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Abstract

In the last two decades, processors have changed from a single-core to a multi-core
design, due to physical constrains in chip manufacturing. Furthermore, GPUs have
become suitable targets for general purpose programming. This change in hardware
design has had an impact on software development, resulting in a growing investment
in parallel programming and parallelization tools.

Writing parallel programs is difficult and error prone. Two of the main prob-
lems in parallelization are the identification of which sections of the code can be
safely parallelized and how to efficiently partition work. Automatic parallelization
techniques can save programmers time identifying parallelism. In parallelization,
each parallelizable section is denoted as a task, and a program is comprised of sev-
eral tasks with dependencies among them. Work partition consists in deciding how
many tasks will be created for a given parallel workload, thus defining the task
granularity. Current techniques focus solely on loop and recursive parallelization,
neglecting possible fine-grained task-level parallelism. However, if the granularity
is too fine, penalizing scheduling overheads may be incurred. On the other hand, if
the granularity is too coarse, there may not be enough parallelism in the program
to occupy all processor cores. The ideal granularity of a program is influenced by
its nature and the available resources. Our experiments have shown that a program
that terminates within seconds with the correct granularity may execute for days
with an unsuitable granularity. Finding the best granularity is not trivial, more
so in the case of automatic parallelization, in which there is no knowledge of the
program domain. The current approach consists in empirically evaluating several
alternatives to find the optimal granularity.

This thesis proposes a more efficient model for automatic parallelization, in which
parallelism is identified at the Abstract Syntax Tree (AST) node level. Static anal-
ysis is used to obtain access permissions, representations of how an AST node in-
teracts with others in terms of memory accesses and control-flow. Parallelism at
the AST node level is very fine grained and may generate more tasks than those
that can be executed simultaneously, resulting in scheduling overheads. In order to
reduce these overheads, tasks may be merged in coarser tasks, thus reducing par-
allelism. A cost-model is proposed to dynamically adjust granularity according to
the complexity of tasks, resulting in programs more efficient than the best existing
alternative.

Because the automatic parallelization model can generate programs that can
execute either on the CPU or the GPU, it is important to automatically decide if
a program should execute on the CPU with a coarse granularity, or on the GPU
with a finer granularity. To perform this decision, a Machine Learning approach was
built, based on static compiler-obtained and runtime features. This model performed
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program classification with over 95% of accuracy and a low misclassification cost.
In order to improve the performance of automatic and manually parallelized

programs, new dynamic granularity algorithms are proposed for runtime aggrega-
tion of tasks. The proposed algorithms extend the state of the art by taking into
consideration the usage of the number of stack frames and machine occupation, as
well as using a cost-model-based prediction of the task execution time. The existing
and proposed algorithms have been evaluated in both time and energy consumed,
as well as number of programs completed within reasonable time. Considering both
time and energy, the proposed algorithms outperformed existing ones, but no algo-
rithm performed better than any other in all benchmark programs. These results
demonstrate the importance of using the right algorithm for an individual program.

An evolutionary algorithm was used to generate a global best granularity algo-
rithm for a set of target programs. While improvements were not generalized to
a larger set of programs, the evolutionary algorithm can be used to improve the
execution time within 10 to 20 generations.

To avoid an exhaustive search for the best granularity algorithm for each pro-
gram, this thesis proposes both a ruleset and the usage of machine-learning classifiers
over program features. The ruleset was obtained from the empirical evaluation of
different alternatives on a selected benchmark suite. Both approaches can be used
by compilers or programmers to select the granularity algorithm for each program.
In a real-world benchmark suite, the ruleset has shown to outperform classifiers, but
on an unseen larger synthetic benchmark suite, a misclassification-weighted Random
Forest was able to achieve better results than the ruleset.

Overall, this thesis proposes new approaches for automatic parallelization and
granularity control that improve the performance of programs.

Keywords: automatic parallelization, compilers, concurrency, work-stealing, opti-
mization
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Resumo

Durante as últimas duas décadas, o design dos processadores mudou de um único
núcleo para multicore, devido a limitações físicas no processo de fabrico. Para além
disso, GPUs têm também sido usadas para programas generalistas e não só de
aplicações gráficas. Esta mudança em design de hardware tem tido um impacto
grande no desenvolvimento de software, resultando num investimento crescente em
programação paralela e ferramentas para tal.

Escrever programas paralelos é difícil e sujeitável a erros. Dois dos principais
problemas em paralelização são a identificação de secções de código que podem ser
executas em paralelo sem causar erros, e como dividir o trabalho eficientemente.
Técnicas de paralelização automática podem poupar tempo aos programadores na
identificação de paralelismo. Em paralelização, cada secção que corre em paralelo
é chamada de tarefa, e um programa é composto por diferentes tarefas com de-
pendências entre elas. Partição de trabalho consiste em decidir quantas tarefas vão
ser criadas para um determinado trabalho, definindo a granularidade de tarefas.
As técnicas actuais focam-se em paralelização automática de ciclos e recursividade,
ignorando paralelismo fino ao nível da tarefa. No entanto, com uma granularidade
demasiado fina, existem custos no escalonamento de tarefas. Mas se a granulari-
dade for demasiado grossa, pode não existir paralelismo para ocupar todos os nú-
cleos do processador. A granularidade ideal para um programa é influenciada pela
sua natureza e pelos recursos disponíveis. Nas nossas experiências, um programa
que termine em segundos com a granularidade certa, pode demorar dias com uma
granularidade menos própria. Encontrar a granularidade ideal não é trivial, espe-
cialmente em casos de paralelização automática, em que não existe conhecimento
do domínio do programa. A abordagem actual consiste em empiricamente avaliar
diferentes alternativas.

Esta tese propõe um modelo de paralelização automática mais eficiente, em que
o paralelismo é identificado ao nível dos nós da Árvore de Sintaxe Abstracta (AST).
Análise estática é usada para obter access permissions, representações de como os
nós interagem com outros em termos de acessos de memória e fluxo de controlo.
Paralelismo a este nível é muito fino e pode executar mais tarefas do que as que
podem ser executadas eficientemente em paralelo. Para reduzir os overheads causa-
dos, tarefas podem ser agregadas em tarefas maiores, reduzindo o paralelismo. Um
modelo de custo é proposto para ajustar dinamicamente a granularidade de acordo
com a complexidade das tarefas, resultando em programas mais eficientes do que
com as alternativas actuais.

Como este modelo pode gerar programas que podem executar na GPU ou no
CPU, é importante tomar a decisão em que plataforma correr. Um programa com
uma granularidade mais grossa deve executar na CPU, enquanto um programa com a
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granularidade mais fina pode executar na GPU. Para fazer esta decisão, é proposta
uma abordagem de Machine Learning, baseado em análise estática e em features
obtidas pelo Runtime. Este modelo conseguiu uma precisão de 95% e um baixo
custo de classificação errada.

Para melhorar a performance de programas paralelos, tanto manuais como au-
tomáticos, são propostos novos algoritmos de controlo de granularidade para agre-
gação de tarefas pelo Runtime. Os algoritmos propostos estendem o estado da arte
tendo em conta o uso de stack frames e ocupação da máquina. Os algoritmos exis-
tentes e propostos foram todos avaliados tanto a nível de tempo de execução, como
de energia consumida, bem como número de programas terminados num determi-
nado tempo. Considerado tempo e energia, os algoritmos propostos conseguiram
ser melhores que os existentes, mas nenhum algoritmos conseguiu ser melhor que
todos os outros em todos os programas testados. Estes resultados demostram como
é importante escolher o algoritmo ideal para cada programa.

Um algoritmo evolucionário é também proposto para gerar um melhor algo-
ritmo de granularidade para um conjunto de programas alvo. Apesar das melhorias
não serem generalizáveis para um conjunto maior de programas, o algoritmo evolu-
cionário pode ser usado para melhorar o tempo de execução entre 10 a 20 gerações.

Para evitar uma pesquisa exaustiva pelo melhor algoritmo de granularidade para
cada programa, são propostos um conjunto de regras e classificadores de Machine-
Learning. O conjunto de regras foi obtido através da análise empírica de diferentes
algoritmos num conjunto de programas. Ambas as abordagens podem ser usadas
por compiladores ou programadores para escolher o algoritmo de granularidade para
cada programa. Num conjunto de programas reais, o conjunto de regras mostrou
melhores resultados que os classificadores. Em novos programas criados sintetica-
mente, um classificador Random Forest, usando pesos baseados no custo de classifi-
cação errada, obteve resultados melhores que o ruleset.

Resumindo, esta tese propõe novas abordagens para paralelização automática e
controlo de granularidade que podem melhorar a performance de programas.

iv Chapter 0
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Chapter 1

Introduction

1.1 Motivation
In the last two decades, the evolution of processors has changed from single-core to
multi-core. Multi-core design has been adopted in response to the lack of increase of
clock speed, which has stabilized over the last decade. Manufacturers have limited
clock speed because increasing it would exponentially increase power consumption.
Today, the multicore design is not limited to high performance servers or worksta-
tions. Even recent smartphones feature quad and octo-core processors, showing how
definite multicore design is. Computers can have multiple processors, each with
several cores, and each core may have two threads of execution, which is the case
with Intel hyperthreads. Graphics Processing Units (GPUs), initially designed to
improve graphics performance, have been used for other types of applications, lead-
ing to the field of General Purpose GPU Programming (GPGPU). GPUs feature
a higher number of parallel threads than multicore processors, allowing for mas-
sive parallelism. However, the different architecture of GPUs does not improve the
performance of all programs.

In order to take advantage of these new architectures, programmers must write
their programs to be parallel (Sutter, 2005). From Operating System (OS) APIs
to high level parallel programming languages, there have been different models to
express parallelism in software programs.

The most low-level parallel programming model is the usage of the native threads
of the Operating System (OS), such as PThreads on Linux (Nichols et al., 1996).
Using native threads, the programmer writes code that will be executed potentially
at the same time, on different OS threads. The OS scheduler uses multiplexing to
support the execution of more threads than the number of hardware threads. Mul-
tiplexing is also used on top of native threads to reduce the overhead of system calls.
For instance, the Java Virtual Machine (JVM) supports green threads (Software,
1997) that appear to the programmer as being a OS-level thread. However, they
follow a M to N model, in which M green threads execute on N native threads.

At a higher programming level, there are language extensions and compiler di-
rectives used to automate the creation of threads. OpenMP (Dagum and Menon,
1998), Cilk (Blumofe et al., 1996) and Thread Building Blocks (TBB) (Reinders,
2007) are examples of extensions to Fortran, C and C++ that allow the expression
of parallel computations without the explicit usage of threads. Parts of the code
that are parallelized are considered tasks. Since tasks have a finer granularity than
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threads, one OS-level thread can execute several tasks. Tasks are also used as the
smallest unit of work used to balance the workload of programs. In the case of
irregular or asymmetric programs, one thread may have more work scheduled than
other. The runtime systems allow for threads that finish work early to steal work
from another thread (work-stealing). This can reduce the execution time of pro-
grams, by moving tasks from the critical path to available threads. More recently,
new languages have incorporated parallelism as part of the language, such as parallel
loops and parallel places or datagroups to group parallel tasks that have to be syn-
chronized. X10 (Charles et al., 2005), Chapel (Chamberlain et al., 2007), Fortress
(Allen et al., 2005) and Æminium (Stork et al., 2014) are examples of these lan-
guages, which also use work-stealing runtimes to automatically adjust the program
to the available hardware.

Despite these efforts, writing parallel programs is a difficult task. McKenney
(2011) identified four main problems in parallel programming, in no specific order:
parallel access control, interacting with hardware, resource partitioning and work
partitioning. This thesis focus on the latter. Work partitioning consists on identi-
fying which parts of the code should execute in parallel. We can refer to each of
those parts as tasks. A tasks is a representation of a set of instructions that can
execute in parallel with others. A parallel program is made of several tasks. While
a thread can be considered a task, this concept is more commonly used at a higher
level of abstraction. Typically, several tasks are executed on a single thread, with
a relatively small penalty for task scheduling. On the other hand, the existence
of several tasks per thread allows work-stealing runtimes to automatically balance
workload, resulting in a better performance in highly irregular programs.

The work partition problem is two-fold, as its goal is to optimize the performance
while maintaining the semantics of the correspondent sequential program. Thus, the
problem can be subdivided in two: identifying parallel tasks and selecting the ideal
task granularity.

The identification of tasks is traditionally performed by the programmer. Ei-
ther by creating threads or by annotating the source code with compiler directives,
programmers decide which parts of the code can execute in parallel. This pro-
cess of manual parallelization requires domain knowledge and expertise in parallel
programming, and even then it is a lengthy and error-prone process. Automatic par-
allelization of existing sequential programs is desirable but it is even harder because
domain-level information is not available. Instead, automatic parallelizing compil-
ers perform static analysis on the code to identify spots where parallelism could be
extracted. Cetus (Dave et al., 2009) and Par4All (Amini et al., 2012) are examples
of those compilers, which are focused on parallelizing loops.

Selecting the right granularity of tasks is also a very complex problem. If there
are not enough tasks, there is an underuse of hardware resources that could have been
used to improve the execution time. If there are too many tasks, the task scheduling
overhead cost will increase the execution time. If tasks are not well balanced, some
of the threads will be idle while they could have been performing useful work. A
program that could execute within seconds with the right granularity may take days
otherwise, which makes this issue an important one. Finding the ideal granularity
is hard and typically requires trial-and-error since there is no ideal granularity for
all programs, as the behavior and structure of parallelism can be unique.

Compilers, either automatic or programmer-assisted, are conservative with re-
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gards to task granularity, as just-enough tasks are created to use the hardware
available. In the case of irregular programs, the task granularity is dynamic and
will only be known during execution. Right before a point where a new task can
be spawn, the runtime has to decide whether to spawn that task in parallel, or to
execute the task workload sequentially to avoid scheduling overheads. This decision
follows a granularity or cut-off algorithm. The simpler approach is to limit the total
amount of tasks created to a multiple of the available hardware threads, or to limit
the creation of sub-tasks to a certain depth. Some more complex algorithms have
been developed, but no single algorithm has been shown to outperform the others in
all sets of problems. Thus, it is important to understand when to use one algorithm
over the others. This issue has been raised before in Duran et al. (2008b), but a
solution was not presented.

The evaluation of granularity control algorithms has focused on the execution
time of the programs. However, there has been a recent concern with the energetic
impact of programs, specially in the case of parallel programs (Steigerwald et al.,
2008). Multithreaded programs have a high impact on energy consumption because
the workload controls whether cores are idle or performing, and recent processors
can control the voltage and clock-speed dynamically to save energy when cores are
not being used. The grain of parallel tasks directly impacts the parallelism in the
program and has impact on the energy spending, which is not yet well understood.
This energy impact is very important for all classes of devices, from supercomputers
that spend months on workloads, to small smartphone and tablet devices that need
to have a lasting battery life. Thus, it is important to understand the impact of
granularity algorithms on both performance and energy consumption.

The granularity of programs needs to adapt to the underlying hardware. The
ideal granularity for GPUs is finer than that for CPUs. GPUs have an higher
number of parallel threads, and provide an higher performance-energy ratio. But
despite these advantages, GPUs cannot be used in all types of program due to the
high latency in memory copies and its internal processor architecture. As such,
programs can execute on the CPU with a coarse granularity, or on the GPU with a
fine granularity. Such decision is not always easy, as it depends on the input data
and parallelism in the program, and the wrong decision may slow down the program
several times. Thus, there is a need to automatically perform this decision with high
accuracy.

1.2 Contributions
This thesis addresses the issues raised in the previous section regarding work parti-
tioning: the identification of parallelism in sequential programs and the selection of
the best task granularity for a given program. The main contribution of this thesis is
a model for automatic parallelization of sequential programs supported by dynamic
granularity control mechanisms for an efficient execution. This contribution can be
detailed in:

• A new automatic parallelization model capable of extracting more parallelism
from sequential programs than existing techniques. By using static analysis to
infer data and control flow, it is possible to extract parallelism at the AST node
level. Task and data-parallelism are both identified, and the resulting code can
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target CPUs or GPUs. In order to generate efficient programs, the granularity
of tasks is coarsened through the usage of a cost-model hybrid granularity
algorithm. The model was applied to the Java language and it was evaluated
against manual parallelization and a state of the art parallelizing compiler
(Rafael et al., 2014; Fonseca et al., 2016; Fonseca and Cabral, 2016a).

• A machine-learning approach for automatically selecting whether to execute
a program with coarse granularity on the CPU or fine granularity on the
GPU. This approach defines a new metric (misclassification cost), the feature
extraction process, the classifier and the cost-sensitive training required to
balance the mismatch of the misclassification cost on both platforms (Fonseca
and Cabral, 2013).

• New dynamic granularity control algorithms based on runtime data, such as
the number of tasks in the queue and number of stacks in the program, which
can be used in manually parallelized programs, or to complement the cost-
model hybrid granularity algorithm. These algorithms have been evaluated
against existing algorithms over a large benchmark suite, comparing execution
time and energy consumption. Results have shown that there is no algorithm
better than the others in all benchmark programs. Also, energy-wise, the
fastest program is not always the most energy efficient (Fonseca, 2013; Fonseca
and Cabral, 2016b).

• A Genetic Algorithm (GA) capable of evolving a custom synthetic dynamic
granularity control algorithms, that can be used instead of the previous ones,
and work-stealing configurations. The GA is able to improve the performance
of individual parallel programs (Fonseca et al., 2017).

• Two new approaches for selecting the best granularity algorithm for a program
given its features. The first approach uses a ruleset that was obtained from a
per-feature misclassification cost analysis. The second approach is the usage
of machine-learning classifiers with the same features. These approaches are
able to select a granularity control mechanism that has a low misclassification
cost.

Finally, it is worth mentioning that the source code for the benchmarks used in
evaluations is available online (Fonseca and Cabral, 2016b), and the source-code for
the compilers and runtime systems has also been open-sourced and instructions to
obtain it are available at http://alcidesfonseca.com/research/.

1.3 Thesis Structure
Before delving into new material, Chapter 2 addresses the state of the art and lays
out the definitions and concepts on top of which new material will be presented.

Chapter 3 addresses the automatic parallelization of sequential programs and
the compiler-time granularity control. This includes the rules for parallelization,
the platform used and the evaluation performed against manual parallelization and
another state-of-the-art compiler.

In Chapter 4, the selection of GPU or CPU for executing data-parallel programs
is addressed. The proposed Machine-Learning methodology is introduced, describing
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feature extraction and classifiers. Furthermore, the methodology is evaluated in
terms of accuracy and misclassification cost.

In Chapter 5, new granularity control algorithms are introduced to improve
on existing ones on specific types of programs. Existing and new mechanisms are
evaluated on an heterogenous benchmark to identify when to use each one. This
chapter verifies that the No Free Lunch Theorem is applicable to granularity control
algorithms.

Chapter 6 concerns the energy efficiency of granularity control mechanisms. It
starts by verifying that not all mechanisms have the same energy efficiency. Syn-
thetic benchmarks are used to understand how program characteristics influence the
energy and time performance of programs. Finally, a real benchmark is used to test
the conclusions drawn.

Chapter 7 proposes an evolutionary approach to address the problem of finding
the best cut-off algorithm, among other configurations. A genetic algorithm is ap-
plied to a benchmark suite, and tested on a larger one. The same genetic algorithm
can be applied to successfully evolve a granularity algorithm for a specific program.

In Chapter 8, two new approaches are described to select the best granularity
algorithm for a specific program. The first approach is a Ruleset based on per-feature
analysis of empirical results. The second approach is the usage of Machine-Learning
tecniques.

Chapter 9 closes this thesis with overall conclusions and discusses possible
directions for future work.
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Chapter 2

State of the Art

In this chapter we will cover the most recent advances in parallel programming, with
a focus on automatic parallelization, runtime systems that support the execution of
parallel programs, and granularity control algorithms. This chapter will also cover
the context of this work, and it will emphasize the problems identified.

2.1 Parallelization
Over the years, parallel programming has moved from manual low-level native thread
creation and management, to high-level parallel languages, libraries and compilers.
We will cover language extensions and compiler directives that automate the manual
parallelization process, automatic parallelization tools that convert sequential source
code into parallel programs with no or almost no human intervention, and parallel-
by-default languages.

2.1.1 Manual parallelization tools
Writing parallel programs is hard, and over the years several tools have been devel-
oped to assist developers in that task. The first step in the parallelization process is
to identify which parts of the code can be executed in parallel. Different tools have
different approaches to do this.

Cilk (Frigo et al., 1998) is an example of a language extension to C and C++
which allows function calls to be executed asynchronously, until a synchronization
point is reached in the parent function. This style of parallelism is called divide-
and-conquer or fork-join parallelism, in which a program is subdivided in smaller
tasks, perhaps recursively, which are scheduled for parallel execution. Listing 2.1
shows the Fibonacci program written in Cilk. cilk_spawn executes the function in
parallel, and cilk_sync awaits for all spawned functions to finish execution. Divide-
and-conquer parallelism has become a popular option for expressing parallelism, and
it has been reimplemented in other languages. Intel Thread Building Blocks (TBB)
(Reinders, 2007) provides a functionality similar to Cilk, but presented as a C++
template library instead of a compiler extension. Being a template library allows it
to avoid the function call overheads of being a library, and does not require special
compilers and tools like Cilk. Java ForkJoin (Lea, 2000) is a Java library providing
the same functionality. This library was considered so useful that it was included in
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the standard libraries of Java and Scala, and is the engine underneath the parallel
collections of Java and the actor model scheduler in Scala.

int fib(int n) {
if (n < 2)

return n;
int x = cilk_spawn fib(n-1);
int y = fib(n-2);
cilk_sync;
return x + y;

}

Listing 2.1: Example of the Fibonacci program written in Cilk

Fork-join parallelism allows programmers to avoid thread creation and manage-
ment. Instead, programmers need only to identify which functions can be executed
asynchronously. This model encourages programmers to limit the memory access
through function arguments, discouraging access from the spawned function to the
whole program memory. Access to shared objects still needs to be synchronized by
the programmer. This approach is also independent of the underlying hardware.
There is no need for the programmer to know how many threads will be created, as
the creation of threads will be done during execution, when the number of hardware
threads is available. The details of the runtime execution of Fork-join parallelism
will be detailed in Section 2.2.

Fork-join parallelism focus on expressing task-parallelism, allowing the program
to perform two different tasks at the same time. Although it is possible to ex-
press data-parallelism in Cilk, through the recursive division of the data structure,
data-parallelism was the focus of OpenMP creation. OpenMP (Dagum and Menon,
1998) is the most common approach in scientific programming for shared-memory
parallel programming, as it makes the process of parallelizing intensive for-loops
easier. OpenMP is source-compatible with either Fortran or C, allowing for the
same program to be executed in parallel or sequentially, depending on the compiler
flags used. OpenMP is based on directives that programmers write inside comments.
The directives give the compiler information regarding whether loops can be par-
allelized, which variables should be synchronized, which variables should be shared
or local to the thread, among many other options. Listing 2.2 shows an example of
the approximation of the integral of the function f(x) = 50/(π ∗ (2500 ∗ x ∗ x + 1))
using OpenMP. The first comment defines each variable as being shared or private
to each thread. The comment defines the sum over the total variable to be a parallel
reduction. This example illustrates the type of information the programmer needs
to encode, so the parallel code generated by the compiler has the same semantics as
the original program.
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# pragma omp parallel shared ( a, b, n ) private ( i, x )
# pragma omp for reduction ( + : total )
for ( i = 0; i < n; i++ ) {

x = ( ( double ) ( n - i - 1 ) * a + ( double ) ( i ) * b ) / ( double ) (
n - 1 );

total = total + f ( x );
}

Listing 2.2: Example of the Integral program written in OpenMP

In version 3.0, OpenMP added support for task-parallelism (Ayguadé et al., 2007)
in the same style as Cilk. Listing 2.2 shows the same Fibonacci program written
using OpenMP task style. The OpenMP version is more verbose as it requires the
access to each variable to be explicit, allowing for more fine-tuned optimization
by the programmer. The features of OpenMP have been developed mostly in the
OMPSS (Duran et al., 2011) language, which was design to be the playground where
OpenMP ideas are tested. Examples of these features are new backends, such as
GPUs, and semantically rich annotations.

int fib(int n) {
if ( n == 0 || n == 1 ) return(n);
#pragma omp task shared(x)
x = fib(n-1);
#pragma omp task shared(y)
y = fib(n-2);
#pragma omp taskwait
return x+y;

}

Listing 2.3: Example of the Fibonacci program written in OpenMP

Wool (Faxen, 2010) is a recent template-based C library with the same semantics
as Cilk. Just like TBB, the execution overhead is minimal as it is a template
library with a very light-weighted runtime system. Haskell also provides parallel
programming constructs to create sparks, lightweight tasks similar to short-lived
green threads (Marlow et al., 2010). The higher-order programming style of Haskell
allows data-parallelism to be easily expressed, and the immutability aspect of the
language does not require synchronization on variables.

