The concepts of the mesh and the
broken polynomial space, which are known as discontinuous Galerkin function space are explained in
Subsection 2.2.1.

The electromagnetic fields are expanded in terms of a set of basis functions which are defined
locally. Let us mention that we follow the general DG method structure as in [39]. We consider
the common choice of the basis functions in DG method which are Lagrange polynomials. In
Subsection 2.2.3 we start by looking at the problem locally and working on one element. In order to
arrive at global numerical approach, the elements are connected via numerical flux. The concepts of
the numerical flux are explained in the of Subsection 2.2.3. In the last part of this section, we back to
boundary conditions and the discretization of boundary conditions within DG approach is explained.

2.2.1 Definition of the mesh

Let Ω be a bounded polygonal region of R2 for which the boundary is ∂Ω, where the numerical
solutions of equations (2.9) and (2.10) are intended to be computed. Assume that the computational
domain Ω is partitioned into K triangular elements Tk such that

Ω = ∪kTk,

where Tk is a straight-sided triangle. For simplicity, we consider that the resulting mesh Th is
conforming, that is the intersection of two elements is either empty, an edge or vertices.

Let hk be the diameter of the triangle Tk ∈ Th, and h be the maximum element diameter,

hk = sup
P1,P2∈TK

∥P1 −P2∥, h = max
Tk∈Th

{hk}.

We assume that the mesh is regular in the sense that there is a constant τ > 0 such that

∀Tk ∈ Th,
hk

τk
≤ τ, (2.14)

where τk denotes the maximum diameter of a ball inscribed in Tk.
Let νk be the set of indices of the neighboring elements of Tk. For each i ∈ νk, we consider the

internal edge fik = Ti ∩Tk, and we denote by nik the unit normal oriented from Ti towards Tk. The
boundary edge is fk = Tk ∩∂Ω. The unitary outer normal vector to fk is denoted by nk. The set of
internal edges denote by F int and Fext is the set of edges that belong to the boundary ∂Ω.

By now we have constructed a mesh on the domain Ω and so we can turn to the second step,
namely to the construction of the discrete finite element space. The discontinuous Galerkin finite
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element space is chosen as a space consisting of piecewise polynomial functions. The finite element
space is then taken to be

VN = {v ∈ L2(Ω)3 : v|Tk ∈ PN(Tk)
3}, (2.15)

where PN(Tk) denotes the space of polynomials of degree less than or equal to N on the element Tk.

Let us define the local inner product and norm at each element Tk as

(u,v)Tk =
∫

Tk

u(x,y).v(x,y)dxdy and (u,u)Tk = ∥u∥2
Tk
,

and also the local inner product over the boundary ∂Tk

(u,v)∂Tk =
∫

∂Tk

u(s).v(s)ds.

These local inner product and norm form the global broken measure as

(u,v)Ω = ∑
k
(u,v)Tk , ∥u∥2

Ω = ∑
k
∥u∥2

Tk
and (u,v)∂Ω = ∑

k
(u,v)∂Tk .

2.2.2 Local approximate solution

On each element Tk, the solution fields are approximated by polynomials of degree less than or equal
to N. The global solution q(x,y, t) is then assumed to be approximated by the piecewise N order
polynomials q̃(x,y, t) defined as the direct sum of the K local polynomial solutions

q(x,y, t)≃ q̃(x,y, t) =
K⊕

k=1

q̃k(x,y, t),

where q̃k(x, t) = (Ẽxk , Ẽyk , H̃zk). We use the following notation

Ẽx(x,y, t) =
K⊕

k=1

Ẽxk(x,y, t), Ẽy(x,y, t) =
K⊕

k=1

Ẽyk(x,y, t), H̃z(x,y, t) =
K⊕

k=1

H̃zk(x,y, t).

The fields are expanded on each element Tk in terms of interpolating Lagrange polynomials Li(x,y)
as [41],

q̃k(x,y, t) =
Np

∑
i=1

q̃k(xi,yi, t)Li(x,y) =
Np

∑
i=1

q̃ki(t)Li(x,y). (2.16)

Here Np denotes the number of coefficients that are utilized and q̃ki(t) = q̃k(xi,yi, t) serves as a
short-hand notation for expansion coefficients. Since the expansion coefficients correspond to the
field values at the nodes the representation of the fields as Equation (2.16) gives the so-called nodal
representation.
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The number of coefficients Np is related with the polynomial order N via

Np =
(N +1)(N +2)

2
.

Note that Np also represents the number of interpolation node points per element and the number of
basis functions.

The polynomial interpolation nodes in a triangle are discussed in [15, 40]. The equidistant points
are the first choice, but they have large Lebesque constants and in the context of DG methods they lead
to very ill conditioned linear systems [39]. The recent warp-blend method [85] performs sufficiently
well for generating two dimensional point sets in triangles. The warp-blend points can be viewed as a
two dimensional generalization of Legendre-Gauss-Lobatto points. These points coincide with the
Legendre-Gauss-Lobatto points at the edges of the triangle. In one dimensional DG formulation, the
Legendre-Gauss-Lobatto quadrature points are chosen as the set of optimal nodal points in [39]. For
higher dimensions the warp-blend points are chosen as the set of optimal nodal points in nodal DG
structure.

2.2.3 The DG semi-discrete form

Let’s start by writing the 2D model (2.9) and (2.10) in a conservation form (2.5)

Q
∂q
∂ t

+∇ ·F(q) = 0 in Ω× (0,Tf ], (2.17)

where the material matrix Q and the state vector q are defined by

Q =

(
ε 0
0 µ

)
, q =

Ex

Ey

Hz

 ,

respectively and the flux is given by

F(q) =

(
0 Hz Ey

−Hz 0 −Ex

)T

.

In order to arrive at the semi-discrete scheme, let’s start by noticing that the local residual, i.e. the
error when q̃k is substituted in Equation (2.17), is required to vanish in the following way∫

Tk

(
Q

∂ q̃k

∂ t
+∇ ·F(q̃k)

)
· vdxdy = 0, (2.18)

for all test function v ∈VN . This can be recognized as a Galerkin approach, but on the local element
only. Integration by parts once yields∫

Tk

(
Q

∂ q̃k

∂ t
· v−F(q̃k) ·∇v

)
dxdy =−

∫
∂Tk

n ·F(q̃k) · vds,

where n is the outward pointing unit normal vector of the contour.
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The solution at the interfaces between elements is multiply defined and we will need to choose
which solution, or combination of solutions, is correct. There are several possible choices for this
issue. Delaying the detail of this choice, we substitute in the resulting contour integral the flux F by a
numerical flux F∗ that enforces a physically correct solution. With the numerical flux introduced on
the right hand side to connect the elements, doing integration by parts once more yields the final form∫

Tk

(
Q

∂ q̃
∂ t

+∇ ·F(q̃k)

)
· vdxdy =

∫
∂Tk

n · (F(q̃k)−F∗(q̃k)) · vds. (2.19)

Equation (2.19) is the strong variational formulation of Maxwell’s curl equations. The left-hand side
of Equation (2.19) remains a local expression, while in the right-hand side the numerical flux connects
the neighbouring elements through their common edge.

In order to connect the solution between elements sharing a common edge, the continuous
numerical flux of the tangential field components are defined at each interface. The concept of
numerical flux in computational electromagnetic was inspired by finite volume time domain methods
[63, 79]. Upwind flux evaluation is the usual way to exchange information between elements in finite
volume methods. A discontinuous Galerkin method with polynomial order zero is nothing else than a
finite volume method.

The proper choice of the numerical flux is essential for the accuracy of the DG scheme. The
derivation of the numerical flux involves the solution of a Riemann problem and is discussed in detail
for isotropic materials in [39]. This flux is given by the expression

n · (F(q̃)−F∗(q̃)) =

(
−1

Z++Z− n×
(
Z+[H̃]−αn× [Ẽ]

)
1

Y++Y− n×
(
Y+[Ẽ]+αn× [H̃]

)) . (2.20)

Here we need to introduce the notation for the jumps of the field values across the interfaces of the
elements,

[Ẽ] = Ẽ−− Ẽ+, and [H̃] = H̃−− H̃+, (2.21)

where the superscript “+ ” denotes the neighboring element and the superscript “− ” refers to the
local cell. Furthermore the cell-impedances and cell-conductances respectively are

Z± =

√
µ±

ε± , and Y± =
(
Z±)−1

.

The parameter α ∈ [0,1] in Equation (2.20) is called upwind parameter and can be used to control the
dissipation. Taking α = 0 yields a non dissipative central flux while α = 1 corresponds to the classic
upwind flux.

The treatment of anisotropic materials within a DG framework was discussed in [16, 32] where just
the central flux is considered to interconnect the neighbouring elements. In [49] the flux formulation
for isotropic materials is extended for two dimensional formulation of anisotropic materials. The
numerical flux (2.20) involves material properties ε and µ via impedance Z and conductance Y .
The numerical flux in isotropic materials is extended to an anisotropic materials with redefining the
material properties, Z and Y with effective permittivity (1.25). The DG flux for the 2D model in
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anisotropic material is

n · (F(q̃)−F∗(q̃)) =


−ny

Z++Z−

(
Z+[H̃z]−α

(
nx[Ẽy]−ny[Ẽx]

))
nx

Z++Z−

(
Z+[H̃z]−α

(
nx[Ẽy]−ny[Ẽx]

))
1

Y++Y−

(
Y+
(
nx[Ẽy]−ny[Ẽx]

)
−α[H̃z]

)
 , (2.22)

where Z± = µ±c± and Y± = (Z±)
−1, while

c± =

√
nT ε±n

µ± det(ε±)
.

2.2.4 Boundary conditions

Since the information between elements is exchanged by the numerical flux in DG methods, the
boundary conditions are enforced by the numerical flux. The field differences (2.21) mediate in
between neighbouring elements in numerical flux. Boundary elements are missing a neighbour
to evaluate the field differences. To overcome this problem and according to different boundary
conditions we consider that the jumps in Equation (2.22) are modified as following for different
boundary conditions.

The PEC boundary condition can be implemented by applying the mirror principle as n× Ẽ+ =

−n× Ẽ− and n× H̃+ = n× H̃−. Thus the jumps at the outer boundary in this case are set as

[Ẽx] = 2Ẽ−
x , [Ẽy] = 2Ẽ−

y , [H̃z] = 0. (2.23)

The jumps at the outer boundary for PMC are set as

[Ẽx] = 0, [Ẽy] = 0, [H̃z] = 2H̃−
z . (2.24)

In DGTD methods Silver-Müller absorbing boundary conditions can be applied by setting the
incoming flux to zero [3]. For the upwind flux, this is directly implemented since it is equivalent to
assuming that there is no contribution to the flux from outside the region of solution, so we have

Z−H̃+
z = nxẼ+

y −nyẼ+
x , or equivalently H̃+

z = Y−(nxẼ+
y −nyẼ+

x ). (2.25)

For the central flux SM-ABC can also be employed [32]. Using the same kind of approach as in [4],
for central flux we have

Z−H̃+
z = (nxẼ−

y −nyẼ−
x ), and Y−(nxẼ+

y −nyẼ+
x ) = H̃−

z . (2.26)

In order to incorporate the conditions (2.25) and (2.26) into the numerical flux (2.22), for both central
and upwind fluxes we consider α = 1 for numerical flux at the outer boundary and

[Ẽx] = Ẽ−
x , [Ẽy] = Ẽ−

y , [H̃z] = H̃−
z . (2.27)

We also consider (2.27) for the case α ∈ (0,1).
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To complete the evaluation of fluxes at boundary edges, we mention that the material properties at
the boundary set as

Z+ = Z− and Y+ = Y−.

2.3 Time discretization

The discretization by the DG method results in the semi-discrete form of Maxwell’s equations which
discretize the electromagnetic fields in space. The missing part towards a time-domain solver is the
integration in time. The Equation (2.19) is a set of coupled first order ordinary differential equations
in time, which is in more general form described by

dq̃k,h

dt
= Fh(q̃k,h), (2.28)

where q̃k,h denotes the vector of the coefficients of q̃k and Fh : VN → R3Np .
In order to achieve the fully discrete scheme, it is enough to employ a time integration method.

The temporal integration methods can be divided to two major families: implicit and explicit schemes.
Implicit schemes require the solution of large matrix system resulting in a high computational effort
per time step and rely on the efficiency of the used linear system solver. The advantage of implicit
schemes are their flexibility regarding the choice of time step since usually, these time integrations are
unconditionally stable. Explicit schemes in contrast are easy to implement, produce greater accuracy
with less computational effort than implicit methods, but are restricted by a stability criterion enforcing
a relation between the time step and the spatial discretization parameter. This restriction may result in
a large number of iterations per simulation, each iteration with low computational effort.

Explicit time integrators can exploit the block diagonal structure of the mass matrix of semi-
discrete DG schemes and thus leads to fully explicit scheme. In this study, we employ the 2nd-order
leap-frog scheme for the time integration which is described in the FDTD literature in [89]. The
staggered leapfrog time-stepping algorithm is a popular choice for time domain Maxwell’s equations
(e.g. [4, 32, 82]) due to its simplicity, as it does not require to save in memory previous states,
accuracy and robustness. It samples the unknown fields in a staggered way: the electric field at
tm = m∆t, and the magnetic field at tm+1/2 = (m+ 1

2)∆t. The staggered sampling yields an explicit
marching-on-in-time algorithm.

2.3.1 Leap-frog time integrator

In this work, we use a second order leap-frog scheme, which employs a centered approximation for
the time derivatives. Consider the semi-discrete form Equation (2.19). To define a fully discrete
scheme, we divide the time interval [0,T ] into M subintervals by points

0 = t0 < t1 < · · ·< tM = T,

where tm = m∆t while ∆t is the time step size and T +∆t/2 ≤ Tf .
The unknowns related to the electric field are approximated at integer time-stations tm and are

denoted by Ẽm
k = Ẽk(., tm). The unknowns related to the magnetic field are approximated at half-
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integer time-stations tm+1/2 = (m+ 1
2)∆t and are denoted by H̃m+1/2

k = H̃k(., tm+1/2). This implies
that we do not have a fully defined state vector in the sense of Equation (2.28) for a given time t. The
time derivatives in Equation (2.19) are replaced by 2nd-order accurate central differences

∂ Ẽm+1/2

∂ t
=

Ẽm+1 − Ẽm

∆t
+O(∆t2) and

∂ H̃m+1

∂ t
=

H̃m+3/2 − H̃m+1/2

∆t
+O(∆t2). (2.29)

To obtain the future values from a present state the following algorithm is applied

Ẽm+1
k,h = Ẽm

k,h +∆tFh1(Ẽ
m
k,h, H̃

m+1/2
k,h ), (2.30)

H̃m+3/2
k,h = H̃m+1/2

k,h +∆tFh2(Ẽ
m+1
k,h , H̃m+1/2

k,h ), (2.31)

where Ẽm
k,h denotes the vector of the coefficients of Ẽm

k which is an approximation for Ek(tm) and

H̃m+1/2
k,h is defined analogously. The function Fh = (Fh1 ,Fh2)

T is a function representing the result
of applying the spatial semi-discretization.

Usually evaluating the upwind flux terms imply the need of averaging between the next and
previous time steps and thus resulting on a globally implicit scheme due to the coupling terms from
the adjacent elements [56]. To avoid this, we used in (2.30)–(2.31) the backward approximation
[25] for the two extra dissipative terms arising from the upwind flux formulation. As discussed in
[2, 66] this backward approximation for the flux terms is enough to attenuate spurious modes in
space more strongly than physical modes, which is the only aim of these terms. Using this backward
approximation introduces a slight penalization in stability condition for upwind flux. This will be
observed later in stability analysis and in our numerical experiments.

2.4 Full-discrete scheme

The leap-frog time integrator is applied on semi discrete DG formulation where the first order time
derivates are replaced by central differences and backward approximations for the dissipative terms of
flux. We arrive at a fully explicit leapfrog DG scheme in 2D. In Subsection 2.4.2, we consider the
system of 3D Maxwell’s equations and extend the leap-frog DG formulation to 3D.

2.4.1 Leap-frog DG scheme in 2D

In order to get the fully explicit leap-frog DG scheme, the leap-frog time integrator (2.29) is applied
on Equation (2.19). We can now formulate the leap-frog DG method: given an initial approxima-
tion (Ẽ0

xk
, Ẽ0

yk
, H̃1/2

zk ) ∈ VN , for each m = 0,1, . . . ,M − 1, find (Ẽm+1
xk

, Ẽm+1
yk

, H̃m+1/2
zk ) ∈ VN such that
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∀(uk,vk,wk) ∈VN ,(
εxx

Ẽm+1
xk

− Ẽm
xk

∆t
+ εxy

Ẽm+1
yk

− Ẽm
yk

∆t
,uk

)
Tk

=
(

∂yH̃m+1/2
zk ,uk

)
Tk

+

(
−ny

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

,uk

)
∂Tk

, (2.32)(
εyx

Ẽm+1
xk

− Ẽm
xk

∆t
+ εyy

Ẽm+1
yk

− Ẽm
yk

∆t
,vk

)
Tk

=−
(

∂xH̃m+1/2
zk ,vk

)
Tk

+

(
nx

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

,vk

)
∂Tk

, (2.33)(
µ

H̃m+3/2
zk − H̃m+1/2

zk

∆t
,wk

)
Tk

=
(
∂yẼm+1

xk
−∂xẼm+1

yk
,wk
)

Tk

+

(
1

Y++Y−

(
Y+(nx[Ẽm+1

y ]−ny[Ẽm+1
x ])−α[H̃m+1/2

z ]
)
,wk

)
∂Tk

, (2.34)

where (·, ·)Tk and (·, ·)∂Tk denote the classical L2(Tk) and L2(∂Tk) inner-products we defined before on
each element. The boundary conditions are considered as what described in Subsection 2.2.4.

We want to emphasize that the scheme (2.32)–(2.34) is fully explicit in time, in opposition to [56],
where the scheme is defined with the upwind fluxes involving the unknowns Em+1

k and Hm+3/2
k and to

[32], where the scheme that is defined with the central fluxes leads to a locally implicit time method
in the case of Silver-Müller absorbing boundary conditions.

2.4.2 Leap-frog DG scheme in 3D

Recall the 3D Maxwell’s equations (2.1)–(2.2). We assume that polyhedral domain Ω is partitioned
into K disjoint tetrahedral elements Tk. We consider that the resulting mesh Th is conforming and
regular in the same sense as (2.14), where hk and τk denotes the diameter of the element Tk and
maximum diameter of a sphere inscribed in Tk respectively.

Keeping the same notation from 2D, νk denotes the set of indices of the neighbouring elements of
Tk. For each i ∈ νk, we consider the internal face fik = Ti ∩Tk, and we denote by nik the unit normal
oriented from Ti towards Tk. The boundary face is fk = Tk ∩∂Ω. The unitary outer normal vector to
fk is denoted by nk. The set of internal faces denote by F int and Fext is the set of faces that belong to
the boundary ∂Ω.

Writing the equations as a conservation form (2.5) the semi-discrete DG formulation is an
extension of the same approach as for 2D. The tensorial permittivity and permeability can be reduced
to effective scalar values (1.25) and (1.26) respectively. The numerical flux is introduced as

n · (F(q̃)−F∗(q̃)) =

(
−1

Z++Z− n×
(
Z+[H̃]−αn× [Ẽ]

)
1

Y++Y− n×
(
Y+[Ẽ]+αn× [H̃]

)) ,
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where Z± = µ
±
e f f c

± and Y± = (Z±)
−1 while

µ
±
e f f =

det(µ)
nT µ±n

, and c± =

√
nT µ±ε±n

det(µ)det(ε)
.

With this flux formulation, the leap-frog DG scheme (2.32)–(2.34) is extended to 3D. Given an
initial approximation (Ẽ0

k , H̃
1/2
k ) ∈VN , for each m = 0,1, . . . ,M−1, find (Ẽm+1

k , H̃m+1/2
k ) ∈VN such

that ∀(uk,vk) ∈VN ,

(
ε

Ẽm+1
k − Ẽm

k

2
,uk

)
Tk

=
(

∇× H̃m+1/2
k ,uk

)
Tk

+

(
1

Z++Z− n×
(

Z+[H̃m+1/2
k ]−αn× [Ẽm

k ]
)
,uk

)
∂Tk

, (2.35)(
µ

H̃m+3/2
k − H̃m+1/2

k
2

,vk

)
Tk

=−
(
∇× Ẽm+1

k ,vk
)

Tk

+

(
1

Y++Y− n×
(

Y+[Ẽm+1
k ]+αn× [H̃m+1/2

k ]
)
,vk

)
∂Tk

, (2.36)

where VN is the space of finite element space defined by (2.15) on tetrahedral elements. The scheme
(2.35)–(2.36) is a fully explicit leap-frog DG scheme for 3D Maxwell’s equations with anisotropic
permittivity and the permeability tensors. The stability of this scheme will be analyzed in next chapter.





Chapter 3

Stability Analysis

The explicit leap-frog time integration scheme (2.30)–(2.31), which employed a centered approx-
imation for time derivatives and used a backward approximation in upwind flux terms yielded a
fully explicit leap-frog DG scheme which is conditionally stable. The conditional stability imposes a
condition on the time step ∆t, in the same fashion as the Courant-Friedrichs-Lewy (CFL) criterion
[22], defined with respect to the time integration scheme in use.