Besides the mentioned tools, there are other language extensions and libraries
that add parallelism to these and other programming languages. Task Parallel
Library (Leijen et al., 2009), Unified Parallel C (El-Ghazawi and Smith, 2006) and
Co-array Fortran (Numrich and Reid, 1998) are just a few examples. However, other
tools use the same approaches here described.

2.1.2 Automatic parallelizing compilers
Even with language extensions and libraries, programmers still need to spend time
and effort on parallelizing programs. In larger and complex programs, this is es-
pecially a problem as there might be complex dependencies in data and control
flow in the program. Automatic parallelizing compilers avoid this problem by tak-
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ing a sequential program and generating a parallel version that preserves the same
semantics.

In the Functional Programming (FP) paradigm, data structures are immutable,
hence avoiding conflicts between two concurrent threads. Thus, automatic paral-
lelization of functional languages is straighforward. Typically higher order functions,
such as map or reduce, parallelize the operation spawning tasks for subsets of the
collection being iterated. This has been done in LISP (Hogen et al., 1992) and
Haskell (Marlow et al., 2009), among other languages.

In imperative languages, like the case of C or Java, the process of automatic
parallelization is more difficult. Functions can access and modify global variables.
When parallelized, the modification of global or shared variables must follow the
same order to maintain the semantics. In complex programs, there can be so many
interactions between possible tasks and shared variables that identifying parallelism
that preserves the correctness of the program is a problem for both humans and
compilers.

The main focus of research in automatic parallelization has been the paralleliza-
tion of for-loops. Loops can fall in three different categories: DO-ALL, DO-ACROSS
or DO-PIPE. DO-ALL parallelism does not contain any interference between loop
iterations, meaning that they only read shared variables and write only to local
variables. In the case of arrays, there are no writes to common indices of arrays.
Listing 2.4 shows an example of a loop that follows this pattern and all iterations can
execute independently. The parallelization of DO-ALL loops consists in grouping
sets of iterations into a task and schedule tasks to different native threads. The pro-
gram will only advance past the loop when all iterations of the loop are completed,
to ensure a consistent state.

for (int i=0; i< n; i++) {
a[i] = b[i] + c[i];

}

Listing 2.4: DO-ALL example

DO-ACROSS loops can have a region of the iteration that may interfere with
other loops when writing to shared variables. The parallelization of these loops is
useful when the interfering region is small compared to the remainder of the loop.
Listing 2.5 shows an example of a DO-ACROSS loop. For parallelizing DO-ACROSS
loops, there are two approaches. The first is to use atomic operations, either by using
processor atomic instructions (like the Compare and Swap atomic instruction), or
by using mutexes to ensure only one iteration performs that operation at a given
time. The second option is to use a local variable shadowing the shared variable in
which temporary results are stored. In the end of all iterations, the local shadow
copies are all merged into the original variable.

for (int i=0; i< n; i++) {
total += b[i] + c[i];

}

Listing 2.5: DO-ACROSS example
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Finally, DO-PIPE loops have dependencies between different steps inside the
same iteration. Listing 2.6 shows an example of a DO-PIPE loop. The parallelization
can be done by having different threads executing different steps, and iterations are
moved from one thread to the other, according to which step they are in.

for (int i=0; i< n; i++) {
c[i] = i + 1;
b[i] = c[i] + 2;
a[i] = b[i] + 3;

}

Listing 2.6: DO-PIPE example

In order to verify if the loops can be parallelized or not, the Polyhedral Model
is frequently used (Bondhugula et al., 2008a). This model supports nested loops by
considering each iteration within the most deep loop as lattice points inside a poly-
tope object. A polytope object can have n dimensions and any number of flat sides.
Each side corresponds to the multiple values of the variables used to identify each
iteration. This model supports multiple transformations on the polyhedral model
to optimize the code to the target platforms. Polyhedral skewing is an example of
a rewrite rule that optimizes the data accesses to the result of previous iterations.

However, parallelization of nested loops is not always efficient. If the cost of
executing one iteration in the deepest loop is too low, compared with the task
creation overhead, parallelizing it will decrease performance. Most commonly, only
the first or two outermost loops are parallelized, in order to create more coarse
grained tasks.

Most automatic parallelizing compilers are based on this model for loop paral-
lelization, such as Polaris (Pottenger and Eigenmann, 1995), Cetus (Dave et al.,
2009), Pluto (Bondhugula et al., 2008b), Polly (Grosser et al., 2011) or Par4All
(Amini et al., 2012).

Zhao et al. (2005) presented an approach in which the parallelization occurs dur-
ing execution, on Java bytecode. This approach was limited to DO-ALL loops, which
are the most simple to identify and the ones that yield the highest speedup. When
considering the parallelization and thread creation cost, this approach is unable to
provide speedup on the original programs.

Haghighat and Polychronopoulos (1993) presented an alternative to the polyhe-
dral model through the usage of static analysis. This work focused on understanding
data dependencies, much like the polyhedral model, and modeling the domain of in-
duction variables, the variables used to identify the iteration. Through the usage
of abstract interpretation, it is possible to model the execution time of loops and
perform work-partitioning accordingly, in order to balance the work across threads.
This approach also supports replacing a set of arithmetic operations by faster equiv-
alent alternatives. This work proposes the usage of abstract interpretation, symbolic
algebra, calculus of finite differences, number theory, convex analysis and theorem
proving methods for automatic parallelization and optimization of programs. How-
ever, this work only presents small incomplete proof of concepts that cannot be
systematically applied to any sequential program.

While loop parallelization has been the focus of automatic parallelization re-
search, there is also potential parallelism at the instruction level. This type of
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parallelism is present in divide-and-conquer algorithms, which are a very popular
pattern and the focus of Cilk, ForkJoin and OpenMP task model. zJava (Chan and
Abdelrahman, 2004) used symbolic access paths, which denote how objects are writ-
ten and read at the local level. This information is then summarized at the method
level, according to whether it has global effects or not. Parallelization occurs dur-
ing runtime, when this information is used to translate access paths into regions.
Each region represents an area of the memory of the program that can be accessed
concurrently by multiple threads. Each region has a writer/reader lock, which is
used to guarantee the order of the operations by concurrent threads. Threads can
be created for each method invoked, but there is a need to manually select the best
granularity in order to prevent slowdowns. The evaluation of this model is limited
to DO-ALL loops that do not occur in an heavy synchronization overhead.

Girkar and Polychronopoulos (1992) suggested the usage of a hierarchical task
graph to represent parts of the programs and their data dependencies. The graph
can then be used to identify tasks that can execute in parallel. This has been the
basis for most task-level parallelism approaches. Symbolic analysis is used to verify
if two different recursive calls access the same elements of an array. If not, the
program is parallelized speculatively. Threads are created with a shadow copy of
the global memory, and only if there are no incompatible data dependencies is the
local memory copied back to the global memory. If there is an incompatibility, local
data is discarded. This approach was able to achieve up to 3 times of speedup on a
four core machine.

Gupta et al. (2000) proposed an approach for automatic parallelization of recur-
sive methods. This approach represents accesses to variables as may have writes,
definitely has writes or may expose the variable for future writes. These annotations
are propagated through the program up to the inter-procedural level. Symbolic
analysis is used using this inter-procedural array dependencies for identifying tasks
that access independent sub-ranges of arrays to parallelize. This analysis focus on
data-parallelism, even in recursive calls. The authors later applied this approach to
Java Artigas et al. (2000) using a runtime-supported alias analysis. This approach
also used native threads instead of Java threads for performance benefits.

While not considering the identification of parallelism, Bik and Gannon (1997)
suggest code transformations to apply to loops and recursive methods. The sequen-
tial code is translated into worker threads that execute strides of loops, or subsets
of the recursive invocation. Speedups are obtained on a four core machine. This
approach has the limitation of only supporting balanced workloads.

Abdelrahman and Huynh (1996) suggest a compiler for automatically paralleliz-
ing tasks identified in sequential source code. The compiler identifies the regions in
memory which each function uses. Before executing a certain task, the scheduler
has to obtain exclusive access to those regions. Region lists are auxiliary structures
to guarantee order in the region accesses, in order to guarantee the semantics of the
sequential program. Speedups of 23 on a 28-core processor were obtained.

OoOJava (Jenista et al., 2011) also uses static analysis to parallelize Java. The
model is inspired by out-of-order processors, in which one processor selects one
instruction in a stream and, as soon as all dependencies are met, it is scheduled
to a functional processor. In OoOJava, when a thread reaches the beginning of a
new task, it marks that task as scheduled and resumes to where the task would
end. The OoOJava runtime will await for the task dependencies to be met, and
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schedule that task to another thread. Programs are represented as variable reads,
variable writes and variable copy statements. Additionally, entering and exiting a
task are also represented. Technically, OoOJava does not perform strictly automatic
parallelization, as the programmer annotates the task in the source code. However,
the data dependencies of the source code are inferred automatically, leaving only
the granularity of tasks to the programmer. Since OoOJava is not able to know all
the data dependencies during compilation, the tracking of that information is done
at runtime, especially in the case of variables stored in the head. OoOJava then
translates the graph of conflicts between tasks into queues for code generation in
the C language. One of the limitations of OoOJava is that it cannot handle IO or
exceptions. OoOJava was able to achieve speedups in all benchmarks up to 20 times
on a 24 core machine.

MP-Tomasulo (Wang et al., 2013a) also uses Out-of-Order instructions for auto-
matically parallelizing code for FPGAs. Given the nature of FPGAs, it is possible
to eliminate write-after-read and read-after-write dependencies by renaming param-
eters, while the control flow of each thread is independent. This approach cannot
be translated to multicore processors.

Jrpm (Chen and Olukotun, 2003) is another approach for parallelizing Java pro-
grams, but operates on Java bytecode instead of the source code. This model targets
chip multiprocessors with thread-level speculation (TLS) abilities. TLS allows the
program to schedule threads optimistically without violating the correct behavior of
the program. This work focuses on loops by identifying the regions of the program
where TLS can be exploited. One limitation of this is that only one loop nesting can
be parallelized at a given time. The identification of these regions is done by tracing
the execution of the sequential program and collecting timing data on dependencies.
This approach was able to obtain speedups between 2 and 4 on a 4 core processor.

Software Transactional Memory (STM) has been used to execute TLS programs
on regular hardware. This approach detects conflicts when they occur, in contrast
to preventing them during compilation. Using STM will lead to more potential par-
allelism because more independent tasks will be considered, allowing for a chance of
conflict among them. However, whenever a conflict occurs, there is a heavy perfor-
mance penalty for executing the rollback to the previous state. STM also introduces
memory costs for storing the last safe memory state. Mehrara et al. (2009) presented
an STM approach that was unable to achieve 4x of speedup on a 8-core machine,
showing how expensive the mechanism is. Additionally, STMs are shown to only
be advantageous in parallel blocks with a low chance of conflicts. HydraVM (Saad
et al., 2012) is a STM automatic parallelizing compiler for legacy code. Parallelism
extraction is done at the loop level by considering superblocks of code, that do not
have any IO and represent independent paths of execution. The notion of indepen-
dent paths allows for memory conflicts inside branched instructions, ideally with
a low probability of executing. Hydra has shown a speedup up to 5x on a 8-core
machine.

2.1.3 Parallel-by-default programming languages
Both OpenMP, Cilk and automatic parallelizing compilers assume there is an original
source code written in a sequential style. Over the last decade, new languages have
been developed that do not follow a sequential execution model. These languages
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have been designed from scratch with parallelism in mind, making it easier for
programmers to express parallelism. X10 (Charles et al., 2005), Fortress (Allen
et al., 2005) and Chapel (Chamberlain et al., 2007) are examples of such languages,
targeting High Performance Computing.

Fortress is a programming language designed by Sun for scientific use, a more
up-to-date version of Fortran. Fortress is designed to support multiple programming
paradigms. One of these paradigms is the usage of the functional style in operations
over arrays. These operations cannot have side-effects, which makes it automatically
a candidate for parallel code generation. The whole language executes in parallel by
default. Tuples, functions, arguments, generators and explicit parallel blocks all can
execute in parallel without any programmer annotation. Loops in Fortress are not
guaranteed to be sequential. During execution, the runtime will execute the loop in
parallel or sequentially. Determining the criteria for this decision is not trivial.

The X10 language is based on the concept of places, memory regions that cannot
be accessed concurrently. In X10, functions and methods are annotated with the
places used. This information can be used by the compiler to detect disjoint parts
of the program that do not access any common place. These disjoint parts can
be executed in different native threads without any need for synchronization. It is
possible to increase parallelism, by executing functions that access the same place
in parallel, as long as the access to that place is synchronized through the usage
of a mutex. X10 supports the async keywork, which precedes a method, indicating
that the invocation can occur in parallel with the remainder of the current block,
similarly to cilk_spawn. An asynchronous invocation does not necessarily spawn a
new task. It can be inlined, executing as if it was sequential. This decision is left to
the runtime system. Atomic blocks are another construct used to prevent the effects
of global writes to be ignored by concurrent writes through the usage of locks.

In Chapel, a locale represents a unit of computation that has uniform access to
memory, and the program has access to a list of locales available to perform compu-
tations. Chapel uses the concept of domains, a set of indices which support parallel
iteration. Domains as a language construct are an evolution over the concept of
places. Domains have standard library support for iteration, reduction, scanning
and other operations that can occur in parallel, mapped to locales. Task parallelism
can be obtained in Chapel through the usage of the cobegin construct, which allows
all the operations inside that block to start asynchronously in parallel. Produc-
er/consumer synchronization variables are available to force a specific order, and
atomic blocks are also part of the language.

Æminium (Stork et al., 2014) is another language that is designed to be executed
in parallel, but it focuses on concurrency support. Æminium uses a declarative ap-
proach to concurrency, in which programs are expressed without any synchronization
primitive. However, variables and method signatures are required to be annotated
with access permissions, representation of how that variable can be accesses by con-
current threads. For instance, a variable may be unique and only one thread may
have access to it, or it might be shared, in which several threads can concurrently
access it. The programmer does not create threads or annotates tasks in the source
code. Any method invocation can occur in parallel, depending on the access per-
missions declared. Æminium uses a dataflow approach, in which the program is
converted into a Directed Acyclic Graph (DAG) of tasks. This graph is compiled
into Java source code for execution on a runtime system.
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All of these languages have powerful compilers that use static analysis to identify
parallelism, but they also require a runtime system for efficiently executing the
generated code. Several parallelization decisions are delayed until execution because
only then will information such as data size and load on the system be available.

2.2 Parallel program execution and optimization
2.2.1 Runtime task schedulers
Parallel libraries or languages rely on runtime systems to manage the execution
of tasks. The two main approaches for task scheduling are work-sharing or work-
stealing. In work-sharing, tasks are divided among different threads for parallel
execution. This distribution can be done at compile-time or during execution onto
a threadpool. This approach assumes all tasks are equally balanced, meaning that
they will take roughly the same amount of time to execute. When the duration of
times is asymmetrical, then the performance of work-sharing runtimes will be equal
to the duration of the largest group of tasks.

To overcome this deficiency in work-sharing, one can use work-stealing runtimes.
The most popular work-stealing runtime is the THE algorithm (Frigo et al., 1998),
implemented in Cilk, Fork-Join, X10 and Æminium. In work-stealing, a fixed num-
ber of threads are idle waiting for work. Each thread has its own queue to which
tasks created in that thread are scheduled. Thus, threads execute tasks that spawn
new tasks that are added to the queue of that thread. When a task tries to pop
tasks but the queue is empty, it attempts to steal a task from another queue. The
choice of whichspecific queue to steal from can follow different policies.

Which task to steal may be chosen according to its position on the queue, the
influence of the task on the continuation of the program, the parent-child relation
of tasks, or even at random. The best policy is also dependent of the nature and
structure of the programs. In machines with NUMA memories, locality-aware steal-
ing can improve the performance (Acar et al., 2000; Guo et al., 2010). Furthermore,
having two queues per thread, one for sharing and another for consumption, can
make the work-stealing more scalable (Dinan et al., 2009). The traditional Cilk pol-
icy is work-first, that tries to perform work before spawning new tasks. Guo et al.
(2009) introduced help-first, in which creation of more work is preferred, creating
more parallelism in the beginning of the program for other threads to steal early.

Wool introduced leapfrogging (Wagner and Calder, 1993) in task-based work-
stealing runtimes, allowing one worker to perform work when waiting for synchro-
nization on another task that is being executed. This improves the performance on
scenarios where stealing would not be enough to load-balance the system. LACE
(van Dijk and van de Pol, 2014) improves Wool by using two deques per worker, one
private and another public, reducing the frequent overhead of synchronizing when
removing tasks from the owned queue, an issue identified by Acar et al. (2013).

2.2.2 Granularity Control
Work-stealing runtimes improve the performance of a program by load-balancing
tasks to reduce the overall execution time of the program. However, in order to
achieve balance, tasks need to be small enough for stealing to be possible. But if
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there are too many small tasks, the overhead of scheduling tasks becomes larger and
it might slow down the program. On the other hand, coarse-grained tasks might not
use all the parallelism in the machine. Thus, there is a trade-off in this decision, and
that trade-off depends on the specific nature of the parallel program (Duran et al.,
2008b).

Controlling the granularity of tasks can be done at runtime, using Lazy Task
Creation (Mohr et al., 1991) (LTC). In LTC, the creation of new tasks is not al-
ways true, it is conditional. If a certain condition is true, the task is created and
scheduled to run. If the condition is false, the work is immediately executed inside
the current task. The advantage of this technique is that it prevents the runtime
from creating unnecessary tasks, thus avoiding the overhead from object creation,
memory allocation and queue management. Listing 2.7 shows an example of LTC
being used in the implementation of the naïve Fibonacci algorithm. The decision
criteria (n < 16) is a custom solution for this algorithm and cannot be used for other
programs. This thesis will focus on general purpose cut-off techniques that can be
used on different programs.

int fib(int n) {
if ( n == 0 || n == 1 ) return n;
if (n < 16) {

return fib(n-1) + fib(n-2);
} else {

Future f1 = new Future(() => fib(n-1));
Future f2 = new Future(() => fib(n-2));
return f1.get() + f2.get();

}
}

Listing 2.7: Example of LTC on the Fibonacci Example

The decision whether to create tasks or to inline a sequential version is the
major decision in this approach. Most of times, the cut-off decisions custom-made
by developers are the ones that provide the best results. Developers are able to use
any information at their disposal, including domain knowledge, to create the right
cut-off strategy for each program. Unfortunately, automated systems do not have
access to the same information, or are not able to understand it the way developers
do, making it very difficult for these systems to obtain the same gains as their human-
made counterparts. Nonetheless, several algorithms have been proposed to identify
the best cut-off solutions using only knowledge about the program’s executing code
and run-time data.

OpenMP initially implemented two cut-off approaches (Duran et al., 2008b) for
their task model: MaxTasks and MaxLevel.

In MaxTasks, tasks are created until the total number of active tasks in all
worker queues reaches a certain threshold t. After that point, all new computations
are inlined instead of spawning another thread. When the number of active tasks
lowers, new tasks can be created until the threshold is reached again. The threshold
in this approach is typically defined as the number of processor threads on the
machine, adapting to different machines, but being oblivious to other factors such
as memory and processor speed. In order to decrease the overhead of computing
the size of queues, the size of other queues is estimated from the size of the current
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queue after applying a factor of (number of idle threads / active threads), because
idle threads are known to have 0 tasks in their queue. This estimation assumes a
regular distribution among threads, which may not always happen.

MaxLevel makes use of the tree-shaped structure created by divide-and-conquer
algorithms. In order to avoid the creation of too many tasks, the cut-off limit may
be defined by the depth of the recursion l, which can be calculated by the number
of ancestors of the running task.

Later, Duran et al. (2008a) introduced the LoadBased algorithm, in which tasks
are inlined when all threads are executing work, and not idle. In the same work,
Adaptive Tasks Cut-Off, or ATC(t,l), was introduced. Tasks are only created if
two conditions are met. The first is that there are fewer tasks than the number of
threads on a given recursion level. This condition forces the threads to expand in
depth, creating work for all threads and being within a certain bound limit. The
second condition is that the depth-level is less than a certain threshold. Thus, ATC
is the combination of max-level and max-tasks.

ATC adds a profiler that saves information regarding how much time a sub-
tree takes to execute, and predicts further subtrees (if the prediction is larger than
1ms, the task will be created). This is, however, based on the assumption that all
tasks inside a level have a similar behavior, which does not happen in unbalanced
parallelism.

ForkJoin also uses another metric, Surplus Queued Task Count, or Sur-
plus(t). This approach relies on the size of work-stealing queues. Before creating a
new task, the number of queued tasks in the current thread that exceeds the aver-
age number of tasks in other queues is compared to a threshold limit t (usually 3 in
existing ForkJoin benchmarks). In other words, it inlines a task if the current queue
size is t tasks higher than the average size of other queues. The goal of this cut-off
approach is to allow a single task to create several tasks for others to steal early in
the program, but prevent the queue from being too large when there is already work
to be stolen.

Acar et al. (2011) introduced the Oracle granularity control mechanism. This
approach has only been applied to implicit parallel languages, such as the case of ML.
The programmer manually annotated each function with the asymptotic complexity.
Each recursive call then uses the annotation and the task depth to estimate the cost
of future calls. Then, that information is used to decide whether it is beneficial or
not to create a new parallel task. In order to adjust to the program execution, this
information is retrieved using a moving average of several runs.

Cong et al. (2008) introduced Batching in the X10 runtime. Batching pushes
lists of tasks instead of single tasks into the work-stealing queues. The main ad-
vantage is that the lists of tasks promote the use of caching, because of memory
locality. It additionally has implementation benefits using list swapping instead of
pushing and popping, during the steals.

However Batching also requires a threshold for the size of task lists. It has been
defined as the min(2Q, S) where Q is the queue size and S is a user-defined threshold
dependent on the algorithm in cause.

Chen et al. (2007) focused on programs with cache-locality, and used profiling
information to improve the performance of work-stealing. In this approach, the
program is previously executed several times to generate memory traces. Then, a
one-pass approach is used to group tasks together in a way that benefits the L2

Chapter 2 17



Automatic Optimization of Granularity Control Algorithms for Parallel Programs

cache usage.
Outside the scope of shared-memory parallel programs, there have been several

approaches (Gerasoulis and Yang, 1993; Sobral and Proença, 1999; Nascimento et al.,
2007) to granularity control in grid computing. The main difference is that the
overhead in communication in distributed memory systems is large enough that it
has to be taken into account. Most common approaches optimize the granularity
by minimizing the data transfers between machines, clustering tasks that access the
same data together.

2.2.3 Evaluations of Cut-off Algorithms
The evaluation of cut-off algorithms has been a recurrent concern over the years.
For instance, Duran et al. (2008b) have found that, in OpenMP, Max-Tasks(t) and
Max-Level(l) performed differently on different programs, with no algorithm being
considered better than the other. The study also concluded that choosing the wrong
cut-off could have a negative impact in performance, making the program run longer
than when not using any cut-off technique. The difference in performance between
tied and untied tasks was also studied. A tied task can only execute on one thread,
while untied tasks can be split and distributed across different threads. Cut-off
techniques are more effective in the presence of untied tasks. The authors also
suggest that depth-first schedulers should be the default, since they are specially
well suited to handle cut-off techniques to avoid a high level of recursion whenever
there is a significant allocation of memory. Finally, the authors were not able to
conclude which cut-off algorithm is the best for each class of application.

Olivier and Prins (2009) studied unbalanced workloads, concluding that different
parameters of Max-Tasks(t) and Max-Level(l) yield different results. Unfortunately,
they also observed that there was no unique parameter capable of achieving the best
results for all scheduling policies. Also, the empirical evaluation data was collected
from experiments executed on machines with just 2 cores, which is not representative
of the machines available today.

Duran et al. (2008a) also studied the behavior of ATC, confirming that the best
cut-off algorithm was program dependent. The Adaptive approach was introduced
in an attempt to limit the problems with both Max-Tasks and Max-Level algorithms.
Max-Level did not create tasks in depth, not making use of the potential parallelism
in the program. Max-Tasks, on the other hand, would create too many tasks,
introducing an undesirable overhead. The main objective of combining the two was
not to improve performance, but rather to minimize the penalty of both approaches.

Podobas et al. (2010) compare task-based runtimes including OpenMP andWool.
The study focus the importance of the task-depth cut-off, referring that OpenMP
approaches perform poorly when tasks are very fine-grained. The Wool runtime
performed better by reducing the overhead in task-scheduling.

In Taura et al. (2012), several possible improvements on task-based work-stealing
runtimes are presented. Cut-off approaches are identified as the optimization that
can yield the higher increase in performance. Their approach is to use the depth
of the task when selecting candidates for work stealing. Their approach was able
to achieve 18.2% of speedup, compared with the 40% possible by selecting the best
cut-off manually.

In ForkJoin, the best cut-off also changes depending on the program and the ma-
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chine (Cong et al., 2008). Thus, the choice of the cut-off algorithm for the framework
was left open for future work by the authors. Dig (2011) propose a profiling-based
automatic refactoring engine. The engine generates several refactoring changes and
evaluates the resulting performance. One of the possible refactoring change is the
introduction of a cut-off limit. Achieving a good performant parallel program can be
done automatically, but it consumes an unrealistic amount of time until the perfect
value is found.

2.2.4 GPU execution of parallel programs
Over the last decade, GPUs have been used to improve the performance and energy
efficiency of parallel programs. Despite the advantages of massive parallelism and
lower energy consumption, GPUs have a different architecture that does not allow
all programs to be compiled to or efficiently execute on them.

First of all, the granularity of the parallelism for GPUs is different than for mul-
ticore CPUs. GPUs can execute a large number of threads simultaneously, thus
requiring fined grained programs. Multicore processors support a lower number of
threads, leading to a coarser granularity in tasks. However, while the CPU has a
direct access to the host memory, the GPU has to copy data from the host memory
to its dedicated memory. This implies that despite the high throughput of GPU
operations, each operation has a large latency. Generally, only data-parallel opera-
tions with a fine granularity, over a large amount of data, can be accelerated on the
GPU.

It is important to understand how GPUs can be used in parallel programs, as
well as when to use GPUs or not for a given program.

The two most common languages for GPGPU are NVidia CUDA (Nvidia, 2007)
and OpenCL (Munshi, 2009). The CUDA toolkit includes a compiler and a library.
The compiler supports a superset of C and generates CPU programs with calls to
the CUDA library, as well as GPU-native code for GPU functions, called kernels.
The CUDA library supports the dynamic execution and synchronization of kernels,
as well as data transfers between the host and GPU memories. OpenCL is an
alternative to CUDA, supported by the majority of GPU vendors. Both languages
were designed to enable general-purpose computations on the GPU and are based
on the C programming language.

These toolkits have been wrapped in bindings for higher-level programming lan-
guages, such as JCuda (Yan et al., 2009) or JavaCL (Chafik, 2011a). On top of
these bindings, higher-level domain-specific languages (DSLs) have been developed
for GPU programming, such as ÆminiumGPU (Fonseca, 2011) and ScalaCL (Chafik,
2011b). Both approaches feature a compiler that translates higher order functions to
OpenCL. The generated OpenCL code is invoked by a runtime library that handles
memory copies between platforms. Aparapi (Frost, 2011) is another alternative for
Java GPU Programming that, instead of using a compiler, dynamically generates
OpenCL code from bytecode just before method invocation.

Copperhead (Catanzaro et al., 2011) is another framework for GPGPU, tar-
geting the Python language. Since Python is dynamically typed, kernels are only
generated at the call-site when the types of input data are known. Cunningham
et al. (2011) introduced a CUDA back-end for the X10 programming language, us-
ing places to represent CPU or GPU computations. However, GPU programming
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in X10 is explicit and requires special annotations.
Mars (He et al., 2008) and MapCG (Hong et al., 2010) are two C libraries for

GPU execution of MapReduce algorithms. These libraries use a key-value approach,
instead of directly using the map and reduce operations over lists, as it is preferred by
other approaches. Despite being focused on the GPU architecture, both approaches
support CPU execution of algorithms.

Accelerate (Chakravarty et al., 2011) is a Haskell library for GPGPU program-
ming that uses the laziness of Haskell to build an operation representation that is
converted into CUDA or OpenCL for GPU execution. Alternatively, operations can
also execute on the GPU. This approach wraps GPU-ready operations with the Acc
monad, which limits its integration with existing code.

The approaches presented so far for GPGPU programming require the program-
mer to decide between the CPU or the GPU. Qilin (Luk et al., 2009) is a GPGPU
framework for C++ that features adaptive mapping. Adaptive mapping consists
in recording the execution time of a program with different data inputs to create a
cost-model. Future executions of the program will be able to use the cost-model to
decide between GPU or CPU for execution. This approach is useful for programs
that are executed several times with different inputs.

Joselli et al. (2008) presents a CPU-GPU decision mechanism for real-time ap-
plications that schedule operations inside a long loop. A similar approach to Qilin
is taken, in which different loads are scheduled to the CPU and GPU to test their
execution times, and the best one is used afterwards.

2.3 Energy consumption of Parallel Programs
Nowadays evaluating the performance of different program granularities is not enough.
It is also important to understand the impact of different parallelization approaches
on energy consumption

There have been two approaches for energy efficient scheduling on multicore
processors: inter- and intra-program management. An inter-program scheduling
will be handled by the OS scheduler, while intra-program scheduling is handled by
each application. Given the focus of this thesis in granularity management, the
focus will be on intra-application scheduling.

There have been three main approaches for managing the energy efficiency in
parallel programs. The first approach is through the usage of asymmetrical multi-
core processors, of which big.Little is an example. In this architecture, a task can be
scheduled for a faster processor or to a slower processor, depending on its urgency or
role in the critical path of the program. The second approach is to reduce the par-
allelism of the program, so only a subset of the available processors are used, saving
energy but increasing the execution time. Finally, the last approach is to use Dy-
namic Voltage and Frequency Scaling (DVFS), a mechanism some processors have to
reduce and increase the voltage and frequency of processors. These approaches have
been applied to parallel programs, specifically those with real-time requirements or
deadlines for completion, in which some slow-downs may be acceptable.

DVFS has been used for static scheduling of parallel programs for HPC. Parallel
programs can be represented as DAGs, with dependencies between tasks. Whenever
a program is unbalanced, a task may depend on two or more tasks that have different
execution times. In that case, the lightest task could execute at a slower speed
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without slowing the whole program. Kimura et al. (2006) applied this idea to clusters
powered by AMD Turion and Transmeta Crusoe processors. The approach focused
on identifying tasks that were not in the critical path, and reducing the frequency
of those processors. Results showed it is possible to obtain a 25% energy gain with
a 1% loss in performance. However, this was only possible on a distributed cluster
architecture, not on a single-machine program.

On a single machine, it is not possible to reduce the clock speed of just one single
thread. However, in Multiple-Clock-Domain processors, DVFS can be done earlier
and independently for each processor. Cai et al. (2008) and Rangasamy et al. (2008)
both presented a compiler-based approach to identify which threads are critical, and
which ones can be slowed down without any large performance impact. Non-critical
threads would be scheduled for processors that would be slowed down, while critical
tasks would execute on the faster processor.

Huang et al. (2009) proposes an earliest-deadline-first static scheduling approach,
that makes usage of DVFS to improve energy efficiency in embedded real-time ap-
plications. This scheduling approach reduced energy consumption between 3 and
9%.

Furthermore, dynamic techniques have also been applied in Multiple-Clock-
Domain processors. Wu et al. (2005) proposed a dynamic frequency adjustment
based on the length of its task queue, similarly to what is done in granularity con-
trol for work-stealing runtimes. This approach has resulted in a 16% energy savings
improvement over a 5% performance degradation.

HERMES (Ribic and Liu, 2014) extends the Cilk work-stealing runtime with
DVFS capabilities. When a worker fails to steal a task, its frequency is reduced. On
the other hand, when it has work from the current queue, it increases the frequency.
This approach leads to a dynamic adjustment of frequencies over workers. This
approach requires a static assignment of workers to CPU cores.

On a single-machine with Single-Clock-Domain processors, a different approach
is required. ParallelismDial (Sridharan et al., 2013) builds on work-stealing tech-
niques to handle dynamic programs, identifying when queues are empty. When that
occurs, that worker is killed, reducing the number of cores being used, thus saving
energy. Unlike DVFS techniques, there is no possibility of reducing the speed of each
processor individually, but there is the possibility of not using it. By continuously
monitoring the system, it is possible to dynamically adjust the number of workers
to the workload. It is important to notice that this approach is only valid when a
program has the right granularity or coarser. If the granularity is too fine, workers
will always have work, just not productive work.

Seo et al. (2008) proposed a dynamic partitioning model for scheduling real-time
tasks on Single-Clock-Domain processors. This model is based on two concepts: mi-
gration of tasks from busier to under-occupied cores, and dynamic core scaling. The
migration will balance workload among processor cores, with the goal of adjusting
workload to cores that execute at the same frequency. Dynamic core scaling will
disable cores in order to save energy when they are not being used. In this case,
work may be migrated from one core to the other. Dynamic task partition resulted
in 25% energy consumption reduction, and dynamic core scaling resulted in a reduc-
tion of 40%. Despite these improvements, this model requires all the information to
be available before a task is executed, and does not concern with task dependencies
or other program-specific characteristics.
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2.4 Summary
In this chapter we addressed parallel programming with a focus on granularity man-
agement, both from the compilation and runtime point of views. Automatic Paral-
lelization tools are mostly limited to exploring parallel loops, ignoring other possible
parallelism in function calls and recursive calls, a common pattern for parallelism.
Approaches that target this type of parallelism are limited in the optimization of
tasks in regards to granularity.

Regarding granularity control in work-stealing runtimes, LTC is the most efficient
way of dynamically controlling the size of tasks, but it depends on a certain cut-off
criteria. There are several choices that can be used, but none is better for all types
of problems. Additionally, there is no heuristic to choose the right cut-off for a given
program.

These issues will be addressed in the remaining chapters.
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Chapter 3

Automatic Parallelization
with Static and Dynamic
Granularity Control

Automatically parallelizing sequential code, to promote an efficient use of the avail-
able parallelism, has been a research goal for some time now, given its importance
in developer productivity and improvement of the performance of legacy programs.
This chapter presents a new automatic parallelization approach based on static anal-
ysis and static granularity management. Finally, we evaluate that approach on a
small set of heterogeneous benchmark programs.

3.1 Introduction
Nowadays, in order to achieve the best performance on multicore machines, pro-
grammers have to write parallel programs. This is typically done using threads,
either directly or indirectly through high-level constructs of the language. Tra-
ditionally, parallelization is done manually by defining threads and synchronizing
them. However, this process is often cumbersome and error-prone, often leading
to the occurrence of problems such as deadlocks and race conditions. Furthermore,
as the code base increases it becomes increasingly harder to detect interferences
between executing threads. Writing, debugging and tuning multi-threaded code is
very time-consuming, as there are multiple combinations of executions that make
the performance and visibility of errors non-deterministic. Furthermore, there are
billions of lines of source code inside existent software that are not able to benefit
from today’s multicore architectures. Parallelizing these programs is a daunting and
extremely costly task, one that hardly anyone is eager to initiate.

The automatic parallelization of existing software has been a long running ob-
jective and prominent research subject (Banerjee et al., 1993). Existing research has
focused mainly on the analysis and transformation of loops, since these have always
been perceived as the main source of potential parallelism in sequential programs
(Feautrier, 1996). Nonetheless, other models have also been studied, such as the
parallelization of recursive methods (Bik and Gannon, 1997) and of sub-expressions
in functional languages. Focusing only on the parallelization of loops is not enough
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in most cases and other approaches have not revealed significant performance im-
provements.

In this chapter we introduce a new approach for performing a fine-grained au-
tomatic parallelization of programs. This approach is distinct from others, since
it parallelizes all the instructions that can, effectively, be executed in parallel. To
identify which instructions can be parallelized, we infer instruction signatures from
the source code of the program. These signatures include dependency and control
flow information, which allows us to organize instructions into a task-oriented struc-
ture. The result is a program that exhibits the maximum possible parallelism at
the finest granularity level (e.g. one task can equal one instruction). However, in
order to achieve good performance and decrease the overhead in run-time task man-
agement, the granularity of tasks is coarsened during compilation and also during
run-time. At run-time, the system load influences granularity control. Further-
more, a work-stealing scheduler is used to efficiently manage execution and control
dependencies.

The proposed approach can parallelize irregular recursive programs with a low
runtime overhead, resulting on up to 20x of speedup, on a 24 thread machine and
an average of 5x of speedup. Because of dependency tracking and transformations
during compilation, we are able to avoid harsh runtime overheads from which ex-
isting solutions suffered. This chapter contributes with an hybrid methodology for
analyzing procedural source code and translating it to a parallel version with a broad
level of parallelism and granularity, that is fine-tuned during execution by runtime
granularity control mechanisms. The parallelization approach was tested with pop-
ular benchmark tests for task-based parallelism, and compared with the state of the
art in Automatic Parallelization and a manual approach.

This approach was applied to the Java language, one of the most popular pro-
gramming languages, since it has a large code base of legacy sequential software.
Java compiles to a bytecode format that is interpreted by a virtual machine, which
may compile to native code parts of code frequently used. Despite Java being an
interpreted language with garbage collection, our approach can be applied to any
procedural or object-oriented language. Typically, object-oriented languages are
not the focus of automatic parallelization, as alias between variables to the same
object may cause conflict. This approach takes a conservative approach to aliasing,
avoiding conflicting code that would not be safe.

In this chapter we will discuss in detail the methodology of the solution in Sec-
tion 3.2. The implementation details and runtime support will be explained in
Section 3.3. Section 3.4 presents a cost-model granularity control mechanism. In
Section 3.5, the platform will be evaluated in different programs. Finally, Section 3.6
lays the conclusions.

3.2 Methodology
The proposed automatic parallelization model is based on performing static anal-
ysis of the code to identify which AST nodes can be executed in parallel without
introducing race conditions. This model uses tasks to represent sections of the code
that can be executed in parallel with others. As such, the parallelization process
consists in converting sequential code into tasks. The efficient execution of tasks is
left to a work-stealing runtime.
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The automatic parallelization is performed in two steps: signature extraction
and parallelization.

3.2.1 Signature Extraction
In order to automatically parallelize the program, it is necessary to analyze the
memory accesses to understand dependencies between parts of the program. If two
program parts read and write to the same variable, then they cannot be parallelized
without guaranteeing determinism. Thus, the first step of the compiler is to un-
derstand what each AST node reads and modifies. Datagroups (Leino et al., 2002)
are used to represent different memory sections and if two method calls share no
datagroup, it means that they can be executed in parallel. After this phase, each
AST node will have a signature, composed of one or more datagroups permissions.
An example of signatures in code can be seen in Listing 3.1. Datagroup permissions
can be one of the following:

• read(dg) - the AST subtree reads the variables represented by datagroup dg;

• write(dg)- the subtree writes to the objects in datagroup dg;

• control(dg) - the control flow of other operations in datagroup dg may be
altered. This is the case with return statements, breaks, continues, ifs and
whiles.

In order to account for aliasing (the usage of two variables to refer to the same
object), static analysis follows the flow of the program and keeps track of the element
and its permission. In case of branching, it considers the conservative union of both
branches permissions.

Method invocations are treated differently because, in order to account for side-
effects, it is important to match the access permissions of the method declaration
with the arguments. Invocations have the access permission of the method decla-
ration where the arguments permissions are transferred to the arguments. In the
special case of recursive calls, either directly or indirectly, a two-pass analysis is
required to account for recursion. The first pass analyzes the method invocation
ignoring the recursive call. The second pass considers the recursive call with the
access permissions obtained from the first pass.

int f(int n) {
if (n < 2) { // read(n), control(f)

return n; // write(return), control(f)
}
int a = f(n - 1); // call(f), read(n), write(a)
int b = f(n - 2); // call(f), read(n), write(b)
return a + b; // read(a), read(b), control(f), write(return)

}

Listing 3.1: Examples of Signatures in Fibonacci Program

Conservatively considering the union of branching instructions can limit the po-
tential parallelism. Thread-Level Speculation (TLS) could be used to increase the
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parallelism at the cost of introducing a runtime penalty for keep track of transac-
tional memory, as well as for rolling back when conflicts occur. Given the discour-
aging results of STM solutions, a conservative and strict parallelization was applied,
but this methodology can also be applied to generate TLS parallel programs.

Another advantage of not using STM is that IO is supported by this model.
All the IO in the program is considered to be in one single global datagroup. This
can be a bottleneck in the cases of several tasks writing or reading to different
files, for instance. This bottleneck can be removed by annotating the IO methods
with signatures. One example would be the writing to a file, that would required
a write(f) permission for that file only, allowing it to execute in parallel with a
System.out.println() method invocation.

3.2.2 Parallelization

Although this model supports parallelization at every AST node, the focus of most
parallelism in procedimental and OOP languages is in method invocations, and
loops. The parallelization of loops is different according to the interdependencies
among iterations, thus resulting in different parallelization methods for DO-ALL
and DO-ACROSS loops. While loops are parallelizing in a specific manner, the
parallelization process of invocations can be applied to any other AST node. This
model also considers nested parallelism among loops, invocations and any mix of
the two.

Parallelization of Invocations

The parallelization of method invocations consists in starting the invocation asyn-
chronously as soon as possible, blocking when the result is needed and the invocation
has not finished yet. Futures (Swaine et al., 2010) are a representation of this con-
cept. The invocation is started as soon as all dependencies are available, wrapped
in a future object, and the invocation is replaced by a get call to the future object.

Listing 3.2 shows the parallelization of the code in Listing 3.1, without perform-
ing the optimization for recursive calls. A sequential version is always available, in
order to use Lazy Task Creation (Mohr et al., 1991) for granularity management.
The decision between executing the sequential version or the parallel version is left
to the runtime, where information such as the load of the system is available.
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int f(int n) {
if (RuntimeManager.shouldSeq())

return jpar_sequential_version_of_f(n);

if (n < 2) {
return n;

}
Future<Integer> b_tmp = new Future<Integer>(task -> f(n-2));
Future<Integer> a_tmp = new Future<Integer>(task -> f(n-1));
int a = a_tmp.get();
int b = b_tmp.get();
return a + b;

}

Listing 3.2: The Fibonacci program translated with futures, without considering
the special case of recursion.

The first invocation of f is wrapped in a future call and replaced by a get() call
to the future object. The future is created as soon as possible. In this case, the
if statement has a control dependency on the current method, which prevents the
future from being instantiated before. The second f call is also converted into a
future that is created as early in the method as possible: just after the if statement
for the same reasons.

When the future object is instantiated, the task is marked for execution and an
available thread may start to execute it. When the get() method is called, the
current task awaits for the execution of the task and reads its result.

The main decision is where to introduce the future creation, maximizing par-
allelism while keeping the same semantics of the original program. The proposed
requirements for starting the execution of a future task are:

• Must not be declared before the declaration of all accessed variables;

• Must not be declared before an expression which has a control access permis-
sion over the current method (return statements);

• Must not be declared before an expression which has a control access permis-
sion over the block (break, continue);

• Must not be executed before an expression that has a write permission over
any variable accessed inside the lambda;

• Must not be executed before an expression that has a read permission over
any variable that is written inside the lambda;

• Must be before its original position and, consequently, the future get() call.

These requirements can result in either soft or hard dependencies. An hard
dependency represents an AST node that must precede the future creation. A
soft dependency represents a task that must have completed before the future is
executed.

The first three and the last requirements are strict, and they are considered hard
dependencies. An hard dependency of a task is an AST node that must precede the
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future creation. One example of this is the declaration of a variable that is used
in the future body, which would resulting in invalid source code if preceded by the
future declaration.

The other requirements can result in either hard or soft dependencies. If the
dependent AST node was already parallelized into a future, than that dependency
is considered a soft dependency, and does not need to precede the future creation.
Instead the future creation of the dependent task must precede the future creation
of the task at hand, and there must be a scheduling dependency between the two
tasks. Listing 3.3 exemplifies a soft-dependency between a task that reads a variable
written by another task. In the case of the parallelization of f(i), w.get() is a soft-
dependency, and the creation of w is an hard dependency, because that task is
required to be listed as a dependency for the future creation of r. The requirement
that the future r will only execute after w is completed will be handled by the runtime
system.

int raw(int n) {
int i = 0;
Future<Void> w = new Future<Void>(task -> { i++; });
Future<Integer> r = new Future<Integer>(task -> f(i), w);
w.get();
return r.get();

}

Listing 3.3: An example of a soft dependency between task r and w

The distinction between hard and soft dependencies is used to schedule tasks
to the runtime even before they can be executed. This early schedule allows the
runtime system to have more information about its future parallelism to perform
dynamic optimizations, such as granularity control decisions.

Algorithm 1 describes how to find the ideal position to create the future task,
determining hard and soft dependencies of task, based on the access permissions.
Let us consider θ as the function that, for an AST node, returns its access permission
set, meth the method in which the invocation is found, node the invocation being
processed, stmt the statement being analyzed and block is the current block being
analyzed. block starts as the most outer scope (the method body) and moves deeper
until it is the scope block in which the invocation is in. This order attempts to
schedule the task for execution as soon as possible, even outside the current block
if possible.

Finally, as seen in the first lines of Listing 3.2, each method containing par-
allelized tasks has a dynamic check for granularity control. This check will allow
the runtime to execute a sequencial version instead of the parallel version of the
method. The criteria to choose between each approach will be discussed in the
following sections.

Parallelizing DO-ALL loops

Besides invocations, for and for-each loops are also targets for parallelization. DO-
ALL and DO-ACROSS loops are handled differently. Iterations of DO-ALL loops
are independent and have dependencies only with code outside the for-loop.