In this chapter we first present a rigorous proof of the conditional stability of leap-frog DG scheme
in 2D. The analysis shows the influence of the mesh size, the choice of the numerical flux and the
choice of the degree of the polynomials used in the construction of the finite element space and the
boundary conditions, which can be either perfect electric, perfect magnetic or first order Silver-Müller.
The stability analysis is extended to the 3D model in Section 3.2 and the correspondent stability region
is presented.

3.1 Stability analysis of the 2D model

The aim of this section is to provide a sufficient condition for the L2-stability of the leap-frog DG
method (2.32)–(2.34). We start by choosing a proper test function and try to find the estimations for
the terms related to inner boundary edges and outer boundary terms in Lemma 3.1.1 and Lemma 3.1.2
respectively. The main result of this section is stated in Theorem 3.1.3 where the stability condition is
derived for different boundary conditions and different fluxes.

Recall Equations (2.32)–(2.34), choosing

uk = ∆tẼ [m+1/2]
xk , vk = ∆tẼ [m+1/2]

yk , wk = ∆tH̃ [m+1]
zk ,

where

Ẽ [m+1/2] =
Ẽm + Ẽm+1

2
and H̃ [m+1] =

H̃m+1/2 + H̃m+3/2

2
,

27
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we have (
εẼm+1

k , Ẽm+1
k

)
Tk
−
(
εẼm

k , Ẽ
m
k
)

Tk
= 2∆t

(
∇× H̃m+1/2

zk , Ẽ [m+1/2]
k

)
Tk

+2∆t
(

−ny

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

, Ẽ [m+1/2]
xk

)
∂Tk

+2∆t
(

nx

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

, Ẽ [m+1/2]
yk

)
∂Tk

, (3.1)

(
µH̃m+3/2

zk , H̃m+3/2
zk

)
Tk
−
(

µH̃m+1/2
zk , H̃m+1/2

zk

)
Tk
=−2∆t

(
curl Ẽm+1

k , H̃ [m+1]
zk

)
Tk

+2∆t
(

1
Y++Y−

(
Y+
(
nx[Ẽm+1

y ]−ny[Ẽm+1
x ]

)
−α[H̃m+1/2

z ]
)
, H̃ [m+1]

zk

)
∂Tk

. (3.2)

Using the identity,(
curl Ẽm+1

k , H̃ [m+1]
zk

)
Tk
=
(

∇× H̃ [m+1]
zk , Ẽm+1

k

)
Tk
+
(

nxẼm+1
yk

−nyẼm+1
xk

, H̃ [m+1]
zk

)
∂Tk

,

summing (3.1) and (3.2) from m = 0 to m = M−1, and integrating by parts, we get(
εẼM

k , ẼM
k
)

Tk
+
(

µH̃M+1/2
zk , H̃M+1/2

zk

)
Tk
=
(
εẼ0

k , Ẽ
0
k
)

Tk
+
(

µH̃1/2
zk , H̃1/2

zk

)
Tk

+∆t
(

∇× H̃1/2
zk , Ẽ0

k

)
Tk
−∆t

(
∇× H̃M+1/2

zk , ẼM
k

)
Tk
+2∆t

M−1

∑
m=0

Am
k , (3.3)

where

Am
k =

(
−ny

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

, Ẽ [m+1/2]
xk

)
∂Tk

+

(
nx

Z++Z−

(
Z+[H̃m+1/2

z ]−α
(
nx[Ẽm

y ]−ny[Ẽm
x ]
))

, Ẽ [m+1/2]
yk

)
∂Tk

+

(
1

Y++Y−

(
Y+
(
nx[Ẽm+1

y ]−ny[Ẽm+1
x ]

)
−α[H̃m+1/2

z ]
)
, H̃ [m+1]

zk

)
∂Tk

−
(

nxẼm+1
yk

−nyẼm+1
xk

, H̃ [m+1]
zk

)
∂Tk

.

Summing over all elements Tk ∈ Th we obtain

∑
Tk∈Th

Am
k = Bm

1 +Bm
2 , (3.4)

where Bm
1 contains the terms on internal edges and Bm

2 contains the boundary terms. We can write Bm
1

as
Bm

1 = Bm
11 +Bm

12 +Bm
13,
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where

Bm
11 = ∑

fik∈F int

∫
fik

(
−(ny)ki

Zi +Zk

(
Zi[H̃

m+1/2
zk ]−α

(
(nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
))

Ẽ [m+1/2]
xk

+
−(ny)ik

Zi +Zk

(
Zk[H̃

m+1/2
zi ]−α

(
(nx)ik[Ẽm

yi ]− (ny)ik[Ẽm
xi ]
))

Ẽ [m+1/2]
xi

−
Yi(ny)ki

Yi +Yk
[Ẽm+1

xk
]H̃ [m+1]

zk −
Yk(ny)ik

Yi +Yk
[Ẽm+1

xi ]H̃ [m+1]
zi

+(ny)kiẼm+1
xk

H̃ [m+1]
zk +(ny)ikẼm+1

xi H̃ [m+1]
zi

)
ds, (3.5)

Bm
12 = ∑

fik∈F int

∫
fik

(
(nx)ki

Zi +Zk

(
Zi[H̃

m+1/2
zk ]−α

(
(nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
))

Ẽ [m+1/2]
yk

+
(nx)ik

Zi +Zk

(
Zk[H̃

m+1/2
zi ]−α

(
(nx)ik[Ẽm

yi ]− (ny)ik[Ẽm
xi ]
))

Ẽ [m+1/2]
yi

+
Yi(nx)ki

Yi +Yk
[Ẽm+1

yk
]H̃ [m+1]

zk +
Yk(nx)ik

Yi +Yk
[Ẽm+1

yi ]H̃ [m+1]
zi

−(nx)kiẼm+1
yk

H̃ [m+1]
zk − (nx)ikẼm+1

yi H̃ [m+1]
zi

)
ds, (3.6)

Bm
13 =− ∑

fik∈F int

∫
fik

(
α

Yi +Yk
[H̃m+1/2

zk ]H̃ [m+1]
zk +

α

Yi +Yk
[H̃m+1/2

zi ]H̃ [m+1]
zi

)
ds. (3.7)

The terms related with the outer boundary are

Bm
2 = ∑

fk∈Fext

∫
fk

(
−(ny)k

2Zk

(
Zk[H̃

m+1/2
zk ]−α

(
(nx)k[Ẽm

yk
]− (ny)k[Ẽm

xk
]
))

Ẽ [m+1/2]
xk

+
(nx)k

2Zk

(
Zk[H̃

m+1/2
zk ]−α

(
(nx)k[Ẽm

yk
]− (ny)k[Ẽm

xk
]
))

Ẽ [m+1/2]
yk

+
1

2Yk

(
Yk
(
(nx)k[Ẽm+1

yk
]− (ny)k[Ẽm+1

xk
]
)
−α[H̃m+1/2

zk ]
)

H̃ [m+1]
zk

−
(
(nx)kẼm+1

yk
− (ny)kẼm+1

xk

)
H̃ [m+1]

zk

)
ds. (3.8)

Now we find estimates for the terms of internal edges in Lemma 3.1.1 by finding an estimation for Bm
1

and then an estimate for the terms on edges that belong to the boundary in Lemma 3.1.2 by finding an
estimate for Bm

2 .
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Lemma 3.1.1. Let Bm
11, Bm

12 and Bm
13 be defined by (3.5), (3.6) and (3.7), respectively and Bm

1 =

Bm
11 +Bm

12 +Bm
13. Then

M−1

∑
m=0

Bm
1 ≤ ∑

fik∈F int

∫
fik

1
4(Zi +Zk)

(
−α

(
(ny)ki[Ẽ0

xk
]− (nx)ki[Ẽ0

yk
]
)2

+2
(
(nx)ki

(
ZiẼ0

yk
+ZkẼ0

yi
)
− (ny)ki

(
ZiẼ0

xk
+ZkẼ0

xi
))

[H̃1/2
zk ]

+α

((
(ny)ki[ẼM

xk
]− (nx)ki[ẼM

yk
]
)2 −

(
[H̃1/2

zk ]2 − [H̃M+1/2
zk ]2

))
+2
(
(ny)ki

(
ZiẼM

xk
+ZkẼM

xi
)
− (nx)ki

(
ZiẼM

yk
+ZkẼM

yi
))

[H̃M+1/2
zk ]

)
ds.

Proof. Since

Zi

Zi +Zk
+

Yi

Yi +Yk
=

Zk

Zi +Zk
+

Yk

Yi +Yk
= 1 (3.9)

and

Zi

Zi +Zk
=

Yk

Yi +Yk
,

Zk

Zi +Zk
=

Yi

Yi +Yk
, (3.10)

for Bm
11 we have

Bm
11 =

1
2 ∑

fik∈F int

∫
fik

(
−(ny)ki

Zi +Zk

(
Zi[H̃

m+1/2
zk ]−α

(
(nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
))

Ẽm
xk

+
−(ny)ki

Zi +Zk

(
−α

(
(nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
))

Ẽm+1
xk

+
−(ny)ik

Zi +Zk

(
Zk[H̃

m+1/2
zi ]−α

(
(nx)ik[Ẽm

yi ]− (ny)ik[Ẽm
xi ]
))

Ẽm
xi

+
−(ny)ik

Zi +Zk

(
−α

(
(nx)ik[Ẽm

yi ]− (ny)ik[Ẽm
xi ]
))

Ẽm+1
xi

−
Yi(ny)ki

Yi +Yk
[Ẽm+1

xk
]H̃m+3/2

zk −
Yk(ny)ik

Yi +Yk
[Ẽm+1

xi ]H̃m+3/2
zi

+(ny)kiẼm+1
xk

H̃m+3/2
zk +(ny)ikẼm+1

xi H̃m+3/2
zi

)
ds.

Summing from m = 0 to m = M−1 we conclude that

M−1

∑
m=0

Bm
11 = ∑

fik∈F int

∫
fik

(ny)ki

2(Zi +Zk)

(
−
(
ZiẼ0

xk
+ZkẼ0

xi
)
[H̃1/2

zk ]+α
(
(nx)ki[Ẽ0

yk
]− (ny)ki[Ẽ0

xk
]
)
[Ẽ0

xk
]

+α

M−1

∑
m=0

(
(nx)ki[Ẽm+1

yk
]− (ny)ki[Ẽm+1

xk
]+ (nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
)
[Ẽm+1

xk
]

+
(
ZiẼM

xk
+ZkẼM

xi
)
[H̃M+1/2

zk ]−α
(
(nx)ki[ẼM

yk
]− (ny)ki[ẼM

xk
]
)
[ẼM

xk
]

)
ds.
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In the same way, for Bm
12 we have

M−1

∑
m=0

Bm
12 = ∑

fik∈F int

∫
fik

(nx)ki

2(Zi +Zk)

((
ZiẼ0

yk
+ZkẼ0

yi
)
[H̃1/2

zk ]−
(
(nx)ki[Ẽ0

yk
]− (ny)ki[Ẽ0

xk
]
)
[Ẽ0

yk
]

−α

M−1

∑
m=0

(
(nx)ki[Ẽm+1

yk
]− (ny)ki[Ẽm+1

xk
]+ (nx)ki[Ẽm

yk
]− (ny)ki[Ẽm

xk
]
)
[Ẽm+1

yk
]

−
(
ZiẼM

yk
+ZkẼM

yi
)
[H̃M+1/2

zk ]+α
(
(nx)ki[ẼM

yk
]− (ny)ki[ẼM

xk
]
)
[ẼM

yk
]

)
ds,

and for Bm
13

M−1

∑
m=0

Bm
13 =−

M−1

∑
m=0

∑
fik∈F int

∫
fik

α

2(Yi +Yk)
[H̃m+1/2

zk ]
(
[H̃m+1/2

zk ]+ [H̃m+3/2
zk ]

)
ds.

Observing that, for general sequences {am} and {bm} hold

M−1

∑
m=0

(
am+1 +am)am+1 =

1
2

(
−(a0)2 +(aM)2 +

M−1

∑
m=0

(
am +am+1)2

)
,

M−1

∑
m=0

(
am+1 +am)bm+1 =

1
2

(
−a0b0 +aMbM +

M−1

∑
m=0

(
ambm +2ambm+1 +am+1bm+1)),

we get

M−1

∑
m=0

(Bm
11 +Bm

12) ≤ ∑
fik∈F int

∫
fik

1
4(Zi +Zk)

(
−α(ny)

2
ki
(
−[Ẽ0

xk
]2 +[ẼM

xk
]2
)

+α(nx)ki(ny)ki
(
−[Ẽ0

xk
][Ẽ0

yk
]+ [ẼM

xk
][ẼM

yk
]
)
−2(ny)ki

(
ZiẼ0

xk
+ZkẼ0

xi
)
[H̃1/2

zk ]

+2α(ny)ki
(
(nx)ki[Ẽ0

yk
]− (ny)ki[Ẽ0

xk
]
)
[Ẽ0

xk
]+2(ny)ki

(
ZiẼM

xk
+ZkẼM

xi
)
[H̃M+1/2

zk ]

−2α(ny)ki
(
(nx)ki[ẼM

yk
]− (ny)ki[ẼM

xk
]
)
[ẼM

xk
]−α(nx)

2
ki
(
−[Ẽ0

yk
]2 +[ẼM

yk
]2
)

+α(nx)ki(ny)ki
(
−[Ẽ0

xk
][Ẽ0

yk
]+ [ẼM

xk
][ẼM

yk
]
)
+2(nx)ki

(
ZiẼ0

yk
+ZkẼ0

yi
)
[H̃1/2

zk ]

−2α(nx)ki
(
(nx)ki[Ẽ0

yk
]− (ny)ki[Ẽ0

xk
]
)
[Ẽ0

yk
]−2(nx)ki

(
ZiẼM

yk
+ZkẼM

yi
)
[H̃M+1/2

zk ]

+2α(nx)ki
(
(nx)ki[ẼM

yk
]− (ny)ki[ẼM

xk
]
)
[ẼM

yk
]

)
ds.

We also have

M−1

∑
m=0

Bm
13 =− ∑

fik∈F int

∫
fik

α

4(Yi +Yk)

(
[H̃1/2

zk ]2 − [H̃M+1/2
zk ]2 +

M−1

∑
m=0

(
[H̃m+1/2

zk ]+ [H̃m+3/2
zk ]

)2
)

ds

≤− ∑
fik∈F int

∫
fik

α

4(Yi +Yk)

(
[H̃1/2

zk ]2 − [H̃M+1/2
zk ]2

)
ds,

which concludes the proof.
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Let us now analyze the term Bm
2 for different kinds of boundary conditions. The parameter β1, β2

and β3 which have appeared in the following estimation depend on the type of fluxes and boundary
conditions that we consider.

Lemma 3.1.2. Let Bm
2 be defined by 3.8. Then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

β1

4Zk

(
−
(
(ny)kẼ0

xk
− (nx)kẼ0

yk

)2
+
(
(ny)kẼM

xk
− (nx)kẼM

yk

)2

)

+
β2

2

(
H̃1/2

zk

(
(nx)kẼ0

yk
− (ny)kẼ0

xk
− β3

2Yk
H̃1/2

zk

)

−H̃M+1/2
zk

(
(nx)kẼM

yk
− (ny)kẼM

xk
− β3

2Yk
H̃M+1/2

zk

))
ds,

where β1 = α,β2 = 0 for PEC, β1 = 0,β2 = 1, β3 = α for PMC, and β1 = β2 = 1
2 , β3 = 1 for

Silver-Müller boundary conditions.

Proof. First we consider PEC boundary conditions. We have

Bm
2 = ∑

fk∈Fext

∫
fk

α

Zk

(
(ny)k

(
(nx)kẼm

yk
− (ny)kẼm

xk

)
Ẽ [m+1/2]

xk − (nx)k
(
(nx)kẼm

yk
− (ny)kẼm

xk

)
Ẽ [m+1/2]

yk

)
ds.

Summing from m = 0 to m = M−1 we obtain

M−1

∑
m=0

Bm
2 = ∑

fk∈Fext

∫
fk

α

4Zk

(
−
(
(nx)kẼ0

yk
− (ny)kẼ0

xk

)2
+
(
(nx)kẼM

yk
− (ny)kẼM

xk

)2

−4
M−1

∑
m=0

(
(nx)kẼ [m+1/2]

yk − (ny)kẼ [m+1/2]
xk

)2
)

ds,

and then
M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

α

4Zk

(
−
(
(nx)kẼ0

yk
− (ny)kẼ0

xk

)2
+
(
(nx)kẼM

yk
− (ny)kẼM

xk

)2

)
ds. (3.11)

For PMC boundary conditions we have

Bm
2 = ∑

fk∈Fext

∫
fk

(
H̃m+1/2

zk

(
(nx)kẼ [m+1/2]

yk − (ny)kẼ [m+1/2]
xk

)
−
(

α

Yk
H̃m+1/2

zk +(nx)kẼm+1
yk

− (ny)kẼm+1
xk

)
H̃ [m+1]

zk

)
ds.

Summing from m = 0 to m = M−1 results

M−1

∑
m=0

Bm
2 = ∑

fk∈Fext

∫
fk

(
H̃1/2

zk

2
(
(nx)kẼ0

yk
− (ny)kẼ0

xk

)
− α

4Yk

(
H̃1/2

zk

)2
−

M−1

∑
m=0

α

Yk

(
H̃ [m+1]

zk

)2

− H̃M+1/2
zk

2
(
(nx)kẼM

yk
− (ny)kẼM

xk

)
− α

4Yk

(
H̃M+1/2

zk

)2
)

ds,
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so we have
M−1

∑
m=0

Bm
2 ≤ 1

2 ∑
fk∈Fext

∫
fk

(
H̃1/2

zk

(
(nx)kẼ0

yk
− (ny)kẼ0

xk
− α

2Yk
H̃1/2

zk

)

−H̃M+1/2
zk

(
(nx)kẼM

yk
− (ny)kẼM

xk
− α

2Yk
H̃M+1/2

zk

))
ds. (3.12)

For Silver-Müller absorbing boundary conditions we have

Bm
2 =

1
2 ∑

fk∈Fext

∫
fk

((
−(ny)kH̃m+1/2

zk +
(ny)k

Zk

(
(nx)kẼm

yk
− (ny)kẼm

xk

))
Ẽ [m+1/2]

xk

+

(
(nx)kH̃m+1/2

zk − (nx)k

Zk

(
(nx)kẼm

yk
− (ny)kẼm

xk

))
Ẽ [m+1/2]

yk

−
(

1
Yk

H̃m+1/2
zk +(nx)kẼm+1

yk
− (ny)kẼm+1

xk

)
H̃ [m+1]

zk

)
ds.

Summing from m = 0 to m = M−1 and taking into account the previous cases, we deduce that

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

1
8Zk

(
−
(
(ny)kẼ0

xk
− (nx)kẼ0

yk

)2
+
(
(ny)kẼM

xk
− (nx)kẼM

yk

)2

)

+
1
4

(
H̃1/2

zk

(
(nx)kẼ0

yk
− (ny)kẼ0

xk
− 1

2Yk
H̃1/2

zk

)

−H̃M+1/2
zk

(
(nx)kẼM

yk
− (ny)kẼM

xk
− 1

2Yk
H̃M+1/2

zk

))
ds. (3.13)

Considering the estimates we found for PEC, PMC and SM-ABC in (3.11)–(3.13) and employing the
parameters β1, β2 and β3 concludes the proof.

By theses two lemmas, we found an upper bound for (3.4). Now we recall (3.3) and derive the
stability condition of the scheme for different fluxes and different types of boundary conditions in the
following theorem.