In order to verify if a loop is DO-ALL or DO-ACROSS, array and arraylist
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Algorithm 1 Algorithm to find hard and soft dependencies for a task
harddep← None
softdeps← ∅
for stmt ∈ block do

if control(meth) ∈ θ(stmt) ∨ control(block) ∈ θ(stmt) then
harddep← stmt
continue

end if
if ∃a, [read(a) ∈ θ(stmt)∧write(a) ∈ θ(node)]∨ [write(a) ∈ θ(stmt)∧ read(a) ∈

θ(node)] ∨ [write(a) ∈ θ(stmt) ∧ write(a) ∈ θ(node)] then
if isTask(stmt) then

softdeps← softdeps ∪ stmt
else

harddep← stmt
end if

end if
if stmt ⊃ node then

break
end if

end for

accesses are annotated with indexed datagroups. For example, array[i] = 1 will
have a permission write(array[i]) that is treated as a write(array) for all code outside
loops. Inside loops, the indexed permission is used to verify if reads and writes
are independent. The verification performed is rather naïve, as it only considers
for-loops in which the iteration variable is monotonic. Nevertheless, the polyhedral
model can be applied, obtaining a better degree of parallelism in more complex
loops.

// for (long i=0;i<n; i++)
// array[i] = sin(i);

Future<Void> loop = ForHelper.forLong(0L, n, (Long i) -> {
array[i] = sin(i);

});

Listing 3.4: An example of a DO-ALL loop parallelized.

The iteration of the loop is converted into a lambda expression, which is passed
as an argument to a runtime helper that will handle the work-partitioning. This
helper will return a future that can be used as a soft dependency. Listing 3.4 shows
an example of a simple DO-ALL loop parallelized using the runtime helper method.

Parallelizing DO-ACROSS loops

In order to parallelize DO-ACROSS loops, the loop must contain the same condi-
tions as for DO-ALL, but write permissions can be allowed inside the loop, namely
operations that are commutative and associative. By default, the compiler considers
for these tasks the operators +,-,* and the methods Math.min(), Math.max(). How-
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ever, any other operation can be annotated as such, and will be parallelized using
the same mechanism.

The compiler generates a Map-Reduce operation for the DO-ACROSS loop. The
loop body is converted into a lambda function, saving memory writes inside the
lambda, instead of on the shared variable. The reduce operation will aggregate
the results from the lambda execution. This Map-Reduce operation also returns
a Future for later use as a soft dependency. Listing 3.5 shows an example of the
approximation of the π value, using the Map-Reduce helper to perform the work-
sharing and aggregation of results.

// for (long n=0;n<dartsc; n++)
// scored += inside(randomPosition(), randomPosition()) ? 1 : 0;

int pi(long dartsc) {
if (RuntimeManager.shouldSeq())

return jpar_sequential_version_of_pi(n);
long score = 0
Future<Long> calc = ForHelper.forLongReduce(0L, dartsc, (Long n) -> {

return inside(randomPosition(), randomPosition()) ? 1 : 0;
}, ForHelper.longSum);
score += calc.get();
return (4.0 * ((double)(score))) / ((double)(dartsc));

}

Listing 3.5: The Pi program translated with futures.

3.3 Implementation
The proposed automatic parallelization model has been implemented in the JPar
compiler (Fonseca et al., 2016). This compiler was a complete rewrite of an initial
version (Rafael et al., 2014), improving the performance, making generated code
more readable and using a simpler representation of dependencies.

The JPar compiler translates sequential Java into parallel Java code that targets
the Æminium Runtime (Stork et al., 2014). Since the JPar compiler delays several
decisions to the runtime, a shim library was introduced to support the usage of JPar
futures on top of the Æminium Runtime. Futures are wrappers of code that begins
executing asynchronously on possibly another thread, and the result of which can
be obtained later. If the result is not yet available, the result request will block
until the future is complete. JPar futures differ from regular futures as they also
hold soft dependencies to other futures. A future will only begin executing after all
soft-dependencies are finished.

The JPar compiler is built on top of the Spoon compiler framework (Pawlak
et al., 2015), which handles the parsing and code generation from and to Java.
The Æminium Runtime is a task-based runtime library for Java that executes tasks
on top of a work-stealing scheduler. The architecture of the implementation is
depicted in Figure 3.1, with the JPar compiler translating Java to parallel Java,
the ÆminiumGPU compiler generating GPU-compatible versions of data-parallel
operations. The compiled bytecode is executed on the JVM using the Æminium
and ÆminiumGPU runtimes for multicore and GPU execution. The ÆminiumGPU
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modules are opcional and make usage of the automatic parallelization of the JPar
compiler.
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Figure 3.1: Information Flow in the Æminium Framework

3.3.1 Automatic Parallelization
An overview of the compilation phases of JPar can be seen in Figure 3.2. Parsing
and code generation are handled by the Spoon compiler. The other three phases
support the automatic parallelization model.

JPar Compiler Phases Pipeline

Parsing

JAVA

Signature
Extraction

Method 
Cloning Parallelization Code 

Generation
JAVA

Figure 3.2: JPar Compiler Phases

Signature extraction consists on keeping track of read, write and control access
permissions. This is done in a bottom up transversal of the AST. Variable accesses
generate read or write permissions over that variable. Return, continue and break
statements generate a control permission over the corresponding block. Try-catch
statements also generate control permissions, resulting in a conservative approach
to exception handling. Fonseca and Cabral (2012) explain in detail the issue of
exception handling in automatic parallel languages and compilers.

The method cloning phase creates a shadow copy of each method, in order to
keep a sequential version of each method. This copy allows the Runtime system to
switch to the sequential mode, reducing the task granularity. The advantage of doing
it is reducing the scheduling overhead when there is already enough parallelism in
the runtime. In order to perform this choice, the parallel version of each method
starts with a runtime check condition that will switch to the sequential version.
Listing 3.5 has an example of this check.

The parallelization step transverses the AST identifying which nodes can be par-
allelized. The current implementation focuses on loops and invocations, but it can
be applied to any other node. The decision whether to parallelize is based on the
access permissions of that node. Additionally, there is a simple static granularity
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control in place. In order to prevent the creation of tasks for extremely light weighted
methods, methods will be parallelized if they have at least a given number of in-
structions or method calls. The limit of number of instructions is a simple heuristic
to prevent creating tasks for methods that will execute faster than the creation of
a future. This value has a default value of 10, but can be increased according to
the specific machine. This granularity control is referred as Naïve Granularity for
evaluation purposes.

Additionally, it is possible to reduce the overhead in recursive methods. The
usage of lambdas or anonymous inner classes has a performance penalty. The JPar
compiler extracts recursive methods into static classes that can be passed as future
arguments. Static classes have a lower performance penalty that lambdas, which
results in a lower scheduling penalty in frequent recursive calls.

3.3.2 Runtime Execution Support
Tasks and Dependencies

The Æminium Runtime is a Java library that exposes APIs for expressing asyn-
chronous execution of code. The Runtime is composed of modules that allow for an
efficient execution of the source code, by leveraging the hardware threads available.

The core concept of the Æminium Runtime is the task as a representation of code
that can execute asynchronously. Tasks have a body, which can be represented as a
lambda, an anonymous inner class or as a regular class (useful when doing recursive
calls). Tasks are also defined by a set of dependencies on other tasks. If A depends
on B, it means that A cannot execute before B is completed. Tasks can also have
a parent task to represent subcomputations. If A is the parent of B, then A is only
completed when both the body of A and task B are completed. An example task
graph can bee seen in Figure 3.3, which represents 6 tasks with dependencies among
them, as well as parent-child relationships.

A B C

D E F

Legend:

Task

Depends on

Is child of

Figure 3.3: Example of a task graph.

Each task can be of one of three types:

• Non-Blocking Tasks are all operations that are purely computational.

• Blocking Tasks are tasks that have at least one operation that performs
input or output, such as disk reads/writes, communication over sockets or
other interactions with the Operating System.

• Atomic Tasks are tasks that cannot execute at the same time as other Atomic
Tasks that share the same Data Group. The Data Group acts as the lock that
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each atomic task must acquire before executing and release after executing.
However, two Atomic Tasks with different Data Groups can execute concur-
rently.

Figure 3.4 shows the lifecycle of tasks inside the runtime. When a task is sub-
mitted to the runtime, along with its dependencies, the runtime analyzes if the
dependencies are already met. If so, the task is sent to a queue for execution. If
not, no action is performed at this point.

Runtime

Waiting for 
Dependencies

Ready Ready Waiting for 
Children

Completed
(GC)

Unscheduled

Legend:

Task
Non-Blocking 
Queue A Area for Tasks 

with status A
CPU Core Blocking Queue

Figure 3.4: Runtime Areas for the different phases of the Task Lifecycle, for a quad-
core machine. Tasks go through the states from left to right.

The Æminium Runtime does not create a thread for each task, as the overhead
would be very noticeable. Instead, there are always n work-stealing threads running,
one for each processor core available in the machine (this number can be configurable
per program execution). These threads are responsible for executing tasks that are
ready. In order to reduce the contention on the queues, each thread has its own
queue. When a thread finds its queue empty, it will steal a task from the queue of
other thread. The Æminium Runtime has different stealing algorithms: tasks can
steal from a random queue, steal from the largest queue or from tasks with more
dependant tasks. While the stealing algorithm can be configured per program, the
default algorithm is stealing from the largest queue as it balances irregular programs.

Non-Blocking and Atomic tasks are stored on those regular queues. Since Block-
ing Tasks can take a long time to execute, given the dependencies on the kernel,
such as reading from sockets or files, these tasks are added to a special queue, which
is processed by an independent thread-pool. This avoids blocking Work-Stealing
workers with Blocking tasks.

When a task completes, it will check if there are any child tasks that were
scheduled during execution and belong to the logical concern of the current task.
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When all child tasks have finished, the task is marked as completed, and it will
notify both the dependent tasks and parent task that they do not need to wait for
it anymore.

Executing DO-ALL and DO-ACROSS loops

Since each iteration may take a different time to execute, DO-ALL and DO-ACROSS
loops cannot simply be divided in equal parts and executed in slices. In order to
balance loads across cores, a more dynamic approach is required. Two different
approaches are available: Binary Splitting and Lazy Binary Splitting (Tzannes et al.,
2010). Binary Splitting divides the current range in two if the Decider module
considers that it is still useful to create new tasks. If not, it executes the current
range iterations immediately. With Lazy Binary Splitting, there is a parameter PPS
which represents how frequently should the range be checked for division in half. A
PPS of 3 means that every 3 iterations the runtime checks if the remaining range
should be split in two.

For DO-ACROSS loops, the Map-Reduce approach is better than creating lock-
protected atomic blocks, since it avoids locking contention when all threads want to
access data. However, only associative and commutative operations can be converted
into Map-Reduce. This is not a large problem, as most data-intensive computations
are based on those operations, such as +,*, -.

3.4 A Cost-Model Granularity Approach
One of the main concerns about automatic parallelization is managing task granular-
ity, specially when the workload depends on runtime data. For those cases, runtime
dynamic granularity control mechanisms, such MaxTasks and MaxLevel, can be
used. Chapter 8 will focus on analyzing different dynamic cut-off mechanisms to
understand which one to apply to each program.

However, an hybrid approach can be taken: the compiler can build a cost model
reasoning about the code inside a task, and that information can be used during
runtime to estimate the costs of executing a method sequentially or dynamically.

public class Example {
public double csc(double a) {

return 1/Math.sin(a);
}

public double loop(int N) {
double a = 0;
for (int i=0; i<N+1; i++) {

a += csc(i);
}
return a;

}
}

Listing 3.6: Example Java code for illustration of the Cost Model used.

In order to model a Java program, the cost of a node cannot be a single final
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value. The reason for this is that the cost depends on the machine in which it will
execute and it may depend on runtime information about the program. Instead,
the cost of a node is a weighted sum of its components, in which the weights can be
represented as AST nodes, in this case Java expressions. Considering the example
in Listing 4.1, it is clear that it is not possible to know the cost of the for loop
during compilation because N is not defined in this code. The cost for the function
csc also depends on how fast the machine can execute the sin function. Given
this information, we can model the cost of the csc function as Equation 3.1. The
function costs one operation (the division) and one call to the standard library Math
.sin(double). The cost of the for-loop is modeled as Equation 3.2. It allocates one
variable (i), and N + 1 times, it repeats 3 accesses to the variable i, one access to
the variable N and one access to the a variable. Additionally, it also repeats the +=
operation, the < and > operations in the condition and the ++ operation in each loop
iteration, as well as the cost model for the csc function.

C(csc) = (1 ∗ C(op)) + (1 ∗ C(Math.sin(double))) (3.1)

C(for) = 1 ∗ C(alloc) + (N+ 1) ∗ (5 ∗ C(access)+
5 ∗ C(op) + (1 ∗ C(Math.sin(double)))

(3.2)

This model simplifies the actual cost. The + and * operators have different costs
but the difference is insignificant for the purpose of evaluating if the operation is
expensive enough compared to the parallelization overhead. The scheduling of a
task performs work that is several times longer than any of the operators We are
also ignoring the difference between heap and stack allocation, which we have found
to be irrelevant for our goal.

C(node) =


C(type(node)), if node is leaf
repetitionNode ∗

∑
childC(child), if node is loop∑

childC(child), otherwise
(3.3)

Equation 4.1 represents the cost model for a node. C is the function that returns
an expression for a given AST node. If a node is a leaf, it will add a variable
representing the type of that node. Possible node types are:

1. alloc, for memory allocation;

2. access, for variable reads and writes;

3. arrayaccess, for reads and writes to an element of an array;

4. op, for binary and unary operators;

5. if, for if and conditional instructions;

6. class#method(args), for each method in java.lang.Math, java.util.Random,
java.util.concurrent.ThreadLocalRandom, java.util.List, java.io.PrintStream.
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If a node is not a loop, then the cost is the sum of all child nodes. If a node is a
for loop, the weight for that expression will be the estimated number of iterations
of the loop. If it is possible to obtain the number of iterations statically (in cases of
for(int i=0; i<100;i++), then the value (100) is used. If it is not possible, the AST
node is used in the comparison of the stopping condition, subtracting the initial
value.

The cost expression may depend on variables, such as N in the Listing 4.1. For
the cases in which variables are not modified after the initial value is set, that value
is used. For other cases, the dependency is represented as a dependency on the
AST node. The estimation is delayed until runtime, when the AST node will be
evaluated, resulting in one value, completing the estimation.

Before making the decision to parallelize or not, it is necessary to apply the
variable values in the expression. Values for alloc, access and other node types are
previously recorded using a simple benchmark program that executes each operation
1000 times and calculates the average. These values are machine dependent, which
requires the compilation to be performed in the machine, or using a configuration
file retrieved from the machine.

3.5 Evaluation
In this section, we evaluate the proposed model using the JPar implementation,
using the following alternatives:

• JPar (No Granularity Control) - The JPar compiler without any granu-
larity control , maximizing the parallelism expressed;

• JPar (Naïve Granularity) -The JPar compiler with a naïve parallelization
decision available in the Æminium Runtime;

• Manual - A manual parallelization performed on top of the Æminium Run-
time. The division of loops is done using the Lazy Binary Splitting algorithm.
This version is used as a baseline for how much parallelism can be extracted
from the program.

• OoOJava (sequential) and (parallel) - The OoOJava compiler, the state
of the art in Java automatic parallelization, which compiles Java to C code.

Experiments were executed on two machines running Ubuntu 14.04 server 64bits
and a Java Hotspot 64-bit Server JVM. One machine, server24, has 12 cores and 24
hyperthreads, and 24GB of RAM in two NUMA regions auto-balanced. The other
machine, server32, has 16 cores and 32 hyperthreads, and 32GB of RAM also in two
NUMA regions auto-balanced.

The Æminium Runtime was configured with a number of threads equal to the
number of hyperthreads available on the machine.

Since results on both machines were very similar, we will present the results from
server24 and will refer to server32 when they differ. Given the non-deterministic
behavior of memory allocation, garbage collection and work-stealing, experiments
were executed 7 times and the median value was used to reduce the interference of
external aspects. Executing more than 7 times would not change the median value
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beyond reasonable error. Programs had a time limit of 10 minutes for execution, a
value much larger than the sequential version. This limit was imposed after some
programs with no granularity control would take days to execute.

3.5.1 Benchmark Programs
In order to evaluate the performance of the compiler, we used the sequential version
of 6 programs from the Æminium Benchmark Suite (Fonseca, 2013). The config-
uration for each program is described in Table 3.1, as well as the parallelization
performed for each program.

DO-ALL programs spend most of the execution time in loops that execute in-
dependently. DO-ACROSS programs also have loops, but they have writes to the
same value, which has to be synchronized. Recursive programs are defined by re-
cursive methods. This benchmark includes programs that are hard for compilers to
automatically parallelize. For instance, N-Body is a DO-ALL program, which can
easily be split in several chunks. However, N-Body is a skewed program, in which
early iterations will have a heavier workload than laters ones. Recursive programs
are also difficult to parallelize because getting an estimation of its cost depends on
the input parameters.

Since each program represents different parallelization scenarios, the performance
of each program will be analyzed.

Program Parallelism Input size

BlackScholes DO-ACROSS 100000

FFT Recursive 8388608

Integrate Recursive s=-2101, e=1700, error=10−14

MergeSort Recursive n=251658240

N-Body DO-ALL it=10, bodies=25000

Pi DO-ACROSS n=1500000000

Table 3.1: Description of the programs used in the benchmark

3.5.2 Binary vs Lazy Binary Splitting
Programs that have for-loops parallelized can generate tasks in two different ways:
Binary Splitting or Lazy Binary Splitting. For Lazy Binary Splitting, we used the
recommended value of 3 for the PPS parameter, and a higher value of 10 for less
frequent decisions. Figure 3.5 shows the speed-up over sequential programs of the
three approaches in program with loops. The Lazy Binary Split version achieved
best results in the BlackScholes program, running in less than half of the time as
its Binary Split counterpart, but could not complete the other programs within the
predefined time-out, resulting in no speed-up. The BlackScholes program is made of
DO-ALL loops with very lightweight tasks, which allows for the executing between
splits to be efficient. The conclusion is that Binary Split is a conservative approach
that can be used for any program, while Lazy Binary Split can be used to achieve
best results on programs with lightweight iterations.
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Figure 3.5: Average speedup of Binary Split and Lazy Binary Split (PPS=3 and 10)
versions of the programs with loops.

3.5.3 Nested Loops
NBody performs a simulation predicting the individual motions of 50000 Jovian
planets after three iterations. Two nested for-loops comprise almost all of the work
done by the program. Granularity of nested loops is difficult to control, especially
since the size of each loop is only known during execution (the number of bodies
is received as an argument to the program). In this case, the cost-model generates
an expression to predict the cost of each loop, based on a runtime variable. During
execution that variable is replaced by the actual value and the decision how to divide
the loop is made.

The speedup achieved by each version can be seen in Figure 3.6. The OoOJava
compiler could not successfully compile this program and the naïve approach ex-
ceeded the time limit. The version without any granularity control was not able to
achieve speedup because it generated too many tasks that would cause the system
to spend more time scheduling tasks than executing them. The manual version
with two parallel loops also relied in the runtime decision for the loop partition (the
problem dimension was unknown to the programmer) so it did not perform as well
as the Cost-Model version.

3.5.4 Invocation Inside Loops
The Pi benchmark estimates the value of pi using a Monte-Carlo simulation of dart
throwing inside a square. In this program, each dart can be thrown in parallel, and
each target coordinate of the dart can also be obtained in parallel.

Figure 3.7 shows the results of the different versions of Pi. The versions of JPar
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Figure 3.6: NBody execution on the machine server24
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Figure 3.7: Pi execution on the machine server24

without the Cost-Model are not capable of understanding that the generation of
each coordinate in parallel has a very large overhead. The version with the Cost-
Model outperforms the OoOJava versions, but it is not as good as the manual
parallelization approach. Figure 3.8 shows the CPU and memory usages of the Pi
program on both JPar and OoO Java versions. The memory usage of the JPar
version shows that it is creating more parallel tasks than the OoO version, which
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is also verified in the CPU usage. The final result is that the JPar executes faster
with a better CPU occupation.
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Figure 3.8: CPU and Memory usages of Pi on the machine server24 in JPar and
OoOJava

The limitation of parallelizing only one level in OoOJava, which was not benefi-
cial in the NBody benchmark, is now the right choice. However, the parallelization
performed is still not enough to produce a speedup compared to the sequential
version of OoOJava.

BlackScholes also performs different Monte-Carlo simulations of the BlackScholes
formula. Parallelization can be achieved by parallelizing the loop, but also from
parallelizing some functions inside the for-loop. Similarly to the Pi benchmark, the
innermost functions are not worthwhile to parallelize.

Figure 3.9 shows the speedup of different versions of the BlackScholes benchmark.
Results from OoOJava are missing, because OoOJava was unable to compile the
same program. All version of the JPar compiler were able to achieve a speedup,
with the Naïve version having a lower speedup because of unnecessary overheads in
runtime decision. The cost-model outperformed the other approaches, including the
manual approach, since it generated a fixed number of chunks, instead of using a
dynamic approach like Lazy Binary Splitting. Since there were two main loops to
parallelize, one with lightweight iterations and other with another non-parallelizable
loop inside, the Cost-Model generated two different chunk sizes for each loop.

3.5.5 Recursive Calls
The FFT program performs the Fast-Fourier Transform of an array of complex
numbers. The parallelism can be extracted from the different for-loops, but there is
also fine-grained parallelization inside complex objects, such as the parallel sum of
components of two complex objects.
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Figure 3.9: BlackScholes execution on the machine server24
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Figure 3.10: FFT execution on the machine server24

Figure 3.10 shows the result of the FFT benchmark in the different versions. The
fine-grained parallelism inside the Complex objects prevents the JPar compiler from
having speedups, and the Runtime decision mechanism is to heavy to help. The
Cost-Model version achieves a good speedup, even better than the human version
because it limits parallelism when the memory is reaching its limit, based on the
prevision of memory allocation. OoOJava is unable to get a speedup compared
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Figure 3.11: CPU and Memory usages of FFT on the machine server24 in JPar and
OoOJava

to either sequential version. Figure 3.11 shows the CPU and Memory usage of
the FFT program for OoOJava and JPar with the aggregation mechanism enabled.
Since the parallelization of FFT requires memory, it is possible to see that the JPar
version results in more coarse grained-tasks, while the OoO version continues with
the parallelization, without increasing the CPU usage, compared with the JPar
version. It is also noticeable that the JPar version finishes early, showing that the
grain level obtained suits this program better.

The Integrate program calculates the approximation of the integrate of (x2+1)∗x
using the trapezoidal rule. Like previous examples there is the recursion parallelism,
as well as a fine-grained parallelism that will not benefit performance.

Figure 3.12 shows the performance of Integrate on the server24 machine. All ver-
sions using the Jpar compiler have a low speedup compared to the human approach.
The JPar compiler delays some of the decisions to the runtime, and that adds some
overhead to the decision, that the manual version does not have. OoOJava, on the
other hand, does not have any speedup. Figure 3.14 shows the CPU and memory
metrics for JPar and OoO, showing relatively equal CPU utilization for the duration
of the programs. Thus, the higher granularity of the OoO version does not result in
higher CPU occupation or speedup. In fact, the program runs slower.

Figure 3.13 shows the performance of the same program, but on the server32
machine. On this machine, with slower processors, the JPar compiler generates pro-
grams with lower speedups than on server24 without any granularity control. The
version with runtime granularity decision does not finish within the time limit. The
Cost-Model version actually has better speedups than on server24. This program
behaves differently according to processor speed and number of cores. This is the
reason why the Cost-Model takes into account the characteristics of the machine.
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Figure 3.12: Integrate execution on the machine server24
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Figure 3.13: Integrate execution on the machine server32

MergeSort applies the merge-sort algorithm to an array of integers. It has divide-
and-conquer parallelism as well as small loops with small degree of parallelism.
Figure 3.15 shows the performance of MergeSort across different versions. Both
baseline JPar versions are unable to execute within the time limit because of the fine-
grained parallelism. The version with Cost-Model outperforms the manual approach
by controlling the memory usage and not parallelizing inner loops. The OoOJava
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Figure 3.14: CPU and Memory usages of Integrate on the machine server24 in JPar
and OoOJava
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Figure 3.15: MergeSort execution on the machine server24

is again unable to obtain any speedup. Figure 3.16 shows the CPU and memory
usage of JPar and OoO versions. The JPar version creates less tasks, and more
slowly, which can be seen by the memory usage. This leads to an early result. The
OoO version creates more tasks, most of them with more overhead than sorting
computation, spending more time executing the extra tasks.
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Figure 3.16: CPU and Memory usages of MergeSort on the machine server24 in
JPar and OoOJava

As in conclusion, it is possible to see that the Cost-Model of JPar provides a
better granularity than the state of the art approach, OoO Java. In FFT, Integrate
and MergeSort, JPar creates less tasks, reducing the overhead in scheduling. In Pi,
JPar creates more tasks, but results in an early finish of the algorithm, showing that
the granularity chosen is better than by OoO Java.

3.6 Conclusions
This chapter presented a novel approach for automatic parallelization. This ap-
proach relies on automatically inferring access permissions from sequential code,
and when access permissions assure program semantics will not be modified, AST
nodes are parallelized into tasks. In the generated source code, recursive calls and
loops can be replaced by future invocations that execute on the work-stealing-based
Æminium Runtime. The generated source code is readable and allows developers to
understand how parallelization occurs and can have benefits in teaching.

This approach was improved with the introduction of a Cost-Model used to
dynamically manage task granularity during execution, using predictions of the se-
quential and parallel execution times.

These approaches were implemented in JPar, a Java automatic parallelization
compiler, and evaluated on several benchmarks. We can conclude that this approach
always improves the performance, compared with not using any granularity control,
or with delaying the decision to the runtime. It is also shown that this approach
provides speedups in all benchmarks, unlike OoOJava, a state of the art in automatic
fine-grained parallelization of Java. In some of the applications, the Cost-Model is
unable to achieve the same results as a manual approach, but in other cases it
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actually improves upon it.
There are some topics that are still left for exploration. In Automatic Paral-

lelization, we have identified exception handling as problematic language feature to
efficiently parallelize, which was described in Fonseca and Cabral (2012). Another
topic left to explore is how different granularity mechanisms behave with different
programs, and this will be covered in the next chapter.

46 Chapter 3



Chapter 4

Automatic Selection of
GPU-CPU Granularity

Chapter 3 presented an automatic parallelization model capable of generating pro-
grams that can execute on either the GPU or the CPU. However, the decision of
which platform to use is left to the programmer. With the goal of automatic paral-
lelization in mind, this Chapter presents a novel approach for automatically selecting
the fastest platform for a specific program, based on the characteristics of the pro-
gram, the input data and the processor. This approach can be used in the proposed
model for efficient execution of automatic parallelized programs.

4.1 Introduction
Since GPUs have been user-programmable, scientists and engineers have been ex-
ploring new ways of using the processing power in GPUs to increase the performance
of their programs. GPU manufacturers acknowledged this alternative fashion of us-
ing their hardware, and have since provided special drivers, tools and even models
to address this small, but fast-growing niche.

GPUs have became a target of parallel programs because of the number of
threads available, higher than any current multi-core processor. In spite of the
higher throughput, GPUs carry a high latency due to the asynchronous access to
the main memory. GPUs have an independent memory which GPU programs, called
kernels, access. Regions on the host memory accessed by kernels must be previously
copied to the GPU memory, and later copied back to the CPU. Additionally, GPUs
threads inside an executing group share a program counter, which causes branching
operations to reduce the parallelism in the program.

Overall, the architecture of GPUs can improve the performance of some pro-
grams, while decreasing on others. GPUs can efficiently execute programs with
high granularity, infrequent branching operations with intensive computations over
a large set of data. Deciding to use the GPU for a specific computation is not triv-
ial. Developers that do not understand the programming model and the hardware
architecture of a GPU will not be able to perform this decision, and even with a
deep knowledge of GPGPU, some profiling may be necessary. In the case of auto-
matic parallelism, the decision must be made without any information from previous
executions.
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Figure 4.1: Performance of the Integral program on CPU and GPU

Double integral = new Range(RESOLUTION).map(new LambdaMapper<Integer, Double
>() {

public Double map(Integer input) {
double n = RESOLUTION;
double b = Math.pow(Math.E, Math.sin(input / n));
double B = Math.pow(Math.E, Math.sin((input+1) / n));
return ((b+B) / 2 ) * (1/n);

}
}).reduce(new LambdaReducer<Double>(){

public Double combine(Double input, Double other) {
return input + other;

}
});

Listing 4.1: Example of Map-Reduce to Calculate the Integral of a Function using
the trapezoid method

Listing 4.1 is an example of programs that can execute on the GPU and calculates
the integral of f(x) = esin(x). This is an embarrassingly parallel problem, which is
expressed using a data-parallel approach by means of map and reduce operations.
Figure 4.1 shows the execution time of the program in both CPU and GPU for
different data sizes. The GPU version is faster after a certain data size and it is able
to achieve up to 64 times of speedup. But, note that the threshold from which the
GPU performance starts to gain on the CPU is not always the same. The actual
threshold value depends of the program logic and even with the hardware being
used. Thus the decision whether to run a program on the GPU or CPU is not an
easy one.

This chapter expands the ÆminiumGPU (Fonseca, 2011) GPGPU framework,
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which is part of the Æminium ecosystem, with a decision mechanism that decides
whether a certain operation occurs in the CPU with a coarser granularity or the
GPU with a very fine granularity.

4.2 ÆminiumGPU Architecture

JPar 
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Figure 4.2: Architecture of ÆminiumGPU

The ÆminiumGPU framework was designed for supporting Æminium (Stork
et al., 2014) and Java programming languages. Since Æminium compiles to Java,
we will address this issue from the Java point of view. Since Java is not a language
natively supported by GPUs, Java is translated to OpenCL (Stone et al., 2010)
functions during compile-time. Then during execution, the ÆminiumGPU Runtime
schedules those functions dynamically. The general architecture can be seen in
Figure 4.2.

4.2.1 ÆminiumGPU Compiler
The ÆminiumGPU Compiler is a source-to-source compiler from Java-to-Java, in
which the final Java code has some extra OpenCL code. The OpenCL code is based
on lambda functions present in the source code. For each lambda in the original
code, the compiler creates an OpenCL version. This version is later used to generate
a kernel which will execute on the GPU.

The compiler was implemented using Spoon, a Java-to-Java compiler framework
(Pawlak et al., 2015). Spoon parses and generates the AST and generates the
Java code from the AST. The ÆminiumGPU compiler introduces new phases that
produce the OpenCL version of existent lambdas. The compiler looks for methods
with a special signature, such as map or reduce. The AST of lambdas passed as
arguments are then analyzed and a visitor tries to compile Java code to OpenCL as
soon as it descends the AST.

It is important to notice that not all Java code can be translated to OpenCL. The
ÆminiumGPU compiler does not support all method calls, non-local variables, for-
each-loops, object instantiation and exceptions. It does support a common subset
between Java and C99 with some extra features like static accesses, calls to methods
and references to fields of the Math object.
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4.2.2 ÆminiumGPU Runtime
The ÆminiumGPU Runtime is a Java library responsible for providing Æminium
and Java programs with parallel-ready lists that implement the GPU methods, such
as map and reduce methods. Each list can be associated with a GPU, thus support-
ing several GPUs on the same machine. Whenever a GPU operation is summoned,
the following phases occur:

• The compiler-generated OpenCL function is inserted into a predefined tem-
plate (specific for each operation, such as map or reduce). The result is a
kernel function which is compiled to the GPU;

• Input data, if any, is copied from the host memory to the GPU memory;

• The kernel is scheduled to execute on the GPU. The scheduling includes the
choice of granularity-specific arguments: workgroup and workitem dimensions
and sizes. These parameter define how many concurrent tasks are scheduled;

• Once execution is finished, output data is copied back to the host device.

• All GPU resources are release and memory freed.

The templates used for Map and Reduce, since we are focusing on these op-
erations for this work, are really straightforward. The map kernel only applies a
function to an element of the input array and writes it to the output array. The re-
duce kernel is a generic version of NVIDIA’s implementation (Harris, 2010), allowing
for more data-types than the four originally supported.

For these operations in particular, one optimization already implemented is the
fusion of maps with maps, and maps with reduces. This optimization is done by
considering the Map operation a lazy operation that is only actually performed
when the results are needed. This laziness allows for merging together several oper-
ations, saving time in unnecessary memory copies and kernel calls. Because of this
optimization, the final kernel is only known and compiled at runtime.

All GPU operations have a correspondent CPU version, which executes on top
of the Æminium Runtime. Thus, supported operations can occur on either the GPU
or the CPU.

4.3 A Machine Learning Approach for GPU-CPU
Decision

The proposed approach is based on Machine Learning techniques to automatically
decide if a given operation should be executed on either the GPU or CPU. The
problem can be described as two-classed because each program execution can be
classified as either Best on GPU or Best on CPU. Supervised learning will be used,
since it is important to associate certain features of programs to the two platforms.

Since decisions are hardware dependent (CPU and GPU combination), the pre-
diction model must be trained for each machine. Thus, when installing Æmini-
umGPU on a new machine, a training benchmark should be executed to collect
training data. However, machines with the same processor and GPU can reuse the
same models.
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Name Size Collected at Description

OuterAccess 3 Compilation Global GPU memory read.

InnerAccess 3 Compilation Local (thread-group) memory read. This area of the
memory is faster than the global one.

ConstantAccess 3 Compilation Constant (read-only) memory read. This memory is
faster on some GPU models.

OuterWrite 3 Compilation Write in global memory.

InnerWrite 3 Compilation Write in local memory, which is also faster than in
global.

BasicOps 3 Compilation Simplest and fastest instructions. Include arith-
metic, logical and binary operators.

TrigFuns 3 Compilation Trigonometric functions, including sin, cos, tan, asin,
acos and atan.

PowFuns 3 Compilation pow, log and sqrt functions

CmpFuns 3 Compilation max and min functions

Branches 3 Compilation Number of possible branching instructions such as
for, if and whiles

DataTo 1 Runtime Size of input data transferred to the GPU in bytes.

DataFrom 1 Runtime Size of output data transferred from the GPU in
bytes.

ProgType 1 Runtime One of the following values: Map, Reduce, PartialRe-
duce or MapReduce, which are the different types of
operations supported by ÆminiumGPU.

Table 4.1: List of features

The critical aspect for having a good classification is choosing the right features
to represent programs. For instance, it is not feasible to consider the full program
in ASCII, since the length would be variable and the abstraction level ill-suited for
classification techniques. Even a skilled programmer may not be absolutely certain
how the code guarantees that performance on one platform will be better. Table 4.1
lists all the features used in the classification process.

a(); // Level 1
for (int i=0; i<10; i++) {
b(); // Level 2
while (j < 20)
c(); // Level 3

}

Listing 4.2: Examples of Level categorization

Features can be extracted either during compilation or during runtime. This
means that a given program will always hold the same values for the first features,
while the last three features may be different, depending on the conditions of execu-
tion. Features marked with a size of 3 have three values, one for each depth of loop
scopes. Listing 4.2 shows an example in which three functions are considered in 3
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different loop levels. This distinction is important since operations in inner levels
are executed more times than ones in the outer levels.

The choice of some selected features was inspired by other applications of Ma-
chine Learning that use source code as input, but unrelated to GPU scheduling
(Cavazos and Moss, 2004; Russell et al., 2005; Wang and O’Boyle, 2009). Here, fea-
tures are selected also based on their importance to the GPU programming model.

Memory accesses were considered a feature as they are one of the main reasons
why GPU programs are not as fast as one would expect. As such, there are features
for all three main kinds of memories in GPUs (global and slow, local and fast, global
read-only and fast). Note that some GPU models may not have one of these, but
this feature model is generic for any GPU.

In terms of operations, micro-benchmarks were used to assess their execution
cost. For instance, 4 or 5 plus operator calls execute much faster than one single sin
call. As such, OpenCL functions were grouped according to the relative cost they
have on execution time.

Besides these features, each benchmark also collected the execution time in both
CPU and GPU, and the class each execution belongs to. This is used for training
and evaluation.

4.4 Evaluation and Classifier Selection
In this section we will describe the experiments performed for verifying and validat-
ing our approach and to select a classifier to use in the implementation.

4.4.1 Dataset
The dataset used for training and testing was comprised of two benchmark suites,
one manually written and the other synthetically generated.

The first benchmark suite was written by a programmer representing common
operations that could be scheduled to the GPU. The following 8 programs are used:

1. A map operation that adds 1 to each element of the input array;

2. A map operation that applies the sin function to each element of the input
array;

3. A map operation that applies the sin and cosine functions to each element of
the input array and sums the values;

4. A map operation that calculates the factorial for each element of the input
array;

5. A map-reduce operation that calculates the integral from 0 to the size of the
array for f(x) = esin(x);

6. A map-reduce operation that calculates the minimum value from 0 to the size
of the array for f(x) = 10x6 + x5 + 2x4 + 3x3 + 2

5x
2 + πx;

7. A map-reduce operation that calculates the sum of all natural numbers up to
a given value which are divisible by 7;
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8. A map-reduce operation that calculates the sum of all elements of the input
array which are divisible by 7.

Each one of these programs was executed several times with varying amounts
of input data. The size of input data varies from 10 to 107 elements, with an
exponential increase of 0.1 using base 10.

The second benchmark suite was randomly generated. Each program could be
a map, a reduce or a map-reduce operation. Each operation was generated from
a random AST with a maximum depth of 30. The grammar used to generate the
AST is described below. The grammar reflects the Java language and requires the
resulting program to be correctly typed. Some implementation details were omitted
for the sake of reading. random and randint assume randomly generated doubles
and integers and id assumes a randomly generated identifier.

⟨program⟩ ::= ⟨input⟩ ⟨map⟩
| ⟨input⟩ ⟨reduce⟩
| ⟨input⟩ ⟨map⟩ ⟨reduce⟩

⟨input⟩ ::= ’new IntList()’
| ’new LongList()’
| ’new FloatList()’
| ’new DoubleList()’

⟨map⟩ ::= ’map(input =>’ ⟨stmt⟩ ’)’

⟨reduce⟩ ::= ’reduce(input, other =>’ ⟨stmt⟩ ’)’

⟨stmt⟩ ::= ⟨var⟩ ’=’ ⟨exp⟩
| ’var’ ⟨id⟩ ’= 1’
| ’if (’ ⟨expr⟩ ’) ’ ⟨stmt⟩ ’ else ’ ⟨stmt⟩ ’’
| ⟨stmt⟩ ⟨stmt⟩
| ’for(int ’⟨id⟩’=0;’⟨id⟩’⟨’<randint⟩’;’⟨id⟩’++) ’ ⟨stmt⟩

⟨expr⟩ ::= ⟨expr⟩ ’%’ ⟨expr⟩ ’== 0’
| ⟨expr⟩ > ⟨expr⟩
| ⟨expr⟩ + ⟨expr⟩
| ⟨expr⟩ - ⟨expr⟩
| ⟨expr⟩ * ⟨expr⟩
| ’Math.min(’ ⟨expr⟩ ’,’ ⟨expr⟩ ’)’
| ’Math.max(’ ⟨expr⟩ ’,’ ⟨expr⟩ ’)’
| ’Math.round(’ ⟨expr⟩ ’)’
| ⟨randint⟩
| ⟨random⟩
| ’Math.cos(’ ⟨expr⟩ ’)’
| ’Math.sin(’ ⟨expr⟩ ’)’
| ’Math.tan(’ ⟨expr⟩ ’)’
| ’Math.log(’ ⟨expr⟩ ’)’
| ’Math.pow(’ ⟨expr⟩ ’,’ ⟨expr⟩ ’)’
| ’Math.sqrt(’ ⟨expr⟩ ’)’
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This grammar was used to generate 700 independent programs, which were ex-
ecuted with lists with different number of elements, from 10 to 10 million elements
with a 10 times increment.

Overall, the full benchmark had 16898 instances of GPU-ready operations, across
8 manually written programs and 700 randomly generated programs.

The dataset was balanced using the SMOTE oversampling technique (Chawla
et al., 2002). This was necessary because the original dataset had more programs
that executed faster on the CPU. Because there is not a large quantity of data
points, oversampling was preferred to undersampling.

Additionally, features were scaled between 0 and 1, necessary for the MLP clas-
sifiers.

4.4.2 Experimental Setup
In this evaluation, the CPU was a i7-3520M at 2.90GHz with two cores and four
hyperthreads and the host memory size was 8GB. The GPU was a GeForce GT
640M LE, with 384 CUDA cores and 2GB of device memory.

The Operating System was Ubuntu Linux 14.04 with CUDA 7.5 and Java HotSpot
1.8. The results presented here are specific to this particular hardware and software,
but the same evaluation can be performed on any GPU-CPU combination.

4.4.3 Feature analysis
The importance of each feature was evaluated using a meta-estimator consisting of
10 decision trees. Results of this evaluation are shown in Table 4.2, omitting features
with no relative importance.

The most important feature is the parallel operation, which can be map, re-
duce or map-reduce. The operation determines the parallelism and synchronization
required in the program, as map is embarrassingly parallel, and reduces require
synchronization at each step. The data copied to the GPU is also another very
important feature, because memory transfers have a high penalty, even if in small
amounts. As such, it is important to make sure the computation is long enough to
compensate the memory transfer time.

Memory accesses are also important, which is consistent with the GPU memory
model. Reading from and writing to the GPU main memory is slower than to
register or local memory. Inner memory accesses have no importance in the model,
but outer accesses do.

Additionally, basic operations are also important, specially those inside loops,
because they occur more frequently.

4.4.4 Classifier Comparison
In order to achieve the best accuracy, it is important to choose an adequate classifier.
For this task, several off-the-shelf classifiers from SkLearn (Pedregosa et al., 2011)
were evaluated, and some custom classifiers were also developed. The following
classifiers were used as baselines:

• Random classifier that randomly assigns either class to a particular instance
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Feature Relative importance

Op 0.208

DataTo 0.119

OuterWrite1 0.118

OuterAccess1 0.093

BasicOp2 0.090

BasicOp1 0.079

OuterAccess2 0.071

DataFrom 0.035

MinOp1 0.033

OuterWrite2 0.031

OuterAccess3 0.023

ConstantAccess1 0.017

BasicOp3 0.016

SinOp1 0.016

PowOp1 0.015

OuterWrite3 0.015

MinOp2 0.011

SinOp2 0.005

MinOp3 0.004

Table 4.2: Features rank using a forest of trees

• Always CPU that always classifies as Best on CPU

• Always GPU that always classifies as Best on GPU

Additionally, classifiers using different approaches were also considered:

• NaiveBayes Classifier (John and Langley, 1995)

• Support Vector Machine (SVM) classifier using a radial basis function kernel
(Wu et al., 2004)

• Multi-Layer Perceptron (MLP) using a Stochastic gradient-based optimizer
(Kingma and Ba, 2014)

• DecisionTree classifier (Loh, 2011)

• Random Forest classifier with 100 estimators (Breiman, 2001)

• Balanced Random Forest classifier with 100 estimators, using the absolute
different between CPU and GPU execution as instance weights (Chen et al.,
2004)
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Besides these classifiers, a regression-based approach was evaluated, using ad-
ditional metrics such as: CPUTime and GPUTime. The main idea was to use re-
gression techniques to predict values of CPUTime and GPUTime for each instance
and then select the smallest value. However, regressions have shown to have a poor
quality with correlation coefficients between 70 and 80%. The final classifier be-
haved very similarly to the Random classifier. Thus, this approach was not further
advanced.

Classifiers were evaluated using a group-sensitive 10-fold cross-validation. The
split between training and testing sets at each fold kept instances originated from
the same program on different sets, in order not to use other executions of the same
program to improve results.
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Figure 4.3: Accuracy of different classifiers for GPU-CPU decision.

Figure 4.3 shows the accuracies of the different classifiers over the full benchmark.
It is expected that Random, Always GPU and Always GPU all have 0.5 of accuracy,
given that the dataset is balanced. The Naïve Bayes classifier improved little over
the random results, but all the other classifiers performed well, with accuracies over
80%. Both Random Forest implementations had an accuracy of over 95%, with the
balanced version being slightly better.

In this particular problem the distinction between false positives (FP) and false
negatives (FN) is not relevant because their impact is different depending on the data
size. For programs with a small input array, choosing the GPU has a relative huge
impact on the performance. For a very big program, choosing the CPU may also
have a strong penalty on performance. This difference can be seen in the example
of Figure 4.1.

In order to better represent the impact of taking the wrong decision, a measure
of cost was introduced to replace the tradition confusion matrix. Since the CPU
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and GPU execution times were recorded, the time lost because of a wrong decision
can be obtained. Equation 4.1 defines the cost function applied for each instance.

cost(i) =
{
|cpuTimei − gpuTimei| if misclassified
0 if well classified (4.1)

Figure 4.4 shows the misclassification cost of the same classifiers, with a loga-
rithmic scale on the cost. The lowest the cost is, the better the classification is. A
perfect classifier would have a cost of 0. The random classifier has an average cost
of 24 seconds, which can be considered as a ceiling for this dataset.
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Figure 4.4: Misclassification cost of different classifiers for GPU-CPU decision.

The Always GPU classifier has a higher cost than Always CPU because the cost
of misclassification when the GPU is the wrong choice is higher. This typically
occurs with lightweight operations over a small amount of data. In this case, the
usage of the GPU would imply a high penalty in memory copies. On the other hand,
choosing the CPU for an intensive operation over a large array would be slower, but
not that slower compared with the first scenario.

Using the misclassification cost it is possible to see the impact of the Balanced
Random Forest, compared with the regular Random Forest. By using the possible
cost as weights for node decision in the Decision Trees, the decision is skewed to
minimize the misclassification cost, without decreasing accuracy (although in this
problem it would be acceptable).

4.5 Related Work
Since this work has been published, other Machine-Learning approaches have been
applied in related approaches. This section presents these works and compares them

Chapter 4 57



Automatic Optimization of Granularity Control Algorithms for Parallel Programs

to this one.
Simultaneously to the development of this work, a similar approach using Ma-

chine Learning was published by Grewe and O’Boyle (2011), performing all the
feature extraction at compilation time and focusing on OpenCL. This approach has
the limitation of not covering programs that use dynamic data. In the meanwhile,
other works on the same area have arisen, such as Kofler et al. (2013) that com-
pares Artificial Neural Networks with SVMs, and take the same conclusions: ANNs
perform better than SVMs at the cost of a longer training time.

Wang et al. (2013b) uses profiling to improve the scheduling of operations be-
tween CPU and GPUs, recording data points, and not using static analysis. Shen
et al. (2014b) extends the profiling approach to take into consideration irregular
programs, like the Integral program. Shen et al. (2014a) predicts the ideal parti-
tioning of data to distribute over GPU and CPUs, using modeling of distributions
by performing partial profiling with a subset of the data. These three approaches
use previous runs of the same program with different data sizes, which is not usable
in automatic parallelization for newly written programs.

Baldini et al. (2014) shows how the usage of ML can be used to predict GPU
performance given the CPU execution times. This model is similar to Kerr et al.
(2010), in which the performance of several GPUs is predicted using polynomial
regression. Our results have shown that binary classification has an higher accuracy
than predicting GPU and CPU execution times independently.

These works claim that each GPU should have its own model, with separate train-
ing. This aspect is considered in the proposed approach, with micro-benchmarking
being machine-specific.

4.6 Conclusions
In this chapter we have presented a Machine-Learning approach to automatically
decide whether to execute a program with fine granularity on the GPU or with a
coarse granularity on the CPU. This approach defined the feature extraction, which
occurs during compilation and execution. These features were ranked to understand
their impact on the decision. A dataset was prepared for this problem, including
programs written by a programmer, and randomly generated according to a defined
grammar.