Theorem 3.1.3. Let us consider the leap-frog DG method (2.32)–(2.34) complemented with the
discrete boundary conditions defined in Subsection 2.2.4. If the time step ∆t is such that

∆t <
min{

¯
ε,

¯
µ}

max{CE ,CH}
min{hk}, (3.14)

where

CE =
1
2

CinvN2 +C2
τ (N +1)(N +2)

(
2+β2 +

2α +β1

2min{Zk}

)
,

CH =
1
2

CinvN2 +C2
τ (N +1)(N +2)

(
2+β2 +

α +β2β3

min{Yk}

)
,

with Cτ defined by (A.4) of Lemma A.1.1 and Cinv defined by (A.6) of Lemma A.1.2, and β1 = α,β2 = 0
for PEC, β1 = 0,β2 = 1, β3 = α for PMC, and β1 = β2 = 1

2 , β3 = 1 for Silver-Müller boundary
conditions, then the method is stable.
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Proof. From (3.3) and the previous lemmata (Lemma 3.1.1 and Lemma 3.1.2), considering the
Cauchy-Schwarz’s inequality and taking into account that Zi/(Zi +Zk)< 1, we obtain

∑
Tk∈Th

((
εẼM

k , ẼM
k
)

Tk
+
(

µH̃M+1/2
zk , H̃M+1/2

zk

)
Tk

)
≤ ∑

Tk∈Th

((
εẼ0

k , Ẽ
0
k
)

Tk
+
(

µH̃1/2
zk , H̃1/2

zk

)
Tk

)
+∆t ∑

Tk∈Th

(
∥∇× H̃1/2

zk ∥L2(Tk)∥Ẽ0
k ∥L2(Tk)+∥∇× H̃M+1/2

zk ∥L2(Tk)∥ẼM
k ∥L2(Tk)

)
+2∆t ∑

fik∈F int

(
∥ẼM

k ∥L2( fik)∥[H̃
M+1/2
zk ]∥L2( fik)+∥Ẽ0

k ∥L2( fik)∥[H̃
1/2
zk ]∥L2( fik)

)
+

α∆t
4min{Zk} ∑

fik∈F int

∥[ẼM
k ]∥2

L2( fik)
+

α∆t
4min{Yk} ∑

fik∈F int

∥[H̃M+1/2
zk ]∥2

L2( fik)

+
β1∆t

2min{Zk} ∑
fk∈Fext

∥ẼM
k ∥2

L2( fk)
+

β2β3∆t
min{Yk} ∑

fk∈Fext

∥H̃M+1/2
zk ∥2

L2( fk)

+2β2∆t ∑
fk∈Fext

(
∥H̃1/2

zk ∥L2( fk)∥Ẽ0
k ∥L2( fk)+∥H̃M+1/2

zk ∥L2( fk)∥ẼM
k ∥L2( fk)

)
.

Using the inequality (A.4) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in
Appendix), we get

min{
¯
ε,

¯
µ}
(
∥ẼM∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)

)
≤ max{ε̄, µ̄}

(
∥Ẽ0∥2

L2(Ω)+∥H̃1/2
z ∥2

L2(Ω)

)
+

∆t
2

CinvN2 max
{

h−1
k

}(
∥H̃1/2

z ∥2
L2(Ω)+∥Ẽ0∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)+∥ẼM∥2
L2(Ω)

)
+C2

τ (N +1)(N +2)∆t max
{

h−1
k

}(
2+β2 +

α +β1

2min{Zk}

)
∥ẼM∥2

L2(Ω)

+C2
τ (N +1)(N +2)∆t max

{
h−1

k

}(
2+β2 +

α +2β2β3

2min{Yk}

)
∥H̃M+1/2

z ∥2
L2(Ω)

+C2
τ (N +1)(N +2)∆t max

{
h−1

k

}
(2+β2)

(
∥Ẽ0∥2

L2(Ω)+∥H̃1/2
z ∥2

L2(Ω)

)
.

and so, taking C0 =
1
2CinvN2 +C2

τ (N +1)(N +2)(2+β2) ,(
min{

¯
ε,

¯
µ}−∆t max

{
h−1

k

}
max{CE ,CH}

)(
∥ẼM∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)

)
≤(

max{ε̄, µ̄}+∆t max
{

h−1
k

}
C0
)(

∥Ẽ0∥2
L2(Ω)+∥H̃1/2

z ∥2
L2(Ω)

)
,

which concludes the proof.

The stability condition (3.14) shows that the method is conditionally stable, which is natural since
we considered an explicit time discretization. Further, it discloses the influence of the values of α ,
hmin and N on the bounds of the stable region. This is of utmost importance to balance accuracy versus
stability.

3.2 Stability analysis of the 3D model

In this section we extend the analysis in Section 3.1 of the TE form of Maxwell’s equations in
two-dimensions to the full three-dimensional time-dependent Maxwell’s equations (2.1) and (2.2),
with the equations set on a bounded polyhedral domain Ω ⊂ R3.
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We start by noticing that the following vector equalities hold

u× v ·w =−u×w · v, (3.15)

and

u× (v×w) = v(u ·w)−w(u · v). (3.16)

Recall the leap-frog DG scheme (2.35)–(2.36). Let uk = Ẽ [m+1/2]
k and vk = H̃ [m+1]

k in (2.35) and
(2.36) respectively, we have(

εẼm+1
k , Ẽm+1

k

)
Tk
−
(
εẼm

k , Ẽ
m
k
)

Tk
= 2∆t

(
∇× H̃m+1/2

k , Ẽ [m+1/2]
k

)
Tk

−2∆t
(

1
Z++Z− n×

(
Z+[H̃m+1/2]−αn× [Ẽm]

)
, Ẽ [m+1/2]

k

)
∂Tk

(3.17)

and (
µH̃m+3/2

k , H̃m+3/2
k

)
Tk
−
(

µH̃m+1/2
k , H̃m+1/2

k

)
Tk
=−2∆t

(
∇× Ẽm+1

k , H̃ [m+1]
k

)
Tk

+2∆t
(

1
Y++Y− n×

(
Y+[Ẽm+1]+αn× [H̃m+1/2]

)
, H̃ [m+1]

k

)
∂Tk

. (3.18)

Using the identity(
∇× Ẽm+1

k , H̃ [m+1]
k

)
Tk
=
(

∇× H̃ [m+1]
k , Ẽm+1

k

)
Tk
+
(

n× Ẽm+1
k , H̃ [m+1]

k

)
∂Tk

,

and summing (2.35) and (2.36) from m = 0 to m = M−1, and integrating by parts, we get(
εẼM

k , ẼM
k
)

Tk
+
(

µH̃M+1/2
k , H̃M+1/2

k

)
Tk
=
(
εẼ0

k , Ẽ
0
k
)

Tk
+
(

µH̃1/2
k , H̃1/2

zk

)
Tk

+∆t
(

∇× H̃1/2
k , Ẽ0

k

)
Tk
−∆t

(
∇× H̃M+1/2

k , ẼM
k

)
Tk
+2∆t

M−1

∑
m=0

Am
k , (3.19)

where

Am
k =−

(
1

Z++Z− n×
(

Z+[H̃m+1/2]−αn× [Ẽm]
)
, Ẽ [m+1/2]

k

)
∂Tk

+

(
1

Y++Y− n×
(

Y+[Ẽm+1]+αn× [H̃m+1/2]
)
, H̃ [m+1]

k

)
∂Tk

−
(

n× Ẽm+1
k , H̃ [m+1]

k

)
∂Tk

.

Let us consider the following decomposition

∑
Tk∈Th

Am
k = Bm

1 +Bm
2 ,
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where B1 corresponds to the terms on the internal edges

Bm
1 = ∑

fik∈F int

∫
fik

(
−1

Zi +Zk
nki ×

(
Zi[H̃

m+1/2
k ]−αnki × [Ẽm

k ]
)
· Ẽ [m+1/2]

k

+
1

Zi +Zk
nki ×

(
Zk[H̃

m+1/2
i ]+αnki × [Ẽm

i ]
)
· Ẽ [m+1/2]

i

+
1

Yi +Yk
nki ×

(
Yi[Ẽm+1

k ]+αnki × [H̃m+1/2
k ]

)
· H̃ [m+1]

k

− 1
Yi +Yk

nki ×
(

Yk[Ẽm+1
i ]−αnki × [H̃m+1/2

i ]
)
· H̃ [m+1]

i

−nki × Ẽm+1
k · H̃ [m+1]

k +nki × Ẽm+1
i · H̃ [m+1]

i

)
ds, (3.20)

and B2 corresponds to the terms on the boundary ∂Ω

Bm
2 = ∑

fk∈Fext

∫
fk

(
− 1

2Zk
nk ×

(
Zk[H̃

m+1/2
k ]−αnk × [Ẽm

k ]
)
· Ẽ [m+1/2]

k

+
1

2Yk
nk ×

(
Yk[Ẽm+1

k ]+αnk × [H̃m+1/2
k ]

)
· H̃ [m+1]

k −nk × Ẽm+1
k · H̃ [m+1]

k

)
ds. (3.21)

Lemma 3.2.1. Let Bm
1 be defined by (3.20). Then

M−1

∑
m=0

Bm
1 ≤ ∑

fik∈F int

∫
fik

(
α

4(Zi +Zk)
[ẼM

k ] · [ẼM
k ]+

α

4(Yi +Yk)
[H̃M+1/2

k ] · [H̃M+1/2
k ]

+
Zk

2(Zi +Zk)

(
nki × [H̃1/2

k ] · [E0
k ]−nki × [H̃M+1/2

k ] · [ẼM
k ]
)

+
1
2

(
nki × [H̃M+1/2

k ] · ẼM
k −nki × [H̃1/2

k ] · Ẽ0
k

))
ds.
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Proof. Summing from m = 0 to m = M−1, using the relations (3.9), (3.10) and employing the vector
equalities (3.15) and (3.16), we obtain

M−1

∑
m=0

Bm
1 = ∑

fik∈F int

∫
fik

(
α

4(Zi +Zk)

(
− [Ẽ0

k ]
T (I −nkinT

ik
)
[Ẽ0

k ]+ [ẼM
k ]T

(
I −nkinT

ik
)
[ẼM

k ]

−
M−1

∑
m=0

(
[Ẽm

k ]+ [Ẽm+1
k ]

)T (
I −nkinT

ik
)(

[Ẽm
k ]+ [Ẽm+1

k ]
))

+
α

4(Yi +Yk)

(
− [H̃1/2

k ]T
(
I −nkinT

ik
)
[H̃1/2

k ]+ [H̃M+1/2
k ]T

(
I −nkinT

ik
)
[H̃M+1/2

k ]

−
M−1

∑
m=0

(
[H̃m+1/2

k ]+ [H̃m+3/2
k ]

)T (
I −nkinT

ik
)(

[H̃m+1/2
k ]+ [H̃m+3/2

k ]
))

+
Zk

2(Zi +Zk)

(
nki × [H̃1/2

k ] · [E0
k ]−nki × [H̃M+1/2

k ] · [ẼM
k ]
)

+
1
2

(
nki × [H̃M+1/2

k ] · ẼM
k −nki × [H̃1/2

k ] · Ẽ0
k

))
ds,

where I is an identity matrix. Since I −nkinT
ik is a positive semidefinite matrix,

M−1

∑
m=0

Bm
1 ≤ ∑

fik∈F int

∫
fik

(
α

4(Zi +Zk)

(
[ẼM

k ]T
(
I −nkinT

ik
)
[ẼM

k ]

)

+
α

4(Yi +Yk)

(
[H̃M+1/2

k ]T
(
I −nkinT

ik
)
[H̃M+1/2

k ]

)
+

Zk

2(Zi +Zk)

(
nki × [H̃1/2

k ] · [E0
k ]−nki × [H̃M+1/2

k ] · [ẼM
k ]
)

+
1
2

(
nki × [H̃M+1/2

k ] · ẼM
k −nki × [H̃1/2

k ] · Ẽ0
k

))
ds.

The proof follows from the fact that, since the matrix I −nkinT
ik is an orthogonal projector,

xT (I −nkinT
ik)x ≤ xT x for all vector x.

Lemma 3.2.2. Let Bm
2 be defined by (3.21).Then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

(
β1

4Zk

(
−
(
nk × Ẽ0

k
)
·
(
nk × Ẽ0

k
)
+
(
nk × ẼM

k
)
·
(
nk × ẼM

k
))

+
β3

4Yk

(
−
(

nk × H̃1/2
k

)
·
(

nk × H̃1/2
k

)
+
(

nk × H̃M+1/2
k

)
·
(

nk × H̃M+1/2
k

))

+
β2

2

(
nk × Ẽ0

k · H̃
1/2
k −nk × ẼM

k · H̃M+1/2
k

))
ds,
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where β1 = α,β2 = 0 for PEC, β1 = 0,β2 = 1, β3 = α for PMC, and β1 = β2 = β3 =
1
2 for Silver-

Müller boundary conditions.

Proof. First we consider PEC boundary conditions. We have

Bm
2 = ∑

fk∈Fext

∫
fk

1
Zk

nk ×
(
αnk × Ẽm

k
)
· Ẽ [m+1/2]

k ds,

and then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

α

4Zk

(
−
(
nk × Ẽ0

k
)
·
(
nk × Ẽ0

k
)
+
(
nk × ẼM

k
)
·
(
nk × ẼM

k
))

ds.

If we consider PMC boundary conditions we have

Bm
2 = ∑

fk∈Fext

∫
fk

(
−nk × H̃m+1/2

k · Ẽ [m+1/2]
k +

α

Yk
nk ×

(
nk × H̃m+1/2

k

)
· H̃ [m+1]

k

−nk × Ẽm+1
k · H̃ [m+1]

k

)
ds,

and then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

(
α

4Yk

(
−
(

nk × H̃1/2
k

)
·
(

nk × H̃1/2
k

)
+
(

nk × H̃M+1/2
k

)
·
(

nk × H̃M+1/2
k

))

+
1
2

nk × Ẽ0
k · H̃

1/2
k − 1

2
nk × ẼM

k · H̃M+1/2
k

)
ds.

For Silver-Müler boundary conditions, we have

Bm
2 = ∑

fk∈Fext

∫
fk

(
− 1

2Zk
nk ×

(
ZkH̃m+1/2

k −nk × Ẽm
k

)
· Ẽ [m+1/2]

k

+
1

2Yk
nk ×

(
YkẼm+1

k +nk × H̃m+1/2
k

)
· H̃ [m+1]

k −nk × Ẽm+1
k · H̃ [m+1]

k

)
ds

= ∑
fk∈Fext

∫
fk

(
− 1

2Zk
nk ×

(
ZkH̃m+1/2

k −nk × Ẽm
k

)
· Ẽ [m+1/2]

k

+
1

2Yk
nk ×

(
nk × H̃m+1/2

k

)
· H̃ [m+1]

k .− 1
2

nk × Ẽm+1
k · H̃ [m+1]

k

)
ds,
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and then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

(
1

8Zk

(
−
(
nk × Ẽ0

k
)
·
(
nk × Ẽ0

k
)
+
(
nk × ẼM

k
)
·
(
nk × ẼM

k
))

+
1

8Yk

(
−
(

nk × H̃1/2
k

)
·
(

nk × H̃1/2
k

)
+
(

nk × H̃M+1/2
k

)
·
(

nk × H̃M+1/2
k

))

+
1
4

nk × Ẽ0
k · H̃

1/2
k − 1

4
nk × ẼM

k · H̃M+1/2
k

)
ds,

which concludes the proof.

Employing the estimates we already achieved in lemmas 3.2.1 and 3.2.2 and using Lemma A.1.1
and Lemma A.1.2 (both in Appendix) we will show in the following theorem that the 3D model is
conditionally stable.

Theorem 3.2.3. Let us consider the leap-frog DG method (2.35)–(2.36) complemented with the
discrete boundary conditions. If the time step ∆t is such that

∆t <
min{

¯
ε,

¯
µ}

max{CE ,CH}
min{hk}, (3.22)

where

CE =
1
2

CinvN2 +C2
τ (N +1)(N +3)

(
3+

β2

2
+

α +β1

2min{Zk}

)
,

CH =
1
2

CinvN2 +C2
τ (N +1)(N +3)

(
3+

β2

2
+

α +β3

2min{Yk}

)
,

with Cτ defined by (A.5) of Lemma A.1.1 and Cinv defined by (A.6) of Lemma A.1.2, and β1 = α,β2 = 0
for PEC, β1 = 0,β2 = 1, β3 = α for PMC, and β1 = β2 = 1

2 , β3 = 1 for Silver-Müller boundary
conditions, then the method is stable.

Proof. As for the 2D case, from (3.19) and the previous lemmata, considering the Cauchy-Schwarz’s
and triangular inequality inequality, taking into account that Zi/(Zi +Zk)< 1, and using the inequality
(A.5) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in Appendix), we get

min{
¯
ε,

¯
µ}
(
∥ẼM∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)

)
≤ max{ε̄, µ̄}

(
∥Ẽ0∥2

L2(Ω)+∥H̃1/2
z ∥2

L2(Ω)

)
+

∆t
2

CinvN2 max
{

h−1
k

}(
∥H̃1/2

z ∥2
L2(Ω)+∥Ẽ0∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)+∥ẼM∥2
L2(Ω)

)
+C2

τ (N +1)(N +3)∆t max
{

h−1
k

}(
3+

β2

2
+

α +β1

2min{Zk}

)(
∥Ẽ0∥2

L2(Ω)+∥ẼM∥2
L2Ω

)
+C2

τ (N +1)(N +3)∆t max
{

h−1
k

}(
3+

β2

2
+

α +β3

2min{Yk}

)(
∥H̃1/2

z ∥2
L2(Ω)+∥H̃M+1/2

z ∥2
L2(Ω)

)
.

and so (
min{

¯
ε,

¯
µ}−∆t max

{
h−1

k

}
max{CE ,CH}

)(
∥ẼM∥2

L2(Ω)+∥H̃M+1/2
z ∥2

L2(Ω)

)
≤
(
max{ε̄, µ̄}+∆t max

{
h−1

k

}
max{CE ,CH}

)(
∥Ẽ0∥2

L2(Ω)+∥H̃1/2
z ∥2

L2(Ω)

)
,
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which proves the result.



Chapter 4

Convergence Analysis

A rigorous proof of convergence is necessary for every numerical method. Error bounds for DG
methods applied to Maxwell’s equations were determined for upwind flux in [41], where the error
of the semi-discrete approximation is estimated and for central flux in [32], where the error of the
full-discrete approximation of Maxwell’s equation is estimated. In this chapter we present the error
estimate of fully discrete leap-frog DG scheme in 2D and analyze the convergence properties.

The core of this chapter is Theorem 4.1.5 where the spatial and temporal error of the scheme
(2.32)–(2.34) is estimated. The convergence analysis of the scheme shows that in the case of Silver-
Müller absorbing boundary conditions, the temporal order is reduced from two to one. In order
to recover the temporal order, a predictor-corrector time integrator is proposed in that last part of
Section 4.1. This idea is extended to an iterative predictor-corrector time integrator in Section 4.2.
such that the scheme remains explicit. We will show that the iterative predictor-corrector scheme
converges to a second order convergent in time implicit method. The stability analysis of the implicit
method is also presented.

4.1 Error estimate

The main result of this section is Theorem 4.1.5 which presents the error of the fully discrete
approximation of 2D Maxwell’s equations. The key idea for the proof is to find a variational
system for the difference between the the numerical solution and a projection of the exact solution,
(Ex,Ey,Hz) onto the finite element space VN . We estimate the error between the numerical solution
and a polynomial approximation, where the polynomial approximation (PNEx,PNEy,PNHz) is an
interpolant of (Ex,Ey,Hz) having the optimal approximation errors (A.7)–(A.8). Lemma A.2.1 in the
Appendix furnishes an optimal error estimation which plays a central role in our derivation.

The spatial and temporal oder of convergence will be achieved simultaneously, while the temporal
order in the case of Silver-Müller drops to first order. In order to recover, a modified method is
proposed in Remark 4.1.6. This idea will be generalized and analyzed later in the next section.

To provide a proper functional setting, we need to define spaces involving time-dependent functions
[29]. Let X denote a Banach space with norm ∥.∥X . The spaces L2(0,T ;X) and L∞(0,T ;X) consist,

41
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respectively, of all measurable functions v : [0,T ]→ X with

∥v∥L2(0,T ;X) =

(∫ T

0
∥v(t)∥2

X dt
)1/2

< ∞, ∥v∥L∞(0,T ;X) = ess sup
0≤t≤T

∥v(t)∥X < ∞.

In what follows, X is shorthand for any of the usual Sobolev spaces H p(Ω) or the Banach space
L∞(Ω).

The idea of finding an upper bound for ∥qm − q̃m∥L2(Ω) is to split the error in two: the error of
polynomial approximation and the error between of numerical and polynomial approximation where,
with triangle inequality we have

∥qm − q̃m∥L2(Ω) ≤ ∥qm −PNqm∥L2(Ω)+∥PNqm − q̃m∥L2(Ω).

In our DG method, we search the approximate solution in the piecewise polynomial space VN .
Let (PNEx,PNEy,PNHz) ∈VN be an interpolant of (Ex,Ey,Hz) having the optimal approximation
errors (A.7)–(A.8). On the external boundary we define the jumps for polynomial approximation
(PNEx,PNEy,PNHz) for different boundary conditions analogous to what we have for numerical
approximation in the following way.