Potential classifiers were evaluated using accuracy and a new metric: misclassifi-
cation cost. The best classifier was a Random Forest trained with instance weights
equal to the potential misclassification cost, obtaining over 95% average accuracy
and the lowest misclassification penalty of all classifiers.
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Chapter 5

The No Free Lunch Theorem
for Granularity Algorithms

In Chapter 3, the granularity of parallel tasks has been identified as one of the most
influential attributes for performance in parallel programs. Granularity control al-
gorithms are used to dynamically adjust the granularity of a program. However,
granularity control algorithms perform differently in different parallel programs (Du-
ran et al., 2008b,a). An unsuitable granularity control algorithm can slow down the
execution of a program several times, even if both were parallelized using the same
model. This Chapter presents new granularity control algorithms that can have
benefits in some types of programs. A wide-range evaluation across multiple gran-
ularity control algorithms and a heterogenous benchmark suite is conducted, iden-
tifying this as a case of the No Free Lunch theorem (Wolpert et al., 1995; Wolpert
and Macready, 1997), in which granularity algorithms have the same performance
averaged across all classes of problems.

5.1 Introduction
As seen in Chapter 1, task granularity is one of the most important aspects of tuning
a parallel program. Figure 5.1 shows the speedup of different cut-off mechanisms
used in the programs generated by the JPar compiler presented in the previous
chapter. The cost-model approach was not considered because it requires knowledge
of the program beforehand, while all other approaches do not and can be used with
any parallel program, whether manually or automatically parallelized. It is possible
to see that the best cut-off strategy is different for each program. For instance,
the best cut-off for BlackScholes is MaxLevel(12), which is unable to provide any
speedup on other programs. Other algorithms perform relatively better in some
cases, and worse in others.

The main issue with cut-off algorithms is that each class of problems requires a
different cut-off strategy. Unfortunately, selecting the right algorithm is traditionally
done by a trial-and-error or simulation-based approach, which is cumbersome and
time-consuming, forcing developers to test all possible combination of algorithms and
parameters for that program with a matching workload. Making the best possible
choice is very important, as a wrong decision can influence the execution time of the
program by orders of magnitude.

59



Automatic Optimization of Granularity Control Algorithms for Parallel Programs

b
la

ck
sc

h
o
le

s

ff
t

fi
b

h
e
a
lt

h

in
te

g
ra

te

m
e
rg

e
so

rt

n
b
o
d
y p
i

Program

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

S
p
e
e
d
u
p

atc2l12

loadbased

maxlevel12

maxtaskinqueue2

maxtasks2

maxtasks2ss16

stacksize16

surplus3

sysmon2-70-70

Figure 5.1: Speedup of different cut-off mechanisms used in different programs com-
piled with the JPar compiler, implementing the approach presented in Chapter 3.

In this chapter, novel cut-off algorithms are presented (Section 5.2). These al-
gorithms, as well as existing algorithms, are evaluated to understand what program
characteristics impact the choice of best cut-off algorithm (Section 5.5). Finally, the
No Free Lunch Theorem is shown to apply to Cut-off Algorithms (Section 5.6).

5.2 Cut-off Algorithms
A cut-off mechanism is an algorithm that decides whether a task will spawn new
tasks for parallel work, or will it execute tasks sequentially. This section briefly
presents the cut-off mechanisms discussed in Chapter 2 and describes new proposed
cut-off algorithms to improve the performance on a subset of parallel programs.

The following mechanisms have been previously introduced:
LoadBased - A new task is only created if there is at least one idle core (Duran

et al., 2008a).
MaxLevel (Maximum task recursion level) - Tasks are only created until a

certain depth in the recursion level (Duran et al., 2008b).
MaxTasks (Maximum number of tasks) - Tasks are only created if the overall
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number of tasks is below a threshold length.
ATC (Adaptive Tasks Cut-Off) - A task is only created if there are less tasks

in the system than a certain threshold and the recursion is below a certain depth
(Duran et al., 2008a).

Surplus (Surplus Queued Task Count) - A task is created if the number of
queued tasks in the current queue exceeds the number of other tasks by a certain
threshold (Lea, 2000).

In order to improve these algorithms, three novel algorithms are proposed:
MaxTasksInQueue (Maximum Queue Size) - We introduce this new approach,

which limits the number of tasks in the local queue to a certain threshold. This
approach differs from MaxTasks in only looking at the local queue, instead of all the
queues, avoiding the overhead of accessing information from other threads. If the
threshold is one or two tasks higher than the threshold of MaxTasks, queues will
have extra tasks that can be stolen by other threads.

Stack Size - In recursive divide-and-conquer programs, the recursion limit of the
platform imposes heavy limitations on the parallelization of programs. Recursive
calls are necessary to inline the execution of tasks inside the same worker thread.
As such, the performance of programs decreases when the stack grows beyond a
certain size. Having this in mind, we introduced a new approach, StackSize, which
counts the number of stack frames produced at a given moment, and only allows
the creation of tasks if that count is lower than a predefined threshold.

MaxTasks-SS is a hybrid algorithm between MaxTasks and StackSize. It first
avoids task creation if the number of stack frames is higher than the threshold. If
not, the creation of tasks is regulated by the MaxTasks mechanism.

5.3 Benchmark Suite
In order to evaluate cut-off algorithms, we use a benchmark suite comprised of
different fork-join programs that represent the different types of programs being
written for task-based work-stealing runtimes. Table 5.1 shows the list of the 24
programs used, their sources and the input sizes used.

The included programs are examples of divide-and-conquer, pipelined paral-
lelism, DO-ALL loops, DO-ACROSS loops, nested parallelism and partial paral-
lelism in a sequential algorithm. There are balanced and unbalanced programs in
the benchmark suite.

Except for Do-all, all programs are real-world examples and some are used in
other benchmark suites, because of their heterogeneity. Compared with other eval-
uations, this is the largest and most heterogeneous set of programs ever used for
evaluating cut-off algorithms. The benchmark suite is freely available at https:
//github.com/AEminium/AeminiumBenchmarks.

Based on empirical experiments, some of the characteristics of programs that
may influence the performance of granularity control algorithms are identified.

Table 5.1 includes some of these characteristics: Type, Balance, Number of Ker-
nels, Branching Factor and Nesting Factor. A program is always recursive, in the
sense that the program will recursively solve two halves of the problem in parallel.
We discriminate For-Loop programs because they have slightly more overhead in the
Binary or Lazy Binary Splitting (Tzannes et al., 2010) scheduling of the Runtime,
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Program Source Input size T. Ba. K. Br. N.

BFS PBBS (Shun et al., 2012) d=26,w=2 Rec. R 1 2 0
BlackScholes PARSEC (Bienia, 2011) 100002 Loop R 3 2 2
Convex-Hull PARSEC (Bienia, 2011) 100002 Rec. R 1 2 0
Do-All 100 million Loop R 1 2 1
FFT Cilk(Frigo et al., 1998) 8388608 Rec. R 1 2 0
Fibonacci ForkJoin (Lea, 2000) n=47 Rec. S 1 2 0
Fibonacci ForkJoin (Lea, 2000) n=49 Rec. S 1 2 0
Fibonacci ForkJoin (Lea, 2000) n=51 Rec. S 1 2 0
Genetic Knapsack g=100,p=100 Loop R 5 2 1
Health BOTS (Duran et al., 2009) l=7 Loop R 1 5 1
Heat ForkJoin (Lea, 2000) 4096x4096, it=1024 Loop R 1 2 1
Integrate ForkJoin (Lea, 2000) error=10−9 Rec. S 1 2 0
KDTree PBBS (Shun et al., 2012) n=10000000 Rec. R 3 2 0
LUD ForkJoin (Lea, 2000) 4096x4096 Rec. R 3 4 1
Matrix Mult ForkJoin (Lea, 2000) p=10000, q=r=1000 Loop R 1 2 1
MergeSort ForkJoin (Lea, 2000) n= 100000000 Rec. R 1 2 0
MolDyn JGrande (Smith et al., 2001) it=1 size=40 Loop R 3 2 1
MolDyn JGrande (Smith et al., 2001) it=5 size=30 Loop R 3 2 1
MonteCarlo JGrande (Smith et al., 2001) 10000x60000 Rec. R 1 2 1
N-Body PBBS (Shun et al., 2012) n=50000, it=3 Loop I 1 2 2
N-U Knapsack items=30, corr=3 Rec. S 1 2 0
NeuralNet it=500000 Rec. R 1 2 0
N-Queens Cilk (Frigo et al., 1998) n=8..15 Loop I 1 2 N
N-Queens Cilk (Frigo et al., 1998) 16 Loop I 1 2 N
Pi n=100.000.000 Loop R 1 2 2
Quicksort ForkJoin (Lea, 2000) n=10000000 Rec. R 1 2 0
RayTracer JGrande (Smith et al., 2001) n=2000 Loop R 1 2 1

Table 5.1: Description of the programs used in the benchmark.
T. stands for the type of parallelization, Recursive or Loop-based. Ba. stands for Balance, either Regular (R),
Irregular (I) or Skewed(S). K stands for Number of Kernels. Br. stands for Branching factor and N for Nesting
level.

but do not have merge workload. Programs can be balanced, in which the two halves
of the program have approximate amount of work to perform, or irregular, in which
a half has more work than the other. The Number of Kernels refers to the amount
of different parallel operations that execute during the program. The Branching
Factor is the amount of parallel subtasks created inside each tasks, which in most
cases is 2. Recursively splitting into 2 tasks is better for unbalanced loads and also
distributes workloads across different cores faster. Finally, the nesting level is the
amount of nested parallel for-loops. In the case of N-Queens, this value depends on
the granularity of tasks.

5.4 Experimental Setup

Name Processor CPU Cores Threads RAM
server32 Intel Xeon E5-2650 0 @ 2.00GHz 16 cores 32 threads 32GB
server24 Intel Xeon X5660 @ 2.80GHz 12 cores 24 threads 24GB

Table 5.2: Details of the hardware used in the experiments.

Programs were implemented on top of the Æminium Runtime (Stork et al., 2014).
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Two machines (Table 5.2) were used in order to generalize results to more than one
machine, both running Ubuntu 14.04 and Java HotSpot(TM) 64-Bit Server VM with
Java 1.8.

To collect values, a practical statically rigorous methodology (Georges et al.,
2007) was applied. For each combination of program and cut-off, we obtained the
mean and the 95% confidence interval for the execution time distribution in steady
state. The distribution was sampled from up to 30 executions, stopping when the
Coefficient of Variance was below 5%. Each program had a timeout of 1 hour. All
programs were executed in the same conditions, changing only the cut-off algorithm.
There was no other load on the machine besides the experiment and the operating
system.

5.5 Comparing Cut-off Algorithms
In sync with findings from prior works (Duran et al., 2008b,a), this section corrob-
orates that no cut-off approach performed better than the others for all programs.
Here, the differences in performance from the algorithms are addressed. Since the
time distribution of the algorithms is not normal, swarmplots will be used. For
parametrized cut-off approaches, we have used the parameters that achieved the
best global time, in a preliminary evaluation.
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Figure 5.2: Swarm plot of different cut-off approaches for the Do-all program on the
server24 machine.

Do-all is made of parallel for-cycles with several iterations doing only one op-
eration. Figure 5.2 shows the performance of different cut-off mechanisms in the
server24 machine. MaxTasks, MaxTasksInQueue and Surplus were the most effi-
cient strategies and they are all based on having enough work on each queue for
other to steal. LoadBased has a similar approach, but does not have extra work in
queues. In this case, allowing more threads to steal work results in a faster work
distribution across the CPU cores. Recursion-depth approaches like MaxLevel and
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Figure 5.3: Swarm plot of different cut-off approaches for the Matrix Multiplication
program on the server32 machine.

ATC are slower because, in this case, the depth considered was too deep and it
created too many tasks. In this case a smaller depth, such as 6 would result in less
tasks created, and less overhead, but in other programs it would result in worse
performances. Stack-size approaches create too many tasks as well in this case. Fig-
ure 5.3 shows the same behavior in the Matrix Multiplication program, which also
has lightweight tasks in a 2 dimensional loop cycle.
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Figure 5.4: Swarm plot of different cut-off approaches for the Fibonacci program on
the server24 machine.

Figure 5.4 shows the Fibonacci program with different cut-offs. Fibonacci is a
highly irregular program that generates a skewed parallelization tree, with a ex-
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Figure 5.5: Swarm plot of different cut-off approaches for the Integrate program on
the server24 machine.

tremely lightweight computation. In this case all approaches handle the program
reasonably well, but MaxLevel is not able to finish the program within the defined
timeout. Figure 5.5 shows Integrate, another highly irregular program, in which
cut-off programs show the same relative performance, with MaxLevel being much
slower than its counterparts.
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Figure 5.6: Swarm plot of different cut-off approaches for the N-Queens program on
the server24 machine.

In the N-Queens program, in Figure 5.6, Loadbased, MaxLevel and Surplus are
the fastest algorithms. This program has a high branching factor and a high penalty
for over-creating tasks, because it needs to allocate memory for each parallelization.
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MaxLevel avoids going too deep in the recursion tree, but created enough parallelism
for the program to have a speedup. LoadBased also prevents creating extra tasks
and performs similarly to MaxLevel.
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Figure 5.7: Swarm plot of different cut-off approaches for the FFT program on the
server24 machine.

Figure 5.7 shows the cut-off performance in the FFT program. Only ATC and
MaxTasksWithStackSize have finished the program 3 times within the timeout. FFT
is a program that allocates a large amount of memory in its divide-and-conquer pro-
cess. The allocation of tasks on top of the baseline allocation of the sequential
program penalizes the creation of a large number of tasks. The two best approaches
have two mechanisms to limit the creation of tasks, one limiting the queue size, and
another preventing it from going too deep in the recursion level. The difference be-
tween the two is that ATC limits using the programs recursion and MaxTasksWith-
StackSize uses the internal recursion of the work-stealing runtime.

In Figure 5.8, we can see the opposite behavior in which ATC and MaxTasksWith-
StackSize are the worst approaches. One reason for this is that these hybrid ap-
proaches use two mechanisms to improve their worst-case programs, but introduce
overhead in cases where the individual algorithms are ideal.

Figure 5.9 shows the same plot for the Neural Network program. In this program,
creating tasks has a relatively large overhead compared to the program and only
StackSize approaches have been able to complete the program within the timeout,
in a relatively small time. This is one example that justifies the introduction of
stack-size approaches, in which the workload of tasks is very light and there merging
recursive task results is expensive. This behavior is the same as in Fibonacci with
a very large input. KD-Tree is another program where Stack-based approaches are
also advantageous, but not by a larger difference, which can be seen in Figure 5.10.
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Figure 5.8: Swarm plot of different cut-off approaches for the Raytracer program on
the server24 machine.
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Figure 5.9: Swarm plot of different cut-off approaches for the Neural Network train-
ing program on the server32 machine.
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Figure 5.10: Swarm plot of different cut-off approaches for the KDTree training
program on the server32 machine.
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5.6 Verifying the No Free Lunch theorem
In order to assert whether the No Free Lunch Theorem applies, we will rank each
algorithm according to the relative performance attained in each program. Since
we cannot assert in all cases that an approach is better than the other, our ranking
reflects three metrics:

• the mean;

• the lower bound of the confidence interval;

• the upper bound of the confidence interval.

Although using the mean for comparison can be a fair assumption, it does not
represent the distribution of the execution time. Work-stealing programs can have
a large standard deviation in execution time, and comparing the mean represents
comparing average runs. By choosing one option over the other, the developer is
risking having an execution that is several times the mean. In order to account for
that risk, we use the upper bound of the confidence interval for the mean. This
metric is more conservative, in which we compare worst-cases and are aware of the
deviation in execution times.

Tables 5.3 and 5.4 show the mean ranks, considering the three metrics, on both
machines for all cut-off algorithms over the full benchmark. For each program, each
cut-off was ranked from best (1) to worst (8), and all approaches that did not finish
within the timeout interval were classified as 8.

Considering the ranks using the upper bound, values are limited by 4 and 6, which
is the global average rank, considering that there are several programs exceeding the
timeout interval. There is no program that performs outstandingly from the others.
Thus, we can empirically conclude that the No Free Lunch Theorem applies to Cut-
off Algorithm selection for Fork-Join programs. The same conclusion can also be
taken if using the mean instead of the upper bound.

lower bound mean upper bound

cut-off algorithm
atc2l12 5.167 5.583 5.208
loadbased 4.708 5.708 5.833
maxlevel12 4.625 4.250 4.208
maxtasks2 4.417 3.833 4.083
maxtasks2ss16 4.833 4.583 4.333
maxtasksinq2 4.333 3.917 4.417
stacksize16 4.250 4.583 4.708
surplus3 4.750 4.167 4.292

Table 5.3: Mean ranking of cut-off algorithms on the full benchmark on server32

Another aspect to evaluate is how the cut-off mechanism scales with different
workloads of the same problem. Figures 5.4, 5.11 and 5.12 show the performance
of the Fibonacci program for different input parameters in the server24 machine.
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lower bound mean upper bound

cut-off algorithm
atc2l12 4.808 5.923 5.615
loadbased 4.808 4.962 5.308
maxlevel12 4.577 4.231 5.000
maxtasks2 4.038 4.154 4.077
maxtasks2ss16 4.654 4.154 4.154
maxtasksinq2 4.462 4.000 4.269
stacksize16 5.385 5.038 4.577
surplus3 4.500 4.269 4.231

Table 5.4: Mean ranking of cut-off algorithms on the full benchmark on server24
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Figure 5.11: Cut-off performance in the Fibonacci program with 49 as input on
server24

Independently of the time values, the relative performance of cut-offs is the same.
The same behavior applies to N-Queens and MolDyn. From this data, it is possible
to infer that for large input sizes, the cut-off performance is similar.
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Figure 5.12: Cut-off performance in the Fibonacci program with 51 as input on
server24

5.7 Conclusions
In this chapter, three novel cut-off algorithms were introduced: MaxTasksInQueue,
Stack Size and Max Tasks with Stack Size. These three algorithms have shown
to have better performance than existing algorithms on different classes of prob-
lems. An empirical evaluation of the performance of different cut-off algorithms was
conducted, identifying some characteristics of programs that influence the choice of
cut-off algorithms. Finally, the No Free Lunch Theorem has been shown to apply
to Cut-off Algorithms, by empirically evaluating the benchmark suite and showing
that the mean ranking of algorithms was very similar across programs.
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Chapter 6

Energy Efficiency of
Granularity Control
Algorithms

Recently, there is a concern about reducing the energy consumption of data centers
and clusters for economical and environmental reasons. Furthermore, energy con-
sumption on mobile devices is also important to improve battery life. This work
addresses the performance-energy trade-off on shared-memory multicore devices in
parallel programs. In particular, the energy impact of granularity algorithms is ac-
cessed. The aim is to give programmers the knowledge they need to understand how
to maximize performance of parallel programs while minimizing energy spending,
when selecting granularity control algorithms.

6.1 Introduction
In nowadays multicore platforms, to improve the performance of computationally
intensive programs, they have to be designed to execute in parallel. Currently,
all types of computers, from smartphones to supercomputers, have multiple CPU
cores available. In both ends of the spectrum, lowering energy consumption has
become an important goal. On smartphones, tablets and other mobile devices,
good performance is important to improve user experience, but battery longevity
is also crucial. On clusters and datacenters, energy consumption has also been an
important driver for supercomputer design, both for economical and environmental
reasons.

On the software side, there are several attributes that influence both speed and
energy. This work focuses on shared-memory multicore processors. Typically, the
longer a program is running, more energy is being spent on that computation. How-
ever, the energy spent does not only depend on the time a program takes to execute,
but also on the way CPU and memory are used.

One of the aspects of writing and optimizing parallel programs is granularity
control. Most of the times, there is more parallelism in the program than hardware
threads. In that case, work must be grouped together to create an ideal match
between tasks and hardware threads. A task is a representation of individual work
that can be executed asynchronously on any given core. If the number of tasks
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is smaller than the number of available hardware threads, some cores can become
idle but keep consuming energy. If the number of tasks is larger than the number of
hardware threads, time and energy will be spent in non-profit scheduling operations.
This work considers tasks instead of Operating System (OS) threads because using
system calls would introduce an undesirable overhead. The proposed model uses
a one-to-one matching between software OS-level and hardware threads, similar to
how green threads work but without preemption.

This Chapter details the methodology used to understand the impact of granu-
larity control on the energy efficiency will be presented (Section 6.2). This method-
ology will be applied using both synthetic and real-world benchmarks to obtain
results (Section 8.3), from which conclusions will be drawn (Section 6.4).

6.2 Methodology
In order to evaluate time and energy consumption, resulting from different cut-off
options, a set of relevant programs of multiple benchmark suites has been selected
for execution. But, since these programs are very diverse in their nature, it is not
possible to draw conclusions for each individual characteristic they exhibit. As such,
a synthetic program that can mimic behaviors similar to those of recursive parallel
programs has been developed. By increasing and decreasing parameter values, it
is possible to see how one aspect influences the performance and power drain of
programs.

6.2.1 Synthetic Benchmark
The synthetic benchmark is made of a single program that can be configured to have
different behaviors. The main design goal of this program is to be representative
of any parallel program, and to be able to intensify the effect of each identified
characteristic.

1

2

5

3

4

6 7

Figure 6.1: Example of a task tree, generated by a possible program

Different behaviors can be achieved by combining four characteristics: workload,
memory allocation, leaf workload and branching, each multiplied by factors such
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as depth or side of the tree. The computational tree will be considered to define
those aspects. Figure 6.1 shows an example of a possible task tree, generated by a
program that divides work in two recursively, but only continues recursion on one
of the tasks. Tasks identified with 2, 4, 6 and 7 are considered leafs, as they do not
spawn any more tasks.

One of the aspects that characterizes a parallel program is the amount of work it
performs. The SHA1 hash function is used to simulate workloads in different points.
Two possible locations for work are considered: there can be work at every task,
before spawning new tasks, or just at the leaf tasks. The amount of work may be
static across the program, or it may depend on the depth (the deeper the task, the
more work it performs) or it may even depend on the side of the tree, as seen in the
Figure 6.1. In this case, the number of previous spawns is used as a factor when
generating the unbalanced workload.

Other aspect is the allocation of memory that is performed before spawning tasks.
This represents the case of some programs that need to allocate extra memory to
perform the work division for parallel calls, a step that would not be necessary for
the sequential version.

Finally, the last aspect is branching. A task can have zero or more child tasks.
The number of children is typically 2, but depending on the problem it might be
higher, or be dynamic. As such, branching is modeled as either static, depth-
dependent or side-dependent.

By representing aspects and their factors using variables, it is possible to generate
several programs, ranging from regular and balanced to irregular and unbalanced
programs. The 13 variables that define a synthetic program are: Maximum Depth,
Allocation before spawning, Task load, Task load static factor, Task load side factor,
Task load depth factor, Leaf load, Leaf load static factor, Leaf load side factor,
Branching, Branching static factor, Branching side factor, and Branching depth
factor.

6.2.2 Real-world Benchmark
A real-world benchmark is used to ensure that the conclusions drawn from using the
synthetic benchmark would hold on real-world programs. This real-world benchmark
is made of several programs, used in different areas. Most of these programs are
present in other benchmarks used for evaluation of parallel programs. The same 24
program benchmark presented in Subsection 5.3 and Table 5.1 are considered.

6.2.3 Experimental Setup
All programs were implemented on top of the Æminium Runtime (Stork et al.,
2014). Programs were evaluated on a Intel Xeon E5-2650 at 2GHz with 16 cores,
32 hyper-threads and 32GB of RAM. The machine ran Ubuntu 14.04 with Java
Hotspot 64-bit Server 1.8. This processor features Intel Turbo Boost, where an idle
processor can slow down to 1.2GHz, thus having an impact on performance.

To collect values, each program executes between 3 and 30 times, until the
coefficient of variance was below 5%. Each program had a timeout of 1 hour. All
programs were executed in the same conditions, changing only the cut-off algorithm.
There was no other load on the machine besides the experiment and the operating
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system. When not detailed, the mean is used to represent the distribution.
Power usage was collected using the SandyBridge RAPL performance counters

(David et al., 2010). Power and time were measured at the same time, and sampling
periods were smaller than the duration of the programs.

6.3 Results
In this section the results of this study are presented. First, the correlation between
time and energy consumed by a program is presented. To understand behavior of
granularity algorithms, synthetic benchmarks are used, firstly to represent balanced
programs, and then unbalanced ones. Finally, a real world benchmark is used to
validate our conclusions and choose the best cut-off algorithm overall.

6.3.1 Time versus Energy
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Figure 6.2: Distribution between duration of the program and its energy usage.

Figure 6.2 shows the execution time and energy consumption for all programs.
Although there is a tendency of longer programs consuming more energy, there are
many cases in which this correlation is not direct. Thus, it is important to identify
in which cases a better performance can be obtained with the same or lower energy
footprint.
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6.3.2 Balanced programs
Using the synthetic program, each variable was varied at a time, keeping all others
constant. Firstly, different amounts of work in each task were tested, designated as
before. Two metrics were used: time and energy relative performance. The relative
performance is a ratio between the mean measurements of the best cut-off and of the
given cut-off, either in time or energy. A relative performance closer to 1 is better.
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Figure 6.3: Time and energy relative performance for different task workloads.
Higher is better.

Figure 6.3 shows relative performance between each cut-off approach and the best
in the group, over three different workloads per task. The program has a maximum-
cutoff of 10 and static branching of 2. In light workloads, several algorithms have
good performance in both time and energy. With a workload per call of 50, it is
possible to see that the best program in terms of execution time is not the same
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as the program with the lowest consumption. Overall, MaxTasksInQueue is the
algorithm with the lowest overhead, thus having a good energy and time efficiency.
Max-tasks allows for more tasks to be created, resulting in a faster program, with a
lower energy efficiency. With heavier workloads the best algorithms are MaxLevel,
ATC and LoadBased. Since this is a regular uniform program, most depth-based
algorithms can generate a good granularity. The LoadBased algorithm also performs
well in both metrics with balanced programs because cores are always occupied after
the initial distribution.
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Figure 6.4: Time and energy relative performance for different leaf tasks workloads.
Higher is better.

Figure 6.4 shows the variation of the amount of work in leaf tasks, up to 100
thousand iterations at leafs. The main difference to the previous version is that the
computation tree is generated first, and work is only done at the leaf level. With
a smaller workload, MaxLevel and ATC perform the best in both metrics. With
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a medium workload, dynamic approaches such as LoadBased and MaxTasks are
preferable. With higher workloads, any of the four previous approaches perform
similarly. Doing work at the leaf level is not different from doing it at every task, in
terms of the energy effiency. The same rationale can be used to justify the observed
results.
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Figure 6.5: Time and energy relative performance for different depths with leaf
workloads. Higher is better.

Figure 6.5 shows the variation of the amount of work with different depths. The
workload also occurs on leaf tasks. Similarly to what was seen when varying the
workload, with light and heavy workloads, MaxLevel is the best cut-off approach.
With medium workloads, dynamic approaches such as LoadBased, MaxTasks and
Surplus have a better performance. The reason for this is that in smaller workloads
the overhead of using a dynamic method represents a large part of the computation.
In heavy workloads, the depth cut-off is enough because tasks are sufficiently heavy
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to mitigate the overhead of scheduling. However, medium workloads can be so small
that the maximum depth level is not low enough to start grouping tasks together
(A lower level threshold should produce better results by aggregating more). In this
case, the MaxTasks cut-off adapts to this case and yields better results, just like
LoadBased.
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Figure 6.6: Time and energy relative performance for different branching factors
with leaf workloads. Higher is better.

Figure 6.6 shows the impact of the branching factor on a balanced program.
With a small branching value, MaxTasks and ATC have the best performance, with
MaxTasks being the best combination for the two metrics. As the branching factor is
increased, the difference between those two and LoadBased and MaxLevel decreases,
given their low overhead when there is an overall large workload and relatively low
stealing. This difference is most noticeable in energy.
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6.3.3 Unbalanced programs
In unbalanced programs, different executions at the same recursion level generate
a different number of recursive calls. The result is that the program will have
more work, and possible tasks, in one side of the computation tree. The recursive
Fibonacci program is an example of a very unbalanced program.
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Figure 6.7: Time and energy relative performance for different depths with unbal-
anced binary branching. Higher is better.

Figure 6.7 shows the performance of time and energy of unbalanced programs
with a light workload with different depths. Over all depths, the three novel ap-
proaches introduce in Chapter 5, MaxTasksinQueue, MaxTasks with StackSize and
StackSize, perform better, especially in terms of energy. StackSize-based cut-offs
provide a depth-based approach, but consider the internal runtime recursive calls
instead of just program calls. This results in a better granularity, avoiding the cre-
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ation of tasks in high depths of the program, except when the queue is available.
MaxTasksInQueue, on the other hand, tries to limit the amount of tasks in a par-
ticular queue, the ideal case for these programs in which one worker can create a
large number of tasks to be stolen by other workers.

6.3.4 Real-world programs
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Figure 6.8: Time and energy relative performance in irregular real-world bench-
marks. Higher is better.

Figure 6.8 shows the performance of different cut-off algorithms in terms of speed
and performance on real-world irregular algorithms. The behavior of the synthetic
program with unbalancing branching and lightweight work was confirmed in real
programs.
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Figure 6.9: Time and energy relative performance in real-world benchmarks where
the best time-efficient cut-off is not the most energy-efficient. Higher is better.

Real-world benchmarks could also confirm that there are cases where the best
cut-off in terms of time is not the best in energy consumption. Figure 6.9 shows
examples, with consistent differences in Nqueens, for instance. StackSize approaches
generally achieve a better performance in speed than in energy.

It was clear that different programs performed better with different cut-off al-
gorithms. If a programmer wants to optimize energy consumption, the best cut-off
might not be the same that he would select for speed-up.

Figure 6.10 shows different metrics to evaluate the error of using each cut-off
for all programs. The ratio of incomplete programs shows the cases in which the
execution timed out (1 hour timeout, which is higher than the execution time of
the serial version). The other two metrics are the percentage of time or energy that
could have been saved by using the best cut-off for each program.
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Figure 6.10: Evaluation of different cut-off approaches over the whole real-world
dataset. Blue bars represent the ratio of time spent by that cut-off that could have
been save by using the best cut-off for each program. Green bars represent the
same ratio, but for energy. Red bars represent the ratio of programs that could not
execute within the 1 hour threshold. Lower is better.

MaxTasks, StackSize and MaxTasks with Stack size had the lowest incomplete
ratio, which means they are more general and can handle different types of pro-
grams, albeit not having the best performance in time or energy. Among the three,
MaxTasks had the best performance in energy and time.

6.4 Conclusions
In this chapter, the time performance and energy consumption of different cut-off
techniques have been evaluated. A synthetic benchmark has been used to emphasize
individual program characteristics that can influence the choice of cut-off algorithms,
and real-world benchmarks.

The synthetic benchmark was used to study the influence of branching, workload
and depth on energy and time consumption. It has been concluded that for balanced
programs, of small and high workloads, depth-based approaches such as MaxLevel
and ATC tended to perform better. Medium workloads performed better under
MaxTasks in both time and energy.

In unbalanced programs, the workload per leaf had a larger impact. The smaller
the workload, the more irregular the program would be. Dynamic approaches such
as MaxTasks, MaxTasksInQueue and Surplus performed better in those cases. In
programs even more irregular, unbalanced with light workloads and a high depth,
StackBased approaches were the best.
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These conclusions has been confirmed on real-world benchmarks. Furthermore,
cut-offs have been globally evaluated on the benchmark set. Despite MaxLevel hav-
ing the best execution time, and MaxTasksInQueue the lowest energy consumption,
both cut-offs failed to complete a large set of programs. For a more conservative
choice that gives priority to finishing all programs instead of being faster in a few,
MaxTasks and Stack-Based cut-offs are the best, with MaxTasks being the best in
terms of time and energy.
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Chapter 7

Using Evolutionary
Algorithms to Optimize
Granularity Algorithms

Chapter 5 showed evidence that existing and novel granularity algorithms all per-
formed equally over all types of problems. Chapter 6 confirmed that, in both time
and energy, the best cut-off algorithm was not the same for all programs. This chap-
ter attempts to artificially create a granularity algorithm better than the existing,
and to develop an approach to evolve a granularity and configuration for a single
program, through the usage of a Genetic Algorithm (GA).

7.1 Introduction
As previously seen, different programs have a different best granularity control mech-
anism. It was also concluded that in some cases the combination of two different
algorithms improves the performance in some programs, but not always. Select-
ing the best cut-off mechanism is also non-trivial as there are no features that are
discriminatory enough.

Additionally to cut-off mechanisms, there are other work-stealing runtime con-
figurations that can influence the behavior of a parallel program, such as the stealing
algorithm, the parking interval, the Lazy Binary Splitting PPS value, etc.

Thus, when considering both cut-off and work-stealing configurations, looking for
the best setup among the cross-product of all possible setups might not be feasible.
Such task would be too overwhelming for humans and a test-and-run approach would
be computationally too expensive to be useful.

In this work two problems are tackled: finding a global configuration that can
efficiently handle regular and irregular programs and finding the best configuration
for each program. This is done by applying a Genetic Algorithm (GA) where the
genotype of each individual is represented as a combination of up to three cut-off
conditions, stealing algorithm and values for runtime configuration. A random pop-
ulation is evolved using single-point recombination and mutation, and tournament
and elitism are used for selecting individuals based on individual benchmark test
performance.
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Firstly, the problem is stated, including the definition of program configuration
(Section 7.2). Then, the evolutionary approach is described, including parameters
of the GA (Section 7.3). The GA is evaluated (Section 7.4) using a large testing set
and, finally, conclusions are drawn (Section 7.5).

7.2 Parallel Program Configuration
Different cut-off algorithms have been presented and it has been shown how they
influence the performance of a program. Moreover, combining different algorithms
can be useful in some cases. Thus, the configuration of a program will include the
usage of one or more algorithms in the configuration of the parallel program.

Another important configuration is the stealing algorithm, that can interact with
the cut-off mechanism to impact the performance of the program. The stealing algo-
rithm is used to select which queue will a worker-thread steal tasks from. There are
several approaches: SequentialReverseScan, that tried to steal tasks in reverse
order; StealFromMaxQueue tries to steal from the largest queue; MinLevel tries
to steal the task with the smallest depth in the calling graph, based on the assump-
tion that it has more work; and Revenge tries to steal from tasks which stole from
this task earlier, trying to maximize cache locality.

Besides the cut-off and work-stealing algorithms, there are other configuration
parameters such as the unparking interval, that represents for how long a thread
sleeps until it checks if there is work available to steal elsewhere. Finally, the max-
imum size of the queue represents the maximum size of each queue, after which
tasks will be executed instead of queued. It is important to distinguish between
this limit, and the MaxTasks cut-off. MaxTasks prevents tasks from being created,
while this limit only prevents them from being queued, but the overhead in task
creation always occurs. Setting the maximum size of the queue to any value above
the MaxTasks threshold will have no impact in the program.

In summary, it is possible to manage the execution of a recursive parallel program
over a task-based runtime by configuring the following parameters:

• Cut-off Mechanism and its parameters, or a combination of several cut-offs

• The PPS threshold for Lazy Binary Splitting

• The stealing algorithm

• The maximum queue size

• The unparking interval

It is important to note that there is no defined rule on how to choose a cer-
tain parameter value. Parallel programs are very heterogenous and the best choice
depends heavily on the program and platform.

This work addresses that issue by trying to find ways to find a global cut-off
that has a good performance, and by finding how to improve the configuration of a
single program. Considering a program with an average execution time among all
configurations of 1 second, trying all possible combinations would take 48 thousand
million years. Thus, it makes sense to use an heuristic-based approach.
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7.3 An Evolutionary Algorithm for Parallel Pro-
gram Optimization

The identification of the ideal configuration is a very complex problem, which cannot
be obtained directly, given the dependency between the configuration parameters.
This is a case of Search-Based Software Engineering (SBSE) (Clarke et al., 2003),
in which metaheuristics search techniques are used to find near-optimal solutions
for complex problems in the software engineering field, which otherwise would be
extremely computationally expensive to obtain.

A Genetic Algorithm (Goldberg and Holland, 1988) is proposed to tackle this spe-
cific problem of finding the best configuration for a subset of programs. A genetic
algorithm uses a representation of the solution (genotype) that can be evaluated
using a fitness function. Starting with a pool of random individuals, each corre-
sponding to a possible representation of the solution, the GA iteratively selects and
combines existing individuals to generate new individuals, replicating the natural
selection process. The overall algorithm is described in Algorithm 2.

Algorithm 2 General Genetic Algorithm
1: pop0 ← POP_SIZE ∗{random_individual()}
2: for it = 0.. ITERATIONS do
3: evaluate(popit)
4: sort(popit)
5: popit+1 ← {pope, for e = 0.. ELITISM }
6: popit+1 ← NOVELTY ∗{random_individual()}
7: for i = (ELITISM+ NOVELTY)..POP_SIZE do
8: if random() < PROB_RECOMB then
9: parent1 = tournament(TOURN_SIZE)
10: parent2 = tournament(TOURN_SIZE)
11: child = crossover(parent1, parent2)
12: else
13: child = tournament(TOURN_SIZE)
14: end if
15: popit+1 ← {child}
16: end for
17: for i = 0..POP_SIZE do
18: if random() < PROB_MUT then
19: popit+1,i = mutate(popit+1,i)
20: end if
21: end for
22: end for

7.3.1 Genotype
Choosing the genotype is one of the main decisions when designing a Genetic Algo-
rithm. Work-stealing and PPS parameters could be represented as integers, but the
cut-off algorithm requires a more complex representation. A Genetic Programming
approach, using a typed AST that could be compiled to a runtime Java expression
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Table 7.1: Possible Cut-off Variables

Variable Description

queueSize Length of the current queue

level Depth of the parallel recursion

stacksize Number of allocated stacks

activeThreads Number of threads executing tasks

idleThreads Number of threads not executing tasks

surplus Length difference between local and average queues

totalTasks Number of active and pending tasks

emptyQueues Number of empty queues

memory Percentage of used memory in the machine

cpuLoad Percentage of CPU load in the machine

true -1000, so the condition is always true.

was considered. In early experiments, most of the iterations were introducing bloat,
instead of finding better solutions. Since these evaluations are very time consuming,
a solution with a higher learning rate was required. A fixed expression to represent
the condition was developed, as all existing cut-offs could be represented using it:
Var1 < Threshold1 †1 Var2 < Threshold2 †2 Var3 < Threshold3. This approach is able
to combine up to three conditions, which was shown to be enough, as increasing
the number of conditions would also increase the overhead in the decision process,
which is executed once for each recursive call. † represents either the and or the or
binary operators, following the Java semantics. Threshold can represent any number
from 0 to 100, which was a sensible maximum for any of the possible variables. Var
could take any of the following values available in the runtime listed in Table 7.1.
The true option was introduced to allow cut-offs with less than three conditions,
resulting in a condition where -1000 is always less than any number between 0 and
10.

The final genotype is described in Table 7.2.

7.3.2 Operators and general configurations
Recombination is performed by a single point crossover between two parents. A
random point of the genotype is selected, and the child inherits the genes before
that random point from parent 1, and the remaining from parent 2. The mutation
operator is different per gene. The mutation of non-integer genes randomly selects
an option from the alternative list. In the case of integers, it has a 75% chance of
adding or subtracting a number within 5% of the maximum value, and 25% chance
of replacement by a random integer within the range of that gene. Part of this
mutation tries to simulate local-searching around that threshold.

The population size of the GA was set to 25, which is small. The reason for
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Table 7.2: Genotype

Gene Description

var1 One of 11 options in Table 7.1

threshold1 Integer between 0 and 100

†1 and or or binary operators

var2 One of 11 options in Table 7.1

threshold2 Integer between 0 and 100

†2 and or or binary operators

var3 One of 11 options in Table 7.1

threshold3 Integer between 0 and 100

PPS Integer between 0 and 100

Stealing One of: StealFromMaxQueue, MinLevel,

Revenge and SequentialReverseScan

maxQueueSize Integer between 0 and 1000

unparkingInterval Integer between 0 and 1000

this, is that evaluating each configuration is very time-consuming, thus a larger
population would penalize execution time. The algorithm executes 100 iterations,
which is enough for fitness to stabilize.

The recombination rate is 90% in order to test several combinations of cut-offs
and other configurations. The mutation rate is 50%, higher than the traditional for
the same reason. Mutating thresholds is desirable as they impact the performance
of programs.

In order to keep the best approach until the final generation, elitism was defined
with value 2, and to always introduce new genetic material and avoid local minima,
a new random individual is introduced at each generation.

7.3.3 Fitness Evaluation

In order to evaluate the fitness of each solution, the configuration is applied to
the Æminium Benchmark suite (Fonseca, 2013). Table 7.3 describes the subset of
the benchmark used in the training set. In the training set, programs have smaller
inputs in order to reduce the evaluation time. The testing set will be used to evaluate
the generalization capability of our algorithm.

The complete fitness evaluation incorporates compiling the cut-off expression to
Java source code, and writing the other parameters to a configuration file. Then,
each of the programs is executed once and recorded. Parallel programs can have
a high standard deviation in regards to execution time. However, if two cut-off
approaches are similar, either one or both can be kept, as the elitism value is 2.
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Program Training input size Type Balance

BlackScholes 10002 For-loop Regular

Do-All 1 million For-loop Regular

FFT 131072 Recursive Regular

Fibonacci n=41 Recursive Skewed

Health l=4 For-loop Regular

Heat 1000x1000, it=1024 For-loop Regular

Integrate error=10−11 Recursive Skewed

Matrix Multiplication p=10000, q=r=1024 For-loop Regular

N-Body n=50, it=3 For-loop Skewed

N-Queens n=13 For-Loop Irregular

Pi n=100.000 For-loop Regular

Table 7.3: Description of the programs used in the benchmark

Additionally, there is a timeout of 10 seconds per evaluation because the training
benchmark was designed in order to have 1 second programs with a reasonably good
cut-off and default parameters. Timed out programs are considered to have 1000
seconds of execution.

For each individual, the execution time in each program is recorded. The fitness
of each individual is the sum of the execution times for all programs.

7.3.4 Selection operator
For selecting an individual for recombination, or for the next generation, a tour-
nament operator (Miller and Goldberg, 1995) is used. Initially, a roulette wheel
(DeJong, 1975) was being used, but at generation 50 all the population had the
same genotype. A tournament among 4 individuals revealed to be a solution with
higher diversity and achieved better results. However, the implemented tournament
did not consider their fitness. Instead, each tournament compared the performance
of different individuals in a single random benchmark. The reason for this cus-
tom tournament is to try to cross algorithms that solve different types of programs
together.

7.4 Evaluation
In this section, the proposed evolutionary algorithm is evaluated on a large test suite
to evolve a general configuration, as well as a specific configuration for individual
programs.

7.4.1 Experimental Settings
These experiments were conducted on 3 different machines, each with different char-
acteristics, featured in Table 7.4. server32 and server24 had Ubuntu 14.04 installed
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Name Processor CPU Cores Threads RAM

server32 Intel(R) Xeon(R) CPU E5-2650 @ 2.00GHz 16 cores 32 threads 32GB

server24 Intel(R) Xeon(R) CPU X5660 @ 2.80GHz 12 cores 24 threads 24GB

server8 Intel(R) Xeon(R) CPU E5420 @ 2.50GHz 8 cores 8 threads 16GB

Table 7.4: Details of the hardware used in the experiments.

while server8 had CentOS 6.7. The experiments executed on top of the Æminium
Runtime (Stork et al., 2014), executing on the Java HotSpot 64-Bit Server VM 1.8.

The time measure was for the parallel algorithm alone and runtime overheads,
excluding the data setup required. Because of being time-consuming experiences,
only one execution of each configuration-program pair was executed. In some cases,
several seeds were used in the GA, and the results mention that.

7.4.2 Training dataset
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Figure 7.1: Fitness of the best individual of each generation of the training dataset
on server8.

Figures 7.1, 7.2 and 7.3 show the fitness of the best individual of each generation,
each figure showing 3 different seeds with 30 seconds as the maximum value possible.
In all cases, the performance of the best configuration improved over time. server8
had the biggest different in performance from the best random population to the
last generation. Since it has fewer cores, the machine is more sensible to the cut-off
algorithm. server32 has the smallest different, reflecting the same conclusion.
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Figure 7.2: Fitness of the best individual of each generation of the training dataset
on server24.
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Figure 7.3: Fitness of the best individual of each generation of the training dataset
on server32.
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In server24 and server32, the GA obtained a good configuration quite quickly,
having less than 1 second of difference between generation 50 and 100. That 1 second
could also result from variations inherent with parallel programs. From these results,
only 50 generations were considered for other benchmarks.
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Figure 7.4: Execution time per training program of the best individual of each
generation of the training dataset on server8.

Figures 7.4, 7.5 and 7.6 show the fitness of the best individual of each generation
distributed by each benchmark program, with a maximum value of 15 seconds. After
the first 10 generations, the GA is trading the performance of one algorithm for the
others, resulting in small marginal improvements. These small improvements could
be useful for improving a single program, but not necessarily for improving a whole
benchmark. It can be concluded that the first generations improve over the majority
of programs, but after some generations the GA is only changing configurations to
achieve a better balancing of configurations. In Figure 7.5 and 7.6 it is possible to
notice that the best performance of some programs were in the first generations. It
can be concluded that the vast improvement of some programs is done at a smaller
cost of other programs.

7.4.3 Testing dataset
The full dataset is introduced to evaluate the generalization capability of the GA.
The testing benchmark has more programs and they have a larger input size, which
results in long-running programs. Figures 7.7, 7.8 and 7.9 show the fitness on
the testing benchmark of the best individual of each generation of the training
benchmark, each figure showing 3 different seeds with 30 seconds as the maximum
value possible.
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Figure 7.5: Execution time per training program of the best individual of each
generation of the training dataset on server24.
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Figure 7.6: Execution time per training program of the best individual of each
generation of the training dataset on server32.
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Figure 7.7: Fitness in the testing dataset of the best individual of each generation
of the training dataset on server8.
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Figure 7.8: Fitness in the testing dataset of the best individual of each generation
of the training dataset on server24.
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Figure 7.9: Fitness in the testing dataset of the best individual of each generation
of the training dataset on server32.

It is possible to conclude that the GA does not achieve a good generalization, as
the performance of the testing benchmark does not decrease along the generations.
The reason for the lack of generation is twofold: the training benchmark is not
representative enough, and configurations for short-running programs do not scale
for long-running programs.

Considering the first reason, the training benchmark has 11 programs while the
testing benchmark has 23 programs. While the training benchmark attempted to
have as much diversity as possible, it is not representative enough. Secondly, a
program that executes sequentially for X seconds divided in Y tasks will result in
tasks of X/Y seconds. The same Y tasks for a larger X will result in larger tasks,
which might not be optimal for the load balancing algorithm.

Figure 7.10 details the evolution of the performance on each testing benchmark
program on one execution of the GA on server8. Most programs improve their
performance, except for Neural Network, which is never executed below the time
out threshold, FFT and BFS, which have random behavior. Despite degrading
the performance of just two programs, the overall cost is high, because those two
programs running slowly have a huge impact on the whole benchmark. Figure 7.11
shows the same results, but on server32. With more cores, the number of programs
degrading performance is higher: 8 out of 23. In server24, results are similar to
server32, which leads to the conclusion that with more cores, there is a low scalability
from smaller inputs to larger ones.
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Figure 7.10: Execution time per testing program of the best individual of each
generation of the training dataset on server8.
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Figure 7.11: Execution time per testing program of the best individual of each
generation of the training dataset on server32.
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7.4.4 Evolving single programs

From the previous experiments, there were two important conclusions: The GA does
not have a very good generalization because of a few edge cases; and the GA makes
most of the relevant improvements in the first generations.