• For PEC:

[PNEx] = 2PNEx, [PNEy] = 2PNEy, [PNHz] = 0. (4.1)

• For PMC:

[PNEx] = 0, [PNEy] = 0, [PNHz] = 2PNHz. (4.2)

• For SM-ABC:

[PNEx] = PNEx, [PNEy] = PNEy, [PNHz] = PNHz. (4.3)

In order to find an estimate for ∥PNqm − q̃m∥L2(Ω), we start by integrating (2.9) from tm to tm+1 and
(2.10) from tm+1/2 to tm+3/2. Then, multiplying the resultant by (uk,vk,wk) ∈VN with respect to the
L2-inner product over Tk, we obtain(

εxx
Em+1

xk
−Em

xk

∆t
+ εxy

Em+1
yk

−Em
yk

∆t
,uk

)
Tk

=
1
∆t

(∫ tm+1

tm

∂Hzk

∂y
dt,uk

)
Tk

, (4.4)

(
εyx

Em+1
xk

−Em
xk

∆t
+ εyy

Em+1
yk

−Em
yk

∆t
,vk

)
Tk

=− 1
∆t

(∫ tm+1

tm

∂Hzk

∂x
dt,vk

)
Tk

, (4.5)
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(
µ

Hm+3/2
zk −Hm+1/2

zk

∆t
,wk

)
Tk

=
1
∆t

(∫ tm+3/2

tm+1/2

∂Exk

∂y
dt,wk

)
Tk

− 1
∆t

(∫ tm+3/2

tm+1/2

∂Eyk

∂x
dt,wk

)
Tk

. (4.6)

Recalling (2.32)–(2.34) and subtract them from (4.4)–(4.6) and using the notation

ξ
m
xk
= PNEm

xk
− Ẽm

xk
, ρ

m
xk
= PNEm

xk
−Em

xk
,

ξ
m
yk
= PNEm

yk
− Ẽm

yk
, ρ

m
yk
= PNEm

yk
−Em

yk
,

and
η

m+1/2
zk = PNHm+1/2

zk − H̃m+1/2
zk , φ

m+1/2
zk = PNHm+1/2

zk −Hm+1/2
zk ,

we obtain(
εxx

ξ m+1
xk

−ξ m
xk

∆t
,uk

)
Tk

−

(
εxx

ρm+1
xk

−ρm
xk

∆t
,uk

)
Tk

+

(
εxy

ξ m+1
yk

−ξ m
yk

∆t
,uk

)
Tk

−

(
εxy

ρm+1
yk

−ρm
yk

∆t
,uk

)
Tk

=
1
∆t

(∫ tm+1

tm

∂Hzk

∂y
dt,uk

)
Tk

−
(

∂

∂y

(
PNHm+1/2

zk

)
,uk

)
Tk

+

(
∂η

m+1/2
zk

∂y
,uk

)
Tk

+

(
ny

Z++Z−

(
Z+[PNHm+1/2

zk ]−α
(
nx[PNEm

yk
]−ny[PNEm

xk
]
))

,uk

)
∂Tk

+

(
−ny

Z++Z−

(
Z+[η

m+1/2
zk ]−α

(
nx[ξ

m
yk
]−ny[ξ

m
xk
]
))

,uk

)
∂Tk

, (4.7)

(
εyx

ξ m+1
xk

−ξ m
xk

∆t
,vk

)
Tk

−

(
εyx

ρm+1
xk

−ρm
xk

∆t
,vk

)
Tk

+

(
εyy

ξ m+1
yk

−ξ m
yk

∆t
,vk

)
Tk

−

(
εyy

ρm+1
yk

−ρm
yk

∆t
,vk

)
Tk

=− 1
∆t

(∫ tm+1

tm

∂Hzk

∂x
dt,vk

)
Tk

+

(
∂

∂x

(
PNHm+1/2

zk

)
,vk

)
Tk

−

(
∂η

m+1/2
zk

∂x
,vk

)
Tk

−
(

nx

Z++Z−

(
Z+[PNHm+1/2

zk ]−α
(
nx[PNEm

yk
]−ny[PNEm

xk
]
))

,vk

)
∂Tk

+

(
nx

Z++Z−

(
Z+[η

m+1/2
zk ]−α

(
nx[ξ

m
yk
]−ny[ξ

m
xk
]
))

,vk

)
∂Tk

, (4.8)
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(
µ

η
m+3/2
zk −η

m+1/2
zk

∆t
,wk

)
Tk

−

(
µ

φ
m+3/2
zk −φ

m+1/2
xk

∆t
,wk

)
Tk

=
1
∆t

(∫ tm+3/2

tm+1/2

∂Exk

∂y
dt,wk

)
− 1

∆t

(∫ tm+3/2

tm+1/2

∂Eyk

∂x
dt,wk

)
Tk

−
(

∂

∂y

(
PNEm+1

xk

)
,wk

)
Tk

+

(
∂ξ m+1

xk

∂y
,wk

)
Tk

+

(
∂

∂x

(
PNEm+1

yk

)
,wk

)
Tk

−

(
∂ξ m+1

yk

∂x
,wk

)
Tk

−
(

1
Y++Y−

(
Y+(nx[PNEm+1

yk
]−ny[PNEm+1

xk
]
)
−α[PNHm+1/2

zk ],wk

)
∂Tk

+

(
1

Y++Y−
(
Y+(nx[ξ

m+1
yk

]−ny[ξ
m+1
xk

]
)
−α[η

m+1/2
zk ],wk

)
∂Tk

. (4.9)

Let uk = ξ m
xk
+ ξ m+1

xk
, vk = ξ m

yk
+ ξ m+1

yk
and wk = η

m+1/2
zk +η

m+3/2
zk in (4.7)–(4.9). Summing from

m = 0 to m = M−1 and using the symmetry property of the permittivity tensor ε , we get(
εξ

M
k ,ξ M

k
)

Tk
+
(

µη
M+1/2
zk ,η

M+1/2
zk

)
Tk
=
(
εξ

0
k ,ξ

0
k
)

Tk
+
(

µη
1/2
zk ,η

1/2
zk

)
Tk

+∆t
(

∇×η
1/2
zk ,ξ 0

k

)
Tk
−∆t

(
∇×η

M+1/2
zk ,ξ M

k

)
Tk
+2∆t

M−1

∑
m=0

Rm
k , (4.10)

with

Rm
k = Sm

1,k +Sm
2,k +Sm

3,k +Sm
4,k,

being Sm
1,k, Sm

2,k, Sm
3,k and Sm

4,k defined below using the average notation ξ
[m+1/2]
xk = (ξ m

xk
+ ξ m+1

xk
)/2,

ξ
[m+1/2]
yk = (ξ m

yk
+ξ m+1

yk
)/2 and η

[m+1]
k = (η

m+1/2
zk +η

m+3/2
zk )/2,

Sm
1,k =

(
εxx

ρm+1
xk

−ρm
xk

∆t
,ξ

[m+1/2]
xk

)
Tk

+

(
εxy

ρm+1
yk

−ρm
yk

∆t
,ξ

[m+1/2]
xk

)
Tk

+

(
εyx

ρm+1
xk

−ρm
xk

∆t
,ξ

[m+1/2]
yk

)
Tk

+

(
εyy

ρm+1
yk

−ρm
yk

∆t
,ξ

[m+1/2]
yk

)
Tk

+

(
µ

φ
m+3/2
zk −φ

m+1/2
zk

∆t
,η

[m+1]
zk

)
Tk

, (4.11)
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Sm
2,k =−

(
∂

∂y

(
PNHm+1/2

zk

)
,ξ

[m+1/2]
xk

)
Tk

+
1
∆t

(∫ tm+1

tm

∂Hzk

∂y
dt,ξ [m+1/2]

xk

)
Tk

+

(
∂

∂x

(
PNHm+1/2

zk

)
,ξ

[m+1/2]
yk

)
Tk

− 1
∆t

(∫ tm+1

tm

∂Hzk

∂x
dt,ξ [m+1/2]

yk

)
Tk

−
(

∂

∂y

(
PNEm+1

xk

)
,η

[m+1]
zk

)
Tk

+
1
∆t

(∫ tm+3/2

tm+1/2

∂Exk

∂y
dt,η [m+1]

zk

)
Tk

+

(
∂

∂x

(
PNEm+1

yk

)
,η

[m+1]
zk

)
Tk

− 1
∆t

(∫ tm+3/2

tm+1/2

∂Eyk

∂x
dt,η [m+1]

zk

)
Tk

, (4.12)

Sm
3,k =

(
ny

Z++Z−

(
Z+[PNHm+1/2

zk ]−α
(
nx[PNEm

yk
]−ny[PNEm

xk
]
))

,ξ
[m+1/2]
xk

)
∂Tk

−
(

nx

Z++Z−

(
Z+[PNHm+1/2

zk ]−α
(
nx[PNEm

yk
]−ny[PNEm

xk
]
))

,ξ
[m+1/2]
yk

)
∂Tk

−
(

1
Y++Y−

(
Y+(nx[PNEm+1

yk
]−ny[PNEm+1

xk
]
)
−α[PNHm+1/2

zk ]),η
[m+1]
zk

)
∂Tk

, (4.13)

and

Sm
4,k =

(
−ny

Z++Z−

(
Z+[η

m+1/2
zk ]−α

(
nx[ξ

m
yk
]−ny[ξ

m
xk
]
))

,ξ
[m+1/2]
xk

)
∂Tk

+

(
nx

Z++Z−

(
Z+[η

m+1/2
zk ]−α

(
nx[ξ

m
yk
]−ny[ξ

m
xk
]
))

,ξ
[m+1/2]
yk

)
∂Tk

+

(
1

Y++Y−
(
Y+(nx[ξ

m+1
yk

]−ny[ξ
m+1
xk

]
)
−α[η

m+1/2
zk ],η

[m+1]
zk

)
∂Tk

+
(

nyξ
m+1
xk

,η
[m+1]
zk

)
∂Tk

−
(

nxξ
m+1
yk

,η
[m+1]
zk

)
∂Tk

. (4.14)

In what follows we will derive upper bounds for Sm
1,k, Sm

2,k, Sm
3,k and Sm

4,k in Lemma 4.1.1 – 4.1.4.
We employed Cauchy-Schwarz’s and Young’s inequalities frequently in our derivation.

Lemma 4.1.1. Let Sm
1,k be defined by (4.11). Then

M−1

∑
m=0

∑
Tk∈Th

Sm
1,k ≤

Ch2σ

N2p

(
ε

δ

∫ T

0

∥∥∥∥∂E
∂ t

∥∥∥∥2

H p(Ω)

dt +
µ

δ

∫ T+∆t/2

∆t/2

∥∥∥∥∂Hz

∂ t

∥∥∥∥2

H p(Ω)

dt

)

+
δ

2

(
∥ξ

0∥2
L2(Ω)+2

M−1

∑
m=1

∥ξ
m∥2

L2(Ω)+∥ξ
M∥2

L2(Ω)

)

+
δ

2

(
∥η

1/2
z ∥2

L2(Ω)+2
M−1

∑
m=1

∥η
m+1/2
z ∥2

L2(Ω)+∥η
M+1/2
z ∥2

L2(Ω)

)
, (4.15)

where p ≥ 0, σ = min(p,N +1), C is a constant independent of (Exk ,Eyk ,Hzk), h and N, and δ is an
arbitrary positive constant.
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Proof. We start by observing that

∥ρ
m+1
xk

−ρ
m
xk
∥2

L2(Tk)
=

∥∥∥∥∥
∫ tm+1

tm

∂ρxk

∂ t
dt

∥∥∥∥∥
2

L2(Tk)

.

Applying the Cauchy-Schwarz’s inequality and the approximation property of Lemma A.2.1, we get∥∥∥∥∥
∫ tm+1

tm

∂ρxk

∂ t
dt

∥∥∥∥∥
2

L2(Tk)

≤ ∆t
∫ tm+1

tm

∥∥∥∥∂ρxk

∂ t

∥∥∥∥2

L2(Tk)

dt ≤ ∆tC
h2σ

k
N2p

∫ tm+1

tm

∥∥∥∥∂Exk

∂ t

∥∥∥∥2

H p(Tk)

dt. (4.16)

Using Cauchy-Schwarz’s inequality, the estimate (4.16) and the Young’s inequality in the form

ab ≤ δ

2
a2 +

1
2δ

b2,

where δ is an arbitrary positive constant, we obtain

Sm
1,k ≤

εC
δ

h2σ

k
N2p

∫ tm+1

tm

∥∥∥∥∂Exk

∂ t

∥∥∥∥2

H p(Tk)

dt +
δ

2
∥ξ

[m+1/2]
xk ∥2

L2(Tk)

+
εC
δ

h2σ

k
N2p

∫ tm+1

tm

∥∥∥∥∂Eyk

∂ t

∥∥∥∥2

H p(Tk)

dt +
δ

2
∥ξ

[m+1/2]
yk ∥2

L2(Tk)

+
µC
δ

h2σ

k
N2p

∫ tm+3/2

tm+1/2

∥∥∥∥∂Hzk

∂ t

∥∥∥∥2

H p(Tk)

dt +
δ

2
∥η

[m+1]
zk ∥2

L2(Tk)
.

Summing from m = 0 to M−1, we arrive at (4.15).

Lemma 4.1.2. Let Sm
2,k be defined by (4.12). Then

M−1

∑
m=0

∑
Tk∈Th

Sm
2,k ≤

CMh2σ−2

N2p−2

(
1
δ
∥E∥2

L∞(0,T ;H p(Ω))+
1
δ
∥Hz∥2

L∞(0,T ;H p(Ω))

)

+C∆t3

(
1
δ

∫ T+∆t/2

∆t/2

∣∣∣∣∂ 2E
∂ t2

∣∣∣∣2
H1(Ω)

dt +
1
δ
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0
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∂ t2

∣∣∣∣2
H1(Ω)

dt

)

+δ

(
1
2
∥ξ

0∥2
L2(Ω)+

M−1

∑
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∥ξ
m∥2

L2(Ω)+
1
2
∥ξ

M∥2
L2(Ω)

)

+δ

(
∥η

1/2
z ∥2

L2(Ω)+2
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∑
m=1

∥η
m+1/2
z ∥2

L2(Ω)+∥η
M+1/2
z ∥2

L2(Ω)

)
, (4.17)

where p ≥ 0, σ = min(p,N +1), C is a constant independent of (Exk ,Eyk ,Hzk), h and N, and δ is an
arbitrary positive constant.
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Proof. It is easy to check that

−
(

∂

∂y

(
PNHm+1/2

zk

)
,ξ

[m+1/2]
xk

)
Tk

+
1
∆t

(∫ tm+1

tm
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∂y
(s)ds,ξ [m+1/2]

xk

)
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=−

(
∂φ
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∂y
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−
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∂y
− 1

∆t

∫ tm+1
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∂y
(s)ds,ξ [m+1/2]

xk

)
Tk

.

From Lemma A.2.1 we obtain∥∥∥∥∥∂φ
m+1/2
zk

∂y

∥∥∥∥∥
L2(Tk)

≤C
hσ−1

k
N p−1 ∥Hm+1/2

zk ∥H p(Tk), (4.18)

where σ = min(p,N +1). Applying Cauchy-Schwarz’s inequality and using (4.18), we arrive at(
∂φ
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∂y
,ξ
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≤ C
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k
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+

δ

2
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.

Employing Bramble-Hilbert Lemma [17] yields to∥∥∥∥∥∂Hm+1/2
zk

∂y
− 1

∆t
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tm

∂Hzk

∂y
dt
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dt,

and by Cauchy-Schwarz’s and Young’s inequalities follows(
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∆t
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2
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.

The other terms in Sm
2,k can be bounded in a similar way. Therefore,

Sm
2,k ≤ C

δ
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k

N2p−2 ∥Em+1
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∥2
H p(Tk)

+
C
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k

N2p−2 ∥Em+1
yk

∥2
H p(Tk)

+
2C
δ

h2σ−2
k

N2p−2 ∥Hm+1/2
zk ∥2

H p(Tk)

+
C ∆t3

δ

∫ tm+3/2

tm+1/2

∥∥∥∥ ∂ 2

∂ t2

(
∂Exk

∂y

)∥∥∥∥2

L2(Tk)

+

∥∥∥∥ ∂ 2

∂ t2

(
∂Eyk

∂x

)∥∥∥∥2

L2(Tk)

dt

+
C ∆t3

δ

∫ tm+1

tm

∥∥∥∥ ∂ 2

∂ t2

(
∂Hzk

∂y

)∥∥∥∥2

L2(Tk)

+

∥∥∥∥ ∂ 2

∂ t2

(
∂Hzk

∂x

)∥∥∥∥2

L2(Tk)

dt

+ δ∥ξ
[m+1/2]
xk ∥2

L2(Tk)
+δ∥ξ

[m+1/2]
yk ∥2

L2(Tk)
+2δ∥η
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zk ∥2
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.

Summing from m = 0 to M−1 we arrive at (4.17).

In order to find the estimate for the terms related the outer boundary ∂Ω, it is necessary to apply
the boundary conditions as defined in (4.1)–(4.3). We will observe the influence of the type of
boundary conditions on Sm

3,k. The terms that arise from applying SM-ABC will change the temporal
order in the final estimation in Theorem 4.1.5.
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Lemma 4.1.3. Let Sm
3,k be defined by (4.13). Then
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)
, (4.19)

where p ≥ 0, σ = min(p,N +1), C and Cτ are constants independent of (Exk ,Eyk ,Hzk), h and N, and
δ is an arbitrary positive constant. Moreover, β4 = 0 for PEC and PMC boundary conditions and
β4 = 1 for Silver-Müller absorbing boundary conditions.

Proof. In order to estimate ∑Tk∈Th
Sm

3,k, let us write ∥[PNEm
xk
]∥ fik , fik ⊂ F int , as

∥[PNEm
xk
]∥L2( fik) = ∥PNEm−

xk
−Em

xk
+Em

xk
−PNEm+

xk
∥L2( fik)

≤ ∥PNEm−
xk

−Em
xk
∥L2( fik)+∥Em

xk
−PNEm+

xk
∥L2( fik).

By Lemma A.2.1 we deduce that
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where σ = min(p,N +1) and p > 1
2 . In the same way, we obtain
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Similar estimates hold for ∥[PNEm
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]∥2

L2( fik)
and ∥[PNHm
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]∥2

L2( fik)
.

Let us now consider the edges that belong to the external boundary ∂Ω. In the case of PEC
boundary condition we have [PNHm+1/2

zk ] = 0. Since nxEm
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−nyEm

xk
= 0, then
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For PMC boundary conditions we have [PNEm
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zk = 0, then
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zk ).
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Applying Cauchy-Schwarz’s inequality, (A.4) of Lemma A.1.1 and Young’s inequality, for the cases
of PEC or PMC boundary conditions, we obtain
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In the case of Silver-Müller absorbing boundary condition, on the edges that belong to the external
boundary, we observe that
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Therefore, to estimate Sm
3,k we use (A.4) of Lemma A.1.1, and we observe that we need to add the
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to the right hand side of (4.20).
Summing from m = 0 to M−1, leads to the estimation (4.19).

The boundary terms in (4.10) given by Sm
4,k are similar to ∑Tk∈Th

Am
k (Equation (3.4)) that was

estimated in Section 3.1 ( by Lemma 3.1.1 and Lemma 3.1.2).

Lemma 4.1.4. Let Sm
4,k be defined by (4.14). Then
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Proof. Following the arguments we used to estimate ∑Tk∈Th
Am

k in Section 3.1, we can find an upper
bound for ∑Tk∈Th
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4,k as
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where β1 = α,β2 = 0 for PEC, β1 = 0,β2 = 1, β3 = α for PMC, and β1 = β2 = 1
2 , β3 = 1 for

Silver-Müller boundary conditions. As in the proof of Theorem 3.1.3, using the inequality (A.4) of
Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in Appendix A) we obtain the estimate
(4.21).

The upper bounds we have already found in Lemma 4.1.1–4.1.4 give an estimate for Rm
k in

(4.10). According to (4.10) it is enough to employ inverse and trace inequalities and polynomial
approximations which are all stated in Appendix A, to find error of polynomial and numerical
approximation.

Theorem 4.1.5. Let us consider the leap-frog DG method (2.32)–(2.34) complemented with the
discrete boundary conditions defined in Subsecection 2.2.4 and suppose that the solution of the
Maxwell’s equations (2.9)–(2.10) complemented by PEC, PMC or Silver-Müller absorbing boundary
conditions has the following regularity:
Ex,Ey,Hz ∈ L∞(0,Tf ;Hs+1(Ω)), ∂Ex

∂ t ,
∂Ey
∂ t ,

∂Hz
∂ t ∈ L2(0,Tf ;Hs+1(Ω)∩L∞(∂Ω)) and ∂ 2Ex

∂ t2 ,
∂ 2Ey
∂ t2 , ∂ 2Hz

∂ t2 ∈
L2(0,Tf ;H1(Ω)), s ≥ 0. If the time step ∆t satisfies

∆t ≤
min{

¯
ε,

¯
µ}

max{CE ,CH}
min{hk}(1−δ ), 0 < δ < 1, (4.22)
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where CE and CH are the constants defined in Theorem 3.1.3, then, for the case of PEC and PMC
boundary conditions, holds
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and, for the case of Silver-Müller absorbing boundary conditions, holds
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,

where C is a generic constant independent of ∆t and the mesh size h.

Proof. From (4.10) and taking into account Lemma A.1.2 and the estimates from previous lemmata,
we obtain
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1+

α

min{Z2
k}

)
C2

τ (N +1)(N +2)
)
∥E∥2

L∞(0,T ;H p(Ω))

+
2CT h2σ−2

δN2p+1

(
N3 +

(
1+

α

min{Y 2
k }

)
C2

τ (N +1)(N +2)
)
∥Hz∥2

L∞(0,T ;H p(Ω))

+
β4C2

τ (N +1)(N +2)∆t2

8δ min{Z2
k}

∫ T−∆t/2

0

∥∥∥∥∂E
∂ t

∥∥∥∥2

L∞(∂Ω)

dt

+
β4C2

τ (N +1)(N +2)∆t2

16δ min{Y 2
k }

∫ T

∆t/2

∥∥∥∥∂Hz

∂ t

∥∥∥∥2

L∞(∂Ω)

dt,
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where p ≥ 0, σ = min(p,N + 1), C and Cτ are constants independent of (Exk ,Eyk ,Hzk), hk and N,
δ is an arbitrary positive constant, β4 = 0 for PEC and PMC boundary conditions and β4 = 1 for
Silver-Müller absorbing boundary conditions.