Based on these two factors, the GA can be used to improve individual programs
within a small number of generations. Figure 7.12 shows the performance of the
best individual for the application of the GA on different programs individually. All
programs are efficiently improved, except for BlackScholes, in which it found a best
solution in the initial population. This is probable in programs where a set of basic
cut-off approaches have the same behavior, which is the case here.

18
20
22
24
26
28
30
32

Fi
tn

es
s 

(s
)

Program = fft

4.48
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57

Program = nhknapsack

30
32
34
36
38
40
42
Program = convexhull

5
10
15
20
25
30
35
40
45
50

Program = nqueens

2.3
2.4
2.5
2.6
2.7
2.8
2.9

Fi
tn

es
s 

(s
)

Program = matrixmult

12.5
12.6
12.7
12.8
12.9
13.0

Program = gaknapsack

8.6
8.8
9.0
9.2
9.4
9.6
Program = blackscholes

7.0
7.5
8.0
8.5
9.0
9.5

Program = heat

3.820
3.825
3.830
3.835
3.840
3.845
3.850

Fi
tn

es
s 

(s
)

Program = lud

0 10 20 30 40 50
Generation

5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

10.0
Program = fibonacci

0 10 20 30 40 50
Generation

2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

Program = integrate

0 10 20 30 40 50
Generation

4.2
4.4
4.6
4.8
5.0

Program = health

0 10 20 30 40 50
Generation

3.20
3.25
3.30
3.35
3.40
3.45

Fi
tn

es
s 

(s
)

Program = doall

Figure 7.12: Fitness of the best individual over different instances of GA, one for
each individual program.
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7.5 Conclusions
A Genetic Algorithm has been proposed for the optimization of parallel programs
based on the following configurations: combination of cut-off criteria, Lazy Binary
Splitting intermediate iterations, workstealing algorithm, maximum recursion level
and unparking interval.

The GA has been applied to a small training benchmark composed of 11 pro-
grams with small input sizes. The GA was able to successfully find a configuration
that optimized the whole benchmark. The performance of some of the programs was
degraded over the generations in order to greatly improve others. When the best
individuals of each generation were tested against the whole 23 program benchmark,
the overall performance did not improve. Most single-programs were improved, but
a small number of programs would become slower, consistent with the training eval-
uation. In the testing benchmark, a configuration that slowed down one program,
had an execution time orders of magnitude higher than the smaller improvements
over the programs which were sped-up.

Additionally, the GA has also been applied to individual programs successfully.
The performance of all programs was improved except for one program in which the
minimum was found in the first generation.

Finally, it has been shown that despite the lack of generation of the GA for finding
a universal configuration, when evaluating with this specific training and testing
sets using global execution time as a metric, most of the programs were improved.
Furthermore, individually applying the GA with a small number of generations (50)
does improve the performance of programs and can be used for finding the best
configuration for a long-running program. The proposed approach can use other
metrics instead of just using the execution time, such as energy consumption.
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Chapter 8

Selection of Granularity
Control Algorithms

Chapter 5 concluded that cut-off algorithms generally have similar performance over
all classes of problems. Chapter 6 also confirmed that in both energy consumption
and execution time, the best cut-off was not the same for all programs. In Chapter 7
this conclusion was confirmed through the inability of evolving a generalized custom
cut-off algorithm. This chapter attempts to identify which cut-off algorithm to
use for any given set of problems, complementing the proposed model for efficient
automatic parallelization.

8.1 Introduction
In the context of both automatic and manual parallelization, the choice of gran-
ularity is important and can impact the performance of the resulting program.
Frameworks like Æminium and OpenMP also have the need to provide a default
cut-off algorithm for programs written using their task-based API. An exhaustive
evaluation of all possible cut-off algorithms is very time consuming and platform de-
pendent. For instance, the benchmark suite used in Chapter 5 took over 3 months
to test a subset of all possible cut-off algorithms.

Chapter 5 presented new cut-off algorithms that improved the performance of
some parallel programs. Through the evaluation of cut-off algorithms in a set of
different benchmark programs, it was concluded that no cut-off algorithm outper-
formed others in the whole benchmark suite.

Thus, in order to choose a cut-off algorithm for a program, it is important to
understand which program features impact the choice of cut-off. In the previous
evaluation, two program features have been identified as important in the decision:
tree unbalance and usage of for-loops.

This Chapter addresses the choice of cut-off algorithms, considering the mini-
mization of the misclassification cost, introduced in Chapter 4. Given the high
variation of the performance of different algorithms across programs, it is acceptable
that the best cut-off is not chosen. But in this case, the non-ideal cut-off algorithm
should have as little performance penalty as possible.

This Chapter is based upon the results from Chapter 5. From these results, three
approaches are presented for performing the cut-off algorithm decision (Section 8.2).
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The three approaches are evaluated on their generalization ability using a synthetic
benchmark (Section 8.3) and conclusions are drawn (Section 8.4).

8.2 Approaches for Automatic Granularity Algo-
rithm Selection

Three approaches are presented for automatic granularity algorithm selection: a
static approach that always selects the same algorithm, a rule-based approach based
on feature analysis of the existing benchmark and a machine-learning approach.

These approaches are used to minimize two metrics: the program execution time
and the program energy consumption.

8.2.1 A Static Approach
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Figure 8.1: Misclassification cost for always selecting each algorithm on server24
machine.

This section uses the results presented Chapter 5, evaluating different cut-off
algorithms across a benchmark suite of 24 programs. Figures 8.1 and 8.2 show the
misclassification cost for each algorithm on all programs. In the case of timeouts, the
timeout value was considered for evaluation, thus a floor for the misclassification cost
is used instead of the actual error. This is necessary because no cut-off algorithm
was able to complete all programs on both machines (Figure 8.3 depicts the amount
of completed programs). Since this is a minimization problem and all programs
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Figure 8.2: Misclassification cost for always selecting each algorithm on server32
machine.
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Figure 8.3: Number of programs completed in both machines per cut-off mechanism.

complete with at least one of the cut-off algorithms, considering a floor value has
no major impact.

Taking into account the ability to complete the benchmark, and the misclas-
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sification cost, ATC, MaxTasks with StackSize and StackSize are the overall best
approaches in this benchmark suite.

8.2.2 A Feature-based Ruleset
The evaluation of Chapter 5 identified some features that impact the performance of
programs. The following features were manually obtained from inspection of source
code:

• Type of For-Loop splitting mechanism - For-loops can can be split and merged
using an automatic Binary Splitting mechanism. For-Loops have less overhead
than most binary recursive programs in this benchmark because there is no
work done in merging results.

• Unbalance - A program is balanced if its children perform roughly the same
amount of work. Unbalanced programs create more tasks in one of the cores,
increasing the overheads in task-stealing from the other cores. These programs
also have the potential to create several tasks very quickly if one of the sides
creates tasks without performing any work.

• Number of Kernels - Some programs just perform one action, but others follow
a pipeline of different parallel tasks. The later are harder to tune when using
the same cut-off strategy for the whole program.

• Branching Factor - The number of children of a task. This is in most cases 2,
although some programs can split in 4.

• Nesting - Whether a program has nested parallel loops or not, influences the
potential amount of tasks, even if tasks only have one or two levels of depth.

Additionally, we introduced two other features based on the Cost Model pre-
sented in Chapter 3, for estimating the computational cost of Java operations, based
on static analysis and program-independent micro-benchmarks. We analyzed each
program and computed two metrics:

• Seq - the estimated cost of performing the computation sequentially

• Overhead - the estimated overhead of splitting the task and merging the results

Unlike other features, these values were obtained automatically by a compiler
tool, using the same approach presented in Chapter 3. The values produced by
the tool do not represent absolute values, but can be used for comparisons between
methods and operations. Unlike the Cost Model granularity mechanism, in which
the decision is done using these values, this approach uses these values, among other
features, to identify the best dynamic granularity cut-off algorithm to use.

Figures 8.4 shows the best cut-off algorithm according to each one of these fea-
tures. From this graph, there is no direct discrimination feature that can be used.
The Cost-Model information is also not very useful in this analysis, as there are no
clusters of best programs to use. One of the reasons is that only the best cut-off for
a given program is shown, while there might be another algorithm that is generally
better, but in that case could be a few milliseconds slower.
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Figure 8.4: A distribution of each of the features per best cut-off approach, using
the upper bound metric on server32.

at
c2

l1
2

lo
ad

ba
se

d

m
ax

le
ve

l1
2

m
ax

ta
sk

s2

m
ax

ta
sk

s2
ss

16

m
ax

ta
sk

si
nq

2

st
ac

ks
iz

e1
6

su
rp

lu
s3

Cut-off Algorithm

102

103

104

105

To
ta

l e
xe

cu
tio

n 
tim

e 
(s

)

ForLoop = 0

at
c2

l1
2

lo
ad

ba
se

d

m
ax

le
ve

l1
2

m
ax

ta
sk

s2

m
ax

ta
sk

s2
ss

16

m
ax

ta
sk

si
nq

2

st
ac

ks
iz

e1
6

su
rp

lu
s3

Cut-off Algorithm

ForLoop = 1

Figure 8.5: The misclassification time of programs by the ForLoop feature, on
server32, considering the mean time of each program.

Thus, a feature-by-feature analysis can be performed to evaluate the misclassi-
fication cost of each cut-off algorithm. Figures 8.5, 8.6, 8.7, 8.8 and 8.9 show the
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Figure 8.6: The misclassification time of programs by the Unbalance feature, on
server32, considering the mean time of each program.

misclassification time of each cut-off algorithm aggregated by the different features.
From the figures, it is possible to see the major differences in ForLoop and Unbalance
features. ForLoop programs clearly have a lower misclassification cost when using
MaxTasks as the granularity control algorithm. Non-loop programs have a lower
penalty with the StackSize algorithm. Furthermore, unbalanced programs clearly
perform better with StackSize, while Surplus has the lowest cost in unbalanced
programs, followed by MaxTasks and MaxTasksInQueue.

Based on this information, it is possible to define the following rule for choosing
a granularity:

cutoff =


MaxTasks ForLoop = 1
Surplus Unbalanced = 1
StackSize otherwise

Unbalanced and For-Loop tasks have the particularity of creating several tasks
very quickly. Surplus and MaxTasks are approaches that perform well under those
scenarios. StackSize is a conservative approach that performs well in stable scenarios.

8.2.3 A Machine Learning Approach
Selecting a cut-off approach based on program information is a classification prob-
lem. Machine Learning (ML) is frequently used to automatically classify instances
based on collected data. Machine Learning is capable of understanding how com-
binations of features can impact the final classification. Given the difficulty of this
problem, using ML classifiers can provide candidate solutions for the classification
problem.
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Figure 8.7: The misclassification time of programs by the number of kernels, on
server32, considering the mean time of each program.

The proposed ML approach uses the same features identified as candidate fea-
tures for the ruleset approach: Forloop, Unbalance, Number of kernels, Branching
Factor and Nesting. These features are scaled between 0 to 1, as required by clas-
sifiers.

The same classifiers used in Chapter 4 have been evaluated: Random, Naïve
Bayes, SVM, MLP, Decision Tree, Random Forests and Balanced Random Forests.
The main difference is that this is a multi-class problem while the CPU-GPU decision
only had two alternatives. For the Balanced Random Forests classifier, the instance
weight in building the forests is the maximum misclassification of that instance.

The major shortcoming of this approach is the lack of data in this area. The
benchmark used is the largest benchmark for cut-off algorithm evaluation. Even
considering fork-join programs, the Fork-Join in the Wild study (De Wael et al.,
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Figure 8.8: The misclassification time of programs by the branching factor, on
server32, considering the mean time of each program.

2014) included 120 real-world programs, but most of them were simple homework
exercises or had complex dependencies on large systems, in which the cut-off algo-
rithm had no impact. Despite the limitation of a small benchmark suite, there is a
high variety in that benchmark.
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Figure 8.9: The misclassification time of programs by the number of nesting loops,
on server32, considering the mean time of each program.

8.3 Evaluation

8.3.1 Methodology
Because the last two approaches are based on information learnt from existing data,
it is necessary to define a new dataset of unseen data to evaluate both approaches.
This allows to evaluate the generalization capabilities of data-based approaches.

The training set consisted in the benchmark suite used in Chapter 5 to evaluate
cut-off algorithms, as it has already been used to develop the rule-based approach.

The testing data-set consisted in two synthetic programs that, according to their
input parameters, simulate different types of programs, resulting in programs with
different features. The first synthetic program generated recursive programs, either
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balanced or unbalanced, with more or less work. This program is the same syn-
thetic program used in Chapter 6 for the energy evaluation. The second synthetic
program creates loop-based programs, balanced or unbalanced, with different leves
of nesting, different number of kernels and more or less work. The synthetic dataset
resulted in 2383 different programs executed with each of the cut-off algorithms
considered. This dataset was retried from executing these two programs under the
same conditions of the training dataset.

8.3.2 Results
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Figure 8.10: Misclassification cost of each decision mechanism over the training
dataset, on server32.

Figure 8.10 shows the misclassification of each approach on the server32 machine.
All approaches were evaluated using a leave-one-out cross validation, and for non-
deterministic classifiers, the mean misclassification cost of 30 executions was used.
Of all the static approaches, the one which classified every program as StackSize
was the best, reflecting that the StackSize had a lower misclassification cost, shown
in Figure 8.2. Among ML classifiers, Decision Tree had the lowest misclassification
score. A simple decision tree can perform better than a randomized forest by being
less specific, resulting is less overfitting. The Balanced Random Forest classifier
had a lower penalty than its non-balanced counterpart, showing that using weights
can reduce misclassification cost. Despite its simplicity, the rule-based approach
outperformed all other approaches.

Figure 8.11 shows the misclassification cost of each approach using energy con-
sumption instead of execution time. Static stack-based approaches have a lower
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Figure 8.11: Misclassification energy cost of each decision mechanism over the train-
ing dataset, on server32.

consumption and the Rule-based approach is also able to achieve a lower misclassi-
fication energy cost than any other approach.

In order to evaluate the generalization capability of these approaches, a new eval-
uation was performed. Classifiers were fitted to the training dataset, and evaluated
on the testing dataset over previously unknown programs. Figure 8.12 shows the
misclassification error of the same approaches on this evaluation. The best static
approach is LoadBased, followed by MaxLevel, the two worst static approaches on
the training dataset. This result evidences the No Free Lunch Theorem for cut-off
algorithms. Thus using a static approach based on either training or testing dataset
would perform poorly on the other dataset.

The Ruleset and ML approaches were able to obtain a misclassification cost
similar to the static StackSize approach. Balanced Random Forest also outperformed
the Random Forest classifier, and even the predefined ruleset. The main reason for
these results is that StackSize is the best cut-off algorithm in the training dataset,
thus ruleset and ML classification are skewed towards that algorithm. In this new
dataset, StackSize is the third best cut-off algorithm, showing that although it might
not be the fastest in all programs, it is robust to new programs.

Figure 8.13 shows the misclassification cost in energy consumption for the test-
ing benchmark, using energy consumption data instead of execution time. The
amplitude differences among approaches are lower than when using execution time,
resulting in a lower impact. Energy-wise, the rule-based approach is able to achieve
energy consumption values similar to MaxLevel and Stacksize static approaches.
Loadbased is still the best static approach. Both Naïve Bayes and MLP classifiers
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Figure 8.12: Misclassification cost of each decision mechanism on the testing dataset,
on server32.

are able to obtain lower misclassification energy costs than other non-static ap-
proaches. Thus, these classifiers should be used when the values of each granularity
algorithm are less distant.
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Figure 8.13: Misclassification energy cost of each decision mechanism on the testing
dataset, on server32.

8.4 Conclusions
This Chapter presented and evaluated three approaches for selecting a cut-off al-
gorithm for a given program, based on its features. The first approach, used as
baseline, is the usage of a single cut-off algorithm for all programs. The second
approach is the usage of a ruleset obtained from the misclassification analysis of
each feature. Finally, the third approach consists in using ML classifiers to predict
which cut-off algorithm to use.

The three approaches were evaluated in the same dataset previously analyzed,
with the ruleset approach obtaining a lower misclassification cost than any other
approach. This ruleset consists of three conditions which can be easily applied by
programmers and compilers to perform the decision, instead of complex classifiers
that require to be trained with pre-existing data.

The same approaches were evaluated on a synthetic testing benchmark, resulting
in both Balanced Random Forests, trained with misclassification weights, and the
Ruleset approach obtaining the best results from the dynamic approaches. The
static approaches that had the best performance on the testing dataset were the
ones with the worst results on the training dataset, revealing that they would not
be good choices and confirming the No Free Lunch Theorem for cut-off algorithms.
Energy-wise, ML classifiers obtained misclassification costs close to the best static
approach for the testing benchmark.

Both developers and compiler and runtime systems now have a direct rule for
deciding which granularity algorithm to use, that only requires one to know whether
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the program uses for-loops and whether it is balanced or not.
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Chapter 9

Conclusions and future work

This Chapter presents an overview of the thesis and discusses future work.

9.1 Overview
This thesis has presented an approach for automatic parallelization of parallel pro-
grams, and its optimization in regards to granularity control. Existing and proposed
approaches for granularity management at runtime were extensively evaluated, as
well as methods for selecting an algorithm for a given program.

In the field of parallel programming, automatic parallelization is a desirable goal
because processors are increasing their core count instead of increasing the clock
frequency, as they were before. Additionally, manually parallelizing a program is a
large effort, which can be error prone. This thesis has presented a new automatic
parallelization model based on access permissions, a representation of memory ac-
cesses to objects. From access permissions, AST nodes can be translated to a par-
allel version of themselves, with a focus on method invocations and loops where
there is a higher gain in parallelization. Given the fine task granularity identified
by this model, it is necessary to coarse granularity to generate efficient programs.
This process can be done statically or dynamically. The presented approach has
been applied to an existing language, Java, but can be applied to any procedural
or object-oriented language. This model is an improvement over OoOJava (Jenista
et al., 2011) which requires manual identification of possible tasks. Additionally,
the proposed model does not rely on speculative execution by the runtime. This
model is also an improvement over the concurrent by default language Æminium
(Stork et al., 2014) because it does not require explicit access permissions from the
programmer.

In the proposed automatic parallelization mode, as well as in Æminium, there
was a over-parallelization of tasks, which would result in slower programs, compared
to a manual parallelization process. In order to generate more efficient programs,
a new hybrid granularity control algorithm model was introduced. This approach
relies on static analysis performed during compilation to build a cost-model for each
parallelization point. During execution the cost-model is specialized with concrete
values from input data to make a prediction whether to execute the program in par-
allel or sequentially. This mechanism is an alternative to runtime-based approaches.
It is also an improvement over Oracle (Acar et al., 2011), because it does not require
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special annotations from the programmer. The cost-model methodology can also be
applied in other parallel languages, like Æminium, or other automatic parallelization
tools targeting sequential languages, like C.

The proposed automatic parallelization model is capable of targeting both CPUs
and GPUs. In order to decide which processor should be used for each program, a
Machine-Learning approach is proposed for deciding when to use the fine granularity
of the GPU over the coarser granularity of multicore CPUs. The proposed model
defines features that can be automatically or manually extracted from the program
through static analysis or runtime inspection. The classifier that has shown better
results was a Random Forest trained with the weights of the possible misclassification
cost, resulting in over 95% of accuracy, and a low misclassification cost. Since this
work was published, other works have confirmed the usage of the same or similar
features for the same purpose, and also reached the conclusion that Artificial Neural
Networks achieved better performance than Support Vector Machines.

Considering multicore CPUs, granularity control mechanisms are used to gen-
erate more parallel work when there are not enough tasks and to avoid scheduling
overheads when there are enough. This thesis has introduced three new dynamic
granularity control algorithms: MaxTasksInQueue, StackSize and an hybrid version
of MaxTasks and StackSize. These approaches were evaluated against existing cut-
off algorithms, concluding that they were able to improve the performance on some
programs. The benchmark suite used is the largest that has been used for cut-off
algorithm evaluation, and it has been made available for public use. This evaluation
was extended to empirically verify the No Free Lunch Theorem application to cut-off
algorithms. It was concluded that no cut-off algorithm is better than all others in
all programs and, in fact, all algorithms have the same average performance over a
large set of programs.

Apart from this evaluation that, like previous evaluations, only considered exe-
cution time, the energy impact of cut-off algorithms was also evaluated, concluding
that different cut-offs have different energy efficiency. In balanced programs of light
or heavy workloads, depth-based approaches such as MaxLevel or ATC perform
better. In medium workloads MaxTasks is the best approach. In coarse irregular
programs, MaxTasks, MaxTasksInQueue and Surplus have the best performance,
but StackSize-based approaches are more suitable in highly irregular and lightweight
programs. These conclusions were confirmed in a larger benchmark that included
real-world and synthetic benchmarks. MaxTasks was considered the best approach
in both energy and time performance, but StackSize was considered the more con-
servative approach to prevent programs from taking too much time.

Existing and proposed dynamic granularity control algorithms were defined by
humans, based on runtime information from parallel programs. A Genetic Algo-
rithm was developed to obtain a program configuration, which included a synthetic
granularity control algorithm. The Genetic Algorithm was not able to successfully
find a cut-off that would be better for any given program, confirming the No Free
Lunch Theorem for cut-off algorithms. However, this approach proved to work in
finding the best granularity control algorithm to improve the performance of a single
program individually. 10 generations were considered enough to evolve into a stable
solution.

Given the No Free Lunch Theorem for cut-off algorithms, in order to auto-
matically obtain the best performance for a program, it is necessary to select the
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granularity control algorithm more suitable for that specific program. Two new
approaches have been presented: a ruleset created from the feature distribution
of empirical results, and machine-learning classifiers applied to the same results.
Within the real-world benchmark, the ruleset was able to achieve the best results.
In a synthetic testing benchmark, the Random Forest classifier, trained with the
maximum misclassification cost as weight per instance, was able to achieve better
results than the ruleset.

Overall, using the proposed models, it is now possible for programmers and
automatic parallelizing compilers to generate programs with the granularity control
algorithms that result in the best performance.

9.2 Future Work
Automatic parallelization is still not able to always achieve better results than man-
ual parallelization. The proposed automatic parallelization model can be improved
in some areas. Firstly, IO operations are sequentialized in a conservative manner.
It would be interesting to inspect those operations and identify whether they can
be executed out-of-order or not. While there is work on transactional IO, it adds
unwanted overhead to the system. Secondly, aliasing in Object-Oriented languages
can be so common that it reduces the parallelism extracted by this model. Program-
ming languages with explicit ownership, like Rust (Matsakis and Klock II, 2014),
can make the application of this model more useful. Finally, exception handling is
also sequentialized, and new programming language models for exception handling
are required to improve automatic parallelization in those cases.

Another aspect left for improvement is the correct modeling of parallel memory
allocation. Several of the programs in the benchmark spend a significant percentage
of the time allocating memory, either domain-specific or task-related. In order to
optimize the Cost-Model granularity control algorithm, it would be interesting to
consider memory allocation.

Energy-wise, asymmetrical processors, like big.Little, are an interesting target to
study. The energy-performance duality is different in this platform, which can lead
to higher performance gains.

Finally, the evaluation of GPU-CPU decision and granularity control algorithm
selection would be improved by using a larger number of real-world programs. While
synthetic programs have been used to simulate different behaviors of programs, they
are not guaranteed to have the same distribution as a real-world large benchmark.
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