If (4.22) holds, using the discrete Gronwall’s Lemma (Lemma A.3.1 in Appendix A) we obtain

∥ξ
M∥2

L2(Ω)+∥η
M+1/2
z ∥2

L2(Ω) ≤C(ε,µ,N)
(
∥ξ

0∥2
L2(Ω)+∥η

1/2
z ∥2

L2(Ω)

+∆th2σ

∫ T

0

∥∥∥∥∂E
∂ t

∥∥∥∥2

H p(Ω)

dt +∆th2σ

∫ T+∆t/2

∆t/2

∥∥∥∥∂Hz

∂ t

∥∥∥∥2

H p(Ω)

dt

+∆t4
∫ T

0

∣∣∣∣∂ 2E
∂ t2

∣∣∣∣2
H1(Ω)

dt +∆t4
∫ T+∆t/2

∆t/2

∣∣∣∣∂ 2Hz

∂ t2

∣∣∣∣2
H1(Ω)

dt

+h2σ−2∥Em∥2
L∞(0,T ;H p(Ω))+h2σ−2∥Hm+1/2

z ∥2
L∞(0,T ;H p(Ω))

+β4∆t2
∫ T−∆t/2

0

∥∥∥∥∂E
∂ t

∥∥∥∥2

L∞(∂Ω)

dt +β4∆t2
∫ T

∆t/2

∥∥∥∥∂Hz

∂ t

∥∥∥∥2

L∞(∂Ω)

dt
)
.

We complete the proof by using the triangle inequality and the hp approximation proper-
ties of Lemma A.2.1 to estimate ∥PNEM

xk
− EM

xk
∥L2(Ω), ∥PNEM

yk
− EM

yk
∥L2(Ω) and ∥PNHM+1/2

zk −
HM+1/2

zk ∥L2(Ω).

Remark 4.1.6. We want to remark that in the case of Silver-Müller absorbing boundary conditions
we only get first order convergence in time. A possible way to recover second order convergence is
to consider a locally implicit time scheme (see e.g. [32]). In order to keep efficiency, we propose an
alternative which is explicit and second order convergent in time:
For each time step solve (2.32)–(2.34) and save the solution in the variables ( ˜̃Em+1

xk
, ˜̃Em+1

yk
, ˜̃Hm+3/2

zk ).

Then the numerical solution (Ẽm+1
xk

, Ẽm+1
yk

, H̃m+3/2
zk

) is computed replacing in (2.32)–(2.34) the numer-
ical flux by the following expression

−ny
Z++Z−

(
Z+[H̃m+1/2

z ]−α

(
nx

[Ẽm
y ]+[ ˜̃Em+1

y ]

2 −ny
[Ẽm

x ]+[ ˜̃Em+1
x ]

2

))
nx

Z++Z−

(
Z+[H̃m+1/2

z ]−α

(
nx

[Ẽm
y ]+[ ˜̃Em+1

y ]

2 −ny
[Ẽm

x ]+[ ˜̃Em+1
x ]

2

))
1

Y++Y−

(
Y+
(
nx[Ẽm+1

y ]−ny[Ẽm+1
x ]

)
−α

[H̃m+1/2
z ]+[ ˜̃Hm+3/2

z ]
2

)

 .

We will determine the order of temporal convergence with this modification in time integrator later in
next chapter.

4.2 Implicit and explicit iterative time integrators

The temporal order of convergence of the scheme (2.32)–(2.34) is reduced from second order to first
order due to the terms that arise from Silver-Müller absorbing boundary conditions. In Remark 4.1.6
we propose a predictor-corrector step as time integrator in order to recover second order convergence
in time. In this section we study an iterative scheme and its relation with a second order convergent
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implicit method. The scheme in Remark 4.1.6 can be viewed as a particular case of the iterative
technique, where only the first iteration is computed.

The iterative method is defined in Subsection 4.2.2 and we will show, in Theorem 4.2.4, that
its solution converges to the solution of the implicit scheme defined in Subsection 4.2.1. In this
way, we can compute the numerical solution with a fully explicit iterative scheme expecting similar
convergence properties to the implicit method.

4.2.1 Implicit method

Instead of backward approximations used in the explicit leap-frog DG scheme (2.32)–(2.34), in order
to define an implicit leap-frog DG method, we use average approximations Ē [m+1/2] for Ēm+1/2 and
H̄ [m+1] for H̄m+1 where

Ē [m+1/2] =
Ēm + Ēm+1

2
, H̄ [m+1] =

H̄m+1/2 + H̄m+3/2

2
. (4.23)

The scheme defined in the following way: given an initial approximation (Ē0
xk
, Ē0

yk
, H̄1/2

zk ) ∈VN , for

each m = 0,1, . . . ,M−1, we compute (Ēm+1
xk

, Ēm+1
yk

, H̄m+1/2
zk ) ∈VN such that, ∀(uk,vk,wk) ∈VN ,(

εxx
Ēm+1

xk
− Ēm

xk

∆t
+ εxy

Ēm+1
yk

− Ēm
yk

∆t
,uk

)
Tk

=
(

∂yH̄m+1/2
zk ,uk

)
Tk

+

(
−ny

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
,uk

)
∂Tk

, (4.24)(
εyx

Ēm+1
xk

− Ēm
xk

∆t
+ εyy

Ēm+1
yk

− Ēm
yk

∆t
,vk

)
Tk

=−
(

∂xH̄m+1/2
zk ,vk

)
Tk

+

(
nx

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
,vk

)
∂Tk

, (4.25)(
µ

H̄m+3/2
zk − H̄m+1/2

zk

∆t
,wk

)
Tk

=
(
∂yĒm+1

xk
−∂xĒm+1

yk
,wk
)

Tk

+

(
1

Y++Y−

(
Y+(nx[Ēm+1

y ]−ny[Ēm+1
x ])−α[H̄ [m+1]

z ]
)
,wk

)
∂Tk

. (4.26)

The boundary conditions are considered as for the explicit method but using (4.23). We note that
equations (4.24)–(4.26) are defined implicitly, since the upwind fluxes involve the unknowns Ēm+1

xk
,

Ēm+1
yk

and H̄m+3/2
zk . In the following, we will provide a sufficient condition for the L2-stability of the

implicit leap-frog DG method (4.24)–(4.26) for the case of SM-ABC.

Choosing uk = ∆tĒ [m+1/2]
xk , vk = ∆tĒ [m+1/2]

yk and wk = ∆tH̄ [m+1]
zk , we have
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(
εĒm+1

k , Ēm+1
k

)
Tk
− (εĒm

k , Ē
m
k )Tk

= 2∆t
(

∇× H̄m+1/2
zk , Ē [m+1/2]

k

)
Tk

+2∆t
(

−ny

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
, Ē [m+1/2]

xk

)
∂Tk

+2∆t
(

nx

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
, Ē [m+1/2]

yk

)
∂Tk

,

(4.27)

(
µH̄m+3/2

zk , H̄m+3/2
zk

)
Tk
−
(

µH̄m+1/2
zk , H̄m+1/2

zk

)
Tk
=−2∆t

(
curl Ēm+1

k , H̄ [m+1]
zk

)
Tk

+2∆t
(

1
Y++Y−

(
Y+
(
nx[Ēm+1

y ]−ny[Ēm+1
x ]

)
−α[H̄ [m+1]

z ]
)
, H̄ [m+1]

zk

)
∂Tk

.

(4.28)

Using the identity,(
curl Ēm+1

k , H̄ [m+1]
zk

)
Tk
=
(

∇× H̄ [m+1]
zk , Ēm+1

k

)
Tk
+
(

nxĒm+1
yk

−nyĒm+1
xk

, H̄ [m+1]
zk

)
∂Tk

,

summing (4.27) and (4.28) from m = 0 to m = M−1, and integrating by parts, we get(
εĒM

k , ĒM
k
)

Tk
+
(

µH̄M+1/2
zk , H̄M+1/2

zk

)
Tk
=
(
εĒ0

k , Ē
0
k
)

Tk
+
(

µH̄1/2
zk , H̄1/2

zk

)
Tk

+∆t
(

∇× H̄1/2
zk , Ē0

k

)
Tk
−∆t

(
∇× H̄M+1/2

zk , ĒM
k

)
Tk
+2∆t

M−1

∑
m=0

Am
k , (4.29)

where

Am
k =

(
−ny

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
, Ē [m+1/2]

xk

)
∂Tk

+

(
nx

Z++Z−

(
Z+[H̄m+1/2

z ]−α

(
nx[Ē

[m+1/2]
y ]−ny[Ē

[m+1/2]
x ]

))
, Ē [m+1/2]

yk

)
∂Tk

+

(
1

Y++Y−

(
Y+
(
nx[Ēm+1

y ]−ny[Ēm+1
x ]

)
−α[H̄ [m+1]

z ]
)
, H̄ [m+1]

zk

)
∂Tk

−
(

nxĒm+1
yk

−nyĒm+1
xk

, H̄ [m+1]
zk

)
∂Tk

.

Summing over all elements Tk ∈ Th we obtain

∑
Tk∈Th

Am
k = Bm

1 +Bm
2 ,

where B1 contains the terms related to internal edges and could be written as

Bm
1 = Bm

11 +Bm
12 +Bm

13,
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where

Bm
11 = ∑

fik∈F int

∫
fik

(
−

(ny)ki

Zi +Zk

(
Zi[H̄

m+1/2
zk ]−α

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

))
Ē [m+1/2]

xk

−
(ny)ik

Zi +Zk

(
Zk[H̄

m+1/2
zi ]−α

(
(nx)ik[Ē

[m+1/2]
yi ]− (ny)ik[Ē

[m+1/2]
xi ]

))
Ē [m+1/2]

xi

−
Yi(ny)ki

Yi +Yk
[Ēm+1

xk
]H̄ [m+1]

zk −
Yk(ny)ik

Yi +Yk
[Ēm+1

xi ]H̄ [m+1]
zi

+(ny)kiĒm+1
xk

H̄ [m+1]
zk +(ny)ikĒm+1

xi H̄ [m+1]
zi

)
ds, (4.30)

Bm
12 = ∑

fik∈F int

∫
fik

(
(nx)ki

Zi +Zk

(
Zi[H̄

m+1/2
zk ]−α

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

))
Ē [m+1/2]

yk

+
(nx)ik

Zi +Zk

(
Zk[H̄

m+1/2
zi ]−α

(
(nx)ik[Ē

[m+1/2]
yi ]− (ny)ik[Ē

[m+1/2]
xi ]

))
Ē [m+1/2]

yi

+
Yi(nx)ki

Yi +Yk
[Ēm+1

yk
]H̄ [m+1]

zk +
Yk(nx)ik

Yi +Yk
[Ēm+1

yi ]H̄ [m+1]
zi

− (nx)kiĒm+1
yk

H̄ [m+1]
zk − (nx)ikĒm+1

yi H̄ [m+1]
zi

)
ds, (4.31)

and

Bm
13 =− ∑

fik∈F int

∫
fik

(
α

Yi +Yk
[H̄ [m+1]

zk ]H̄ [m+1]
zk +

α

Yi +Yk
[H̄ [m+1]

zi ]H̄ [m+1]
zi

)
ds, (4.32)

and Bm
2 are the terms of the outer boundary

Bm
2 = ∑

fk∈Fext

∫
fk

(
−(ny)k

2Zk

(
Zk[H̄

m+1/2
zk ]−α

(
(nx)k[Ē

[m+1/2]
yk ]− (ny)k[Ē

[m+1/2]
xk ]

))
Ē [m+1/2]

xk

+
(nx)k

2Zk

(
Zk[H̄

m+1/2
zk ]−α

(
(nx)k[Ē

[m+1/2]
yk ]− (ny)k[Ē

[m+1/2]
xk ]

))
Ē [m+1/2]

yk

+
1

2Yk

(
Yk
(
(nx)k[Ēm+1

yk
]− (ny)k[Ēm+1

xk
]
)
−α[H̄ [m+1]

zk ]
)

H̄ [m+1]
zk

−
(
(nx)kĒm+1

yk
− (ny)kĒm+1

xk

)
H̄ [m+1]

zk

)
ds. (4.33)

We find an upper bound for Bm
1 in Lemma 4.2.1 and for Bm

2 in Lemma 4.2.2.
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Lemma 4.2.1. Let Bm
11, Bm

12 and Bm
13 be defined by (4.30), (4.31) and (4.32), respectively and Bm

1 =

Bm
11 +Bm

12 +Bm
13. Then

M−1

∑
m=0

Bm
1 ≤ ∑

fik∈F int

∫
fik

1
2(Zi +Zk)

(
− (ny)ki

(
ZiĒ0

xk
+ZkĒ0

xi
)
[H̄1/2

zk ]

+ (nx)ki
(
ZiĒ0

yk
+ZkĒ0

yi
)
[H̄1/2

zk ]

+ (ny)ki
(
ZiĒM

xk
+ZkĒM

xi
)
[H̄M+1/2

zk ]

− (nx)ki
(
ZiĒM

yk
+ZkĒM

yi
)
[H̄M+1/2

zk ]

)
ds.

Proof. Considering the equalities (3.9) and (3.10) for Bm
11 we have

Bm
11 =

1
2 ∑

fik∈F int

∫
fik

(
−

(ny)ki

Zi +Zk

(
Zi[H̄

m+1/2
zk ]−α

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

))
Ēm

xk

−
(ny)ki

Zi +Zk

(
−α

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

))
Ēm+1

xk

−
(ny)ik

Zi +Zk

(
Zk[H̄

m+1/2
zi ]−α

(
(nx)ik[Ē

[m+1/2]
yi ]− (ny)ik [Ē

[m+1/2]
xi ]

))
Ēm

xi

−
(ny)ik

Zi +Zk

(
−α

(
(nx)ik[Ē

[m+1/2]
yi ]− (ny)ik[Ē

[m+1/2]
xi ]

))
Ēm+1

xi

−
Yi(ny)ki

Yi +Yk
[Ēm+1

xk
]H̄m+3/2

zk −
Yk(ny)ik

Yi +Yk
[Ēm+1

xi ]H̄m+3/2
zi

+(ny)kiĒm+1
xk

H̄m+3/2
zk +(ny)ikĒm+1

xi H̄m+3/2
zi

)
ds.

Summing from m = 0 to m = M−1 we conclude that

M−1

∑
m=0

Bm
11 = ∑

fik∈F int

∫
fik

(ny)ki

2(Zi +Zk)

(
−
(
ZiĒ0

xk
+ZkĒ0

xi
)
[H̄1/2

zk ]+
(
ZiĒM

xk
+ZkĒM

xi
)
[H̄M+1/2

zk ]

+2α

M−1

∑
m=0

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

)
[Ē [m+1/2]

xk ]

)
ds.

In the same way, for Bm
12 we have

M−1

∑
m=0

Bm
12 = ∑

fik∈F int

∫
fik

(nx)ki

2(Zi +Zk)

((
ZiĒ0

yk
+ZkĒ0

yi
)
[H̄1/2

zk ]−
(
ZiĒM

yk
+ZkĒM

yi
)
[H̄M+1/2

zk ]

−2α

M−1

∑
m=0

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

)
[Ē [m+1/2]

yk ]

)
ds.
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Then

M−1

∑
m=0

(Bm
11 +Bm

12) = ∑
fik∈F int

∫
fik

1
2(Zi +Zk)

(
− (ny)ki

(
ZiĒ0

xk
+ZkĒ0

xi
)
[H̄1/2

zk ]+ (nx)ki
(
ZiĒ0

yk
+ZkĒ0

yi
)
[H̄1/2

zk ]

−2α

M−1

∑
m=0

(
(nx)ki[Ē

[m+1/2]
yk ]− (ny)ki[Ē

[m+1/2]
xk ]

)2

+(ny)ki
(
ZiĒM

xk
+ZkĒM

xi
)
[H̄M+1/2

zk ]

− (nx)ki
(
ZiĒM

yk
+ZkĒM

yi
)
[H̄M+1/2

zk ]

)
ds.

For Bm
13 we have

M−1

∑
m=0

Bm
13 ≤ 0,

which concludes the proof.

Let us now analyze the term on the boundary.

Lemma 4.2.2. Let Bm
2 be defined by (4.33). Then

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

1
4

(
H̄1/2

zk

(
(nx)kĒ0

yk
− (ny)kĒ0

xk

)
H̄M+1/2

zk

(
(nx)kĒM

yk
− (ny)kĒM

xk

))
ds.

Proof. We have

Bm
2 =

1
2 ∑

fk∈Fext

∫
fk

((
−(ny)kH̄m+1/2

zk +
(ny)k

Zk

(
(nx)kĒ [m+1/2]

yk − (ny)kĒ [m+1/2]
xk

))
Ē [m+1/2]

xk

+

(
(nx)kH̄m+1/2

zk − (nx)k

Zk

(
(nx)kĒ [m+1/2]

yk − (ny)kĒ [m+1/2]
xk

))
Ē [m+1/2]

yk

−
(

1
Yk

H̄ [m+1]
zk +(nx)kĒm+1

yk
− (ny)kĒm+1

xk

)
H̄ [m+1]

zk

)
ds.

Summing from m = 0 to m = M−1, we deduce that

M−1

∑
m=0

Bm
2 ≤ ∑

fk∈Fext

∫
fk

1
4

(
H̄1/2

zk

(
(nx)kĒ0

yk
− (ny)kĒ0

xk

)
− H̄M+1/2

zk

(
(nx)kĒM

yk
− (ny)kĒM

xk

))
ds.

Theorem 4.2.3. Let us consider the leap-frog DG method (4.24)–(4.26) with SM-ABC. If the time
step ∆t is such that

∆t <
min{

¯
ε,

¯
µ}

CN
min{hk}, (4.34)
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where
CN =

1
2

CinvN2 +2C2
τ (N +1)(N +2),

with Cτ defined by (A.4) of Lemma A.1.1 and Cinv defined by (A.6) of Lemma A.1.2, then the method is
stable.

Proof. From (4.29) and the previous lemmata, considering the Cauchy-Schwarz’s inequality and
taking into account that Zi/(Zi +Zk)< 1, we obtain

∑
Tk∈Th

(
(εĒM

k , ĒM
k )Tk +(µH̄M+1/2

zk , H̄M+1/2
zk )Tk

)
≤ ∑

Tk∈Th

((
εĒ0

k , Ē
0
k
)

Tk
+(µH̄1/2

zk , H̄1/2
zk )Tk

)
+∆t ∑

Tk∈Th

(
∥∇× H̄1/2

zk ∥L2(Tk)∥Ē0
k ∥L2(Tk)+∥∇× H̄M+1/2

zk ∥L2(Tk)∥ĒM
k ∥L2(Tk)

)
+∆t ∑

fik∈F int

(
(∥ĒM

k ∥L2( fik)+∥ĒM
i ∥L2( fik))∥[H̄

M+1/2
zk ]∥L2( fik)+(∥Ē0

k ∥L2( fik)+∥Ē0
k ∥L2( fik))∥[H̄

1/2
zk ]∥L2( fik)

)
+∆t ∑

fk∈Fext

(
∥H̄1/2

zk ∥L2( fk)∥Ē0
k ∥L2( fk)+∥H̄M+1/2

zk ∥L2( fk)∥ĒM
k ∥L2( fk)

)
.

Using the inequality (A.4) of Lemma A.1.1 and the inequality (A.6) of Lemma A.1.2 (both in
Appendix), we get

min{
¯
ε,

¯
µ}
(
∥ĒM∥2

L2(Ω)+∥H̄M+1/2
z ∥2

L2(Ω)

)
≤ max{ε̄, µ̄}

(
∥Ē0∥2

L2(Ω)+∥H̄1/2
z ∥2

L2(Ω)

)
+

∆t
2

CinvN2 max
{

h−1
k

}(
∥H̄1/2

z ∥2
L2(Ω)+∥Ē0∥2

L2(Ω)+∥H̄M+1/2
z ∥2

L2(Ω)+∥ĒM∥2
L2(Ω)

)
+2C2

τ (N +1)(N +2)∆t max
{

h−1
k

}(
∥ĒM∥2

L2(Ω)+∥H̄M+1/2
z ∥2

L2(Ω)

)
+2C2

τ (N +1)(N +2)∆t max
{

h−1
k

}(
∥Ē0∥2

L2(Ω)+∥H̄1/2
z ∥2

L2(Ω)

)
.

and so, taking C0 =
1
2CinvN2 +2C2

τ (N +1)(N +2),(
min{

¯
ε,

¯
µ}−∆t max

{
h−1

k

}
CN

)(
∥ĒM∥2

L2(Ω)+∥H̄M+1/2
z ∥2

L2(Ω)

)
≤(

max{ε̄, µ̄}+∆t max
{

h−1
k

}
C0
)(

∥Ē0∥2
L2(Ω)+∥H̄1/2

z ∥2
L2(Ω)

)
,

which concludes the proof.

Although the implicit method (4.24)–(4.26) is conditionable stable, the stability condition (4.34) is
less restrictive when compared with the stability condition (3.14) for the explicit method (2.32)–(2.34).
Moreover, following the proof of Theorem 4.1.5, we can easily derive that the implicit method is
second order convergent in time even for the case of SM-ABC. Note that the drawback of this method
is its computational efficiency.

4.2.2 Iterative explicit method

The equations (4.24)–(4.26) are implicit and thus the computational effort to compute the numerical
solution is higher when compared with explicit schemes. To avoid this, we will consider an iterative
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process being each iteration explicit. This process starts, as before, with an approximation to the
initial data which we denote now by (Ê0

xk
, Ê0

yk
, Ĥ1/2

zk ) ∈VN . For each m = 0,1, . . . ,M−1, we initialize
the iterative process by

Êm+1,0
xk

= Êm
xk
, Êm+1,0

yk
= Êm

yk
, Ĥm+1/2,0

zk = Ĥm+1/2
zk .

The n+1th inner iteration of the iterative scheme, for n= 0,1,2, . . ., is: find (Êm+1,n+1
xk , Êm+1,n+1

yk , Ĥm+1/2,n+1
zk )∈

VN such that, ∀(uk,vk,wk) ∈VN we have(
εxx

Êm+1,n+1
xk − Êm

xk

∆t
+ εxy

Êm+1,n+1
yk − Êm

yk

∆t
,uk

)
Tk

=
(

∂yĤm+1/2
zk ,uk

)
Tk

+

(
−ny

Z++Z−

(
Z+[Ĥm+1/2

z ]−α

(
nx[Ê

[m+1/2,n]
y ]−ny[Ê

[m+1/2,n]
x ]

))
,uk

)
∂Tk

,

(4.35)(
εyx

Êm+1,n+1
xk − Êm

xk

∆t
+ εyy

Êm+1,n+1
yk − Êm

yk

∆t
,vk

)
Tk

=−
(

∂xĤm+1/2
zk ,vk

)
Tk

+

(
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(
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z ]−α

(
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[m+1/2,n]
y ]−ny[Ê
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x ]

))
,vk

)
∂Tk

,

(4.36)(
µ

Ĥm+3/2,n+1
zk − Ĥm+1/2

zk

∆t
,wk

)
Tk

=
(
∂yÊm+1

xk
−∂xÊm+1

yk
,wk
)

Tk

+

(
1

Y++Y−

(
Y+(nx[Êm+1

y ]−ny[Êm+1
x ])−α[Ĥ [m+1,n]

z ]
)
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∂Tk

,

(4.37)

where

Ê [m+1/2,n] =
Êm + Êm+1,n

2
, Ĥ [m+1,n] =

Ĥm+1/2 + Ĥm+3/2,n

2
.

When following convergence criterion is satisfied

∥Êm+1,n+1 − Êm+1,n∥L2(Ω) < tol, ∥Ĥm+3/2,n+1
z − Ĥm+3/2,n

z ∥L2(Ω) < tol,

for some pre-defined small constant tol, then the current time step m+ 1 is terminated and the
correspondent numerical solution is denoted by (Êm+1

xk
, Êm+1

yk
, Ĥm+1/2

zk ). If we only perform the
iteration n = 0 we obtain the same method as in Remark 4.1.6.

We will show that the solution of the iterative predictor-corrector scheme (4.35)–(4.37) converges
to the solution of the method (4.24)–(4.26) under certain stability conditions. Let define the difference
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between two successive numeric values of electromagnetic fields by

δnÊm+1
xk

= Êm+1,n+1
xk

− Êm+1,n
xk

,

δnÊm+1
yk

= Êm+1,n+1
yk

− Êm+1,n
yk

,

δnĤm+3/2
zk = Ĥm+3/2,n+1

zk − Ĥm+3/2,n
zk ,

for n = 0,1,2, · · · . We will find an upper bound for δnÊm+1
xk

, δnÊm+1
yk

and δnĤm+3/2
zk in the following

theorem.

Theorem 4.2.4. The the solution of the iterative predictor-corrector scheme (4.35)–(4.37) converges
to the solution of the method (4.24)–(4.26) provided that (3.14) is satisfied.

Proof. The condition (3.14) ensures that ∥δ0Êm+1∥L2(Ω) and ∥δ0Ĥm+3/2
z ∥L2(Ω) are bounded. Taking

the difference of (4.35)–(4.37) between two successive iterations, n+1 and n, and replacing uk, vk

and wk by, respectively, δnÊm+1
xk

, δnÊm+1
yk

and δnĤm+3/2
zk we obtain
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Then

∑
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and
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So
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(
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Consequently, we obtain

¯
ε∥δnÊm+1∥L2(Ω) ≤

∆t
min{Zk}
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τ (N +1)(N +2)max
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Taking condition (3.14) into account, we conclude the proof.





Chapter 5

Numerical Results

This chapter is dedicated to a detailed numerical evaluation of the proposed leap-frog DG methods
on triangular meshes for solving two dimensional TE Maxwell’s equations. We assess the stability
condition and the error estimate of the method through numerical experiments for 2D wave propagation
in anisotropic media with PEC and Silver-Müller boundary conditions (SM-ABC). Results for PMC
boundary conditions were also obtained but not presented since they are similar to the equivalent ones
for the PEC case.

In our simulations we consider a non diagonal and possibly spatially-varying symmetric and
positive definite permittivity tensor. While it is sometimes possible to find a rotated coordinate system
in which this permittivity tensor is diagonal [5, 49], it is not clear how to apply such a rotated reference
frame in general. In particular, when the simulation domain contains two or more anisotropic regions
with different orientations, it would be impossible to diagonalize for all materials under the same
rotation. Furthermore, if the permittivity tensor contains imaginary off-diagonal elements, as in a
magneto-optic material [31], the permittivity tensor cannot be diagonalized by a simple rotation. Here,
we avoid any rotation.

In order to have a suitable analytic solution for computing the error, corresponding to each of
boundary conditions and each type of anisotropic permittivity tensor (constant or space-dependent),
source terms are added to the system of Maxwell’s equations. The Matlab codes in [39] are the
inception codes we use for set up and are updated to deal with our particular numerical scheme and
model specifications.

This chapter starts with the definition of the simulation setting. The structure of domain discretiza-
tion and the characteristics of meshes we use in our tests are stated in Section 5.1. The sharpness of the
stability conditions obtained in Theorem 3.1.3 is checked in Section 5.2 for both central and upwind
fluxes while considering PEC and SM-ABC. The convergence result achieved in Theorem 4.1.5 is
illustrated in Section 5.3 for the same set of experiments considered for the stability analysis. The
efficiency of the proposed predictor-corrector method to recover the temporal convergence order is
checked in the last part of the same section. All the stability and convergence results are obtain for
two permittivity tensors: constant and space-dependent tensor. We back to the motivation behind this
work in Section 5.4 and discuss the scattering through eye’s structure.
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K 32 50 200 800 3200
Nv 25 36 121 441 1681
hmin 0.7071 0.5657 0.2828 0.1414 0.0707

Table 5.1 The number of triangle elements and vertices in computational meshes used in the computa-
tions. hmin denotes the shortest distance between two vertices in the mesh.

5.1 Simulation setting

In the following we consider that two-dimension TE mode of Maxwell’s equations (5.11)–(5.13) are
space discretized using discontinuous Galerkin method on triangular mesh. The computation domain
is considered as the square Ω = (−1,1)2, which is triangulated with K non-overlapping straight-sided
triangles. The characteristics of the meshes used in the computations are summarised in Table 5.1.
Two examples of meshes on the computational domain are presented in Figure 5.1. On each triangle
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0

0.5

1

(a) K = 50

-1 -0.5 0 0.5 1
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(b) K = 800

Fig. 5.1 Examples of computational mesh on a square domain used in 2D computations.

we define

Np =
(N +1)(N +2)

2
nodal points, where N is the order of polynomial approximation. In the simulations we consider the
warp-blend points [85]. Figure 5.2 shows the distribution of these points on a sample triangle element
for N = 4 and N = 8.

In our experiments we consider a non diagonal symmetric positive definite permittivity tenor first
as a constant tensor

ε =

(
5 1
1 3

)
, (5.1)

and then as a space-dependent tensor

ε(x,y) =

(
4x2 + y2 +1

√
x2 + y2√

x2 + y2 x2 +1

)
. (5.2)
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(a) N = 4 (b) N = 8

Fig. 5.2 Distribution of warp-blend nodal points in a triangular element.

In all the simulations we consider isotropic permeability which is set as µ = 1.

Let us consider the Maxwell’s equations defined on the square Ω = (−1,1)2, complemented with
initial and boundary conditions. For the case of PEC boundary condition we consider the initial
conditions

Ex(x,y,0) = 0, (5.3)

Ey(x,y,0) = 0, (5.4)

Hz(x,y,∆t/2) = cos(πx)cos(πy)cos(ω∆t/2), (5.5)

where

ω = π

√
1

εxx
+

1
εyy

, (5.6)

and for SM-ABC we consider the initial conditions

Ex(x,y,0) = 0, (5.7)

Ey(x,y,0) = 0, (5.8)

Hz(x,y,∆t/2) = sin(π∆t/2)sin(πxy). (5.9)

The sharpness of stability result as well as the spatial order of convergence for different boundary
conditions, for different degree of polynomial approximation and for both central and upwind fluxes
will be illustrated while refining the mesh according to Table 5.1. The temporal order of convergence
will be analyzed in a space grid with K = 800 and N = 8. In all of the experiments the simulation
time is fixed at T = 1.
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5.2 Stability condition

We will check numerically that (3.14) defines a sharp stability condition, in terms of the influence of
N, the order of the polynomial approximation, and hmin, the minimum triangle diameter in the mesh.
In our experiments, we computed C that satisfies

∆tmax =
C

(N +1)(N +2)
hmin, (5.10)

where ∆tmax is the maximum observed value of ∆t such that the method is stable.

In Table 5.2 and Table 5.3 the results are computed for different mesh sizes, considering respec-
tively central and upwind fluxes in the DG method, for the case of PEC boundary conditions, while in
Table 5.4 and Table 5.5, the results are computed for the case of SM-ABC.

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.17 1.80 0.1 2.12 0.065 2.30 0.044 2.33 0.032 2.37
0.2828 0.088 1.87 0.05 2.12 0.031 2.20 0.021 2.23 0.016 2.37
0.1414 0.044 1.87 0.024 2.04 0.015 2.12 0.01 2.12 0.0078 2.32
0.0707 0.021 1.78 0.012 2.04 0.0078 2.20 0.0054 2.30 0.0038 2.26
0.0354 0.01 1.70 0.006 2.04 0.0039 2.20 0.0027 2.30 0.0019 2.26
0.0177 0.0054 1.83 0.003 2.04 0.0019 2.15 0.0013 2.21 0.00095 2.26

Table 5.2 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary conditions,
central flux and constant permittivity tensor (5.1).

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.10 1.06 0.056 1.19 0.034 1.20 0.023 1.22 0.016 1.19
0.2828 0.047 1.00 0.026 1.10 0.016 1.13 0.011 1.17 0.0081 1.20
0.1414 0.023 0.98 0.012 1.02 0.008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 0.93 0.0062 1.05 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 0.93 0.003 1.02 0.0019 1.07 0.0013 1.10 0.0009 1.07
0.0177 0.0027 0.92 0.0015 1.02 0.0009 1.02 0.0006 1.02 0.0004 0.95

Table 5.3 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary conditions,
upwind flux and constant permittivity tensor (5.1).



5.2 Stability condition 67

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.18 1.91 0.1 2.12 0.064 2.26 0.044 2.33 0.031 2.30
0.2828 0.092 1.95 0.05 2.12 0.031 2.19 0.021 2.02 0.015 2.23
0.1414 0.044 1.87 0.024 2.04 0.015 2.12 0.01 2.12 0.0079 2.35
0.0707 0.021 1.78 0.012 2.04 0.0077 2.18 0.0053 2.25 0.0038 2.26
0.0354 0.01 1.70 0.006 2.04 0.0038 2.15 0.0026 2.21 0.0019 2.26
0.0177 0.0053 1.80 0.003 2.04 0.0018 2.04 0.0012 2.04 0.00095 2.26

Table 5.4 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, central flux
and constant permittivity tensor (5.1).

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.11 1.17 0.057 1.21 0.035 1.24 0.023 1.22 0.016 1.19
0.2828 0.051 1.08 0.026 1.10 0.016 1.13 0.011 1.17 0.008 1.19
0.1414 0.023 0.98 0.012 1.02 0.008 1.13 0.0054 1.15 0.0039 1.16
0.0707 0.011 0.93 0.0061 1.04 0.0039 1.10 0.0026 1.10 0.0019 1.13
0.0354 0.0055 0.93 0.003 1.02 0.0018 1.07 0.0013 1.10 0.00097 1.15
0.0177 0.0027 0.92 0.0015 1.02 0.00097 1.10 0.00065 1.10 0.00045 1.07

Table 5.5 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, upwind flux
and constant permittivity tensor (5.1).

As expected from the condition (3.14), the numerical examples in Table 5.2 and Table 5.3 show
that the stability regions corresponding to central fluxes are slightly bigger when compared to the
regions obtained using upwind fluxes. From all the examples presented, we may deduce that the right
hand side of (3.14) is a sharp bound for ∆tmax. Moreover, we can also conclude that ∆tmax is directly
proportional to hmin and inversely proportional to (N +1)(N +2).
In the same framework, we consider the space-dependent tensor (5.2). The experiments are repeated.
The collected data is summarized in Table 5.6–5.9 for PEC and SM-ABC boundary conditions for
both central and upwind flux.
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hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.11 1.27 0.065 1.38 0.04 1.41 0.027 1.43 0.02 1.48
0.2828 0.056 1.19 0.031 1.32 0.019 1.34 0.013 1.38 0.0099 1.47
0.1414 0.027 1.15 0.015 1.27 0.0095 1.34 0.0066 1.40 0.0048 1.42
0.0707 0.013 1.10 0.0074 1.26 0.0047 1.33 0.0033 1.40 0.0024 1.43
0.0354 0.0067 1.14 0.0037 1.25 0.0023 1.30 0.0016 1.36 0.0012 1.43
0.0177 0.0033 1.12 0.0018 1.22 0.0011 1.24 0.00079 1.34 0.00059 1.40

Table 5.6 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary conditions,
central flux and space-dependent permittivity tensor (5.2).

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.064 0.68 0.033 0.70 0.021 0.74 0.014 0.74 0.01 0.74
0.2828 0.029 0.62 0.016 0.68 0.01 0.70 0.0069 0.73 0.0049 0.73
0.1414 0.014 0.59 0.0076 0.65 0.0048 0.68 0.0033 0.70 0.0024 0.71
0.0707 0.0068 0.58 0.0037 0.63 0.0023 0.65 0.0016 0.68 0.0011 0.65
0.0354 0.0033 0.56 0.0018 0.61 0.0011 0.62 0.00081 0.69 0.0057 0.68
0.0177 0.0017 0.58 0.0088 0.60 0.00054 0.61 0.0004 0.68 0.00028 0.67

Table 5.7 ∆tmax such that the method is stable and C computed by (5.10) for PEC boundary conditions,
upwind flux and space-dependent permittivity tensor (5.2).

hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.12 1.27 0.065 1.38 0.04 1.41 0.027 1.43 0.02 1.48
0.2828 0.057 1.20 0.03 1.27 0.019 1.34 0.013 1.38 0.0098 1.46
0.1414 0.027 1.15 0.014 1.19 0.0095 1.34 0.0065 1.38 0.0048 1.42
0.0707 0.013 1.10 0.0073 1.24 0.0047 1.33 0.0032 1.35 0.0024 1.43
0.0354 0.0067 1.14 0.0036 1.22 0.0023 1.30 0.0016 1.36 0.0012 1.43
0.0177 0.0033 1.12 0.0018 1.22 0.0011 1.24 0.00079 1.34 0.00059 1.40

Table 5.8 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, central flux
and space-dependent permittivity tensor (5.2).
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hmin
N = 1 N = 2 N = 3 N = 4 N = 5

∆tmax C ∆tmax C ∆tmax C ∆tmax C ∆tmax C

0.5657 0.068 0.72 0.035 0.74 0.021 0.74 0.014 0.74 0.01 0.74
0.2828 0.03 0.64 0.016 0.68 0.01 0.70 0.0069 0.73 0.005 0.74
0.1414 0.014 0.59 0.0076 0.65 0.0048 0.68 0.0033 0.70 0.0024 0.71
0.0707 0.0068 0.58 0.0037 0.63 0.0024 0.68 0.0016 0.68 0.0012 0.72
0.0354 0.0033 0.56 0.0018 0.61 0.0011 0.62 0.00081 0.69 0.0058 0.69
0.0177 0.0017 0.58 0.0088 0.60 0.00054 0.61 0.0004 0.68 0.00028 0.67

Table 5.9 ∆tmax such that the method is stable and C computed by (5.10) for SM-ABC, upwind flux
and space-dependent permittivity tensor (5.2).

5.3 Order of convergence

In this section, we will illustrate the theoretical results of convergence. We consider the model problem

εxx
∂Ex

∂ t
+ εxy

∂Ey

∂ t
=

∂Hz

∂y
+P(x,y, t), (5.11)

εyx
∂Ex

∂ t
+ εyy

∂Ey

∂ t
=−∂Hz

∂x
+Q(x,y, t), (5.12)

µ
∂Hz

∂ t
=−

∂Ey

∂x
+

∂Ex

∂y
+R(x,y, t), (5.13)

defined in the square Ω = (−1,1)2. The source terms P(x,y, t), Q(x,y, t) and R(x,y, t) are introduced
in order to make it easier to find examples with known exact solution and consequently with the
possibility to compute the error of the numerical solution. The problem is complemented with initial
and boundary conditions in the same way as in the previous section.

We will analyze the behaviour of the proposed scheme by computing the following L2-errors in
each numerical example:

Error Ẽx = ∥EM
x − ẼM

x ∥L2(Ω), (5.14)

Error Ẽy = ∥EM
y − ẼM

y ∥L2(Ω), (5.15)

Error H̃z = ∥HM+1/2
z − H̃M+1/2

z ∥L2(Ω). (5.16)

For the computation of convergence rates in space, we herein use

Order =
log(Error Ũh,∆t/Error Ũh∗,∆t)

log(h/h∗)
, (5.17)

where Uh,∆t and Uh∗,∆t denote, respectively, the exact solution and the numerical solutions computed for
time step ∆t and two consecutive meshes of diameters h and h∗. For the computation of convergence
rates in time we proceed in a correspondent way computing the errors of the numerical solutions for



70 Numerical Results

two different values of ∆t a fixed value for the meshe of diameter h, i.e.,

Order =
log(Error Ũh,∆t/Error Ũh,∆t∗)

log(∆t/∆t∗)
. (5.18)

5.3.1 PEC boundary condition

Let us consider the equations (5.11)–(5.13) complemented with PEC boundary condition and initial
conditions (5.3)–(5.5). The source terms P, Q and R are obtained such that the problem has the exact
solution

Ex(x,y, t) =
−π

ωεxx
cos(πx)sin(πy)sin(ωt),

Ey(x,y, t) =
π

ωεyy
sin(πx)cos(πy)sin(ωt),

Hz(x,y, t) = cos(πx)cos(πy)cos(ωt),

where ω is given by (5.6). For this type of boundary conditions, the theoretical convergence analysis
presented in the previous chapter for the proposed DG leap-frog integrator (2.32)–(2.34) showed that
the order of convergence in space and time is O(hN)+O(∆t2).

To illustrate the order of convergence in space, the mesh is refined while the time step is fixed at
∆t = 10−5. For the first test, we consider the constant permittivity tensor (5.1). The source terms P, Q
and R that complete (5.11)–(5.13) depend on the permittivity tensor and, for this case, they are given
by

P(x,y, t) =
εxy

εyy
π sin(πx)cos(πy)cos(ωt), (5.19)

Q(x,y, t) =−
εyx

εxx
π cos(πx)sin(πy)cos(ωt), (5.20)

R(x,y, t) = 0. (5.21)

In Table 5.10 we present the L2-errors (5.14)–(5.16) as well as the spatial order of convergence
computed according to (5.17). The results were obtained while refining the mesh according to
Table 5.1, the degree of the polynomial approximation varies from N = 1 to N = 4 and considering
both central and upwind fluxes. In Figure 5.3 we plot the discrete L2-error of the Ẽx component of
electric field (5.14) for the same set of parameters given in Table 5.10. We plot of the error depending
on the maximum element diameter for each mesh, where both the vertical and horizontal axis are
scaled logarithmically. The numerical order of convergence is approximated by the slope of the linear
regression line.

As we may see, for central flux the numerical convergence rate is close to the value estimated in
Theorem 4.1.5, O(hN), while for upwind flux we observe higher order of convergence, up to O(hN+1)

in some cases.
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(b) Upwind flux.

Fig. 5.3 L2-error for Ẽx (5.14) versus h, for constant permittivity tensor (5.1) and PEC boundary
conditions.

We now consider the case were the permittivity tensor is space-dependent and given by (5.2). The
source terms P, Q and R in (5.11)–(5.13) are given by

P(x,y, t) =
εxy

εyy
π sin(πx)cos(πy)cos(ωt)+

∂ω

∂y
t cos(πx)cos(πy)sin(ωt), (5.22)

Q(x,y, t) =−
εxy

εxx
π cos(πx)sin(πy)cos(ωt)− ∂ω

∂x
t cos(πx)cos(πy)sin(ωt), (5.23)

R(x,y, t) =
πt

ωεyy

∂ω

∂x
sin(πx)cos(πy)cos(ωt)− π

ω2ε2
yy
(
∂ω

∂x
εyy +ω

∂εyy

∂x
)sin(πx)cos(πy)sin(ωt)

+
πt

ωεxx

∂ω

∂y
cos(πx)sin(πy)cos(ωt)− π

ω2ε2
xx
(εxx

∂ω

∂y
+ω

∂εxx

∂y
)cos(πx)sin(πy)sin(ωt).

(5.24)

The source terms are changed when compared to the previous case due the space dependency of tensor
elements and ω given by (5.6). Note that the source terms (5.19)–(5.21) for constant permittivity
tensor are special cases of (5.22)–(5.24).

The same set of parameters used for the constant tensor case are consider and the experiments
repeated. The collected data with this permittivity tensor is summarised in Table 5.11. The results
for the spatial convergence are plotted in Figure 5.4. As for the previous test, for the central flux, the
order of convergence is near O(hN), and for upwind flux we observe higher order.

To visualize the convergence in time, the polynomials degree and the number of elements have
been set to N = 8 and K = 800, respectively. The L2-errors of the electromagnetic fields (5.14)–
(5.16) are computed while decreasing the time step. The collected data is summarised in Table 5.12
and Table 5.13 for the constant and space-dependent tensors respectively. The results plotted in
Figure 5.5 illustrate the second order of convergency in time for PEC boundary condition established
by Theorem 4.1.5. These results correspond to upwind flux and similar results are observed for central
flux.
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N K h Error Ẽx Order Error Ẽy Order Error H̃z Order

C
entralflux

1

32 7.07E-01 1.23E-01 2.29E-01 3.57E-01
50 5.66E-01 1.24E-01 -0.02 1.65E-01 1.46 2.13E-01 2.32

200 2.83E-01 7.63E-02 0.70 8.58E-02 0.94 5.29E-02 2.01
800 1.41E-01 4.24E-02 0.85 4.90E-02 0.81 2.03E-02 1.38
3200 7.07E-02 2.19E-02 0.95 2.54E-02 0.95 4.04E-03 2.33

2

32 7.07E-01 7.53E-02 8.62E-02 9.63E-02
50 5.66E-01 4.48E-02 2.33 6.15E-02 1.52 4.60E-02 3.31

200 2.83E-01 9.98E-03 2.17 1.17E-02 2.39 8.19E-03 2.49
800 1.41E-01 2.27E-03 2.14 2.45E-03 2.26 1.07E-03 2.94
3200 7.07E-02 5.00E-04 2.18 5.43E-04 2.17 1.23E-04 3.12

3

32 7.07E-01 1.65E-02 1.95E-02 2.11E-02
50 5.66E-01 1.02E-02 2.16 1.06E-02 2.71 8.99E-03 3.81

200 2.83E-01 1.23E-03 3.05 1.45E-03 2.87 5.24E-04 4.10
800 1.41E-01 1.65E-04 2.90 1.94E-04 2.91 2.11E-05 4.64
3200 7.07E-02 2.14E-05 2.94 2.53E-05 2.94 1.96E-06 3.43

4

32 7.07E-01 4.01E-03 4.72E-03 2.43E-03
50 5.66E-01 1.52E-03 4.36 1.92E-03 4.02 9.88E-04 4.03

200 2.83E-01 8.91E-05 4.09 1.06E-04 4.19 3.41E-05 4.86
800 1.41E-01 5.37E-06 4.05 6.09E-06 4.12 1.05E-06 5.02
3200 7.07E-02 3.01E-07 4.16 3.44E-07 4.15 3.66E-08 4.84

U
pw

ind
flux

1

32 7.07E-01 6.27E-02 1.24E-01 3.18E-01
50 5.66E-01 5.34E-02 0.72 8.69E-02 1.58 2.04E-01 1.98

200 2.83E-01 1.42E-02 1.91 2.32E-02 1.90 4.85E-02 2.07
800 1.41E-01 3.87E-03 1.88 5.68E-03 2.03 1.10E-02 2.14
3200 7.07E-02 1.03E-03 1.91 1.53E-03 1.89 2.60E-03 2.08

2

32 7.07E-01 1.89E-02 3.71E-02 6.61E-02
50 5.66E-01 1.30E-02 1.68 2.25E-02 2.25 3.43E-02 2.94

200 2.83E-01 1.99E-03 2.71 3.06E-03 2.88 4.66E-03 2.88
800 1.41E-01 2.48E-04 3.00 3.83E-04 3.00 6.05E-04 2.95
3200 7.07E-02 3.16E-05 2.98 4.85E-05 2.98 7.74E-05 2.97

3

32 7.07E-01 4.35E-03 7.59E-03 1.09E-02
50 5.66E-01 2.05E-03 3.37 3.60E-03 3.35 5.13E-03 3.37

200 2.83E-01 1.49E-04 3.79 2.14E-04 4.07 3.33E-04 3.95
800 1.41E-01 9.23E-06 4.01 1.39E-05 3.95 2.14E-05 3.96
3200 7.07E-02 5.91E-07 3.97 9.11E-07 3.93 1.35E-06 3.98

4

32 7.07E-01 7.28E-04 1.16E-03 1.71E-03
50 5.66E-01 2.62E-04 4.58 4.43E-04 4.32 6.44E-04 4.36

200 2.83E-01 8.96E-06 4.87 1.45E-05 4.93 2.07E-05 4.96
800 1.41E-01 2.83E-07 4.98 4.58E-07 4.98 6.56E-07 4.98
3200 7.07E-02 9.09E-09 4.96 1.44E-08 4.99 2.11E-08 4.96

Table 5.10 The L2-errors (5.14)–(5.16) and the spatial order for PEC boundary condition and constant
permittivity tensor (5.1).
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N K h Error Ẽx Order Error Ẽy Order Error H̃z Order

C
entralflux

1

32 7.07E-01 2.12E-01 2.05E-01 4.60E-01
50 5.66E-01 1.56E-01 1.37 1.82E-01 0.55 2.79E-01 2.23

200 2.83E-01 9.15E-02 0.77 9.55E-02 0.93 8.94E-02 1.64
800 1.41E-01 5.48E-02 0.74 5.56E-02 0.78 2.29E-02 1.97
3200 7.07E-02 2.95E-02 0.89 2.91E-02 0.93 5.49E-03 2.06

2

32 7.07E-01 1.16E-01 1.36E-01 1.44E-01
50 5.66E-01 8.35E-02 1.47 8.07E-02 2.33 8.56E-02 2.33

200 2.83E-01 2.02E-02 2.05 2.00E-02 2.01 1.07E-02 3.00
800 1.41E-01 4.09E-03 2.30 4.03E-03 2.31 1.40E-03 2.93
3200 7.07E-02 8.80E-04 2.22 8.58E-04 2.23 1.79E-04 2.97

3

32 7.07E-01 3.73E-02 3.77E-02 2.45E-02
50 5.66E-01 1.80E-02 3.27 1.94E-02 2.97 1.07E-02 3.69

200 2.83E-01 3.42E-03 2.39 3.41E-03 2.51 7.46E-04 3.85
800 1.41E-01 5.09E-04 2.75 4.73E-04 2.85 4.89E-05 3.93
3200 7.07E-02 6.79E-05 2.91 6.05E-05 2.97 3.06E-06 4.00

4

32 7.07E-01 1.52E-02 1.38E-02 4.92E-03
50 5.66E-01 6.02E-03 4.17 5.29E-03 4.30 2.10E-03 3.81

200 2.83E-01 3.98E-04 3.92 3.68E-04 3.85 9.10E-05 4.53
800 1.41E-01 2.30E-05 4.11 2.12E-05 4.12 2.76E-06 5.04
3200 7.07E-02 1.25E-06 4.20 1.17E-06 4.18 8.89E-08 4.96

U
pw

ind
flux

1

32 7.07E-01 1.60E-01 1.13E-01 3.73E-01
50 5.66E-01 1.06E-01 1.81 1.11E-01 0.05 2.46E-01 1.87

200 2.83E-01 3.35E-02 1.67 3.57E-02 1.64 5.86E-02 2.07
800 1.41E-01 7.96E-03 2.08 8.79E-03 2.02 1.25E-02 2.23
3200 7.07E-02 2.13E-03 1.90 2.27E-03 1.95 3.05E-03 2.04

2

32 7.07E-01 4.99E-02 5.26E-02 8.08E-02
50 5.66E-01 3.18E-02 2.02 3.34E-02 2.03 4.78E-02 2.35

200 2.83E-01 5.18E-03 2.62 5.35E-03 2.64 7.30E-03 2.71
800 1.41E-01 6.46E-04 3.00 6.92E-04 2.95 9.66E-04 2.92
3200 7.07E-02 8.38E-05 2.95 8.87E-05 2.96 1.22E-04 2.98

3

32 7.07E-01 1.57E-02 1.88E-02 2.28E-02
50 5.66E-01 7.76E-03 3.17 7.46E-03 4.15 8.99E-03 4.18

200 2.83E-01 5.75E-04 3.75 5.82E-04 3.68 6.93E-04 3.70
800 1.41E-01 3.60E-05 4.00 3.68E-05 3.98 4.43E-05 3.97
3200 7.07E-02 2.38E-06 3.92 2.39E-06 3.95 2.82E-06 3.97

4

32 7.07E-01 4.58E-03 3.61E-03 4.60E-03
50 5.66E-01 1.50E-03 4.99 1.53E-03 3.83 1.73E-03 4.39

200 2.83E-01 6.39E-05 4.56 6.11E-05 4.65 7.16E-05 4.59
800 1.41E-01 2.05E-06 4.96 1.95E-06 4.97 2.30E-06 4.96
3200 7.07E-02 6.59E-08 4.96 6.27E-08 4.96 7.43E-08 4.96

Table 5.11 The L2-errors (5.14)–(5.16) and the spatial order for PEC boundary condition and space-
dependent permittivity tensor (5.2).
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(a) Central flux.
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(b) Upwind flux.

Fig. 5.4 L2-error for Ẽx (5.14) versus h, for PEC boundary conditions and space-dependent permittivity
tensor (5.2).

∆t Error Ẽx Order Error Ẽy Order Error H̃z Order

1.00E-03 1.59E-07 9.73E-08 3.72E-07
5.00E-04 3.98E-08 2.00 2.43E-08 2.00 9.29E-08 2.00
2.50E-04 9.94E-09 2.00 6.08E-09 2.00 2.32E-08 2.00
1.25E-04 2.48E-09 2.00 1.52E-09 2.00 5.81E-09 2.00
6.25E-05 6.21E-10 2.00 3.80E-10 2.00 1.45E-09 2.00

Table 5.12 The L2-errors (5.14)–(5.16) and the temporal order for PEC boundary condition and
constant permittivity tensor (5.1).
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(a) Constant permittivity tensor.
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(b) Space-dependente permittivity tensor.

Fig. 5.5 L2-errors (5.14)–(5.16) versus ∆t for PEC boundary conditions and upwind flux.
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∆t Error Ẽx Order Error Ẽy Order Error H̃z Order

1.00E-03 7.56E-07 4.56E-07 5.40E-07
5.00E-04 1.89E-07 2.00 1.14E-07 2.00 1.35E-07 2.00
2.50E-04 4.73E-08 2.00 2.85E-08 2.00 3.37E-08 2.00
1.25E-04 1.18E-08 2.00 7.12E-09 2.00 8.42E-09 2.00
6.25E-05 2.95E-09 2.00 1.78E-09 2.00 2.10E-09 2.00

Table 5.13 The L2-error (5.14)–(5.16) and the temporal order for PEC boundary condition and
space-dependent permittivity tensor (5.2).

5.3.2 Silver-Müller absorbing boundary condition

We now consider the test problem (5.11)–(5.13) with SM-ABC and initial conditions (5.3)–(5.5). The
source terms P, Q and R are obtained such that the problem has the exact solution

Ex(x,y, t) =−
√

εyy

det(ε)
sin(πt)sin(πx),

Ey(x,y, t) =
√

εxx

det(ε)
sin(πt)sin(πy),

Hz(x,y, t) = sin(πt)sin(πxy).

For this type of boundary conditions, the theoretical convergence analysis established by Theorem 4.1.5
showed that the convergence order of the leap-frog DG scheme (2.32)–(2.34) in space and time is
O(hN)+O(∆t).

The set of experiments is the same as in the case of PEC boundary conditions. The mesh is refined
according to Table 5.1 for different degrees for the polynomial approximation from N = 1 to N = 4
and both central and upwind flux. To illustrate the order of convergence in space, the mesh is refined
while the time step is fixed at ∆t = 10−5, except while the degree for the polynomial approximation is
N = 4, where we consider ∆t = 10−6.

We first consider the constant permittivity tensor (5.1). For this case, the source terms in (5.11)–
(5.13) are given by

P(x,y, t) =−πεxx

√
εyy

det(ε)
cos(πt)sin(πx)+πεxy

√
εxx

det(ε)
cos(πt)sin(πy)−πxsin(πt)cos(πxy),

(5.25)

Q(x,y, t) =−πεyx

√
εyy

det(ε)
cos(πt)sin(πx)+πεyy

√
εxx

det(ε)
cos(πt)sin(πy)+πysin(πt)cos(πxy),

(5.26)

R(x,y, t) = πµ cos(πt)sin(πxy). (5.27)

In Table 5.14 we present the L2-errors (5.14)–(5.16) as well as the spatial order of convergence
computed according to (5.17). In Figure 5.6 we plot the discrete L2-error of the Ẽx component of
electric field (5.14) for the same set of parameters given in Table 5.14. We plot of the error depending
on the maximum element diameter for each mesh, where both the vertical and horizontal axis are
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Fig. 5.6 L2-error for Ẽx (5.14) versus h, for SM-ABC and constant permittivity tensor (5.1).

scaled logarithmically. The numerical order of convergence is approximated by the slope of the linear
regression line.

As we may see, for central flux the numerical convergence rate is close to the value estimated in
Theorem 4.1.5, O(hN), while for upwind flux we observe higher order of convergence, up to O(hN+1)

in some cases.

We now consider the case where permittivity tensor is space-dependent and given by (5.2). The
source terms P, Q and R in (5.11)–(5.13) are changed due to space dependency of the tensor elements
and are given by

P(x,y, t) =−πεxx

√
εyy

det(ε)
cos(πt)sin(πx)+πεxy

√
εxx

det(ε)
cos(πt)sin(πy)

−πxsin(πt)cos(πxy), (5.28)

Q(x,y, t) =−πεxy

√
εyy

det(ε)
cos(πt)sin(πx)+πεyy

√
εxx

det(ε)
cos(πt)sin(πy)

+πysin(πt)cos(πxy), (5.29)

R(x,y, t) = πµ cos(πt)sin(πxy)+
∂εxx
∂y det(ε)+ ∂ det(ε)

∂y εxx

2det(ε)2

√
det(ε)

εxx
sin(πt)sin(πy)

−
∂εyy
∂x det(ε)+ ∂ det(ε)

∂x εyy

2det(ε)2

√
det(ε)

εxx
sin(πt)sin(πx). (5.30)

The L2-error sand the order of convergence in space are computed as in the previous case. All
these data is collected and summarised in Table 5.15 and illustrated in Figure 5.7. As for the constant
tensor case, we conclude that, for central flux the numerical convergence rate is close to the value
estimated in Theorem 4.1.5, O(hN), while for upwind flux we observe higher order of convergence,
up to O(hN+1) in some cases.

To visualize the convergence in time, the approximation polynomial degree and the number of
elements have been set to N = 8 and K = 800, respectively. For SM-ABC the data plotted in Figure
5.8 illustrates the first order of convergency established by Theorem 4.1.5.
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N K h Error Ẽx Order Error Ẽy Order Error H̃z Order

C
entralflux

1

32 7.07E-01 1.80E-01 2.20E-01 2.51E-01
50 5.66E-01 1.37E-01 1.23 1.59E-01 1.47 1.64E-01 1.91

200 2.83E-01 8.95E-02 0.61 1.02E-01 0.63 2.40E-02 2.77
8000 1.41E-01 4.78E-02 0.91 5.49E-02 0.90 3.80E-03 2.66
3200 7.07E-02 2.51E-02 0.93 2.91E-02 0.92 7.67E-04 2.31

2

32 7.07E-01 5.15E-02 5.80E-02 5.12E-02
50 5.66E-01 3.50E-02 1.74 3.92E-02 1.75 2.24E-02 3.70

200 2.83E-01 9.71E-03 1.85 1.05E-02 1.90 1.45E-03 3.95
800 1.41E-01 2.24E-03 2.12 2.40E-03 2.13 1.37E-04 3.41
3200 7.07E-02 5.54E-04 2.01 5.89E-04 2.03 6.47E-06 4.40

3

32 7.07E-01 1.05E-02 1.20E-02 3.77E-03
50 5.66E-01 5.42E-03 2.95 6.24E-03 2.93 1.83E-03 3.24

200 2.83E-01 1.05E-03 2.37 1.20E-03 2.37 7.85E-05 4.55
800 1.41E-01 1.43E-04 2.88 1.67E-04 2.85 4.46E-06 4.14
3200 7.07E-02 2.03E-05 2.81 2.42E-05 2.79 7.24E-07 2.63

4

32 7.07E-01 2.37E-03 2.85E-03 8.78E-04
50 5.66E-01 1.10E-03 3.42 1.31E-03 3.50 2.11E-04 6.40

200 2.83E-01 9.88E-05 3.48 1.11E-04 3.55 6.25E-06 5.07
800 1.41E-01 7.07E-06 3.80 7.83E-06 3.83 9.42E-07 2.73
3200 7.07E-02 7.43E-07 3.25 8.57E-07 3.19 7.97E-07 0.24

U
pw

ind
flux

1

32 7.07E-01 6.38E-02 7.57E-02 1.60E-01
50 5.66E-01 3.99E-02 2.11 4.95E-02 1.90 8.80E-02 2.68

200 2.83E-01 9.66E-03 2.05 1.23E-02 2.01 1.70E-02 2.37
800 1.41E-01 1.89E-03 2.35 2.52E-03 2.28 2.52E-03 2.75
3200 7.07E-02 5.04E-04 1.91 6.15E-04 2.04 5.16E-04 2.29

2

32 7.07E-01 1.45E-02 1.85E-02 2.77E-02
50 5.66E-01 7.68E-03 2.86 9.21E-03 3.13 7.58E-03 5.81

200 2.83E-01 1.08E-03 2.83 1.45E-03 2.67 4.94E-04 3.94
800 1.41E-01 1.23E-04 3.13 1.79E-04 3.01 2.56E-05 4.27
3200 7.07E-02 1.65E-05 2.90 2.41E-05 2.90 2.50E-06 3.35

3

32 7.07E-01 3.19E-03 4.17E-03 3.52E-03
50 5.66E-01 1.30E-03 4.01 1.69E-03 4.05 9.96E-04 5.66

200 2.83E-01 9.39E-05 3.79 1.26E-04 3.75 4.21E-05 4.56
800 1.41E-01 5.75E-06 4.03 7.74E-06 4.03 3.24E-06 3.70
3200 7.07E-02 1.71E-06 1.75 2.07E-06 1.90 2.05E-06 0.66

4

32 7.07E-01 3.97E-04 5.10E-04 4.90E-04
50 5.66E-01 1.33E-04 4.90 1.74E-04 4.83 1.09E-04 6.72

200 2.83E-01 5.09E-06 4.71 6.99E-06 4.64 1.91E-06 5.84
800 1.41E-01 2.77E-07 4.20 3.59E-07 4.28 2.85E-07 2.75

Table 5.14 The L2-errors (5.14)–(5.16) and the spatial order for SM-ABC and constant permittivity
tensor (5.1).
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N K h Error Ẽx Order Error Ẽy Order Error H̃z Order

C
entralflux

1

32 7.07E-01 2.55E-01 2.61E-01 2.54E-01
50 5.66E-01 2.06E-01 0.96 2.18E-01 0.82 1.51E-01 2.33

200 2.83E-01 1.42E-01 0.54 1.46E-01 0.58 2.38E-02 2.66
800 1.41E-01 7.75E-02 0.87 8.00E-02 0.86 5.00E-03 2.25
3200 7.07E-02 3.93E-02 0.98 4.17E-02 0.94 1.15E-03 2.12

2

32 7.07E-01 8.28E-02 8.16E-02 4.53E-02
50 5.66E-01 5.81E-02 1.58 5.58E-02 1.70 1.68E-02 4.44

200 2.83E-01 1.50E-02 1.96 1.50E-02 1.90 1.04E-03 4.01
800 1.41E-01 3.48E-03 2.10 3.50E-03 2.10 1.08E-04 3.26
3200 7.07E-02 8.52E-04 2.03 8.49E-04 2.04 4.83E-06 4.49

3

32 7.07E-01 1.86E-02 1.87E-02 2.94E-03
50 5.66E-01 9.28E-03 3.11 9.16E-03 3.20 1.20E-03 4.03

200 2.83E-01 1.60E-03 2.54 1.65E-03 2.47 6.07E-05 4.30
800 1.41E-01 2.16E-04 2.89 2.26E-04 2.87 3.64E-06 4.06
3200 7.07E-02 3.00E-05 2.85 3.20E-05 2.82 6.55E-07 2.48

4

32 7.07E-01 2.37E-03 2.85E-03 8.78E-04
50 5.66E-01 1.11E-03 3.40 1.28E-03 3.59 2.23E-04 6.14

200 2.83E-01 1.04E-04 3.41 1.19E-04 3.42 3.81E-06 5.87
800 1.41E-01 6.06E-06 4.11 6.84E-06 4.13 2.55E-07 3.90

U
pw

ind
flux

1

32 7.07E-01 9.29E-02 9.86E-02 1.48E-01
50 5.66E-01 6.20E-02 1.81 6.60E-02 1.80 7.97E-02 2.78

200 2.83E-01 1.53E-02 2.02 1.62E-02 2.02 1.52E-02 2.39
800 1.41E-01 2.83E-03 2.44 3.40E-03 2.26 2.43E-03 2.65
3200 7.07E-02 8.21E-04 1.78 8.88E-04 1.94 4.71E-04 2.36

2

32 7.07E-01 2.54E-02 2.34E-02 1.52E-02
50 5.66E-01 1.26E-02 3.15 1.16E-02 3.14 6.01E-03 4.16

200 2.83E-01 1.70E-03 2.89 1.82E-03 2.67 4.47E-04 3.75
800 1.41E-01 1.92E-04 3.15 2.16E-04 3.08 2.35E-05 4.25
3200 7.07E-02 2.51E-05 2.93 2.88E-05 2.90 2.48E-06 3.24

3

32 7.07E-01 4.87E-03 5.33E-03 2.64E-03
50 5.66E-01 2.00E-03 3.99 2.11E-03 4.14 9.01E-04 4.82

200 2.83E-01 1.37E-04 3.87 1.57E-04 3.75 3.97E-05 4.50
800 1.41E-01 8.49E-06 4.01 9.41E-06 4.06 3.18E-06 3.64
3200 7.07E-02 2.28E-06 1.90 2.25E-06 2.07 2.07E-06 0.62

4

32 7.07E-01 6.75E-04 6.60E-04 4.07E-04
50 5.66E-01 2.35E-04 4.73 2.35E-04 4.62 1.06E-04 6.03

200 2.83E-01 7.82E-06 4.91 8.86E-06 4.73 1.81E-06 5.87
800 1.41E-01 3.87E-07 4.34 4.08E-07 4.44 2.83E-07 2.67

Table 5.15 The L2-errors (5.14)–(5.16) and the spatial order for SM-ABC and space-dependent
permittivity tensor (5.2).
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(a) Central flux.
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(b) Upwind flux.

Fig. 5.7 L2-error for Ẽx (5.14) versus h, for SM-ABC and space dependent permittivity tensor (5.2).

∆t Error Ẽx Order Error Ẽy Order Error H̃z Order

Leap-frog time integrator

1.00E-03 2.76E-04 2.28E-04 2.82E-04
5.00E-04 1.38E-04 1.00 1.14E-04 1.00 1.41E-04 1.00
2.50E-04 6.90E-05 1.00 5.69E-05 1.00 7.06E-05 1.00
1.25E-04 3.45E-05 1.00 2.84E-05 1.00 3.53E-05 1.00
6.25E-05 1.73E-05 1.00 1.42E-05 1.00 1.77E-05 1.00

Predictor-corrector time integrator

1.00E-03 4.18E-05 2.73E-05 4.76E-05
5.00E-04 9.71E-06 2.11 6.46E-06 2.08 1.06E-05 2.16
2.50E-04 2.35E-06 2.05 1.57E-06 2.04 2.54E-06 2.07
1.25E-04 5.77E-07 2.02 3.88E-07 2.02 6.21E-07 2.03
6.25E-05 1.43E-07 2.01 9.64E-08 2.01 1.54E-07 2.02

Table 5.16 The L2-errors (5.14)–(5.16) and the temporal order for SM-ABC and constant permittivity
tensor (5.1) when the predictor-corrector method is considered.
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(a) Constant permittivity tensor.
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(b) Space-dependent permittivity tensor.

Fig. 5.8 L2-errors (5.14)–(5.16) versus ∆t, for SM-ABC and upwind flux.
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∆t Error Ẽx Order Error Ẽy Order Error H̃z Order

Leap-frog time integrator

1.00E-03 3.04E-04 2.94E-04 2.81E-04
5.00E-04 1.52E-04 1.00 1.47E-04 1.00 1.40E-04 1.00
2.50E-04 7.60E-05 1.00 7.35E-05 1.00 7.01E-05 1.00
1.25E-04 3.80E-05 1.00 3.67E-05 1.00 3.51E-05 1.00
6.25E-05 1.90E-05 1.00 1.84E-05 1.00 1.75E-05 1.00

Predictor-corrector time integrator

1.00E-03 5.28E-05 4.62E-05 5.74E-05
5.00E-04 1.21E-05 2.13 1.07E-05 2.11 1.23E-05 2.23
2.50E-04 2.91E-06 2.06 2.59E-06 2.05 2.90E-06 2.08
1.25E-04 7.13E-07 2.03 6.36E-07 2.02 7.05E-07 2.04
6.25E-05 1.76E-07 2.01 1.58E-07 2.01 1.74E-07 2.02

Table 5.17 The L2-errors (5.14)–(5.16) and the temporal order for SM-ABC and space-dependent
permittivity tensor (5.2) when the predictor-corrector method is considered.

As we seen theoretically and numerically, when we consider the SM-ABC for our fully explicit
DG scheme (2.32)–(2.34), the temporal order of convergence is not what we expected from leap-frog
time integrator. The temporal order reduces from two to one. In order to recover the order in time and
stay explicit in defining the flux, we proposed an iterative predictor-corrector time integration scheme
(4.35)–(4.37). As we may see in Table 5.16 and Figure 5.9 the second temporal order is perceived in
our results.
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(a) Constant permittivity tensor.
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(b) Space-dependent permittivity tensor.

Fig. 5.9 L2-errors (5.14)–(5.16) versus ∆t, for SM-ABC and upwind flux when the predictor-corrector
method is considered.

5.4 Modeling scattered electromagnetic wave’s propagation through
eye’s structures

As mentioned in the Introduction, the research that lead to this dissertation was developed in the
framework of a more general project that aims to achieve a computational model to simulate the
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electromagnetic wave’s propagation through the eye’s structures in order to create a virtual optical
coherence tomography (OCT) scan [73].

As OCT standard techniques only provide structural information [74], it is necessary to expand
OCT data analysis to account for both structural and functional information. A mathematical modeling
of OCT data could expand the information provides by OCT from structural to functional information.
The functional information may provide a means for optical biopsy. For instance, the variation of
retinal nerve fiber layer (RNFL) birefringence may provide early detection of subcellular changes in
glaucoma and other diseases affecting the optic nerve [75].

Simulating the full complexity of the retina, in particular the variation of the size and shape
of each structure, distance between them and the respective refractive indexes, requires a rigorous
approach that can be achieved by solving Maxwell’s equations. As the interest is to acquire the
backscattered light intensity, we start this section by the scattered field formulation. Then we build up
a two dimensional model which tries to represent a single nucleus of the outer nuclear layer (ONL)
of the retina. The efficiency of our method is examined by simulating the light scattering in this 2D
domain. The evolution of scattering field intensity in time is obtained using the predictor-corrector
DG method.

5.4.1 The scattered field formulation

We exploit the linearity of the Maxwell’s equations (5.11)-(5.13) in order to separating the electro-
magnetic fields (E, H) into incident fields (E i, H i) and scattered components (Es, Hs), i.e.,

E = Es +E i and H = Hs +H i. (5.31)

Assuming that the incident field is also a solution of the Maxwell’s equations we obtain in the same
way as in [82], the scattered field formulation,

εxx
∂Es

x

∂ t
+ εxy

∂Es
y

∂ t
=

∂Hs
z

∂y
+P (5.32)

εyx
∂Es

x

∂ t
+ εyy

∂Es
y

∂ t
=−

∂Hs
z

∂x
+Q (5.33)

µ
∂Hs

z

∂ t
=−

∂Es
y

∂x
+

∂Es
x

∂y
+R in Ω× (0,T ], (5.34)

with the source terms

P(x,y, t) = (ε i − εxx)
∂E i

x

∂ t
− εxy

∂E i
y

∂ t
, (5.35)

Q(x,y, t) =−εyx
∂E i

x

∂ t
+(ε i − εyy)

∂E i
y

∂ t
, (5.36)

R(x,y, t) = (µ i −µ)
∂H i

z

∂ t
, (5.37)

where ε i and µ i represent, respectively, the relative permittivity and permeability of the medium
in which the incident field propagates in the absence of scatterers (in the background medium).
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Additionally, using this formulation it is very easy to specify an incident wave using an analytic
formula.

5.4.2 Light scattering in outer nuclear layer

In order to apply our method on a real model problem the outer nuclear layer is chosen among the
retina’s layers. This layer was chosen as it consistently presents the characteristics of diabetic macular
edema [21] and because spherical scatterers can adequately model it, which helps to simplify the
simulation.

The outer nuclear layer is mostly populated by the cells bodies of light sensitive photoreceptor
cells (rods and cons). The nucleus is the biggest organelle in the photoreceptor cell’s soma and
presents a high refractive index difference to the surrounding medium. Thus the main contribution to
light scattering in this layer comes from the nucleus [76]. The outer nuclear layer could be modeled
as a population of spherical nuclei in an homogenous medium.

As a proof of concept we present a simple simulation in a two dimensional square domain which
contains a circle that aims to represent the single nucleus in the ONL. This domain is presented in
Figure 5.10 while the difference between the permittivity in the circle and the background domain is
shown with ε ′.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

ǫ

ǫ´

Fig. 5.10 Square computational domain which contains a circle that aims to represent the single
nucleus in ONL.

Let us consider equations (5.32)–(5.33), in Ω = (−1,1)2, complemented with Silver-Müller
absorbing boundary condition and null initial condition. The absorbing boundary condition is chosen
for the model as the non absorbing boundary conditions provide undesirable reflections that invade
the computational domain.

In the experiments the magnetic permeability and relative permittivity are considered as constants,
ε i = 1 and µ = 1. The permittivity ε is considered as a diagonal matrix with εxx(x,y) = εyy(x,y) = 1.2
for (x,y) such that

√
x2 + y2 < 0.5 and εxx(x,y) = εyy(x,y) = 1 otherwise. For the incident wave we

consider the planar wave E i
y(x, t) = cos(10(x− t)).
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Fig. 5.11 Computational domain and triangular mesh.

(a) T = 0.25 (b) T = 0.5

(c) T = 0.75 (d) T = 1

Fig. 5.12 Evolution of the scattered field intensity Is =
√
(Es

x)
2 +(Es

y)
2 with time.

The simulation is done with predictor-detector DG method which is more efficient in the case of
SM-ABC [6]. The scattered field intensity

Is =
√

(Es
x)

2 +(Es
y)

2
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were obtained with the predictor-corrector DG method defined on the mesh plotted in Figure 5.11. In
simulations we consider α = 0 (central flux) and the approximation polynomial degree as N = 4. The
time step is chosen as ∆t = 0.002 and the final simulation time is T = 1. The evolution of scattered
field intensity with time is plotted in Figure 5.12.



Chapter 6

Conclusion

The target of this dissertation was to formulate a fully explicit DGTD solution of Maxwell’s equations.
The nodal discontinuous Galerkin method was employed for space discretization and coupled with
a leap-frog time integrator yielding a fully explicit scheme which is capable to deal with different
formulations for the numerical flux, anisotropic materials and different types of boundary conditions.
The proposed leap-frog discontinuous Galerkin scheme was analyzed rigorously and the numerical
results supporting the achieved theoretical results were provided.

In this chapter, we first summarize the accomplishment of each part in Section 6.1 and then end
with some final comments and perspectives for future work in Section 6.2.

6.1 Summary

The first part of this dissertation was devoted to the background on computational electromagnetic
with Maxwell’s equations. We first presented Maxwell’s equations and some of their basic properties,
like the constitutive relations between the electromagnetic fields, their behavior at interfaces and
boundary conditions. We then introduced the leap-frog discontinuous Galerkin method which was our
choice model in the numerical integration of Maxwell’s equations in anisotropic materials.

In order to reduce the number of equations of the 3D model, the transverse electric mode of
Maxwell’s equations was considered as our 2D model. Our model included the most common
boundary conditions PEC and PMC as well as the so-called first order Silver-Müller absorbing
boundary condition in order to truncate the unbounded domain to a bounded domain.

The main ingredient of the DG methods is the numerical flux. Our formulation of the numerical
flux had been developed in a general framework which unified different flux-evaluation schemes
and included the treatment of anisotropic materials. The leap-frog time integration method had been
applied to the DG semi-discrete scheme to obtain the leap-frog DG scheme. We used backward
approximation in upwind flux terms which yielded a fully explicit scheme.

The second part of this work dealt with the analysis of leap-frog DG scheme. The sufficient
condition of stability was firstly analyzed for the two dimensional problem and the bound of the
stability region was deduced in detail which revealed the influence of the mesh size, the choice of
numerical flux and the degree of the polynomials used in the construction of the finite element space

85
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making possible to balance accuracy and computational efficiency. Moreover, the stability analysis
was further extended to the three dimensional problem and the stability region was also presented.

We rigorously analyzed the convergence property of the leap-frog DG scheme in 2D. We proved
that under the stability condition the scheme is arbitrary high-order in space. The error estimate
analysis of the scheme demonstrated the second order of temporal convergence for PEC and PMC
boundary conditions but only the first order in the case of Silver-Müller absorbing boundary condition.
We proposed a predictor-corrector time integrating scheme which recovered the time order to two in
the case of SM-ABC. This idea was developed further and we defined an iterative predictor-corrector
time integrator. The iterative predictor-corrector DG method was defined such that the scheme
remained fully explicit and converged to a second order implicit method. The stability analysis of the
implicit method was also presented.

Finally, in a set of numerical experiments we provided the numerical results supporting the
achieved theoretical results. The sharpness of the stability region was checked and the temporal
and spatial order of convergence were confirmed for both central and upwind fluxes and different
boundary conditions. Moreover, the efficiency of the predictor-corrector time integrator to recover the
time order was checked. In the last part, we present the results of simulation with our method in the
framework of our application of interest. The light scattering was simulated in a 2D domain which
aims to represent a single nucleus in the outer nuclear layer of retina.

6.2 Outlook

Numerical analysis is a crossroad of several disciplines and it is crucial on developing efficient
and accurate solutions to real-world problems, while maintaining a solid theoretical base. Realistic
models are usually very intricate. Frequently they involve coupled systems of time dependent partial
differential equations, whose mathematical analysis, that is often quite complex, requires sophisticated
mathematical tools. To establish mathematical models to simulate the behavior and dynamics of
those systems and to provide the mathematical foundations of the numerical methods, to analyze their
theoretical properties, namely stability and accuracy, is then a challenging problem of paramount
importance.

The perspectives of the research following the work of the present thesis, comprises contributions
in the field of numerical analysis and also in the field of biomathematics.

The leap-frog discontinuous Galerkin method that was implemented and analyzed in this disserta-
tion is an efficient method. However, the method used for the time integration has a great impact on
the accuracy of the numerical solution. The leap-frog DG scheme is of arbitrary high-order convergent
in space while the temporal order is restricted to two. The first straightforward future work could be
on improving the accuracy of the time integration method. A possible choice would be explore the
time integration by high order methods like, for instance, an high order explicit Runge-Kutta method,
and study their quantitative and qualitative properties.

Other alternative could be use other less exploited potentials of the discontinuous Galerkin methods.
In particular, DG methods can be used in a space-time approach, giving an effective framework for
high-order accurate methods. In this technique, time is considered as an extra dimension and it
is treated in the same way as the spatial coordinates. Space-time DG methods while allowing for
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discontinuities in the temporal discretization, combine the well known advantages of the DG methods,
such as of flexibility for local mesh refinement, adjustment of the polynomial order in each element
and excellent performance on parallel computers. The main drawback of the space-time DG methods
is their implicit nature.

Another direction of future research, following some preliminary results of simulation presented
on this thesis, is to model the light scattering in the retina aiming to mimicking the OCT imaging
system. The idea is to integrate the time-dependent Maxwell’s equations to numerically solve local
scattering effects within the retina, considering OCT wavelengths and different realistic settings for
each layer.
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Appendix A

Technical lemmata

The lemmata included this chapter are technical tools needed to derive the stability condition and
the convergence estimates. In the first section the trace and inverse inequalities that we mostly used
is stated. This inequalities turn out to be very useful for analyzing DG methods. The polynomial
approximations is stated in Section A.2 and at the end the discrete Gronwall’s lemma that we used in
our analysis is stated.

A.1 Inverse and trace inequalities

Inverse and trace inequalities are very important tools in the analysis of DG methods. We consider the
following trace inequalities (see e.g. [70]).

Lemma A.1.1. Let Tk be an element of Th with diameter hk and let fk be an edge or a face of Tk.
There exists a positive constant C independent of hk such that, for any u ∈ H1(Tk),

∥u∥L2( fk) ≤C

√
| fk|
|Tk|

(
∥u∥L2(Tk)+hk∥∇u∥L2(Tk)

)
. (A.1)

Moreover, if u is a polynomials of degree less than or equal to N, there exists a positive constant Ctrace

independent of hk and u but dependent on the polynomials degree N, such that

∥u∥L2( fk) ≤Ctrace

√
| fk|
|Tk|

∥u∥L2(Tk).

An exact expression for the constant Ctrace can be given as a function of the polynomials degree, and
the following inequality holds for any u ∈ PN(Tk)

in 2D : ∥u∥L2( fk) ≤

√
(N +1)(N +2)

2
| fk|
|Tk|

∥u∥L2(Tk), (A.2)

in 3D : ∥u∥L2( fk) ≤

√
(N +1)(N +3)

3
| fk|
|Tk|

∥u∥L2(Tk). (A.3)
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Consequently, there exists a positive constant Cτ independent of hk and N but depent on the shape-
regularity hk/τk, where τk is the diameter of the largest inscribed ball contained in Tk (see (2.14)),
such that, for any u ∈ PN(Tk),

in 2D : ∥u∥L2(∂Tk) ≤Cτ

√
(N +1)(N +2)h−1/2

k ∥u∥L2(Tk), (A.4)

in 3D : ∥u∥L2(∂Tk) ≤Cτ

√
(N +1)(N +3)h−1/2

k ∥u∥L2(Tk). (A.5)

The next result is an inverse-type estimate ([17, 36]), where we present explicitly the dependence
of the constant on the polynomials degree.

Lemma A.1.2. Let us consider Tk ∈ Th with diameter hk. There exists a positive constant Cinv

independent of hk and N such that, for any u ∈ PN(Tk),

∥u∥Hq(Tk) ≤CinvN2qh−q
k ∥u∥L2(Tk), (A.6)

where q ≥ 0.

Note that Cinv depends on the shape-regularity hk/τk, where τk is the diameter of the largest
inscribed ball contained in Tk. A sharper estimate reads

∀u ∈ PN(Tk), ∥u∥Hq(Tk) ≤ C̃invN2q
τ
−q
k ∥u∥L2(Tk).

A.2 Polynomial approximation

The following lemma gives polynomial approximation with Inequality (A.7) and polynomial approx-
imation on mesh faces with Inequality (A.8). The reader can refer to [8] or [71] for the following
approximation properties.

Lemma A.2.1. Let Tk ∈Th and u ∈ H p(Tk). Then there exits a constant C depending on p and on the
shape-regularity of Tk but independent of u, hk and N and a sequence PNu ∈ PN(Tk), N = 1,2, . . . ,
such that, for any 0 ≤ q ≤ p

∥u−PNu∥Hq(Tk) ≤C
hσ−q

k
N p−q ∥u∥H p(Tk), p ≥ 0, (A.7)

∥u−PNu∥L2( fk) ≤C
hσ−1/2

k

N p−1/2 ∥u∥H p(Tk), p >
1
2
, (A.8)

where σ = min(p,N +1) and fk is an edge of Tk.

A.3 Discrete Gronwall’s lemma

We use the following version of discrete Gronwall’s lemma in our analysis. For the proof see e.g.
[27, 87].
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Lemma A.3.1. Let an, bn, cn λn ̸= 0 with {cn} being monodically increasing. Then

an +bn ≤
n−1

∑
j=2

λ ja j + cn, n = 2,3, · · ·

implies for n = 2,3, · · ·

an +bn ≤ cn

n−1

∏
j=2

(1+λ j)≤ cn exp(
n−1

∑
j=2

λ j).
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